Sample records for simulation experiment performed

  1. The effectiveness of and satisfaction with high-fidelity simulation to teach cardiac surgical resuscitation skills to nurses.

    PubMed

    McRae, Marion E; Chan, Alice; Hulett, Renee; Lee, Ai Jin; Coleman, Bernice

    2017-06-01

    There are few reports of the effectiveness or satisfaction with simulation to learn cardiac surgical resuscitation skills. To test the effect of simulation on the self-confidence of nurses to perform cardiac surgical resuscitation simulation and nurses' satisfaction with the simulation experience. A convenience sample of sixty nurses rated their self-confidence to perform cardiac surgical resuscitation skills before and after two simulations. Simulation performance was assessed. Subjects completed the Satisfaction with Simulation Experience scale and demographics. Self-confidence scores to perform all cardiac surgical skills as measured by paired t-tests were significantly increased after the simulation (d=-0.50 to 1.78). Self-confidence and cardiac surgical work experience were not correlated with time to performance. Total satisfaction scores were high (mean 80.2, SD 1.06) indicating satisfaction with the simulation. There was no correlation of the satisfaction scores with cardiac surgical work experience (τ=-0.05, ns). Self-confidence scores to perform cardiac surgical resuscitation procedures were higher after the simulation. Nurses were highly satisfied with the simulation experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Virtual reality simulators: valuable surgical skills trainers or video games?

    PubMed

    Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R

    2014-01-01

    Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  3. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, Brian; Jackson, R. Brian

    2017-03-08

    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less

  4. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    PubMed Central

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  5. The Effect of Autogenic Training on Self-Efficacy, Anxiety, and Performance on Nursing Student Simulation.

    PubMed

    Holland, Brian; Gosselin, Kevin; Mulcahy, Angela

    The increased anxiety experienced by nursing students during simulations can serve as a significant barrier to learning. The use of anxiety-reducing techniques such as autogenic training (AT) can mitigate the negative effects of anxiety and improve the overall learning experience. The investigators in this study sought to understand the effect of AT on student performance and self-efficacy during simulation experiences. The use of AT was an effective technique to decrease anxiety and increase performance among nursing students during nursing simulations. Reducing anxiety during simulations can improve the student learning experience.

  6. Development of an Implantable WBAN Path-Loss Model for Capsule Endoscopy

    NASA Astrophysics Data System (ADS)

    Aoyagi, Takahiro; Takizawa, Kenichi; Kobayashi, Takehiko; Takada, Jun-Ichi; Hamaguchi, Kiyoshi; Kohno, Ryuji

    An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.

  7. Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System.

    PubMed

    Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi

    2015-01-01

    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system.

  8. Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System

    PubMed Central

    Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi

    2015-01-01

    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system. PMID:26421311

  9. MCNP simulations of material exposure experiments (u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, Brian A

    2010-12-08

    Simulations of proposed material exposure experiments were performed using MCNP6. The experiments will expose ampules containing different materials of interest with radiation to observe the chemical breakdown of the materials. Simulations were performed to map out dose in materials as a function of distance from the source, dose variation between materials, dose variation due to ampule orientation, and dose variation due to different source energy. This write up is an overview of the simulations and will provide guidance on how to use the data in the spreadsheet.

  10. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P. J.

    2013-05-01

    More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations represent as accurately as possible the conditions of a given experiment, including the as-shot capsule metrology, capsule surface roughness, and ice layer defects as seeds for the growth of hydrodynamic instabilities. The radiation drive used in these capsule-only simulations can be tuned to reproduce quite well the measured implosion timing, kinematics, and low-mode asymmetry. In order to simulate the experiments as accurately as possible, a limited number of fully three-dimensional implosion simulations are also being performed. Despite detailed efforts to incorporate all of the effects known and believed to be important in determining implosion performance, substantial yield discrepancies remain between experiment and simulation. Some possible alternate scenarios and effects that could resolve this discrepancy are discussed.

  11. Solution to the indexing problem of frequency domain simulation experiments

    NASA Technical Reports Server (NTRS)

    Mitra, Mousumi; Park, Stephen K.

    1991-01-01

    A frequency domain simulation experiment is one in which selected system parameters are oscillated sinusoidally to induce oscillations in one or more system statistics of interest. A spectral (Fourier) analysis of these induced oscillations is then performed. To perform this spectral analysis, all oscillation frequencies must be referenced to a common, independent variable - an oscillation index. In a discrete-event simulation, the global simulation clock is the most natural choice for the oscillation index. However, past efforts to reference all frequencies to the simulation clock generally yielded unsatisfactory results. The reason for these unsatisfactory results is explained in this paper and a new methodology which uses the simulation clock as the oscillation index is presented. Techniques for implementing this new methodology are demonstrated by performing a frequency domain simulation experiment for a network of queues.

  12. Virtual geotechnical laboratory experiments using a simulator

    NASA Astrophysics Data System (ADS)

    Penumadu, Dayakar; Zhao, Rongda; Frost, David

    2000-04-01

    The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.

  13. NASA/ESACV-990 spacelab simulation. Appendix B: Experiment development and performance

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1976-01-01

    Eight experiments flown on the CV-990 airborne laboratory during the NASA/ESA joint Spacelab simulation mission are described in terms of their physical arrangement in the aircraft, their scientific objectives, developmental considerations dictated by mission requirements, checkout, integration into the aircraft, and the inflight operation and performance of the experiments.

  14. Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Prive, Nikki

    2015-01-01

    This presentation gives an overview of Observing System Simulation Experiments (OSSEs). The components of an OSSE are described, along with discussion of the process for validating, calibrating, and performing experiments. a.

  15. Preliminary Simulations of the Ullage Dynamics in Microgravity During the Jet Mixing Portion of Tank Pressure Control Experiments

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2015-01-01

    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage.

  16. Preliminary Simulations of the Ullage Dynamics in Microgravity during the Jet Mixing Portion of Tank Pressure Control Experiments

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2015-01-01

    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage.

  17. Validation of the updated ArthroS simulator: face and construct validity of a passive haptic virtual reality simulator with novel performance metrics.

    PubMed

    Garfjeld Roberts, Patrick; Guyver, Paul; Baldwin, Mathew; Akhtar, Kash; Alvand, Abtin; Price, Andrew J; Rees, Jonathan L

    2017-02-01

    To assess the construct and face validity of ArthroS, a passive haptic VR simulator. A secondary aim was to evaluate the novel performance metrics produced by this simulator. Two groups of 30 participants, each divided into novice, intermediate or expert based on arthroscopic experience, completed three separate tasks on either the knee or shoulder module of the simulator. Performance was recorded using 12 automatically generated performance metrics and video footage of the arthroscopic procedures. The videos were blindly assessed using a validated global rating scale (GRS). Participants completed a survey about the simulator's realism and training utility. This new simulator demonstrated construct validity of its tasks when evaluated against a GRS (p ≤ 0.003 in all cases). Regarding it's automatically generated performance metrics, established outputs such as time taken (p ≤ 0.001) and instrument path length (p ≤ 0.007) also demonstrated good construct validity. However, two-thirds of the proposed 'novel metrics' the simulator reports could not distinguish participants based on arthroscopic experience. Face validity assessment rated the simulator as a realistic and useful tool for trainees, but the passive haptic feedback (a key feature of this simulator) is rated as less realistic. The ArthroS simulator has good task construct validity based on established objective outputs, but some of the novel performance metrics could not distinguish between surgical experience. The passive haptic feedback of the simulator also needs improvement. If simulators could offer automated and validated performance feedback, this would facilitate improvements in the delivery of training by allowing trainees to practise and self-assess.

  18. The Impact of Simulated Aging on Nursing Staff Self Reports of Job Satisfaction and Performance.

    ERIC Educational Resources Information Center

    Robinson, James D.; Nussbaum, Jon F.

    A study examined the impact of a simulated aging experience on nursing staff perceptions of job satisfaction and job performance. It was hypothesized that nurses and nurse aides who participated in the simulated aging experience would be more satisfied with their jobs and would receive fewer complaints from residents than those who did not…

  19. Objective assessment of operator performance during ultrasound-guided procedures.

    PubMed

    Tabriz, David M; Street, Mandie; Pilgram, Thomas K; Duncan, James R

    2011-09-01

    Simulation permits objective assessment of operator performance in a controlled and safe environment. Image-guided procedures often require accurate needle placement, and we designed a system to monitor how ultrasound guidance is used to monitor needle advancement toward a target. The results were correlated with other estimates of operator skill. The simulator consisted of a tissue phantom, ultrasound unit, and electromagnetic tracking system. Operators were asked to guide a needle toward a visible point target. Performance was video-recorded and synchronized with the electromagnetic tracking data. A series of algorithms based on motor control theory and human information processing were used to convert raw tracking data into different performance indices. Scoring algorithms converted the tracking data into efficiency, quality, task difficulty, and targeting scores that were aggregated to create performance indices. After initial feasibility testing, a standardized assessment was developed. Operators (N = 12) with a broad spectrum of skill and experience were enrolled and tested. Overall scores were based on performance during ten simulated procedures. Prior clinical experience was used to independently estimate operator skill. When summed, the performance indices correlated well with estimated skill. Operators with minimal or no prior experience scored markedly lower than experienced operators. The overall score tended to increase according to operator's clinical experience. Operator experience was linked to decreased variation in multiple aspects of performance. The aggregated results of multiple trials provided the best correlation between estimated skill and performance. A metric for the operator's ability to maintain the needle aimed at the target discriminated between operators with different levels of experience. This study used a highly focused task model, standardized assessment, and objective data analysis to assess performance during simulated ultrasound-guided needle placement. The performance indices were closely related to operator experience.

  20. Validity evidence for the Simulated Colonoscopy Objective Performance Evaluation scoring system.

    PubMed

    Trinca, Kristen D; Cox, Tiffany C; Pearl, Jonathan P; Ritter, E Matthew

    2014-02-01

    Low-cost, objective systems to assess and train endoscopy skills are needed. The aim of this study was to evaluate the ability of Simulated Colonoscopy Objective Performance Evaluation to assess the skills required to perform endoscopy. Thirty-eight subjects were included in this study, all of whom performed 4 tasks. The scoring system measured performance by calculating precision and efficiency. Data analysis assessed the relationship between colonoscopy experience and performance on each task and the overall score. Endoscopic trainees' Simulated Colonoscopy Objective Performance Evaluation scores correlated significantly with total colonoscopy experience (r = .61, P = .003) and experience in the past 12 months (r = .63, P = .002). Significant differences were seen among practicing endoscopists, nonendoscopic surgeons, and trainees (P < .0001). When the 4 tasks were analyzed, each showed significant correlation with colonoscopy experience (scope manipulation, r = .44, P = .044; tool targeting, r = .45, P = .04; loop management, r = .47, P = .032; mucosal inspection, r = .65, P = .001) and significant differences in performance between the endoscopist groups, except for mucosal inspection (scope manipulation, P < .0001; tool targeting, P = .002; loop management, P = .0008; mucosal inspection, P = .27). Simulated Colonoscopy Objective Performance Evaluation objectively assesses the technical skills required to perform endoscopy and shows promise as a platform for proficiency-based skills training. Published by Elsevier Inc.

  1. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study.

    PubMed

    Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li

    2016-02-21

    To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.

  2. Performance Logic in Simulation Research at the University of British Columbia.

    ERIC Educational Resources Information Center

    Boyd, Marcia A.

    Advantages of the performance simulation setting are considered, along with what can be studied or developed within this setting. Experiences at the University of British Columbia (UBC) and views on future development and research opportunities in the performance simulation setting are also discussed. The benefits of simulating the clinical…

  3. Visuospatial skills and computer game experience influence the performance of virtual endoscopy.

    PubMed

    Enochsson, Lars; Isaksson, Bengt; Tour, René; Kjellin, Ann; Hedman, Leif; Wredmark, Torsten; Tsai-Felländer, Li

    2004-11-01

    Advanced medical simulators have been introduced to facilitate surgical and endoscopic training and thereby improve patient safety. Residents trained in the Procedicus Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) laparoscopic simulator perform laparoscopic cholecystectomy safer and faster than a control group. Little has been reported regarding whether factors like gender, computer experience, and visuospatial tests can predict the performance with a medical simulator. Our aim was to investigate whether such factors influence the performance of simulated gastroscopy. Seventeen medical students were asked about computer gaming experiences. Before virtual endoscopy, they performed the visuospatial test PicCOr, which discriminates the ability of the tested person to create a three-dimensional image from a two-dimensional presentation. Each student performed one gastroscopy (level 1, case 1) in the GI Mentor II, Simbionix, and several variables related to performance were registered. Percentage of time spent with a clear view in the endoscope correlated well with the performance on the PicSOr test (r = 0.56, P < 0.001). Efficiency of screening also correlated with PicSOr (r = 0.23, P < 0.05). In students with computer gaming experience, the efficiency of screening increased (33.6% +/- 3.1% versus 22.6% +/- 2.8%, P < 0.05) and the duration of the examination decreased by 1.5 minutes (P < 0.05). A similar trend was seen in men compared with women. The visuospatial test PicSOr predicts the results with the endoscopic simulator GI Mentor II. Two-dimensional image experience, as in computer games, also seems to affect the outcome.

  4. Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model

    NASA Astrophysics Data System (ADS)

    Solman, Silvina A.; Pessacg, Natalia L.

    2012-01-01

    In this study the capability of the MM5 model in simulating the main mode of intraseasonal variability during the warm season over South America is evaluated through a series of sensitivity experiments. Several 3-month simulations nested into ERA40 reanalysis were carried out using different cumulus schemes and planetary boundary layer schemes in an attempt to define the optimal combination of physical parameterizations for simulating alternating wet and dry conditions over La Plata Basin (LPB) and the South Atlantic Convergence Zone regions, respectively. The results were compared with different observational datasets and model evaluation was performed taking into account the spatial distribution of monthly precipitation and daily statistics of precipitation over the target regions. Though every experiment was able to capture the contrasting behavior of the precipitation during the simulated period, precipitation was largely underestimated particularly over the LPB region, mainly due to a misrepresentation in the moisture flux convergence. Experiments using grid nudging of the winds above the planetary boundary layer showed a better performance compared with those in which no constrains were imposed to the regional circulation within the model domain. Overall, no single experiment was found to perform the best over the entire domain and during the two contrasting months. The experiment that outperforms depends on the area of interest, being the simulation using the Grell (Kain-Fritsch) cumulus scheme in combination with the MRF planetary boundary layer scheme more adequate for subtropical (tropical) latitudes. The ensemble of the sensitivity experiments showed a better performance compared with any individual experiment.

  5. Learning style and laparoscopic experience in psychomotor skill performance using a virtual reality surgical simulator.

    PubMed

    Windsor, John A; Diener, Scott; Zoha, Farah

    2008-06-01

    People learn in different ways, and training techniques and technologies should accommodate individual learning needs. This pilot study looks at the relationship between learning style, as measured with the Multiple Intelligences Developmental Assessment Scales (MIDAS), laparoscopic surgery experience and psychomotor skill performance using the MIST VR surgical simulator. Five groups of volunteer subjects were selected from undergraduate tertiary students, medical students, novice surgical trainees, advanced surgical trainees and experienced laparoscopic surgeons. Each group was administered the MIDAS followed by two simulated surgical tasks on the MIST VR simulator. There was a striking homogeny of learning styles amongst experienced laparoscopic surgeons. Significant differences in the distribution of primary learning styles were found (P < .01) between subjects with minimal surgical training and those with considerable experience. A bodily-kinesthetic learning style, irrespective of experience, was associated with the best performance of the laparoscopic tasks. This is the first study to highlight the relationship between learning style, psychomotor skill and laparoscopic surgical experience with implications for surgeon selection, training and credentialling.

  6. A numerical tool for reproducing driver behaviour: experiments and predictive simulations.

    PubMed

    Casucci, M; Marchitto, M; Cacciabue, P C

    2010-03-01

    This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions.

  7. Doctors' stress responses and poor communication performance in simulated bad-news consultations.

    PubMed

    Brown, Rhonda; Dunn, Stewart; Byrnes, Karen; Morris, Richard; Heinrich, Paul; Shaw, Joanne

    2009-11-01

    No studies have previously evaluated factors associated with high stress levels and poor communication performance in breaking bad news (BBN) consultations. This study determined factors that were most strongly related to doctors' stress responses and poor communication performance during a simulated BBN task. In 2007, the authors recruited 24 doctors comprising 12 novices (i.e., interns/residents with 1-3 years' experience) and 12 experts (i.e., registrars, medical/radiation oncologists, or cancer surgeons, with more than 4 years' experience). Doctors participated in simulated BBN consultations and a number of control tasks. Five-minute-epoch heart rate (HR), HR variability, and communication performance were assessed in all participants. Subjects also completed a short questionnaire asking about their prior experience BBN, perceived stress, psychological distress (i.e., anxiety, depression), fatigue, and burnout. High stress responses were related to inexperience with BBN, fatigue, and giving bad versus good news. Poor communication performance in the consultation was related to high burnout and fatigue scores. These results suggest that BBN was a stressful experience for doctors even in a simulated encounter, especially for those who were inexperienced and/or fatigued. Poor communication performance was related to burnout and fatigue, but not inexperience with BBN. These results likely indicate that burnout and fatigue contributed to stress and poor work performance in some doctors during the simulated BBN task.

  8. An LED solar simulator for student labs

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2017-05-01

    Measuring voltage-current and voltage-power curves of a photovoltaic module is a nice experiment for high school and undergraduate students. In labs where real sunlight is not available this experiment requires a solar simulator. A prototype of a simulator using LED lamps has been manufactured and tested, and a comparison with classical halogen simulators has been performed. It is found that LED light offers lower levels of irradiance, but much better performance in terms of module output for a given irradiance.

  9. Burnout among pilots: psychosocial factors related to happiness and performance at simulator training.

    PubMed

    Demerouti, Evangelia; Veldhuis, Wouter; Coombes, Claire; Hunter, Rob

    2018-06-18

    In this study among airline pilots, we aim to uncover the work characteristics (job demands and resources) and the outcomes (job crafting, happiness and simulator training performance) that are related to burnout for this occupational group. Using a large sample of airline pilots, we showed that 40% of the participating pilots experience high burnout. In line with Job Demands-Resources theory, job demands were detrimental for simulator training performance because they made pilots more exhausted and less able to craft their job, whereas job resources had a favourable effect because they reduced feelings of disengagement and increased job crafting. Moreover, burnout was negatively related to pilots' happiness with life. These findings highlight the importance of psychosocial factors and health for valuable outcomes for both pilots and airlines. Practitioner Summary: Using an online survey among the members of a European pilots' professional association, we examined the relationship between psychosocial factors (work characteristics, burnout) and outcomes (simulator training performance, happiness). Forty per cent of the participating pilots experience high burnout. Job demands were detrimental, whereas job resources were favourable for simulator training performance/happiness. Twitter text: 40% of airline pilots experience burnout and psychosocial work factors and burnout relate to performance at pilots' simulator training.

  10. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study

    PubMed Central

    Hedman, Leif; Felländer-Tsai, Li

    2016-01-01

    Objectives To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Methods Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience.  Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. Results A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). Conclusions This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.  PMID:26897701

  11. Simulation experience enhances physical therapist student confidence in managing a patient in the critical care environment.

    PubMed

    Ohtake, Patricia J; Lazarus, Marcilene; Schillo, Rebecca; Rosen, Michael

    2013-02-01

    Rehabilitation of patients in critical care environments improves functional outcomes. This finding has led to increased implementation of intensive care unit (ICU) rehabilitation programs, including early mobility, and an associated increased demand for physical therapists practicing in ICUs. Unfortunately, many physical therapists report being inadequately prepared to work in this high-risk environment. Simulation provides focused, deliberate practice in safe, controlled learning environments and may be a method to initiate academic preparation of physical therapists for ICU practice. The purpose of this study was to examine the effect of participation in simulation-based management of a patient with critical illness in an ICU setting on levels of confidence and satisfaction in physical therapist students. A one-group, pretest-posttest, quasi-experimental design was used. Physical therapist students (N=43) participated in a critical care simulation experience requiring technical (assessing bed mobility and pulmonary status), behavioral (patient and interprofessional communication), and cognitive (recognizing a patient status change and initiating appropriate responses) skill performance. Student confidence and satisfaction were surveyed before and after the simulation experience. Students' confidence in their technical, behavioral, and cognitive skill performance increased from "somewhat confident" to "confident" following the critical care simulation experience. Student satisfaction was highly positive, with strong agreement the simulation experience was valuable, reinforced course content, and was a useful educational tool. Limitations of the study were the small sample from one university and a control group was not included. Incorporating a simulated, interprofessional critical care experience into a required clinical course improved physical therapist student confidence in technical, behavioral, and cognitive performance measures and was associated with high student satisfaction. Using simulation, students were introduced to the critical care environment, which may increase interest in working in this practice area.

  12. Determination of optimum mounting configurations for flat-plate photovoltaic modules based on a structured field experiment and simulated results from PVFORM, a photovoltaic system performance model

    NASA Astrophysics Data System (ADS)

    Menicucci, D. F.

    1986-01-01

    The performance of a photovoltaic (PV) system is affected by its mounting configuration. The optimal configuration is unclear because of lack of experience and data. Sandia National Laboratories, Albuquerque (SNLA), has conducted a controlled field experiment to compare four types of the most common module mounting. The data from the experiment were used to verify the accuracy of PVFORM, a new computer program that simulates PV performance. PVFORM was then used to simulate the performance of identical PV modules on different mounting configurations at 10 sites throughout the US. This report describes the module mounting configurations, the experimental methods used, the specialized statistical techniques used in the analysis, and the final results of the effort. The module mounting configurations are rank ordered at each site according to their annual and seasonal energy production performance, and each is briefly discussed in terms of its advantages and disadvantages in various applications.

  13. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  14. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  15. The Use of Human Factors Simulation to Conserve Operations Expense

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Dischinger, H. Charles, Jr.; Wu, Hsin-I.

    1999-01-01

    In preparation for on-orbit operations, NASA performs experiments aboard a KC-135 which performs parabolic maneuvers, resulting in short periods of microgravity. While considerably less expensive than space operations, the use of this aircraft is costly. Simulation of tasks to be performed during the flight can allow the participants to optimize hardware configuration and crew interaction prior to flight. This presentation will demonstrate the utility of such simulation. The experiment simulated is the fluid dynamics of epoxy components which may be used in a patch kit in the event of meteoroid damage to the International Space Station. Improved configuration and operational efficiencies were reflected in early and increased data collection.

  16. Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms

    PubMed Central

    Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus

    2017-01-01

    All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130

  17. Effectiveness of simulation-based learning on student nurses' self-efficacy and performance while learning fundamental nursing skills.

    PubMed

    Lin, Hsin-Hsin

    2015-01-01

    It was noted worldwide while learning fundamental skills and facing skills assessments, nursing students seemed to experience low confidence and high anxiety levels. Could simulation-based learning help to enhance students' self-efficacy and performance? Its effectiveness is mostly unidentified. This study was conducted to provide a shared experience to give nurse educators confidence and an insight into how simulation-based teaching can fit into nursing skills learning. A pilot study was completed with 50 second-year undergraduate nursing students, and the main study included 98 students where a pretest-posttest design was adopted. Data were gathered through four questionnaires and a performance assessment under scrutinized controls such as previous experiences, lecturers' teaching skills, duration of teaching, procedure of skills performance assessment and the inter-rater reliability. The results showed that simulation-based learning significantly improved students' self-efficacy regarding skills learning and the skills performance that nurse educators wish students to acquire. However, technology anxiety, examiners' critical attitudes towards students' performance and their unpredicted verbal and non-verbal expressions, have been found as possible confounding factors. The simulation-based learning proved to have a powerful positive effect on students' achievement outcomes. Nursing skills learning is one area that can benefit greatly from this kind of teaching and learning method.

  18. Flight Simulation for the Study of Skill Transfer.

    ERIC Educational Resources Information Center

    Lintern, Gavan

    1992-01-01

    Discusses skill transfer as a human performance issue based on experiences with computerized flight simulators. Highlights include the issue of similarity; simulation and the design of training devices; an information theory of transfer; invariants for flight control; and experiments involving the transfer of flight skills. (21 references) (LRW)

  19. A Bone Marrow Aspirate and Trephine Simulator.

    PubMed

    Yap, Eng Soo; Koh, Pei Lin; Ng, Chin Hin; de Mel, Sanjay; Chee, Yen Lin

    2015-08-01

    Bone marrow aspirate and trephine (BMAT) biopsy is a commonly performed procedure in hematology-oncology practice. Although complications are uncommon, they can cause significant morbidity and mortality. Simulation models are an excellent tool to teach novice doctors basic procedural skills before performing the actual procedure on patients to improve patient safety and well-being. There are no commercial BMAT simulators, and this technical report describes the rationale, technical specifications, and construction of a low-cost, easily constructed, reusable BMAT simulator that reproduced the tactile properties of tissue layers for use as a teaching tool in our resident BMAT simulation course. Preliminary data of learner responses to the simulator were also collected. From April 2013 to November 2013, 32 internal medicine residents underwent the BMAT simulation course. Eighteen (56%) completed the online survey, 11 residents with previous experience doing BMAT and 7 without experience. Despite the difference in operative experience, both experienced and novice residents all agreed or strongly agreed that the model aided their understanding of the BMAT procedure. All agreed or strongly agreed that this enhanced their knowledge of anatomy and 16 residents (89%) agreed or strongly agreed that this model was a realistic simulator. We present a novel, low-cost, easily constructed, realistic BMAT simulator for training novice doctors to perform BMAT.

  20. Neutron streaming studies along JET shielding penetrations

    NASA Astrophysics Data System (ADS)

    Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan

    2017-09-01

    Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.

  1. Improvements in the simulation code of the SOX experiment

    NASA Astrophysics Data System (ADS)

    Caminata, A.; Agostini, M.; Altenmüeller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gschwender, M.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssiére, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2017-09-01

    The aim of the SOX experiment is to test the hypothesis of existence of light sterile neutrinos trough a short baseline experiment. Electron antineutrinos will be produced by an high activity source and detected in the Borexino experiment. Both an oscillometry approach and a conventional disappearance analysis will be performed and, if combined, SOX will be able to investigate most of the anomaly region at 95% c.l. This paper focuses on the improvements performed on the simulation code and on the techniques (calibrations) used to validate the results.

  2. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    NASA Astrophysics Data System (ADS)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  3. Simulating and stimulating performance: introducing distributed simulation to enhance musical learning and performance.

    PubMed

    Williamon, Aaron; Aufegger, Lisa; Eiholzer, Hubert

    2014-01-01

    Musicians typically rehearse far away from their audiences and in practice rooms that differ significantly from the concert venues in which they aspire to perform. Due to the high costs and inaccessibility of such venues, much current international music training lacks repeated exposure to realistic performance situations, with students learning all too late (or not at all) how to manage performance stress and the demands of their audiences. Virtual environments have been shown to be an effective training tool in the fields of medicine and sport, offering practitioners access to real-life performance scenarios but with lower risk of negative evaluation and outcomes. The aim of this research was to design and test the efficacy of simulated performance environments in which conditions of "real" performance could be recreated. Advanced violin students (n = 11) were recruited to perform in two simulations: a solo recital with a small virtual audience and an audition situation with three "expert" virtual judges. Each simulation contained back-stage and on-stage areas, life-sized interactive virtual observers, and pre- and post-performance protocols designed to match those found at leading international performance venues. Participants completed a questionnaire on their experiences of using the simulations. Results show that both simulated environments offered realistic experience of performance contexts and were rated particularly useful for developing performance skills. For a subset of 7 violinists, state anxiety and electrocardiographic data were collected during the simulated audition and an actual audition with real judges. Results display comparable levels of reported state anxiety and patterns of heart rate variability in both situations, suggesting that responses to the simulated audition closely approximate those of a real audition. The findings are discussed in relation to their implications, both generalizable and individual-specific, for performance training.

  4. Simulating and stimulating performance: introducing distributed simulation to enhance musical learning and performance

    PubMed Central

    Williamon, Aaron; Aufegger, Lisa; Eiholzer, Hubert

    2014-01-01

    Musicians typically rehearse far away from their audiences and in practice rooms that differ significantly from the concert venues in which they aspire to perform. Due to the high costs and inaccessibility of such venues, much current international music training lacks repeated exposure to realistic performance situations, with students learning all too late (or not at all) how to manage performance stress and the demands of their audiences. Virtual environments have been shown to be an effective training tool in the fields of medicine and sport, offering practitioners access to real-life performance scenarios but with lower risk of negative evaluation and outcomes. The aim of this research was to design and test the efficacy of simulated performance environments in which conditions of “real” performance could be recreated. Advanced violin students (n = 11) were recruited to perform in two simulations: a solo recital with a small virtual audience and an audition situation with three “expert” virtual judges. Each simulation contained back-stage and on-stage areas, life-sized interactive virtual observers, and pre- and post-performance protocols designed to match those found at leading international performance venues. Participants completed a questionnaire on their experiences of using the simulations. Results show that both simulated environments offered realistic experience of performance contexts and were rated particularly useful for developing performance skills. For a subset of 7 violinists, state anxiety and electrocardiographic data were collected during the simulated audition and an actual audition with real judges. Results display comparable levels of reported state anxiety and patterns of heart rate variability in both situations, suggesting that responses to the simulated audition closely approximate those of a real audition. The findings are discussed in relation to their implications, both generalizable and individual-specific, for performance training. PMID:24550856

  5. Effect of video-game experience and position of flight stick controller on simulated-flight performance.

    PubMed

    Cho, Bo-Keun; Aghazadeh, Fereydoun; Al-Qaisi, Saif

    2012-01-01

    The purpose of this study was to determine the effects of video-game experience and flight-stick position on flying performance. The study divided participants into 2 groups; center- and side-stick groups, which were further divided into high and low level of video-game experience subgroups. The experiment consisted of 7 sessions of simulated flying, and in the last session, the flight stick controller was switched to the other position. Flight performance was measured in terms of the deviation of heading, altitude, and airspeed from their respective requirements. Participants with high experience in video games performed significantly better (p < .001) than the low-experienced group. Also, participants performed significantly better (p < .001) with the center-stick than the side-stick. When the side-stick controller was switched to the center-stick position, performance scores continued to increase (0.78 %). However, after switching from a center- to a side-stick controller, performance scores decreased (4.8%).

  6. Fine-motor skills testing and prediction of endovascular performance.

    PubMed

    Bech, Bo; Lönn, Lars; Schroeder, Torben V; Ringsted, Charlotte

    2013-12-01

    Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice candidates at entry to practice. To study the association between performance in a novel aptitude test of fine-motor skills and performance in simulated procedures. The test was based on manual course-tracking using a proprietary hand-operated roller-bar device coupled to a personal computer with monitor view rotation. A total of 40 test repetitions were conducted separately with each hand. Test scores were correlated with simulator performance. Group A (n = 14), clinicians with various levels of endovascular experience, performed a simulated procedure of contralateral iliac artery stenting. Group B (n = 19), medical students, performed 10 repetitions of crossing a challenging aortic bifurcation in a simulator. The test score differed markedly between the individuals in both groups, in particular with the non-dominant hand. Group A: the test score with the non-dominant hand correlated significantly with simulator performance assessed with the global rating scale SAVE (R = -0.69, P = 0.007). There was no association observed from performances with the dominant hand. Group B: there was no significant association between the test score and endovascular skills acquisition neither with the dominant nor with the non-dominant hand. Clinicians with increasing levels of endovascular technical experience had developed good fine-motor control of the non-dominant hand, in particular, that was associated with good procedural performance in the simulator. The aptitude test did not predict endovascular skills acquisition among medical students, thus, cannot be suggested for selection of novice candidates. Procedural experience and practice probably supplant the influence of innate abilities (talent) over time.

  7. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  8. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.; ...

    2017-03-21

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  9. Performance-based comparison of neonatal intubation training outcomes: simulator and live animal.

    PubMed

    Andreatta, Pamela B; Klotz, Jessica J; Dooley-Hash, Suzanne L; Hauptman, Joe G; Biddinger, Bea; House, Joseph B

    2015-02-01

    The purpose of this article was to establish psychometric validity evidence for competency assessment instruments and to evaluate the impact of 2 forms of training on the abilities of clinicians to perform neonatal intubation. To inform the development of assessment instruments, we conducted comprehensive task analyses including each performance domain associated with neonatal intubation. Expert review confirmed content validity. Construct validity was established using the instruments to differentiate between the intubation performance abilities of practitioners (N = 294) with variable experience (novice through expert). Training outcomes were evaluated using a quasi-experimental design to evaluate performance differences between 294 subjects randomly assigned to 1 of 2 training groups. The training intervention followed American Heart Association Pediatric Advanced Life Support and Neonatal Resuscitation Program protocols with hands-on practice using either (1) live feline or (2) simulated feline models. Performance assessment data were captured before and directly following the training. All data were analyzed using analysis of variance with repeated measures and statistical significance set at P < .05. Content validity, reliability, and consistency evidence were established for each assessment instrument. Construct validity for each assessment instrument was supported by significantly higher scores for subjects with greater levels of experience, as compared with those with less experience (P = .000). Overall, subjects performed significantly better in each assessment domain, following the training intervention (P = .000). After controlling for experience level, there were no significant differences among the cognitive, performance, and self-efficacy outcomes between clinicians trained with live animal model or simulator model. Analysis of retention scores showed that simulator trained subjects had significantly higher performance scores after 18 weeks (P = .01) and 52 weeks (P = .001) and cognitive scores after 52 weeks (P = .001). The results of this study demonstrate the feasibility of using valid, reliable assessment instruments to assess clinician competency and self-efficacy in the performance of neonatal intubation. We demonstrated the relative equivalency of live animal and simulation-based models as tools to support acquisition of neonatal intubation skills. Retention of performance abilities was greater for subjects trained using the simulator, likely because it afforded greater opportunity for repeated practice. Outcomes in each assessment area were influenced by the previous intubation experience of participants. This suggests that neonatal intubation training programs could be tailored to the level of provider experience to make efficient use of time and educational resources. Future research focusing on the uses of assessment in the applied clinical environment, as well as identification of optimal training cycles for performance retention, is merited.

  10. Facial recognition using enhanced pixelized image for simulated visual prosthesis.

    PubMed

    Li, Ruonan; Zhhang, Xudong; Zhang, Hui; Hu, Guanshu

    2005-01-01

    A simulated face recognition experiment using enhanced pixelized images is designed and performed for the artificial visual prosthesis. The results of the simulation reveal new characteristics of visual performance in an enhanced pixelization condition, and then new suggestions on the future design of visual prosthesis are provided.

  11. Visual enhancements in pick-and-place tasks: Human operators controlling a simulated cylindrical manipulator

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tendick, Frank; Stark, Lawrence

    1989-01-01

    A teleoperation simulator was constructed with vector display system, joysticks, and a simulated cylindrical manipulator, in order to quantitatively evaluate various display conditions. The first of two experiments conducted investigated the effects of perspective parameter variations on human operators' pick-and-place performance, using a monoscopic perspective display. The second experiment involved visual enhancements of the monoscopic perspective display, by adding a grid and reference lines, by comparison with visual enhancements of a stereoscopic display; results indicate that stereoscopy generally permits superior pick-and-place performance, but that monoscopy nevertheless allows equivalent performance when defined with appropriate perspective parameter values and adequate visual enhancements.

  12. Analytical investigation of critical phenomena in MHD power generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-31

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the US U-25 Experiment, are analyzed. Also analyzed are the performance of a NASA-specified 500 MW(th) flow train and computations concerning critica issues for the scale-up of MHD Generators. The HPDE is characterized by computational simulations of both the nominal conditions and the conditions during the experimental runs. The steady-state performance is discussed along with the Hall voltage overshoots during the start-up and shutdown transients. The results of simulations of the HPDE runs with codes from the Q3D and TRANSIENT code families are compared tomore » the experimental results. The results of the simulations are in good agreement with the experimental data. Additional critica phenomena analyzed in the AEDC/HPDE are the optimal load schedules, parametric variations, the parametric dependence of the electrode voltage drops, the boundary layer behavior, near electrode phenomena with finite electrode segmentation, and current distribution in the end regions. The US U-25 experiment is characterized by computational simulations of the nominal operating conditions. The steady-state performance for the nominal design of the US U-25 experiment is analyzed, as is the dependence of performance on the mass flow rate. A NASA-specified 500 MW(th) MHD flow train is characterized for computer simulation and the electrical, transport, and thermodynamic properties at the inlet plane are analyzed. Issues for the scale-up of MHD power trains are discussed. The AEDC/HPDE performance is analyzed to compare these experimental results to scale-up rules.« less

  13. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    ERIC Educational Resources Information Center

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  14. A Program for Simulated Thermodynamic Experiments.

    ERIC Educational Resources Information Center

    Olds, Dan W.

    A time-sharing FORTRAN program is described. It was created to allow a student to design and perform classical thermodynamic experiments on three models of a working substance. One goal was to develop a simulation which gave the student maximum freedom and responsibility in the design of the experiment and provided only the primary experimental…

  15. Physician Utilization of a Hospital Information System: A Computer Simulation Model

    PubMed Central

    Anderson, James G.; Jay, Stephen J.; Clevenger, Stephen J.; Kassing, David R.; Perry, Jane; Anderson, Marilyn M.

    1988-01-01

    The purpose of this research was to develop a computer simulation model that represents the process through which physicians enter orders into a hospital information system (HIS). Computer simulation experiments were performed to estimate the effects of two methods of order entry on outcome variables. The results of the computer simulation experiments were used to perform a cost-benefit analysis to compare the two different means of entering medical orders into the HIS. The results indicate that the use of personal order sets to enter orders into the HIS will result in a significant reduction in manpower, salaries and fringe benefits, and errors in order entry.

  16. Simulation Models for Developing an Individualized, Performance Criterion Learning Situation. Technical Monograph No. 21.

    ERIC Educational Resources Information Center

    Anderson, G. Ernest, Jr.

    The mission of the simulation team of the Model Elementary Teacher Education Project, 1968-71, was to develop simulation tools and conduct appropriate studies of the anticipated operation of that project. The team focused on the experiences of individual students and on the resources necessary for these experiences to be reasonable. This report…

  17. Characterization of an improved 1-3 piezoelectric composite by simulation and experiment.

    PubMed

    Zhong, Chao; Wang, Likun; Qin, Lei; Zhang, Yanjun

    2017-06-16

    To increase electromechanical coupling factor of 1-3 piezoelectric composite and reduce its bending deformation under external stress, an improved 1-3 piezoelectric composite is developed. In the improved structure, both epoxy resin and silicone rubber are used as polymer material. The simulation model of the improved 1-3 piezoelectric composite was established using the finite element software ANSYS. The relationship of the performance of the improved composite to the volume percentage of silicone rubber was determined by harmonic response analysis and the bending deformation under external stress was simulated by static analysis. The improved composite samples were prepared by cutting and filling methods, and the performance was tested. The feasibility of the improved structure was verified by finite element simulation and experiment. The electromechanical coupling factor of the improved composite can reach 0.67 and meanwhile the characteristic impedance can decline to 13 MRayl. The electromechanical coupling factor of the improved composite is higher than that of the composite with only epoxy resin as the polymer and the improved composite can reduce bending deformation. Comparison of simulation and experiment, the results of the experiment are in general agreement with those from the simulation. However, most experimental values were higher than the simulation results, and the abnormality of the test results was also more obvious than that of the simulation. These findings may be attributed to slight difference in the material parameters of simulation and experiment.

  18. Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM

    NASA Astrophysics Data System (ADS)

    Mucha, Waldemar; Kuś, Wacław

    2018-01-01

    The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.

  19. Perception versus reality: a comparative study of the clinical judgment skills of nurses during a simulated activity.

    PubMed

    Fenske, Cynthia L; Harris, Margaret A; Aebersold, Michelle L; Hartman, Laurie S

    2013-09-01

    This study was conducted to determine how closely nurses' perceptions of their clinical judgment abilities matched their demonstrated clinical judgment skills during a simulation. Seventy-four registered nurses participated in a simulation using a video format. After the simulation, the nurses self-assessed their performance using the Lasater Clinical Judgment Rubric. This rubric was then used to rate the nurses' actual performance in the simulation activity. The study results showed a significant discrepancy between nurses' perceptions of their own clinical judgment abilities and their demonstrated clinical judgment skills. Age and length of nursing experience enhanced the difference between the findings of self-assessment and actual performance. Younger nurses and those with 1 year or less of nursing experience were significantly more likely to have self-assessed their abilities at a much higher level compared with their actual skills. Copyright 2013, SLACK Incorporated.

  20. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing wasmore » prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.« less

  1. Statistical modeling of software reliability

    NASA Technical Reports Server (NTRS)

    Miller, Douglas R.

    1992-01-01

    This working paper discusses the statistical simulation part of a controlled software development experiment being conducted under the direction of the System Validation Methods Branch, Information Systems Division, NASA Langley Research Center. The experiment uses guidance and control software (GCS) aboard a fictitious planetary landing spacecraft: real-time control software operating on a transient mission. Software execution is simulated to study the statistical aspects of reliability and other failure characteristics of the software during development, testing, and random usage. Quantification of software reliability is a major goal. Various reliability concepts are discussed. Experiments are described for performing simulations and collecting appropriate simulated software performance and failure data. This data is then used to make statistical inferences about the quality of the software development and verification processes as well as inferences about the reliability of software versions and reliability growth under random testing and debugging.

  2. Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1997-01-01

    ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.

  3. HEBS and Binary 1-sinc masks simulations, HCIT experiments and results

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Bala K.; Hoppe, Dan; Wilson, Dan; Echternach, Pierre; Trauger, John; Halverson, Peter; Niessner, Al; Shi, Fang; Lowman, Andrew

    2005-01-01

    Based on preliminary experiments and results with a binary 1-sinc mask in the HCIT early in August 2004, we planned for a detailed experiment to compare the performance of HEBS and Binary masks under nearly identical conditions in the HCIT. This report details the design and fabrication of the masks, simulated predictions, and experimental results.

  4. A pilot study examining experiential learning vs didactic education of abdominal compartment syndrome.

    PubMed

    Saraswat, Anju; Bach, John; Watson, William D; Elliott, John O; Dominguez, Edward P

    2017-08-01

    Current surgical education relies on simulated educational experiences or didactic sessions to teach low-frequency clinical events such as abdominal compartment syndrome (ACS). The purpose of this pilot study was to evaluate if simulation would improve performance and knowledge retention of ACS better than a didactic lecture. Nineteen general surgery residents were block randomized by postgraduate year level to a didactic or a simulation session. After 3 months, all residents completed a knowledge assessment before participating in an additional simulation. Two independent reviewers assessed resident performance via audio-video recordings. No baseline differences in ACS experience were noted between groups. The observational evaluation demonstrated a significant difference in performance between the didactic and simulation groups: 9.9 vs 12.5, P = .037 (effect size = 1.15). Knowledge retention was equivalent between groups. This pilot study suggests that simulation-based education may be more effective for teaching the basic concepts of ACS. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  6. Da Vinci© Skills Simulator™: is an early selection of talented console surgeons possible?

    PubMed

    Meier, Mark; Horton, Kevin; John, Hubert

    2016-12-01

    To investigate whether the learning curve of robotic surgery simulator training depends on the probands' characteristics, such as age and prior experience, we conducted a study of six distinct proband groups, using the da Vinci Skills Simulator: experienced urological robotic surgeons, surgeons with experience as da Vinci tableside assistants, urological surgeons with laparoscopic experience, urological surgeons without laparoscopic experience, and complete novices aged 25 and younger and 40 and older. The results showed that all experienced robotic surgeons reached expert level (>90 %, as defined previously in the literature) within the first three repetitions and remained on a high level of performance. All other groups performed worse. Tableside assistants, laparoscopically experienced surgeons, and younger novices showed a better performance in all exercises than surgeons without laparoscopic experience and older novices. A linear mixed-effects model analysis demonstrated no significant difference in learning curves between proband groups in all exercises except the RW1 exercise for the younger proband group. In summary, we found that performance in robotic surgery, measured by performance scores in three virtual simulator modules using the EndoWrist techniques, was dependent on age and prior experience with robotic and laparoscopic surgery. However, and most importantly, the learning curve was not significantly affected by these factors. This suggests that the da Vinci Skills Simulator™ is a useful practice tool for everyone learning or performing robotic surgery, and that early selection of talented surgeons is neither possible nor necessary.

