Sample records for simulation experiments designed

  1. Flexible Multi-Body Spacecraft Simulator: Design, Construction, and Experiments

    DTIC Science & Technology

    2017-12-01

    BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS by Adam L. Atwood December 2017 Thesis Advisor: Mark Karpenko Second...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FLEXIBLE MULTI-BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS 5...spacecraft simulator for use in testing optimal control-based slew and maneuver designs . The simulator is modified from an earlier prototype, which

  2. Conceptual Issues in Quantifying Unusualness and Conceiving Stochastic Experiments: Insights from Students' Experiences in Designing Sampling Simulations

    ERIC Educational Resources Information Center

    Saldanha, Luis

    2016-01-01

    This article reports on a classroom teaching experiment that engaged a group of high school students in designing sampling simulations within a computer microworld. The simulation-design activities aimed to foster students' abilities to conceive of contextual situations as stochastic experiments, and to engage them with the logic of hypothesis…

  3. Simulating Sustainment for an Unmanned Logistics System Concept of Operation in Support of Distributed Operations

    DTIC Science & Technology

    2017-06-01

    designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily in...systems, simulation, discrete event simulation, design of experiments, data analysis, simplekit, nearly orthogonal and balanced designs 15. NUMBER OF... designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily

  4. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  5. Students' Design of Experiments: An Inquiry Module on the Conduction of Heat

    ERIC Educational Resources Information Center

    Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.

    2010-01-01

    This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…

  6. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  7. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  8. A Program for Simulated Thermodynamic Experiments.

    ERIC Educational Resources Information Center

    Olds, Dan W.

    A time-sharing FORTRAN program is described. It was created to allow a student to design and perform classical thermodynamic experiments on three models of a working substance. One goal was to develop a simulation which gave the student maximum freedom and responsibility in the design of the experiment and provided only the primary experimental…

  9. A Simulation Modeling Approach Method Focused on the Refrigerated Warehouses Using Design of Experiment

    NASA Astrophysics Data System (ADS)

    Cho, G. S.

    2017-09-01

    For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.

  10. Design of virtual simulation experiment based on key events

    NASA Astrophysics Data System (ADS)

    Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu

    2018-06-01

    Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.

  11. Pyro shock simulation: Experience with the MIPS simulator

    NASA Technical Reports Server (NTRS)

    Dwyer, Thomas J.; Moul, David S.

    1988-01-01

    The Mechanical Impulse Pyro Shock (MIPS) Simulator at GE Astro Space Division is one version of a design that is in limited use throughout the aerospace industry, and is typically used for component shock testing at levels up to 10,000 response g's. Modifications to the force imput, table and component boundary conditions have allowed a range of test conditions to be achieved. Twelve different designs of components with weights up to 23 Kg are in the process or have completed qualification testing in the Dynamic Simulation Lab at GE in Valley Forge, Pa. A summary of the experience gained through the use of this simulator is presented as well as examples of shock experiments that can be readily simulated at the GE Astro MIPS facility.

  12. Use of Simulation Learning Experiences in Physical Therapy Entry-to-Practice Curricula: A Systematic Review

    PubMed Central

    Carnahan, Heather; Herold, Jodi

    2015-01-01

    ABSTRACT Purpose: To review the literature on simulation-based learning experiences and to examine their potential to have a positive impact on physiotherapy (PT) learners' knowledge, skills, and attitudes in entry-to-practice curricula. Method: A systematic literature search was conducted in the MEDLINE, CINAHL, Embase Classic+Embase, Scopus, and Web of Science databases, using keywords such as physical therapy, simulation, education, and students. Results: A total of 820 abstracts were screened, and 23 articles were included in the systematic review. While there were few randomized controlled trials with validated outcome measures, some discoveries about simulation can positively affect the design of the PT entry-to-practice curricula. Using simulators to provide specific output feedback can help students learn specific skills. Computer simulations can also augment students' learning experience. Human simulation experiences in managing the acute patient in the ICU are well received by students, positively influence their confidence, and decrease their anxiety. There is evidence that simulated learning environments can replace a portion of a full-time 4-week clinical rotation without impairing learning. Conclusions: Simulation-based learning activities are being effectively incorporated into PT curricula. More rigorously designed experimental studies that include a cost–benefit analysis are necessary to help curriculum developers make informed choices in curriculum design. PMID:25931672

  13. Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C. L.; Savage, B.; Johnson, B.

    This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.

  14. Implementation of Hydrodynamic Simulation Code in Shock Experiment Design for Alkali Metals

    NASA Astrophysics Data System (ADS)

    Coleman, A. L.; Briggs, R.; Gorman, M. G.; Ali, S.; Lazicki, A.; Swift, D. C.; Stubley, P. G.; McBride, E. E.; Collins, G.; Wark, J. S.; McMahon, M. I.

    2017-10-01

    Shock compression techniques enable the investigation of extreme P-T states. In order to probe off-Hugoniot regions of P-T space, target makeup and laser pulse parameters must be carefully designed. HYADES is a hydrodynamic simulation code which has been successfully utilised to simulate shock compression events and refine the experimental parameters required in order to explore new P-T states in alkali metals. Here we describe simulations and experiments on potassium, along with the techniques required to access off-Hugoniot states.

  15. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    DOE PAGES

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less

  16. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  17. Development and Formative Evaluation of Computer Simulated College Chemistry Experiments.

    ERIC Educational Resources Information Center

    Cavin, Claudia S.; Cavin, E. D.

    1978-01-01

    This article describes the design, preparation, and initial evaluation of a set of computer-simulated chemistry experiments. The experiments entailed the use of an atomic emission spectroscope and a single-beam visible absorption spectrophometer. (Author/IRT)

  18. Assess II - A simulated mission of Spacelab

    NASA Technical Reports Server (NTRS)

    Wegmann, H. M.; Hermann, R.; Wingett, C. M.; De Muizon, M.; Rouan, D.; Lena, P.; Wijnbergen, J.; Olthof, H.; Michel, K. W.; Werner, CH.

    1978-01-01

    For Assess II, the Spacelab mission simulation conducted in mid-1977, four payload specialists aboard a Convair 990 research aircraft performed six American and six European experiments during nine research flights each of six hours duration in order to evaluate the compatibility of training and experimental design. Mission organization and some initial data from the European experiments are reported. The experiments, conducted over the western U.S., involved infrared astronomy, solar brightness temperature, lidar, airglow TV, and a medical experiment for which physiological parameters were monitored. Conclusions concerning general principles of experiment design are discussed.

  19. Numerical simulation of experiments in the Giant Planet Facility

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1979-01-01

    Utilizing a series of existing computer codes, ablation experiments in the Giant Planet Facility are numerically simulated. Of primary importance is the simulation of the low Mach number shock layer that envelops the test model. The RASLE shock-layer code, used in the Jupiter entry probe heat-shield design, is adapted to the experimental conditions. RASLE predictions for radiative and convective heat fluxes are in good agreement with calorimeter measurements. In simulating carbonaceous ablation experiments, the RASLE code is coupled directly with the CMA material response code. For the graphite models, predicted and measured recessions agree very well. Predicted recession for the carbon phenolic models is 50% higher than that measured. This is the first time codes used for the Jupiter probe design have been compared with experiments.

  20. An Open-Source Arduino-based Controller for Mechanical Rain Simulators

    NASA Astrophysics Data System (ADS)

    Cantilina, K. K.

    2017-12-01

    Many commercial rain simulators currently used in hydrology rely on inflexible and outdated controller designs. These analog controllers typically only allow a handful of discrete parameter options, and do not support internal timing functions or continuously-changing parameters. A desire for finer control of rain simulation events necessitated the design and construction of a microcontroller-based controller, using widely available off-the-shelf components. A menu driven interface allows users to fine-tune simulation parameters without the need for training or experience with microcontrollers, and the accessibility of the Arduino IDE allows users with a minimum of programming and hardware experience to modify the controller program to suit the needs of individual experiments.

  1. CVT/PCS phase 1 integrated testing

    NASA Technical Reports Server (NTRS)

    Mcbrayer, R. O.; Steadman, J. D.

    1973-01-01

    Five breadboard experiments representing three Sortie Lab experiment disciplines were installed in a payload carrier simulator. A description of the experiments and the payload carrier simulator was provided. An assessment of the experiment interface with the simulator and an assessment of the simulator experiment support systems were presented. The results indicate that a hardware integrator for each experiment is essential; a crew chief, or mission specialist, for systems management and experimenter liaison is a vital function; a payload specialist is a practical concept for experiment integration and operation; an integration fixture for a complex experiment is required to efficiently integrate the experiment and carrier; simultaneous experiment utilization of simulator systems caused unexpected problems in meeting individual experiment requirements; experimenter traffic inside the dual-floor simulator did not hamper experiment operations; and the requirement for zero-g operation will provide a significant design challenge for some experiments.

  2. The Design and the Formative Evaluation of a Web-Based Course for Simulation Analysis Experiences

    ERIC Educational Resources Information Center

    Tao, Yu-Hui; Guo, Shin-Ming; Lu, Ya-Hui

    2006-01-01

    Simulation output analysis has received little attention comparing to modeling and programming in real-world simulation applications. This is further evidenced by our observation that students and beginners acquire neither adequate details of knowledge nor relevant experience of simulation output analysis in traditional classroom learning. With…

  3. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  4. Two-Plasmon Decay: Simulations and Experiments on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.; Colombant, D.

    2009-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other issues arising in the research toward inertial fusion energy. The relatively small KrF wavelength, according to widely used theories, raises the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments. By post-processing the results of the simulations we have designed experiments that have explored the use of simple threshold formulas (from developing theories) and help establish the soundness of our simulational approach. Turning to the targets proposed for ICF energy research, we have found that among the designs for the proposed Fusion Test Facility (Obenschain et al., Phys. Plasmas 13 056320 (2006)), are some that are below LPI thresholds. We have also studied high-gain KrF shock ignition designs and found that they are below LPI thresholds for most of the implosion, becoming susceptible to TPD only late in the pulse.

  5. An expert system for simulating electric loads aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kukich, George; Dolce, James L.

    1990-01-01

    Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.

  6. Design and Analysis of AN Static Aeroelastic Experiment

    NASA Astrophysics Data System (ADS)

    Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang

    2016-06-01

    Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.

  7. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  8. Decision Making in Computer-Simulated Experiments.

    ERIC Educational Resources Information Center

    Suits, J. P.; Lagowski, J. J.

    A set of interactive, computer-simulated experiments was designed to respond to the large range of individual differences in aptitude and reasoning ability generally exhibited by students enrolled in first-semester general chemistry. These experiments give students direct experience in the type of decision making needed in an experimental setting.…

  9. Advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.

  10. Computer Simulation of Human Service Program Evaluations.

    ERIC Educational Resources Information Center

    Trochim, William M. K.; Davis, James E.

    1985-01-01

    Describes uses of computer simulations for the context of human service program evaluation. Presents simple mathematical models for most commonly used human service outcome evaluation designs (pretest-posttest randomized experiment, pretest-posttest nonequivalent groups design, and regression-discontinuity design). Translates models into single…

  11. Health care planning and education via gaming-simulation: a two-stage experiment.

    PubMed

    Gagnon, J H; Greenblat, C S

    1977-01-01

    A two-stage process of gaming-simulation design was conducted: the first stage of design concerned national planning for hemophilia care; the second stage of design was for gaming-simulation concerning the problems of hemophilia patients and health care providers. The planning design was intended to be adaptable to large-scale planning for a variety of health care problems. The educational game was designed using data developed in designing the planning game. A broad range of policy-makers participated in the planning game.

  12. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  13. Flight Simulation for the Study of Skill Transfer.

    ERIC Educational Resources Information Center

    Lintern, Gavan

    1992-01-01

    Discusses skill transfer as a human performance issue based on experiences with computerized flight simulators. Highlights include the issue of similarity; simulation and the design of training devices; an information theory of transfer; invariants for flight control; and experiments involving the transfer of flight skills. (21 references) (LRW)

  14. Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator

    ERIC Educational Resources Information Center

    Shalliker, R. A.; Kayillo, S.; Dennis, G. R.

    2008-01-01

    Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…

  15. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    PubMed

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  17. An evaluation of different setups for simulating lighting characteristics

    NASA Astrophysics Data System (ADS)

    Salters, Bart; Murdoch, Michael; Sekulovksi, Dragan; Chen, Shih-Han; Seuntiens, Pieter

    2012-03-01

    The advance of technology continuously enables new luminaire designs and concepts. Evaluating such designs has traditionally been done using actual prototypes, in a real environment. The iterations needed to build, verify, and improve luminaire designs incur substantial costs and slow down the design process. A more attractive way is to evaluate designs using simulations, as they can be made cheaper and quicker for a wider variety of prototypes. However, the value of such simulations is determined by how closely they predict the outcome of actual perception experiments. In this paper, we discuss an actual perception experiment including several lighting settings in a normal office environment. The same office environment also has been modeled using different software tools, and photo-realistic renderings have been created of these models. These renderings were subsequently processed using various tonemapping operators in preparation for display. The total imaging chain can be considered a simulation setup, and we have executed several perception experiments on different setups. Our real interest is in finding which imaging chain gives us the best result, or in other words, which of them yields the closest match between virtual and real experiment. To answer this question, first of all an answer has to be found to the question, "which simulation setup matches the real world best?" As there is no unique, widely accepted measure to describe the performance of a certain setup, we consider a number of options and discuss the reasoning behind them along with their advantages and disadvantages.

  18. Numerical Simulation and Experimental Study of a Dental Handpiece Air Turbine

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Neng; Chiang, Hsiao-Wei D.; Chang, Ya-Yi

    2011-06-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, however, little work has been reported on their performance. In dental air turbine handpieces, the types of flow channel and turbine blade shape can have very different designs. These different designs can have major influence on the torque, rotating speed, and power performance. This research is focused on the turbine blade and the flow channel designs. Using numerical simulation and experiments, the key design parameters which influence the performance of dental hand pieces can be studied. Three types of dental air turbine designs with different turbine blades, nozzle angles, nozzle flow channels, and shroud clearances were tested and analyzed. Very good agreement was demonstrated between the numerical simulation analyses and the experiments. Using the analytical model, parametric studies were performed to identify key design parameters.