  7. Correlation Between Arthroscopy Simulator and Video Game Performance: A Cross-Sectional Study of 30 Volunteers Comparing 2- and 3-Dimensional Video Games.

    PubMed

    Jentzsch, Thorsten; Rahm, Stefan; Seifert, Burkhardt; Farei-Campagna, Jan; Werner, Clément M L; Bouaicha, Samy

    2016-07-01

    To investigate the association between arthroscopy simulator performance and video game skills. This study compared the performances of 30 volunteers without experience performing arthroscopies in 3 different tasks of a validated virtual reality knee arthroscopy simulator with the video game experience using a questionnaire and actual performances in 5 different 2- and 3-dimensional (D) video games of varying genres on 2 different platforms. Positive correlations between knee arthroscopy simulator and video game performances (ρ = 0.63, P < .001) as well as experiences (ρ = 0.50, P = .005) were found. The strongest correlations were found for the task of catching (hooking) 6 foreign bodies (virtual rings; "triangulation") and the dribbling performance in a sports game and a first-person shooter game, as well as the meniscus resection and a tile-matching puzzle game (all ρ ≥ 0.60, P < .001). No correlations were found for any of the knee arthroscopy simulator tasks and a strategy game. Although knee arthroscopy performances do not correlate with 2-D strategy video game skills, they show a correlation with 2-D tile-matching puzzle games only for easier tasks with a rather limited focus, and highly correlate with 3-D sports and first-person shooter video games. These findings show that experienced and good 3-D gamers are better arthroscopists than nonexperienced and poor 3-D gamers. Level II, observational cross-sectional study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  8. Advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.

  9. Experiments evaluating compliance and force feedback effect on manipulator performance

    NASA Technical Reports Server (NTRS)

    Kugath, D. A.

    1972-01-01

    The performance capability was assessed of operators performing simulated space tasks using manipulator systems which had compliance and force feedback varied. Two manipulators were used, the E-2 electromechanical man-equivalent (force, reach, etc.) master-slave system and a modified CAM 1400 hydraulic master-slave with 100 lbs force capability at reaches of 24 ft. The CAM 1400 was further modified to operate without its normal force feedback. Several experiments and simulations were performed. The first two involved the E-2 absorbing the energy of a moving mass and secondly, guiding a mass thru a maze. Thus, both work and self paced tasks were studied as servo compliance was varied. Three simulations were run with the E-2 mounted on the CAM 1400 to evaluate the concept of a dexterous manipulator as an end effector of a boom-manipulator. Finally, the CAM 1400 performed a maze test and also simulated the capture of a large mass as the servo compliance was varied and with force feedback included and removed.

  10. Introduction to Observing System Simulation Experiments (OSSEs)

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2014-01-01

    This presentation gives a brief overview of Observing System Simulation Experiments (OSSEs), including what OSSEs are, and how and why they are performed. The intent is to educate the audience in light of the OSSE-related sections of the Forecast Improvement Act (H.R. 2413).

  11. Factors associated with simulator-assessed laparoscopic surgical skills of veterinary students.

    PubMed

    Kilkenny, Jessica J; Singh, Ameet; Kerr, Carolyn L; Khosa, Deep K; Fransson, Boel A

    2017-06-01

    OBJECTIVE To determine whether simulator-assessed laparoscopic skills of veterinary students were associated with training level and prior experience performing nonlaparoscopic veterinary surgery and other activities requiring hand-eye coordination and manual dexterity. DESIGN Experiment. SAMPLE 145 students without any prior laparoscopic surgical or fundamentals of laparoscopic surgery (FLS) simulator experience in years 1 (n = 39), 2 (34), 3 (39), and 4 (33) at a veterinary college. PROCEDURES A questionnaire was used to collect data from participants regarding experience performing veterinary surgery, playing video games, and participating in other activities. Participants performed a peg transfer, pattern cutting, and ligature loop-placement task on an FLS simulator, and FLS scores were assigned by an observer. Scores were compared among academic years, and correlations between amounts of veterinary surgical experience and FLS scores were assessed. A general linear model was used to identify predictors of FLS scores. RESULTS Participants were predominantly female (75%), right-hand dominant (92%), and between 20 and 29 years of age (98%). No significant differences were identified among academic years in FLS scores for individual tasks or total FLS score. Scores were not significantly associated with prior surgical or video game experience. Participants reporting no handicraft experience had significantly lower total FLS scores and FLS scores for task 2 than did participants reporting a lot of handicraft experience. CONCLUSIONS AND CLINICAL RELEVANCE Prior veterinary surgical and video game experience had no influence on FLS scores in this group of veterinary students, suggesting that proficiency of veterinary students in FLS may require specific training.

  12. Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penacchioni, A. V., E-mail: ana.penacchioni@inpe.br; Braga, J., E-mail: joao.braga@inpe.br; Castro, M. A., E-mail: manuel.castro@inpe.br

    2015-12-17

    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modelled the meridian transits of the Crab Nebula and the Galactic Centre (CG) region during balloon flights in Brazil (∼ −23° of latitude and an altitude of ∼40 km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and ofmore » three sources in the GC: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.« less

  13. A Simulation Modeling Approach Method Focused on the Refrigerated Warehouses Using Design of Experiment

    NASA Astrophysics Data System (ADS)

    Cho, G. S.

    2017-09-01

    For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.

  14. Simulator-Based Angiography and Endovascular Neurosurgery Curriculum: A Longitudinal Evaluation of Performance Following Simulator-Based Angiography Training.

    PubMed

    Pannell, J Scott; Santiago-Dieppa, David R; Wali, Arvin R; Hirshman, Brian R; Steinberg, Jeffrey A; Cheung, Vincent J; Oveisi, David; Hallstrom, Jon; Khalessi, Alexander A

    2016-08-29

    This study establishes performance metrics for angiography and neuroendovascular surgery procedures based on longitudinal improvement in individual trainees with differing levels of training and experience. Over the course of 30 days, five trainees performed 10 diagnostic angiograms, coiled 10 carotid terminus aneurysms in the setting of subarachnoid hemorrhage, and performed 10 left middle cerebral artery embolectomies on a Simbionix Angio Mentor™ simulator. All procedures were nonconsecutive. Total procedure time, fluoroscopy time, contrast dose, heart rate, blood pressures, medications administered, packing densities, the number of coils used, and the number of stent-retriever passes were recorded. Image quality was rated, and the absolute value of technically unsafe events was recorded. The trainees' device selection, macrovascular access, microvascular access, clinical management, and the overall performance of the trainee was rated during each procedure based on a traditional Likert scale score of 1=fail, 2=poor, 3=satisfactory, 4=good, and 5=excellent. These ordinal values correspond with published assessment scales on surgical technique. After performing five diagnostic angiograms and five embolectomies, all participants demonstrated marked decreases in procedure time, fluoroscopy doses, contrast doses, and adverse technical events; marked improvements in image quality, device selection, access scores, and overall technical performance were additionally observed (p < 0.05). Similarly, trainees demonstrated marked improvement in technical performance and clinical management after five coiling procedures (p < 0.05). However, trainees with less prior experience deploying coils continued to experience intra-procedural ruptures up to the eighth embolization procedure; this observation likely corresponded with less tactile procedural experience to an exertion of greater force than appropriate for coil placement. Trainees across all levels of training and prior experience demonstrated a significant performance improvement after completion of our simulator curriculum consisting of five diagnostic angiograms, five embolectomy cases, and 10 aneurysm coil embolizations.

  15. Three dimensional particle-in-cell simulations of electron beams created via reflection of intense laser light from a water target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngirmang, Gregory K., E-mail: ngirmang.1@osu.edu; Orban, Chris; Feister, Scott

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution;more » the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.« less

  16. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. A. Todd; K. N. Brewer

    1999-04-01

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less

  17. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M.; Wang, Q.; Scholbrock, A.

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  18. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjöholm, M.

    2016-09-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign.

  19. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE PAGES

    Churchfield, M.; Wang, Q.; Scholbrock, A.; ...

    2016-10-03

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  20. Incorporating Social Oriented Agent and Interactive Simulation in E-learning: Impact on Learning, Perceptions, Experiences to Non-Native English Students

    ERIC Educational Resources Information Center

    Ballera, Melvin; Elssaedi, Mosbah Mohamed

    2012-01-01

    There is an unrealized potential in the use of socially-oriented pedagogical agent and interactive simulation in e-learning system. In this paper, we investigate the impact of having a socially oriented tutor agent and the incorporation of interactive simulation in e-learning into student performances, perceptions and experiences for non-native…

  1. Using a virtual reality temporal bone simulator to assess otolaryngology trainees.

    PubMed

    Zirkle, Molly; Roberson, David W; Leuwer, Rudolf; Dubrowski, Adam

    2007-02-01

    The objective of this study is to determine the feasibility of computerized evaluation of resident performance using hand motion analysis on a virtual reality temporal bone (VR TB) simulator. We hypothesized that both computerized analysis and expert ratings would discriminate the performance of novices from experienced trainees. We also hypothesized that performance on the virtual reality temporal bone simulator (VR TB) would differentiate based on previous drilling experience. The authors conducted a randomized, blind assessment study. Nineteen volunteers from the Otolaryngology-Head and Neck Surgery training program at the University of Toronto drilled both a cadaveric TB and a simulated VR TB. Expert reviewers were asked to assess operative readiness of the trainee based on a blind video review of their performance. Computerized hand motion analysis of each participant's performance was conducted. Expert raters were able to discriminate novices from experienced trainees (P < .05) on cadaveric temporal bones, and there was a trend toward discrimination on VR TB performance. Hand motion analysis showed that experienced trainees had better movement economy than novices (P < .05) on the VR TB. Performance, as measured by hand motion analysis on the VR TB simulator, reflects trainees' previous drilling experience. This study suggests that otolaryngology trainees could accomplish initial temporal bone training on a VR TB simulator, which can provide feedback to the trainee, and may reduce the need for constant faculty supervision and evaluation.

  2. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    PubMed

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.

  3. Optical simulations for experimental networks: lessons from MONET

    NASA Astrophysics Data System (ADS)

    Richards, Dwight H.; Jackel, Janet L.; Goodman, Matthew S.; Roudas, Ioannis; Wagner, Richard E.; Antoniades, Neophytos

    1999-08-01

    We have used optical simulations as a means of setting component requirements, assessing component compatibility, and designing experiments in the MONET (Multiwavelength Optical Networking) Project. This paper reviews the simulation method, gives some examples of the types of simulations that have been performed, and discusses the validation of the simulations.

  4. The effectiveness of using computer simulated experiments on junior high students' understanding of the volume displacement concept

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Soon; Gennaro, Eugene

    Several researchers have suggested that the computer holds much promise as a tool for science teachers for use in their classrooms (Bork, 1979, Lunetta & Hofstein, 1981). It also has been said that there needs to be more research in determining the effectiveness of computer software (Tinker, 1983).This study compared the effectiveness of microcomputer simulated experiences with that of parallel instruction involving hands-on laboratory experiences for teaching the concept of volume displacement to junior high school students. This study also assessed the differential effect on students' understanding of the volume displacement concept using sex of the students as another independent variable. In addition, it compared the degree of retention, after 45 days, of both treatment groups.It was found that computer simulated experiences were as effective as hands-on laboratory experiences, and that males, having had hands-on laboratory experiences, performed better on the posttest than females having had the hands-on laboratory experiences. There were no significant differences in performance when comparing males with females using the computer simulation in the learning of the displacement concept. This study also showed that there were no significant differences in the retention levels when the retention scores of the computer simulation groups were compared to those that had the hands-on laboratory experiences. However, an ANOVA of the retention test scores revealed that males in both treatment conditions retained knowledge of volume displacement better than females.

  5. Pilot performance during simulated approaches and landings made with various computer-generated visual glidepath indicators.

    DOT National Transportation Integrated Search

    1979-01-01

    Two simulator experiments were conducted to quantify the effectiveness, in terms of pilot performance, of four different visual glidepath indicator systems in the severely reduced nighttime visual environment often referred to as the 'black hole'. A ...

  6. Realtime monitoring of bridge scour using remote monitoring technology

    DOT National Transportation Integrated Search

    2011-02-01

    The research performed in this project focuses on the application of instruments including accelerometers : and tiltmeters to monitor bridge scour. First, two large scale laboratory experiments were performed. One : experiment is the simulation of a ...

  7. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  8. Construct validity of individual and summary performance metrics associated with a computer-based laparoscopic simulator.

    PubMed

    Rivard, Justin D; Vergis, Ashley S; Unger, Bertram J; Hardy, Krista M; Andrew, Chris G; Gillman, Lawrence M; Park, Jason

    2014-06-01

    Computer-based surgical simulators capture a multitude of metrics based on different aspects of performance, such as speed, accuracy, and movement efficiency. However, without rigorous assessment, it may be unclear whether all, some, or none of these metrics actually reflect technical skill, which can compromise educational efforts on these simulators. We assessed the construct validity of individual performance metrics on the LapVR simulator (Immersion Medical, San Jose, CA, USA) and used these data to create task-specific summary metrics. Medical students with no prior laparoscopic experience (novices, N = 12), junior surgical residents with some laparoscopic experience (intermediates, N = 12), and experienced surgeons (experts, N = 11) all completed three repetitions of four LapVR simulator tasks. The tasks included three basic skills (peg transfer, cutting, clipping) and one procedural skill (adhesiolysis). We selected 36 individual metrics on the four tasks that assessed six different aspects of performance, including speed, motion path length, respect for tissue, accuracy, task-specific errors, and successful task completion. Four of seven individual metrics assessed for peg transfer, six of ten metrics for cutting, four of nine metrics for clipping, and three of ten metrics for adhesiolysis discriminated between experience levels. Time and motion path length were significant on all four tasks. We used the validated individual metrics to create summary equations for each task, which successfully distinguished between the different experience levels. Educators should maintain some skepticism when reviewing the plethora of metrics captured by computer-based simulators, as some but not all are valid. We showed the construct validity of a limited number of individual metrics and developed summary metrics for the LapVR. The summary metrics provide a succinct way of assessing skill with a single metric for each task, but require further validation.

  9. Simulation Studies as Designed Experiments: The Comparison of Penalized Regression Models in the “Large p, Small n” Setting

    PubMed Central

    Chaibub Neto, Elias; Bare, J. Christopher; Margolin, Adam A.

    2014-01-01

    New algorithms are continuously proposed in computational biology. Performance evaluation of novel methods is important in practice. Nonetheless, the field experiences a lack of rigorous methodology aimed to systematically and objectively evaluate competing approaches. Simulation studies are frequently used to show that a particular method outperforms another. Often times, however, simulation studies are not well designed, and it is hard to characterize the particular conditions under which different methods perform better. In this paper we propose the adoption of well established techniques in the design of computer and physical experiments for developing effective simulation studies. By following best practices in planning of experiments we are better able to understand the strengths and weaknesses of competing algorithms leading to more informed decisions about which method to use for a particular task. We illustrate the application of our proposed simulation framework with a detailed comparison of the ridge-regression, lasso and elastic-net algorithms in a large scale study investigating the effects on predictive performance of sample size, number of features, true model sparsity, signal-to-noise ratio, and feature correlation, in situations where the number of covariates is usually much larger than sample size. Analysis of data sets containing tens of thousands of features but only a few hundred samples is nowadays routine in computational biology, where “omics” features such as gene expression, copy number variation and sequence data are frequently used in the predictive modeling of complex phenotypes such as anticancer drug response. The penalized regression approaches investigated in this study are popular choices in this setting and our simulations corroborate well established results concerning the conditions under which each one of these methods is expected to perform best while providing several novel insights. PMID:25289666

  10. High Fidelity Simulation Experience in Emergency settings: doctors and nurses satisfaction levels.

    PubMed

    Calamassi, Diletta; Nannelli, Tiziana; Guazzini, Andrea; Rasero, Laura; Bambi, Stefano

    2016-11-22

    Lots of studies describe High Fidelity Simulation (HFS) as an experience well-accepted by the learners. This study has explored doctors and nurses satisfaction levels during HFS sessions, searching the associations with the setting of simulation events (simulation center or on the field simulation). Moreover, we studied the correlation between HFS experience satisfaction levels and the socio-demographic features of the participants. Mixed method study, using the Satisfaction of High-Fidelity Simulation Experience (SESAF) questionnaire through an online survey. SESAF was administered to doctors and nurses who previously took part to HFS sessions in a simulation center or in the field. Quantitative data were analyzed through descriptive and inferential statistics methods; qualitative data was performed through the Giorgi method. 143 doctors and 94 nurses filled the questionnaire. The satisfaction level was high: on a 10 points scale, the mean score was 8.17 (SD±1.924). There was no significant difference between doctors and nurses satisfaction levels in almost all the SESAF factors. We didn't find any correlation between gender and HFS experience satisfaction levels. The knowledge of theoretical aspects of the simulated case before the HFS experience is related to a higher general satisfaction (r=0.166 p=0.05), a higher effectiveness of debriefing (r=0,143 p=0,05), and a higher professional impact (r=0.143 p=0.05). The respondents that performed a HFS on the field, were more satisfied than the others, and experienced a higher "professional impact", "clinical reasoning and self efficacy", and "team dynamics" (p< 0,01). Narrative data suggest that HFS facilitators should improve their behaviors during the debriefing. Healthcare managers should extend the HFS to all kind of healthcare workers in real clinical settings. There is the need to improve and implement the communication competences of HFS facilitators.

  11. The Transfer of Abstract Principles Governing Complex Adaptive Systems

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Sakamoto, Yasuaki

    2003-01-01

    Four experiments explored participants' understanding of the abstract principles governing computer simulations of complex adaptive systems. Experiments 1, 2, and 3 showed better transfer of abstract principles across simulations that were relatively dissimilar, and that this effect was due to participants who performed relatively poorly on the…

  12. BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences

    NASA Astrophysics Data System (ADS)

    Kose, Ryoichi; Kose, Katsumi

    2017-08-01

    A magnetic resonance imaging (MRI) simulator, which reproduces MRI experiments using computers, has been developed using two graphic-processor-unit (GPU) boards (GTX 1080). The MRI simulator was developed to run according to pulse sequences used in experiments. Experiments and simulations were performed to demonstrate the usefulness of the MRI simulator for three types of pulse sequences, namely, three-dimensional (3D) gradient-echo, 3D radio-frequency spoiled gradient-echo, and gradient-echo multislice with practical matrix sizes. The results demonstrated that the calculation speed using two GPU boards was typically about 7 TFLOPS and about 14 times faster than the calculation speed using CPUs (two 18-core Xeons). We also found that MR images acquired by experiment could be reproduced using an appropriate number of subvoxels, and that 3D isotropic and two-dimensional multislice imaging experiments for practical matrix sizes could be simulated using the MRI simulator. Therefore, we concluded that such powerful MRI simulators are expected to become an indispensable tool for MRI research and development.

  13. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    NASA Astrophysics Data System (ADS)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17

  14. NASA/ESA CT-990 Spacelab simulation. Appendix A: The experiment operator

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1976-01-01

    A joint NASA/ESA endeavor was established to conduct an extensive spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. This appendix discusses the experiment operators and their relationship to the joint mission under the following general headings: selection criteria, training programs, and performance. The performance of the proxy operators was assessed in terms of adequacy of training, amount of scientific data obtained, quality of data obtained, and reactions to problems that arose in experiment operation.

  15. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.

    PubMed

    Wei, Fanan; Yang, Haitao; Liu, Lianqing; Li, Guangyong

    2017-03-01

    Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.

  16. Numerical Simulation and Experimental Study of a Dental Handpiece Air Turbine

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Neng; Chiang, Hsiao-Wei D.; Chang, Ya-Yi

    2011-06-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, however, little work has been reported on their performance. In dental air turbine handpieces, the types of flow channel and turbine blade shape can have very different designs. These different designs can have major influence on the torque, rotating speed, and power performance. This research is focused on the turbine blade and the flow channel designs. Using numerical simulation and experiments, the key design parameters which influence the performance of dental hand pieces can be studied. Three types of dental air turbine designs with different turbine blades, nozzle angles, nozzle flow channels, and shroud clearances were tested and analyzed. Very good agreement was demonstrated between the numerical simulation analyses and the experiments. Using the analytical model, parametric studies were performed to identify key design parameters.

  17. Effects of motion base and g-seat cueing of simulator pilot performance

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.; Mckissick, B. T.; Parrish, R. V.

    1984-01-01

    In order to measure and analyze the effects of a motion plus g-seat cueing system, a manned-flight-simulation experiment was conducted utilizing a pursuit tracking task and an F-16 simulation model in the NASA Langley visual/motion simulator. This experiment provided the information necessary to determine whether motion and g-seat cues have an additive effect on the performance of this task. With respect to the lateral tracking error and roll-control stick force, the answer is affirmative. It is shown that presenting the two cues simultaneously caused significant reductions in lateral tracking error and that using the g-seat and motion base separately provided essentially equal reductions in the pilot's lateral tracking error.

  18. Construct and face validity of the educational computer-based environment (ECE) assessment scenarios for basic endoneurosurgery skills.

    PubMed

    Cagiltay, Nergiz Ercil; Ozcelik, Erol; Sengul, Gokhan; Berker, Mustafa

    2017-11-01

    In neurosurgery education, there is a paradigm shift from time-based training to criterion-based model for which competency and assessment becomes very critical. Even virtual reality simulators provide alternatives to improve education and assessment in neurosurgery programs and allow for several objective assessment measures, there are not many tools for assessing the overall performance of trainees. This study aims to develop and validate a tool for assessing the overall performance of participants in a simulation-based endoneurosurgery training environment. A training program was developed in two levels: endoscopy practice and beginning surgical practice based on four scenarios. Then, three experiments were conducted with three corresponding groups of participants (Experiment 1, 45 (32 beginners, 13 experienced), Experiment 2, 53 (40 beginners, 13 experienced), and Experiment 3, 26 (14 novices, 12 intermediate) participants). The results analyzed to understand the common factors among the performance measurements of these experiments. Then, a factor capable of assessing the overall skill levels of surgical residents was extracted. Afterwards, the proposed measure was tested to estimate the experience levels of the participants. Finally, the level of realism of these educational scenarios was assessed. The factor formed by time, distance, and accuracy on simulated tasks provided an overall performance indicator. The prediction correctness was very high for the beginners than the one for experienced surgeons in Experiments 1 and 2. When non-dominant hand is used in a surgical procedure-based scenario, skill levels of surgeons can be better predicted. The results indicate that the scenarios in Experiments 1 and 2 can be used as an assessment tool for the beginners, and scenario-2 in Experiment 3 can be used as an assessment tool for intermediate and novice levels. It can be concluded that forming the balance between perceived action capacities and skills is critical for better designing and developing skill assessment surgical simulation tools.

  19. Comparative Performance of Four Single Extreme Outlier Discordancy Tests from Monte Carlo Simulations

    PubMed Central

    Díaz-González, Lorena; Quiroz-Ruiz, Alfredo

    2014-01-01

    Using highly precise and accurate Monte Carlo simulations of 20,000,000 replications and 102 independent simulation experiments with extremely low simulation errors and total uncertainties, we evaluated the performance of four single outlier discordancy tests (Grubbs test N2, Dixon test N8, skewness test N14, and kurtosis test N15) for normal samples of sizes 5 to 20. Statistical contaminations of a single observation resulting from parameters called δ from ±0.1 up to ±20 for modeling the slippage of central tendency or ε from ±1.1 up to ±200 for slippage of dispersion, as well as no contamination (δ = 0 and ε = ±1), were simulated. Because of the use of precise and accurate random and normally distributed simulated data, very large replications, and a large number of independent experiments, this paper presents a novel approach for precise and accurate estimations of power functions of four popular discordancy tests and, therefore, should not be considered as a simple simulation exercise unrelated to probability and statistics. From both criteria of the Power of Test proposed by Hayes and Kinsella and the Test Performance Criterion of Barnett and Lewis, Dixon test N8 performs less well than the other three tests. The overall performance of these four tests could be summarized as N2≅N15 > N14 > N8. PMID:24737992

  20. Comparative performance of four single extreme outlier discordancy tests from Monte Carlo simulations.

    PubMed

    Verma, Surendra P; Díaz-González, Lorena; Rosales-Rivera, Mauricio; Quiroz-Ruiz, Alfredo

    2014-01-01

    Using highly precise and accurate Monte Carlo simulations of 20,000,000 replications and 102 independent simulation experiments with extremely low simulation errors and total uncertainties, we evaluated the performance of four single outlier discordancy tests (Grubbs test N2, Dixon test N8, skewness test N14, and kurtosis test N15) for normal samples of sizes 5 to 20. Statistical contaminations of a single observation resulting from parameters called δ from ±0.1 up to ±20 for modeling the slippage of central tendency or ε from ±1.1 up to ±200 for slippage of dispersion, as well as no contamination (δ = 0 and ε = ±1), were simulated. Because of the use of precise and accurate random and normally distributed simulated data, very large replications, and a large number of independent experiments, this paper presents a novel approach for precise and accurate estimations of power functions of four popular discordancy tests and, therefore, should not be considered as a simple simulation exercise unrelated to probability and statistics. From both criteria of the Power of Test proposed by Hayes and Kinsella and the Test Performance Criterion of Barnett and Lewis, Dixon test N8 performs less well than the other three tests. The overall performance of these four tests could be summarized as N2≅N15 > N14 > N8.

  1. Dynamics and control simulation of the Spacelab Experiment Pointing Mount

    NASA Technical Reports Server (NTRS)

    Marsh, E. L.; Ward, R. S.

    1977-01-01

    Computer simulations were developed to evaluate the performance of four Experiment Pointing Mounts (EPM) being considered for Spacelab experiments in the 1980-1990 time frame. The system modeled compromises a multibody system consisting of the shuttle, a mechanical isolation device, the EPM, celestial and inertial sensors, bearings, gimbal torque motors and associated nonlinearities, the experiment payload, and control and estimator algorithms. Each mount was subjected to a common disturbance (shuttle vernier thruster firing and man push off) and command (stellar pointing or solar raster scan) input. The fundamental limitation common to all mounts was found to be sensor noise. System dynamics and hardware nonlinearities have secondary effects on pointing performance for sufficiently high bandwidth.

  2. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    PubMed

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  3. Flight simulator platform motion and air transport pilot training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1987-01-01

    The effect of a flight simulator platform motion on the performance and training of a pilot was evaluated using subjective ratings and objective performance data obtained on experienced B-727 pilots and pilots with no prior heavy aircraft flying experience flying B-727-200 aircraft simulator used by the FAA in the upgrade and transition training for air carrier operations. The results on experienced pilots did not reveal any reliable effects of wide variations in platform motion design. On the other hand, motion variations significantly affected the behavior of pilots without heavy-aircraft experience. The effect was limited to pitch attitude control inputs during the early phase of landing training.

  4. Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Z.; Dekel, E.; Hohler, V.

    1998-07-10

    A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.

  5. Nursing simulation: a community experience.

    PubMed

    Gunowa, Neesha Oozageer; Elliott, Karen; McBride, Michelle

    2018-04-02

    The education sector faces major challenges in providing learning experiences so that newly qualified nurses feel adequately prepared to work in a community setting. With this in mind, higher education institutions need to develop more innovative ways to deliver the community-nurse experience to student nurses. This paper presents and explores how simulation provides an opportunity for educators to support and evaluate student performance in an environment that models a complete patient encounter in the community. Following the simulation, evaluative data were collated and the answers analysed to identify key recommendations.

  6. Interprofessional education and collaboration: A simulation-based learning experience focused on common and complementary skills in an acute care environment.

    PubMed

    Cunningham, S; Foote, L; Sowder, M; Cunningham, C

    2018-05-01

    The purpose of this mixed-methods study was to explore from the participant's perspective the influence of an interprofessional simulation-based learning experience on understanding the roles and responsibilities of healthcare professionals in the acute care setting, interprofessional collaboration, and communication. Participating students from two professional programs completed the Readiness for Interprofessional Learning Scale (RIPLS) prior to and following the simulation experience to explore the influence of the simulation experience on students' perceptions of readiness to learn together. A Wilcoxon signed rank analysis was performed for each of the four subscales of the RIPLS: shared learning (<.001), teamwork and collaboration (<.001), professional identity (.042), and roles and responsibilities (.001). In addition, participating students were invited to participate in focus group interviews to discuss the effectiveness of the simulation experience. Three key themes were discovered: interprofessional teamwork, discovering roles and responsibilities, and increased confidence in treatment skills. The integration of interprofessional education through a simulation-based learning experience within the nursing and physical therapy professional programs provided a positive experience for the students. Simulation-based learning experiences may provide an opportunity for institutions to collaborate and provide additional engagement with healthcare professions that may not be represented within a single institution.

  7. CSM digital autopilot testing in support of ASTP experiments control requirements

    NASA Technical Reports Server (NTRS)

    Rue, D. L.

    1975-01-01

    Results are presented of CSM digital autopilot (DAP) testing. The testing was performed to demonstrate and evaluate control modes which are currently planned or could be considered for use in support of experiments on the ASTP mission. The testing was performed on the Lockheed Guidance, Navigation, and Control System Functional Simulator (GNCFS). This simulator, which was designed to test the Apollo and Skylab DAP control system, has been used extensively and is a proven tool for CSM DAP analysis.

  8. Simulation of car movement along circular path

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Tikhov-Tinnikov, D. A.; Ovchinnikova, N. I.; Lysenko, A. V.

    2017-10-01

    Under operating conditions, suspension system performance changes which negatively affects vehicle stability and handling. The paper aims to simulate the impact of changes in suspension system performance on vehicle stability and handling. Methods. The paper describes monitoring of suspension system performance, testing of vehicle stability and handling, analyzes methods of suspension system performance monitoring under operating conditions. The mathematical model of a car movement along a circular path was developed. Mathematical tools describing a circular movement of a vehicle along a horizontal road were developed. Turning car movements were simulated. Calculation and experiment results were compared. Simulation proves the applicability of a mathematical model for assessment of the impact of suspension system performance on vehicle stability and handling.

  9. The Communicability of Graphical Alternatives to Tabular Displays of Statistical Simulation Studies

    PubMed Central

    Cook, Alex R.; Teo, Shanice W. L.

    2011-01-01

    Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form. PMID:22132184

  10. The communicability of graphical alternatives to tabular displays of statistical simulation studies.

    PubMed

    Cook, Alex R; Teo, Shanice W L

    2011-01-01

    Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form.

  11. First experiences of high-fidelity simulation training in junior nursing students in Korea.

    PubMed

    Lee, Suk Jeong; Kim, Sang Suk; Park, Young-Mi

    2015-07-01

    This study was conducted to explore first experiences of high-fidelity simulation training in Korean nursing students, in order to develop and establish more effective guidelines for future simulation training in Korea. Thirty-three junior nursing students participated in high-fidelity simulation training for the first time. Using both qualitative and quantitative methods, data were collected from reflective journals and questionnaires of simulation effectiveness after simulation training. Descriptive statistics were used to analyze simulation effectiveness and content analysis was performed with the reflective journal data. Five dimensions and 31 domains, both positive and negative experiences, emerged from qualitative analysis: (i) machine-human interaction in a safe environment; (ii) perceived learning capability; (iii) observational learning; (iv) reconciling practice with theory; and (v) follow-up debriefing effect. More than 70% of students scored high on increased ability to identify changes in the patient's condition, critical thinking, decision-making, effectiveness of peer observation, and debriefing in effectiveness of simulation. This study reported both positive and negative experiences of simulation. The results of this study could be used to set the level of task difficulty in simulation. Future simulation programs can be designed by reinforcing the positive experiences and modifying the negative results. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.

  12. Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine

    ERIC Educational Resources Information Center

    Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.

    2003-01-01

    Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…

  13. Students' experiences of learning manual clinical skills through simulation.

    PubMed

    Johannesson, Eva; Silén, Charlotte; Kvist, Joanna; Hult, Håkan

    2013-03-01

    Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and thoughts about their learning through simulation skills training. The study was designed for an educational setting at a clinical skills centre. Ten third-year undergraduate nursing students performed urethral catheterisation, using the virtual reality simulator UrecathVision™, which has haptic properties. The students practised in pairs. Each session was videotaped and the video was used to stimulate recall in subsequent interviews. The interviews were analysed using qualitative content analysis. The analysis from interviews resulted in three themes: what the students learn, how the students learn, and the simulator's contribution to the students' learning. Students learned manual skills, how to perform the procedure, and professional behaviour. They learned by preparing, watching, practising and reflecting. The simulator contributed by providing opportunities for students to prepare for the skills training, to see anatomical structures, to feel resistance, and to become aware of their own performance ability. The findings show that the students related the task to previous experiences, used sensory information, tested themselves and practised techniques in a hands-on fashion, and reflected in and on action. The simulator was seen as a facilitator to learning the manual skills. The study design, with students working in pairs combined with video recording, was found to enhance opportunities for reflection.

  14. Modeling to predict pilot performance during CDTI-based in-trail following experiments

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1984-01-01

    A mathematical model was developed of the flight system with the pilot using a cockpit display of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. Both in-trail and vertical dynamics were included. The nominal spacing was based on one of three criteria (Constant Time Predictor; Constant Time Delay; or Acceleration Cue). This model was used to simulate digitally the dynamics of a string of multiple following aircraft, including response to initial position errors. The simulation was used to predict the outcome of a series of in-trail following experiments, including pilot performance in maintaining correct longitudinal spacing and vertical position. The experiments were run in the NASA Ames Research Center multi-cab cockpit simulator facility. The experimental results were then used to evaluate the model and its prediction accuracy. Model parameters were adjusted, so that modeled performance matched experimental results. Lessons learned in this modeling and prediction study are summarized.

  15. Effect of marihuana and alcohol on visual search performance

    DOT National Transportation Integrated Search

    1976-10-01

    Two experiments were performed to determine the effects of alcohol and marihuana on visual scanning patterns in a simulated driving situation. In the first experiment 27 male heavy drinkers were divided into 3 groups of 9, defined by three blood alco...

  16. Optimization and performance evaluation of a conical mirror based fluorescence molecular tomography imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    We performed numerical simulations and phantom experiments with a conical mirror based fluorescence molecular tomography (FMT) imaging system to optimize its performance. With phantom experiments, we have compared three measurement modes in FMT: the whole surface measurement mode, the transmission mode, and the reflection mode. Our results indicated that the whole surface measurement mode performed the best. Then, we applied two different neutral density (ND) filters to improve the measurement's dynamic range. The benefits from ND filters are not as much as predicted. Finally, with numerical simulations, we have compared two laser excitation patterns: line and point. With the same excitation position number, we found that the line laser excitation had slightly better FMT reconstruction results than the point laser excitation. In the future, we will implement Monte Carlo ray tracing simulations to calculate multiple reflection photons, and create a look-up table accordingly for calibration.

  17. Evaluation of the flame propagation within an SI engine using flame imaging and LES

    NASA Astrophysics Data System (ADS)

    He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes

    2017-11-01

    This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.

  18. Manipulator trajectories during orbital servicing mission: numerical simulations and experiments on microgravity simulator

    NASA Astrophysics Data System (ADS)

    Rybus, T.; Seweryn, K.

    2018-06-01

    It is considered to use a manipulator-equipped satellite for performing On-Orbit Servicing (OOS) or Active Debris Removal (ADR) missions. In this paper, several possible approaches are reviewed for end-effector (EE) trajectory planning in the Cartesian space, such as application of the Bézier curves for singularity avoidance and method for trajectory optimization. The results of numerical simulations for a satellite equipped with a 7 degree-of-freedom (DoF) manipulator and results of experiments performed on a planar air-bearing microgravity simulator for a simplified two-dimensional (2D) case with a 2-DoF manipulator are presented. Differences between the free-floating case and the case where Attitude and Orbit Control Systems (AOCS) keep constant position and orientation of the satellite are also shown.

  19. Evaluating the Performance of the Goddard Multi-Scale Modeling Framework against GPM, TRMM and CloudSat/CALIPSO Products

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.

    2014-12-01

    Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.

  20. Feasibility study for wax deposition imaging in oil pipelines by PGNAA technique.

    PubMed

    Cheng, Can; Jia, Wenbao; Hei, Daqian; Wei, Zhiyong; Wang, Hongtao

    2017-10-01

    Wax deposition in pipelines is a crucial problem in the oil industry. A method based on the prompt gamma-ray neutron activation analysis technique was applied to reconstruct the image of wax deposition in oil pipelines. The 2.223MeV hydrogen capture gamma rays were used to reconstruct the wax deposition image. To validate the method, both MCNP simulation and experiments were performed for wax deposited with a maximum thickness of 20cm. The performance of the method was simulated using the MCNP code. The experiment was conducted with a 252 Cf neutron source and a LaBr 3 : Ce detector. A good correspondence between the simulations and the experiments was observed. The results obtained indicate that the present approach is efficient for wax deposition imaging in oil pipelines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Experiments and simulations of Richtmyer-Meshkov Instability with measured,volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Jacobs, Jeffrey; Greenough, Jeff; Krivets, Vitaliy

    2016-11-01

    We describe experiments of single-shock Richtmyer-Meskhov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbations play a major role in the evolution of RMI, and previous experimental efforts only capture a single plane of the initial condition. The method presented uses a rastered laser sheet to capture additional images throughout the depth of the initial condition immediately before the shock arrival time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation. Analysis of the initial perturbations is performed, and then used as initial conditions in simulations using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Experiments are presented and comparisons are made with simulation results.

  2. Assess II - A simulated mission of Spacelab

    NASA Technical Reports Server (NTRS)

    Wegmann, H. M.; Hermann, R.; Wingett, C. M.; De Muizon, M.; Rouan, D.; Lena, P.; Wijnbergen, J.; Olthof, H.; Michel, K. W.; Werner, CH.

    1978-01-01

    For Assess II, the Spacelab mission simulation conducted in mid-1977, four payload specialists aboard a Convair 990 research aircraft performed six American and six European experiments during nine research flights each of six hours duration in order to evaluate the compatibility of training and experimental design. Mission organization and some initial data from the European experiments are reported. The experiments, conducted over the western U.S., involved infrared astronomy, solar brightness temperature, lidar, airglow TV, and a medical experiment for which physiological parameters were monitored. Conclusions concerning general principles of experiment design are discussed.

  3. Report Viewgraphs for IC project: Fully-coupled climate simulations with an eddy-permitting ocean component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veneziani, Carmela

    Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in preindustrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model. Results from simulation 1) are presented in Figures 1-3, and specific results from a simulation in 2) with tracer releases are presented in Figure 4.

  4. Adaptive constructive processes and memory accuracy: Consequences of counterfactual simulations in young and older adults

    PubMed Central

    Gerlach, Kathy D.; Dornblaser, David W.; Schacter, Daniel L.

    2013-01-01

    People frequently engage in counterfactual thinking: mental simulations of alternative outcomes to past events. Like simulations of future events, counterfactual simulations serve adaptive functions. However, future simulation can also result in various kinds of distortions and has thus been characterized as an adaptive constructive process. Here we approach counterfactual thinking as such and examine whether it can distort memory for actual events. In Experiments 1a/b, young and older adults imagined themselves experiencing different scenarios. Participants then imagined the same scenario again, engaged in no further simulation of a scenario, or imagined a counterfactual outcome. On a subsequent recognition test, participants were more likely to make false alarms to counterfactual lures than novel scenarios. Older adults were more prone to these memory errors than younger adults. In Experiment 2, younger and older participants selected and performed different actions, then recalled performing some of those actions, imagined performing alternative actions to some of the selected actions, and did not imagine others. Participants, especially older adults, were more likely to falsely remember counterfactual actions than novel actions as previously performed. The findings suggest that counterfactual thinking can cause source confusion based on internally generated misinformation, consistent with its characterization as an adaptive constructive process. PMID:23560477

  5. Adaptive constructive processes and memory accuracy: consequences of counterfactual simulations in young and older adults.

    PubMed

    Gerlach, Kathy D; Dornblaser, David W; Schacter, Daniel L

    2014-01-01

    People frequently engage in counterfactual thinking: mental simulations of alternative outcomes to past events. Like simulations of future events, counterfactual simulations serve adaptive functions. However, future simulation can also result in various kinds of distortions and has thus been characterised as an adaptive constructive process. Here we approach counterfactual thinking as such and examine whether it can distort memory for actual events. In Experiments 1a/b young and older adults imagined themselves experiencing different scenarios. Participants then imagined the same scenario again, engaged in no further simulation of a scenario, or imagined a counterfactual outcome. On a subsequent recognition test participants were more likely to make false alarms to counterfactual lures than novel scenarios. Older adults were more prone to these memory errors than younger adults. In Experiment 2 younger and older participants selected and performed different actions, then recalled performing some of those actions, imagined performing alternative actions to some of the selected actions, and did not imagine others. Participants, especially older adults, were more likely to falsely remember counterfactual actions than novel actions as previously performed. The findings suggest that counterfactual thinking can cause source confusion based on internally generated misinformation, consistent with its characterisation as an adaptive constructive process.

  6. Analysis of BigFoot HDC SymCap experiment N161205 on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Baker, K. L.; Thomas, C. A.; Berzak Hopkins, L. F.; Harte, J. A.; Zimmerman, G. B.; Woods, D. T.; Kritcher, A. L.; Ho, D. D.; Weber, C. R.; Kyrala, G.

    2017-10-01

    Analysis of NIF implosion experiment N161205 provides insight into both hohlraum and capsule performance. This experiment used an undoped High Density Carbon (HDC) ablator driven by a BigFoot x-ray profile in a Au hohlraum. Observations from this experiment include DT fusion yield, bang time, DSR, Tion and time-resolved x-ray emission images around bang time. These observations are all consistent with an x-ray spectrum having significantly reduced Au m-band emission that is present in a standard hohlraum simulation. Attempts to justify the observations using several other simulation modifications will be presented. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  7. Simultaneous epicardial and noncontact endocardial mapping of the canine right atrium: simulation and experiment.

    PubMed

    Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent

    2014-01-01

    Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.

  8. Simultaneous Epicardial and Noncontact Endocardial Mapping of the Canine Right Atrium: Simulation and Experiment

    PubMed Central

    Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J. Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent

    2014-01-01

    Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals. PMID:24598778

  9. Predictions of Cockpit Simulator Experimental Outcome Using System Models

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1984-01-01

    This study involved predicting the outcome of a cockpit simulator experiment where pilots used cockpit displays of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. The experiments were run on the NASA Ames Research Center multicab cockpit simulator facility. Prior to the experiments, a mathematical model of the pilot/aircraft/CDTI flight system was developed which included relative in-trail and vertical dynamics between aircraft in the approach string. This model was used to construct a digital simulation of the string dynamics including response to initial position errors. The model was then used to predict the outcome of the in-trail following cockpit simulator experiments. Outcome included performance and sensitivity to different separation criteria. The experimental results were then used to evaluate the model and its prediction accuracy. Lessons learned in this modeling and prediction study are noted.

  10. Employ Simulation Techniques. Second Edition. Module C-5 of Category C--Instructional Execution. Professional Teacher Education Module Series.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    One of a series of performance-based teacher education learning packages focusing upon specific professional competencies of vocational teachers, this learning module deals with employing simulation techniques. It consists of an introduction and four learning experiences. Covered in the first learning experience are various types of simulation…

  11. Prediction of SOFC Performance with or without Experiments: A Study on Minimum Requirements for Experimental Data

    DOE PAGES

    Yang, Tao; Sezer, Hayri; Celik, Ismail B.; ...

    2015-06-02

    In the present paper, a physics-based procedure combining experiments and multi-physics numerical simulations is developed for overall analysis of SOFCs operational diagnostics and performance predictions. In this procedure, essential information for the fuel cell is extracted first by utilizing empirical polarization analysis in conjunction with experiments and refined by multi-physics numerical simulations via simultaneous analysis and calibration of polarization curve and impedance behavior. The performance at different utilization cases and operating currents is also predicted to confirm the accuracy of the proposed model. It is demonstrated that, with the present electrochemical model, three air/fuel flow conditions are needed to producemore » a set of complete data for better understanding of the processes occurring within SOFCs. After calibration against button cell experiments, the methodology can be used to assess performance of planar cell without further calibration. The proposed methodology would accelerate the calibration process and improve the efficiency of design and diagnostics.« less

  12. Simulated Driving Performance of Adults with ADHD: Comparisons with Alcohol Intoxication

    PubMed Central

    Weafer, Jessica; Camarillo, Daniel; Fillmore, Mark T.; Milich, Richard; Marczinski, Cecile A.

    2015-01-01

    Previous research has demonstrated that adults with ADHD are more likely to experience driving-related problems, which suggests that they may exhibit poorer driving performance. However, direct experimental evidence of this hypothesis is limited. The current study involved two experiments that evaluated driving performance in adults with ADHD in terms of the types of driving decrements typically associated with alcohol intoxication. Experiment 1 compared the simulated driving performance of 15 adults with ADHD to 23 adult control participants, who performed the task both while sober and intoxicated. Results showed that sober adults with ADHD exhibited decrements in driving performance compared to sober controls, and that the profile of impairment for the sober ADHD group did in fact resemble that of intoxicated drivers at the BAC level for legally impaired driving in the United States. Driving impairment of the intoxicated individuals was characterized by greater deviation of lane position, faster and more abrupt steering maneuvers, and increased speed variability. Experiment 2 was a dose-challenge study in which 8 adults with ADHD and 8 controls performed the driving simulation task under three doses of alcohol: 0.65 g/kg, 0.45 g/kg, and 0.0 g/kg (placebo). Results showed that driving performance in both groups was impaired in response to alcohol, and that individuals with ADHD exhibited generally poorer driving performance than did controls across all dose conditions. Together the findings provide compelling evidence to suggest that the cognitive and behavioral deficits associated with ADHD might impair driving performance in such a manner as to resemble that of an alcohol intoxicated driver. Moreover, alcohol might impair the performance of drivers with ADHD in an additive fashion that could considerably compromise their driving skill even at blood alcohol concentrations below the legal limit. PMID:18540785

  13. Virtual reality colonoscopy simulation: a compulsory practice for the future colonoscopist?

    PubMed

    Ahlberg, G; Hultcrantz, R; Jaramillo, E; Lindblom, A; Arvidsson, D

    2005-12-01

    As for any manual procedure, the learning curves for medical interventions can have undesirable phases, occurring mostly in the early experience of applying a technique. There have been impressive advances in endoscopic procedures during recent years, and there is an emerging trend that the number of procedures is increasing in parallel with these. In addition, the introduction of screening programs for colorectal cancer will also increase the numbers of procedures needed. Recent developments in medical simulation seem promising with regard to the possibility of "training out" undesirable parts of the learning curve outside the operating room. The aim of this study was to investigate whether the use of the AccuTouch flexible endoscopy simulator improves the early part of the learning curve in colonoscopy training. 12 endoscopy trainees, 10 surgeons and two medical gastroenterologists, all with experience in gastroscopy but with no specific colonoscopy experience, were randomly assigned to either simulator training or to a control group. They all received the same theoretical study package and the training group practiced with the AccuTouch colonoscopy simulator until a predefined expert level of performance was reached. All trainees performed their first ten individual colonoscopies described in detail in a separate protocol. Trainees in the simulator-trained group performed significantly better (P=0.0011) and managed to reach the cecum in 52% of their cases (vs. 19% in the control group), and were 4.53 times more likely to succeed compared with the controls. Additionally, there was a significantly shorter procedure time and less patient discomfort in the hands of the simulator-trained group. Skills acquired using the AccuTouch simulator transfer well into the clinical colonoscopy environment. The results of this trial clearly support the plan to integrate simulator training into endoscopic education curricula.

  14. Using cognitive architectures to study issues in team cognition in a complex task environment

    NASA Astrophysics Data System (ADS)

    Smart, Paul R.; Sycara, Katia; Tang, Yuqing

    2014-05-01

    Cognitive social simulation is a computer simulation technique that aims to improve our understanding of the dynamics of socially-situated and socially-distributed cognition. This makes cognitive social simulation techniques particularly appealing as a means to undertake experiments into team cognition. The current paper reports on the results of an ongoing effort to develop a cognitive social simulation capability that can be used to undertake studies into team cognition using the ACT-R cognitive architecture. This capability is intended to support simulation experiments using a team-based problem solving task, which has been used to explore the effect of different organizational environments on collective problem solving performance. The functionality of the ACT-R-based cognitive social simulation capability is presented and a number of areas of future development work are outlined. The paper also describes the motivation for adopting cognitive architectures in the context of social simulation experiments and presents a number of research areas where cognitive social simulation may be useful in developing a better understanding of the dynamics of team cognition. These include the use of cognitive social simulation to study the role of cognitive processes in determining aspects of communicative behavior, as well as the impact of communicative behavior on the shaping of task-relevant cognitive processes (e.g., the social shaping of individual and collective memory as a result of communicative exchanges). We suggest that the ability to perform cognitive social simulation experiments in these areas will help to elucidate some of the complex interactions that exist between cognitive, social, technological and informational factors in the context of team-based problem-solving activities.

  15. Comparing CTH Simulations and Experiments on Explosively Loaded Rings

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Aydelotte, B.; Thadhani, N. N.; Williamson, D. M.

    2011-06-01

    A series of experiments were conducted on explosively loaded rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with PDV and the arrangement was imaged using a high speed camera. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 450 m/s, which was achieved through loading with a 5g PETN based charge.

  16. Analysis of the OPERA 15-pin experiment with SABRE-2P. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, S.D.; Carbajo, J.J.

    The OPERA (Out-of-Pile Expulsion and Reentry Apparatus) experiment simulates the initial phase of a pump coastdown without scram of a liquid-metal fast breeder reactor, specifically the Fast Flux Test Facility. The test section is a 15-pin 60/sup 0/ triangular sector designed to simulate a full-size 61-pin hexagonal bundle. A previous study indicates this to be an adequate simulation. In this paper, experimental results from the OPERA 15-pin experiment performed at ANL in 1982 are compared to analytical calculations obtained with the SABRE-2P code at ORNL.

  17. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 1: Executive summary and overview

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. The first volume includes the executive summary, overview, scientific justification, history, and planned development of the Facility.

  18. A Thermal Performance Analysis and Comparison of Fiber Coils with the D-CYL Winding and QAD Winding Methods.

    PubMed

    Li, Xuyou; Ling, Weiwei; He, Kunpeng; Xu, Zhenlong; Du, Shitong

    2016-06-16

    The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL) and quadrupolar (QAD) winding methods is comparatively analyzed. Simulation by the finite element method (FEM) is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs).

  19. A Thermal Performance Analysis and Comparison of Fiber Coils with the D-CYL Winding and QAD Winding Methods

    PubMed Central

    Li, Xuyou; Ling, Weiwei; He, Kunpeng; Xu, Zhenlong; Du, Shitong

    2016-01-01

    The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL) and quadrupolar (QAD) winding methods is comparatively analyzed. Simulation by the finite element method (FEM) is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs). PMID:27322271

  20. Structural equation model analysis for the evaluation of overall driving performance: A driving simulator study focusing on driver distraction.

    PubMed

    Papantoniou, Panagiotis

    2018-04-03

    The present research relies on 2 main objectives. The first is to investigate whether latent model analysis through a structural equation model can be implemented on driving simulator data in order to define an unobserved driving performance variable. Subsequently, the second objective is to investigate and quantify the effect of several risk factors including distraction sources, driver characteristics, and road and traffic environment on the overall driving performance and not in independent driving performance measures. For the scope of the present research, 95 participants from all age groups were asked to drive under different types of distraction (conversation with passenger, cell phone use) in urban and rural road environments with low and high traffic volume in a driving simulator experiment. Then, in the framework of the statistical analysis, a correlation table is presented investigating any of a broad class of statistical relationships between driving simulator measures and a structural equation model is developed in which overall driving performance is estimated as a latent variable based on several individual driving simulator measures. Results confirm the suitability of the structural equation model and indicate that the selection of the specific performance measures that define overall performance should be guided by a rule of representativeness between the selected variables. Moreover, results indicate that conversation with the passenger was not found to have a statistically significant effect, indicating that drivers do not change their performance while conversing with a passenger compared to undistracted driving. On the other hand, results support the hypothesis that cell phone use has a negative effect on driving performance. Furthermore, regarding driver characteristics, age, gender, and experience all have a significant effect on driving performance, indicating that driver-related characteristics play the most crucial role in overall driving performance. The findings of this study allow a new approach to the investigation of driving behavior in driving simulator experiments and in general. By the successful implementation of the structural equation model, driving behavior can be assessed in terms of overall performance and not through individual performance measures, which allows an important scientific step forward from piecemeal analyses to a sound combined analysis of the interrelationship between several risk factors and overall driving performance.

  1. A study of the comparative effects of various means of motion cueing during a simulated compensatory tracking task

    NASA Technical Reports Server (NTRS)

    Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.

    1980-01-01

    NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.

  2. Simulation-Based Assessment of ECMO Clinical Specialists.

    PubMed

    Fehr, James J; Shepard, Mark; McBride, Mary E; Mehegan, Mary; Reddy, Kavya; Murray, David J; Boulet, John R

    2016-06-01

    The aims of the study were (1) to create multiple scenarios that simulate a range of urgent and emergent extracorporeal membrane oxygenation (ECMO) events and (2) to determine whether these scenarios can provide reliable and valid measures of a specialist's advanced skill in managing ECMO emergencies. Multiscenario simulation-based performance assessment was performed. The study was conducted in the Saigh Pediatric Simulation Center at St. Louis Children's Hospital. ECMO clinical specialists participated in the study. Twenty-five ECMO specialists completed 8 scenarios presenting acute events in simulated ECMO patients. Participants were evaluated by 2 separate reviewers for completion of key actions and for global performance. The scores were highest for the hemodilution scenario, whereas the air entrainment scenario had the lowest scores. Psychometric analysis demonstrated that ECMO specialists with more than 1 year of experience outperformed the specialists with less than 1 year of experience. Participants endorsed these sessions as important and representative of events that might be encountered in practice. The scenarios could serve as a component of an ECMO education curriculum and be used to assess clinical specialists' readiness to manage ECMO emergencies.

  3. Molecular Dynamics Simulations of Simple Liquids

    ERIC Educational Resources Information Center

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  4. Using deep neural networks to augment NIF post-shot analysis

    NASA Astrophysics Data System (ADS)

    Humbird, Kelli; Peterson, Luc; McClarren, Ryan; Field, John; Gaffney, Jim; Kruse, Michael; Nora, Ryan; Spears, Brian

    2017-10-01

    Post-shot analysis of National Ignition Facility (NIF) experiments is the process of determining which simulation inputs yield results consistent with experimental observations. This analysis is typically accomplished by running suites of manually adjusted simulations, or Monte Carlo sampling surrogate models that approximate the response surfaces of the physics code. These approaches are expensive and often find simulations that match only a small subset of observables simultaneously. We demonstrate an alternative method for performing post-shot analysis using inverse models, which map directly from experimental observables to simulation inputs with quantified uncertainties. The models are created using a novel machine learning algorithm which automates the construction and initialization of deep neural networks to optimize predictive accuracy. We show how these neural networks, trained on large databases of post-shot simulations, can rigorously quantify the agreement between simulation and experiment. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    PubMed Central

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  6. Evaluation of skill level between trainees and community orthopaedic surgeons using a virtual reality arthroscopic knee simulator.

    PubMed

    Cannon, W Dilworth; Nicandri, Gregg T; Reinig, Karl; Mevis, Howard; Wittstein, Jocelyn

    2014-04-02

    Several virtual reality simulators have been developed to assist orthopaedic surgeons in acquiring the skills necessary to perform arthroscopic surgery. The purpose of this study was to assess the construct validity of the ArthroSim virtual reality arthroscopy simulator by evaluating whether skills acquired through increased experience in the operating room lead to improved performance on the simulator. Using the simulator, six postgraduate year-1 orthopaedic residents were compared with six postgraduate year-5 residents and with six community-based orthopaedic surgeons when performing diagnostic arthroscopy. The time to perform the procedure was recorded. To ensure that subjects did not sacrifice the quality of the procedure to complete the task in a shorter time, the simulator was programmed to provide a completeness score that indicated whether the surgeon accurately performed all of the steps of diagnostic arthroscopy in the correct sequence. The mean time to perform the procedure by each group was 610 seconds for community-based orthopaedic surgeons, 745 seconds for postgraduate year-5 residents, and 1028 seconds for postgraduate year-1 residents. Both the postgraduate year-5 residents and the community-based orthopaedic surgeons performed the procedure in significantly less time (p = 0.006) than the postgraduate year-1 residents. There was a trend toward significance (p = 0.055) in time to complete the procedure when the postgraduate year-5 residents were compared with the community-based orthopaedic surgeons. The mean level of completeness as assigned by the simulator for each group was 85% for the community-based orthopaedic surgeons, 79% for the postgraduate year-5 residents, and 71% for the postgraduate year-1 residents. As expected, these differences were not significant, indicating that the three groups had achieved an acceptable level of consistency in their performance of the procedure. Higher levels of surgeon experience resulted in improved efficiency when performing diagnostic knee arthroscopy on the simulator. Further validation studies utilizing the simulator are currently under way and the additional simulated tasks of arthroscopic meniscectomy, meniscal repair, microfracture, and loose body removal are being developed.

  7. 3RIP Evaluation of the Performance of the Search System Using a Realtime Simulation Technique.

    ERIC Educational Resources Information Center

    Lofstrom, Mats

    This report describes a real-time simulation experiment to evaluate the performance of the search and editing system 3RIP, an interactive system written in the language BLISS on a DEC-10 computer. The test vehicle, preliminary test runs, and capacity test are detailed, and the following conclusions are reported: (1) 3RIP performs well up to the…

  8. Some observations on mesh refinement schemes applied to shock wave phenomena

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1995-01-01

    This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.

  9. Measures of pilot performance during V/TOL aircraft landings on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1977-01-01

    Simulation experiments to determine the feasibility of landing V/TOL aircraft on ships at sea were studied. The motion and attitude of the aircraft relative to the landing platform was known at the instant of touchdown. The success of these experiments depended on the ability of the experimenter to measure the pilot's performance during the landing maneuver. To facilitate these measurements, the equations describing the motion of the aircraft and its attitude relative to the landing platform are presented in a form which is suitable for simulation purposes.

  10. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    NASA Astrophysics Data System (ADS)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  11. The effect of degree of immersion upon learning performance in virtual reality simulations for medical education.

    PubMed

    Gutiérrez, Fátima; Pierce, Jennifer; Vergara, Víctor M; Coulter, Robert; Saland, Linda; Caudell, Thomas P; Goldsmith, Timothy E; Alverson, Dale C

    2007-01-01

    Simulations are being used in education and training to enhance understanding, improve performance, and assess competence. However, it is important to measure the performance of these simulations as learning and training tools. This study examined and compared knowledge acquisition using a knowledge structure design. The subjects were first-year medical students at The University of New Mexico School of Medicine. One group used a fully immersed virtual reality (VR) environment using a head mounted display (HMD) and another group used a partially immersed (computer screen) VR environment. The study aims were to determine whether there were significant differences between the two groups as measured by changes in knowledge structure before and after the VR simulation experience. The results showed that both groups benefited from the VR simulation training as measured by the significant increased similarity to the expert knowledge network after the training experience. However, the immersed group showed a significantly higher gain than the partially immersed group. This study demonstrated a positive effect of VR simulation on learning as reflected by improvements in knowledge structure but an enhanced effect of full-immersion using a HMD vs. a screen-based VR system.

  12. Learning curves and impact of previous operative experience on performance on a virtual reality simulator to test laparoscopic surgical skills.

    PubMed

    Grantcharov, Teodor P; Bardram, Linda; Funch-Jensen, Peter; Rosenberg, Jacob

    2003-02-01

    The study was carried out to analyze the learning rate for laparoscopic skills on a virtual reality training system and to establish whether the simulator was able to differentiate between surgeons with different laparoscopic experience. Forty-one surgeons were divided into three groups according to their experience in laparoscopic surgery: masters (group 1, performed more than 100 cholecystectomies), intermediates (group 2, between 15 and 80 cholecystectomies), and beginners (group 3, fewer than 10 cholecystectomies) were included in the study. The participants were tested on the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) 10 consecutive times within a 1-month period. Assessment of laparoscopic skills included time, errors, and economy of hand movement, measured by the simulator. The learning curves regarding time reached plateau after the second repetition for group 1, the fifth repetition for group 2, and the seventh repetition for group 3 (Friedman's tests P <0.05). Experienced surgeons did not improve their error or economy of movement scores (Friedman's tests, P >0.2) indicating the absence of a learning curve for these parameters. Group 2 error scores reached plateau after the first repetition, and group 3 after the fifth repetition. Group 2 improved their economy of movement score up to the third repetition and group 3 up to the sixth repetition (Friedman's tests, P <0.05). Experienced surgeons (group 1) demonstrated best performance parameters, followed by group 2 and group 3 (Mann-Whitney test P <0.05). Different learning curves existed for surgeons with different laparoscopic background. The familiarization rate on the simulator was proportional to the operative experience of the surgeons. Experienced surgeons demonstrated best laparoscopic performance on the simulator, followed by those with intermediate experience and the beginners. These differences indicate that the scoring system of MIST-VR is sensitive and specific to measuring skills relevant for laparoscopic surgery.

  13. Flocking and self-defense: experiments and simulations of avian mobbing

    NASA Astrophysics Data System (ADS)

    Kane, Suzanne Amador

    2011-03-01

    We have performed motion capture studies in the field of avian mobbing, in which flocks of prey birds harass predatory birds. Our empirical studies cover both field observations of mobbing occurring in mid-air, where both predator and prey are in flight, and an experimental system using actual prey birds and simulated predator ``perch and wait'' strategies. To model our results and establish the effectiveness of mobbing flight paths at minimizing risk of capture while optimizing predator harassment, we have performed computer simulations using the actual measured trajectories of mobbing prey birds combined with model predator trajectories. To accurately simulate predator motion, we also measured raptor acceleration and flight dynamics, well as prey-pursuit strategies. These experiments and theoretical studies were all performed with undergraduate research assistants in a liberal arts college setting. This work illustrates how biological physics provides undergraduate research projects well-suited to the abilities of physics majors with interdisciplinary science interests and diverse backgrounds.

  14. [Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy].

    PubMed

    Renner, Franziska

    2016-09-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.

  15. Theory, Image Simulation, and Data Analysis of Chemical Release Experiments

    NASA Technical Reports Server (NTRS)

    Wescott, Eugene M.

    1994-01-01

    The final phase of Grant NAG6-1 involved analysis of physics of chemical releases in the upper atmosphere and analysis of data obtained on previous NASA sponsored chemical release rocket experiments. Several lines of investigation of past chemical release experiments and computer simulations have been proceeding in parallel. This report summarizes the work performed and the resulting publications. The following topics are addressed: analysis of the 1987 Greenland rocket experiments; calculation of emission rates for barium, strontium, and calcium; the CRIT 1 and 2 experiments (Collisional Ionization Cross Section experiments); image calibration using background stars; rapid ray motions in ionospheric plasma clouds; and the NOONCUSP rocket experiments.

  16. Multi-mode evaluation of power-maximizing cross-flow turbine controllers

    DOE PAGES

    Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James; ...

    2017-09-21

    A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less

  17. Multi-mode evaluation of power-maximizing cross-flow turbine controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James

    A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less

  18. Simulator Investigation of Pilot Aids for Helicopter Terminal Area Operations with One Engine Inoperative

    NASA Technical Reports Server (NTRS)

    Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second simulation (in progress - July - August) is being conducted to investigate the use of advanced displays to perform vertical and short takeoffs and landings. One Engine Inoperative trajectories, which were optimized based on safety of flight restrictions, are utilized. Based on comments from the first experiment and further analytic development, appropriate fly out and approach guidance was added. Displays include conventional instruments with raw data, and the following integrated displays: multi-view and side-view hover displays based on the Apache Pilot Night Vision System, and variations of the pathway-in-the-sky displays with a flight-path-vector, a leader and flight director modifications. Panel mounted and head-up displays are being evaluated. Engine modifications have been incorporated to simulate 30 second and 2 minute contingency power ratings. Evaluations are based on task performance and pilot workload. NASA, Army, FAA, and industry test pilots participated. Details concerning the design, conduct, and the results of the experiment will be reported in the proposed paper.

  19. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    NASA Astrophysics Data System (ADS)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize and diagnose the accident in the scenario. These models estimate how the effects of the scenario conditions are mediated by simulator bias, and demonstrate how to quantify the strength of the simulator bias. Third, development of a quantitative model of subjective PSFs based on objective data (plant parameters, alarms, etc.) and PSF values reported by student operators. The objective PSF model is based on the PSF network in the IDAC HRA method. The final model is a mixed effects Bayesian hierarchical linear regression model. The subjective PSF model includes three factors: The Environmental PSF, the simulator Bias, and the Context. The Environmental Bias is mediated by an operator sensitivity coefficient that captures the variation in operator reactions to plant conditions. The data collected in the pilot experiments are not expected to reflect professional NPP operator performance, because the students are still novice operators. However, the models used in this research and the methods developed to analyze them demonstrate how to consider simulator bias in experiment design and how to use simulator data to enhance the technical basis of a complex HRA method. The contributions of the research include a framework for discussing simulator bias, a quantitative method for estimating simulator bias, a method for obtaining operator-reported PSF values, and a quantitative method for incorporating the variability in operator perception into PSF models. The research demonstrates applications of Structural Equation Modeling and hierarchical Bayesian linear regression models in HRA. Finally, the research demonstrates the benefits of using student operators as a test platform for HRA research.

  20. Practice Makes Perfect: Correlations Between Prior Experience in High-level Athletics and Robotic Surgical Performance Do Not Persist After Task Repetition.

    PubMed

    Shee, Kevin; Ghali, Fady M; Hyams, Elias S

    Robotic surgical skill development is central to training in urology as well as in other surgical disciplines. Here, we describe a pilot study assessing the relationships between robotic surgery simulator performance and 3 categories of activities, namely, videogames, musical instruments, and athletics. A questionnaire was administered to preclinical medical students for general demographic information and prior experiences in surgery, videogames, musical instruments, and athletics. For follow-up performance studies, we used the Matchboard Level 1 and 2 modules on the da Vinci Skills Simulator, and recorded overall score, time to complete, economy of motion, workspace range, instrument collisions, instruments out of view, and drops. Task 1 was run once, whereas task 2 was run 3 times. All performance studies on the da Vinci Surgical Skills Simulator took place in the Simulation Center at Dartmouth-Hitchcock Medical Center. All participants were medical students at the Geisel School of Medicine. After excluding students with prior hands-on experience in surgery, a total of 30 students completed the study. We found a significant correlation between athletic skill level and performance for both task 1 (p = 0.0002) and task 2 (p = 0.0009). No significant correlations were found for videogame or musical instrument skill level. Students with experience in certain athletics (e.g., volleyball, tennis, and baseball) tended to perform better than students with experience in other athletics (e.g., track and field). For task 2, which was run 3 times, this association did not persist after the third repetition due to significant improvements in students with low-level athletic skill (levels 0-2). Our study suggests that prior experience in high-level athletics, but not videogames or musical instruments, significantly influences surgical proficiency in robot-naive students. Furthermore, our study suggests that practice through task repetition can overcome initial differences that may be related to a background in athletics. These novel relationships may have broader implications for the future recruitment and training of robotic surgeons and may warrant further investigation. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. The Impact of Goal Setting on Team Simulation Experience.

    ERIC Educational Resources Information Center

    Fandt, Patricia M.; And Others

    1990-01-01

    Describes a study that examined the effects of goal setting on undergraduate students competing in a computerized business simulation. Group cohesiveness is discussed, treatments for the experimental and control groups are described, perceived team success is measured, and team simulation performance is evaluated. (30 references) (LRW)

  2. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    PubMed

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  3. Training for percutaneous renal access on a virtual reality simulator.

    PubMed

    Zhang, Yi; Yu, Cheng-fan; Liu, Jin-shun; Wang, Gang; Zhu, He; Na, Yan-qun

    2013-01-01

    The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC Mentor(TM) is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC Mentor(TM) after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P = 0.03 and 0.02, respectively). The training on the virtual reality simulator, PERC Mentor(TM), can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.

  4. Differentiating levels of surgical experience on a virtual reality temporal bone simulator.

    PubMed

    Zhao, Yi C; Kennedy, Gregor; Hall, Richard; O'Leary, Stephen

    2010-11-01

    Virtual reality simulation is increasingly being incorporated into surgical training and may have a role in temporal bone surgical education. Here we test whether metrics generated by a virtual reality surgical simulation can differentiate between three levels of experience, namely novices, otolaryngology residents, and experienced qualified surgeons. Cohort study. Royal Victorian Eye and Ear Hospital. Twenty-seven participants were recruited. There were 12 experts, six residents, and nine novices. After orientation, participants were asked to perform a modified radical mastoidectomy on the simulator. Comparisons of time taken, injury to structures, and forces exerted were made between the groups to determine which specific metrics would discriminate experience levels. Experts completed the simulated task in significantly shorter time than the other two groups (experts 22 minutes, residents 36 minutes, and novices 46 minutes; P = 0.001). Novices exerted significantly higher average forces when dissecting close to vital structures compared with experts (0.24 Newton [N] vs 0.13 N, P = 0.002). Novices were also more likely to injure structures such as dura compared to experts (23 injuries vs 3 injuries, P = 0.001). Compared with residents, the experts modulated their force between initial cortex dissection and dissection close to vital structures. Using the combination of these metrics, we were able to correctly classify the participants' level of experience 90 percent of the time. This preliminary study shows that measurements of performance obtained from within a virtual reality simulator can differentiate between levels of users' experience. These results suggest that simulator training may have a role in temporal bone training beyond foundational training. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  5. Robotic experiment with a force reflecting handcontroller onboard MIR space station

    NASA Technical Reports Server (NTRS)

    Delpech, M.; Matzakis, Y.

    1994-01-01

    During the French CASSIOPEE mission that will fly onboard MIR space station in 1996, ergonomic evaluations of a force reflecting handcontroller will be performed on a simulated robotic task. This handcontroller is a part of the COGNILAB payload that will be used also for experiments in neurophysiology. The purpose of the robotic experiment is the validation of a new control and design concept that would enhance the task performances for telemanipulating space robots. Besides the handcontroller and its control unit, the experimental system includes a simulator of the slave robot dynamics for both free and constrained motions, a flat display screen and a seat with special fixtures for holding the astronaut.

  6. The effects of video game experience and active stereoscopy on performance in combat identification tasks.

    PubMed

    Keebler, Joseph R; Jentsch, Florian; Schuster, David

    2014-12-01

    We investigated the effects of active stereoscopic simulation-based training and individual differences in video game experience on multiple indices of combat identification (CID) performance. Fratricide is a major problem in combat operations involving military vehicles. In this research, we aimed to evaluate the effects of training on CID performance in order to reduce fratricide errors. Individuals were trained on 12 combat vehicles in a simulation, which were presented via either a non-stereoscopic or active stereoscopic display using NVIDIA's GeForce shutter glass technology. Self-report was used to assess video game experience, leading to four between-subjects groups: high video game experience with stereoscopy, low video game experience with stereoscopy, high video game experience without stereoscopy, and low video game experience without stereoscopy. We then tested participants on their memory of each vehicle's alliance and name across multiple measures, including photographs and videos. There was a main effect for both video game experience and stereoscopy across many of the dependent measures. Further, we found interactions between video game experience and stereoscopic training, such that those individuals with high video game experience in the non-stereoscopic group had the highest performance outcomes in the sample on multiple dependent measures. This study suggests that individual differences in video game experience may be predictive of enhanced performance in CID tasks. Selection based on video game experience in CID tasks may be a useful strategy for future military training. Future research should investigate the generalizability of these effects, such as identification through unmanned vehicle sensors.

  7. Validation of computer simulation training for esophagogastroduodenoscopy: Pilot study.

    PubMed

    Sedlack, Robert E

    2007-08-01

    Little is known regarding the value of esophagogastroduodenoscopy (EGD) simulators in education. The purpose of the present paper was to validate the use of computer simulation in novice EGD training. In phase 1, expert endoscopists evaluated various aspects of simulation fidelity as compared to live endoscopy. Additionally, computer-recorded performance metrics were assessed by comparing the recorded scores from users of three different experience levels. In phase 2, the transfer of simulation-acquired skills to the clinical setting was assessed in a two-group, randomized pilot study. The setting was a large gastroenterology (GI) Fellowship training program; in phase 1, 21 subjects (seven expert, intermediate and novice endoscopist), made up the three experience groups. In phase 2, eight novice GI fellows were involved in the two-group, randomized portion of the study examining the transfer of simulation skills to the clinical setting. During the initial validation phase, each of the 21 subjects completed two standardized EDG scenarios on a computer simulator and their performance scores were recorded for seven parameters. Following this, staff participants completed a questionnaire evaluating various aspects of the simulator's fidelity. Finally, four novice GI fellows were randomly assigned to receive 6 h of simulator-augmented training (SAT group) in EGD prior to beginning 1 month of patient-based EGD training. The remaining fellows experienced 1 month of patient-based training alone (PBT group). Results of the seven measured performance parameters were compared between three groups of varying experience using a Wilcoxon ranked sum test. The staffs' simulator fidelity survey used a 7-point Likert scale (1, very unrealistic; 4, neutral; 7, very realistic) for each of the parameters examined. During the second phase of this study, supervising staff rated both SAT and PBT fellows' patient-based performance daily. Scoring in each skill was completed using a 7-point Likert scale (1, strongly disagree; 4, neutral; 7, strongly agree). Median scores were compared between groups using the Wilcoxon ranked sum test. Staff evaluations of fidelity found that only two of the parameters examined (anatomy and scope maneuverability) had a significant degree of realism. The remaining areas were felt to be limited in their fidelity. Of the computer-recorded performance scores, only the novice group could be reliably identified from the other two experience groups. In the clinical application phase, the median Patient Discomfort ratings were superior in the PBT group (6; interquartile range [IQR], 5-6) as compared to the SAT group (5; IQR, 4-6; P = 0.015). PBT fellows' ratings were also superior in Sedation, Patient Discomfort, Independence and Competence during various phases of the evaluation. At no point were SAT fellows rated higher than the PBT group in any of the parameters examined. This EGD simulator has limitations to the degree of fidelity and can differentiate only novice endoscopists from other levels of experience. Finally, skills learned during EGD simulation training do not appear to translate well into patient-based endoscopy skills. These findings suggest against a key element of validity for the use of this computer simulator in novice EGD training.

  8. Mental simulation of drawing actions enhances delayed recall of a complex figure.

    PubMed

    De Lucia, Natascia; Trojano, Luigi; Senese, Vincenzo Paolo; Conson, Massimiliano

    2016-10-01

    Motor simulation implies that the same motor representations involved in action execution are re-enacted during observation or imagery of actions. Neurofunctional data suggested that observation of letters or abstract paintings can elicit simulation of writing or drawing gestures. We performed four behavioural experiments on right-handed healthy participants to test whether observation of a static and complex geometrical figure implies re-enactment of drawing actions. In Experiment 1, participants had to observe the stimulus without explicit instruction (observation-only condition), while performing irrelevant finger tapping (motor dual task), or while articulating irrelevant verbal material (verbal dual task). Delayed drawing of the stimulus was less accurate in the motor dual-task (interfering with simulation of hand actions) than in verbal dual-task and observation-only conditions. In Experiment 2, delayed drawing in the observation only was as accurate as when participants encoded the stimulus by copying it; in both conditions, accuracy was higher than when participants were instructed to observe the stimulus to recall it later verbally (observe to recall), thus being discouraged from engaging motor simulation. In Experiment 3, delayed drawing was as accurate in the observation-only condition as when participants imagined copying the stimulus; accuracy in both conditions was higher than in the observe-to-recall condition. In Experiment 4, in the observe-only condition participants who observed the stimulus with their right arm hidden behind their back were significantly less accurate than participants who had their left arm hidden. These findings converge in suggesting that mere observation of a geometrical stimulus can activate motor simulation and re-enactment of drawing actions.

  9. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    PubMed

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The effect of monocular target blur on simulated telerobotic manipulation

    NASA Technical Reports Server (NTRS)

    Liu, Andrew; Stark, Lawrence

    1991-01-01

    A simulation involving three types of telerobotic tasks that require information about the spatial position of objects is reported. This is similar to the results of psychophysical experiments examining the effect of blur on stereoacuity. It is suggested that other psychophysical experimental results could be used to predict operator performance for other telerobotic tasks. It is demonstrated that refractive errors in the helmet-mounted stereo display system can affect performance in the three types of telerobotic tasks. The results of two sets of experiments indicate that monocular target blur of two diopters or more degrades stereo display performance to the level of monocular displays. This indicates that moderate levels of visual degradation that affect the operator's stereoacuity may eliminate the performance advantage of stereo displays.

  11. The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.

  12. Evaluating large-scale propensity score performance through real-world and synthetic data experiments.

    PubMed

    Tian, Yuxi; Schuemie, Martijn J; Suchard, Marc A

    2018-06-22

    Propensity score adjustment is a popular approach for confounding control in observational studies. Reliable frameworks are needed to determine relative propensity score performance in large-scale studies, and to establish optimal propensity score model selection methods. We detail a propensity score evaluation framework that includes synthetic and real-world data experiments. Our synthetic experimental design extends the 'plasmode' framework and simulates survival data under known effect sizes, and our real-world experiments use a set of negative control outcomes with presumed null effect sizes. In reproductions of two published cohort studies, we compare two propensity score estimation methods that contrast in their model selection approach: L1-regularized regression that conducts a penalized likelihood regression, and the 'high-dimensional propensity score' (hdPS) that employs a univariate covariate screen. We evaluate methods on a range of outcome-dependent and outcome-independent metrics. L1-regularization propensity score methods achieve superior model fit, covariate balance and negative control bias reduction compared with the hdPS. Simulation results are mixed and fluctuate with simulation parameters, revealing a limitation of simulation under the proportional hazards framework. Including regularization with the hdPS reduces commonly reported non-convergence issues but has little effect on propensity score performance. L1-regularization incorporates all covariates simultaneously into the propensity score model and offers propensity score performance superior to the hdPS marginal screen.

  13. Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller

    NASA Astrophysics Data System (ADS)

    Maljaars, E.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J. M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A. A.; Vu, N. M. T.; The EUROfusion MST1-team; The TCV-team

    2017-12-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety factor profile (q-profile) and kinetic plasma parameters such as the plasma beta. This demands to establish reliable profile control routines in presently operational tokamaks. We present a model predictive profile controller that controls the q-profile and plasma beta using power requests to two clusters of gyrotrons and the plasma current request. The performance of the controller is analyzed in both simulation and TCV L-mode discharges where successful tracking of the estimated inverse q-profile as well as plasma beta is demonstrated under uncertain plasma conditions and the presence of disturbances. The controller exploits the knowledge of the time-varying actuator limits in the actuator input calculation itself such that fast transitions between targets are achieved without overshoot. A software environment is employed to prepare and test this and three other profile controllers in parallel in simulations and experiments on TCV. This set of tools includes the rapid plasma transport simulator RAPTOR and various algorithms to reconstruct the plasma equilibrium and plasma profiles by merging the available measurements with model-based predictions. In this work the estimated q-profile is merely based on RAPTOR model predictions due to the absence of internal current density measurements in TCV. These results encourage to further exploit model predictive profile control in experiments on TCV and other (future) tokamaks.

  14. Performance analysis of solar-assisted chemical heat-pump dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadhel, M.I.; Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka; Sopian, K.

    2010-11-15

    A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experimentmore » of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)« less

  15. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  16. Three-Dimensional Numerical Simulation to Mud Turbine for LWD

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi

    Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.

  17. Numerical experiments with a general circulation model concerning the stratospheric distribution of ozone

    NASA Technical Reports Server (NTRS)

    Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.

    1981-01-01

    Three experiments have been performed using a three-dimensional, spectral quasi-geostrophic model in order to investigate the sensitivity of ozone transport to tropospheric orographic and thermal effects and to the zonal wind distribution. In the first experiment, the ozone distribution averaged over the last 30 days of a 60 day transport simulation was determined; in the second experiment, the transport simulation was repeated, but nonzonal orographic and thermal forcing was omitted; and in the final experiment, the simulation was conducted with the intensity and position of the stratospheric jets altered by addition of a Newtonian cooling term to the zonal-mean diabatic heating rate. Results of the three experiments are summarized by comparing the zonal-mean ozone distribution, the amplitude of eddy geopotential height, the zonal winds, and zonal-mean diabatic heating.

  18. Testing the Motor Simulation Account of Source Errors for Actions in Recall

    PubMed Central

    Lange, Nicholas; Hollins, Timothy J.; Bach, Patric

    2017-01-01

    Observing someone else perform an action can lead to false memories of self-performance – the observation inflation effect. One explanation is that action simulation via mirror neuron activation during action observation is responsible for observation inflation by enriching memories of observed actions with motor representations. In three experiments we investigated this account of source memory failures, using a novel paradigm that minimized influences of verbalization and prior object knowledge. Participants worked in pairs to take turns acting out geometric shapes and letters. The next day, participants recalled either actions they had performed or those they had observed. Experiment 1 showed that participants falsely retrieved observed actions as self-performed, but also retrieved self-performed actions as observed. Experiment 2 showed that preventing participants from encoding observed actions motorically by taxing their motor system with a concurrent motor task did not lead to the predicted decrease in false claims of self-performance. Indeed, Experiment 3 showed that this was the case even if participants were asked to carefully monitor their recall. Because our data provide no evidence for a motor activation account, we also discussed our results in light of a source monitoring account. PMID:29033874

  19. Results of a simulator test comparing two display concepts for piloted flight-path-angle control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.

  20. Optimization Model for Web Based Multimodal Interactive Simulations.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  1. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  2. Scaling effects in direct shear tests

    USGS Publications Warehouse

    Orlando, A.D.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    Laboratory experiments of the direct shear test were performed on spherical particles of different materials and diameters. Results of the bulk friction vs. non-dimensional shear displacement are presented as a function of the non-dimensional particle diameter. Simulations of the direct shear test were performed using the Discrete Element Method (DEM). The simulation results show Considerable differences with the physical experiments. Particle level material properties, such as the coefficients of static friction, restitution and rolling friction need to be known a priori in order to guarantee that the simulation results are an accurate representation of the physical phenomenon. Furthermore, laboratory results show a clear size dependency on the results, with smaller particles having a higher bulk friction than larger ones. ?? 2009 American Institute of Physics.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarak, Misbah; Ross, Robert B.

    This technical report describes the experiments performed to validate the MPI performance measurements reported by the CODES dragonfly network simulation with the Theta Cray XC system at the Argonne Leadership Computing Facility (ALCF).

  4. In Search of Effective Methodology for Organizational Learning: A Japanese Experience

    ERIC Educational Resources Information Center

    Tsuchiya, Shigehisa

    2011-01-01

    The author's personal journey regarding simulation and gaming started about 25 years ago when he happened to realize how powerful computerized simulation could be for organizational change. The metaphors created by computerized simulation enabled him to transform a stagnant university into a high-performance organization. Through extensive…

  5. Effect of different runway size on pilot performance during simulated night landing approaches.

    DOT National Transportation Integrated Search

    1981-02-01

    In Experiment I, three pilots flew simulated approaches and landings in a fixed-base simulator with a computer-generated-image visual display. Practice approaches were flown with an 8,000-ft-long runway that was either 75, 150, or 300 ft wide; test a...

  6. Premission and postmission simulation studies of the foot-controlled maneuvering unit for Skylab experiment T-020. [astronaut maneuvering equipment - space environment simulation

    NASA Technical Reports Server (NTRS)

    Hewes, D. E.; Glover, K. E.

    1975-01-01

    A Skylab experiment was conducted to study the maneuvering capabilities of astronauts using a relatively simple self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. Some of the special considerations given in the definition and development of the experiment as related to the two ground-based simulators are reviewed. These simulators were used to train the test subjects and to obtain baseline data which could be used for comparison with the in-flight tests that were performed inside the Skylab orbital workshop. The results of both premission and postmission tests are discussed, and subjective comparisons of the in-flight and ground-based test conditions are presented.

  7. MIT-KSC space life sciences telescience testbed

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A Telescience Life Sciences Testbed is being developed. The first phase of this effort consisted of defining the experiments to be performed, investigating the various possible means of communication between KSC and MIT, and developing software and hardware support. The experiments chosen were two vestibular sled experiments: a study of ocular torsion produced by Y axis linear acceleration, based on the Spacelab D-1 072 Vestibular Experiment performed pre- and post-flight at KSC; and an optokinetic nystagmus (OKN)/linear acceleration interaction experiment. These two experiments were meant to simulate actual experiments that might be performed on the Space Station and to be representative of space life sciences experiments in general in their use of crew time and communications resources.

  8. An integrated model for the effects of self-reflection and clinical experiential learning on clinical nursing performance in nursing students: A longitudinal study.

    PubMed

    Pai, Hsiang-Chu

    2016-10-01

    The use of clinical simulation in undergraduate nursing programs in Taiwan has gradually increased over the past 5years. Previous research has shown that students' experience of anxiety during simulated laboratory sessions influences their self-reflection and learning effectiveness. Thus, further study that tracks what influences students' clinical performance in actual clinical sites is vital. The aim of the study is to develop an integrated model that considers the associations among anxiety, self-reflection, and learning effectiveness and to understand how this model applies to student nurses' clinical performance while on clinical placement. This study used a correlational and longitudinal study design. The 80 nursing students, who ranged in age from 19 to 21 (mean=20.38, SD=0.56), were recruited from a nursing school in southern Taiwan. Data were collected during three phases of implementation using four questionnaires. During the first phase, the State-Trait Anxiety Inventory (STAI), Simulation Learning Effectiveness Scale (SLES), and Self-Reflection and Insight Scale (SRIS) were used after students completed the simulation course in the school simulation laboratory. Nursing students also completed the Holistic Nursing Competence Scale at 2months (Phase 2) and 4months (Phase 3) after clinical practice experience. In Phase 3, students again completed the STAI and SRIS. Partial least squares (PLS), a structural equation modeling (SEM) procedure, was used to test the research model. The findings showed that: (1) at the start of the simulation laboratory, anxiety had a significant negative effect on students' simulation learning effectiveness (SLE; β=-0.14, p<0.05) and on self-reflection with insight (SRI; β=-0.52, p<0.01). Self-reflection also had a significant positive effect on simulation learning effectiveness (β=0.37, p<0.01). Anxiety had a significant negative effect on students' nursing competence during the first 2months of practice in a clinical nursing site (β=-0.20, p<0.01). Simulation learning effectiveness and self-reflection and insight also had a significant positive effect on nursing competence during the first 2months of practice in a clinical site (β=0.13; β=0.16, p<0.05), respectively; and (2) when students practice in a clinical setting, their previous experience of nursing competence during the first 2months of clinical care and their self-reflection and insight have a significant positive effect on their 4-month nursing competence (β=0.58; β=0.27, p<0.01). Anxiety, however, had a negative effect on 4-month nursing competence but not significantly. Overall, 41% of the variance in clinical nursing performance was accounted for by the variables in the integrated model. This study highlights that self-reflection with insight and clinical experience may help students to deflect anxiety that may influence the development of clinical competence. Of note is that real-life clinical experience has a stronger effect on enhancing clinical performance than does a simulation experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Lack of transfer of skills after virtual reality simulator training with haptic feedback.

    PubMed

    Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Bø, Lars Eirik; Kuhry, Esther; Johnsen, Gjermund; Mårvik, Ronald; Langø, Thomas; Hernes, Toril Nagelhus

    2017-12-01

    Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group. Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group. In the simulator group, the candidates trained until they reached predefined criteria on the LapSim ® VR simulator (Surgical Science AB, Göteborg, Sweden) with haptic feedback (Xitact TM IHP, Mentice AB, Göteborg, Sweden). All candidates performed a cholecystectomy on a porcine organ model in a box trainer (the clinical setting). The performances were video rated by two surgeons blinded to subject training status. In total, 30 students performed the cholecystectomy and had their videos rated (N = 16 simulator group, N = 14 control group). The control group achieved better video rating scores than the simulator group (p < .05). The criterion-based training program did not transfer skills to the clinical setting. Poor mechanical performance of the simulated haptic feedback is believed to have resulted in a negative training effect.

  10. Comparing CTH simulations and experiments on explosively loaded rings

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Aydelotte, Brady; Collins, Adam; Thadhani, Naresh; Williamson, David Martin

    2012-03-01

    A series of experiments were conducted on explosively loaded metallic rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with photon Doppler velocimetry (PDV) and the arrangement was imaged using high speed photography. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 380 m/s, which was achieved through loading with a 5g PETN based charge.