  19. Facial recognition using enhanced pixelized image for simulated visual prosthesis.

    PubMed

    Li, Ruonan; Zhhang, Xudong; Zhang, Hui; Hu, Guanshu

    2005-01-01

    A simulated face recognition experiment using enhanced pixelized images is designed and performed for the artificial visual prosthesis. The results of the simulation reveal new characteristics of visual performance in an enhanced pixelization condition, and then new suggestions on the future design of visual prosthesis are provided.

  20. Simulation of Aircraft Sortie Generation Under an Autonomic Logistics System

    DTIC Science & Technology

    2016-12-01

    56 Design of Experiment...Figure 8. Pre -flight Operations ......................................................................................... 40 Figure 9. Sortie...Critical Factors and Their Associated Levels ................................................... 57 xiii Table 18. Design of Experiment

  1. Space-filling designs for computer experiments: A review

    DOE PAGES

    Joseph, V. Roshan

    2016-01-29

    Improving the quality of a product/process using a computer simulator is a much less expensive option than the real physical testing. However, simulation using computationally intensive computer models can be time consuming and therefore, directly doing the optimization on the computer simulator can be infeasible. Experimental design and statistical modeling techniques can be used for overcoming this problem. This article reviews experimental designs known as space-filling designs that are suitable for computer simulations. In the review, a special emphasis is given for a recently developed space-filling design called maximum projection design. Furthermore, its advantages are illustrated using a simulation conductedmore » for optimizing a milling process.« less

  2. Space-filling designs for computer experiments: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, V. Roshan

    Improving the quality of a product/process using a computer simulator is a much less expensive option than the real physical testing. However, simulation using computationally intensive computer models can be time consuming and therefore, directly doing the optimization on the computer simulator can be infeasible. Experimental design and statistical modeling techniques can be used for overcoming this problem. This article reviews experimental designs known as space-filling designs that are suitable for computer simulations. In the review, a special emphasis is given for a recently developed space-filling design called maximum projection design. Furthermore, its advantages are illustrated using a simulation conductedmore » for optimizing a milling process.« less

  3. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  4. A Comparison of Two Balance Calibration Model Building Methods

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Ulbrich, Norbert

    2007-01-01

    Simulated strain-gage balance calibration data is used to compare the accuracy of two balance calibration model building methods for different noise environments and calibration experiment designs. The first building method obtains a math model for the analysis of balance calibration data after applying a candidate math model search algorithm to the calibration data set. The second building method uses stepwise regression analysis in order to construct a model for the analysis. Four balance calibration data sets were simulated in order to compare the accuracy of the two math model building methods. The simulated data sets were prepared using the traditional One Factor At a Time (OFAT) technique and the Modern Design of Experiments (MDOE) approach. Random and systematic errors were introduced in the simulated calibration data sets in order to study their influence on the math model building methods. Residuals of the fitted calibration responses and other statistical metrics were compared in order to evaluate the calibration models developed with different combinations of noise environment, experiment design, and model building method. Overall, predicted math models and residuals of both math model building methods show very good agreement. Significant differences in model quality were attributable to noise environment, experiment design, and their interaction. Generally, the addition of systematic error significantly degraded the quality of calibration models developed from OFAT data by either method, but MDOE experiment designs were more robust with respect to the introduction of a systematic component of the unexplained variance.

  5. Convoy Protection under Multi-Threat Scenario

    DTIC Science & Technology

    2017-06-01

    14. SUBJECT TERMS antisubmarine warfare, convoy protection, screening, design of experiments, agent-based simulation 15. NUMBER OF...46 5. Scenarios 33–36 (Red Submarine Tactic-2) ...............................46 IV. DESIGN OF EXPERIMENT...47 C. NEARLY ORTHOGONAL LATIN HYPERCUBE DESIGN ............51 V. DATA ANALYSIS

  6. Predicting mesoscale microstructural evolution in electron beam welding

    DOE PAGES

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; ...

    2016-03-16

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less

  7. A Simple Classification Model for Debriefing Simulation Games

    ERIC Educational Resources Information Center

    Peters, Vincent A. M.; Vissers, Geert A. N.

    2004-01-01

    Debriefing is an important phase in using simulation games. Participants are invited to make a connection between experiences gained from playing the game and experiences in real-life situations. Thus, debriefing is the phase meant to encourage learning from the simulation game. Although design and practice of debriefing sessions should be aligned…

  8. How to Augment the Learning Impact of Computer Simulations? The Designs and Effects of Interactivity and Scaffolding

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi

    2017-01-01

    Two investigations were conducted in this study. In the first experiment, the effects of two types of interactivity with a computer simulation were compared: experimentation versus observation interactivity. Experimentation interactivity allows students to use simulations to conduct virtual experiments, whereas observation interactivity allows…

  9. Standing wave design and experimental validation of a tandem simulated moving bed process for insulin purification.

    PubMed

    Xie, Yi; Mun, Sungyong; Kim, Jinhyun; Wang, Nien-Hwa Linda

    2002-01-01

    A tandem simulated moving bed (SMB) process for insulin purification has been proposed and validated experimentally. The mixture to be separated consists of insulin, high molecular weight proteins, and zinc chloride. A systematic approach based on the standing wave design, rate model simulations, and experiments was used to develop this multicomponent separation process. The standing wave design was applied to specify the SMB operating conditions of a lab-scale unit with 10 columns. The design was validated with rate model simulations prior to experiments. The experimental results show 99.9% purity and 99% yield, which closely agree with the model predictions and the standing wave design targets. The agreement proves that the standing wave design can ensure high purity and high yield for the tandem SMB process. Compared to a conventional batch SEC process, the tandem SMB has 10% higher yield, 400% higher throughput, and 72% lower eluant consumption. In contrast, a design that ignores the effects of mass transfer and nonideal flow cannot meet the purity requirement and gives less than 96% yield.

  10. One-Dimensional Collision Carts Computer Model and Its Design Ideas for Productive Experiential Learning

    ERIC Educational Resources Information Center

    Wee, Loo Kang

    2012-01-01

    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a…

  11. Simulations of Foils Irradiated by Finite Laser Spots

    NASA Astrophysics Data System (ADS)

    Phillips, Lee

    2006-10-01

    Recent proposed designs (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities with lower laser energies combined with higher irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser is expected to minimize LPI, and this is being studied by experiments on NRL's NIKE laser. Here we report on simulations aimed at designing and interpreting these experiments. The 2d simulations employ a modification of the FAST code to ablate plasma from CH and DT foils using laser pulses with arbitrary spatial and temporal profiles. These include the customary hypergaussian NIKE profile, gaussian profiles, and combinations of these. The simulations model the structure of the ablating plasma and the absorption of the laser light, providing parameters for design of the experiment and indicating where the relevant LPI (two-plasmon, Raman) may be observed.

  12. Advancing Virtual Patient Simulations through Design Research and Inter"PLAY": Part II--Integration and Field Test

    ERIC Educational Resources Information Center

    Hirumi, Atsusi; Johnson, Teresa; Reyes, Ramsamooj Javier; Lok, Benjamin; Johnsen, Kyle; Rivera-Gutierrez, Diego J.; Bogert, Kenneth; Kubovec, Stacey; Eakins, Michael; Kleinsmith, Andrea; Bellew, Michael; Cendan, Juan

    2016-01-01

    In Part I of this two-part series, we examined the design and development of NERVE: A virtual patient simulation created to give medical students standardized experiences in interviewing, examining, and diagnosing virtual patients with cranial nerve disorders. We illustrated key design features and discussed how design-based research studies…

  13. Assessing the Two-Plasmon Decay Threat Through Simulations and Experiments on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.

    2010-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The comparatively short KrF wavelength is expected to raise the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have have allowed us to explore the validity of simple threshold formulas and help establish the accuracy of our simulations. We have also studied proposed high-gain shock ignition designs and devised experiments that can approach the relevant scalelength-temperature regime, allowing us a potential experimental method to study the LPI threat to these designs by direct observation. Through FAST3d studies of shock-ignited and conventional direct-drive designs with KrF (248 nm) and 3rd harmonic (351nm) drivers, we examine the benefits of the shorter wavelength KrF light in reducing the LPI threat.

  14. DEPEND: A simulation-based environment for system level dependability analysis

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar; Iyer, Ravishankar K.

    1992-01-01

    The design and evaluation of highly reliable computer systems is a complex issue. Designers mostly develop such systems based on prior knowledge and experience and occasionally from analytical evaluations of simplified designs. A simulation-based environment called DEPEND which is especially geared for the design and evaluation of fault-tolerant architectures is presented. DEPEND is unique in that it exploits the properties of object-oriented programming to provide a flexible framework with which a user can rapidly model and evaluate various fault-tolerant systems. The key features of the DEPEND environment are described, and its capabilities are illustrated with a detailed analysis of a real design. In particular, DEPEND is used to simulate the Unix based Tandem Integrity fault-tolerance and evaluate how well it handles near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing, re-integration policies, and workload dependent repair times which affect how the system handles near-coincident errors are also evaluated. Issues such as the method used by DEPEND to simulate error latency and the time acceleration technique that provides enormous simulation speed up are also discussed. Unlike any other simulation-based dependability studies, the use of these approaches and the accuracy of the simulation model are validated by comparing the results of the simulations, with measurements obtained from fault injection experiments conducted on a production Tandem Integrity machine.

  15. Design studies on the 4π γ-ray calorimeter for the ETF experiment at HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Yue, Ke; Xu, Hu-Shan; Sun, Zhi-Yu; Su, Guang-Hui; Wang, Jian-Song; Zheng, Chuan; Li, Song-Lin; Hu, Zheng-Guo; Chen, Rou-Fu; Xiao, Zhi-Gang; Hu, Qiang; Zhang, Xue-Ying; Yu, Yu-Hong; Chen, Jun-Ling

    2011-01-01

    A high detection efficiency calorimeter which is used to detect γ-rays with energies from 1 MeV up to 10 MeV as well as light charged particles has been proposed. Design of the geometry, results of the crystal tests and Monte Carlo simulations are presented in this paper. The simulation results confirm that the calorimeter can obtain high detection efficiency and good energy resolution with the current designed geometry. And the calorimeter is competent for the future External Target Facility (ETF) experiments.

  16. Assessing the Effectiveness of a Computer Simulation for Teaching Ecological Experimental Design

    ERIC Educational Resources Information Center

    Stafford, Richard; Goodenough, Anne E.; Davies, Mark S.

    2010-01-01

    Designing manipulative ecological experiments is a complex and time-consuming process that is problematic to teach in traditional undergraduate classes. This study investigates the effectiveness of using a computer simulation--the Virtual Rocky Shore (VRS)--to facilitate rapid, student-centred learning of experimental design. We gave a series of…

  17. Functional Allocation with Airborne Self-Separation Evaluated in a Piloted Simulation

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Murdoch, Jennifer L.; Chamberlain, James P.; Consiglio, Maria C.; Hoardley, Sherwood T.; Hubbs, Clay E.; Palmer, Michael T.

    2010-01-01

    A human-in-the-loop simulation experiment was designed and conducted to evaluate an airborne self-separation concept. The activity supports the National Aeronautics and Space Administration s (NASA) research focus on function allocation for separation assurance. The objectives of the experiment were twofold: (1) use experiment design features in common with a companion study of ground-based automated separation assurance to promote comparability, and (2) assess agility of self-separation operations in managing trajectory-changing events in high traffic density, en-route operations with arrival time constraints. This paper describes the experiment and presents initial results associated with subjective workload ratings and group discussion feedback obtained from the experiment s commercial transport pilot participants.

  18. Analysis of a Neutronic Experiment on a Simulated Mercury Spallation Neutron Target Assembly Bombarded by Giga-Electron-Volt Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maekawa, Fujio; Meigo, Shin-ichiro; Kasugai, Yoshimi

    2005-05-15

    A neutronic benchmark experiment on a simulated spallation neutron target assembly was conducted by using the Alternating Gradient Synchrotron at Brookhaven National Laboratory and was analyzed to investigate the prediction capability of Monte Carlo simulation codes used in neutronic designs of spallation neutron sources. The target assembly consisting of a mercury target, a light water moderator, and a lead reflector was bombarded by 1.94-, 12-, and 24-GeV protons, and the fast neutron flux distributions around the target and the spectra of thermal neutrons leaking from the moderator were measured in the experiment. In this study, the Monte Carlo particle transportmore » simulation codes NMTC/JAM, MCNPX, and MCNP-4A with associated cross-section data in JENDL and LA-150 were verified based on benchmark analysis of the experiment. As a result, all the calculations predicted the measured quantities adequately; calculated integral fluxes of fast and thermal neutrons agreed approximately within {+-}40% with the experiments although the overall energy range encompassed more than 12 orders of magnitude. Accordingly, it was concluded that these simulation codes and cross-section data were adequate for neutronics designs of spallation neutron sources.« less

  19. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan-face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan-face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3- Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCP(sub avg), the circumferential distortion level at the engine fan-face.

  20. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R., Jr.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCPavg, the circumferential distortion level at the engine fan face.

  1. HEBS and Binary 1-sinc masks simulations, HCIT experiments and results

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Bala K.; Hoppe, Dan; Wilson, Dan; Echternach, Pierre; Trauger, John; Halverson, Peter; Niessner, Al; Shi, Fang; Lowman, Andrew

    2005-01-01

    Based on preliminary experiments and results with a binary 1-sinc mask in the HCIT early in August 2004, we planned for a detailed experiment to compare the performance of HEBS and Binary masks under nearly identical conditions in the HCIT. This report details the design and fabrication of the masks, simulated predictions, and experimental results.

  2. Observing System Simulation Experiments: An Overview

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2016-01-01

    An overview of Observing System Simulation Experiments (OSSEs) will be given, with focus on calibration and validation of OSSE frameworks. Pitfalls and practice will be discussed, including observation error characteristics, incestuousness, and experimental design. The potential use of OSSEs for investigation of the behaviour of data assimilation systems will be explored, including some results from experiments using the NASAGMAO OSSE.

  3. Teaching emergency medical services management skills using a computer simulation exercise.

    PubMed

    Hubble, Michael W; Richards, Michael E; Wilfong, Denise

    2011-02-01

    Simulation exercises have long been used to teach management skills in business schools. However, this pedagogical approach has not been reported in emergency medical services (EMS) management education. We sought to develop, deploy, and evaluate a computerized simulation exercise for teaching EMS management skills. Using historical data, a computer simulation model of a regional EMS system was developed. After validation, the simulation was used in an EMS management course. Using historical operational and financial data of the EMS system under study, students designed an EMS system and prepared a budget based on their design. The design of each group was entered into the model that simulated the performance of the EMS system. Students were evaluated on operational and financial performance of their system design and budget accuracy and then surveyed about their experiences with the exercise. The model accurately simulated the performance of the real-world EMS system on which it was based. The exercise helped students identify operational inefficiencies in their system designs and highlighted budget inaccuracies. Most students rated the exercise as moderately or very realistic in ambulance deployment scheduling, budgeting, personnel cost calculations, demand forecasting, system design, and revenue projections. All students indicated the exercise was helpful in gaining a top management perspective, and 89% stated the exercise was helpful in bridging the gap between theory and reality. Preliminary experience with a computer simulator to teach EMS management skills was well received by students in a baccalaureate paramedic program and seems to be a valuable teaching tool. Copyright © 2011 Society for Simulation in Healthcare

  4. Simulation Games as Advance Organizers in the Learning of Social Science Materials. Experiments 1-3.

    ERIC Educational Resources Information Center

    Livingston, Samuel A.

    Three classroom experiments were conducted using a simulation game, Trade and Develop, designed for classroom use with students in grade six through twelve economic geography classes. The hypotheses tested were: a simulation game will motivate students to learn subject matter related to the game, and, the game will facilitate learning by acting as…

  5. Simulation Exploration Experience 2018 Overview

    NASA Technical Reports Server (NTRS)

    Paglialonga, Stephen; Elfrey, Priscilla; Crues, Edwin Z.

    2018-01-01

    The Simulation Exploration Experience (SEE) joins students, industry, professional associations, and faculty together for an annual modeling and simulation (M&S) challenge. SEE champions collaborative collegiate-level modeling and simulation by providing a venue for students to work in highly dispersed inter-university teams to design, develop, test, and execute simulated missions associated with space exploration. Participating teams gain valuable knowledge, skills, and increased employability by working closely with industry professionals, NASA, and faculty advisors. This presentation gives and overview of the SEE and the upcoming 2018 SEE event.

  6. Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2017-01-01

    Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007

  7. Simulations of a Molecular Cloud experiment using CRASH

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  8. Transonic aerodynamic design experience

    NASA Technical Reports Server (NTRS)

    Bonner, E.

    1989-01-01

    Advancements have occurred in transonic numerical simulation that place aerodynamic performance design into a relatively well developed status. Efficient broad band operating characteristics can be reliably developed at the conceptual design level. Recent aeroelastic and separated flow simulation results indicate that systematic consideration of an increased range of design problems appears promising. This emerging capability addresses static and dynamic structural/aerodynamic coupling and nonlinearities associated with viscous dominated flows.

  9. High Powered Rocketry: Design, Construction, and Launching Experience and Analysis

    ERIC Educational Resources Information Center

    Paulson, Pryce; Curtis, Jarret; Bartel, Evan; Cyr, Waycen Owens; Lamsal, Chiranjivi

    2018-01-01

    In this study, the nuts and bolts of designing and building a high powered rocket have been presented. A computer simulation program called RockSim was used to design the rocket. Simulation results are consistent with time variations of altitude, velocity, and acceleration obtained in the actual flight. The actual drag coefficient was determined…

  10. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M.; Wang, Q.; Scholbrock, A.

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  11. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjöholm, M.

    2016-09-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign.

  12. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE PAGES

    Churchfield, M.; Wang, Q.; Scholbrock, A.; ...

    2016-10-03

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  13. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.

    2014-10-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.

  14. Improvements in hover display dynamics for a combat helicopter

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Schroeder, Jeffery A.

    1993-01-01

    This paper describes a piloted simulation conducted on the NASA Ames Vertical Motion Simulator. The objective of the experiment was to investigate the handling qualities benefits attainable using new display law design methods for hover displays. The new display laws provide improved methods to specify the behavior of the display symbol that predicts the vehicle's ground velocity in the horizontal plane; it is the primary symbol that the pilot uses to control aircraft horizontal position. The display law design was applied to the Apache helmet-mounted display format, using the Apache vehicle dynamics to tailor the dynamics of the velocity predictor symbol. The representations of the Apache vehicle used in the display design process and in the simulation were derived from flight data. During the simulation, the new symbol dynamics were seen to improve the pilots' ability to maneuver about hover in poor visual cuing environments. The improvements were manifested in pilot handling qualities ratings and in measured task performance. The paper details the display design techniques, the experiment design and conduct, and the results.

  15. Alpha LAMP Integration Facility

    NASA Technical Reports Server (NTRS)

    Oshiro, Richard; Sowers, Dennis; Gargiulo, Joe; Mcgahey, Mark

    1994-01-01

    This paper describes the activity recently completed to meet the simulated space environment requirements for the ground-based testing of an integrated Space Based Laser (SBL) system experiment. The need to maintain optical alignment in the challenging dynamic environment of the pressure recovery system required to simulate space dominated the design requirements. A robust system design was established which minimized the total program costs, most notably by reducing the cost of integrating the components of the experiment. The components of the experiment are integrated on an optical bench in a clean area adjacent to the vacuum chamber and moved on air bearings into the chamber for testing.

  16. Feasibility analysis on integration of luminous environment measuring and design based on exposure curve calibration

    NASA Astrophysics Data System (ADS)

    Zou, Yuan; Shen, Tianxing

    2013-03-01

    Besides illumination calculating during architecture and luminous environment design, to provide more varieties of photometric data, the paper presents combining relation between luminous environment design and SM light environment measuring system, which contains a set of experiment devices including light information collecting and processing modules, and can offer us various types of photometric data. During the research process, we introduced a simulation method for calibration, which mainly includes rebuilding experiment scenes in 3ds Max Design, calibrating this computer aid design software in simulated environment under conditions of various typical light sources, and fitting the exposure curves of rendered images. As analytical research went on, the operation sequence and points for attention during the simulated calibration were concluded, connections between Mental Ray renderer and SM light environment measuring system were established as well. From the paper, valuable reference conception for coordination between luminous environment design and SM light environment measuring system was pointed out.

  17. Optical simulations for experimental networks: lessons from MONET

    NASA Astrophysics Data System (ADS)

    Richards, Dwight H.; Jackel, Janet L.; Goodman, Matthew S.; Roudas, Ioannis; Wagner, Richard E.; Antoniades, Neophytos

    1999-08-01

    We have used optical simulations as a means of setting component requirements, assessing component compatibility, and designing experiments in the MONET (Multiwavelength Optical Networking) Project. This paper reviews the simulation method, gives some examples of the types of simulations that have been performed, and discusses the validation of the simulations.

  18. Blast Load Simulator Experiments for Computational Model Validation Report 3

    DTIC Science & Technology

    2017-07-01

    establish confidence in the results produced by the simulations. This report describes a set of replicate experiments in which a small, non - responding steel...designed to simulate blast waveforms for explosive yields up to 20,000 lb of TNT equivalent at a peak reflected pressure up to 80 psi and a peak...the pressure loading on a non - responding box-type structure at varying obliquities located in the flow of the BLS simulated blast environment for

  19. Verification and Validation of Requirements on the CEV Parachute Assembly System Using Design of Experiments

    NASA Technical Reports Server (NTRS)

    Schulte, Peter Z.; Moore, James W.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project conducts computer simulations to verify that flight performance requirements on parachute loads and terminal rate of descent are met. Design of Experiments (DoE) provides a systematic method for variation of simulation input parameters. When implemented and interpreted correctly, a DoE study of parachute simulation tools indicates values and combinations of parameters that may cause requirement limits to be violated. This paper describes one implementation of DoE that is currently being developed by CPAS, explains how DoE results can be interpreted, and presents the results of several preliminary studies. The potential uses of DoE to validate parachute simulation models and verify requirements are also explored.

  20. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  1. Extending the FairRoot framework to allow for simulation and reconstruction of free streaming data

    NASA Astrophysics Data System (ADS)

    Al-Turany, M.; Klein, D.; Manafov, A.; Rybalchenko, A.; Uhlig, F.

    2014-06-01

    The FairRoot framework is the standard framework for simulation, reconstruction and data analysis for the FAIR experiments. The framework is designed to optimise the accessibility for beginners and developers, to be flexible and to cope with future developments. FairRoot enhances the synergy between the different physics experiments. As a first step toward simulation of free streaming data, the time based simulation was introduced to the framework. The next step is the event source simulation. This is achieved via a client server system. After digitization the so called "samplers" can be started, where sampler can read the data of the corresponding detector from the simulation files and make it available for the reconstruction clients. The system makes it possible to develop and validate the online reconstruction algorithms. In this work, the design and implementation of the new architecture and the communication layer will be described.

  2. Interpreting the NLN Jeffries Framework in the context of Nurse Educator preparation.

    PubMed

    Young, Patricia K; Shellenbarger, Teresa

    2012-08-01

    The NLN Jeffries Framework describing simulation in nursing education has been used widely to guide construction of human patient simulation scenarios and serve as a theoretical framework for research on the use of simulation. This framework was developed with a focus on prelicensure nursing education. However, use of human patient simulation scenarios is also a way of providing practice experiences for graduate students learning the educator role. High-fidelity human patient simulation offers nurse educator faculty a unique opportunity to cultivate the practical knowledge of teaching in an interactive and dynamic environment. This article describes how the components of The NLN Jeffries Framework can help to guide simulation design for nurse educator preparation. Adapting the components of the framework-which include teacher, student, educational practices, design characteristics, and outcomes-helps to ensure that future faculty gain hands-on experience with nurse educator core competencies. Copyright 2012, SLACK Incorporated.

  3. Flexible Space-Filling Designs for Complex System Simulations

    DTIC Science & Technology

    2013-06-01

    interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations

  4. Design and implementation of an internet-based electrical engineering laboratory.

    PubMed

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  5. Design, construction, and evaluation of a 1:8 scale model binaural manikin.

    PubMed

    Robinson, Philip; Xiang, Ning

    2013-03-01

    Many experiments in architectural acoustics require presenting listeners with simulations of different rooms to compare. Acoustic scale modeling is a feasible means to create accurate simulations of many rooms at reasonable cost. A critical component in a scale model room simulation is a receiver that properly emulates a human receiver. For this purpose, a scale model artificial head has been constructed and tested. This paper presents the design and construction methods used, proper equalization procedures, and measurements of its response. A headphone listening experiment examining sound externalization with various reflection conditions is presented that demonstrates its use for psycho-acoustic testing.

  6. A User’s Guide to the Brave New World of Designing Simulation Experiments. State-of-the-Art Review

    DTIC Science & Technology

    2005-01-01

    Bardhan 1995, Saltelli et al. 1999, or Sanchez and Wu 2003). 4.8. Crossed and Combined Array Designs Selecting designs for finding robust solutions falls...5th ed. Wiley, New York. Morrice, D. J., I. R. Bardhan . 1995. A weighted least squares approach to computer simulation factor screening. Oper. Res

  7. On Improved Least Squares Regression and Artificial Neural Network Meta-Models for Simulation via Control Variates

    DTIC Science & Technology

    2016-09-15

    18] under the context of robust parameter design for simulation. Bellucci’s technique is used in this research, primarily because the interior -point...Fundamentals of Radial Basis Neural Network (RBNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2.2 Design of Experiments...with Neural Nets . . . . . . . . . . . . . 31 1.2.2.3 Factorial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.2.4

  8. An Introduction to Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2017-01-01

    Observing System Simulation Experiments (OSSEs) are used to estimate the potential impact of proposed new instruments and data on numerical weather prediction. OSSEs can also be used to help design new observing platforms and to investigate the behavior of data assimilation systems. A basic overview of how to design and perform an OSSE will be given, as well as best practices and pitfalls. Some examples using the OSSE framework developed at the NASA Global Modeling and Assimilation Office will be shown.

  9. Single element injector testing for STME injector technology

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.; Davis, J.

    1992-01-01

    An oxidizer-swirled coaxial element injector is being developed for application in the liquid oxygen/gaseous hydrogen Space Transportation Main Engine (STME) for the National Launch System (NLS) vehicle. This paper reports on the first two parts of a four part single injector element study for optimization of the STME injector design. Measurements of Rupe mixing efficiency and atomization characteristics are reported for single element versions of injection elements from two multielement injectors that have been recently hot fire tested. Rather than attempting to measure a definitive mixing efficiency or droplet size parameters of these injector elements, the purpose of these experiments was to provide a baseline comparison for evaluating future injector element design modifications. Hence, all the experiments reported here were conducted with cold flow simulants to nonflowing, ambient conditions. Mixing experiments were conducted with liquid/liquid simulants to provide economical trend data. Atomization experiments were conducted with liquid/gas simulants without backpressure. The results, despite significant differences from hot fire conditions, were found to relate to mixing and atomization parameters deduced from the hot fire testing, suggesting that these experiments are valid for trend analyses. Single element and subscale multielement hot fire testing will verify optimized designs before committing to fullscale fabrication.

  10. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.

    2003-01-01

    A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.

  11. Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Kanasan Moorthy, Shangkari K.

    2013-06-01

    The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENTTM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.

  12. Simulations in the Consumer Economics Classroom. Consumer Education Training Module.

    ERIC Educational Resources Information Center

    Kachaturoff, Grace

    This inservice manual provides guidelines to help elementary, secondary, and adult education teachers select, use, and design simulation experiences for consumer education. Four example simulations provide students with opportunities to develop decision-making skills as consumers. Simulations may be used as an introductory, developmental, or…

  13. Observability of ionospheric space-time structure with ISR: A simulation study

    NASA Astrophysics Data System (ADS)

    Swoboda, John; Semeter, Joshua; Zettergren, Matthew; Erickson, Philip J.