  11. Laboratory investigation on super-Earths atmospheres

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R. U.; Lessio, L.; Farisato, G.; Giro, E.; Cocola, L.; Billi, D.; D'alessandro, M.; Pace, E.; Schierano, D.; Benatti, S.; Bonavita, M.; Galletta, G.

    2014-04-01

    In the framework of Atmosphere in a Test Tube, at the Astronomical Observatory of Padova (INAF) we are going to perform experiments aimed to understand the possible modification of the atmosphere by photosynthetic biota present on the planet surface. This goal can be achieved simulating M star planetary environmental conditions. The bacteria that are being studied are Acaryochloris marina, Chroococcidiopsis spp. and Halomicronema hingdechloris. Tests will be performed with LISA or MINI-LISA ambient simulator in the laboratory of the Padova Astronomic Observatory. In this paper we describe the whole road map to follow in order to perform experiments and to obtain useful data to be compared with the real ones that will be obtained by the future space missions. Starting by a fiducial experiment we will modify either environmental and thermodynamical properties in order to simulate both real irradiation by an M star and gas mixture mimicing super earths atmospheres. These laboratory tests could be used as a guideline in order to understand whether chemical disequilibrium of O2, CO2 and CH4 could be ascribed to biotic life forms.

  12. NIF laboratory astrophysics simulations investigating the effects of a radiative shock on hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.

    2016-10-01

    This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.

  13. The benefits of being a video gamer in laparoscopic surgery.

    PubMed

    Sammut, Matthew; Sammut, Mark; Andrejevic, Predrag

    2017-09-01

    Video games are mainly considered to be of entertainment value in our society. Laparoscopic surgery and video games are activities similarly requiring eye-hand and visual-spatial skills. Previous studies have not conclusively shown a positive correlation between video game experience and improved ability to accomplish visual-spatial tasks in laparoscopic surgery. This study was an attempt to investigate this relationship. The aim of the study was to investigate whether previous video gaming experience affects the baseline performance on a laparoscopic simulator trainer. Newly qualified medical officers with minimal experience in laparoscopic surgery were invited to participate in the study and assigned to the following groups: gamers (n = 20) and non-gamers (n = 20). Analysis included participants' demographic data and baseline video gaming experience. Laparoscopic skills were assessed using a laparoscopic simulator trainer. There were no significant demographic differences between the two groups. Each participant performed three laparoscopic tasks and mean scores between the two groups were compared. The gamer group had statistically significant better results in maintaining the laparoscopic camera horizon ± 15° (p value = 0.009), in the complex ball manipulation accuracy rates (p value = 0.024) and completed the complex laparoscopic simulator task in a significantly shorter time period (p value = 0.001). Although prior video gaming experience correlated with better results, there were no significant differences for camera accuracy rates (p value = 0.074) and in a two-handed laparoscopic exercise task accuracy rates (p value = 0.092). The results show that previous video-gaming experience improved the baseline performance in laparoscopic simulator skills. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  14. The value of information in a multi-agent market model. The luck of the uninformed

    NASA Astrophysics Data System (ADS)

    Tóth, B.; Scalas, E.; Huber, J.; Kirchler, M.

    2007-01-01

    We present an experimental and simulated model of a multi-agent stock market driven by a double auction order matching mechanism. Studying the effect of cumulative information on the performance of traders, we find a non monotonic relationship of net returns of traders as a function of information levels, both in the experiments and in the simulations. Particularly, averagely informed traders perform worse than the non informed and only traders with high levels of information (insiders) are able to beat the market. The simulations and the experiments reproduce many stylized facts of tick-by-tick stock-exchange data, such as fast decay of autocorrelation of returns, volatility clustering and fat-tailed distribution of returns. These results have an important message for everyday life. They can give a possible explanation why, on average, professional fund managers perform worse than the market index.

  15. PIC Simulations of Hypersonic Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.

    2013-12-01

    The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration; however, modeling a plasma expanding radially in every direction is computationally expensive. In order to reduce the computational expense, we use a radial density profile from the hybrid simulation results to seed a self-consistent PIC simulation in one direction (x), while creating a current in the direction (y) transverse to both the drift velocity and the magnetic field (z) to create the magnetic bubble observed in experiment. The simulation will be run in two spatial dimensions but retain three velocity dimensions, and the results will be used to explore the growth of micro-instabilities present in hypersonic plasmas in the high-density region as it moves through the simulation box. This will still require a significantly large box in order to compare with experiment, as the experiments are being performed over distances of 104 λDe and durations of 105 ωpe-1.

  16. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  17. Multicenter, randomized, controlled trial of virtual-reality simulator training in acquisition of competency in colonoscopy.

    PubMed

    Cohen, Jonathan; Cohen, Seth A; Vora, Kinjal C; Xue, Xiaonan; Burdick, J Steven; Bank, Simmy; Bini, Edmund J; Bodenheimer, Henry; Cerulli, Maurice; Gerdes, Hans; Greenwald, David; Gress, Frank; Grosman, Irwin; Hawes, Robert; Mullin, Gerard; Mullen, Gerard; Schnoll-Sussman, Felice; Starpoli, Anthony; Stevens, Peter; Tenner, Scott; Villanueva, Gerald

    2006-09-01

    The GI Mentor is a virtual reality simulator that uses force feedback technology to create a realistic training experience. To define the benefit of training on the GI Mentor on competency acquisition in colonoscopy. Randomized, controlled, blinded, multicenter trial. Academic medical centers with accredited gastroenterology training programs. First-year GI fellows. Subjects were randomized to receive 10 hours of unsupervised training on the GI Mentor or no simulator experience during the first 8 weeks of fellowship. After this period, both groups began performing real colonoscopies. The first 200 colonoscopies performed by each fellow were graded by proctors to measure technical and cognitive success, and patient comfort level during the procedure. A mixed-effects model comparison between the 2 groups of objective and subjective competency scores and patient discomfort in the performance of real colonoscopies over time. Forty-five fellows were randomized from 16 hospitals over 2 years. Fellows in the simulator group had significantly higher objective competency rates during the first 100 cases. A mixed-effects model demonstrated a higher objective competence overall in the simulator group (P < .0001), with the difference between groups being significantly greater during the first 80 cases performed. The median number of cases needed to reach 90% competency was 160 in both groups. The patient comfort level was similar. Fellows who underwent GI Mentor training performed significantly better during the early phase of real colonoscopy training.

  18. [Simulation training in surgical education - application of virtual reality laparoscopic simulators in a surgical skills course].

    PubMed

    Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J

    2012-04-01

    Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the simulator was successfully mastered during the course. Construct validity could be demonstrated within the course setting. The simulator's assessment system can be of value for the assessment of laparoscopic training performance within surgical skills courses. Acceptance of the simulator training is high. However, simulators are currently too expensive to be used within a large training course. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Computer-intensive simulation of solid-state NMR experiments using SIMPSON.

    PubMed

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.

  1. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Astrophysics Data System (ADS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.

  2. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment

    PubMed Central

    Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg

    2018-01-01

    Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as ‘presence’, when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user’s overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience. PMID:29390023

  3. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment.

    PubMed

    Cooper, Natalia; Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg

    2018-01-01

    Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as 'presence', when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user's overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience.

  4. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    PubMed Central

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  5. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.

    PubMed

    Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J

    2016-02-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. Published by Elsevier Ltd.

  6. Validation results of satellite mock-up capturing experiment using nets

    NASA Astrophysics Data System (ADS)

    Medina, Alberto; Cercós, Lorenzo; Stefanescu, Raluca M.; Benvenuto, Riccardo; Pesce, Vincenzo; Marcon, Marco; Lavagna, Michèle; González, Iván; Rodríguez López, Nuria; Wormnes, Kjetil

    2017-05-01

    The PATENDER activity (Net parametric characterization and parabolic flight), funded by the European Space Agency (ESA) via its Clean Space initiative, was aiming to validate a simulation tool for designing nets for capturing space debris. This validation has been performed through a set of different experiments under microgravity conditions where a net was launched capturing and wrapping a satellite mock-up. This paper presents the architecture of the thrown-net dynamics simulator together with the set-up of the deployment experiment and its trajectory reconstruction results on a parabolic flight (Novespace A-310, June 2015). The simulator has been implemented within the Blender framework in order to provide a highly configurable tool, able to reproduce different scenarios for Active Debris Removal missions. The experiment has been performed over thirty parabolas offering around 22 s of zero-g conditions. Flexible meshed fabric structure (the net) ejected from a container and propelled by corner masses (the bullets) arranged around its circumference have been launched at different initial velocities and launching angles using a pneumatic-based dedicated mechanism (representing the chaser satellite) against a target mock-up (the target satellite). High-speed motion cameras were recording the experiment allowing 3D reconstruction of the net motion. The net knots have been coloured to allow the images post-process using colour segmentation, stereo matching and iterative closest point (ICP) for knots tracking. The final objective of the activity was the validation of the net deployment and wrapping simulator using images recorded during the parabolic flight. The high-resolution images acquired have been post-processed to determine accurately the initial conditions and generate the reference data (position and velocity of all knots of the net along its deployment and wrapping of the target mock-up) for the simulator validation. The simulator has been properly configured according to the parabolic flight scenario, and executed in order to generate the validation data. Both datasets have been compared according to different metrics in order to perform the validation of the PATENDER simulator.

  7. The Validity and Incremental Validity of Knowledge Tests, Low-Fidelity Simulations, and High-Fidelity Simulations for Predicting Job Performance in Advanced-Level High-Stakes Selection

    ERIC Educational Resources Information Center

    Lievens, Filip; Patterson, Fiona

    2011-01-01

    In high-stakes selection among candidates with considerable domain-specific knowledge and experience, investigations of whether high-fidelity simulations (assessment centers; ACs) have incremental validity over low-fidelity simulations (situational judgment tests; SJTs) are lacking. Therefore, this article integrates research on the validity of…

  8. A Simulated Hospital Pharmacy Module Using an Electronic Medical Record in a Pharmaceutical Care Skills Laboratory Course

    PubMed Central

    DiVall, Margarita V.; Guerra, Christina; Brown, Todd

    2013-01-01

    Objectives. To implement and evaluate the effects of a simulated hospital pharmacy module using an electronic medical record on student confidence and abilities to perform hospital pharmacist duties. Design. A module was developed that simulated typical hospital pharmacist tasks. Learning activities were modified based upon student feedback and instructor assessment. Assessments. Ninety-seven percent of respondents reported full-time hospital internship experience and 72% had electronic medical record experience prior to completing the module. Mean scores on confidence with performing typical hospital pharmacist tasks significantly increased from the pre-module survey to the post-module survey from 1.5-2.9 (low comfort/confidence) to 2.0-3.4 (moderate comfort/confidence). Course assessments confirmed student achievement of covered competencies. Conclusions. A simulated hospital pharmacy module improved pharmacy students’ hospital practice skills and their perceived comfort and confidence in completing the typical duties of a hospital pharmacist. PMID:23610480

  9. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Allan Brian G.; Owens, Lewis, R.

    2006-01-01

    This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a miss alignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery that was 0.01 lower than the experiment as was seen in the baseline. Comparison of the flow features the jet case revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.

  10. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  11. Multiscale Computer Simulation of Failure in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2008-01-01

    Aerogels have been of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While such gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. We have previously performed computer simulations of aerogel thermal conductivity and tensile and compressive failure, with results that are in qualitative, and sometimes quantitative, agreement with experiment. However, recent experiments in our laboratory suggest that gels having similar densities may exhibit substantially different properties. In this work, we extend our original diffusion limited cluster aggregation (DLCA) model for gel structure to incorporate additional variation in DLCA simulation parameters, with the aim of producing DLCA clusters of similar densities that nevertheless have different fractal dimension and secondary particle coordination. We perform particle statics simulations of gel strain on these clusters, and consider the effects of differing DLCA simulation conditions, and the resultant differences in fractal dimension and coordination, on gel strain properties.

  12. Capturing differences in dental training using a virtual reality simulator.

    PubMed

    Mirghani, I; Mushtaq, F; Allsop, M J; Al-Saud, L M; Tickhill, N; Potter, C; Keeling, A; Mon-Williams, M A; Manogue, M

    2018-02-01

    Virtual reality simulators are becoming increasingly popular in dental schools across the world. But to what extent do these systems reflect actual dental ability? Addressing this question of construct validity is a fundamental step that is necessary before these systems can be fully integrated into a dental school's curriculum. In this study, we examined the sensitivity of the Simodont (a haptic virtual reality dental simulator) to differences in dental training experience. Two hundred and eighty-nine participants, with 1 (n = 92), 3 (n = 79), 4 (n = 57) and 5 (n = 61) years of dental training, performed a series of tasks upon their first exposure to the simulator. We found statistically significant differences between novice (Year 1) and experienced dental trainees (operationalised as 3 or more years of training), but no differences between performance of experienced trainees with varying levels of experience. This work represents a crucial first step in understanding the value of haptic virtual reality simulators in dental education. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Aircraft L-Band Balloon - Simulated Satellite Experiments Volume I: Experiment Description and Voice and Data Modem Test Results

    DOT National Transportation Integrated Search

    1975-10-01

    This report details the result of an experiment performed by the Transportation Systems Center of the Department of Transportation to evaluate candidate voice and data modulation systems for use in an L-Band Air Traffic Control System. The experiment...

  14. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.

    1974-01-01

    Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.

  15. Importance of inlet boundary conditions for numerical simulation of combustor flows

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.

    1983-01-01

    Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.

  16. Surface tension of undercooled liquid cobalt

    NASA Astrophysics Data System (ADS)

    Yao, W. J.; Han, X. J.; Chen, M.; Wei, B.; Guo, Z. Y.

    2002-08-01

    This paper provides the results on experimentally measured and numerically predicted surface tensions of undercooled liquid cobalt. The experiments were performed by using the oscillation drop technique combined with electromagnetic levitation. The simulations are carried out with the Monte Carlo (MC) method, where the surface tension is predicted through calculations of the work of cohesion, and the interatomic interaction is described with an embedded-atom method. The maximum undercooling of the liquid cobalt is reached at 231 K (0.13Tm) in the experiment and 268 K (0.17Tm) in the simulation. The surface tension and its relationship with temperature obtained in the experiment and simulation are σexp = 1.93 - 0.000 33 (T - T m) N m-1 and σcal = 2.26 - 0.000 32 (T - T m) N m-1 respectively. The temperature dependence of the surface tension calculated from the MC simulation is in reasonable agreement with that measured in the experiment.

  17. Simulated ventriculostomy training with conventional neuronavigational equipment used clinically in the operating room: prospective validation study.

    PubMed

    Kirkman, Matthew A; Muirhead, William; Sevdalis, Nick; Nandi, Dipankar

    2015-01-01

    Simulation is gaining increasing interest as a method of delivering high-quality, time-effective, and safe training to neurosurgical residents. However, most current simulators are purpose-built for simulation, being relatively expensive and inaccessible to many residents. The purpose of this study was to provide the first comprehensive validity assessment of ventriculostomy performance metrics from the Medtronic StealthStation S7 Surgical Navigation System, a neuronavigational tool widely used in the clinical setting, as a training tool for simulated ventriculostomy while concomitantly reporting on stress measures. A prospective study where participants performed 6 simulated ventriculostomy attempts on a model head with StealthStation-coregistered imaging. The performance measures included distance of the ventricular catheter tip to the foramen of Monro and presence of the catheter tip in the ventricle. Data on objective and self-reported stress and workload measures were also collected. The operating rooms of the National Hospital for Neurology and Neurosurgery, Queen Square, London. A total of 31 individuals with varying levels of prior ventriculostomy experience, varying in seniority from medical student to senior resident. Performance at simulated ventriculostomy improved significantly over subsequent attempts, irrespective of previous ventriculostomy experience. Performance improved whether or not the StealthStation display monitor was used for real-time visual feedback, but performance was optimal when it was. Further, performance was inversely correlated with both objective and self-reported measures of stress (traditionally referred to as concurrent validity). Stress and workload measures were well-correlated with each other, and they also correlated with technical performance. These initial data support the use of the StealthStation as a training tool for simulated ventriculostomy, providing a safe environment for repeated practice with immediate feedback. Although the potential implications are profound for neurosurgical education and training, further research following this proof-of-concept study is required on a larger scale for full validation and proof that training translates into improved long-term simulated and patient outcomes. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  18. High-reliability emergency response teams in the hospital: improving quality and safety using in situ simulation training.

    PubMed

    Wheeler, Derek S; Geis, Gary; Mack, Elizabeth H; LeMaster, Tom; Patterson, Mary D

    2013-06-01

    In situ simulation training is a team-based training technique conducted on actual patient care units using equipment and resources from that unit, and involving actual members of the healthcare team. We describe our experience with in situ simulation training in a major children's medical centre. In situ simulations were conducted using standardised scenarios approximately twice per month on inpatient hospital units on a rotating basis. Simulations were scheduled so that each unit participated in at least two in situ simulations per year. Simulations were conducted on a revolving schedule alternating on the day and night shifts and were unannounced. Scenarios were preselected to maximise the educational experience, and frequently involved clinical deterioration to cardiopulmonary arrest. We performed 64 of the scheduled 112 (57%) in situ simulations on all shifts and all units over 21 months. We identified 134 latent safety threats and knowledge gaps during these in situ simulations, which we categorised as medication, equipment, and/or resource/system threats. Identification of these errors resulted in modification of systems to reduce the risk of error. In situ simulations also provided a method to reinforce teamwork behaviours, such as the use of assertive statements, role clarity, performance of frequent updating, development of a shared mental model, performance of independent double checks of high-risk medicines, and overcoming authority gradients between team members. Participants stated that the training programme was effective and did not disrupt patient care. In situ simulations can identify latent safety threats, identify knowledge gaps, and reinforce teamwork behaviours when used as part of an organisation-wide safety programme.

  19. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    NASA Astrophysics Data System (ADS)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  20. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  1. PuReMD-GPU: A reactive molecular dynamics simulation package for GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kylasa, S.B., E-mail: skylasa@purdue.edu; Aktulga, H.M., E-mail: hmaktulga@lbl.gov; Grama, A.Y., E-mail: ayg@cs.purdue.edu

    2014-09-01

    We present an efficient and highly accurate GP-GPU implementation of our community code, PuReMD, for reactive molecular dynamics simulations using the ReaxFF force field. PuReMD and its incorporation into LAMMPS (Reax/C) is used by a large number of research groups worldwide for simulating diverse systems ranging from biomembranes to explosives (RDX) at atomistic level of detail. The sub-femtosecond time-steps associated with ReaxFF strongly motivate significant improvements to per-timestep simulation time through effective use of GPUs. This paper presents, in detail, the design and implementation of PuReMD-GPU, which enables ReaxFF simulations on GPUs, as well as various performance optimization techniques wemore » developed to obtain high performance on state-of-the-art hardware. Comprehensive experiments on model systems (bulk water and amorphous silica) are presented to quantify the performance improvements achieved by PuReMD-GPU and to verify its accuracy. In particular, our experiments show up to 16× improvement in runtime compared to our highly optimized CPU-only single-core ReaxFF implementation. PuReMD-GPU is a unique production code, and is currently available on request from the authors.« less

  2. Training on a virtual reality simulator--is it really possible a correct evaluation of the surgeons' experience?

    PubMed

    Moldovanu, R; Târcoveanu, E; Lupaşcu, C; Dimofte, G; Filip, V; Vlad, N; Vasilescu, A

    2009-01-01

    Laparoscopic simulators provide a safe and efficient means of acquiring surgical skills. It is well known that virtual reality training improves the performance of young surgeons. Most of the virtual reality simulators have construct validity and can differentiate between novice and expert surgeons. However, for some training modules and trainees categories the possibility to distinguish the real surgeon's experience is still discussed. A total of 14 young surgeons were evaluated during a 5 days postgraduate laparoscopic course using a LapSim Basic Skills, v. 3.0 simulator and a Virtual Laparoscopic Interface (VLI) hardware. The best performances of the surgeons were included in a MS Access database and statistical analyzed. There were 6 males and 8 women with a mean age of 30.21 +/- 1.01 years old (range 26-38). Nine surgeons (64.28%) were young residents without any laparoscopic surgical experience (group I), and the other 5, had some laparoscopic surgical experience (10 to 30 laparoscopic procedures) (group II). During the instrument navigation task we found that both hands performances were significant better in group II--the navigation time was 12.43 +/- 1.31 vs 19.01 +/- 1.40 seconds for the left hand--p = 0.006 and 13.57 +/- 1.47 vs 22.18 +/- 3.16 seconds for the right hand--p = 0.032); the right instrument angular path degree was also shorter for experienced surgeons (153.17 +/- 16.72 vs 230.88 +/- 22.6 - p = 0.017). The same data were noted for the lifting and grasping module. However, the suturing module tasks revealed contradictory results: the group I residents recorded better performances then the group II surgeons: total time--677.06 +/- 111.48 vs 1122.65 +/- 166.62 seconds; p = 0.043; right instrument path (m)--15.62 +/- 2.47 vs 25.73 +/- 3.13; p = 0.028; right instrument angular path (degree)--3940.43 +/- 572.54 vs 6595.5597 +/- 753.26; p = 0.017. Laparoscopic simulators are useful to evaluate the surgeons' experience; the parameters of the instrument navigation and lifting and grasping modules, which require a higher degree of eye-hand coordination, were better for residents with previous surgical experience and revealed a good transfer of training (TOT). The suturing module is less influenced by surgeons' experience. This result is probably explained by a lack of TOT.

  3. 3D visualization of ultra-fine ICON climate simulation data

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Spickermann, Dela; Böttinger, Michael

    2016-04-01

    Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.

  4. Virtual Simulation in Enhancing Procedural Training for Fluoroscopy-guided Lumbar Puncture: A Pilot Study.

    PubMed

    Ali, Saad; Qandeel, Monther; Ramakrishna, Rishi; Yang, Carina W

    2018-02-01

    Fluoroscopy-guided lumbar puncture (FGLP) is a basic procedural component of radiology residency and neuroradiology fellowship training. Performance of the procedure with limited experience is associated with increased patient discomfort as well as increased radiation dose, puncture attempts, and complication rate. Simulation in health care is a developing field that has potential for enhancing procedural training. We demonstrate the design and utility of a virtual reality simulator for performing FGLP. An FGLP module was developed on an ImmersiveTouch platform, which digitally reproduces the procedural environment with a hologram-like projection. From computed tomography datasets of healthy adult spines, we constructed a 3-D model of the lumbar spine and overlying soft tissues. We assigned different physical characteristics to each tissue type, which the user can experience through haptic feedback while advancing a virtual spinal needle. Virtual fluoroscopy as well as 3-D images can be obtained for procedural planning and guidance. The number of puncture attempts, the distance to the target, the number of fluoroscopic shots, and the approximate radiation dose can be calculated. Preliminary data from users who participated in the simulation were obtained in a postsimulation survey. All users found the simulation to be a realistic replication of the anatomy and procedure and would recommend to a colleague. On a scale of 1-5 (lowest to highest) rating the virtual simulator training overall, the mean score was 4.3 (range 3-5). We describe the design of a virtual reality simulator for performing FGLP and present the initial experience with this new technique. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Route complexity and simulated physical ageing negatively influence wayfinding.

    PubMed

    Zijlstra, Emma; Hagedoorn, Mariët; Krijnen, Wim P; van der Schans, Cees P; Mobach, Mark P

    2016-09-01

    The aim of this age-simulation field experiment was to assess the influence of route complexity and physical ageing on wayfinding. Seventy-five people (aged 18-28) performed a total of 108 wayfinding tasks (i.e., 42 participants performed two wayfinding tasks and 33 performed one wayfinding task), of which 59 tasks were performed wearing gerontologic ageing suits. Outcome variables were wayfinding performance (i.e., efficiency and walking speed) and physiological outcomes (i.e., heart and respiratory rates). Analysis of covariance showed that persons on more complex routes (i.e., more floor and building changes) walked less efficiently than persons on less complex routes. In addition, simulated elderly participants perform worse in wayfinding than young participants in terms of speed (p < 0.001). Moreover, a linear mixed model showed that simulated elderly persons had higher heart rates and respiratory rates compared to young people during a wayfinding task, suggesting that simulated elderly consumed more energy during this task. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The application of simulation modeling to the cost and performance ranking of solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.

    1981-01-01

    Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.

  7. Simulations towards optimization of a neutron/anti-neutron oscillation experiment at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Frost, Matthew; Kamyshkov, Yuri; Castellanos, Luis; Klinkby, Esben; US NNbar Collaboration

    2015-04-01

    The observation of Neutron/Anti-neutron oscillation would prove the existence of Baryon Number Violation (BNV), and thus an explanation for the dominance of matter over anti-matter in the universe. The latest experiments have shown the oscillation time to be greater than 8.6 x 107 seconds, whereas current theoretical predictions suggest times on the order of 108 to 109 seconds. A neutron oscillation experiment proposed at the European Spallation Source (ESS) would provide sensitivity of more than 1000 times previous experiments performed, thus providing a result well-suited to confirm or deny current theory. A conceptual design of the proposed experiment will be presented, as well as the optimization of key experiment components using Monte-Carlo simulation methods, including the McStas neutron ray-trace simulation package. This work is supported by the Organized Research Units Program funded by The University of Tennessee, Knoxville Office of Research and Engagement.

  8. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  9. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  10. Simulation-Based Learning: The Learning-Forgetting-Relearning Process and Impact of Learning History

    ERIC Educational Resources Information Center

    Davidovitch, Lior; Parush, Avi; Shtub, Avy

    2008-01-01

    The results of empirical experiments evaluating the effectiveness and efficiency of the learning-forgetting-relearning process in a dynamic project management simulation environment are reported. Sixty-six graduate engineering students performed repetitive simulation-runs with a break period of several weeks between the runs. The students used a…

  11. Tube thoracostomy training with a medical simulator is associated with faster, more successful performance of the procedure

    PubMed Central

    Chung, Tae Nyoung; Kim, Sun Wook; You, Je Sung; Chung, Hyun Soo

    2016-01-01

    Objective Tube thoracostomy (TT) is a commonly performed intensive care procedure. Simulator training may be a good alternative method for TT training, compared with conventional methods such as apprenticeship and animal skills laboratory. However, there is insufficient evidence supporting use of a simulator. The aim of this study is to determine whether training with medical simulator is associated with faster TT process, compared to conventional training without simulator. Methods This is a simulation study. Eligible participants were emergency medicine residents with very few (≤3 times) TT experience. Participants were randomized to two groups: the conventional training group, and the simulator training group. While the simulator training group used the simulator to train TT, the conventional training group watched the instructor performing TT on a cadaver. After training, all participants performed a TT on a cadaver. The performance quality was measured as correct placement and time delay. Subjects were graded if they had difficulty on process. Results Estimated median procedure time was 228 seconds in the conventional training group and 75 seconds in the simulator training group, with statistical significance (P=0.040). The difficulty grading did not show any significant difference among groups (overall performance scale, 2 vs. 3; P=0.094). Conclusion Tube thoracostomy training with a medical simulator, when compared to no simulator training, is associated with a significantly faster procedure, when performed on a human cadaver. PMID:27752610

  12. A study of the feasibility of statistical analysis of airport performance simulation

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1982-01-01

    The feasibility of conducting a statistical analysis of simulation experiments to study airport capacity is investigated. First, the form of the distribution of airport capacity is studied. Since the distribution is non-Gaussian, it is important to determine the effect of this distribution on standard analysis of variance techniques and power calculations. Next, power computations are made in order to determine how economic simulation experiments would be if they are designed to detect capacity changes from condition to condition. Many of the conclusions drawn are results of Monte-Carlo techniques.

  13. Experiments and PIC simulations on liquid crystal plasma mirrors for pulse contrast enhancement

    NASA Astrophysics Data System (ADS)

    Cochran, G. E.; Poole, P. L.; Krygier, A.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Heery, R.; Purcell, J.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-10-01

    High pulse contrast is crucial for performing many experiments on high intensity lasers in order to minimize modification of the target surface by pre-pulse. This is often achieved through the use of solid dielectric plasma mirrors which can limit laser shot rates. Liquid crystal films, originally developed as variable thickness ion acceleration targets, have been demonstrated as effective plasma mirrors for pulse cleaning, reaching peak reflectivities over 70%. These films were used as plasma mirrors in an ion acceleration experiment on the Scarlet laser and the resultant increase in peak proton energy and change in acceleration direction will be discussed. Also presented here are novel 2D3V, LSP particle-in-cell simulations of dielectric plasma mirror operation. By including multiphoton ionization and dimensionality corrections, an excellent match to experiment is obtained over 4 decades in intensity. Analysis of pulse shortening and plasma critical surface behavior in these simulations will be discussed. Formation of thin films at 1.5 Hz will also be presented. Performed with support from the DARPA PULSE program through AMRDEC, from NNSA, and from OSC.

  14. The influence of anaesthetists' experience on workload, performance and visual attention during simulated critical incidents.

    PubMed

    Schulz, Christian M; Schneider, Erich; Kohlbecher, Stefan; Hapfelmeier, Alexander; Heuser, Fabian; Wagner, Klaus J; Kochs, Eberhard F; Schneider, Gerhard

    2014-10-01

    Development of accurate Situation Awareness (SA) depends on experience and may be impaired during excessive workload. In order to gain adequate SA for decision making and performance, anaesthetists need to distribute visual attention effectively. Therefore, we hypothesized that in more experienced anaesthetists performance is better and increase of physiological workload is less during critical incidents. Additionally, we investigated the relation between physiological workload indicators and distribution of visual attention. In fifteen anaesthetists, the increase of pupil size and heart rate was assessed in course of a simulated critical incident. Simulator log files were used for performance assessment. An eye-tracking device (EyeSeeCam) provided data about the anaesthetists' distribution of visual attention. Performance was assessed as time until definitive treatment. T tests and multivariate generalized linear models (MANOVA) were used for retrospective statistical analysis. Mean pupil diameter increase was 8.1% (SD ± 4.3) in the less experienced and 15.8% (±10.4) in the more experienced subjects (p = 0.191). Mean heart rate increase was 10.2% (±6.7) and 10.5% (±8.3, p = 0.956), respectively. Performance did not depend on experience. Pupil diameter and heart rate increases were associated with a shift of visual attention from monitoring towards manual tasks (not significant). For the first time, the following four variables were assessed simultaneously: physiological workload indicators, performance, experience, and distribution of visual attention between "monitoring" and "manual" tasks. However, we were unable to detect significant interactions between these variables. This experimental model could prove valuable in the investigation of gaining and maintaining SA in the operation theatre.

  15. Analysis of dense-medium light scattering with applications to corneal tissue: experiments and Monte Carlo simulations.

    PubMed

    Kim, K B; Shanyfelt, L M; Hahn, D W

    2006-01-01

    Dense-medium scattering is explored in the context of providing a quantitative measurement of turbidity, with specific application to corneal haze. A multiple-wavelength scattering technique is proposed to make use of two-color scattering response ratios, thereby providing a means for data normalization. A combination of measurements and simulations are reported to assess this technique, including light-scattering experiments for a range of polystyrene suspensions. Monte Carlo (MC) simulations were performed using a multiple-scattering algorithm based on full Mie scattering theory. The simulations were in excellent agreement with the polystyrene suspension experiments, thereby validating the MC model. The MC model was then used to simulate multiwavelength scattering in a corneal tissue model. Overall, the proposed multiwavelength scattering technique appears to be a feasible approach to quantify dense-medium scattering such as the manifestation of corneal haze, although more complex modeling of keratocyte scattering, and animal studies, are necessary.

  16. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  17. A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Laura; Jakob, Christian; Cheung, K.

    2013-06-27

    Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimatemore » simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.« less

  18. The use of a virtual reality surgical simulator for cataract surgical skill assessment with 6 months of intervening operating room experience.

    PubMed

    Sikder, Shameema; Luo, Jia; Banerjee, P Pat; Luciano, Cristian; Kania, Patrick; Song, Jonathan C; Kahtani, Eman S; Edward, Deepak P; Towerki, Abdul-Elah Al

    2015-01-01

    To evaluate a haptic-based simulator, MicroVisTouch™, as an assessment tool for capsulorhexis performance in cataract surgery. The study is a prospective, unmasked, nonrandomized dual academic institution study conducted at the Wilmer Eye Institute at Johns Hopkins Medical Center (Baltimore, MD, USA) and King Khaled Eye Specialist Hospital (Riyadh, Saudi Arabia). This prospective study evaluated capsulorhexis simulator performance in 78 ophthalmology residents in the US and Saudi Arabia in the first round of testing and 40 residents in a second round for follow-up. Four variables (circularity, accuracy, fluency, and overall) were tested by the simulator and graded on a 0-100 scale. Circularity (42%), accuracy (55%), and fluency (3%) were compiled to give an overall score. Capsulorhexis performance was retested in the original cohort 6 months after baseline assessment. Average scores in all measured metrics demonstrated statistically significant improvement (except for circularity, which trended toward improvement) after baseline assessment. A reduction in standard deviation and improvement in process capability indices over the 6-month period was also observed. An interval objective improvement in capsulorhexis skill on a haptic-enabled cataract surgery simulator was associated with intervening operating room experience. Further work investigating the role of formalized simulator training programs requiring independent simulator use must be studied to determine its usefulness as an evaluation tool.

  19. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.

    PubMed

    Wong, Julielynn Y; Pfahnl, Andreas C

    2016-09-01

    The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.

  20. Dynamic Simulation of a Periodic 10 K Sorption Cryocooler

    NASA Technical Reports Server (NTRS)

    Bhandari, P.; Rodriguez, J.; Bard, S.; Wade, L.

    1994-01-01

    A transient thermal simulation model has been developed to simulate the dynamic performance of a multiple-stage 10 K sorption cryocooler for spacecraft sensor cooling applications that require periodic quick-cooldown (under 2 minutes) , negligible vibration, low power consumption, and long life (5 to 10 years). The model was specifically designed to represent the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), but it can be adapted to represent other sorption cryocooler systems as well. The model simulates the heat transfer, mass transfer, and thermodynamic processes in the cryostat and the sorbent beds for the entire refrigeration cycle, and includes the transient effects of variable hydrogen supply pressures due to expansion and overflow of hydrogen during the cooldown operation. The paper describes model limitations and simplifying assumptions, with estimates of errors induced by them, and presents comparisons of performance predictions with ground experiments. An important benefit of the model is its ability to predict performance sensitivities to variations of key design and operational parameters. The insights thus obtained are expected to lead to higher efficiencies and lower weights for future designs.

  1. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  2. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  3. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less

  4. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  5. Experiment-scale molecular simulation study of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-03-01

    Supercomputers have now reached a performance level adequate for studying thin films with molecular detail at the relevant scales. By exploiting the power of GPU accelerators on Titan, we have been able to perform simulations of characteristic liquid crystal films that provide remarkable qualitative agreement with experimental images. We have demonstrated that key features of spinodal instability can only be observed with sufficiently large system sizes, which were not accessible with previous simulation studies. Our study emphasizes the capability and significance of petascale simulations in providing molecular-level insights in thin film systems as well as other interfacial phenomena.

  6. A Novel Multiplayer Screen-Based Simulation Experience for African Learners Improved Confidence in Management of Postpartum Hemorrhage.

    PubMed

    Taekman, Jeffrey M; Foureman, Megan F; Bulamba, Fred; Steele, Michael; Comstock, Emily; Kintu, Andrew; Mauritz, Amy; Olufolabi, Adeyemi

    2017-01-01

    Postpartum hemorrhage (PPH) remains a global challenge, affecting thirteen million women each year. In addition, PPH is a leading cause of maternal mortality in Asia and Africa. In the U.S.A., care of critically ill patients is often practiced using mannequin-based simulation. Mannequin-based simulation presents challenges in global health, particularly in low- or middle-income countries. We developed a novel multiplayer screen-based simulation in a virtual world enabling the practice of team coordination with PPH. We used this simulation with learners in Mulago, Uganda. We hypothesized that a multiplayer screen-based simulation experience would increase learner confidence in their ability to manage PPH. The study design was a simple pre- and a post-intervention survey. Forty-eight interprofessional subjects participated in one of nine 1-h simulation sessions using the PPH software. A fifteen-question self-assessment administered before and after the intervention was designed to probe the areas of learning as defined by Bloom and Krathwohl: affective, cognitive, and psychomotor. Combined confidence scores increased significantly overall following the simulation experience and individually in each of the three categories of Bloom's Taxonomy: affective, cognitive, and psychomotor. We provide preliminary evidence that multiplayer screen-based simulation represents a scalable, distributable form of learning that may be used effectively in global health education and training. Interestingly, despite our intervention being screen-based, our subjects showed improved confidence in their ability to perform psychomotor tasks. Although there is precedent for mental rehearsal improving performance, further research is needed to understand this finding.

  7. Detecting coached neuropsychological dysfunction: a simulation experiment regarding mild traumatic brain injury.

    PubMed

    Lau, Lily; Basso, Michael R; Estevis, Eduardo; Miller, Ashley; Whiteside, Douglas M; Combs, Dennis; Arentsen, Timothy J

    2017-11-01

    Performance validity tests (PVTs) and symptom validity tests (SVTs) are often administered during neuropsychological evaluations. Examinees may be coached to avoid detection by measures of response validity. Relatively little research has evaluated whether graduated levels of coaching has differential effects upon PVT and SVT performance. Accordingly, the present experiment evaluated the effect of graduated levels of coaching upon the classification accuracy of commonly used PVTs and SVTs and the currently accepted criterion of failing two or more PVTs or SVTs. Participants simulated symptoms associated with mild traumatic brain injury (TBI). One group was provided superficial information concerning cognitive, emotional, and physical symptoms. Another group was provided detailed information about such symptoms. A third group was provided detailed information about symptoms and guidance how to evade detection by PVTs. These groups were compared to an honest-responding group. Extending prior experiments, stand-alone and embedded PVT measures were administered in addition to SVTs. The three simulator groups were readily identified by PVTs and SVTs, but a meaningful minority of those provided test-taking strategies eluded detection. The Word Memory Test emerged as the most sensitive indicator of simulated mild TBI symptoms. PVTs achieved more sensitive detection of simulated head injury status than SVTs. Individuals coached to modify test-taking performance were marginally more successful in eluding detection by PVTs and SVTs than those coached with respect to TBI symptoms only. When the criterion of failing two or more PVTs or SVTs was applied, only 5% eluded detection.

  8. The role of diffusive architectural surfaces on auditory spatial discrimination in performance venues.

    PubMed

    Robinson, Philip W; Pätynen, Jukka; Lokki, Tapio; Jang, Hyung Suk; Jeon, Jin Yong; Xiang, Ning

    2013-06-01

    In musical or theatrical performance, some venues allow listeners to individually localize and segregate individual performers, while others produce a well blended ensemble sound. The room acoustic conditions that make this possible, and the psycho-acoustic effects at work are not fully understood. This research utilizes auralizations from measured and simulated performance venues to investigate spatial discrimination of multiple acoustic sources in rooms. Signals were generated from measurements taken in a small theater, and listeners in the audience area were asked to distinguish pairs of speech sources on stage with various spatial separations. This experiment was repeated with the proscenium splay walls treated to be flat, diffusive, or absorptive. Similar experiments were conducted in a simulated hall, utilizing 11 early reflections with various characteristics, and measured late reverberation. The experiments reveal that discriminating the lateral arrangement of two sources is possible at narrower separation angles when reflections come from flat or absorptive rather than diffusive surfaces.

  9. Prior experience in micro-surgery may improve the surgeon's performance in robotic surgical training.

    PubMed

    Perez, Manuela; Perrenot, Cyril; Tran, Nguyen; Hossu, Gabriela; Felblinger, Jacques; Hubert, Jacques

    2013-09-01

    Robotic surgery has witnessed a huge expansion. Robotic simulators have proved to be of major interest in training. Some authors have suggested that prior experience in micro-surgery could improve robotic surgery training. To test micro-surgery as a new approach in training, we proposed a prospective study comparing the surgical performance of micro-surgeons with that of general surgeons on a robotic simulator. 49 surgeons were enrolled; 11 in the micro-surgery group (MSG); 38 n the control group (CG). Performance was evaluated based on five dV-Trainer® exercises. MSG achieved better results for all exercises including exercises requiring visual evaluation of force feed-back, economy of motion, instrument force and position. These results show that experience in micro-surgery could significantly improve surgeons' abilities and their performance in robotic training. So, as micro-surgery practice is relatively cheap, it could be easily included in basic robotic surgery training. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  11. Total Dust Deposition Flux During Precipitation in Toyama, Japan, in the Spring of 2009: A Sensitivity Analysis with the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.; Colarco, Peter R.; Lau, William K. M.; Osada, Kazuo; Kido, Mizuka; Mahanama, Sarith P. P.; Kim, Kyu-Myong; Da Silva, Arlindo M.

    2015-01-01

    We compared the observed total dust deposition fluxes during precipitation (TDP) mainly at Toyama in Japan during the period January - April 2009 with results available from four NASA GEOS-5 global model experiments. The modeled results were obtained from three previous experiments and carried out in one experiment, which were all driven by assimilated meteorology and simulating aerosol distributions for the time period. We focus mainly on the observations of two distinct TDP events, which were reported in Osada et al. (2011), at Toyama, Japan, in February (Event B) and March 2009 (Event C). Although all of our GEOS-5 simulations captured aspects of the observed TDP, we found that our low horizontal spatial resolution control experiment performed generally the worst. The other three experiments were run at a higher spatial resolution, with the first differing only in that respect from the control, the second adding imposed a prescribed corrected precipitation product, and the final experiment adding as well assimilation of aerosol optical depth based on MODIS observations. During Event C, the increased horizontal resolution could increase TDP with precipitation increase. There was no significant improvement, however, due to the imposition of the corrected precipitation product. The simulation that incorporated aerosol data assimilation performed was by far the best for this event, but even so could only reproduce less than half of the observed TDP despite the significantly increased atmospheric dust mass concentrations. All three of the high spatial resolution experiments had higher simulated precipitation at Toyama than was observed and that in the lower resolution control run. During Event B, the aerosol data assimilation run did not perform appreciably better than the other higher resolution simulations, suggesting that upstream conditions (i.e., upstream cloudiness), or vertical or horizontal misplacement of the dust plume did not allow for significant improvement in the simulated aerosol distributions. Furthermore, a detailed comparison of observed hourly precipitation and surface particulate mass concentration data suggests that the observed TDP during Event B was highly dependent on short periods of weak precipitation correlated with elevated dust surface concentrations, important details possibly not captured well in a current global model.

  12. Deconvolution of acoustic emissions for source localization using time reverse modeling

    NASA Astrophysics Data System (ADS)

    Kocur, Georg Karl

    2017-01-01

    Impact experiments on small-scale slabs made of concrete and aluminum were carried out. Wave motion radiated from the epicenter of the impact was recorded as voltage signals by resonant piezoelectric transducers. Numerical simulations of the elastic wave propagation are performed to simulate the physical experiments. The Hertz theory of contact is applied to estimate the force impulse, which is subsequently used for the numerical simulation. Displacements at the transducer positions are calculated numerically. A deconvolution function is obtained by comparing the physical (voltage signal) and the numerical (calculated displacement) experiments. Acoustic emission signals due to pencil-lead breaks are recorded, deconvolved and applied for localization using time reverse modeling.

  13. Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope

    NASA Astrophysics Data System (ADS)

    Kantsyrev, A. V.; Skoblyakov, A. V.; Bogdanov, A. V.; Golubev, A. A.; Shilkin, N. S.; Yuriev, D. S.; Mintsev, V. B.

    2018-01-01

    A radiographic facility for an investigation of fast dynamic processes with areal density of targets up to 5 g/cm2 is under development on the basis of high-current proton linear accelerator at the Institute for Nuclear Research (Troitsk, Russia). A virtual model of the proton microscope developed in a software toolkit Geant4 is presented in the article. Fullscale Monte-Carlo numerical simulation of static radiographic experiments at energy of a proton beam 247 MeV was performed. The results of simulation of proton radiography experiments with static model of shock-compressed xenon are presented. The results of visualization of copper and polymethyl methacrylate step wedges static targets also described.