    2017-02-01

    The sources of error from electronically steerable array (ESA) incoherent scatter radar (ISR) systems are investigated both theoretically and with use of an open-source ISR simulator, developed by the authors, called Simulator for ISR (SimISR). The main sources of error incorporated in the simulator include statistical uncertainty, which arises due to nature of the measurement mechanism and the inherent space-time ambiguity from the sensor. SimISR can take a field of plasma parameters, parameterized by time and space, and create simulated ISR data at the scattered electric field (i.e., complex receiver voltage) level, subsequently processing these data to show possible reconstructions of the original parameter field. To demonstrate general utility, we show a number of simulation examples, with two cases using data from a self-consistent multifluid transport model. Results highlight the significant influence of the forward model of the ISR process and the resulting statistical uncertainty on plasma parameter measurements and the core experiment design trade-offs that must be made when planning observations. These conclusions further underscore the utility of this class of measurement simulator as a design tool for more optimal experiment design efforts using flexible ESA class ISR systems.

  14. Collaborative Classroom Simulation (CCS): An Innovative Pedagogy Using Simulation in Nursing Education.

    PubMed

    Berndt, Jodi; Dinndorf-Hogenson, Georgia; Herheim, Rena; Hoover, Carrie; Lanc, Nicole; Neuwirth, Janet; Tollefson, Bethany

    2015-01-01

    Collaborative Classroom Simulation (CCS) is a pedagogy designed to provide a simulation learning experience for a classroom of students simultaneously through the use of unfolding case scenarios. The purpose of this descriptive study was to explore the effectiveness of CCS based on student perceptions. Baccalaureate nursing students (n = 98) participated in the study by completing a survey after participation in the CCS experience. Opportunities for collaboration, clinical judgment, and participation as both observer and active participant were seen as strengths of the experience. Developed as a method to overcome barriers to simulation, CCS was shown to be an effective active learning technique that may prove to be sustainable.

  15. SSSFD manipulator engineering using statistical experiment design techniques

    NASA Technical Reports Server (NTRS)

    Barnes, John

    1991-01-01

    The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.

  16. Visual monitoring of autonomous life sciences experimentation

    NASA Technical Reports Server (NTRS)

    Blank, G. E.; Martin, W. N.

    1987-01-01

    The design and implementation of a computerized visual monitoring system to aid in the monitoring and control of life sciences experiments on board a space station was investigated. A likely multiprocessor design was chosen, a plausible life science experiment with which to work was defined, the theoretical issues involved in the programming of a visual monitoring system for the experiment was considered on the multiprocessor, a system for monitoring the experiment was designed, and simulations of such a system was implemented on a network of Apollo workstations.

  17. Creating an Alternate Reality: Critical, Creative, and Empathic Thinking Generated in the "Global Village Playground" Capstone Experience

    ERIC Educational Resources Information Center

    Dondlinger, Mary Jo; Wilson, Douglas A.

    2012-01-01

    The "Global Village Playground" ("GVP") was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering critical and creative thinking. In the "GVP", students work on simulated and real-world problems as a design team tasked with…

  18. Rainfall simulation experiments: Influence of water temperature, water quality and plot design on soil erosion and runoff

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Pegoraro, Dominique; Schlösser, Angelika; Thesing, Hannah; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. This study aims at contributing fundamental data for understanding rainfall simulations in depth by studying the effect of the following parameters on the measurement results: 1. Plot design - round or rectangular plot: Can we identify differences in amount of runoff and erosion? 2. Water quality: What is the influence of the water's salt load on interrill erosion and infiltration as measured by rainfall experiments? 3. Water temperature: How much are the results conditioned by the temperature of water, which is subject to changes due to environmental conditions during the experiments? Preliminary results show a moderate increase of soil erosion with the water's salt load while runoff stays almost on the same level. With increasing water temperature, runoff increases continuously. At very high temperatures, soil erosion is clearly increased. A first comparison between round and rectangular plot indicates the rectangular plot to be the most suitable plot shape, but ambiguous results make further research necessary. The analysis of these three factors concerning their influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable.

  19. The Communicability of Graphical Alternatives to Tabular Displays of Statistical Simulation Studies

    PubMed Central

    Cook, Alex R.; Teo, Shanice W. L.

    2011-01-01

    Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form. PMID:22132184

  20. The communicability of graphical alternatives to tabular displays of statistical simulation studies.

    PubMed

    Cook, Alex R; Teo, Shanice W L

    2011-01-01

    Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form.

  1. Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine

    ERIC Educational Resources Information Center

    Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.

    2003-01-01

    Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…

  2. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.

  3. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Astrophysics Data System (ADS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.

  4. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  5. Evaluating best educational practices, student satisfaction, and self-confidence in simulation: A descriptive study.

    PubMed

    Zapko, Karen A; Ferranto, Mary Lou Gemma; Blasiman, Rachael; Shelestak, Debra

    2018-01-01

    The National League for Nursing (NLN) has endorsed simulation as a necessary teaching approach to prepare students for the demanding role of professional nursing. Questions arise about the suitability of simulation experiences to educate students. Empirical support for the effect of simulation on patient outcomes is sparse. Most studies on simulation report only anecdotal results rather than data obtained using evaluative tools. The aim of this study was to examine student perception of best educational practices in simulation and to evaluate their satisfaction and self-confidence in simulation. This study was a descriptive study designed to explore students' perceptions of the simulation experience over a two-year period. Using the Jeffries framework, a Simulation Day was designed consisting of serial patient simulations using high and medium fidelity simulators and live patient actors. The setting for the study was a regional campus of a large Midwestern Research 2 university. The convenience sample consisted of 199 participants and included sophomore, junior, and senior nursing students enrolled in the baccalaureate nursing program. The Simulation Days consisted of serial patient simulations using high and medium fidelity simulators and live patient actors. Participants rotated through four scenarios that corresponded to their level in the nursing program. Data was collected in two consecutive years. Participants completed both the Educational Practices Questionnaire (Student Version) and the Student Satisfaction and Self-Confidence in Learning Scale. Results provide strong support for using serial simulation as a learning tool. Students were satisfied with the experience, felt confident in their performance, and felt the simulations were based on sound educational practices and were important for learning. Serial simulations and having students experience simulations more than once in consecutive years is a valuable method of clinical instruction. When conducted well, simulations can lead to increased student satisfaction and self-confidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comptational Design Of Functional CA-S-H and Oxide Doped Alloy Systems

    NASA Astrophysics Data System (ADS)

    Yang, Shizhong; Chilla, Lokeshwar; Yang, Yan; Li, Kuo; Wicker, Scott; Zhao, Guang-Lin; Khosravi, Ebrahim; Bai, Shuju; Zhang, Boliang; Guo, Shengmin

    Computer aided functional materials design accelerates the discovery of novel materials. This presentation will cover our recent research advance on the Ca-S-H system properties prediction and oxide doped high entropy alloy property simulation and experiment validation. Several recent developed computational materials design methods were utilized to the two systems physical and chemical properties prediction. A comparison of simulation results to the corresponding experiment data will be introduced. This research is partially supported by NSF CIMM project (OIA-15410795 and the Louisiana BoR), NSF HBCU Supplement climate change and ecosystem sustainability subproject 3, and LONI high performance computing time allocation loni mat bio7.

  7. DIFFUSION IN THE VICINITY OF STANDARD-DESIGN NUCLEAR POWER PLANTS--II: WIND-TUNNEL EVALUATION OF BUILDING-WAKE CHARACTERISTICS

    EPA Science Inventory

    Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard-design nuclear power plants. The main objective of the study was to compare the dispersion in the wakes of the plants with that in a simulated atmospheric bound...

  8. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.

    2018-03-01

    Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.

  9. A technique for incorporating the NASA spacelab payload dedicated experiment processor software into the simulation system for the payload crew training complex

    NASA Technical Reports Server (NTRS)

    Bremmer, D. A.

    1986-01-01

    The feasibility of some off-the-shelf microprocessors and state-of-art software is assessed (1) as a development system for the principle investigator (pi) in the design of the experiment model, (2) as an example of available technology application for future PI's experiments, (3) as a system capable of being interactive in the PCTC's simulation of the dedicated experiment processor (DEP), preferably by bringing the PI's DEP software directly into the simulation model, (4) as a system having bus compatibility with host VAX simulation computers, (5) as a system readily interfaced with mock-up panels and information displays, and (6) as a functional system for post mission data analysis.

  10. Software Geometry in Simulations

    NASA Astrophysics Data System (ADS)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  11. Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier

    NASA Astrophysics Data System (ADS)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad

    2017-10-01

    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.

  12. Simulation studies of plasma waves in the electron foreshock - The generation of Langmuir waves by a gentle bump-on-tail electron distribution

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.

  13. Solving Real World Problems with Alternate Reality Gaming: Student Experiences in the Global Village Playground Capstone Course Design

    ERIC Educational Resources Information Center

    Dondlinger, Mary Jo; McLeod, Julie K.

    2015-01-01

    The Global Village Playground (GVP) was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering complex problem solving, as well as critical and creative thinking. In the GVP, students work on simulated and real-world problems…

  14. Best Practices for Operando Battery Experiments: Influences of X-ray Experiment Design on Observed Electrochemical Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkiewicz, O. J.; Wiaderek, Kamila M.; Chupas, Peter J.

    Dynamic properties and multiscale complexities governing electrochemical energy storage in batteries are most ideally interrogated under simulated operating conditions within an electrochemical cell. We assess how electrochemical reactivity can be impacted by experiment design, including the X-ray measurements or by common features or adaptations of electrochemical cells that enable X-ray measurements.

  15. Design of experiment for earth rotation and baseline parameter determination from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Dermanis, A.

    1977-01-01

    The possibility of recovering earth rotation and network geometry (baseline) parameters are emphasized. The numerical simulated experiments performed are set up in an environment where station coordinates vary with respect to inertial space according to a simulated earth rotation model similar to the actual but unknown rotation of the earth. The basic technique of VLBI and its mathematical model are presented. The parametrization of earth rotation chosen is described and the resulting model is linearized. A simple analysis of the geometry of the observations leads to some useful hints on achieving maximum sensitivity of the observations with respect to the parameters considered. The basic philosophy for the simulation of data and their analysis through standard least squares adjustment techniques is presented. A number of characteristic network designs based on present and candidate station locations are chosen. The results of the simulations for each design are presented together with a summary of the conclusions.

  16. A circuit-based photovoltaic module simulator with shadow and fault settings

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Chao, Yuan-Wei; Chen, Jyun-Ping

    2016-03-01

    The main purpose of this study was to develop a photovoltaic (PV) module simulator. The proposed simulator, using electrical parameters from solar cells, could simulate output characteristics not only during normal operational conditions, but also during conditions of partial shadow and fault conditions. Such a simulator should possess the advantages of low cost, small size and being easily realizable. Experiments have shown that results from a proposed PV simulator of this kind are very close to that from simulation software during partial shadow conditions, and with negligible differences during fault occurrence. Meanwhile, the PV module simulator, as developed, could be used on various types of series-parallel connections to form PV arrays, to conduct experiments on partial shadow and fault events occurring in some of the modules. Such experiments are designed to explore the impact of shadow and fault conditions on the output characteristics of the system as a whole.

  17. From the past to the future: Integrating work experience into the design process.

    PubMed

    Bittencourt, João Marcos; Duarte, Francisco; Béguin, Pascal

    2017-01-01

    Integrating work activity issues into design process is a broadly discussed theme in ergonomics. Participation is presented as the main means for such integration. However, a late participation can limit the development of both project solutions and future work activity. This article presents the concept of construction of experience aiming at the articulated development of future activities and project solutions. It is a non-teleological approach where the initial concepts will be transformed by the experience built up throughout the design process. The method applied was a case study of an ergonomic participation during the design of a new laboratory complex for biotechnology research. Data was obtained through analysis of records in a simulation process using a Lego scale model and interviews with project participants. The simulation process allowed for developing new ways of working and generating changes in the initial design solutions, which enable workers to adopt their own developed strategies for conducting work more safely and efficiently in the future work system. Each project decision either opens or closes a window of opportunities for developing a future activity. Construction of experience in a non-teleological design process allows for understanding the consequences of project solutions for future work.

  18. Design calculations for NIF convergent ablator experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less

  19. The optical design and simulation of the collimated solar simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Tao

    2018-01-01

    The solar simulator is a lighting device that can simulate the solar radiation. It has been widely used in the testing of solar cells, satellite space environment simulation and ground experiment, test and calibration precision of solar sensor. The solar simulator mainly consisted of short—arc xenon lamp, ellipsoidal reflectors, a group of optical integrator, field stop, aspheric folding mirror and collimating reflector. In this paper, the solar simulator's optical system basic size are given by calculation. Then the system is optically modeled with the Lighttools software, and the simulation analysis on solar simulator using the Monte Carlo ray -tracing technique is conducted. Finally, the simulation results are given quantitatively by diagrammatic form. The rationality of the design is verified on the basis of theory.

  20. Exploiting Free-Energy Minima to Design Novel EphA2 Protein-Protein Antagonists: From Simulation to Experiment and Return.

    PubMed

    Russo, Simonetta; Callegari, Donatella; Incerti, Matteo; Pala, Daniele; Giorgio, Carmine; Brunetti, Jlenia; Bracci, Luisa; Vicini, Paola; Barocelli, Elisabetta; Capoferri, Luigi; Rivara, Silvia; Tognolini, Massimiliano; Mor, Marco; Lodola, Alessio

    2016-06-06

    The free-energy surface (FES) of protein-ligand binding contains information useful for drug design. Here we show how to exploit a free-energy minimum of a protein-ligand complex identified by metadynamics simulations to design a new EphA2 antagonist with improved inhibitory potency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simulation of nap-of-the-Earth flight in helicopters

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.

    1991-01-01

    NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.

  2. Characterization and Evaluation of Lunar Regolith and Simulants

    NASA Technical Reports Server (NTRS)

    Cross, William M.; Murphy, Gloria A.

    2010-01-01

    A NASA-ESMD (National Aeronautics and Space Administration-Exploration Systems Mission Directorate) funded senior design project "Mineral Separation Technology for Lunar Regolith Simulant Production" is directed toward designing processes to produce Simulant materials as close to lunar regolith as possible. The eight undergraduate (junior and senior) students involved are taking a systems engineering design approach to identifying the most pressing concerns in simulant needs, then designing subsystems and processing strategies to meet these needs using terrestrial materials. This allows the students to, not only learn the systems engineering design process, but also, to make a significant contribution to an important NASA ESMD project. This paper will primarily be focused on the implementation aspect, particularly related to the systems engineering process, of this NASA EMSD senior design project. In addition comparison of the NASA ESMD group experience to the implementation of systems engineering practices into a group of existing design projects is given.