  14. Simulation-Based Training for Colonoscopy

    PubMed Central

    Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars

    2015-01-01

    Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177

  15. Study of premixing phase of steam explosion with JASMINE code in ALPHA program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu

    Premixing phase of steam explosion has been studied in ALPHA Program at Japan Atomic Energy Research Institute (JAERI). An analytical model to simulate the premixing phase, JASMINE (JAERI Simulator for Multiphase Interaction and Explosion), has been developed based on a multi-dimensional multi-phase thermal hydraulics code MISTRAL (by Fuji Research Institute Co.). The original code was extended to simulate the physics in the premixing phenomena. The first stage of the code validation was performed by analyzing two mixing experiments with solid particles and water: the isothermal experiment by Gilbertson et al. (1992) and the hot particle experiment by Angelini et al.more » (1993) (MAGICO). The code predicted reasonably well the experiments. Effectiveness of the TVD scheme employed in the code was also demonstrated.« less

  16. Impact of detector simulation in particle physics collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvira, V. Daniel

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  17. Impact of detector simulation in particle physics collider experiments

    DOE PAGES

    Elvira, V. Daniel

    2017-06-01

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  18. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  19. Effects of Information Availability on Command-and-Control Decision Making: Performance, Trust, and Situation Awareness.

    PubMed

    Marusich, Laura R; Bakdash, Jonathan Z; Onal, Emrah; Yu, Michael S; Schaffer, James; O'Donovan, John; Höllerer, Tobias; Buchler, Norbou; Gonzalez, Cleotilde

    2016-03-01

    We investigated how increases in task-relevant information affect human decision-making performance, situation awareness (SA), and trust in a simulated command-and-control (C2) environment. Increased information is often associated with an improvement of SA and decision-making performance in networked organizations. However, previous research suggests that increasing information without considering the task relevance and the presentation can impair performance. We used a simulated C2 task across two experiments. Experiment 1 varied the information volume provided to individual participants and measured the speed and accuracy of decision making for task performance. Experiment 2 varied information volume and information reliability provided to two participants acting in different roles and assessed decision-making performance, SA, and trust between the paired participants. In both experiments, increased task-relevant information volume did not improve task performance. In Experiment 2, increased task-relevant information volume reduced self-reported SA and trust, and incorrect source reliability information led to poorer task performance and SA. These results indicate that increasing the volume of information, even when it is accurate and task relevant, is not necessarily beneficial to decision-making performance. Moreover, it may even be detrimental to SA and trust among team members. Given the high volume of available and shared information and the safety-critical and time-sensitive nature of many decisions, these results have implications for training and system design in C2 domains. To avoid decrements to SA, interpersonal trust, and decision-making performance, information presentation within C2 systems must reflect human cognitive processing limits and capabilities. © 2016, Human Factors and Ergonomics Society.

  20. Three-Dimensional Unsteady Simulation of Aerodynamics and Heat Transfer in a Modern High Pressure Turbine Stage

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2009-01-01

    Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  1. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-05

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.

  2. The influence of vehicle aerodynamic and control response characteristics on driver-vehicle performance

    NASA Technical Reports Server (NTRS)

    Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.

    1978-01-01

    The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.

  3. Driving performance in a power wheelchair simulator.

    PubMed

    Archambault, Philippe S; Tremblay, Stéphanie; Cachecho, Sarah; Routhier, François; Boissy, Patrick

    2012-05-01

    A power wheelchair simulator can allow users to safely experience various driving tasks. For such training to be efficient, it is important that driving performance be equivalent to that in a real wheelchair. This study aimed at comparing driving performance in a real and in a simulated environment. Two groups of healthy young adults performed different driving tasks, either in a real power wheelchair or in a simulator. Smoothness of joystick control as well as the time necessary to complete each task were recorded and compared between the two groups. Driving strategies were analysed from video recordings. The sense of presence, of really being in the virtual environment, was assessed through a questionnaire. Smoothness of joystick control was the same in the real and virtual groups. Task completion time was higher in the simulator for the more difficult tasks. Both groups showed similar strategies and difficulties. The simulator generated a good sense of presence, which is important for motivation. Performance was very similar for power wheelchair driving in the simulator or in real life. Thus, the simulator could potentially be used to complement training of individuals who require a power wheelchair and use a regular joystick. [Box: see text].

  4. Simulation of organic molecule formation in solar system environments-The Miller-Urey Experiment in Space project overview

    NASA Astrophysics Data System (ADS)

    Kotler, J. Michelle; Ehrenfruend, Pascale; Botta, Oliver; Blum, Jurgen; Schrapler, Rainer; van Dongen, Joost; Palmans, Anja; Sephton, Mark A.; Martins, Zita; Cleaves, Henderson J.; Ricco, Antonio

    The Miller-Urey Experiment in space (MUE) investigates the formation of potential prebiotic organic compounds in the early solar system environment. The MUE experiment will be sent to and retrieved from the International Space Station (ISS), where it will be performed inside the Microgravity Science Glovebox (MSG). The goal of this space experiment is to understand prebiotic reactions in microgravity by simulating environments of the early solar nebula. The dynamic environment of the solar nebula with the simultaneous presence of gas, particles, and energetic processes, including shock waves, lightning, and radiation may trigger a rich organic chemistry leading to organic molecules. These environments will be simulated in six fabricated vials containing various gas mixtures as well as solid particles. Two gas mixture compositions will be tested and subjected to continuous spark discharges for 48, 96, and 192 hours. Silicate particles will serve as surfaces on which thin water ice mantles can accrete. The particles will move repeatedly through a high-voltage spark discharge in microgravity, enabling chemical re-actions analogous to the original Miller-Urey experiment. The experiment will be performed at low temperatures (-5 C), slowing hydrolysis and improving chances of detection of interme-diates, initial products, and their distributions. Executing the Miller-Urey experiment in the space environment (microgravity) allows us to simulate conditions that could have prevailed in the energetic early solar nebula and provides insights into the chemical pathways that may occur in forming planetary systems. Analysis will be performed post-flight using chemical analytical methods. The anticipated results will provide information about chemical reaction pathways to form organic compounds in space environment, emphasizing abiotic chemical pathways and mechanisms that could have been crucial in the formation of biologically relevant compounds such as amino acids and nucleobases, basic constituents common to life on Earth.

  5. Assessment of percutaneous renal access skills during Urology Objective Structured Clinical Examinations (OSCE)

    PubMed Central

    Noureldin, Yasser A.; Elkoushy, Mohamed A.; Andonian, Sero

    2015-01-01

    Introduction: The first objective was to assess percutaneous renal access (PCA) skills of urology postgraduate trainees (PGTs) during the Objective Structured Clinical Examinations (OSCEs). The second objective was to determine whether previous experience with percutaneous nephrolithotomy (PCNL) improved performance. Methods: After obtaining ethics approval, we recruited PGTs from two urology programs in Quebec between postgraduate years (PGY-3 to PGY-5). Each trainee was asked to answer a short questionnaire regarding previous experience in endourologic procedures. After a 3-minute orientation on the PERC Mentor simulator (Simbionix, Cleveland, OH), each trainee was asked to perform task 4, where they had to correctly access all of the renal calyces and pop the balloons in a normal left kidney model. We collected and analyzed data from the questionnaire and the performance report generated by the simulator. Results: In total, 13 PGTs participated in this study. PGTs had performed a median of 200 (range: 50–1000) cystoscopies, 50 (range: 10–125) TURBTs, 30 (range: 0–100) TURPs, 5 (range: 0–50) laser prostatectomies, and 50 (range: 2–125) ureteroscopies prior to this OSCE. PGTs with previous PCNL experience (8/13) had performed a mean of 18.6 ± 6.3 PCNLs. PGTs with previous PCNL experience performed significantly better in terms of shorter fluoroscopy time (10 ± 1.5 vs. 5.1 ± 0.7 min; p = 0.04), fewer attempts required for successful puncture of the pelvi-calyceal system (PCS) (21 ± 2.3 vs. 13 ± 1.8; p = 0.02), and had significantly lower complications in terms of fewer infundibular injury (7.4 ± 1.5 vs. 2 ± 0.4; p = 0.004) and fewer PCS perforations (11 ± 1.7 vs. 4.5 ± 1.2; p = 0.01). Conclusion: It is feasible to use the PERC Mentor simulator during OSCEs to assess PCA skills of urology PGTs. PGTs who had previous PCNL experience performed significantly better with fewer complications. PMID:25844094

  6. Exploration of Factors that Affect the Comparative Effectiveness of Physical and Virtual Manipulatives in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana

    2012-01-01

    Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who…

  7. The Impact of Virtual Patient Simulation on the Self-Efficacy and Performance Levels of MSN Nursing Students

    ERIC Educational Resources Information Center

    Rota, Matthew Jones

    2017-01-01

    The relationship between experience and learning is a growing phenomenon of interest to scholars of teaching and learning. In 1938, John Dewey stated that, "all genuine education comes about through experience." Self-efficacy is the belief in one's own capabilities to produce clear levels of performance around certain tasks. Virtual…

  8. Three Dimensional Hybrid Simulations of Super-Alfvénic Laser Ablation Experiments in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Clark, Stephen; Winske, Dan; Schaeffer, Derek; Everson, Erik; Bondarenko, Anton; Constantin, Carmen; Niemann, Christoph

    2014-10-01

    We present 3D hybrid simulations of laser produced expanding debris clouds propagating though a magnetized ambient plasma in the context of magnetized collisionless shocks. New results from the 3D code are compared to previously obtained simulation results using a 2D hybrid code. The 3D code is an extension of a previously developed 2D code developed at Los Alamos National Laboratory. It has been parallelized and ported to execute on a cluster environment. The new simulations are used to verify scaling relationships, such as shock onset time and coupling parameter (Rm /ρd), developed via 2D simulations. Previous 2D results focus primarily on laboratory shock formation relevant to experiments being performed on the Large Plasma Device, where the shock propagates across the magnetic field. The new 3D simulations show wave structure and dynamics oblique to the magnetic field that introduce new physics to be considered in future experiments.

  9. EFFECTS OF SIMULATED ACIDIC RAIN ON YIELDS OF FIELD-GROWN CROPS

    EPA Science Inventory

    Experiments were performed to determine the effects of simulated acidic rainfall on yields of radish (Raphanus sativa), garden beet (Beta vulgaris), kidney bean (Phaseolus vulgaris), and alfalfa (Medicago sativa) grown under standard agronomic practices. The experimental design a...

  10. Pilot tracking performance during successive in-flight simulated instrument approaches.

    DOT National Transportation Integrated Search

    1972-02-01

    Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in a conventional 'T'...

  11. Leakage flow simulation in a specific pump model

    NASA Astrophysics Data System (ADS)

    Dupont, P.; Bayeul-Lainé, A. C.; Dazin, A.; Bois, G.; Roussette, O.; Si, Q.

    2014-03-01

    This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

  12. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.

    1993-01-01

    The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.

  13. Performance experiments with alternative advanced teleoperator control modes for a simulated solar maximum satellite repair

    NASA Technical Reports Server (NTRS)

    Das, H.; Zak, H.; Kim, W. S.; Bejczy, A. K.; Schenker, P. S.

    1992-01-01

    Experiments are described which were conducted at the JPL Advanced Teleoperator Lab to demonstrate and evaluate the effectiveness of various teleoperator control modes in the performance of a simulated Solar Max Satellite Repair (SMSR) task. THe SMSR was selected as a test because it is very rich in performance capability requirements and it actually has been performed by two EVA astronauts in the Space Shuttle Bay in 1984. The main subtasks are: thermal blanket removal; installation of a hinge attachment for electrical panel opening; opening of electrical panel; removal of electrical connectors; relining of cable bundles; replacement of electrical panel; securing parts and cables; re-mate electrical connectors; closing of electrical panel; and reinstating thermal blanket. The current performance experiments are limited to thermal blanket cutting, electrical panel unbolting and handling electrical bundles and connectors. In one formal experiment even different control modes were applied to the unbolting and reinsertion of electrical panel screws subtasks. The seven control modes are alternative combinations of manual position and rate control with force feedback and remote compliance referenced to force-torque sensor information. Force-torque sensor and end effector position data and task completion times were recorded for analysis and quantification of operator performance.

  14. Studying the Processes Contributed to the Hairpin Turn of Hurricane Joaquin with WRF numerical simulations and TCI-2015 observations

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Yu, Y.

    2016-12-01

    The prediction of Hurricane Joaquin's hairpin clockwise during 1 and 2 October 2015 presents a forecasting challenge during real-time numerical weather prediction, as tracks of several major numerical weather prediction models differ from each other. To investigate the large-scale environment and hurricane inner-core structures related to the hairpin turn of Joaquin, a series of high-resolution mesoscale numerical simulations of Hurricane Joaquin had been performed with an advanced research version of the Weather Research and Forecasting (WRF) model. The outcomes were compared with the observations obtained from the US Office of Naval Research's Tropical Cyclone Intensity (TCI) Experiment during 2015 hurricane season. Specifically, five groups of sensitivity experiments with different cumulus, boundary layer, and microphysical schemes as well as different initial and boundary conditions and initial times in WRF simulations had been performed. It is found that the choice of the cumulus parameterization scheme plays a significant role in reproducing reasonable track forecast during Joaquin's hairpin turn. The mid-level environmental steering flows can be the reason that leads to different tracks in the simulations with different cumulus schemes. In addition, differences in the distribution and amounts of the latent heating over the inner-core region are associated with discrepancies in the simulated intensity among different experiments. Detailed simulation results, comparison with TCI-2015 observations, and comprehensive diagnoses will be presented.

  15. Mild Normobaric Hypoxia Exposure for Human-Autonomy System Testing

    NASA Technical Reports Server (NTRS)

    Stephens, Chad L.; Kennedy, Kellie D.; Crook, Brenda L.; Williams, Ralph A.; Schutte, Paul

    2017-01-01

    An experiment investigated the impact of normobaric hypoxia induction on aircraft pilot performance to specifically evaluate the use of hypoxia as a method to induce mild cognitive impairment to explore human-autonomous systems integration opportunities. Results of this exploratory study show that the effect of 15,000 feet simulated altitude did not induce cognitive deficits as indicated by performance on written, computer-based, or simulated flight tasks. However, the subjective data demonstrated increased effort by the human test subject pilots to maintain equivalent performance in a flight simulation task. This study represents current research intended to add to the current knowledge of performance decrement and pilot workload assessment to improve automation support and increase aviation safety.

  16. Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana

    2012-06-01

    Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.

  17. MONTE GENEROSO ROCKFALL FIELD TEST (SWITZERLAND): Real size experiment to constraint 2D and 3D rockfall simulations

    NASA Astrophysics Data System (ADS)

    Humair, F.; Matasci, B.; Carrea, D.; Pedrazzini, A.; Loye, A.; Pedrozzi, G.; Nicolet, P.; Jaboyedoff, M.

    2012-04-01

    In numerical rockfall simulation, the runout of rockfall is highly dependent of the restitution coefficients which are one of the key parameters to estimate the energy and simulate the rebounds of the blocks during their travel. Restitution coefficients values derived from literature may however not be adapted to every rockfall area as they do not integrate some of the influencing parameters as, among others, block shape rock size, soil cover… The aim is to illustrate how real size rockfall experiment can improve the reliability of computational trajectory simulations of rockfall propagation by calibrating these latter with experiment extracted results. Experimental rockfall tests were performed in the slopes of Monte Generoso area (lat 720850/ long 84830) which is located in the canton of Ticino in south Switzerland above a highway. The field site is a forested area with a thin soil cover on a bedrock characterized by massive carbonates. The elevation ranges between 894m and 322m above see level with a slope of 35 to 40° in the upper part, 60 to 89° in the medium part and 28 to 38° in the lower part. 22 blocks with different size and shape were manually released down, imparting little or no initial velocity. The failing blocks were coloured to make the impacts easier to recognize. The paths of the failing blocks are recorded using two high speed cameras and the impacts of the blocks were sampled using dGNSS. The rockfall trajectories were analysed based on the movies. As the movies have to be referenced in x and y direction, the distance between two known point in the terrain as well as the position of the cameras were measured prior to the blocks throws. Measurements of bounce height, angular and translational velocity (as well as energy) and restitution coefficients (normal kn and tangential kt) were attempt to be deduced from the movies. First, a-priori simulations are compared with the real size experiment throw. Then a-fortiori simulations taking into account the results of the experimental testing are performed and compared with the a-priori simulations. 3D simulations were performed using a software that takes into account the effect of the forest cover in the blocky trajectory (RockyFor 3D) and an other that neglects this aspect (Rotomap; geo&soft international). 2D simulation (RocFall; Rocscience) profiles were located in the blocks paths deduced from 3D simulations. The preliminary results show that: (1) high speed movies are promising and allow us to track the blocks using video software, (2) the a-priori simulations tend to overestimate the runout distance which is certainly due to an underestimation of the obstacles as well as the breaking of the failing rocks which is not taken into account in the models, (3) the trajectories deduced from both a-priori simulation and real size experiment highlights the major influence of the channelized slope morphology on rock paths as it tends to follow the flow direction. This indicates that the 2D simulation have to be performed along the line of flow direction.

  18. Planetary and Space Simulation Facilities (PSI) at DLR

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.

    2010-05-01

    The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin The results gained during the simulation experiments demonstrated mission preparation as a basic requirement for successful and significant results of every space flight experiment. Hence, the Mission preparation program that was performed in the context of the space missions EXPOSE-E and EXPOSE-R proofed the outstanding importance and accentuated need for ground based experiments before and during a space mission. The facilities are also necessary for the performance of the ground control experiment during the mission, the so-called Mission Simulation Test (MST) under simulated space conditions, by parallel exposure of samples to simulated space parameters according to flight data received by telemetry. Finally the facilities also provide the possibility to simulate the surface and climate conditions of the planet Mars. In this way they offer the possibility to investigate under simulated Mars conditions the chances for development of life on Mars and to gain previous knowledge for the search for life on today's Mars and in this context especially the parameters for a manned mission to Mars. References [1] Rabbow E, Rettberg P, Panitz C, Drescher J, Horneck G, Reitz G (2005) SSIOUX - Space Simulation for Investigating Organics, Evolution and Exobiology, Adv. Space Res. 36 (2) 297-302, doi:10.1016/j.asr.2005.08.040Aman, A. and Bman, B. (1997) JGR, 90,1151-1154. [2] Fekete A, Modos K, Hegedüs M, Kovacs G, Ronto Gy, Peter A, Lammer H, Panitz C (2005) DNA Damage under simulated extraterrestrial conditions in bacteriophage T7 Adv. Space Res. 305-310Aman, A. et al. (1997) Meteoritics & Planet. Sci., 32,A74. [3] Cockell Ch, Schuerger AC, Billi D., Friedmann EI, Panitz C (2005) Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029, Astrobiology, 5/2 127-140Aman, A. (1996) LPS XXVII, 1344-1 [4] de la Torre Noetzel, R.; Sancho, L.G.; Pintado,A.; Rettberg, Petra; Rabbow, Elke; Panitz,Corinna; Deutschmann, U.; Reina, M.; Horneck, Gerda (2007): BIOPAN experiment LICHENS on the Foton M2 mission Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. COSPAR [Hrsg.]: Advances in Space Research, 40, Elsevier, S. 1665 - 1671, DOI 10.1016/j.asr.2007.02.022

  19. Implementation and simulation of a cone dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Wang, Huaming; Zhu, Jianying

    2008-11-01

    The purpose is to investigate the performance of cone dielectric elastomer actuator (DEA) by experiment and FEM simulation. Two working equilibrium positions of cone DEA, which correspond to its initial displacement and displacement output with voltage off and on respectively, are determined through the analysis on its working principle. Experiments show that analytical results accord with experimental ones, and work output in a workcycle is hereby calculated. Actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. Also, FEM simulation is used to obtain the movement of cone DEA in advance. Simulation results agree well with experimental ones and prove the feasibility of simulation. Also, causes for small difference between them in displacement output are analyzed.

  20. Scalability Test of Multiscale Fluid-Platelet Model for Three Top Supercomputers

    PubMed Central

    Zhang, Peng; Zhang, Na; Gao, Chao; Zhang, Li; Gao, Yuxiang; Deng, Yuefan; Bluestein, Danny

    2016-01-01

    We have tested the scalability of three supercomputers: the Tianhe-2, Stampede and CS-Storm with multiscale fluid-platelet simulations, in which a highly-resolved and efficient numerical model for nanoscale biophysics of platelets in microscale viscous biofluids is considered. Three experiments involving varying problem sizes were performed: Exp-S: 680,718-particle single-platelet; Exp-M: 2,722,872-particle 4-platelet; and Exp-L: 10,891,488-particle 16-platelet. Our implementations of multiple time-stepping (MTS) algorithm improved the performance of single time-stepping (STS) in all experiments. Using MTS, our model achieved the following simulation rates: 12.5, 25.0, 35.5 μs/day for Exp-S and 9.09, 6.25, 14.29 μs/day for Exp-M on Tianhe-2, CS-Storm 16-K80 and Stampede K20. The best rate for Exp-L was 6.25 μs/day for Stampede. Utilizing current advanced HPC resources, the simulation rates achieved by our algorithms bring within reach performing complex multiscale simulations for solving vexing problems at the interface of biology and engineering, such as thrombosis in blood flow which combines millisecond-scale hematology with microscale blood flow at resolutions of micro-to-nanoscale cellular components of platelets. This study of testing the performance characteristics of supercomputers with advanced computational algorithms that offer optimal trade-off to achieve enhanced computational performance serves to demonstrate that such simulations are feasible with currently available HPC resources. PMID:27570250

  1. AMPS data management requirements study. [user manuals (computer programs)/display devices - computerized simulation/experimentation/ionosphere

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A data simulation is presented for instruments and associated control and display functions required to perform controlled active experiments of the atmosphere. A comprehensive user's guide is given for the data requirements and software developed for the following experiments: (1) electromagnetic wave transmission; (2) passive observation of ambient plasmas; (3) ionospheric measurements with a subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustic gravity waves in the sodium layer using lasers. A complete description of each experiment is given.

  2. NASA/ESA CV-990 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.

    1976-01-01

    Simplified techniques were applied to conduct an extensive spacelab simulation using the airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy. The mission was successful and provided extensive data relevant to spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for spacelab experiment operators; and schedule requirements to prepare for such a spacelab mission.

  3. Numerical modeling of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Tsang, C. F.; Doughty, C.; Kincaid, C. T.

    1982-12-01

    During 1981 and 1982, Auburn University has been performing a three cycle ATES field experiment in Mobile County, Alabama. Details of the experiment are described elsewhere in this volume. Concurrent with the first two cycles (59 C and 82 C), Lawrence Berkeley Laboratory (LBL) did numerical simulations based on field operating conditions to predict the outcome of each cycle before its conclusion. Prior to the third cycle, a series of numerical simulations were made to aid in the design of an experiment that would yield the highest recovery factor possible.

  4. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  5. The role of simulation in continuing medical education for acute care physicians: a systematic review.

    PubMed

    Khanduja, P Kristina; Bould, M Dylan; Naik, Viren N; Hladkowicz, Emily; Boet, Sylvain

    2015-01-01

    We systematically reviewed the effectiveness of simulation-based education, targeting independently practicing qualified physicians in acute care specialties. We also describe how simulation is used for performance assessment in this population. Data source included: DataMEDLINE, Embase, Cochrane Database of Systematic Reviews, Cochrane CENTRAL Database of Controlled Trials, and National Health Service Economic Evaluation Database. The last date of search was January 31, 2013. All original research describing simulation-based education for independently practicing physicians in anesthesiology, critical care, and emergency medicine was reviewed. Data analysis was performed in duplicate with further review by a third author in cases of disagreement until consensus was reached. Data extraction was focused on effectiveness according to Kirkpatrick's model. For simulation-based performance assessment, tool characteristics and sources of validity evidence were also collated. Of 39 studies identified, 30 studies focused on the effectiveness of simulation-based education and nine studies evaluated the validity of simulation-based assessment. Thirteen studies (30%) targeted the lower levels of Kirkpatrick's hierarchy with reliance on self-reporting. Simulation was unanimously described as a positive learning experience with perceived impact on clinical practice. Of the 17 remaining studies, 10 used a single group or "no intervention comparison group" design. The majority (n = 17; 44%) were able to demonstrate both immediate and sustained improvements in educational outcomes. Nine studies reported the psychometric properties of simulation-based performance assessment as their sole objective. These predominantly recruited independent practitioners as a convenience sample to establish whether the tool could discriminate between experienced and inexperienced operators and concentrated on a single aspect of validity evidence. Simulation is perceived as a positive learning experience with limited evidence to support improved learning. Future research should focus on the optimal modality and frequency of exposure, quality of assessment tools and on the impact of simulation-based education beyond the individuals toward improved patient care.

  6. Design Optimization of a Thermoelectric Cooling Module Using Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Abid, Muhammad; Somdalen, Ragnar; Rodrigo, Marina Sancho

    2018-05-01

    The thermoelectric industry is concerned about the size reduction, cooling performance and, ultimately, the production cost of thermoelectric modules. Optimization of the size and performance of a commercially available thermoelectric cooling module is considered using finite element simulations. Numerical simulations are performed on eight different three-dimensional geometries of a single thermocouple, and the results are further extended for a whole module as well. The maximum temperature rise at the hot and cold sides of a thermocouple is determined by altering its height and cross-sectional area. The influence of the soldering layer is analyzed numerically using temperature dependent and temperature independent thermoelectric properties of the solder material and the semiconductor pellets. Experiments are conducted to test the cooling performance of the thermoelectric module and the results are compared with the results obtained through simulations. Finally, cooling rate and maximum coefficient of performance (COPmax) are computed using convective and non-convective boundary conditions.

  7. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges.

    PubMed

    Ernst, Marielle; Kriston, Levente; Romero, Javier M; Frölich, Andreas M; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time.

  8. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  9. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    DOE PAGES

    Le, Ari Yitzchak; Kwan, Thomas J. T.; Schmitt, Mark J.; ...

    2016-10-24

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Finally, diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  10. Methodology and application of high performance electrostatic field simulation in the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Corona, Thomas

    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to make a direct, model independent measurement of the electron neutrino mass. The experimental apparatus employs strong ( O[T]) magnetostatic and (O[10 5 V/m]) electrostatic fields in regions of ultra high (O[10-11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near the endpoint of tritium beta-decay. The electrostatic fields in KATRIN are formed by multiscale electrode geometries, necessitating the development of high performance field simulation software. To this end, we present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We describe an implementation of these techniques for high performance computing environments in the software KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application of KEMField and KGeoBag to KATRIN's spectrometer and detector sections, and demonstrate its use in furthering several of KATRIN's scientific goals. Finally, we present the results of a measurement designed to probe the electrostatic profile of KATRIN's main spectrometer in comparison to simulated results.

  11. Pharmacy practice simulations: performance of senior pharmacy students at a University in southern Brazil

    PubMed Central

    Galato, Dayani; Alano, Graziela M.; Trauthman, Silvana C.; França, Tainã F.

    Objective A simulation process known as objective structured clinical examination (OSCE) was applied to assess pharmacy practice performed by senior pharmacy students. Methods A cross-sectional study was conducted based on documentary analysis of performance evaluation records of pharmacy practice simulations that occurred between 2005 and 2009. These simulations were related to the process of self-medication and dispensing, and were performed with the use of patients simulated. The simulations were filmed to facilitate the evaluation process. It presents the OSCE educational experience performed by pharmacy trainees of the University of Southern Santa Catarina and experienced by two evaluators. The student general performance was analyzed, and the criteria for pharmacy practice assessment often identified trainees in difficulty. Results The results of 291 simulations showed that students have an average yield performance of 70.0%. Several difficulties were encountered, such as the lack of information about the selected/prescribed treatment regimen (65.1%); inadequate communication style (21.9%); lack of identification of patients’ needs (7.7%) and inappropriate drug selection for self-medication (5.3%). Conclusions These data show that there is a need for reorientation of clinical pharmacy students because they need to improve their communication skills, and have a deeper knowledge of medicines and health problems in order to properly orient their patients. PMID:24367467

  12. Teaching emergency medical services management skills using a computer simulation exercise.

    PubMed

    Hubble, Michael W; Richards, Michael E; Wilfong, Denise

    2011-02-01

    Simulation exercises have long been used to teach management skills in business schools. However, this pedagogical approach has not been reported in emergency medical services (EMS) management education. We sought to develop, deploy, and evaluate a computerized simulation exercise for teaching EMS management skills. Using historical data, a computer simulation model of a regional EMS system was developed. After validation, the simulation was used in an EMS management course. Using historical operational and financial data of the EMS system under study, students designed an EMS system and prepared a budget based on their design. The design of each group was entered into the model that simulated the performance of the EMS system. Students were evaluated on operational and financial performance of their system design and budget accuracy and then surveyed about their experiences with the exercise. The model accurately simulated the performance of the real-world EMS system on which it was based. The exercise helped students identify operational inefficiencies in their system designs and highlighted budget inaccuracies. Most students rated the exercise as moderately or very realistic in ambulance deployment scheduling, budgeting, personnel cost calculations, demand forecasting, system design, and revenue projections. All students indicated the exercise was helpful in gaining a top management perspective, and 89% stated the exercise was helpful in bridging the gap between theory and reality. Preliminary experience with a computer simulator to teach EMS management skills was well received by students in a baccalaureate paramedic program and seems to be a valuable teaching tool. Copyright © 2011 Society for Simulation in Healthcare

  13. Gender and speaker identification as a function of the number of channels in spectrally reduced speech

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julio; Oliver, Juan C.

    2005-07-01

    Considerable research on speech intelligibility for cochlear-implant users has been conducted using acoustic simulations with normal-hearing subjects. However, some relevant topics about perception through cochlear implants remain scantly explored. The present study examined the perception by normal-hearing subjects of gender and identity of a talker as a function of the number of channels in spectrally reduced speech. Two simulation strategies were compared. They were implemented by two different processors that presented signals as either the sum of sine waves at the center of the channels or as the sum of noise bands. In Experiment 1, 15 subjects determined the gender of 40 talkers (20 males + 20 females) from a natural utterance processed through 3, 4, 5, 6, 8, 10, 12, and 16 channels with both processors. In Experiment 2, 56 subjects matched a natural sentence uttered by 10 talkers with the corresponding simulation replicas processed through 3, 4, 8, and 16 channels for each processor. In Experiment 3, 72 subjects performed the same task but different sentences were used for natural and processed stimuli. A control Experiment 4 was conducted to equate the processing steps between the two simulation strategies. Results showed that gender and talker identification was better for the sine-wave processor, and that performance through the noise-band processor was more sensitive to the number of channels. Implications and possible explanations for the superiority of sine-wave simulations are discussed.

  14. One-dimensional soil temperature assimilation experiment based on unscented particle filter and Common Land Model

    NASA Astrophysics Data System (ADS)

    Fu, Xiao Lei; Jin, Bao Ming; Jiang, Xiao Lei; Chen, Cheng

    2018-06-01

    Data assimilation is an efficient way to improve the simulation/prediction accuracy in many fields of geosciences especially in meteorological and hydrological applications. This study takes unscented particle filter (UPF) as an example to test its performance at different two probability distribution, Gaussian and Uniform distributions with two different assimilation frequencies experiments (1) assimilating hourly in situ soil surface temperature, (2) assimilating the original Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) once per day. The numerical experiment results show that the filter performs better when increasing the assimilation frequency. In addition, UPF is efficient for improving the soil variables (e.g., soil temperature) simulation/prediction accuracy, though it is not sensitive to the probability distribution for observation error in soil temperature assimilation.

  15. On krypton-doped capsule implosion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Ma, T.; Nora, R.; Barrios, M. A.; Scott, H. A.; Schneider, M. B.; Berzak Hopkins, L.; Casey, D. T.; Hammel, B. A.; Jarrott, L. C.; Landen, O. L.; Patel, P. K.; Rosenberg, M. J.; Spears, B. K.

    2017-07-01

    This paper presents the spectroscopic aspects of using Krypton as a dopant in NIF capsule implosions through simulation studies and the first set of NIF experiments. Using a combination of 2D hohlraum and 1D capsule simulations with comprehensive spectroscopic modeling, the calculations focused on the effect of dopant concentration on the implosion, and the impact of gradients in the electron density and temperature to the Kr line features and plasma opacity. Experimental data were obtained from three NIF Kr-dopant experiments, performed with varying Kr dopant concentrations between 0.01% and 0.03%. The implosion performance, hotspot images, and detailed Kr spectral analysis are summarized relative to the predictions. Data show that fuel-dopant spectroscopy can serve as a powerful and viable diagnostic for inertial confinement fusion implosions.

  16. Skylab fluid mechanics simulations: Oscillation, rotation, collision and coalescence of water droplets under low-gravity environment

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.; Hung, R. J.

    1975-01-01

    Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.

  17. Effects of simulated acid rain on microbial characteristics in a lateritic red soil

    Treesearch

    Hua-qin Xu; Jia-en Zhang; Ying Ouyang; Ling Lin; Guo-ming Quan; Ben-liang Zhao; Jia-yu Yu

    2015-01-01

    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control...

  18. Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows

    DTIC Science & Technology

    2013-01-01

    experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets for the proposed muon collider...validated through the comparison with experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets...FronTier-MHD code have been performed using experimental and theoretical studies of liquid mercury jets in magnetic fields. Experimental studies of a

  19. Grounded Learning Experience: Helping Students Learn Physics through Visuo-Haptic Priming and Instruction

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chieh Douglas

    In this dissertation, I investigate the effects of a grounded learning experience on college students' mental models of physics systems. The grounded learning experience consisted of a priming stage and an instruction stage, and within each stage, one of two different types of visuo-haptic representation was applied: visuo-gestural simulation (visual modality and gestures) and visuo-haptic simulation (visual modality, gestures, and somatosensory information). A pilot study involving N = 23 college students examined how using different types of visuo-haptic representation in instruction affected people's mental model construction for physics systems. Participants' abilities to construct mental models were operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Findings from this pilot study revealed that, while both simulations significantly improved participants' mental modal construction for physics systems, visuo-haptic simulation was significantly better than visuo-gestural simulation. In addition, clinical interviews suggested that participants' mental model construction for physics systems benefited from receiving visuo-haptic simulation in a tutorial prior to the instruction stage. A dissertation study involving N = 96 college students examined how types of visuo-haptic representation in different applications support participants' mental model construction for physics systems. Participant's abilities to construct mental models were again operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Participants' physics misconceptions were also measured before and after the grounded learning experience. Findings from this dissertation study not only revealed that visuo-haptic simulation was significantly more effective in promoting mental model construction and remedying participants' physics misconceptions than visuo-gestural simulation, they also revealed that visuo-haptic simulation was more effective during the priming stage than during the instruction stage. Interestingly, the effects of visuo-haptic simulation in priming and visuo-haptic simulation in instruction on participants' pretest-to-posttest gain scores for a basic physics system appeared additive. These results suggested that visuo-haptic simulation is effective in physics learning, especially when it is used during the priming stage.

  20. Simulation-based Assessment of the Management of Critical Events by Board-certified Anesthesiologists.

    PubMed

    Weinger, Matthew B; Banerjee, Arna; Burden, Amanda R; McIvor, William R; Boulet, John; Cooper, Jeffrey B; Steadman, Randolph; Shotwell, Matthew S; Slagle, Jason M; DeMaria, Samuel; Torsher, Laurence; Sinz, Elizabeth; Levine, Adam I; Rask, John; Davis, Fred; Park, Christine; Gaba, David M

    2017-09-01

    We sought to determine whether mannequin-based simulation can reliably characterize how board-certified anesthesiologists manage simulated medical emergencies. Our primary focus was to identify gaps in performance and to establish psychometric properties of the assessment methods. A total of 263 consenting board-certified anesthesiologists participating in existing simulation-based maintenance of certification courses at one of eight simulation centers were video recorded performing simulated emergency scenarios. Each participated in two 20-min, standardized, high-fidelity simulated medical crisis scenarios, once each as primary anesthesiologist and first responder. Via a Delphi technique, an independent panel of expert anesthesiologists identified critical performance elements for each scenario. Trained, blinded anesthesiologists rated video recordings using standardized rating tools. Measures included the percentage of critical performance elements observed and holistic (one to nine ordinal scale) ratings of participant's technical and nontechnical performance. Raters also judged whether the performance was at a level expected of a board-certified anesthesiologist. Rater reliability for most measures was good. In 284 simulated emergencies, participants were rated as successfully completing 81% (interquartile range, 75 to 90%) of the critical performance elements. The median rating of both technical and nontechnical holistic performance was five, distributed across the nine-point scale. Approximately one-quarter of participants received low holistic ratings (i.e., three or less). Higher-rated performances were associated with younger age but not with previous simulation experience or other individual characteristics. Calling for help was associated with better individual and team performance. Standardized simulation-based assessment identified performance gaps informing opportunities for improvement. If a substantial proportion of experienced anesthesiologists struggle with managing medical emergencies, continuing medical education activities should be reevaluated.

  1. Inter-Disciplinary Collaboration in Support of the Post-Standby TREAT Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Mark; Baker, Benjamin; Ortensi, Javier

    Although analysis methods have advanced significantly in the last two decades, high fidelity multi- physics methods for reactors systems have been under development for only a few years and are not presently mature nor deployed. Furthermore, very few methods provide the ability to simulate rapid transients in three dimensions. Data for validation of advanced time-dependent multi- physics is sparse; at TREAT, historical data were not collected for the purpose of validating three-dimensional methods, let alone multi-physics simulations. Existing data continues to be collected to attempt to simulate the behavior of experiments and calibration transients, but it will be insufficient formore » the complete validation of analysis methods used for TREAT transient simulations. Hence, a 2018 restart will most likely occur without the direct application of advanced modeling and simulation methods. At present, the current INL modeling and simulation team plans to work with TREAT operations staff in performing reactor simulations with MAMMOTH, in parallel with the software packages currently being used in preparation for core restart (e.g., MCNP5, RELAP5, ABAQUS). The TREAT team has also requested specific measurements to be performed during startup testing, currently scheduled to run from February to August of 2018. These startup measurements will be crucial in validating the new analysis methods in preparation for ultimate application for TREAT operations and experiment design. This document describes the collaboration between modeling and simulation staff and restart, operations, instrumentation and experiment development teams to be able to effectively interact and achieve successful validation work during restart testing.« less

  2. A control method for bilateral teleoperating systems

    NASA Astrophysics Data System (ADS)

    Strassberg, Yesayahu

    1992-01-01

    The thesis focuses on control of bilateral master-slave teleoperators. The bilateral control issue of teleoperators is studied and a new scheme that overcomes basic unsolved problems is proposed. A performance measure, based on the multiport modeling method, is introduced in order to evaluate and understand the limitations of earlier published bilateral control laws. Based on the study evaluating the different methods, the objective of the thesis is stated. The proposed control law is then introduced, its ideal performance is demonstrated, and conditions for stability and robustness are derived. It is shown that stability, desired performance, and robustness can be obtained under the assumption that the deviation of the model from the actual system satisfies certain norm inequalities and the measurement uncertainties are bounded. The proposed scheme is validated by numerical simulation. The simulated system is based on the configuration of the RAL (Robotics and Automation Laboratory) telerobot. From the simulation results it is shown that good tracking performance can be obtained. In order to verify the performance of the proposed scheme when applied to a real hardware system, an experimental setup of a three degree of freedom master-slave teleoperator (i.e. three degree of freedom master and three degree of freedom slave robot) was built. Three basic experiments were conducted to verify the performance of the proposed control scheme. The first experiment verified the master control law and its contribution to the robustness and performance of the entire system. The second experiment demonstrated the actual performance of the system while performing a free motion teleoperating task. From the experimental results, it is shown that the control law has good performance and is robust to uncertainties in the models of the master and slave.

  3. Simulations of material mixing in laser-driven reshock experiments

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.

    2013-02-01

    We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications.

  4. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    NASA Astrophysics Data System (ADS)

    Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto

    2014-10-01

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concrete biological models.

  5. Optimum Design of Anti-Siphon Device used to Prevent Cerebrospinal Fluid from Overdraining

    NASA Astrophysics Data System (ADS)

    Jang, Jong Yun; Lee, Chong Sun; Suh, Chang Min

    The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.

  6. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-04-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.

  7. Economical graphics display system for flight simulation avionics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.

  8. High-resolution, detailed simulations of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, Daniel

    2015-11-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3-D) character of the flow, accurately modeling NIF implosions remains at the edge of current radiation hydrodynamics simulation capabilities. This talk describes the current state of progress of 3-D, high-resolution, capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Most importantly, it is found that a single, standard simulation methodology appears adequate to model both implosion types and gives confidence that such a model can be used to guide future implosion designs toward ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Searching for Organics During the Robotic Mars Analog Rio Tinto Drilling Experiment: Ground Truth and Contamination Issues

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Stoker, C. R.; Marte Project Science Team

    2007-03-01

    The Mars Analog Rio Tinto Experiment (MARTE) performed a simulation of a Mars drilling experiment at the Rio Tinto (Spain). Ground-truth and contamination issues during the distribution of bulk organics and their CN isotopic composition in hematite and go

  10. Surgical simulators in cataract surgery training.

    PubMed

    Sikder, Shameema; Tuwairqi, Khaled; Al-Kahtani, Eman; Myers, William G; Banerjee, Pat

    2014-02-01

    Virtual simulators have been widely implemented in medical and surgical training, including ophthalmology. The increasing number of published articles in this field mandates a review of the available results to assess current technology and explore future opportunities. A PubMed search was conducted and a total of 10 articles were reviewed. Virtual simulators have shown construct validity in many modules, successfully differentiating user experience levels during simulated phacoemulsification surgery. Simulators have also shown improvements in wet-lab performance. The implementation of simulators in the residency training has been associated with a decrease in cataract surgery complication rates. Virtual reality simulators are an effective tool in measuring performance and differentiating trainee skill level. Additionally, they may be useful in improving surgical skill and patient outcomes in cataract surgery. Future opportunities rely on taking advantage of technical improvements in simulators for education and research.

  11. CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests

    NASA Technical Reports Server (NTRS)

    Brock, Joseph; Stern, Eric; Wilder, Michael

    2017-01-01

    A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.

  12. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  13. Filament winding technique, experiment and simulation analysis on tubular structure

    NASA Astrophysics Data System (ADS)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  14. Road characteristics and driver fatigue: a simulator study.

    PubMed

    Oron-Gilad, Tal; Ronen, Adi

    2007-09-01

    Two experiments examined the influence of road characteristics on driver fatigue in a prolonged simulator drive. In experiment one, ten military truck drivers drove a mixed route, with straight, winding, and straight highway segments. In experiment two, 16 additional drivers drove either a straight, a winding, or a mixed route. Fatigue symptoms were assessed using performance, subjective, and psychophysiological measures (HRV). We hypothesized that drivers adopt different fatigue-coping strategies relative to the demands of the drive. Thus, on straight roads drivers are more likely to loosen their driving demands by either increasing their driving speed and/or not maintaining the lane position, as the road is tolerant to both strategies, whereas on winding roads, drivers are more likely to increase their speed but not their lane positioning. Our results confirm that decremental changes in driving performance varied among road types. In the straight road components, we found decrements in the quality of lane maintaining (experiment one) and steering quality (experiments one and two) and longitudinal speed (experiment two). In the winding road, we found that drivers increased their driving speed over time (experiments one and two).

  15. Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Scudeler, Carlotta; Pangle, Luke; Pasetto, Damiano; Niu, Guo-Yue; Volkmann, Till; Paniconi, Claudio; Putti, Mario; Troch, Peter

    2016-10-01

    This paper explores the challenges of model parameterization and process representation when simulating multiple hydrologic responses from a highly controlled unsaturated flow and transport experiment with a physically based model. The experiment, conducted at the Landscape Evolution Observatory (LEO), involved alternate injections of water and deuterium-enriched water into an initially very dry hillslope. The multivariate observations included point measures of water content and tracer concentration in the soil, total storage within the hillslope, and integrated fluxes of water and tracer through the seepage face. The simulations were performed with a three-dimensional finite element model that solves the Richards and advection-dispersion equations. Integrated flow, integrated transport, distributed flow, and distributed transport responses were successively analyzed, with parameterization choices at each step supported by standard model performance metrics. In the first steps of our analysis, where seepage face flow, water storage, and average concentration at the seepage face were the target responses, an adequate match between measured and simulated variables was obtained using a simple parameterization consistent with that from a prior flow-only experiment at LEO. When passing to the distributed responses, it was necessary to introduce complexity to additional soil hydraulic parameters to obtain an adequate match for the point-scale flow response. This also improved the match against point measures of tracer concentration, although model performance here was considerably poorer. This suggests that still greater complexity is needed in the model parameterization, or that there may be gaps in process representation for simulating solute transport phenomena in very dry soils.