  3. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.; Moridis, G.J.; Pruess, K.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  4. Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments.

    PubMed

    Ogungbenro, Kayode; Aarons, Leon

    2011-08-01

    In the recent years, interest in the application of experimental design theory to population pharmacokinetic (PK) and pharmacodynamic (PD) experiments has increased. The aim is to improve the efficiency and the precision with which parameters are estimated during data analysis and sometimes to increase the power and reduce the sample size required for hypothesis testing. The population Fisher information matrix (PFIM) has been described for uniresponse and multiresponse population PK experiments for design evaluation and optimisation. Despite these developments and availability of tools for optimal design of population PK and PD experiments much of the effort has been focused on repeated continuous variable measurements with less work being done on repeated discrete type measurements. Discrete data arise mainly in PDs e.g. ordinal, nominal, dichotomous or count measurements. This paper implements expressions for the PFIM for repeated ordinal, dichotomous and count measurements based on analysis by a mixed-effects modelling technique. Three simulation studies were used to investigate the performance of the expressions. Example 1 is based on repeated dichotomous measurements, Example 2 is based on repeated count measurements and Example 3 is based on repeated ordinal measurements. Data simulated in MATLAB were analysed using NONMEM (Laplace method) and the glmmML package in R (Laplace and adaptive Gauss-Hermite quadrature methods). The results obtained for Examples 1 and 2 showed good agreement between the relative standard errors obtained using the PFIM and simulations. The results obtained for Example 3 showed the importance of sampling at the most informative time points. Implementation of these expressions will provide the opportunity for efficient design of population PD experiments that involve discrete type data through design evaluation and optimisation.

  5. One-dimensional collision carts computer model and its design ideas for productive experiential learning

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang

    2012-05-01

    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a consistent simulation world view with a pen and paper representation, (2) a data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and (3) a game for simple concept testing that can further support learning. We also suggest using a physical world setup augmented by simulation by highlighting three advantages of real collision carts equipment such as a tacit 3D experience, random errors in measurement and the conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes.

  6. Modeling and Compensation Design for a Power Hardware-in-the-Loop Simulation of an AC Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, Nathan; Hariri, Ali; Prabakar, Kumaraguru

    Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stabilitymore » and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.« less

  7. Modeling and Compensation Design for a Power Hardware-in-the-Loop Simulation of an AC Distribution System: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabakar, Kumaraguru; Ainsworth, Nathan; Pratt, Annabelle

    Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stabilitymore » and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.« less

  8. First experiences of high-fidelity simulation training in junior nursing students in Korea.

    PubMed

    Lee, Suk Jeong; Kim, Sang Suk; Park, Young-Mi

    2015-07-01

    This study was conducted to explore first experiences of high-fidelity simulation training in Korean nursing students, in order to develop and establish more effective guidelines for future simulation training in Korea. Thirty-three junior nursing students participated in high-fidelity simulation training for the first time. Using both qualitative and quantitative methods, data were collected from reflective journals and questionnaires of simulation effectiveness after simulation training. Descriptive statistics were used to analyze simulation effectiveness and content analysis was performed with the reflective journal data. Five dimensions and 31 domains, both positive and negative experiences, emerged from qualitative analysis: (i) machine-human interaction in a safe environment; (ii) perceived learning capability; (iii) observational learning; (iv) reconciling practice with theory; and (v) follow-up debriefing effect. More than 70% of students scored high on increased ability to identify changes in the patient's condition, critical thinking, decision-making, effectiveness of peer observation, and debriefing in effectiveness of simulation. This study reported both positive and negative experiences of simulation. The results of this study could be used to set the level of task difficulty in simulation. Future simulation programs can be designed by reinforcing the positive experiences and modifying the negative results. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.

  9. Optimum Design of Anti-Siphon Device used to Prevent Cerebrospinal Fluid from Overdraining

    NASA Astrophysics Data System (ADS)

    Jang, Jong Yun; Lee, Chong Sun; Suh, Chang Min

    The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.

  10. Searching for Biosignatures in Martian Sedimentary Systems

    NASA Astrophysics Data System (ADS)

    Stevens, A. H.; McDonald, A.; Cockell, C. S.

    2018-04-01

    We present experiments designed to simulate an inhabited martian lacustrine system analogous to Gale Crater. We describe the microbes found to thrive in this simulated environment and identify issues detecting biomarkers in this context.

  11. A Simulated Stream Ecology Study.

    ERIC Educational Resources Information Center

    Zampella, Robert A.

    1979-01-01

    Describes a simulated field experience to study stream ecology in the classroom. Secondary students determine the composition of the stream community, describe the distribution of the benthic invertebrates, and design a food web. (Author/MA)

  12. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    PubMed

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  13. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator

    PubMed Central

    Drewes, Rich; Zou, Quan; Goodman, Philip H.

    2008-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading “glue” tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS. PMID:19506707

  14. Simulation Studies as Designed Experiments: The Comparison of Penalized Regression Models in the “Large p, Small n” Setting

    PubMed Central

    Chaibub Neto, Elias; Bare, J. Christopher; Margolin, Adam A.

    2014-01-01

    New algorithms are continuously proposed in computational biology. Performance evaluation of novel methods is important in practice. Nonetheless, the field experiences a lack of rigorous methodology aimed to systematically and objectively evaluate competing approaches. Simulation studies are frequently used to show that a particular method outperforms another. Often times, however, simulation studies are not well designed, and it is hard to characterize the particular conditions under which different methods perform better. In this paper we propose the adoption of well established techniques in the design of computer and physical experiments for developing effective simulation studies. By following best practices in planning of experiments we are better able to understand the strengths and weaknesses of competing algorithms leading to more informed decisions about which method to use for a particular task. We illustrate the application of our proposed simulation framework with a detailed comparison of the ridge-regression, lasso and elastic-net algorithms in a large scale study investigating the effects on predictive performance of sample size, number of features, true model sparsity, signal-to-noise ratio, and feature correlation, in situations where the number of covariates is usually much larger than sample size. Analysis of data sets containing tens of thousands of features but only a few hundred samples is nowadays routine in computational biology, where “omics” features such as gene expression, copy number variation and sequence data are frequently used in the predictive modeling of complex phenotypes such as anticancer drug response. The penalized regression approaches investigated in this study are popular choices in this setting and our simulations corroborate well established results concerning the conditions under which each one of these methods is expected to perform best while providing several novel insights. PMID:25289666

  15. Simulation of the MoEDAL experiment

    NASA Astrophysics Data System (ADS)

    King, Matthew; MoEDAL Collaboration

    2016-04-01

    The MoEDAL experiment (Monopole and Exotics Detector at the LHC) is designed to directly search for magnetic monopoles and other highly ionising stable or meta-stable particles at the LHC. The MoEDAL detector comprises an array of plastic track detectors and aluminium trapping volumes around the P8 intersection region, opposite from the LHCb detector. TimePix devices are also installed for monitoring of the experiment. As MoEDAL mostly employs passive detectors the software development focusses on particle simulation, rather than digitisation or reconstruction. Here, we present the current status of the MoEDAL simulation software. Specifically, the development of a material description of the detector and simulations of monopole production and propagation at MoEDAL.

  16. Capsule physics comparison of different ablators for NIF implosion designs

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher

    2017-10-01

    Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    PubMed

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  18. Analysis of the OPERA 15-pin experiment with SABRE-2P. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, S.D.; Carbajo, J.J.

    The OPERA (Out-of-Pile Expulsion and Reentry Apparatus) experiment simulates the initial phase of a pump coastdown without scram of a liquid-metal fast breeder reactor, specifically the Fast Flux Test Facility. The test section is a 15-pin 60/sup 0/ triangular sector designed to simulate a full-size 61-pin hexagonal bundle. A previous study indicates this to be an adequate simulation. In this paper, experimental results from the OPERA 15-pin experiment performed at ANL in 1982 are compared to analytical calculations obtained with the SABRE-2P code at ORNL.

  19. In-Trail Procedure Air Traffic Control Procedures Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Chartrand, Ryan C.; Hewitt, Katrin P.; Sweeney, Peter B.; Graff, Thomas J.; Jones, Kenneth M.

    2012-01-01

    In August 2007, Airservices Australia (Airservices) and the United States National Aeronautics and Space Administration (NASA) conducted a validation experiment of the air traffic control (ATC) procedures associated with the Automatic Dependant Surveillance-Broadcast (ADS-B) In-Trail Procedure (ITP). ITP is an Airborne Traffic Situation Awareness (ATSA) application designed for near-term use in procedural airspace in which ADS-B data are used to facilitate climb and descent maneuvers. NASA and Airservices conducted the experiment in Airservices simulator in Melbourne, Australia. Twelve current operational air traffic controllers participated in the experiment, which identified aspects of the ITP that could be improved (mainly in the communication and controller approval process). Results showed that controllers viewed the ITP as valid and acceptable. This paper describes the experiment design and results.

  20. Part weight verification between simulation and experiment of plastic part in injection moulding process

    NASA Astrophysics Data System (ADS)

    Amran, M. A. M.; Idayu, N.; Faizal, K. M.; Sanusi, M.; Izamshah, R.; Shahir, M.

    2016-11-01

    In this study, the main objective is to determine the percentage difference of part weight between experimental and simulation work. The effect of process parameters on weight of plastic part is also investigated. The process parameters involved were mould temperature, melt temperature, injection time and cooling time. Autodesk Simulation Moldflow software was used to run the simulation of the plastic part. Taguchi method was selected as Design of Experiment to conduct the experiment. Then, the simulation result was validated with the experimental result. It was found that the minimum and maximum percentage of differential of part weight between simulation and experimental work are 0.35 % and 1.43 % respectively. In addition, the most significant parameter that affected part weight is the mould temperature, followed by melt temperature, injection time and cooling time.

  1. Conflict: Operational Realism versus Analytical Rigor in Defense Modeling and Simulation

    DTIC Science & Technology

    2012-06-14

    Campbell, Experimental and Quasi- Eperimental Designs for Generalized Causal Inference, Boston: Houghton Mifflin Company, 2002. [7] R. T. Johnson, G...experimentation? In order for an experiment to be considered rigorous, and the results valid, the experiment should be designed using established...addition to the interview, the pilots were administered a written survey, designed to capture their reactions regarding the level of realism present

  2. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  3. Decentralized control experiments on the JPL flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Ozguner, U.; Ossman, K.; Donne, J.; Boesch, M.; Ahmed, A.

    1990-01-01

    Decentralized control experiments were successfully demonstrated for the JPL/AFAL Flexible Structure. A simulation package using MATRIXx showed strong correlation between the simulations and experimental result, while providing a means for test and debug of the various control strategies. Implementation was simplified by a modular software design that was easily transported from the simulation environment to the experimental environment. Control designs worked well for suppression of the dominant modes of the structure. Static decentralized output feedback dampened the excited modes of the structure, but sometimes excited higher order modes upon startup of the controller. A second-order frequency shaping controller helped to eliminate excitation of the higher order modes by attenuating high frequencies in the control effort. However, it also resulted in slightly longer settling times.

  4. Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments

    DOE PAGES

    Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...

    2016-06-13

    We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less

  5. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Eskridge, R.; Martin, Adam; Lee, Michael; Smith, James; Koelfgen, Syri

    2003-01-01

    This viewgraph presentation describes the overall Plasma Thruster Experiment (PTX), it's purpose and design, compact toroid propulsion, advantages and requirements of a plasmoid thruster, the projected efficiency, theta-pinch formation, a simulation of the PTX Coil/Bank Circuit using SPICE, the test firing of the PTX Capacitor Bank, PTX diagnostics, the excluded flux array, thruster simulations using MOQUI, and future work on the PTX.

  6. Teaching Experience: How to Make and Use PowerPoint-Based Interactive Simulations for Undergraduate IR Teaching

    ERIC Educational Resources Information Center

    Meibauer, Gustav; Aagaard Nøhr, Andreas

    2018-01-01

    This article is about designing and implementing PowerPoint-based interactive simulations for use in International Relations (IR) introductory undergraduate classes based on core pedagogical literature, models of human skill acquisition, and previous research on simulations in IR teaching. We argue that simulations can be usefully employed at the…

  7. Halley's Comet and Beyond.

    ERIC Educational Resources Information Center

    Sneider, Cary; DeVore, Edna

    1986-01-01

    Reviews software packages under these headings: (1) simulations of experiments; (2) space flight simulators; (3) planetariums; (4) space adventure games; and (5) drill and practice packages (designed for testing purposes or for helping students learn basic astronomy vocabulary). (JN)

  8. Simulation reduction using the Taguchi method

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Lautenschlager, Ume; Erikstad, Stein Owe; Allen, Janet K.

    1993-01-01

    A large amount of engineering effort is consumed in conducting experiments to obtain information needed for making design decisions. Efficiency in generating such information is the key to meeting market windows, keeping development and manufacturing costs low, and having high-quality products. The principal focus of this project is to develop and implement applications of Taguchi's quality engineering techniques. In particular, we show how these techniques are applied to reduce the number of experiments for trajectory simulation of the LifeSat space vehicle. Orthogonal arrays are used to study many parameters simultaneously with a minimum of time and resources. Taguchi's signal to noise ratio is being employed to measure quality. A compromise Decision Support Problem and Robust Design are applied to demonstrate how quality is designed into a product in the early stages of designing.

  9. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope.

    PubMed

    Gao, Mingyuan; Hu, Chengzhi; Chen, Zhenzhi; Zhang, Honghai; Liu, Sheng

    2010-12-01

    This paper investigates design, modeling, simulation, and control issues related to self-propelled endoscopic capsule navigated inside the human body through external magnetic fields. A novel magnetic propulsion system is proposed and fabricated, which has great potential of being used in the field of noninvasive gastrointestinal endoscopy. Magnetic-analysis model is established and finite-element simulations as well as orthogonal design are performed for obtaining optimized mechanical and control parameters for generating appropriate external magnetic field. Simulated intestinal tract experiments are conducted, demonstrating controllable movement of the capsule under the developed magnetic propulsion system.

  10. Benefits of full scope simulators during solar thermal power plants design and construction

    NASA Astrophysics Data System (ADS)

    Gallego, José F.; Gil, Elena; Rey, Pablo

    2017-06-01

    In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.

  11. Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment

    NASA Astrophysics Data System (ADS)

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-07-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.

  12. The Relationship Between Levels of Fidelity in Simulation, Traditional Clinical Experiences and Objectives.

    PubMed

    Gore, Teresa

    2017-06-15

    The purpose of this study was to explore the relationship of baccalaureate nursing students' (BSN) perceived learning effectiveness using the Clinical Learning Environments Comparison Survey of different levels of fidelity simulation and traditional clinical experiences. A convenience sample of 103 first semester BSN enrolled in a fundamental/assessment clinical course and 155 fifth semester BSN enrolled in a leadership clinical course participated in this study. A descriptive correlational design was used for this cross-sectional study to evaluate students' perceptions after a simulation experience and the completion of the traditional clinical experiences. The subscales measured were communication, nursing leadership, and teaching-learning dyad. No statistical differences were noted based on the learning objectives. The communication subscale showed a tendency toward preference for traditional clinical experiences in meeting students perceived learning for communication. For student perceived learning effectiveness, faculty should determine the appropriate level of fidelity in simulation based on the learning objectives.

  13. Creating an Advertising Campaign: An Evaluation Report for the Occupational Exploration Programs.

    ERIC Educational Resources Information Center

    Altschuld, James W.; And Others

    The evaluation report is one of seven produced for the Occupational Exploration Program (OEP), a series of simulated occupational experiences designed for junior high school students. Describing the pilot testing of the simulation dealing with advertising, the report contains sections describing the simulation context, evaluation procedures,…

  14. Insurance: An Evaluation Report for the Occupational Exploration Program.

    ERIC Educational Resources Information Center

    Altschuld, James W.; And Others

    The evaluation report is one of seven produced for the Occupational Exploration Program (OEP), a series of simulated occupational experiences designed for junior high school students. Describing the pilot testing of the simulation dealing with the insurance field, the report contains sections describing the simulation context, evaluation…

  15. Planning Educational Programs: An Evaluation Report for the Occupational Exploration Program.

    ERIC Educational Resources Information Center

    Altschuld, James W.; Pritz, Sandra

    The evaluation report is one of seven produced for the Occupational Exploration Program (OEP), a series of simulated occupational experiences designed for junior high school students. Describing the pilot testing of the simulation dealing with education, the report contains sections describing the simulation context, evaluation procedures,…

  16. The Energy-Environment Simulator as a Classroom Aid.

    ERIC Educational Resources Information Center

    Sell, Nancy J.; Van Koevering, Thomas E.

    1981-01-01

    Energy-Environment Simulators, provided by the U.S. Department of Energy, can be used to help individuals experience the effects of unbridled energy consumption for the next century on a national or worldwide scale. The simulator described is a specially designed analog computer which models the real-world energy situation. (MP)

  17. Enhancing Students' Employability through Business Simulation

    ERIC Educational Resources Information Center

    Avramenko, Alex

    2012-01-01

    Purpose: The purpose of this paper is to introduce an approach to business simulation with less dependence on business simulation software to provide innovative work experience within a programme of study, to boost students' confidence and employability. Design/methodology/approach: The paper is based on analysis of existing business simulation…

  18. Manufacturing Production: An Evaluation Report for the Occupational Exploration Program.

    ERIC Educational Resources Information Center

    Altschuld, James W.; And Others

    The evaluation report is one of seven produced for the Occupational Exploration Program (OEP), a series of simulated occupational experiences designed for junior high school students. Describing the pilot testing of the simulation dealing with manufacturing production, the report contains sections describing the simulation context, evaluation…

  19. Intercultural Simulation Games: A Review (of the United States and beyond)

    ERIC Educational Resources Information Center

    Fowler, Sandra M.; Pusch, Margaret D.

    2010-01-01

    Intercultural simulations are instructional activities that engage and challenge participants with experiences integral to encounters between people of more than one cultural group. Simulations designed specifically to support intercultural encounters have been in use since the 1970s. This article examines the conceptual bases for intercultural…

  20. Semi-physical Simulation Platform of a Parafoil Nonlinear Dynamic System

    NASA Astrophysics Data System (ADS)

    Gao, Hai-Tao; Yang, Sheng-Bo; Zhu, Er-Lin; Sun, Qing-Lin; Chen, Zeng-Qiang; Kang, Xiao-Feng

    2013-11-01

    Focusing on the problems in the process of simulation and experiment on a parafoil nonlinear dynamic system, such as limited methods, high cost and low efficiency we present a semi-physical simulation platform. It is designed by connecting parts of physical objects to a computer, and remedies the defect that a computer simulation is divorced from a real environment absolutely. The main components of the platform and its functions, as well as simulation flows, are introduced. The feasibility and validity are verified through a simulation experiment. The experimental results show that the platform has significance for improving the quality of the parafoil fixed-point airdrop system, shortening the development cycle and saving cost.

  1. TGeoCad: an Interface between ROOT and CAD Systems

    NASA Astrophysics Data System (ADS)

    Luzzi, C.; Carminati, F.

    2014-06-01

    In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems.

  2. A quantitative approach to evaluating caring in nursing simulation.

    PubMed

    Eggenberger, Terry L; Keller, Kathryn B; Chase, Susan K; Payne, Linda

    2012-01-01

    This study was designed to test a quantitative method of measuring caring in the simulated environment. Since competency in caring is central to nursing practice, ways of including caring concepts in designing scenarios and in evaluation of performance need to be developed. Coates' Caring Efficacy scales were adapted for simulation and named the Caring Efficacy Scale-Simulation Student Version (CES-SSV) and Caring Efficacy Scale-Simulation Faculty Version (CES-SFV). A correlational study was designed to compare student self-ratings with faculty ratings on caring efficacy during an adult acute simulation experience with traditional and accelerated baccalaureate students in a nursing program grounded in caring theory. Student self-ratings were significantly correlated with objective ratings (r = 0.345, 0.356). Both the CES-SSV and the CES-SFV were found to have excellent internal consistency and significantly correlated interrater reliability. They were useful in measuring caring in the simulated learning environment.

  3. FACE computer simulation. [Flexible Arm Controls Experiment

    NASA Technical Reports Server (NTRS)

    Sadeh, Willy Z.; Szmyd, Jeffrey A.

    1990-01-01

    A computer simulation of the FACE (Flexible Arm Controls Experiment) was conducted to assess its design for use in the Space Shuttle. The FACE is supposed to be a 14-ft long articulate structure with 4 degrees of freedom, consisting of shoulder pitch and yaw, elbow pitch, and wrist pitch. Kinematics of the FACE was simulated to obtain data on arm operation, function, workspace and interaction. Payload capture ability was modeled. The simulation indicates the capability for detailed kinematic simulation and payload capture ability analysis, and the feasibility of real-time simulation was determined. In addition, the potential for interactive real-time training through integration of the simulation with various interface controllers was revealed. At this stage, the flexibility of the arm was not yet considered.

  4. Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.

    2013-01-01

    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.

  5. A framework of knowledge creation processes in participatory simulation of hospital work systems.

    PubMed

    Andersen, Simone Nyholm; Broberg, Ole

    2017-04-01

    Participatory simulation (PS) is a method to involve workers in simulating and designing their own future work system. Existing PS studies have focused on analysing the outcome, and minimal attention has been devoted to the process of creating this outcome. In order to study this process, we suggest applying a knowledge creation perspective. The aim of this study was to develop a framework describing the process of how ergonomics knowledge is created in PS. Video recordings from three projects applying PS of hospital work systems constituted the foundation of process mining analysis. The analysis resulted in a framework revealing the sources of ergonomics knowledge creation as sequential relationships between the activities of simulation participants sharing work experiences; experimenting with scenarios; and reflecting on ergonomics consequences. We argue that this framework reveals the hidden steps of PS that are essential when planning and facilitating PS that aims at designing work systems. Practitioner Summary: When facilitating participatory simulation (PS) in work system design, achieving an understanding of the PS process is essential. By applying a knowledge creation perspective and process mining, we investigated the knowledge-creating activities constituting the PS process. The analysis resulted in a framework of the knowledge-creating process in PS.

  6. Research on simulated infrared image utility evaluation using deep representation

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiheng; Mu, Chengpo; Yang, Yu; Xu, Lixin

    2018-01-01

    Infrared (IR) image simulation is an important data source for various target recognition systems. However, whether simulated IR images could be used as training data for classifiers depends on the features of fidelity and authenticity of simulated IR images. For evaluation of IR image features, a deep-representation-based algorithm is proposed. Being different from conventional methods, which usually adopt a priori knowledge or manually designed feature, the proposed method can extract essential features and quantitatively evaluate the utility of simulated IR images. First, for data preparation, we employ our IR image simulation system to generate large amounts of IR images. Then, we present the evaluation model of simulated IR image, for which an end-to-end IR feature extraction and target detection model based on deep convolutional neural network is designed. At last, the experiments illustrate that our proposed method outperforms other verification algorithms in evaluating simulated IR images. Cross-validation, variable proportion mixed data validation, and simulation process contrast experiments are carried out to evaluate the utility and objectivity of the images generated by our simulation system. The optimum mixing ratio between simulated and real data is 0.2≤γ≤0.3, which is an effective data augmentation method for real IR images.

  7. Assessing Orchestrated Simulation Through Modeling to Quantify the Benefits of Unmanned-Teaming in a Tactical ASW Scenario

    DTIC Science & Technology

    2018-03-01

    Results are compared to a previous study using a similar design of experiments but different simulation software. The baseline scenario for exploring the...behaviors are mimicked in this research, enabling Solem’s MANA results to be compared to our LITMUS’ results. By design , the principal difference...missions when using the second order NOLH, and compares favorably with the over six million in the full factorial design . 3. Advantages of Cluster

  8. An Annotated Bibliography of Abstracts on the Use of Simulators in Technical Training

    DTIC Science & Technology

    1984-10-01

    truing of a bicycle wheel. It matched the design requirements well, was easily studied and controlled in a laboratory, and was felt to be...Article: Experiment. a. Number of groups: 2 b. Description of Groups: (1) Subjects: 27 newly designated first-tour naval aviators (2) Controls : 16 same...experimental group received six sessions in the 2F87F simulator, in accordance with a new syllabus designed for that device, whereas the control group

  9. Discrete Event Simulation for the Analysis of Artillery Fired Projectiles from Shore

    DTIC Science & Technology

    2017-06-01

    a designed experiment indicate artillery systems provide commanders a limited area denial capability, and should be employed where naval forces are... Design 15. NUMBER OF PAGES 85 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19...to deny freedom of navigation (area denial) and stop an amphibious naval convoy (anti-access). Results from a designed experiment indicate artillery

  10. The PMIP4 contribution to CMIP6 - Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations

    NASA Astrophysics Data System (ADS)

    Otto-Bliesner, Bette L.; Braconnot, Pascale; Harrison, Sandy P.; Lunt, Daniel J.; Abe-Ouchi, Ayako; Albani, Samuel; Bartlein, Patrick J.; Capron, Emilie; Carlson, Anders E.; Dutton, Andrea; Fischer, Hubertus; Goelzer, Heiko; Govin, Aline; Haywood, Alan; Joos, Fortunat; LeGrande, Allegra N.; Lipscomb, William H.; Lohmann, Gerrit; Mahowald, Natalie; Nehrbass-Ahles, Christoph; Pausata, Francesco S. R.; Peterschmitt, Jean-Yves; Phipps, Steven J.; Renssen, Hans; Zhang, Qiong

    2017-11-01

    Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.

  11. Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi)

    NASA Astrophysics Data System (ADS)

    Butchart, Neal; Anstey, James A.; Hamilton, Kevin; Osprey, Scott; McLandress, Charles; Bushell, Andrew C.; Kawatani, Yoshio; Kim, Young-Ha; Lott, Francois; Scinocca, John; Stockdale, Timothy N.; Andrews, Martin; Bellprat, Omar; Braesicke, Peter; Cagnazzo, Chiara; Chen, Chih-Chieh; Chun, Hye-Yeong; Dobrynin, Mikhail; Garcia, Rolando R.; Garcia-Serrano, Javier; Gray, Lesley J.; Holt, Laura; Kerzenmacher, Tobias; Naoe, Hiroaki; Pohlmann, Holger; Richter, Jadwiga H.; Scaife, Adam A.; Schenzinger, Verena; Serva, Federico; Versick, Stefan; Watanabe, Shingo; Yoshida, Kohei; Yukimoto, Seiji

    2018-03-01

    The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi) aims to improve the fidelity of tropical stratospheric variability in general circulation and Earth system models by conducting coordinated numerical experiments and analysis. In the equatorial stratosphere, the QBO is the most conspicuous mode of variability. Five coordinated experiments have therefore been designed to (i) evaluate and compare the verisimilitude of modelled QBOs under present-day conditions, (ii) identify robustness (or alternatively the spread and uncertainty) in the simulated QBO response to commonly imposed changes in model climate forcings (e.g. a doubling of CO2 amounts), and (iii) examine model dependence of QBO predictability. This paper documents these experiments and the recommended output diagnostics. The rationale behind the experimental design and choice of diagnostics is presented. To facilitate scientific interpretation of the results in other planned QBOi studies, consistent descriptions of the models performing each experiment set are given, with those aspects particularly relevant for simulating the QBO tabulated for easy comparison.

  12. Dynamic Simulation of a Periodic 10 K Sorption Cryocooler

    NASA Technical Reports Server (NTRS)

    Bhandari, P.; Rodriguez, J.; Bard, S.; Wade, L.

    1994-01-01

    A transient thermal simulation model has been developed to simulate the dynamic performance of a multiple-stage 10 K sorption cryocooler for spacecraft sensor cooling applications that require periodic quick-cooldown (under 2 minutes) , negligible vibration, low power consumption, and long life (5 to 10 years). The model was specifically designed to represent the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), but it can be adapted to represent other sorption cryocooler systems as well. The model simulates the heat transfer, mass transfer, and thermodynamic processes in the cryostat and the sorbent beds for the entire refrigeration cycle, and includes the transient effects of variable hydrogen supply pressures due to expansion and overflow of hydrogen during the cooldown operation. The paper describes model limitations and simplifying assumptions, with estimates of errors induced by them, and presents comparisons of performance predictions with ground experiments. An important benefit of the model is its ability to predict performance sensitivities to variations of key design and operational parameters. The insights thus obtained are expected to lead to higher efficiencies and lower weights for future designs.