  16. Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Brodeck, M.; Alvarez, F.; Arbe, A.; Juranyi, F.; Unruh, T.; Holderer, O.; Colmenero, J.; Richter, D.

    2009-03-01

    We performed quasielastic neutron scattering experiments and atomistic molecular dynamics simulations on a poly(ethylene oxide) (PEO) homopolymer system above the melting point. The excellent agreement found between both sets of data, together with a successful comparison with literature diffraction results, validates the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field used to produce our dynamic runs and gives support to their further analysis. This provided direct information on magnitudes which are not accessible from experiments such as the radial probability distribution functions of specific atoms at different times and their moments. The results of our simulations on the H-motions and different experiments indicate that in the high-temperature range investigated the dynamics is Rouse-like for Q-values below ≈0.6 Å-1. We then addressed the single chain dynamic structure factor with the simulations. A mode analysis, not possible directly experimentally, reveals the limits of applicability of the Rouse model to PEO. We discuss the possible origins for the observed deviations.

  17. Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments.

    PubMed

    Brodeck, M; Alvarez, F; Arbe, A; Juranyi, F; Unruh, T; Holderer, O; Colmenero, J; Richter, D

    2009-03-07

    We performed quasielastic neutron scattering experiments and atomistic molecular dynamics simulations on a poly(ethylene oxide) (PEO) homopolymer system above the melting point. The excellent agreement found between both sets of data, together with a successful comparison with literature diffraction results, validates the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field used to produce our dynamic runs and gives support to their further analysis. This provided direct information on magnitudes which are not accessible from experiments such as the radial probability distribution functions of specific atoms at different times and their moments. The results of our simulations on the H-motions and different experiments indicate that in the high-temperature range investigated the dynamics is Rouse-like for Q-values below approximately 0.6 A(-1). We then addressed the single chain dynamic structure factor with the simulations. A mode analysis, not possible directly experimentally, reveals the limits of applicability of the Rouse model to PEO. We discuss the possible origins for the observed deviations.

  18. How consistent are precipitation patterns predicted by GCMs in the absence of cloud radiative effects?

    NASA Astrophysics Data System (ADS)

    Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn

    2015-04-01

    Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054

  19. Team Training and Retention of Skills Acquired Above Real Time Training on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Ali, Syed Friasat; Guckenberger, Dutch; Crane, Peter; Rossi, Marcia; Williams, Mayard; Williams, Jason; Archer, Matt

    2000-01-01

    Above Real-Time Training (ARTT) is the training acquired on a real time simulator when it is modified to present events at a faster pace than normal. The experiments related to training of pilots performed by NASA engineers (Kolf in 1973, Hoey in 1976) and others (Guckenberger, Crane and their associates in the nineties) have shown that in comparison with the real time training (RTT), ARTT provides the following benefits: increased rate of skill acquisition, reduced simulator and aircraft training time, and more effective training for emergency procedures. Two sets of experiments have been performed; they are reported in professional conferences and the respective papers are included in this report. The retention of effects of ARTT has been studied in the first set of experiments and the use of ARTT as top-off training has been examined in the second set of experiments. In ARTT, the pace of events was 1.5 times the pace in RTT. In both sets of experiments, university students were trained to perform an aerial gunnery task. The training unit was equipped with a joystick and a throttle. The student acted as a nose gunner in a hypothetical two place attack aircraft. The flight simulation software was installed on a Universal Distributed Interactive Simulator platform supplied by ECC International of Orlando, Florida. In the first set of experiments, two training programs RTT or ART7 were used. Students were then tested in real time on more demanding scenarios: either immediately after training or two days later. The effects of ARTT did not decrease over a two day retention interval and ARTT was more time efficient than real time training. Therefore, equal test performance could be achieved with less clock-time spent in the simulator. In the second set of experiments three training programs RTT or ARTT or RARTT, were used. In RTT, students received 36 minutes of real time training. In ARTT, students received 36 minutes of above real time training. In RARTT, students received 18 minutes of real time training and 18 minutes of above real time training as top-off training. Students were then tested in real time on more demanding scenarios. The use of ARTT as top-off training after RTT offered better training than RTT alone or ARTT alone. It is, however, suggested that a similar experiment be conducted on a relatively more complex task with a larger sample of participants. Within the proposed duration of the research effort, the setting up of experiments and trial runs on using ARTT for team training were also scheduled but they could not be accomplished due to extra ordinary challenges faced in developing the required software configuration. Team training is, however, scheduled in a future study sponsored by NASA at Tuskegee University.

  20. Pilot In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Murdoch, Jennifer L.; Chamberlain, James P.; Chartrand, Ryan; Jones, Kenneth M.

    2008-01-01

    A Human-In-The-Loop experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to investigate the viability of the In-Trail Procedure (ITP) concept from a flight crew perspective, by placing participating airline pilots in a simulated oceanic flight environment. The test subject pilots used new onboard avionics equipment that provided improved information about nearby traffic and enabled them, when specific criteria were met, to request an ITP flight level change referencing one or two nearby aircraft that might otherwise block the flight level change. The subject pilots subjective assessments of ITP validity and acceptability were measured via questionnaires and discussions, and their objective performance in appropriately selecting, requesting, and performing ITP flight level changes was evaluated for each simulated flight scenario. Objective performance and subjective workload assessment data from the experiment s test conditions were analyzed for statistical and operational significance and are reported in the paper. Based on these results, suggestions are made to further improve the ITP.

  1. The MSFC UNIVAC 1108 EXEC 8 simulation model

    NASA Technical Reports Server (NTRS)

    Williams, T. G.; Richards, F. M.; Weatherbee, J. E.; Paul, L. K.

    1972-01-01

    A model is presented which simulates the MSFC Univac 1108 multiprocessor system. The hardware/operating system is described to enable a good statistical measurement of the system behavior. The performance of the 1108 is evaluated by performing twenty-four different experiments designed to locate system bottlenecks and also to test the sensitivity of system throughput with respect to perturbation of the various Exec 8 scheduling algorithms. The model is implemented in the general purpose system simulation language and the techniques described can be used to assist in the design, development, and evaluation of multiprocessor systems.

  2. Computer simulations of space-borne meteorological systems on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Halem, M.

    1984-01-01

    Because of the extreme expense involved in developing and flight testing meteorological instruments, an extensive series of numerical modeling experiments to simulate the performance of meteorological observing systems were performed on CYBER 205. The studies compare the relative importance of different global measurements of individual and composite systems of the meteorological variables needed to determine the state of the atmosphere. The assessments are made in terms of the systems ability to improve 12 hour global forecasts. Each experiment involves the daily assimilation of simulated data that is obtained from a data set called nature. This data is obtained from two sources: first, a long two-month general circulation integration with the GLAS 4th Order Forecast Model and second, global analysis prepared by the National Meteorological Center, NOAA, from the current observing systems twice daily.

  3. Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Malsbury, T.; Atencio, A., Jr.

    1992-01-01

    A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.

  4. Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions

    DOE PAGES

    Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence; ...

    2018-02-02

    The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.

  5. Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence

    The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.

  6. Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions

    NASA Astrophysics Data System (ADS)

    Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence; Thurston, George M.; Vega, Michael; Gaillard, Elizabeth; Narayanan, Suresh; Sandy, Alec; Zhang, Qingteng; Dufresne, Eric M.; Foffi, Giuseppe; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Szczygiel, Robert

    2018-02-01

    The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f (q ,τ ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.

  7. Mixed reality ventriculostomy simulation: experience in neurosurgical residency.

    PubMed

    Hooten, Kristopher G; Lister, J Richard; Lombard, Gwen; Lizdas, David E; Lampotang, Samsun; Rajon, Didier A; Bova, Frank; Murad, Gregory J A

    2014-12-01

    Medicine and surgery are turning toward simulation to improve on limited patient interaction during residency training. Many simulators today use virtual reality with augmented haptic feedback with little to no physical elements. In a collaborative effort, the University of Florida Department of Neurosurgery and the Center for Safety, Simulation & Advanced Learning Technologies created a novel "mixed" physical and virtual simulator to mimic the ventriculostomy procedure. The simulator contains all the physical components encountered for the procedure with superimposed 3-D virtual elements for the neuroanatomical structures. To introduce the ventriculostomy simulator and its validation as a necessary training tool in neurosurgical residency. We tested the simulator in more than 260 residents. An algorithm combining time and accuracy was used to grade performance. Voluntary postperformance surveys were used to evaluate the experience. Results demonstrate that more experienced residents have statistically significant better scores and completed the procedure in less time than inexperienced residents. Survey results revealed that most residents agreed that practice on the simulator would help with future ventriculostomies. This mixed reality simulator provides a real-life experience, and will be an instrumental tool in training the next generation of neurosurgeons. We have now implemented a standard where incoming residents must prove efficiency and skill on the simulator before their first interaction with a patient.

  8. Effects of initial iron corrosion rate on long-term performance of iron permeable reactive barriers: column experiments and numerical simulation.

    PubMed

    suk O, Jin; Jeen, Sung-Wook; Gillham, Robert W; Gui, Lai

    2009-01-26

    Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from evolution of geochemical conditions should be considered in the design of iron PRBs.

  9. Argonne Bubble Experiment Thermal Model Development III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Cynthia Eileen

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less

  10. Numerical Study of Particle Damping Mechanism in Piston Vibration System via Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Ming; Shah, Binoy; Keer, Leon; Wang, Jane; Snurr, Randall

    2008-03-01

    Mechanical damping systems with granular particles as the damping media have promising applications in extreme temperature conditions. In particle-based damping systems, the mechanical energy is dissipated through the inelastic collision and friction of particles. In the past, many experiments have been performed to investigate the particle damping problems. However, the detailed energy dissipation mechanism is still unclear due to the complex collision and flow behavior of dense particles. In this work, we use 3-D particle dynamics simulation to investigate the damping mechanism of an oscillating cylinder piston immerged in millimeter-size steel particles. The time evolution of the energy dissipation through the friction and inelastic collision is accurately monitored during the damping process. The contribution from the particle-particle interaction and particle-wall interaction is also separated for investigation. The effects of moisture, surface roughness, and density of particles are carefully investigated in the simulation. The comparison between the numerical simulation and experiment is also performed. The simulation results can help us understand the particle damping mechanism and design the new generation of particle damping devices.

  11. Numerical Simulation of the Aircraft Wake Vortex Flowfield

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad

    2013-01-01

    The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.

  12. Monte Carlo source simulation technique for solution of interference reactions in INAA experiments: a preliminary report

    NASA Astrophysics Data System (ADS)

    Allaf, M. Athari; Shahriari, M.; Sohrabpour, M.

    2004-04-01

    A new method using Monte Carlo source simulation of interference reactions in neutron activation analysis experiments has been developed. The neutron spectrum at the sample location has been simulated using the Monte Carlo code MCNP and the contributions of different elements to produce a specified gamma line have been determined. The produced response matrix has been used to measure peak areas and the sample masses of the elements of interest. A number of benchmark experiments have been performed and the calculated results verified against known values. The good agreement obtained between the calculated and known values suggests that this technique may be useful for the elimination of interference reactions in neutron activation analysis.

  13. Comparison of simulation and experimental results for a gas puff nozzle on Ambiorix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnier, J-N.; Chevalier, J-M.; Dubroca, B.

    One of source term of Z-Pinch experiments is the gas puff density profile. In order to characterize the gas jet, an experiment based on interferometry has been performed. The first study was a point measurement (a section density profile) which led us to develop a global and instantaneous interferometry imaging method. In order to optimise the nozzle, we simulated the experiment with a flow calculation code (ARES). In this paper, the experimental results are compared with simulations. The different gas properties (He, Ne, Ar) and the flow duration lead us to take care, on the one hand, of the gasmore » viscosity, and on the other, of modifying the code for an instationary flow.« less

  14. Effects of incentives on psychosocial performances in simulated space-dwelling groups

    NASA Astrophysics Data System (ADS)

    Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Gasior, Eric D.; Spence, Kevin R.; Emurian, Henry H.

    Prior research with individually isolated 3-person crews in a distributed, interactive, planetary exploration simulation examined the effects of communication constraints and crew configuration changes on crew performance and psychosocial self-report measures. The present report extends these findings to a model of performance maintenance that operationalizes conditions under which disruptive affective responses by crew participants might be anticipated to emerge. Experiments evaluated the effects of changes in incentive conditions on crew performance and self-report measures in simulated space-dwelling groups. Crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crew performance effectiveness was unaffected by either positive or negative incentive conditions, while self-report measures were differentially affected—negative incentive conditions produced pronounced increases in negative self-report ratings and decreases in positive self-report ratings, while positive incentive conditions produced increased positive self-report ratings only. Thus, incentive conditions associated with simulated spaceflight missions can significantly affect psychosocial adaptation without compromising task performance effectiveness in trained and experienced crews.

  15. Limited value of haptics in virtual reality laparoscopic cholecystectomy training.

    PubMed

    Thompson, Jonathan R; Leonard, Anthony C; Doarn, Charles R; Roesch, Matt J; Broderick, Timothy J

    2011-04-01

    Haptics is an expensive addition to virtual reality (VR) simulators, and the added value to training has not been proven. This study evaluated the benefit of haptics in VR laparoscopic surgery training for novices. The Simbionix LapMentor II haptic VR simulator was used in the study. Randomly, 33 laparoscopic novice students were placed in one of three groups: control, haptics-trained, or nonhaptics-trained group. The control group performed nine basic laparoscopy tasks and four cholecystectomy procedural tasks one time with haptics engaged at the default setting. The haptics group was trained to proficiency in the basic tasks and then performed each of the procedural tasks one time with haptics engaged. The nonhaptics group used the same training protocol except that haptics was disengaged. The proficiency values used were previously published expert values. Each group was assessed in the performance of 10 laparoscopic cholecystectomies (alternating with and without haptics). Performance was measured via automatically collected simulator data. The three groups exhibited no differences in terms of sex, education level, hand dominance, video game experience, surgical experience, and nonsurgical simulator experience. The number of attempts required to reach proficiency did not differ between the haptics- and nonhaptics-training groups. The haptics and nonhaptics groups exhibited no difference in performance. Both training groups outperformed the control group in number of movements as well as path length of the left instrument. In addition, the nonhaptics group outperformed the control group in total time. Haptics does not improve the efficiency or effectiveness of LapMentor II VR laparoscopic surgery training. The limited benefit and the significant cost of haptics suggest that haptics should not be included routinely in VR laparoscopic surgery training.

  16. Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2017-01-01

    Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007

  17. The Barriers and Facilitators to Transfer of Ultrasound-Guided Central Venous Line Skills From Simulation to Practice: Exploring Perceptions of Learners and Supervisors.

    PubMed

    Mema, Briseida; Harris, Ilene

    2016-01-01

    PHENOMENON: Ultrasound-guided central venous line insertion is currently the standard of care. Randomized controlled trials and systematic reviews show that simulation is superior to apprenticeship training. The purpose of this study is to explore, from the perspectives of participants in a simulation-training program, the factors that help or hinder the transfer of skills from simulation to practice. Purposeful sampling was used to select and study the experience and perspective of novice fellows after they had completed simulation training and then performed ultrasound-guided central venous line in practice. Seven novice pediatric intensive care unit fellows and six supervising faculty in a university-affiliated academic center in a large urban city were recruited between September 2012 and January 2013. We conducted a qualitative study using semistructured interviews as our data source, employing a constructivist, grounded theory methodology. Both curricular and real-life factors influence the transfer of skills from simulation to practice and the overall performance of trainees. Clear instructions, the opportunity to practice to mastery, one-on-one observation with feedback, supervision, and further real-life experiences were perceived as factors that facilitated the transfer of skills. Concern for patient welfare, live trouble shooting, complexity of the intensive care unit environment, and the procedure itself were perceived as real-life factors that hindered the transfer of skills. Insights: As more studies confirm the superiority of simulation training versus apprenticeship training for initial student learning, the faculty should gain insight into factors that facilitate and hinder the transfer of skills from simulation to bedside settings and impact learners' performances. As simulation further augments clinical learning, efforts should be made to modify the curricular and bedside factors that facilitate transfer of skills from simulation to practice settings.

  18. Equation of state of mixtures: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, R. J.; Root, S.; Haill, T. A.; Schroen, D. G.; Mattsson, T. R.; Flicker, D. G.; Sandia National Laboratories Collaboration

    2011-06-01

    Mixtures of materials are expected to behave quite differently from their isolated constituents, particularly when the constituents atomic numbers differ significantly. To investigate the mixture behavior, we performed density functional theory (DFT) calculations on xenon/hydrogen, xenon/ethane, and platinum/hydrocarbon mixtures. In addition, we performed shock compression experiments on platinum-doped hydrocarbon foams up to 480 GPa using the Sandia Z-accelerator. Since the DFT simulations treat electrons and nuclei generically, simulations of pure and mix systems are expected to be of comparable accuracy. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. The role of de-mixing and the relative contributions of the enthalpy of mixing are explored. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Space Station Human Factors: Designing a Human-Robot Interface

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.

  20. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan-face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan-face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3- Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCP(sub avg), the circumferential distortion level at the engine fan-face.

  1. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R., Jr.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCPavg, the circumferential distortion level at the engine fan face.

  2. Production of continuous glass fiber using lunar simulant

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Curreri, Peter A.

    1991-01-01

    The processing parameters and mechanical properties of glass fibers pulled from simulated lunar basalt are tested. The simulant was prepared using a plasma technique. The composition is representative of a low titanium mare basalt (Apollo sample 10084). Lunar gravity experiments are to be performed utilizing parabolic aircraft free-fall maneuvers which yield 30 seconds of 1/6-g per maneuver.

  3. The Oxidation of Iron: Experiment, Simulation, and Analysis in Introductory Chemistry

    ERIC Educational Resources Information Center

    Schubert, Frederic E.

    2015-01-01

    In this exercise, an actual chemical reaction, oxidation of iron in air, is studied along with a related analogue simulation of that reaction. The rusting of steel wool is carried out as a class effort. The parallel simulation is performed by students working in small groups. The analogue for the reacting gas is a countable set of discrete marble…

  4. The Effect of Nursing Faculty Presence on Students' Level of Anxiety, Self-Confidence, and Clinical Performance during a Clinical Simulation Experience

    ERIC Educational Resources Information Center

    Horsley, Trisha Leann

    2012-01-01

    Nursing schools design their clinical simulation labs based upon faculty's perception of the optimal environment to meet the students' learning needs, other programs' success with integrating high-tech clinical simulation, and the funds available. No research has been conducted on nursing faculty presence during a summative evaluation. The…

  5. Discrepancy analysis of driving performance of taxi drivers and non-professional drivers for red-light running violation and crash avoidance at intersections.

    PubMed

    Wu, Jiawei; Yan, Xuedong; Radwan, Essam

    2016-06-01

    Due to comfort, convenience, and flexibility, taxis have become increasingly more prevalent in China, especially in large cities. However, many violations and road crashes that occurred frequently were related to taxi drivers. This study aimed to investigate differences in driving performance between taxi drivers and non-professional drivers from the perspectives of red-light running violation and potential crash involvement based on a driving simulation experiment. Two typical scenarios were established in a driving simulator, which includes the red-light running violation scenario and the crash avoidance scenario. There were 49 participants, including 23 taxi drivers (14 males and 9 females) and 26 non-professional drivers (13 males and 13 females) recruited for this experiment. The driving simulation experiment results indicated that non-professional drivers paid more attention to red-light running violations in comparison to taxi drivers who had a higher probability of red-light running violation. Furthermore, it was found that taxi drivers were more inclined to turn the steering wheel in an attempt to avoid a potential collision and non-professional drivers had more abrupt deceleration behaviors when facing a potential crash. Moreover, the experiment results showed that taxi drivers had a smaller crash rate compared to non-professional drivers and had a better performance in terms of crash avoidance at the intersection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Modified, Multi-patient Observed Simulated Handoff Experience (M-OSHE): Assessment and Feedback for Entering Residents on Handoff Performance.

    PubMed

    Gaffney, Sean; Farnan, Jeanne M; Hirsch, Kristen; McGinty, Michael; Arora, Vineet M

    2016-04-01

    Despite the identification of transfer of patient responsibility as a Core Entrustable Professional Activity for Entering Residency, rigorous methods to evaluate incoming residents' ability to give a verbal handoff of multiple patients are lacking. Our purpose was to implement a multi-patient, simulation-based curriculum to assess verbal handoff performance. Graduate Medical Education (GME) orientation at an urban, academic medical center. Eighty-four incoming residents from four residency programs participated in the study. The curriculum featured an online training module and a multi-patient observed simulated handoff experience (M-OSHE). Participants verbally "handed off" three mock patients of varying acuity and were evaluated by a trained "receiver" using an expert-informed, five-item checklist. Prior handoff experience in medical school was associated with higher checklist scores (23% none vs. 33% either third OR fourth year vs. 58% third AND fourth year, p = 0.021). Prior training was associated with prioritization of patients based on acuity (12% no training vs. 38% prior training, p = 0.014). All participants agreed that the M-OSHE realistically portrayed a clinical setting. The M-OSHE is a promising strategy for teaching and evaluating entering residents' ability to give verbal handoffs of multiple patients. Prior training and more handoff experience was associated with higher performance, which suggests that additional handoff training in medical school may be of benefit.

  7. Simulate what is measured: next steps towards predictive simulations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bussmann, Michael; Kluge, Thomas; Debus, Alexander; Hübl, Axel; Garten, Marco; Zacharias, Malte; Vorberger, Jan; Pausch, Richard; Widera, René; Schramm, Ulrich; Cowan, Thomas E.; Irman, Arie; Zeil, Karl; Kraus, Dominik

    2017-05-01

    Simulations of laser matter interaction at extreme intensities that have predictive power are nowadays in reach when considering codes that make optimum use of high performance compute architectures. Nevertheless, this is mostly true for very specific settings where model parameters are very well known from experiment and the underlying plasma dynamics is governed by Maxwell's equations solely. When including atomic effects, prepulse influences, radiation reaction and other physical phenomena things look different. Not only is it harder to evaluate the sensitivity of the simulation result on the variation of the various model parameters but numerical models are less well tested and their combination can lead to subtle side effects that influence the simulation outcome. We propose to make optimum use of future compute hardware to compute statistical and systematic errors rather than just find the mots optimum set of parameters fitting an experiment. This requires to include experimental uncertainties which is a challenge to current state of the art techniques. Moreover, it demands better comparison to experiments as inclusion of simulating the diagnostic's response becomes important. We strongly advocate the use of open standards for finding interoperability between codes for comparison studies, building complete tool chains for simulating laser matter experiments from start to end.

  8. Simulating Extraterrestrial Ices in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.

  9. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.

  10. Simulation of local convective rainfall over metropolitan area on 16 August 2015 using high resolution model

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Min, K. H.

    2017-12-01

    We investigated the ability of high-resolution numerical weather prediction (NWP) model (nested grid spacing at 500 m) in simulating convective precipitation event over the Seoul metropolitan area on 16 August 2015. Intense rainfall occurred from 0930 UTC to 1030 UTC and subsequent trailing precipitation lasted until 1400 UTC. The synoptic condition for the convective event was characterized by a large value of convective available potential energy (CAPE) at the outer edge of a meso-high pressure system. Observational analysis showed that triggering mechanism for convective rainfall was provided by the convergence of northeasterly wind which was driven by a cold pool in the northeastern Kyonggi province. The cold pool formed after heavy rain occurred in northeastern Kyonggi province at 0500UTC. Several experiments were performed in order to evaluate the sensitivity of different initial conditions (IC12, IC18, IC00, IC06) and the impact of data assimilation (IC06A) on simulating the convective event. The quantitative precipitation forecasts (QPF) appeared to vary widely among the experiments, depending on the timing of ICs that were chosen. QPF amount was underestimated in all experiments when data assimilation was not performed. Among the four experiments, QPF amounts and locations were better simulated in the 1200 UTC 15 August (IC12) run due to large values of CAPE in late afternoon and the presence of low-level convergence zone in the metropolitan area. Although 0600 UTC 16 August (IC06) run simulated the largest CAPE in late afternoon, the location and amount of heavy rainfall were significantly different from observations. IC06 did not simulate the convergence of low-level wind associated with the mesoscale cold pool. However, when assimilation of surface observations and radar data at 0600 UTC was performed (IC06A), the simulation reproduced the location and amount of rainfall reasonably well, indicating that high-resolution NWP model with data assimilation can predict the local convective precipitation event with a short-life time (1 3 hours) effectively within 6 hours.

  11. Assessment of construct validity of a virtual reality laparoscopy simulator.

    PubMed

    Rosenthal, Rachel; Gantert, Walter A; Hamel, Christian; Hahnloser, Dieter; Metzger, Juerg; Kocher, Thomas; Vogelbach, Peter; Scheidegger, Daniel; Oertli, Daniel; Clavien, Pierre-Alain

    2007-08-01

    The aim of this study was to assess whether virtual reality (VR) can discriminate between the skills of novices and intermediate-level laparoscopic surgical trainees (construct validity), and whether the simulator assessment correlates with an expert's evaluation of performance. Three hundred and seven (307) participants of the 19th-22nd Davos International Gastrointestinal Surgery Workshops performed the clip-and-cut task on the Xitact LS 500 VR simulator (Xitact S.A., Morges, Switzerland). According to their previous experience in laparoscopic surgery, participants were assigned to the basic course (BC) or the intermediate course (IC). Objective performance parameters recorded by the simulator were compared to the standardized assessment by the course instructors during laparoscopic pelvitrainer and conventional surgery exercises. IC participants performed significantly better on the VR simulator than BC participants for the task completion time as well as the economy of movement of the right instrument, not the left instrument. Participants with maximum scores in the pelvitrainer cholecystectomy task performed the VR trial significantly faster, compared to those who scored less. In the conventional surgery task, a significant difference between those who scored the maximum and those who scored less was found not only for task completion time, but also for economy of movement of the right instrument. VR simulation provides a valid assessment of psychomotor skills and some basic aspects of spatial skills in laparoscopic surgery. Furthermore, VR allows discrimination between trainees with different levels of experience in laparoscopic surgery establishing construct validity for the Xitact LS 500 clip-and-cut task. Virtual reality may become the gold standard to assess and monitor surgical skills in laparoscopic surgery.

  12. Interaural envelope correlation change discrimination in bilateral cochlear implantees: effects of mismatch, centering, and onset of deafness.

    PubMed

    Goupell, Matthew J

    2015-03-01

    Bilateral cochlear implant (CI) listeners can perform binaural tasks, but they are typically worse than normal-hearing (NH) listeners. To understand why this difference occurs and the mechanisms involved in processing dynamic binaural differences, interaural envelope correlation change discrimination sensitivity was measured in real and simulated CI users. In experiment 1, 11 CI (eight late deafened, three early deafened) and eight NH listeners were tested in an envelope correlation change discrimination task. Just noticeable differences (JNDs) were best for a matched place-of-stimulation and increased for an increasing mismatch. In experiment 2, attempts at intracranially centering stimuli did not produce lower JNDs. In experiment 3, the percentage of correct identifications of antiphasic carrier pulse trains modulated by correlated envelopes was measured as a function of mismatch and pulse rate. Sensitivity decreased for increasing mismatch and increasing pulse rate. The experiments led to two conclusions. First, envelope correlation change discrimination necessitates place-of-stimulation matched inputs. However, it is unclear if previous experience with acoustic hearing is necessary for envelope correlation change discrimination. Second, NH listeners presented with CI simulations demonstrated better performance than real CI listeners. If the simulations are realistic representations of electrical stimuli, real CI listeners appear to have difficulty processing interaural information in modulated signals.

  13. Numerical and experimental study of actuator performance on piezoelectric microelectromechanical inkjet print head.

    PubMed

    Van So, Pham; Jun, Hyun Woo; Lee, Jaichan

    2013-12-01

    We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.

  14. The roles of COMT val158met status and aviation expertise in flight simulator performance and cognitive ability.

    PubMed

    Kennedy, Q; Taylor, J L; Noda, A; Adamson, M; Murphy, G M; Zeitzer, J M; Yesavage, J A

    2011-09-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41-69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task.

  15. The Roles of COMT val158met Status and Aviation Expertise in Flight Simulator Performance and Cognitive Ability

    PubMed Central

    Taylor, J. L.; Noda, A.; Adamson, M.; Murphy, G. M.; Zeitzer, J. M.; Yesavage, J. A.

    2011-01-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41–69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task. PMID:21193954

  16. Effect of computer game playing on baseline laparoscopic simulator skills.

    PubMed

    Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd

    2013-08-01

    Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.

  17. Simulations of a Molecular Cloud experiment using CRASH

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  18. Viscoelastic properties of chalcogenide glasses and the simulation of their molding processes

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Shen, Ping; Jin, Na

    In order to simulate the precision molding process, the viscoelastic properties of chalcogenide glasses under high temperatures were investigated. Thermomechanical analysis were performed to measure and analysis the thermomechanical properties of chalcogenide glasses. The creep responses of the glasses at different temperatures were obtained. Finite element analysis was applied for the simulation of the molding processes. The simulation results were in consistence with previously reported experiment results. Stress concentration and evolution during the molding processes was also described with the simulation results.

  19. Nurse training with simulation: an innovative approach to teach complex microsurgery patient care.

    PubMed

    Flurry, Mitchell; Brooke, Sebastian; Micholetti, Brett; Natoli, Noel; Moyer, Kurtis; Mnich, Stephanie; Potochny, John

    2012-10-01

    Simulation has become an integral part of education at all levels within the medical field. The ability to allow personnel to practice and learn in a safe and controlled environment makes it a valuable tool for initial training and continued competence verification. An area of specific interest to the reconstructive microsurgeon is assurance that the nursing staff has adequate training and experience to provide optimum care for microsurgery patients. Plastic surgeons in institutions where few microsurgeries are performed face challenges teaching nurses how to care for these complex patients. Because no standard exists to educate microsurgery nurses, learning often happens by chance on-the-job encounters. Outcomes, therefore, may be affected by poor handoffs between inexperienced personnel. Our objective is to create a course that augments such random clinical experience and teaches the knowledge and skills necessary for successful microsurgery through simulated patient scenarios. Quality care reviews at our institution served as the foundation to develop an accredited nursing course providing clinical training for the care of microsurgery patients. The course combined lectures on microsurgery, pharmacology, and flap monitoring as well as simulated operating room, surgical intensive care unit, postanesthesia care unit, Trauma Bay, and Floor scenarios. Evaluation of participants included precourse examination, postcourse examination, and a 6-month follow-up. Average test scores were 72% precourse and 92% postcourse. Educational value, effectiveness of lectures and simulation, and overall course quality was rated very high or high by 86% of respondents; 0% respondents rated it as low. Six-month follow-up test score average was 88%. Learning to care for microsurgery patients should not be left to chance patient encounters on the job. Simulation provides a safe, reproducible, and controlled clinical experience. Our results show that simulation is a highly rated and effective way to teach nurses microsurgery patient care. Simulated patient care training should be considered to augment the clinical experience in hospitals where microsurgery is performed.

  20. Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble

    NASA Astrophysics Data System (ADS)

    Toh, Ying Ying; Turner, Andrew G.; Johnson, Stephanie J.; Holloway, Christopher E.

    2018-02-01

    The fidelity of 28 Coupled Model Intercomparison Project phase 5 (CMIP5) models in simulating mean climate over the Maritime Continent in the Atmospheric Model Intercomparison Project (AMIP) experiment is evaluated in this study. The performance of AMIP models varies greatly in reproducing seasonal mean climate and the seasonal cycle. The multi-model mean has better skill at reproducing the observed mean climate than the individual models. The spatial pattern of 850 hPa wind is better simulated than the precipitation in all four seasons. We found that model horizontal resolution is not a good indicator of model performance. Instead, a model's local Maritime Continent biases are somewhat related to its biases in the local Hadley circulation and global monsoon. The comparison with coupled models in CMIP5 shows that AMIP models generally performed better than coupled models in the simulation of the global monsoon and local Hadley circulation but less well at simulating the Maritime Continent annual cycle of precipitation. To characterize model systematic biases in the AMIP runs, we performed cluster analysis on Maritime Continent annual cycle precipitation. Our analysis resulted in two distinct clusters. Cluster I models are able to capture both the winter monsoon and summer monsoon shift, but they overestimate the precipitation; especially during the JJA and SON seasons. Cluster II models simulate weaker seasonal migration than observed, and the maximum rainfall position stays closer to the equator throughout the year. The tropics-wide properties of these clusters suggest a connection between the skill of simulating global properties of the monsoon circulation and the skill of simulating the regional scale of Maritime Continent precipitation.

  1. Time and motion, experiment M151. [human performance and space flight stress

    NASA Technical Reports Server (NTRS)

    Kubis, J. F.; Elrod, J. T.; Rusnak, R.; Mcbride, G. H.; Barnes, J. E.; Saxon, S. C.

    1973-01-01

    Astronaut work performance during the preparation and execution of experiments in simulated Skylab tests was analyzed according to time and motion in order to evaluate the efficiency and consistency of performance (adaptation function) for several different types of activity over the course of the mission; to evaluate the procedures to be used by the same experiment in Skylab; to generate characteristic adaptation functions for later comparison with Skylab data; and to examine astronaut performance for any behavioral stress due to the environment. The overall results indicate that the anticipated adaptation function was obtained both for individual and for averaged data.

  2. Objective evaluation of minimally invasive surgical skills for transplantation. Surgeons using a virtual reality simulator.

    PubMed

    Dănilă, R; Gerdes, B; Ulrike, H; Domínguez Fernández, E; Hassan, I

    2009-01-01

    The learning curve in laparoscopic surgery may be associated with higher patient risk, which is unacceptable in the setting of kidney donation. Virtual reality simulators may increase the safety and efficiency of training in laparoscopic surgery. The aim of this study was to investigate if the results of a training session reflect the actual skill level of transplantation surgeons and whether the simulator could differentiate laparoscopic experienced transplantation surgeon from advanced trainees. 16 subjects were assigned to one of two groups: 5 experienced transplantation surgeon and 11 advanced residents, with only assistant role during transplantation. The level of performance was measured by a relative scoring system that combines single parameters assessed by the computer. The higher the level of transplantation experience of a participant, the higher the laparoscopic performance. Experienced transplantation surgeons showed statistically significant better scores than the advanced group for time and precision parameters. Our results show that performance of the various tasks on the simulator corresponds to the respective level of experience in transplantation surgery in our research groups. This study confirms construct validity for the LapSim. It thus measures relevant skills and can be integrated in an endoscopic training and assessment curriculum for transplantations surgeons.

  3. Using growth and arrest of Richtmyer-Meshkov instabilities and Lagrangian simulations to study high-rate material strength

    NASA Astrophysics Data System (ADS)

    Prime, M. B.; Vaughan, D. E.; Preston, D. L.; Buttler, W. T.; Chen, S. R.; Oró, D. M.; Pack, C.

    2014-05-01

    Experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/s using Richtmyer-Meshkov (RM) instabilities. Buttler et al. recently reported experimental results for RM instability growth in copper but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and interpretation from numerical simulations of the Buttler RM instability experiments. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data. The numerical simulations are used to examine various assumptions previously made in an analytical model and to estimate the sensitivity of such experiments to material strength.

  4. 3D integrated HYDRA simulations of hohlraums including fill tubes

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Milovich, J.; Hammel, B. A.; Macphee, A. G.; Smalyuk, V. A.; Kerbel, G. D.; Sepke, S.; Patel, M. V.

    2017-10-01

    Measurements of fill tube perturbations from hydro growth radiography (HGR) experiments on the National Ignition Facility show spoke perturbations in the ablator radiating from the base of the tube. These correspond to the shadow of the 10 μm diameter glass fill tube cast by hot spots at early time. We present 3D integrated HYDRA simulations of these experiments which include the fill tube. Meshing techniques are described which were employed to resolve the fill tube structure and associated perturbations in the simulations. We examine the extent to which the specific illumination geometry necessary to accommodate a backlighter in the HGR experiment contributes to the spoke pattern. Simulations presented include high resolution calculations run on the Trinity machine operated by the Alliance for Computing at Extreme Scale (ACES) partnership. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. Virtual reality simulator for training on photoselective vaporization of the prostate with 980 nm diode laser and learning curve of the technique.

    PubMed

    Angulo, J C; Arance, I; García-Tello, A; Las Heras, M M; Andrés, G; Gimbernat, H; Lista, F; Ramón de Fata, F

    2014-09-01

    The utility of a virtual reality simulator for training of the photoselective vaporization of the prostate with diode laser was studied. Two experiments were performed with a simulator (VirtaMed AG, Zürich, Switzerland) with software for specific training in prostate vaporization in contact mode with Twister fiber (Biolitec AG, Jena, German). Eighteen surgeons performed ablation of the prostate (55 cc) twice and compared the score obtained (190 points efficacy and 80 safety) in the second one of them by experience groups (medical students, residents, specialists). They also performed a spatial orientation test with scores of 0 to 6. After, six of these surgeons repeated 15 ablations of the prostate (55 and 70 ml). Improvement of the parameters obtained was evaluated to define the learning curve and how experience, spatial orientation skills and type of sequences performed affects them. Global efficacy and safety score was different according to the grade of experience (P=.005). When compared by pairs, specialist-student differences were detected (p=0.004), but not specialist-resident (P=.12) or resident-student (P=.2). Regarding efficacy of the procedure, specialist-student (p=0.0026) and resident-student (P=.08) differences were detected. The different partial indicators in terms of efficacy were rate of ablation (P=.01), procedure time (P=.03) and amount of unexposed capsule (p=0.03). Differences were not observed between groups in safety (P=.5). Regarding the learning curve, percentage median on the total score exceeded 90% after performing 4 procedures for prostates of 55 ml and 10 procedures for prostate glands of 70 ml. This course was not modified by previous experience (resident-specialist; P=.6). However, it was modified according to the repetition sequence (progressive-random; P=.007). Surgeons whose spatial orientation was less than the median of the group (value 2.5) did not surpass 90% of the score in spite of repetition of the procedure. Simulation for ablation of the prostate with contact diode laser is a good learning model with discriminative validity, as it correlates the metric results with levels of experience and sills. The sequential repetition of the procedure on growing levels of difficulty favors learning. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  6. Development of a Search and Rescue Simulation to Study the Effects of Prolonged Isolation on Team Decision Making

    NASA Technical Reports Server (NTRS)

    Entin, Elliot E.; Kerrigan, Caroline; Serfaty, Daniel; Young, Philip

    1998-01-01

    The goals of this project were to identify and investigate aspects of team and individual decision-making and risk-taking behaviors hypothesized to be most affected by prolonged isolation. A key premise driving our research approach is that effects of stressors that impact individual and team cognitive processes in an isolated, confined, and hazardous environment will be projected onto the performance of a simulation task. To elicit and investigate these team behaviors we developed a search and rescue task concept as a scenario domain that would be relevant for isolated crews. We modified the Distributed Dynamic Decision-making (DDD) simulator, a platform that has been extensively used for empirical research in team processes and taskwork performance, to portray the features of a search and rescue scenario and present the task components incorporated into that scenario. The resulting software is called DD-Search and Rescue (Version 1.0). To support the use of the DDD-Search and Rescue simulator in isolated experiment settings, we wrote a player's manual for teaching team members to operate the simulator and play the scenario. We then developed a research design and experiment plan that would allow quantitative measures of individual and team decision making skills using the DDD-Search and Rescue simulator as the experiment platform. A description of these activities and the associated materials that were produced under this contract are contained in this report.

  7. Reformulations of practice: beyond experience in paramedic airway management.

    PubMed

    Mausz, Justin; Donovan, Seanan; McConnell, Meghan; Lapalme, Corey; Webb, Andrea; Feres, Elizabeth; Tavares, Walter

    2017-07-01

    "Deliberate practice" and "feedback" are necessary for the development of expertise. We explored clinical performance in settings where these features are inconsistent or limited, hypothesizing that even in algorithmic domains of practice, clinical performance reformulates in ways that may threaten patient safety, and that experience fails to predict performance. Paramedics participated in two recorded simulation sessions involving airway management, which were analyzed three ways: first, we identified variations in "decision paths" by coding the actions of the participants according to an airway management algorithm. Second, we identified cognitive schemas driving behavior using qualitative descriptive analysis. Third, clinical performances were evaluated using a global rating scale, checklist, and time to achieve ventilation; the relationship between experience and these metrics was assessed using Pearson's correlation. Thirty participants completed a total of 59 simulations. Mean experience was 7.2 (SD=5.8) years. We observed highly variable practice patterns and identified idiosyncratic decision paths and schemas governing practice. We revealed problematic performance deficiencies related to situation awareness, decision making, and procedural skills. There was no association between experience and clinical performance (Scenario 1: r=0.13, p=0.47; Scenario 2: r=-0.10, p=0.58), or the number of errors (Scenario 1: r=.10, p=0.57; Scenario 2: r=0.25, p=0.17) or the time to achieve ventilation (Scenario 1: r=0.53, p=0.78; Scenario 2: r=0.27, p=0.15). Clinical performance was highly variable when approaching an algorithmic problem, and procedural and cognitive errors were not attenuated by provider experience. These findings suggest reformulations of practice emerge in settings where feedback and deliberate practice are limited.

  8. Three-Dimensional Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping

    2010-01-01

    Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  9. The GeantV project: Preparing the future of simulation

    DOE PAGES

    Amadio, G.; J. Apostolakis; Bandieramonte, M.; ...

    2015-12-23

    Detector simulation is consuming at least half of the HEP computing cycles, and even so, experiments have to take hard decisions on what to simulate, as their needs greatly surpass the availability of computing resources. New experiments still in the design phase such as FCC, CLIC and ILC as well as upgraded versions of the existing LHC detectors will push further the simulation requirements. Since the increase in computing resources is not likely to keep pace with our needs, it is therefore necessary to explore innovative ways of speeding up simulation in order to sustain the progress of High Energymore » Physics. The GeantV project aims at developing a high performance detector simulation system integrating fast and full simulation that can be ported on different computing architectures, including CPU accelerators. After more than two years of R&D the project has produced a prototype capable of transporting particles in complex geometries exploiting micro-parallelism, SIMD and multithreading. Portability is obtained via C++ template techniques that allow the development of machine- independent computational kernels. Furthermore, a set of tables derived from Geant4 for cross sections and final states provides a realistic shower development and, having been ported into a Geant4 physics list, can be used as a basis for a direct performance comparison.« less

  10. Experiments On Flow In A Coronary Artery

    NASA Technical Reports Server (NTRS)

    Back, Lloyd H.; Kwack, Eug-Yon; Liem, Timothy K.; Crawford, Donald W.

    1993-01-01

    Report describes experiments on simulated flow of blood in atherosclerotic human coronary artery. Experiments performed on polyurethane cast made from S-shaped coronary artery of cadaver. Sucrose solution with viscosity of blood pumped through cast at physiologically realistic rates, and flow made pulsatile by mechanism alternately compressing and releasing elastic tube just upstream of cast.

  11. Performances on simulator and da Vinci robot on subjects with and without surgical background.

    PubMed

    Moglia, Andrea; Ferrari, Vincenzo; Melfi, Franca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred; Morelli, Luca

    2017-08-17

    To assess whether previous training in surgery influences performance on da Vinci Skills Simulator and da Vinci robot. In this prospective study, thirty-seven participants (11 medical students, 17 residents, and 9 attending surgeons) without previous experience in laparoscopy and robotic surgery performed 26 exercises at da Vinci Skills Simulator. Thirty-five then executed a suture using a da Vinci robot. The overall scores on the exercises at the da Vinci Skills Simulator show a similar performance among the groups with no statistically significant pair-wise differences (p < .05). The quality of the suturing based on the unedited videos of the test run was similar for the intermediate (7 (4, 10)) and expert group (6.5 (4.5, 10)), and poor for the untrained groups (5 (3.5, 9)), without statistically significant difference (p < .05). This study showed, for subjects new to laparoscopy and robotic surgery, insignificant differences in the scores at the da Vinci Skills Simulator and at the da Vinci robot on inanimate models.

  12. Resonant scattering experiments with radioactive nuclear beams - Recent results and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teranishi, T.; Sakaguchi, S.; Uesaka, T.