  13. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  14. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  15. Low Gravity Freefall Facilities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  16. Microgravity

    NASA Image and Video Library

    1981-03-30

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  17. Design and simulation of ion optics for ion sources for production of singly charged ions

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  18. Designing Experiments on Thermal Interactions by Secondary-School Students in a Simulated Laboratory Environment

    ERIC Educational Resources Information Center

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-01-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample: Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and…

  19. The Oceanographic Multipurpose Software Environment (OMUSE v1.0)

    NASA Astrophysics Data System (ADS)

    Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk

    2017-08-01

    In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.

  20. Human-simulation-based learning to prevent medication error: A systematic review.

    PubMed

    Sarfati, Laura; Ranchon, Florence; Vantard, Nicolas; Schwiertz, Vérane; Larbre, Virginie; Parat, Stéphanie; Faudel, Amélie; Rioufol, Catherine

    2018-01-31

    In the past 2 decades, there has been an increasing interest in simulation-based learning programs to prevent medication error (ME). To improve knowledge, skills, and attitudes in prescribers, nurses, and pharmaceutical staff, these methods enable training without directly involving patients. However, best practices for simulation for healthcare providers are as yet undefined. By analysing the current state of experience in the field, the present review aims to assess whether human simulation in healthcare helps to reduce ME. A systematic review was conducted on Medline from 2000 to June 2015, associating the terms "Patient Simulation," "Medication Errors," and "Simulation Healthcare." Reports of technology-based simulation were excluded, to focus exclusively on human simulation in nontechnical skills learning. Twenty-one studies assessing simulation-based learning programs were selected, focusing on pharmacy, medicine or nursing students, or concerning programs aimed at reducing administration or preparation errors, managing crises, or learning communication skills for healthcare professionals. The studies varied in design, methodology, and assessment criteria. Few demonstrated that simulation was more effective than didactic learning in reducing ME. This review highlights a lack of long-term assessment and real-life extrapolation, with limited scenarios and participant samples. These various experiences, however, help in identifying the key elements required for an effective human simulation-based learning program for ME prevention: ie, scenario design, debriefing, and perception assessment. The performance of these programs depends on their ability to reflect reality and on professional guidance. Properly regulated simulation is a good way to train staff in events that happen only exceptionally, as well as in standard daily activities. By integrating human factors, simulation seems to be effective in preventing iatrogenic risk related to ME, if the program is well designed. © 2018 John Wiley & Sons, Ltd.

  1. Nucleic acid polymeric properties and electrostatics: Directly comparing theory and simulation with experiment.

    PubMed

    Sim, Adelene Y L

    2016-06-01

    Nucleic acids are biopolymers that carry genetic information and are also involved in various gene regulation functions such as gene silencing and protein translation. Because of their negatively charged backbones, nucleic acids are polyelectrolytes. To adequately understand nucleic acid folding and function, we need to properly describe its i) polymer/polyelectrolyte properties and ii) associating ion atmosphere. While various theories and simulation models have been developed to describe nucleic acids and the ions around them, many of these theories/simulations have not been well evaluated due to complexities in comparison with experiment. In this review, I discuss some recent experiments that have been strategically designed for straightforward comparison with theories and simulation models. Such data serve as excellent benchmarks to identify limitations in prevailing theories and simulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Building a Better Workforce: A Case Study in Management Simulations and Experiential Learning in the Construction Industry

    ERIC Educational Resources Information Center

    Douglas-Lenders, Rachel Claire; Holland, Peter Jeffrey; Allen, Belinda

    2017-01-01

    Purpose: The purpose of this paper is to examine the impact of experiential simulation-based learning of employee self-efficacy. Design/Methodology/Approach: The research approach is an exploratory case study of a group of trainees from the same organisation. Using a quasi-experiment, one group, pre-test-post-test design (Tharenou et al., 2007), a…

  3. Building a Better Workforce: A Case Study in Management Simulations and Experiential Learning in the Construction Industry

    ERIC Educational Resources Information Center

    Douglas-Lenders, Rachel Claire; Holland, Peter Jeffrey; Allen, Belinda

    2017-01-01

    Purpose: The purpose of this paper is to examine the impact of experiential simulation-based learning of employee self-efficacy. Design/Methodology/Approach: The research approach is an exploratory case study of a group of trainees from the same organisation. Using a quasi-experiment, one group, pre-test-post-test design (Tharenou et al., 2007), a…

  4. Design and Analysis of Windmill Simulation and Pole by Solidwork Program

    NASA Astrophysics Data System (ADS)

    Mulyana, Tatang; Sebayang, Darwin; R, Akmal Muamar. D.; A, Jauharah H. D.; Yahya Shomit, M.

    2018-03-01

    The Indonesian state of archipelago has great wind energy potential. For micro-scale power generation, the energy obtained from the windmill can be connected directly to the electrical load and can be used without problems. However, for macro-scale power generation, problems will arise such as the design of vane shapes, there should be a simulation and an accurate experiment to produce blades with a special shape that can capture wind energy. In addition, daily and yearly wind and wind rate calculations are also required to ensure the best latitude and longitude positions for building windmills. This paper presents a solution to solve the problem of how to produce a windmill which in the builder is very practical and very mobile can be moved its location. Before a windmill prototype is built it should have obtained the best windmill design result. Therefore, the simulation of the designed windmill is of crucial importance. Solid simulation express is a tool that serves to generate simulation of a design. Some factors that can affect a design result include the power part and the rest part of the part, material selection, the load is given, the security of the design power made, and changes in shape due to treat the load given to the design made. In this paper, static and thermal simulations of windmills have been designed. Based on the simulation result on the designed windmill, it shows that the design has been made very satisfactory so that it can be done prototyping fabrication process.

  5. C4MIP - The Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke

    2016-08-01

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.

  6. C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less

  7. C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6

    DOE PAGES

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; ...

    2016-08-25

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less

  8. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  9. A Model for Designing Adaptive Laboratory Evolution Experiments.

    PubMed

    LaCroix, Ryan A; Palsson, Bernhard O; Feist, Adam M

    2017-04-15

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes with available resources (i.e., laboratory supplies, personnel, and time). To design and to better understand ALE experiments, a simulator, ALEsim, was developed, validated, and applied to the optimization of ALE experiments. The effects of various passage sizes were experimentally determined and subsequently evaluated with ALEsim, to explain differences in experimental outcomes. Furthermore, a beneficial mutation rate of 10 -6.9 to 10 -8.4 mutations per cell division was derived. A retrospective analysis of ALE experiments revealed that passage sizes typically employed in serial passage batch culture ALE experiments led to inefficient production and fixation of beneficial mutations. ALEsim and the results described here will aid in the design of ALE experiments to fit the exact needs of a project while taking into account the resources required and will lower the barriers to entry for this experimental technique. IMPORTANCE ALE is a widely used scientific technique to increase scientific understanding, as well as to create industrially relevant organisms. The manner in which ALE experiments are conducted is highly manual and uniform, with little optimization for efficiency. Such inefficiencies result in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized fashion and can design experiments to generate greater fitness in an accelerated time frame, thereby pushing the limits of what adaptive laboratory evolution can achieve. Copyright © 2017 American Society for Microbiology.

  10. A numerical tool for reproducing driver behaviour: experiments and predictive simulations.

    PubMed

    Casucci, M; Marchitto, M; Cacciabue, P C

    2010-03-01

    This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions.

  11. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, F. C.

    1986-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  12. Simulated in vivo Electrophysiology Experiments Provide Previously Inaccessible Insights into Visual Physiology

    PubMed Central

    Quiroga, Maria del Mar; Price, Nicholas SC

    2016-01-01

    Lecture content and practical laboratory classes are ideally complementary. However, the types of experiments that have led to our detailed understanding of sensory neuroscience are often not amenable to classroom experimentation as they require expensive equipment, time-consuming surgeries, specialized experimental techniques, and the use of animals. While sometimes feasible in small group teaching, these experiments are not suitable for large cohorts of students. Previous attempts to expose students to sensory neuroscience experiments include: the use of electrophysiology preparations in invertebrates, data-driven simulations that do not replicate the experience of conducting an experiment, or simply observing an experiment in a research laboratory. We developed an online simulation of a visual neuroscience experiment in which extracellular recordings are made from a motion sensitive neuron. Students have control over stimulation parameters (direction and contrast) and can see and hear the action potential responses to stimuli as they are presented. The simulation provides an intuitive way for students to gain insight into neurophysiology, including experimental design, data collection and data analysis. Our simulation allows large cohorts of students to cost-effectively “experience” the results of animal research without ethical concerns, to be exposed to realistic data variability, and to develop their understanding of how sensory neuroscience experiments are conducted. PMID:27980465

  13. The "neutron channel design"—A method for gaining the desired neutrons

    NASA Astrophysics Data System (ADS)

    Hu, G.; Hu, H. S.; Wang, S.; Pan, Z. H.; Jia, Q. G.; Yan, M. F.

    2016-12-01

    The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the "neutron channel design", is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA) combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS). One layer polyethylene (PE) moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  14. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli

    PubMed Central

    Nishio, Yousuke; Usuda, Yoshihiro; Matsui, Kazuhiko; Kurata, Hiroyuki

    2008-01-01

    The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. PMID:18197177

  15. Modularized Parallel Neutron Instrument Simulation on the TeraGrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Meili; Cobb, John W; Hagen, Mark E

    2007-01-01

    In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serialmore » instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evalua-tion, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of the new design, and the improved software structure. Further, it describes the realized new fea-tures seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented.« less

  16. A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators.

    PubMed

    Sánchez, Borja Bordel; Alcarria, Ramón; Sánchez-Picot, Álvaro; Sánchez-de-Rivera, Diego

    2017-09-22

    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users' needs and requirements and various additional factors such as the development team's experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal.

  17. A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators

    PubMed Central

    Sánchez-Picot, Álvaro

    2017-01-01

    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal. PMID:28937610

  18. A study of the feasibility of statistical analysis of airport performance simulation

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1982-01-01

    The feasibility of conducting a statistical analysis of simulation experiments to study airport capacity is investigated. First, the form of the distribution of airport capacity is studied. Since the distribution is non-Gaussian, it is important to determine the effect of this distribution on standard analysis of variance techniques and power calculations. Next, power computations are made in order to determine how economic simulation experiments would be if they are designed to detect capacity changes from condition to condition. Many of the conclusions drawn are results of Monte-Carlo techniques.

  19. Monte Carlo simulation of a cesium atom beam in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiang, E-mail: chernjiang@aliyun.com; Zhu, Hongwei; Ma, Yinguang

    2015-03-07

    We present Monte Carlo simulations of the deflection of a beam of {sup 133}Cs atoms in a two wire magnetic field. Our results reveal the relationship between transmission rate of the atoms and incident parameters. Incident angle and position of the beam with maximum transmission are obtained from the simulations. The effect of the deflection field on the spatial distribution (beam profile) of {sup 133}Cs is derived. The method will help with the design of magnetic deflection experiments and to extract the magnetic properties from such experiments.

  20. EFFECTS OF SIMULATED ACIDIC RAIN ON YIELDS OF FIELD-GROWN CROPS

    EPA Science Inventory

    Experiments were performed to determine the effects of simulated acidic rainfall on yields of radish (Raphanus sativa), garden beet (Beta vulgaris), kidney bean (Phaseolus vulgaris), and alfalfa (Medicago sativa) grown under standard agronomic practices. The experimental design a...

  1. Experiments in Error Propagation within Hierarchal Combat Models

    DTIC Science & Technology

    2015-09-01

    Bayesian Information Criterion CNO Chief of Naval Operations DOE Design of Experiments DOD Department of Defense MANA Map Aware Non-uniform Automata ...ground up” approach. First, it develops a mission-level model for one on one submarine combat in Map Aware Non-uniform Automata (MANA) simulation, an... Automata (MANA), an agent based simulation that can model the different postures of submarines. It feeds the results from MANA into stochastic

  2. 3D Simulation as a Learning Environment for Acquiring the Skill of Self-Management: An Experience Involving Spanish University Students of Education

    ERIC Educational Resources Information Center

    Cela-Ranilla, Jose María; Esteve-Gonzalez, Vanessa; Esteve-Mon, Francesc; Gisbert-Cervera, Merce

    2014-01-01

    In this study we analyze how 57 Spanish university students of Education developed a learning process in a virtual world by conducting activities that involved the skill of self-management. The learning experience comprised a serious game designed in a 3D simulation environment. Descriptive statistics and non-parametric tests were used in the…

  3. Research and development at the Marshall Space Flight Center Neutral Buoyancy Simulator

    NASA Technical Reports Server (NTRS)

    Kulpa, Vygantas P.

    1987-01-01

    The Neutral Buoyancy Simulator (NBS), a facility designed to imitate zero-gravity conditions, was used to test the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS). Neutral Buoyancy Simulator applications and operations; early space structure research; development of the EASE/ACCESS experiments; and improvement of NBS simulation are summarized.

  4. Developing a Modern Low Cost Apparatus to Measure Muon Flux vs. Angle at Muhlenberg College

    NASA Astrophysics Data System (ADS)

    Kasle, Lucas; Bene, Charles; Crawford, Travis; Morash, Richard; Tornetta, Kelly

    2017-09-01

    Experiments using cosmic ray muons have been a staple of the undergraduate lab for decades. Muhlenberg seeks to modernize one of these experiments, and implement it inexpensively. Cognizant of the widespread use of Silicon Photomultipliers (SiPMs) in the research environment, our detector employs SiPMs instead of PMTs. Furthermore, a simulation activity has been developed to accompany the laboratory experiment. Our detector design consists of two small plastic scintillators arranged so that coincidence measurements select cosmic ray muons of particular angles with respect to the zenith. Each scintillator is attached to an SiPM and electronics to process the signal. A crude prototype was constructed last summer that produced results consistent with the well established dependence of flux on polar angle, and a simulation was created that also produced consistent results. Progress in the development of the electronics for the SiPMs, the overall design of the apparatus, and the accompanying computer simulation will be reported. NSF Grant 1507841.