    2013-04-19

    Resonant scattering with low-energy radioactive nuclear beams of E < 5 MeV/u have been studied at CRIB of CNS and at RIPS of RIKEN. As an extension to the present experimental technique, we will install an advanced polarized proton target for resonant scattering experiments. A Monte-Carlo simulation was performed to study the feasibility of future experiments with the polarized target. In the Monte-Carlo simulation, excitation functions and analyzing powers were calculated using a newly developed R-matrix calculation code. A project of a small-scale radioactive beam facility at Kyushu University is also briefly described.

  13. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  14. Distributed dynamic simulations of networked control and building performance applications.

    PubMed

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  15. Distributed dynamic simulations of networked control and building performance applications

    PubMed Central

    Yahiaoui, Azzedine

    2017-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135

  16. Perform Experiments on LINUS-O and LTX Imploding Liquid Liner Fusion Systems.

    DTIC Science & Technology

    1982-08-27

    EXPERIMENTS .. .. .. ... 3 III. HOMOPOLAR GENERATOR/INDUCTOR POWER SUPPLY EXPERIMENTS. 11 IV. PLASMA SWITCH EXPERIMENTS. .. .. .. .... . ..... 18 V... homopolar generator (HPG) inductive load system. 0 Conduct an electromagnetic pulse (EMP) simulation demonstration using the NRL HPG/inductive storage...suggest solutions to the unstable flow problem, the research was suspended due to the program redirection. -10- IT III. HOMOPOLAR GENERATOR/INDUCTOR POWER

  17. SSSFD manipulator engineering using statistical experiment design techniques

    NASA Technical Reports Server (NTRS)

    Barnes, John

    1991-01-01

    The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.

  18. A Hybrid Reality Radiation-free Simulator for Teaching Wire Navigation Skills

    PubMed Central

    Kho, Jenniefer Y.; Johns, Brian D.; Thomas, Geb. W.; Karam, Matthew D.; Marsh, J. Lawrence; Anderson, Donald D.

    2016-01-01

    Objectives Surgical simulation is an increasingly important method to facilitate the acquiring of surgical skills. Simulation can be helpful in developing hip fracture fixation skills because it is a common procedure for which performance can be objectively assessed (i.e., the tip-apex distance). The procedure requires fluoroscopic guidance to drill a wire along an osseous trajectory to a precise position within bone. The objective of this study was to assess the construct validity for a novel radiation-free simulator designed to teach wire navigation skills in hip fracture fixation. Methods Novices (N=30) with limited to no surgical experience in hip fracture fixation and experienced surgeons (N=10) participated. Participants drilled a guide wire in the center-center position of a synthetic femoral head in a hip fracture simulator, using electromagnetic sensors to track the guide wire position. Sensor data were gathered to generate fluoroscopic-like images of the hip and guide wire. Simulator performance of novice and experienced participants was compared to measure construct validity. Results The simulator was able to discriminate the accuracy in guide wire position between novices and experienced surgeons. Experienced surgeons achieved a more accurate tip-apex distance than novices (13 vs 23 mm, respectively, p=0.009). The magnitude of improvement on successive simulator attempts was dependent on level of expertise; tip-apex distance improved significantly in the novice group, while it was unchanged in the experienced group. Conclusions This hybrid reality, radiation-free hip fracture simulator, which combines real-world objects with computer-generated imagery demonstrates construct validity by distinguishing the performance of novices and experienced surgeons. There is a differential effect depending on level of experience, and it could be used as an effective training tool in novice surgeons. PMID:26165262

  19. The experiences of last-year student midwives with High-Fidelity Perinatal Simulation training: A qualitative descriptive study.

    PubMed

    Vermeulen, Joeri; Beeckman, Katrien; Turcksin, Rivka; Van Winkel, Lies; Gucciardo, Léonardo; Laubach, Monika; Peersman, Wim; Swinnen, Eva

    2017-06-01

    Simulation training is a powerful and evidence-based teaching method in healthcare. It allows students to develop essential competences that are often difficult to achieve during internships. High-Fidelity Perinatal Simulation exposes them to real-life scenarios in a safe environment. Although student midwives' experiences need to be considered to make the simulation training work, these have been overlooked so far. To explore the experiences of last-year student midwives with High-Fidelity Perinatal Simulation training. A qualitative descriptive study, using three focus group conversations with last-year student midwives (n=24). Audio tapes were transcribed and a thematic content analysis was performed. The entire data set was coded according to recurrent or common themes. To achieve investigator triangulation and confirm themes, discussions among the researchers was incorporated in the analysis. Students found High-Fidelity Perinatal Simulation training to be a positive learning method that increased both their competence and confidence. Their experiences varied over the different phases of the High-Fidelity Perinatal Simulation training. Although uncertainty, tension, confusion and disappointment were experienced throughout the simulation trajectory, they reported that this did not affect their learning and confidence-building. As High-Fidelity Perinatal Simulation training constitutes a helpful learning experience in midwifery education, it could have a positive influence on maternal and neonatal outcomes. In the long term, it could therefore enhance the midwifery profession in several ways. The present study is an important first step in opening up the debate about the pedagogical use of High-Fidelity Perinatal Simulation training within midwifery education. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  20. Human Resource Scheduling in Performing a Sequence of Discrete Responses

    DTIC Science & Technology

    2009-02-28

    each is a graph comparing simulated results of each respective model with data from Experiment 3b. As described below the parameters of the model...initiated in parallel with ongoing Central operations on another. To fix model parameters we estimated the range of times to perform the sum of the...standard deviation for each parameter was set to 50% of mean value. Initial simulations found no meaningful differences between setting the standard

  1. The Effect of Appropriately and Inappropriately Applied Automation for the Control of Unmanned Systems on Operator Performance

    DTIC Science & Technology

    2009-09-01

    2.1 Participants Twelve civilians (7 men and 5 women ) with no prior experience with the Robotic NCO simulation participated in this study. The mean...operators in a multitasking environment. 15. SUBJECT TERMS design guidelines, robotics, simulation, unmanned systems, automation 16. SECURITY...model of operator performance, or a hybrid method which combines one or more of these different invocation techniques (e.g., critical events and

  2. Predicting Motor Vehicle Collisions in a Driving Simulator in Young Adults Using the Useful Field of View Assessment.

    PubMed

    McManus, Benjamin; Cox, Molly K; Vance, David E; Stavrinos, Despina

    2015-01-01

    Being involved in motor vehicle collisions is the leading cause of death in 1- to 34-year-olds, and risk is particularly high in young adults. The Useful Field of View (UFOV) task, a cognitive measure of processing speed, divided attention, and selective attention, has been shown to be predictive of motor vehicle collisions in older adults, but its use as a predictor of driving performance in a young adult population has not been investigated. The present study examined whether UFOV was a predictive measure of motor vehicle collisions in a driving simulator in a young adult population. The 3-subtest version of UFOV (lower scores measured in milliseconds indicate better performance) was administered to 60 college students. Participants also completed an 11-mile simulated drive to provide driving performance metrics. Findings suggested that subtests 1 and 2 suffered from a ceiling effect. UFOV subtest 3 significantly predicted collisions in the simulated drive. Each 30 ms slower on the subtest was associated with nearly a 10% increase in the risk of a simulated collision. Post hoc analyses revealed a small partially mediating effect of subtest 3 on the relationship between driving experience and collisions. The selective attention component of UFOV subtest 3 may be a predictive measure of crash involvement in a young adult population. Improvements in selective attention may be the underlying mechanism in how driving experience improves driving performance.

  3. DOE FES FY2017 Joint Research Target Fourth Quarter Milestone Report for theNational Spherical Torus Experiment Upgrade.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A.

    2017-09-13

    A successful high-performance plasma operation with a radiative divertor has been demonstrated on many tokamak devices, however, significant uncertainty remains in accurately modeling detachment thresholds, and in how detachment depends on divertor geometry. Whereas it was originally planned to perform dedicated divertor experiments on the National Spherical Tokamak Upgrade to address critical detachment and divertor geometry questions for this milestone, the experiments were deferred due to technical difficulties. Instead, existing NSTX divertor data was summarized and re-analyzed where applicable, and additional simulations were performed.

  4. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento

    2014-10-07

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concretemore » biological models.« less

  5. Attention in a multi-task environment

    NASA Technical Reports Server (NTRS)

    Andre, Anthony D.; Heers, Susan T.

    1993-01-01

    Two experiments used a low fidelity multi-task simulation to investigate the effects of cue specificity on task preparation and performance. Subjects performed a continuous compensatory tracking task and were periodically prompted to perform one of several concurrent secondary tasks. The results provide strong evidence that subjects enacted a strategy to actively divert resources towards secondary task preparation only when they had specific information about an upcoming task to be performed. However, this strategy was not as much affected by the type of task cued (Experiment 1) or its difficulty level (Experiment 2). Overall, subjects seemed aware of both the costs (degraded primary task tracking) and benefits (improved secondary task performance) of cue information. Implications of the present results for computational human performance/workload models are discussed.

  6. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  7. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  8. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; ...

    2016-03-14

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  9. On the relation between personality and job performance of airline pilots.

    PubMed

    Hormann, H J; Maschke, P

    1996-01-01

    The validity of a personality questionnaire for the prediction of job success of airline pilots is compared to validities of a simulator checkflight and of flying experience data. During selection, 274 pilots applying for employment with a European charter airline were examined with a multidimensional personality questionnaire (Temperature Structure Scales; TSS). Additionally, the applicants were graded in a simulator checkflight. On the basis of training records, the pilots were classified as performing at standard or below standard after about 3 years of employment in the hiring company. In a multiple-regression model, this dichotomous criterion for job success can be predicted with 73.8% accuracy through the simulator checkflight and flying experience prior to employment. By adding the personality questionnaire to the regression equation, the number of correct classifications increases to 79.3%. On average, successful pilots score substantially higher on interpersonal scales and lower on emotional scales of the TSS.

  10. The effects of background noise on cognitive performance during a 70 hour simulation of conditions aboard the International Space Station.

    PubMed

    Smith, D G; Baranski, J V; Thompson, M M; Abel, S M

    2003-01-01

    A total of twenty-five subjects were cloistered for a period of 70 hours, five at a time, in a hyperbaric chamber modified to simulate the conditions aboard the International Space Station (ISS). A recording of 72 dBA background noise from the ISS service module was used to simulate noise conditions on the ISS. Two groups experienced the background noise throughout the experiment, two other groups experienced the noise only during the day, and one control group was cloistered in a quiet environment. All subjects completed a battery of cognitive tests nine times throughout the experiment. The data showed little or no effect of noise on reasoning, perceptual decision-making, memory, vigilance, mood, or subjective indices of fatigue. Our results suggest that the level of noise on the space station should not affect cognitive performance, at least over a period of several days.

  11. Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling

    NASA Technical Reports Server (NTRS)

    Braman, K. E.; Ruf, J. H.

    2015-01-01

    Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated using RANS and URANS for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and for four approximations of the supersonic film injection geometry, each of which was created with a different simplification of the test article geometry. The results show that although a reasonable match to experiment can be obtained with varying levels of geometric fidelity, the modeling choices made do not fully represent the physics of flow separation in a TIC nozzle with film cooling.

  12. Deflagration to Detonation Transition (DDT) Simulations of HMX Powder Using the HERMES Model

    NASA Astrophysics Data System (ADS)

    White, Bradley; Reaugh, John; Tringe, Joseph

    2017-06-01

    We performed computer simulations of DDT experiments with Class I HMX powder using the HERMES model (High Explosive Response to MEchanical Stimulus) in ALE3D. Parameters for the model were fitted to the limited available mechanical property data of the low-density powder, and to the Shock to Detonation Transition (SDT) test results. The DDT tests were carried out in steel-capped polycarbonate tubes. This arrangement permits direct observation of the event using both flash X-ray radiography and high speed camera imaging, and provides a stringent test of the model. We found the calculated detonation transition to be qualitatively similar to experiment. Through simulation we also explored the effects of confinement strength, the HMX particle size distribution and porosity on the computed detonation transition location. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  13. Isentropic Compression up to 200 KBars for LX 04, Numerical Simulations and Comparison with Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A.; Hare, D.; L'Eplattenier, P.

    2006-02-13

    Isentropic compression experiments and numerical simulations on LX-04 (HMX / Viton 85/15) were performed respectively at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope and associated Hugoniot of this HE. 2D and 3D configurations have been calculated here to test the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shot 1067 on LX 04. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. Themore » Maxwell equations are solved using a Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less

  14. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges

    PubMed Central

    Ernst, Marielle; Kriston, Levente; Romero, Javier M.; Frölich, Andreas M.; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    Purpose We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. Materials and Methods We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. Results In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Conclusion Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time. PMID:26848840

  15. Martian Gardens

    NASA Image and Video Library

    2016-08-15

    NASA’s Kennedy Space Center is partnering with the Florida Tech Buzz Aldrin Space Institute in Melbourne, Florida, to collaborate on research studying the performance of crop species grown in a simulated “Martian garden” — a proving ground for a potential future farm on the Red Planet. Plants were grown in a preliminary experiment comparing (left to right) potting soil, regolith simulant with added nutrients, and simulant without nutrients.

  16. Development of simulation interfaces for evaluation task with the use of physiological data and virtual reality applied to a vehicle simulator

    NASA Astrophysics Data System (ADS)

    Miranda, Mateus R.; Costa, Henrik; Oliveira, Luiz; Bernardes, Thiago; Aguiar, Carla; Miosso, Cristiano; Oliveira, Alessandro B. S.; Diniz, Alberto C. G. C.; Domingues, Diana Maria G.

    2015-03-01

    This paper aims at describing an experimental platform used to evaluate the performance of individuals at training immersive physiological games. The platform proposed is embedded in an immersive environment in a CAVE of Virtual Reality and consists on a base frame with actuators with three degrees of freedom, sensor array interface and physiological sensors. Physiological data of breathing, galvanic skin resistance (GSR) and pressure on the hand of the user and a subjective questionnaire were collected during the experiments. The theoretical background used in a project focused on Software Engineering, Biomedical Engineering in the field of Ergonomics and Creative Technologies in order to presents this case study, related of an evaluation of a vehicular simulator located inside the CAVE. The analysis of the simulator uses physiological data of the drivers obtained in a period of rest and after the experience, with and without movements at the simulator. Also images from the screen are captured through time at the embedded experience and data collected through physiological data visualization (average frequency and RMS graphics). They are empowered by the subjective questionnaire as strong lived experience provided by the technological apparatus. The performed immersion experience inside the CAVE allows to replicate behaviors from physical spaces inside data space enhanced by physiological properties. In this context, the biocybrid condition is expanded beyond art and entertainment, as it is applied to automotive engineering and biomedical engineering. In fact, the kinesthetic sensations amplified by synesthesia replicates the sensation of displacement in the interior of an automobile, as well as the sensations of vibration and vertical movements typical of a vehicle, different speeds, collisions, etc. The contribution of this work is the possibility to tracing a stress analysis protocol for drivers while operating a vehicle getting affective behaviors coming from physiological data, mixed to embedded simulation in Mixed Reality.

  17. Verification and Validation of Requirements on the CEV Parachute Assembly System Using Design of Experiments

    NASA Technical Reports Server (NTRS)

    Schulte, Peter Z.; Moore, James W.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project conducts computer simulations to verify that flight performance requirements on parachute loads and terminal rate of descent are met. Design of Experiments (DoE) provides a systematic method for variation of simulation input parameters. When implemented and interpreted correctly, a DoE study of parachute simulation tools indicates values and combinations of parameters that may cause requirement limits to be violated. This paper describes one implementation of DoE that is currently being developed by CPAS, explains how DoE results can be interpreted, and presents the results of several preliminary studies. The potential uses of DoE to validate parachute simulation models and verify requirements are also explored.

  18. Experimental determination of in situ utilization of lunar regolith for thermal energy storage

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1992-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister which contains simulated lunar regolith, a heater, nine heat shields, a heat transfer cold jacket, and 19 type-B platinum rhodium thermocouples. The simulated lunar regolith is a basalt that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith, which include melt temperature, specific heat thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  19. Local and national laparoscopic skill competitions: residents' opinions and impact on adoption of simulation-based training.

    PubMed

    McCreery, Greig L; El-Beheiry, Mostafa; Schlachta, Christopher M

    2017-11-01

    Dedicated practice using laparoscopic simulators improves operative performance. Yet, voluntary utilization is minimal. We hypothesized that skill competition between peers, at the local and national level, positively influences residents' use of laparoscopic simulators. A web-based survey evaluated the relationship between Canadian General Surgery residents' use of laparoscopic simulation and participation in competition. Secondary outcomes assessed attitudes regarding simulation training, factors limiting use, and associations between competition level and usage. One hundred ninety (23%) of 826 potential participants responded. Eighty-three percent rated their laparoscopic abilities as novice or intermediate. More than 70% agreed that use of simulation practice improves intra-operative performance, and should be a mandatory component of training. However, 58% employed simulator practice less than once per month, and 18% never used a simulator. Sixty-five percent engaged in simulator training for 5 h or less over the preceding 6 months. Seventy-three percent had participated in laparoscopic skill competition. Of those, 51% agreed that competition was a motivation for simulation practice. No association was found between those with competition experience and simulator use. However, 83% of those who had competed nationally reported >5 h of simulator use in the previous 6 months compared to those with no competition experience (26%), local competition (40%), and local national-qualifying competition (23%) (p < 0.001). This study does not support the hypothesis that competition alone universally increases voluntary use of simulation-based training, with only the minority of individuals competing at the national level demonstrated significantly higher simulation use. However, simulation training was perceived as a valuable exercise. Lack of time and access to simulators, as opposed to lack of interest, were the most commonly reported to limited use.

  20. Factors affecting species distribution predictions: A simulation modeling experiment

    Treesearch

    Gordon C. Reese; Kenneth R. Wilson; Jennifer A. Hoeting; Curtis H. Flather

    2005-01-01

    Geospatial species sample data (e.g., records with location information from natural history museums or annual surveys) are rarely collected optimally, yet are increasingly used for decisions concerning our biological heritage. Using computer simulations, we examined factors that could affect the performance of autologistic regression (ALR) models that predict species...

  1. NASCAP simulation of laboratory charging tests using multiple electron guns

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.; Parks, D. E.

    1981-01-01

    NASCAP calculations have been performed simulating exposure of a spacecraft-like model to multiple electron guns. The results agree well with experiment. It is found that magnetic field effects are fairly small, but substantial differential charging can result from electron gun placement. Conditions for surface flashover are readily achieved.

  2. When Feedback Harms and Collaboration Helps in Computer Simulation Environments: An Expertise Reversal Effect

    ERIC Educational Resources Information Center

    Nihalani, Priya K.; Mayrath, Michael; Robinson, Daniel H.

    2011-01-01

    We investigated the effects of feedback and collaboration on undergraduates' transfer performance when using a computer networking training simulation. In Experiment 1, 65 computer science "novices" worked through an instructional protocol individually (control), individually with feedback, or collaboratively with feedback. Unexpectedly,…

  3. Stress Training and Simulator Complexity: Why Sometimes More Is Less

    ERIC Educational Resources Information Center

    Tichon, Jennifer G.; Wallis, Guy M.

    2010-01-01

    Through repeated practice under conditions similar to those in real-world settings, simulator training prepares an individual to maintain effective performance under stressful work conditions. Interfaces offering high fidelity and immersion can more closely reproduce real-world experiences and are generally believed to result in better learning…

  4. Sensitivity Analysis and Optimization of Enclosure Radiation with Applications to Crystal Growth

    NASA Technical Reports Server (NTRS)

    Tiller, Michael M.

    1995-01-01

    In engineering, simulation software is often used as a convenient means for carrying out experiments to evaluate physical systems. The benefit of using simulations as 'numerical' experiments is that the experimental conditions can be easily modified and repeated at much lower cost than the comparable physical experiment. The goal of these experiments is to 'improve' the process or result of the experiment. In most cases, the computational experiments employ the same trial and error approach as their physical counterparts. When using this approach for complex systems, the cause and effect relationship of the system may never be fully understood and efficient strategies for improvement never utilized. However, it is possible when running simulations to accurately and efficiently determine the sensitivity of the system results with respect to simulation to accurately and efficiently determine the sensitivity of the system results with respect to simulation parameters (e.g., initial conditions, boundary conditions, and material properties) by manipulating the underlying computations. This results in a better understanding of the system dynamics and gives us efficient means to improve processing conditions. We begin by discussing the steps involved in performing simulations. Then we consider how sensitivity information about simulation results can be obtained and ways this information may be used to improve the process or result of the experiment. Next, we discuss optimization and the efficient algorithms which use sensitivity information. We draw on all this information to propose a generalized approach for integrating simulation and optimization, with an emphasis on software programming issues. After discussing our approach to simulation and optimization we consider an application involving crystal growth. This application is interesting because it includes radiative heat transfer. We discuss the computation of radiative new factors and the impact this mode of heat transfer has on our approach. Finally, we will demonstrate the results of our optimization.

  5. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  6. Upgrades for the CMS simulation

    DOE PAGES

    Lange, D. J.; Hildreth, M.; Ivantchenko, V. N.; ...

    2015-05-22

    Over the past several years, the CMS experiment has made significant changes to its detector simulation application. The geometry has been generalized to include modifications being made to the CMS detector for 2015 operations, as well as model improvements to the simulation geometry of the current CMS detector and the implementation of a number of approved and possible future detector configurations. These include both completely new tracker and calorimetry systems. We have completed the transition to Geant4 version 10, we have made significant progress in reducing the CPU resources required to run our Geant4 simulation. These have been achieved throughmore » both technical improvements and through numerical techniques. Substantial speed improvements have been achieved without changing the physics validation benchmarks that the experiment uses to validate our simulation application for use in production. As a result, we will discuss the methods that we implemented and the corresponding demonstrated performance improvements deployed for our 2015 simulation application.« less

  7. Evaluation of virtual simulation in a master's-level nurse education certificate program.

    PubMed

    Foronda, Cynthia; Lippincott, Christine; Gattamorta, Karina

    2014-11-01

    Master's-level, nurse education certificate students performed virtual clinical simulations as a portion of their clinical practicum. Virtual clinical simulation is an innovative pedagogy using avatars in Web-based platforms to provide simulated clinical experiences. The purpose of this mixed-methods study was to evaluate nurse educator students' experience with virtual simulation and the effect of virtual simulation on confidence in teaching ability. Aggregated quantitative results yielded no significant change in confidence in teaching ability. Individually, some students indicated change of either increased or decreased confidence, whereas others exhibited no change in confidence after engaging in virtual simulation. Qualitative findings revealed a process of precursors of anxiety and frustration with technical difficulties followed by outcomes of appreciation and learning. Instructor support was a mediating factor to decrease anxiety and technical difficulties. This study served as a starting point regarding the application of a virtual world to teach the art of instruction. As the movement toward online education continues, educators should further explore use of virtual simulation to prepare nurse educators.

  8. Propagation of uncertainty in nasal spray in vitro performance models using Monte Carlo simulation: Part II. Error propagation during product performance modeling.

    PubMed

    Guo, Changning; Doub, William H; Kauffman, John F

    2010-08-01

    Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  9. An investigation of the role of current and future remote sensing data systems in numerical meteorology

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Smith, William L.

    1992-01-01

    A flexible system for performing observing system simulation experiments which made contributions to meteorology across all elements of the observing system simulation experiment (OSSE) components was developed. Future work will seek better understanding of the links between satellite-measured radiation and radiative transfer in the clear, cloudy and precipitating atmosphere and investigate how that understanding might be applied to improve the depiction of the initial state and the treatment of physical processes in forecast models of the atmosphere.

  10. An Introduction to Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2017-01-01

    Observing System Simulation Experiments (OSSEs) are used to estimate the potential impact of proposed new instruments and data on numerical weather prediction. OSSEs can also be used to help design new observing platforms and to investigate the behavior of data assimilation systems. A basic overview of how to design and perform an OSSE will be given, as well as best practices and pitfalls. Some examples using the OSSE framework developed at the NASA Global Modeling and Assimilation Office will be shown.

  11. Virtual Reality Simulator Systems in Robotic Surgical Training.

    PubMed

    Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo

    2018-06-01

    The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.

  12. Comparisons of Measurements and Simulations of Turbulence and Transport for DIII-D Discharges with Off-Axis Modulated ECH

    NASA Astrophysics Data System (ADS)

    Bravenec, R. V.; Ross, D. W.; Austin, M. E.; Gentle, K. W.; Deboo, J. C.; DIII-D Team; McKee, G. R.; Dorland, W.; Rhodes, T. L.; Zeng, L.

    2002-11-01

    Experiments to elucidate the nature of electron thermal transport have been conducted in DIII-D plasmas using modulated off-axis electron-cyclotron heating (ECH). Density fluctuations were measured using beam-emission spectroscopy, microwave reflectometry, and far-infrared scattering. Simulations of the experiment are performed with the gyrokinetic and gyrofluid flux-tube codes GS2(F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7), 1904 (2000) and refs. therein. and GRYFFIN,(W. Dorland and G.W. Hammett, Phys. Fluids B 5), 812 (1993); M.A. Beer and G.W. Hammett, Phys. Plasmas 3, 4046 (1996). respectively. Comparisons of experiment and simulation results for the fluctuations and transport fluxes (ion and electron) will be presented for both time-averaged and modulated quantities.

  13. Scattering Models and Basic Experiments in the Microwave Regime

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Blanchard, A. J. (Principal Investigator)

    1985-01-01

    The objectives of research over the next three years are: (1) to develop a randomly rough surface scattering model which is applicable over the entire frequency band; (2) to develop a computer simulation method and algorithm to simulate scattering from known randomly rough surfaces, Z(x,y); (3) to design and perform laboratory experiments to study geometric and physical target parameters of an inhomogeneous layer; (4) to develop scattering models for an inhomogeneous layer which accounts for near field interaction and multiple scattering in both the coherent and the incoherent scattering components; and (5) a comparison between theoretical models and measurements or numerical simulation.

  14. Simulation of Foam Impact Effects on Components of the Space Shuttle Thermal Protection System. Chapter 7

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Park, Young-Keun

    2004-01-01

    A series of three dimensional simulations has been performed to investigate analytically the effect of insulating foam impacts on ceramic tile and reinforced carbon-carbon components of the Space Shuttle thermal protection system. The simulations employed a hybrid particle-finite element method and a parallel code developed for use in spacecraft design applications. The conclusions suggested by the numerical study are in general consistent with experiment. The results emphasize the need for additional material testing work on the dynamic mechanical response of thermal protection system materials, and additional impact experiments for use in validating computational models of impact effects.

  15. Performance Impact of Deflagration to Detonation Transition Enhancing Obstacles

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Schauer, Frederick; Hopper, David

    2012-01-01

    A sub-model is developed to account for the drag and heat transfer enhancement resulting from deflagration-to-detonation (DDT) inducing obstacles commonly used in pulse detonation engines (PDE). The sub-model is incorporated as a source term in a time-accurate, quasi-onedimensional, CFD-based PDE simulation. The simulation and sub-model are then validated through comparison with a particular experiment in which limited DDT obstacle parameters were varied. The simulation is then used to examine the relative contributions from drag and heat transfer to the reduced thrust which is observed. It is found that heat transfer is far more significant than aerodynamic drag in this particular experiment.

  16. The Effectiveness of Remote Facilitation in Simulation-Based Pediatric Resuscitation Training for Medical Students.

    PubMed

    Ohta, Kunio; Kurosawa, Hiroshi; Shiima, Yuko; Ikeyama, Takanari; Scott, James; Hayes, Scott; Gould, Michael; Buchanan, Newton; Nadkarni, Vinay; Nishisaki, Akira

    2017-08-01

    To assess the effectiveness of pediatric simulation by remote facilitation. We hypothesized that simulation by remote facilitation is more effective compared to simulation by an on-site facilitator. We defined remote facilitation as a facilitator remotely (1) introduces simulation-based learning and simulation environment, (2) runs scenarios, and (3) performs debriefing with an on-site facilitator. A remote simulation program for medical students during pediatric rotation was implemented. Groups were allocated to either remote or on-site facilitation depending on the availability of telemedicine technology. Both groups had identical 1-hour simulation sessions with 2 scenarios and debriefing. Their team performance was assessed with behavioral assessment tool by a trained rater. Perception by students was evaluated with Likert scale (1-7). Fifteen groups with 89 students participated in a simulation by remote facilitation, and 8 groups with 47 students participated in a simulation by on-site facilitation. Participant demographics and previous simulation experience were similar. Both groups improved their performance from first to second scenario: groups by remote simulation (first [8.5 ± 4.2] vs second [13.2 ± 6.2], P = 0.003), and groups by on-site simulation (first [6.9 ± 4.1] vs second [12.4 ± 6.4], P = 0.056). The performance improvement was not significantly different between the 2 groups (P = 0.94). Faculty evaluation by students was equally high in both groups (7 vs 7; P = 0.65). A pediatric acute care simulation by remote facilitation significantly improved students' performance. In this pilot study, remote facilitation seems as effective as a traditional, locally facilitated simulation. The remote simulation can be a strong alternative method, especially where experienced facilitators are limited.

  17. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    PubMed Central

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-01-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design. PMID:27109208

  18. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy andmore » incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. Furthermore, we demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.« less

  19. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    DOE PAGES

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; ...

    2016-04-25

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy andmore » incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. Furthermore, we demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.« less

  20. Optimisation of simulated team training through the application of learning theories: a debate for a conceptual framework.

    PubMed

    Stocker, Martin; Burmester, Margarita; Allen, Meredith

    2014-04-03

    As a conceptual review, this paper will debate relevant learning theories to inform the development, design and delivery of an effective educational programme for simulated team training relevant to health professionals. Kolb's experiential learning theory is used as the main conceptual framework to define the sequence of activities. Dewey's theory of reflective thought and action, Jarvis modification of Kolb's learning cycle and Schön's reflection-on-action serve as a model to design scenarios for optimal concrete experience and debriefing for challenging participants' beliefs and habits. Bandura's theory of self-efficacy and newer socio-cultural learning models outline that for efficient team training, it is mandatory to introduce the social-cultural context of a team. The ideal simulated team training programme needs a scenario for concrete experience, followed by a debriefing with a critical reflexive observation and abstract conceptualisation phase, and ending with a second scenario for active experimentation. Let them re-experiment to optimise the effect of a simulated training session. Challenge them to the edge: The scenario needs to challenge participants to generate failures and feelings of inadequacy to drive and motivate team members to critical reflect and learn. Not experience itself but the inadequacy and contradictions of habitual experience serve as basis for reflection. Facilitate critical reflection: Facilitators and group members must guide and motivate individual participants through the debriefing session, inciting and empowering learners to challenge their own beliefs and habits. To do this, learners need to feel psychological safe. Let the group talk and critical explore. Motivate with reality and context: Training with multidisciplinary team members, with different levels of expertise, acting in their usual environment (in-situ simulation) on physiological variables is mandatory to introduce cultural context and social conditions to the learning experience. Embedding in situ team training sessions into a teaching programme to enable repeated training and to assess regularly team performance is mandatory for a cultural change of sustained improvement of team performance and patient safety.

  1. Performance simulation of BaBar DIRC bar boxes in TORCH

    NASA Astrophysics Data System (ADS)

    Föhl, K.; Brook, N.; Castillo García, L.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-12-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  2. Two-Dimensional Optical CDMA System Parameters Limitations for Wavelength Hopping/Time-Spreading Scheme based on Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Kandouci, Chahinaz; Djebbari, Ali

    2018-04-01

    A new family of two-dimensional optical hybrid code which employs zero cross-correlation (ZCC) codes, constructed by the balanced incomplete block design BIBD, as both time-spreading and wavelength hopping patterns are used in this paper. The obtained codes have both off-peak autocorrelation and cross-correlation values respectively equal to zero and unity. The work in this paper is a computer experiment performed using Optisystem 9.0 software program as a simulator to determine the wavelength hopping/time spreading (WH/TS) OCDMA system performances limitations. Five system parameters were considered in this work: the optical fiber length (transmission distance), the bitrate, the chip spacing and the transmitted power. This paper shows for what sufficient system performance parameters (BER≤10-9, Q≥6) the system can stand for.

  3. Evidence for the involvement of a nonlexical route in the repetition of familiar words: A comparison of single and dual route models of auditory repetition.

    PubMed

    Hanley, J Richard; Dell, Gary S; Kay, Janice; Baron, Rachel

    2004-03-01

    In this paper, we attempt to simulate the picture naming and auditory repetition performance of two patients reported by Hanley, Kay, and Edwards (2002), who were matched for picture naming score but who differed significantly in their ability to repeat familiar words. In Experiment 1, we demonstrate that the model of naming and repetition put forward by Foygel and Dell (2000) is better able to accommodate this pattern of performance than the model put forward by Dell, Schwartz, Martin, Saffran, and Gagnon (1997). Nevertheless, Foygel and Dell's model underpredicted the repetition performance of both patients. In Experiment 2, we attempt to simulate their performance using a new dual route model of repetition in which Foygel and Dell's model is augmented by an additional nonlexical repetition pathway. The new model provided a more accurate fit to the real-word repetition performance of both patients. It is argued that the results provide support for dual route models of auditory repetition.

  4. Evaluating best educational practices, student satisfaction, and self-confidence in simulation: A descriptive study.

    PubMed

    Zapko, Karen A; Ferranto, Mary Lou Gemma; Blasiman, Rachael; Shelestak, Debra

    2018-01-01

    The National League for Nursing (NLN) has endorsed simulation as a necessary teaching approach to prepare students for the demanding role of professional nursing. Questions arise about the suitability of simulation experiences to educate students. Empirical support for the effect of simulation on patient outcomes is sparse. Most studies on simulation report only anecdotal results rather than data obtained using evaluative tools. The aim of this study was to examine student perception of best educational practices in simulation and to evaluate their satisfaction and self-confidence in simulation. This study was a descriptive study designed to explore students' perceptions of the simulation experience over a two-year period. Using the Jeffries framework, a Simulation Day was designed consisting of serial patient simulations using high and medium fidelity simulators and live patient actors. The setting for the study was a regional campus of a large Midwestern Research 2 university. The convenience sample consisted of 199 participants and included sophomore, junior, and senior nursing students enrolled in the baccalaureate nursing program. The Simulation Days consisted of serial patient simulations using high and medium fidelity simulators and live patient actors. Participants rotated through four scenarios that corresponded to their level in the nursing program. Data was collected in two consecutive years. Participants completed both the Educational Practices Questionnaire (Student Version) and the Student Satisfaction and Self-Confidence in Learning Scale. Results provide strong support for using serial simulation as a learning tool. Students were satisfied with the experience, felt confident in their performance, and felt the simulations were based on sound educational practices and were important for learning. Serial simulations and having students experience simulations more than once in consecutive years is a valuable method of clinical instruction. When conducted well, simulations can lead to increased student satisfaction and self-confidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-01-01

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs. PMID:27509507

  6. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length < 15mm) this investigation concentrates on the prediction of the local mechanical properties of an injection molded part. To realize this, the Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  7. Heart rate and performance during combat missions in a flight simulator.

    PubMed

    Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K

    2007-04-01

    The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.

  8. Training safer orthopedic surgeons. Construct validation of a virtual-reality simulator for hip fracture surgery.

    PubMed

    Akhtar, Kashif; Sugand, Kapil; Sperrin, Matthew; Cobb, Justin; Standfield, Nigel; Gupte, Chinmay

    2015-01-01

    Virtual-reality (VR) simulation in orthopedic training is still in its infancy, and much of the work has been focused on arthroscopy. We evaluated the construct validity of a new VR trauma simulator for performing dynamic hip screw (DHS) fixation of a trochanteric femoral fracture. 30 volunteers were divided into 3 groups according to the number of postgraduate (PG) years and the amount of clinical experience: novice (1-4 PG years; less than 10 DHS procedures); intermediate (5-12 PG years; 10-100 procedures); expert (> 12 PG years; > 100 procedures). Each participant performed a DHS procedure and objective performance metrics were recorded. These data were analyzed with each performance metric taken as the dependent variable in 3 regression models. There were statistically significant differences in performance between groups for (1) number of attempts at guide-wire insertion, (2) total fluoroscopy time, (3) tip-apex distance, (4) probability of screw cutout, and (5) overall simulator score. The intermediate group performed the procedure most quickly, with the lowest fluoroscopy time, the lowest tip-apex distance, the lowest probability of cutout, and the highest simulator score, which correlated with their frequency of exposure to running the trauma lists for hip fracture surgery. This study demonstrates the construct validity of a haptic VR trauma simulator with surgeons undertaking the procedure most frequently performing best on the simulator. VR simulation may be a means of addressing restrictions on working hours and allows trainees to practice technical tasks without putting patients at risk. The VR DHS simulator evaluated in this study may provide valid assessment of technical skill.

  9. Computer-Simulated Arthroscopic Knee Surgery: Effects of Distraction on Resident Performance.

    PubMed

    Cowan, James B; Seeley, Mark A; Irwin, Todd A; Caird, Michelle S

    2016-01-01

    Orthopedic surgeons cite "full focus" and "distraction control" as important factors for achieving excellent outcomes. Surgical simulation is a safe and cost-effective way for residents to practice surgical skills, and it is a suitable tool to study the effects of distraction on resident surgical performance. This study investigated the effects of distraction on arthroscopic knee simulator performance among residents at various levels of experience. The authors hypothesized that environmental distractions would negatively affect performance. Twenty-five orthopedic surgery residents performed a diagnostic knee arthroscopy computer simulation according to a checklist of structures to identify and tasks to complete. Participants were evaluated on arthroscopy time, number of chondral injuries, instances of looking down at their hands, and completion of checklist items. Residents repeated this task at least 2 weeks later while simultaneously answering distracting questions. During distracted simulation, the residents had significantly fewer completed checklist items (P<.02) compared with the initial simulation. Senior residents completed the initial simulation in less time (P<.001), with fewer chondral injuries (P<.005) and fewer instances of looking down at their hands (P<.012), compared with junior residents. Senior residents also completed 97% of the diagnostic checklist, whereas junior residents completed 89% (P<.019). During distracted simulation, senior residents continued to complete tasks more quickly (P<.006) and with fewer instances of looking down at their hands (P<.042). Residents at all levels appear to be susceptible to the detrimental effects of distraction when performing arthroscopic simulation. Addressing even straightforward questions intraoperatively may affect surgeon performance. Copyright 2016, SLACK Incorporated.

  10. Extremely pulsatile flow around a surface-mounted hemisphere: synergistic experiments and simulations

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Beratlis, Nikolaos; Balaras, Elias; Plesniak, Michael W.

    2017-11-01

    Extremely pulsatile flow (where the amplitude of oscillation pulsation is of the same order as the mean flow) over a three-dimensional, surface-mounted bluff body gives rise a wealth of fluid dynamics phenomena. In this study, we extend our previous experimental work on extremely pulsatile flow around a surface-mounted hemisphere by performing a complementary direct numerical simulation. Results from the experiment and simulation will be presented and compared. After establishing the agreement between experiment and simulation, we will examine the morphology and dynamics of the vortex structures in the wake of the hemisphere, and the effects of extreme pulsatility. The dynamics of the arch-type recirculation vortex is of primary interest, in particular its upstream propagation due to self-induced velocity in the direction opposite to the freestream during deceleration. In addition to the velocity field, the surface pressure field throughout the pulsatile cycle will be presented. These synergistic experiments and simulations provide a detailed view into the complex flow fields associated with pulsatile flow over a surface-mounted hemisphere. This material is based upon work supported by the National Science Foundation under Grant Number CBET-1236351 and the GW Center for Biomimetics and Bioinspired Engineering.

  11. Simulations of dusty plasmas using a special-purpose computer system designed for gravitational N-body problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, K.; Mizuno, Y.; Hibino, S.

    2006-01-15

    Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{supmore » 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.« less

  12. Network-based simulation of aircraft at gates in airport terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.

    1998-03-01

    Simulation is becoming an essential tool for planning, design, and management of airport facilities. A simulation of aircraft at gates at an airport can be applied for various periodically performed applications, relating to the dynamic behavior of aircraft at gates in airport terminals for analyses, evaluations, and decision supports. Conventionally, such simulations are implemented using an event-driven method. For a more efficient simulation, this paper proposes a network-based method. The basic idea is to transform all the sequence constraint relations of aircraft at gates into a network. The simulation is done by calculating the longest path to all the nodesmore » in the network. The effect of the algorithm of the proposed method has been examined by experiments, and the superiority of the proposed method over the event-driven method is revealed through comprehensive comparisons of their overall simulation performance.« less

  13. Propulsion IVHM Technology Experiment

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.

    2006-01-01

    The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  14. Alpha-channeling simulation experiment in the DIII-D tokamak.

    PubMed

    Wong, K L; Budny, R; Nazikian, R; Petty, C C; Greenfield, C M; Heidbrink, W W; Ruskov, E

    2004-08-20

    Alfvén instabilities can reduce the central magnetic shear via redistribution of energetic ions. They can sustain a steady state internal transport barrier as demonstrated in this DIII-D tokamak experiment. Improvement in burning plasma performance based on this mechanism is discussed.

  15. An investigation of sensory information, levels of automation, and piloting experience on unmanned aircraft pilot performance.

    DOT National Transportation Integrated Search

    2012-03-01

    "The current experiment was intended to examine the effect of sensory information on pilot reactions to system : failures within a UAS control station simulation. This research also investigated the level of automation used in : controlling the aircr...

  16. Precise method of compensating radiation-induced errors in a hot-cathode-ionization gauge with correcting electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hiroshi, E-mail: saeki@spring8.or.jp; Magome, Tamotsu, E-mail: saeki@spring8.or.jp

    2014-10-06

    To compensate pressure-measurement errors caused by a synchrotron radiation environment, a precise method using a hot-cathode-ionization-gauge head with correcting electrode, was developed and tested in a simulation experiment with excess electrons in the SPring-8 storage ring. This precise method to improve the measurement accuracy, can correctly reduce the pressure-measurement errors caused by electrons originating from the external environment, and originating from the primary gauge filament influenced by spatial conditions of the installed vacuum-gauge head. As the result of the simulation experiment to confirm the performance reducing the errors caused by the external environment, the pressure-measurement error using this method wasmore » approximately less than several percent in the pressure range from 10{sup −5} Pa to 10{sup −8} Pa. After the experiment, to confirm the performance reducing the error caused by spatial conditions, an additional experiment was carried out using a sleeve and showed that the improved function was available.« less

  17. Development of simulation-based learning programme for improving adherence to time-out protocol on high-risk invasive procedures outside of operating room.

    PubMed

    Jeong, Eun Ju; Chung, Hyun Soo; Choi, Jeong Yun; Kim, In Sook; Hong, Seong Hee; Yoo, Kyung Sook; Kim, Mi Kyoung; Won, Mi Yeol; Eum, So Yeon; Cho, Young Soon

    2017-06-01

    The aim of this study was to develop a simulation-based time-out learning programme targeted to nurses participating in high-risk invasive procedures and to figure out the effects of application of the new programme on acceptance of nurses. This study was performed using a simulation-based learning predesign and postdesign to figure out the effects of implementation of this programme. It was targeted to 48 registered nurses working in the general ward and the emergency department in a tertiary teaching hospital. Difference between acceptance and performance rates has been figured out by using mean, standard deviation, and Wilcoxon-signed rank test. The perception survey and score sheet have been validated through content validation index, and the reliability of evaluator has been verified by using intraclass correlation coefficient. Results showed high level of acceptance of high-risk invasive procedure (P<.01). Further, improvement was consistent regardless of clinical experience, workplace, or experience in simulation-based learning. The face validity of the programme showed over 4.0 out of 5.0. This simulation-based learning programme was effective in improving the recognition of time-out protocol and has given the participants the opportunity to become proactive in cases of high-risk invasive procedures performed outside of operating room. © 2017 John Wiley & Sons Australia, Ltd.

  18. Compositional symbol grounding for motor patterns.

    PubMed

    Greco, Alberto; Caneva, Claudio

    2010-01-01

    We developed a new experimental and simulative paradigm to study the establishing of compositional grounded representations for motor patterns. Participants learned to associate non-sense arm motor patterns, performed in three different hand postures, with non-sense words. There were two group conditions: in the first (compositional), each pattern was associated with a two-word (verb-adverb) sentence; in the second (holistic), each same pattern was associated with a unique word. Two experiments were performed. In the first, motor pattern recognition and naming were tested in the two conditions. Results showed that verbal compositionality had no role in recognition and that the main source of confusability in this task came from discriminating hand postures. As the naming task resulted too difficult, some changes in the learning procedure were implemented in the second experiment. In this experiment, the compositional group achieved better results in naming motor patterns especially for patterns where hand postures discrimination was relevant. In order to ascertain the differential effect, upon this result, of memory load and of systematic grounding, neural network simulations were also made. After a basic simulation that worked as a good model of subjects performance, in following simulations the number of stimuli (motor patterns and words) was increased and the systematic association between words and patterns was disrupted, while keeping the same number of words and syntax. Results showed that in both conditions the advantage for the compositional condition significantly increased. These simulations showed that the advantage for this condition may be more related to the systematicity rather than to the mere informational gain. All results are discussed in connection to the possible support of the hypothesis of a compositional motor representation and toward a more precise explanation of the factors that make compositional representations working.

  19. Atmospheric microphysical experiments on an orbital platform

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.

    1974-01-01

    The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.

  20. Influence of resonance tube geometry shape on performance of thermoacoustic engine.

    PubMed

    Bao, Rui; Chen, Guobang; Tang, Ke; Jia, Zhengzhong; Cao, Weihua

    2006-12-22

    Based on the linear thermoacoustics, a symmetrical standing-wave thermoacoustic engine is simulated with a cylindrical tube and a tapered one as the resonance tube, respectively. The experiments with both cylindrical and tapered tubes are carried out. The suppression of nonlinear effects due to tapered tube as the resonance tube is discussed. Both simulation and experimental results show that the performance of the tapered tube is better than cylindrical one as the resonance tube.

  1. Assessment of the performance of CORDEX-SA experiments in simulating seasonal mean temperature over the Himalayan region for the present climate: Part I

    NASA Astrophysics Data System (ADS)

    Nengker, T.; Choudhary, A.; Dimri, A. P.

    2018-04-01

    The ability of an ensemble of five regional climate models (hereafter RCMs) under Coordinated Regional Climate Downscaling Experiments-South Asia (hereafter, CORDEX-SA) in simulating the key features of present day near surface mean air temperature (Tmean) climatology (1970-2005) over the Himalayan region is studied. The purpose of this paper is to understand the consistency in the performance of models across the ensemble, space and seasons. For this a number of statistical measures like trend, correlation, variance, probability distribution function etc. are applied to evaluate the performance of models against observation and simultaneously the underlying uncertainties between them for four different seasons. The most evident finding from the study is the presence of a large cold bias (-6 to -8 °C) which is systematically seen across all the models and across space and time over the Himalayan region. However, these RCMs with its fine resolution perform extremely well in capturing the spatial distribution of the temperature features as indicated by a consistently high spatial correlation (greater than 0.9) with the observation in all seasons. In spite of underestimation in simulated temperature and general intensification of cold bias with increasing elevation the models show a greater rate of warming than the observation throughout entire altitudinal stretch of study region. During winter, the simulated rate of warming gets even higher at high altitudes. Moreover, a seasonal response of model performance and its spatial variability to elevation is found.

  2. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Marinak, M. M.; Weber, C. R.

    2015-02-15

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies andmore » that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.« less

  3. Theoretical Study of Wave Particle Correlation Measurement via 1-D Electromagnetic Particle Simulation

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshikatsu; Omura, Yoshiharu; Kojima, Hiro

    Spacecraft observation is essentially "one-point measurement", while numerical simulation can reproduce a whole system of physical processes on a computer. By performing particle simulations of plasma wave instabilities and calculating correlation of waves and particles observed at a single point, we examine how well we can infer the characteristics of the whole system by a one-point measurement. We perform various simulation runs with different plasma parameters using one-dimensional electromagnetic particle code (KEMPO1) and calculate 'E dot v' or other moments at a single point. We find good correlation between the measurement and the macroscopic fluctuations of the total simulation region. We make use of the results of the computer experiments in our system design of new instruments 'One-chip Wave Particle Interaction Analyzer (OWPIA)'.

  4. V/STOL flight simulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The requirements for a new research aircraft to provide in-flight V/STOL simulation were reviewed. The required capabilities were based on known limitations of ground based simulation and past/current experience with V/STOL inflight simulation. Results indicate that V/STOL inflight simulation capability is needed to aid in the design and development of high performance V/STOL aircraft. Although a new research V/STOL aircraft is preferred, an interim solution can be provided by use of the X-22A, the CH-47B, or the 4AV-8B aircraft modified for control/display flight research.

  5. Indirect MRI of 17 o-labeled water using steady-state sequences: Signal simulation and preclinical experiment.

    PubMed

    Kudo, Kohsuke; Harada, Taisuke; Kameda, Hiroyuki; Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Yoshioka, Kunihiro; Sasaki, Makoto

    2018-05-01

    Few studies have been reported for T 2 -weighted indirect 17 O imaging. To evaluate the feasibility of steady-state sequences for indirect 17 O brain imaging. Signal simulation, phantom measurements, and prospective animal experiments were performed in accordance with the institutional guidelines for animal experiments. Signal simulations of balanced steady-state free precession (bSSFP) were performed for concentrations of 17 O ranging from 0.037-1.600%. Phantom measurements with concentrations of 17 O water ranging from 0.037-1.566% were also conducted. Six healthy beagle dogs were scanned with intravenous administration of 20% 17 O-labeled water (1 mL/kg). Dynamic 3D-bSSFP scans were performed at 3T MRI. 17 O-labeled water was injected 60 seconds after the scan start, and the total scan duration was 5 minutes. Based on the result of signal simulation and phantom measurement, signal changes in the beagle dogs were measured and converted into 17 O concentrations. The 17 O concentrations were averaged for every 15 seconds, and compared to the baseline (30-45 sec) with Dunnett's multiple comparison tests. Signal simulation revealed that the relationships between 17 O concentration and the natural logarithm of relative signals were linear. The intraclass correlation coefficient between relative signals in phantom measurement and signal simulations was 0.974. In the animal experiments, significant increases in 17 O concentration (P < 0.05) were observed 60 seconds after the injection of 17 O. At the end of scanning, mean respective 17 O concentrations of 0.084 ± 0.026%, 0.117 ± 0.038, 0.082 ± 0.037%, and 0.049 ± 0.004% were noted for the cerebral cortex, cerebellar cortex, cerebral white matter, and ventricle. Dynamic steady-state sequences were feasible for indirect 17 O imaging, and absolute quantification was possible. This method can be applied for the measurement of permeability and blood flow in the brain, and for kinetic analysis of cerebrospinal fluid. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1373-1379. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Development of a computational model on the neural activity patterns of a visual working memory in a hierarchical feedforward Network

    NASA Astrophysics Data System (ADS)

    An, Soyoung; Choi, Woochul; Paik, Se-Bum

    2015-11-01

    Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.

  7. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector.

    PubMed

    Barbisan, M; Zaniol, B; Pasqualotto, R

    2014-11-01

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.

  8. A piloted simulation of helicopter air combat to investigate effects of variations in selected performance and control response characteristics

    NASA Technical Reports Server (NTRS)

    Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.

    1987-01-01

    A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.

  9. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blunt, Martin J.; Orr, Franklin M.

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factorsmore » influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.« less

  10. Emergency in the clinic: a simulation curriculum to improve outpatient safety.

    PubMed

    Espey, Eve; Baty, Gillian; Rask, John; Chungtuyco, Michelle; Pereda, Brenda; Leeman, Lawrence

    2017-12-01

    Emergency response skills are essential when events such as seizure, anaphylaxis, or hemorrhage occur in the outpatient setting. As services and procedures increasingly move outside the hospital, training to manage complications may improve outcomes. The objective of this study was to evaluate a simulation-based curriculum in outpatient emergency management skills with the outcome measures of graded objective performance and learner self-efficacy. This pre- and postcurriculum study enrolled residents and fellows in Obstetrics and Gynecology and Family Medicine in a simulation-based, outpatient emergency management curriculum. Learners completed self-efficacy questionnaires and were videotaped managing 3 medical emergency scenarios (seizure, over-sedation/cardiopulmonary arrest, and hemorrhage) in the simulation laboratory both before and after completion of the curriculum. Evaluators who were blinded to training level scored the simulation performance videotapes using a graded rubric with critical action checklists. Scenario scores were assigned in 5 domains and globally. Paired t-tests were used to determine differences pre- and postcurriculum. Thirty residents completed the curriculum and pre- and postcurriculum testing. Subjects' objective performance scores improved in all 5 domains (P<.05) in all scenarios. When scores were stratified by level of training, all participants demonstrated global improvement. When scores were stratified by previous outpatient simulation experience, subjects with previous experience improved in all but management of excess sedation. Pre- and postcurriculum self-efficacy evaluations demonstrated improvement in all 7 measured areas: confidence, use of appropriate resources, communication skills, complex airway management, bag mask ventilation, resuscitation, and hemorrhage management. Self-efficacy assessment showed improvement in confidence managing outpatient emergencies (P=.001) and ability to communicate well in emergency situations (P<.001). A simulation-based curriculum improved both self-efficacy and objectively rated performance scores in management of outpatient medical emergencies. Simulation-based curricula should be incorporated into residency education. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Evaluation of the Use of a Virtual Patient on Student Competence and Confidence in Performing Simulated Clinic Visits.

    PubMed

    Taglieri, Catherine A; Crosby, Steven J; Zimmerman, Kristin; Schneider, Tulip; Patel, Dhiren K

    2017-06-01

    Objective. To assess the effect of incorporating virtual patient activities in a pharmacy skills lab on student competence and confidence when conducting real-time comprehensive clinic visits with mock patients. Methods. Students were randomly assigned to a control or intervention group. The control group completed the clinic visit prior to completing virtual patient activities. The intervention group completed the virtual patient activities prior to the clinic visit. Student proficiency was evaluated in the mock lab. All students completed additional exercises with the virtual patient and were subsequently assessed. Student impressions were assessed via a pre- and post-experience survey. Results. Student performance conducting clinic visits was higher in the intervention group compared to the control group. Overall student performance continued to improve in the subsequent module. There was no change in student confidence from pre- to post-experience. Student rating of the ease of use and realistic simulation of the virtual patient increased; however, student rating of the helpfulness of the virtual patient decreased. Despite student rating of the helpfulness of the virtual patient program, student performance improved. Conclusion. Virtual patient activities enhanced student performance during mock clinic visits. Students felt the virtual patient realistically simulated a real patient. Virtual patients may provide additional learning opportunities for students.

  12. Augmented Reality in a Simulated Tower Environment: Effect of Field of View on Aircraft Detection

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Adelstein, Bernard D.; Reisman, Ronald J.; Schmidt-Ott, Joelle R.; Gips, Jonathan; Krozel, Jimmy; Cohen, Malcolm (Technical Monitor)

    2002-01-01

    An optical see-through, augmented reality display was used to study subjects' ability to detect aircraft maneuvering and landing at the Dallas Ft. Worth International airport in an ATC Tower simulation. Subjects monitored the traffic patterns as if from the airport's western control tower. Three binocular fields of view (14 deg, 28 deg and 47 deg) were studied in an independent groups' design to measure the degradation in detection performance associated with the visual field restrictions. In a second experiment the 14 deg and 28 deg fields were presented either with 46% binocular overlap or 100% overlap for separate groups. The near asymptotic results of the first experiment suggest that binocular fields of view much greater than 47% are unlikely to dramatically improve performance; and those of the second experiment suggest that partial binocular overlap is feasible for augmented reality displays such as may be used for ATC tower applications.

  13. Modeling Simple Driving Tasks with a One-Boundary Diffusion Model

    PubMed Central

    Ratcliff, Roger; Strayer, David

    2014-01-01

    A one-boundary diffusion model was applied to the data from two experiments in which subjects were performing a simple simulated driving task. In the first experiment, the same subjects were tested on two driving tasks using a PC-based driving simulator and the psychomotor vigilance test (PVT). The diffusion model fit the response time (RT) distributions for each task and individual subject well. Model parameters were found to correlate across tasks which suggests common component processes were being tapped in the three tasks. The model was also fit to a distracted driving experiment of Cooper and Strayer (2008). Results showed that distraction altered performance by affecting the rate of evidence accumulation (drift rate) and/or increasing the boundary settings. This provides an interpretation of cognitive distraction whereby conversing on a cell phone diverts attention from the normal accumulation of information in the driving environment. PMID:24297620

  14. Development of Ku-band rendezvous radar tracking and acquisition simulation programs

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The fidelity of the Space Shuttle Radar tracking simulation model was improved. The data from the Shuttle Orbiter Radar Test and Evaluation (SORTE) program experiments performed at the White Sands Missile Range (WSMR) were reviewed and analyzed. The selected flight rendezvous radar data was evaluated. Problems with the Inertial Line-of-Sight (ILOS) angle rate tracker were evaluated using the improved fidelity angle rate tracker simulation model.

  15. C-Mod MHD stability analysis with LHCD

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.

    2016-10-01

    In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.

  16. Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.

    PubMed

    Liu, Fang; Velikina, Julia V; Block, Walter F; Kijowski, Richard; Samsonov, Alexey A

    2017-02-01

    We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed  ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.

  17. Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model

    PubMed Central

    Velikina, Julia V.; Block, Walter F.; Kijowski, Richard; Samsonov, Alexey A.

    2017-01-01

    We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexibl representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplifie treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure. PMID:28113746

  18. Plasma Heating Simulation in the VASIMR System

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.

    2005-01-01

    The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.

  19. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    PubMed

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Gennady; /Fermilab

    CST Particle Studio combines electromagnetic field simulation, multi-particle tracking, adequate post-processing and advanced probabilistic emission model, which is the most important new capability in multipactor simulation. The emission model includes in simulation the stochastic properties of emission and adds primary electron elastic and inelastic reflection from the surfaces. The simulation of multipactor in coaxial waveguides have been performed to study the effects of the innovations on the multipactor threshold and the range over which multipactor can occur. The results compared with available previous experiments and simulations as well as the technique of MP simulation with CST PS are presented andmore » discussed.« less

  1. Simulation in Nursing Education-International Perspectives and Contemporary Scope of Practice.

    PubMed

    Kelly, Michelle A; Berragan, Elizabeth; Husebø, Sissel Eikeland; Orr, Fiona

    2016-05-01

    This article provides insights and perspectives from four experienced educators about their approaches to developing, delivering, and evaluating impactful simulation learning experiences for undergraduate nurses. A case study format has been used to illustrate the commonalities and differences of where simulation has been positioned within curricula, with examples of specialized clinical domains and others with a more generic focus. The importance of pedagogy in developing and delivering simulations is highlighted in each case study. A range of learning theories appropriate for healthcare simulations are a reminder of the commonalities across theories and that no one theory can account for the engaging and impactful learning that simulation elicits. Creating meaningful and robust learning experiences through simulation can benefit students' performance in subsequent clinical practice. The ability to rehearse particular clinical scenarios, which may be difficult to otherwise achieve, assists students in anticipating likely patient trajectories and understanding how to respond to patients, relatives, and others in the healthcare team. © 2016 Sigma Theta Tau International.

  2. Process and Learning Outcomes from Remotely-Operated, Simulated, and Hands-on Student Laboratories

    ERIC Educational Resources Information Center

    Corter, James E.; Esche, Sven K.; Chassapis, Constantin; Ma, Jing; Nickerson, Jeffrey V.

    2011-01-01

    A large-scale, multi-year, randomized study compared learning activities and outcomes for hands-on, remotely-operated, and simulation-based educational laboratories in an undergraduate engineering course. Students (N = 458) worked in small-group lab teams to perform two experiments involving stress on a cantilever beam. Each team conducted the…

  3. Curricular Improvements through Computation and Experiment Based Learning Modules

    ERIC Educational Resources Information Center

    Khan, Fazeel; Singh, Kumar

    2015-01-01

    Engineers often need to predict how a part, mechanism or machine will perform in service, and this insight is typically achieved thorough computer simulations. Therefore, instruction in the creation and application of simulation models is essential for aspiring engineers. The purpose of this project was to develop a unified approach to teaching…

  4. Stand, Harvest, and Equipment Interactions in Simulated Harvesting Prescriptions

    Treesearch

    Jingxin Wang; W. Dale Greene; Bryce J. Stokes

    1998-01-01

    We evaluated potential interactions of stand type, harvesting method, and equipment in an experiment using interactive simulation. We examined three felling methods (chain saw, feller-buncher, harvester) and two extraction methods (grapple skidder and forwarder) performing clearcuts, sheltenvood cuts, and single-tree selection cuts in both an uneven-aged natural stand...

  5. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  6. Simulation of pump-turbine prototype fast mode transition for grid stability support

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.

    2017-04-01

    The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.

  7. Transport delay compensation for computer-generated imagery systems

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard E.

    1988-01-01

    In the problem of pure transport delay in a low-pass system, a trade-off exists with respect to performance within and beyond a frequency bandwidth. When activity beyond the band is attenuated because of other considerations, this trade-off may be used to improve the performance within the band. Specifically, transport delay in computer-generated imagery systems is reduced to a manageable problem by recognizing frequency limits in vehicle activity and manual-control capacity. Based on these limits, a compensation algorithm has been developed for use in aircraft simulation at NASA Ames Research Center. For direct measurement of transport delays, a beam-splitter experiment is presented that accounts for the complete flight simulation environment. Values determined by this experiment are appropriate for use in the compensation algorithm. The algorithm extends the bandwidth of high-frequency flight simulation to well beyond that of normal pilot inputs. Within this bandwidth, the visual scene presentation manifests negligible gain distortion and phase lag. After a year of utilization, two minor exceptions to universal simulation applicability have been identified and subsequently resolved.

  8. Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE.

    PubMed

    Vilches, M; García-Pareja, S; Guerrero, R; Anguiano, M; Lallena, A M

    2009-09-01

    In this work, recent results from experiments and simulations (with EGSnrc) performed by Ross et al. [Med. Phys. 35, 4121-4131 (2008)] on electron scattering by foils of different materials and thicknesses are compared to those obtained using several Monte Carlo codes. Three codes have been used: GEANT (version 3.21), Geant4 (version 9.1, patch03), and PENELOPE (version 2006). In the case of PENELOPE, mixed and fully detailed simulations have been carried out. Transverse dose distributions in air have been obtained in order to compare with measurements. The detailed PENELOPE simulations show excellent agreement with experiment. The calculations performed with GEANT and PENELOPE (mixed) agree with experiment within 3% except for the Be foil. In the case of Geant4, the distributions are 5% narrower compared to the experimental ones, though the agreement is very good for the Be foil. Transverse dose distribution in water obtained with PENELOPE (mixed) is 4% wider than those calculated by Ross et al. using EGSnrc and is 1% narrower than the transverse dose distributions in air, as considered in the experiment. All the codes give a reasonable agreement (within 5%) with the experimental results for all the material and thicknesses studied.

  9. Assessment of the performance of CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan region during present climate: part I

    NASA Astrophysics Data System (ADS)

    Ghimire, S.; Choudhary, A.; Dimri, A. P.

    2018-04-01

    Analysis of regional climate simulations to evaluate the ability of 11 Coordinated Regional Climate Downscaling Experiment in South Asia experiments (CORDEX-South Asia) along with their ensemble to produce precipitation from June to September (JJAS) over the Himalayan region have been carried out. These suite of 11 combinations come from 6 regional climate models (RCMs) driven with 10 initial and boundary conditions from different global climate models and are collectively referred here as 11 CORDEX South Asia experiments. All the RCMs use a similar domain and are having similar spatial resolution of 0.44° ( 50 km). The set of experiments are considered to study precipitation sensitivity associated with the Indian summer monsoon (ISM) over the study region. This effort is made as ISM plays a vital role in summertime precipitation over the Himalayan region which acts as driver for the sustenance of habitat, population, crop, glacier, hydrology etc. In addition, so far the summer monsoon precipitation climatology over the Himalayan region has not been studied with the help of CORDEX data. Thus this study is initiated to evaluate the ability of the experiments and their ensemble in reproducing the characteristics of summer monsoon precipitation over Himalayan region, for the present climate (1970-2005). The precipitation climatology, annual precipitation cycles and interannual variabilities from each simulation have been assessed against the gridded observational dataset: Asian Precipitation-Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources for the given time period. Further, after the selection of the better performing experiment the frequency distribution of precipitation was also studied. In this study, an approach has also been made to study the degree of agreement among individual experiments as a way to quantify the uncertainty among them. The experiments though show a wide variation among themselves and individually over time and space in simulating precipitation distribution over the study region, but noticeably along the foothills of the Himalayas all the simulations show dry precipitation bias against the corresponding observation. In addition, as we move towards higher elevation regions these experiments in general show wet bias. The experiment driven by EC-EARTH global climate model and downscaled using Rossby Center regional Atmospheric model version 4 developed by Swedish Meteorological and Hydrological Institute (SMHI-RCA4) simulate precipitation closely in correspondence with the observation. The ensemble outperforms the result of individual experiments. Correspondingly, different kinds of statistical analysis like spatial and temporal correlation, Taylor diagram, frequency distribution and scatter plot have been performed to compare the model output with observation and to explain the associated resemblance, robustness and dynamics statistically. Through the bias and ensemble spread analysis, an estimation of the uncertainty of the model fields and the degree of agreement among them has also been carried out in this study. Overview of the study suggests that these experiments facilitate precipitation evolution and structure over the Himalayan region with certain degree of uncertainty.

  10. Ion trap simulation program, ITSIM: A powerful heuristic and predictive tool in ion trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bui, Huy Anh

    The multi-particle simulation program, ITSIM version 4.0, takes advantage of the enhanced performance of the Windows 95 and NT operating systems in areas such as memory management, user friendliness, flexibility of graphics and speed, to investigate the motion of ions in the quadrupole ion trap. The objective of this program is to use computer simulations based on mathematical models to improve the performance of the ion trap mass spectrometer. The simulation program can provide assistance in understanding fundamental aspects of ion trap mass spectrometry, precede and help to direct the course of experiments, as well as having didactic value in elucidating and allowing visualization of ion behavior under different experimental conditions. The program uses the improved Euler method to calculate ion trajectories as numerical solutions to the Mathieu differential equation. This Windows version can simultaneously simulate the trajectories of ions with a virtually unlimited number of different mass-to-charge ratios and hence allows realistic mass spectra, ion kinetic energy distributions and other experimentally measurable properties to be simulated. The large number of simulated ions allows examination of (i) the offsetting effects of mutual ion repulsion and collisional cooling in an ion trap and (ii) the effects of higher order fields. Field inhomogeneities arising from exit holes, electrode misalignment, imperfect electrode surfaces or new trap geometries can be simulated with the program. The simulated data are used to obtain mass spectra from mass-selective instability scans as well as by Fourier transformation of image currents induced by coherently moving ion clouds. Complete instruments, from an ion source through the ion trap mass analyzer to a detector, can now be simulated. Applications of the simulation program are presented and discussed. Comparisons are made between the simulations and experimental data. Fourier transformed experiments and a novel six-electrode ion trap mass spectrometer illustrate cases in which simulations precede new experiments. Broadband non-destructive ion detection based on induced image current measurements are described in the case of a quadrupole ion trap having cylindrical geometry.

  11. Use of a Virtual Learning Platform for Distance-Based Simulation in an Acute Care Nurse Practitioner Curriculum.

    PubMed

    Carman, Margaret; Xu, Shu; Rushton, Sharron; Smallheer, Benjamin A; Williams, Denise; Amarasekara, Sathya; Oermann, Marilyn H

    Acute care nurse practitioner (ACNP) programs that use high-fidelity simulation as a teaching tool need to consider innovative strategies to provide distance-based students with learning experiences that are comparable to those in a simulation laboratory. The purpose of this article is to describe the use of virtual simulations in a distance-based ACNP program and student performance in the simulations. Virtual simulations using iSimulate were integrated into the ACNP course to promote the translation of content into a clinical context and enable students to develop their knowledge and decision-making skills. With these simulations, students worked as a team, even though they were at different sites from each other and from the faculty, to manage care of an acutely ill patient. The students were assigned to simulation groups of 4 students each. One week before the simulation, they reviewed past medical records. The virtual simulation sessions were recorded and then evaluated. The evaluation tools assessed 8 areas of performance and included key behaviors in each of these areas to be performed by students in the simulation. More than 80% of the student groups performed the key behaviors. Virtual simulations provide a learning platform that allows live interaction between students and faculty, at a distance, and application of content to clinical situations. With simulation, learners have an opportunity to practice assessment and decision-making in emergency and high-risk situations. Simulations not only are valuable for student learning but also provide a nonthreatening environment for staff to practice, receive feedback on their skills, and improve their confidence.

  12. Performance Analysis of Distributed Object-Oriented Applications

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1998-01-01

    The purpose of this research was to evaluate the efficiency of a distributed simulation architecture which creates individual modules which are made self-scheduling through the use of a message-based communication system used for requesting input data from another module which is the source of that data. To make the architecture as general as possible, the message-based communication architecture was implemented using standard remote object architectures (Common Object Request Broker Architecture (CORBA) and/or Distributed Component Object Model (DCOM)). A series of experiments were run in which different systems are distributed in a variety of ways across multiple computers and the performance evaluated. The experiments were duplicated in each case so that the overhead due to message communication and data transmission can be separated from the time required to actually perform the computational update of a module each iteration. The software used to distribute the modules across multiple computers was developed in the first year of the current grant and was modified considerably to add a message-based communication scheme supported by the DCOM distributed object architecture. The resulting performance was analyzed using a model created during the first year of this grant which predicts the overhead due to CORBA and DCOM remote procedure calls and includes the effects of data passed to and from the remote objects. A report covering the distributed simulation software and the results of the performance experiments has been submitted separately. The above report also discusses possible future work to apply the methodology to dynamically distribute the simulation modules so as to minimize overall computation time.

  13. Analyses of space environment effects on active fiber optic links orbited aboard the LDEF

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1993-01-01

    The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.

  14. pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments

    NASA Astrophysics Data System (ADS)

    Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott

    2016-10-01

    We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.

  15. Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation.

    PubMed

    Marwan, Wolfgang; Sujatha, Arumugam; Starostzik, Christine

    2005-10-21

    We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.

  16. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction : research brief

    DOT National Transportation Integrated Search

    2017-09-01

    This study is to develop simulation methodology to conduct the dynamic assessment of bridge deck performance subjected to traffic. Concrete bridge decks are exposed to daily traffic loads and may experience some surface cracking caused by excessive s...

  17. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  18. Granular Simulation of NEO Anchoring

    NASA Technical Reports Server (NTRS)

    Mazhar, Hammad

    2011-01-01

    NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.

  19. Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity

    NASA Astrophysics Data System (ADS)

    Breuer, D.; Futterer, B.; Plesa, A.; Krebs, A.; Zaussinger, F.; Egbers, C.

    2013-12-01

    In mantle dynamics research, experiments, usually performed in rectangular geometries in Earth-based laboratories, have the character of ';exploring new physics and testing theories' [1]. In this work, we introduce our spherical geometry experiments on electro-hydrodynamical driven Rayleigh-Benard convection that have been performed for both temperature-independent (`GeoFlow I'), and temperature-dependent fluid viscosity properties (`GeoFlow II') with a measured viscosity contrast up to 1.5. To set up a self-gravitating force field, we use a high voltage potential between the inner and outer boundaries and a dielectric insulating liquid and perform the experiment under microgravity conditions at the ISS [2, 3]. Further, numerical simulations in 3D spherical geometry have been used to reproduce the results obtained in the `GeoFlow' experiments. For flow visualisation, we use Wollaston prism shearing interferometry which is an optical method producing fringe pattern images. Flow pattern differ between our two experiments (Fig. 1). In `GeoFlow I', we see a sheet-like thermal flow. In this case convection patterns have been successfully reproduced by 3D numerical simulations using two different and independently developed codes. In contrast, in `GeoFlow II' we obtain plume-like structures. Interestingly, numerical simulations do not yield this type of solution for the low viscosity contrast realised in the experiment. However, using a viscosity contrast of two orders of magnitude or higher, we can reproduce the patterns obtained in the `GeoFlow II' experiment, from which we conclude that non-linear effects shift the effective viscosity ratio [4]. References [1] A. Davaille and A. Limare (2009). In: Schubert, G., Bercovici, D. (Eds.), Treatise on Geophysics - Mantle Dynamics. [2] B. Futterer, C. Egbers, N. Dahley, S. Koch, L. Jehring (2010). Acta Astronautica 66, 193-100. [3] B. Futterer, N. Dahley, S. Koch, N. Scurtu, C. Egbers (2012). Acta Astronautica 71, 11-19. [4] B. Futterer, A. Krebs, A.-C. Plesa, F. Zaussinger, D.Breuer, C. Egbers (2013). submitted to Journal of Fluid Mechanics. Fig. 1: a) Sheet-like thermal flow in the GeoFlow I spherical experiment with silicone oil of temperature-stable properties (RaE=1.17e6); b) Plume-like dominated flow in the GeoFlow II experiment using a fluid with temperature dependent viscosity and volume expansion (RaE=1.87e6).

  20. Is Moving More Memorable than Proving? Effects of Embodiment and Imagined Enactment on Verb Memory

    PubMed Central

    Sidhu, David M.; Pexman, Penny M.

    2016-01-01

    Theories of embodied cognition propose that sensorimotor information is simulated during language processing (e.g., Barsalou, 1999). Previous studies have demonstrated that differences in simulation can have implications for word processing; for instance, lexical processing is facilitated for verbs that have relatively more embodied meanings (e.g., Sidhu et al., 2014). Here we examined the effects of these differences on memory for verbs. We observed higher rates of recognition (Experiments 1a-2a) and recall accuracy (Experiments 2b-3b) for verbs with a greater amount of associated bodily information (i.e., an embodiment effect). We also examined how this interacted with the imagined enactment effect: a memory benefit for actions that one imagines performing (e.g., Ditman et al., 2010). We found that these two effects did not interact (Experiment 3b), suggesting that the memory benefits of automatic simulation (i.e., the embodiment effect) and deliberate simulation (i.e., the imagined enactment effect) are distinct. These results provide evidence for the role of simulation in language processing, and its effects on memory. PMID:27445956

  1. Comparison of resistive MHD simulations and experimental CHI discharges in NSTX

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Sovinec, C. R.; Raman, R.; Fatima, F.

    2013-10-01

    Resistive MHD simulations using NIMROD simulate CHI discharges for NSTX startup plasmas. Quantitative comparison with experiment ensures that the simulation physics includes a minimal physics set needed to extend the simulations to new experiments, e.g. NSTX-U. Important are time-varying vacuum magnetic field, ohmic heating, thermal transport, impurity radiation, and spatially-varying plasma parameters including density. Equilibria are compared with experimental injector currents, voltages and parameters including toroidal current, photographs of emitted light and measurements of midplane temperature profiles, radiation and surface heating. Initial results demonstrate that adjusting impurity radiation and cross-field transport yields temperatures and injected-current channel widths similar to experiment. These determine the plasma resistance, feeding back to the impedance on the injector power supply. Work performed under the auspices of the U.S. Department of Energy under contracts DE-AC52-07NA27344 at LLNL and DE-AC02-09CH11466 at PPPL, and grants DE-FC02-05ER54813 at PSI Center (U. Wisc.) and DOE-FG02-12ER55115 (at Princeton U.).

  2. Reform and practice for photoelectric specialty experimental teaching based on virtual simulation experiment platform

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Lv, Qingsong; Wu, Maocheng; Xu, Yishen; Gu, Jihua

    2017-08-01

    In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.

  3. Virtual DRI dataset development

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Teaney, Brian P.; May, Christopher; Maurer, Tana; Nelson, Michael B.; Pham, Justin R.

    2017-05-01

    The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military analysis community for sensor design, trade studies, and field performance prediction. This paper analyzes the results of perception tests performed to compare the results of a field DRI (Detection, Recognition, and Identification Test) performed in 2009 to current Soldier performance viewing the same imagery in a laboratory environment and simulated imagery of the same data set. The purpose of the experiment is to build a robust data set for use in the virtual prototyping of infrared sensors. This data set will provide a strong foundation relating, model predictions, field DRI results and simulated imagery.

  4. Can we continue to ignore gender differences in performance on simulation trainers?

    PubMed

    Thorson, Chad M; Kelly, Jason P; Forse, R Armour; Turaga, Kiran K

    2011-05-01

    There are differences between the genders in their innate performances on simulation trainers, which may impair accurate assessment of psychomotor skills. The performance of fourth-year students with no exposure to the Minimally Invasive Surgical Trainer compared based on gender, and other psychomotor skills. Our study included 16 male and 16 female students. After adjusting for choice of medical specialty (P<.001), current video game use (P=.6), and experience in the operating room (P=.4), female sex was an independent factor for worse performance (P=.04) in multivariate models. Women took more time than men (P<.01) and made more errors (29 versus 25 on 3 reps, P<.01). Among medical students with no previous exposure to laparoscopic trainers, female students perform worse than male students after adjusting for confounding factors. This difference must be recognized by training programs while using simulators for training and evaluation.

  5. Detailed Validation Assessment of Turbine Stage Disc Cavity Rotating Flows

    NASA Astrophysics Data System (ADS)

    Kanjiyani, Shezan

    The subject of this thesis is concerned with the amount of cooling air assigned to seal high pressure turbine rim cavities which is critical for performance as well as component life. Insufficient air leads to excessive hot annulus gas ingestion and its penetration deep into the cavity compromising disc life. Excessive purge air, adversely affects performance. Experiments on a rotating turbine stage rig which included a rotor-stator forward disc cavity were performed at Arizona State University. The turbine rig has 22 vanes and 28 blades, while the rim cavity is composed of a single-tooth rim lab seal and a rim platform overlap seal. Time-averaged static pressures were measured in the gas path and the cavity, while mainstream gas ingestion into the cavity was determined by measuring the concentration distribution of tracer gas (carbon dioxide). Additionally, particle image velocimetry (PIV) was used to measure fluid velocity inside the rim cavity between the lab seal and the overlap. The data from the experiments were compared to an 360-degree unsteady RANS (URANS) CFD simulations. Although not able to match the time-averaged test data satisfactorily, the CFD simulations brought to light the unsteadiness present in the flow during the experiment which the slower response data did not fully capture. To interrogate the validity of URANS simulations in capturing complex rotating flow physics, the scope of this work also included to validating the CFD tool by comparing its predictions against experimental LDV data in a closed rotor-stator cavity. The enclosed cavity has a stationary shroud, a rotating hub, and mass flow does not enter or exit the system. A full 360 degree numerical simulation was performed comparing Fluent LES, with URANS turbulence models. Results from these investigations point to URANS state of art under-predicting closed cavity tangential velocity by 32% to 43%, and open rim cavity effectiveness by 50% compared to test data. The goal of this thesis is to assess the validity of URANS turbulence models in more complex rotating flows, compare accuracy with LES simulations, suggest CFD settings to better simulate turbine stage mainstream/disc cavity interaction with ingestion, and recommend experimentation techniques.

  6. QUEST FOR A NEW WORKING POINT IN RHIC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TOMAS,R.BAI,M.FISCHER,W.PTITSYN,V.SATOGATA,T.ROSER,T.

    2004-07-05

    The beam-beam interaction is a limiting factor in RHIC's performance, particularly in proton operation. Changing the working point is a strategy to alleviate the beam-beam effect and improve the performance of the machine. Experiments at injection energy and simulations have been performed for a set of working points to determine the best candidates.

  7. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    NASA Astrophysics Data System (ADS)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with both free drainage and various water table depths to quantify the effect of assuming the former boundary condition. For these two soil types, shallow WTs within 1.0-1.2 m below the soil surface influenced infiltration. Existing models will suggest a more protective vegetative filter strip than what actually exists if shallow water table conditions are not considered.

  8. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  9. Medical Robotic and Telesurgical Simulation and Education Research

    DTIC Science & Technology

    2015-09-01

    Telesurgery experiments with Denver are complete. Exploring connection test to Seattle rather than Los Angeles. Schedule. This schedule...milliseconds. This speed is much faster than we had expected based on our inter- Florida experiments. Centura Health Campus, Denver, CO Los ...Angeles vs. Seattle. Original plans were to perform a telesurgery experiment from Orlando- to- Los Angeles. The necessary collaboration with that hospital

  10. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  11. Performance improvements from imagery: evidence that internal visual imagery is superior to external visual imagery for slalom performance

    PubMed Central

    Callow, Nichola; Roberts, Ross; Hardy, Lew; Jiang, Dan; Edwards, Martin Gareth

    2013-01-01

    We report three experiments investigating the hypothesis that use of internal visual imagery (IVI) would be superior to external visual imagery (EVI) for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group) performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under both IVI and EVI conditions. Performance was again quickest in the IVI compared to EVI condition, with no differences in accuracy. Experiment 3 used the same group design as Experiment 1, but with participants performing a downhill ski-slalom task. Results revealed the IVI group to be significantly more accurate than the control group, with no significant differences in time taken to complete the task. These results support the beneficial effects of IVI for slalom-based tasks, and significantly advances our knowledge related to the differential effects of visual imagery perspectives on motor performance. PMID:24155710

  12. The effects of computer-simulated experiments on high school biology students' problem-solving skills and achievement

    NASA Astrophysics Data System (ADS)

    Carmack, Gay Lynn Dickinson

    2000-10-01

    This two-part quasi-experimental repeated measures study examined whether computer simulated experiments have an effect on the problem solving skills of high school biology students in a school-within-a-school magnet program. Specifically, the study identified episodes in a simulation sequence where problem solving skills improved. In the Fall academic semester, experimental group students (n = 30) were exposed to two simulations: CaseIt! and EVOLVE!. Control group students participated in an internet research project and a paper Hardy-Weinberg activity. In the Spring academic semester, experimental group students were exposed to three simulations: Genetics Construction Kit, CaseIt! and EVOLVE! . Spring control group students participated in a Drosophila lab, an internet research project, and Advanced Placement lab 8. Results indicate that the Fall and Spring experimental groups experienced significant gains in scientific problem solving after the second simulation in the sequence. These gains were independent of the simulation sequence or the amount of time spent on the simulations. These gains were significantly greater than control group scores in the Fall. The Spring control group significantly outscored all other study groups on both pretest measures. Even so, the Spring experimental group problem solving performance caught up to the Spring control group performance after the third simulation. There were no significant differences between control and experimental groups on content achievement. Results indicate that CSE is as effective as traditional laboratories in promoting scientific problem solving and that CSE is a useful tool for improving students' scientific problem solving skills. Moreover, retention of problem solving skills is enhanced by utilizing more than one simulation.

  13. Defining the Simulation Technician Role: Results of a Survey-Based Study.

    PubMed

    Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L

    2015-10-01

    In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.

  14. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  15. Simulating Afterburn with LLNL Hydrocodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, L D

    2004-06-11

    Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effortmore » is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.« less

  16. In-flight simulation investigation of rotorcraft pitch-roll cross coupling

    NASA Technical Reports Server (NTRS)

    Watson, Douglas C.; Hindson, William S.

    1988-01-01

    An in-flight simulation experiment investigating the handling qualities effects of the pitch-roll cross-coupling characteristic of single-main-rotor helicopters is described. The experiment was conducted using the NASA/Army CH-47B variable stability helicopter with an explicit-model-following control system. The research is an extension of an earlier ground-based investigation conducted on the NASA Ames Research Center's Vertical Motion Simulator. The model developed for the experiment is for an unaugmented helicopter with cross-coupling implemented using physical rotor parameters. The details of converting the model from the simulation to use in flight are described. A frequency-domain comparison of the model and actual aircraft responses showing the fidelity of the in-flight simulation is described. The evaluation task was representative of nap-of-the-Earth maneuvering flight. The results indicate that task demands are important in determining allowable levels of coupling. In addition, on-axis damping characteristics influence the frequency-dependent characteristics of coupling and affect the handling qualities. Pilot technique, in terms of learned control crossfeeds, can improve performance and lower workload for particular types of coupling. The results obtained in flight corroborated the simulation results.

  17. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  18. Is This Real Life? Is This Just Fantasy?: Realism and Representations in Learning with Technology

    NASA Astrophysics Data System (ADS)

    Sauter, Megan Patrice

    Students often engage in hands-on activities during science learning; however, financial and practical constraints often limit the availability of these activities. Recent advances in technology have led to increases in the use of simulations and remote labs, which attempt to recreate hands-on science learning via computer. Remote labs and simulations are interesting from a cognitive perspective because they allow for different relations between representations and their referents. Remote labs are unique in that they provide a yoked representation, meaning that the representation of the lab on the computer screen is actually linked to that which it represents: a real scientific device. Simulations merely represent the lab and are not connected to any real scientific devices. However, the type of visual representations used in the lab may modify the effects of the lab technology. The purpose of this dissertation is to examine the relation between representation and technology and its effects of students' psychological experiences using online science labs. Undergraduates participated in two studies that investigated the relation between technology and representation. In the first study, participants performed either a remote lab or a simulation incorporating one of two visual representations, either a static image or a video of the equipment. Although participants in both lab conditions learned, participants in the remote lab condition had more authentic experiences. However, effects were moderated by the realism of the visual representation. Participants who saw a video were more invested and felt the experience was more authentic. In a second study, participants performed a remote lab and either saw the same video as in the first study, an animation, or the video and an animation. Most participants had an authentic experience because both representations evoked strong feelings of presence. However, participants who saw the video were more likely to believe the remote technology was real. Overall, the findings suggest that participants' experiences with technology were shaped by representation. Students had more authentic experiences using the remote lab than the simulation. However, incorporating visual representations that enhance presence made these experiences even more authentic and meaningful than afforded by the technology alone.

  19. Two-Plasmon Decay: Simulations and Experiments on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.; Colombant, D.

    2009-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other issues arising in the research toward inertial fusion energy. The relatively small KrF wavelength, according to widely used theories, raises the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments. By post-processing the results of the simulations we have designed experiments that have explored the use of simple threshold formulas (from developing theories) and help establish the soundness of our simulational approach. Turning to the targets proposed for ICF energy research, we have found that among the designs for the proposed Fusion Test Facility (Obenschain et al., Phys. Plasmas 13 056320 (2006)), are some that are below LPI thresholds. We have also studied high-gain KrF shock ignition designs and found that they are below LPI thresholds for most of the implosion, becoming susceptible to TPD only late in the pulse.

  20. A multidisciplinary approach to teach responses to weapons of mass destruction and terrorism using combined simulation modalities.

    PubMed

    Kyle, Richard R; Via, Darin K; Lowy, R Joel; Madsen, James M; Marty, Aileen M; Mongan, Paul D

    2004-03-01

    To reinforce concepts presented in the lectures; understand the complexity and speed of casualty and information generation during a Weapons of Mass Destruction and Terrorism (WMD/T) event; experience the novelty of combined weapons' effects; recognize the time course of the various chemical, biological, and radiation agents; and make challenging decisions with incomplete and conflicting information. Two environments simulated simultaneously: one a major trauma center emergency room (ER) with two patient simulators and several human actors; the other an Emergency Operations Command Center (EOC). Students for this course included: clinicians, scientists, military and intelligence officers, lawyers, administrators, and logistic personnel whose jobs involve planning and executing emergency response plans to WMD/T. SIMULATION SCRIPT: A WMD/T attack in Washington, D.C., has occurred. Clinical students performed in their real life roles in the simulated ER, while nonclinical students did the same in the simulated EOC. Six ER casualties with combined WMD/T injuries were presented and treated over 40 minutes. In the EOC, each person was given his or her role title with identification tag. The EOC scenario took cues from the action in the ER via two television (TV) news feeds and telephone calls from other Emergency Operations Assets. PERFORMANCE EXPECTATIONS: Students were expected to actively engage in their roles. Student performances were self-evaluated during the debriefing. DEBRIEFING: The two groups were reunited and debriefed utilizing disaster crisis resource management tools. ASSESSMENT OF EFFECTIVENESS: Students answered an 18-point questionnaire to help evaluate the usefulness and acceptance of multimodality patient simulation. Large-scale multimodality patient simulation can be used to train both clinicians and nonclinicians for future events of WMD/T. Students accepted the simulation experience and thought that scenario was appropriately realistic, complex, and overwhelming. Difficulties include the extensive man-hours involved in designing and presenting the live simulations. EOC-only sessions could be staged with only a few video cassette recorders, TVs, telephones, and callers.

Top