  5. Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

    1987-01-01

    Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

  6. Promoting Diversity in Undergraduate Research in Robotics-Based Seismic

    NASA Astrophysics Data System (ADS)

    Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.

    2006-12-01

    The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006 National Technical Association's (NTA) National Conference in Chicago. CReSIS, in conjunction with ECSU, provided these minority students with a well-rounded educational experience in a real-world research project. Their contributions will be used for future projects.

  7. Status of the EDDA experiment at COSY

    NASA Astrophysics Data System (ADS)

    Scobel, W.; EDDA Collaboration; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Dorner, G.; Drüke, V.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Stein, H.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.

    1993-07-01

    The EDDA experiment is designed to study p + p excitation functions with high energy resolution and narrow step size in the kinetic energy range from 250 MeV to 2500 MeV at the Cooler Synchrotron COSY. Measurements during the accelertion phase in conjunction with internal targets will allow to achieve a fast and precise energy variation. Prototypes of the detector elements and the fiber target have been extensively tested with proton and electron beams; the detector performance and trigger efficiency have been studied in Monte Carlo simulations. In this contribution, results concerning detector design, prototype studies, Monte Carlo simulations and the anticipated detector resolutions will be reported.

  8. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    ERIC Educational Resources Information Center

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  9. Importance of inlet boundary conditions for numerical simulation of combustor flows

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.

    1983-01-01

    Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.

  10. Simulations of High Current NuMI Magnetic Horn Striplines at FNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipahi, Taylan; Biedron, Sandra; Hylen, James

    2016-06-01

    Both the NuMI (Neutrinos and the Main Injector) beam line, that has been providing intense neutrino beams for several Fermilab experiments (MINOS, MINERVA, NOVA), and the newly proposed LBNF (Long Baseline Neutrino Facility) beam line which plans to produce the highest power neutrino beam in the world for DUNE (the Deep Underground Neutrino Experiment) need pulsed magnetic horns to focus the mesons which decay to produce the neutrinos. The high-current horn and stripline design has been evolving as NuMI reconfigures for higher beam power and to meet the needs of the LBNF design. The CSU particle accelerator group has aidedmore » the neutrino physics experiments at Fermilab by producing EM simulations of magnetic horns and the required high-current striplines. In this paper, we present calculations, using the Poisson and ANSYS Maxwell 3D codes, of the EM interaction of the stripline plates of the NuMI horns at critical stress points. In addition, we give the electrical simulation results using the ANSYS Electric code. These results are being used to support the development of evolving horn stripline designs to handle increased electrical current and higher beam power for NuMI upgrades and for LBNF« less

  11. Three- and Two- Dimensional Simulations of Re-shock Experiments at High Energy Densities at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Raman, Kumar; MacLaren, Stephan; Huntington, Channing; Nagel, Sabrina

    2016-10-01

    We present simulations of recent high-energy-density (HED) re-shock experiments on the National Ignition Facility (NIF). The experiments study the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instability growth that occurs after successive shocks transit a sinusoidally-perturbed interface between materials of different densities. The shock tube is driven at one or both ends using indirect-drive laser cavities or hohlraums. X-ray area-backlit imaging is used to visualize the growth at different times. Our simulations are done with the three-dimensional, radiation hydrodynamics code ARES, developed at LLNL. We show the instabilitygrowth rate, inferred from the experimental radiographs, agrees well with our 2D and 3D simulations. We also discuss some 3D geometrical effects, suggested by our simulations, which could deteriorate the images at late times, unless properly accounted for in the experiment design. Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-680789.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noe, F; Diadone, Isabella; Lollmann, Marc

    There is a gap between kinetic experiment and simulation in their views of the dynamics of complex biomolecular systems. Whereas experiments typically reveal only a few readily discernible exponential relaxations, simulations often indicate complex multistate behavior. Here, a theoretical framework is presented that reconciles these two approaches. The central concept is dynamical fingerprints which contain peaks at the time scales of the dynamical processes involved with amplitudes determined by the experimental observable. Fingerprints can be generated from both experimental and simulation data, and their comparison by matching peaks permits assignment of structural changes present in the simulation to experimentally observedmore » relaxation processes. The approach is applied here to a test case interpreting single molecule fluorescence correlation spectroscopy experiments on a set of fluorescent peptides with molecular dynamics simulations. The peptides exhibit complex kinetics shown to be consistent with the apparent simplicity of the experimental data. Moreover, the fingerprint approach can be used to design new experiments with site-specific labels that optimally probe specific dynamical processes in the molecule under investigation.« less

  13. Simulation of Martian surface-atmosphere interaction in a space-simulator: Technical considerations and feasibility

    NASA Technical Reports Server (NTRS)

    Moehlmann, D.; Kochan, H.

    1992-01-01

    The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.

  14. Space Station Human Factors: Designing a Human-Robot Interface

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.

  15. A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Zhang, Lin; Tao, Fei; (Luke) Zhang, Xiaolong; Luo, Yongliang; Zhang, Yabin

    2012-08-01

    Multidisciplinary design of complex products leads to an increasing demand for high performance simulation (HPS) platforms. One great challenge is how to achieve high efficient utilisation of large-scale simulation resources in distributed and heterogeneous environments. This article reports a virtualisation-based methodology to realise a HPS platform. This research is driven by the issues concerning large-scale simulation resources deployment and complex simulation environment construction, efficient and transparent utilisation of fine-grained simulation resources and high reliable simulation with fault tolerance. A framework of virtualisation-based simulation platform (VSIM) is first proposed. Then the article investigates and discusses key approaches in VSIM, including simulation resources modelling, a method to automatically deploying simulation resources for dynamic construction of system environment, and a live migration mechanism in case of faults in run-time simulation. Furthermore, the proposed methodology is applied to a multidisciplinary design system for aircraft virtual prototyping and some experiments are conducted. The experimental results show that the proposed methodology can (1) significantly improve the utilisation of fine-grained simulation resources, (2) result in a great reduction in deployment time and an increased flexibility for simulation environment construction and (3)achieve fault tolerant simulation.

  16. Laser program annual report, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, L.W.; Strack, J.R.

    1980-03-01

    This volume contains four sections that covers the areas of target design, target fabrication, diagnostics, and experiments. Section 3 reports on target design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the target fabrication group, and Section 5 presents results of diagnostic developments and applications for the year. The results of laser-target experiments are presented. (MOW)

  17. A Novel Multiplayer Screen-Based Simulation Experience for African Learners Improved Confidence in Management of Postpartum Hemorrhage.

    PubMed

    Taekman, Jeffrey M; Foureman, Megan F; Bulamba, Fred; Steele, Michael; Comstock, Emily; Kintu, Andrew; Mauritz, Amy; Olufolabi, Adeyemi

    2017-01-01

    Postpartum hemorrhage (PPH) remains a global challenge, affecting thirteen million women each year. In addition, PPH is a leading cause of maternal mortality in Asia and Africa. In the U.S.A., care of critically ill patients is often practiced using mannequin-based simulation. Mannequin-based simulation presents challenges in global health, particularly in low- or middle-income countries. We developed a novel multiplayer screen-based simulation in a virtual world enabling the practice of team coordination with PPH. We used this simulation with learners in Mulago, Uganda. We hypothesized that a multiplayer screen-based simulation experience would increase learner confidence in their ability to manage PPH. The study design was a simple pre- and a post-intervention survey. Forty-eight interprofessional subjects participated in one of nine 1-h simulation sessions using the PPH software. A fifteen-question self-assessment administered before and after the intervention was designed to probe the areas of learning as defined by Bloom and Krathwohl: affective, cognitive, and psychomotor. Combined confidence scores increased significantly overall following the simulation experience and individually in each of the three categories of Bloom's Taxonomy: affective, cognitive, and psychomotor. We provide preliminary evidence that multiplayer screen-based simulation represents a scalable, distributable form of learning that may be used effectively in global health education and training. Interestingly, despite our intervention being screen-based, our subjects showed improved confidence in their ability to perform psychomotor tasks. Although there is precedent for mental rehearsal improving performance, further research is needed to understand this finding.

  18. Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Elliott, Dawn M.

    2001-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight simulation experiment of one implementation of this concept. The focus of this simulation experiment was to evaluate pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which all aircraft oil one approach intrudes into the path of an aircraft oil the other approach. Results from this study showed that the design-goal mean miss-distance of 1200 ft to potential collision situations was surpassed with an actual mean miss-distance of 2236 ft. Pilot reaction times to the alerting system, which was an operational concern, averaged 1.11 sec, well below the design-goal reaction time 2.0 sec.These quantitative results and pilot subjective data showed that the AILS concept is reasonable from an operational standpoint.

  19. Simulations towards optimization of a neutron/anti-neutron oscillation experiment at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Frost, Matthew; Kamyshkov, Yuri; Castellanos, Luis; Klinkby, Esben; US NNbar Collaboration

    2015-04-01

    The observation of Neutron/Anti-neutron oscillation would prove the existence of Baryon Number Violation (BNV), and thus an explanation for the dominance of matter over anti-matter in the universe. The latest experiments have shown the oscillation time to be greater than 8.6 x 107 seconds, whereas current theoretical predictions suggest times on the order of 108 to 109 seconds. A neutron oscillation experiment proposed at the European Spallation Source (ESS) would provide sensitivity of more than 1000 times previous experiments performed, thus providing a result well-suited to confirm or deny current theory. A conceptual design of the proposed experiment will be presented, as well as the optimization of key experiment components using Monte-Carlo simulation methods, including the McStas neutron ray-trace simulation package. This work is supported by the Organized Research Units Program funded by The University of Tennessee, Knoxville Office of Research and Engagement.

  20. The MSFC UNIVAC 1108 EXEC 8 simulation model

    NASA Technical Reports Server (NTRS)

    Williams, T. G.; Richards, F. M.; Weatherbee, J. E.; Paul, L. K.

    1972-01-01

    A model is presented which simulates the MSFC Univac 1108 multiprocessor system. The hardware/operating system is described to enable a good statistical measurement of the system behavior. The performance of the 1108 is evaluated by performing twenty-four different experiments designed to locate system bottlenecks and also to test the sensitivity of system throughput with respect to perturbation of the various Exec 8 scheduling algorithms. The model is implemented in the general purpose system simulation language and the techniques described can be used to assist in the design, development, and evaluation of multiprocessor systems.

  1. CAGE IIIA Distributed Simulation Design Methodology

    DTIC Science & Technology

    2014-05-01

    2 VHF Very High Frequency VLC Video LAN Codec – an Open-source cross-platform multimedia player and framework VM Virtual Machine VOIP Voice Over...Implementing Defence Experimentation (GUIDEx). The key challenges for this methodology are with understanding how to: • design it o define the...operation and to be available in the other nation’s simulations. The challenge for the CAGE campaign of experiments is to continue to build upon this

  2. HAWK MACH-III Intelligent Maintenance Tutor Design Development Report

    DTIC Science & Technology

    1986-12-01

    objective can best be achieved by designing the MACH-IIl to provide augmented hands-on experience in troubleshooting in a setting which will emphasize...artificial intelligence supporting the development activity will focus on development of a strategy for effective and efficient hierarchical simulation of...main components of such a system are the system simulation and problem-solving expertise, the student model, and the tutorial strategies . In the MACH

  3. Detector Development for the MARE Neutrino Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galeazzi, M.; Bogorin, D.; Molina, R.

    2009-12-16

    The MARE experiment is designed to measure the mass of the neutrino with sub-eV sensitivity by measuring the beta decay of {sup 187}Re with cryogenic microcalorimeters. A preliminary analysis shows that, to achieve the necessary statistics, between 10,000 and 50,000 detectors are likely necessary. We have fabricated and characterized Iridium transition edge sensors with high reproducibility and uniformity for such a large scale experiment. We have also started a full scale simulation of the experimental setup for MARE, including thermalization in the absorber, detector response, and optimum filter analysis, to understand the issues related to reaching a sub-eV sensitivity andmore » to optimize the design of the MARE experiment. We present our characterization of the Ir devices, including reproducibility, uniformity, and sensitivity, and we discuss the implementation and capabilities of our full scale simulation.« less

  4. INACSL Standards of Best Practice for Simulation: Past, Present, and Future.

    PubMed

    Sittner, Barbara J; Aebersold, Michelle L; Paige, Jane B; Graham, Leslie L M; Schram, Andrea Parsons; Decker, Sharon I; Lioce, Lori

    2015-01-01

    To describe the historical evolution of the International Nursing Association for Clinical Simulation and Learning's (INACSL) Standards of Best Practice: Simulation. The establishment of simulation standards began as a concerted effort by the INACSL Board of Directors in 2010 to provide best practices to design, conduct, and evaluate simulation activities in order to advance the science of simulation as a teaching methodology. A comprehensive review of the evolution of INACSL Standards of Best Practice: Simulation was conducted using journal publications, the INACSL website, INACSL member survey, and reports from members of the INACSL Standards Committee. The initial seven standards, published in 2011, were reviewed and revised in 2013. Two new standards were published in 2015. The standards will continue to evolve as the science of simulation advances. As the use of simulation-based experiences increases, the INACSL Standards of Best Practice: Simulation are foundational to standardizing language, behaviors, and curricular design for facilitators and learners.

  5. Teaching Globalisation in the Social Sciences: The Effectiveness of a Refugee Simulation

    ERIC Educational Resources Information Center

    George, Stacy Keogh

    2017-01-01

    This article describes the incorporation of a refugee simulation into an upper-division sociology course on globalisation at a liberal arts institution in the United States. The simulation is designed to inform students of the refugee process in the United States by inviting participants to immerse themselves in refugee experiences by adopting…

  6. Doing Poverty: Learning Outcomes among Students Participating in the Community Action Poverty Simulation Program

    ERIC Educational Resources Information Center

    Steck, Laura West; Engler, Jennifer N.; Ligon, Mary; Druen, Perri B.; Cosgrove, Erin

    2011-01-01

    This article discusses an application of the Lewinian/Kolb experiential learning model in the context of undergraduate participation in the Missouri Community Action Poverty Simulation (CAPS) program. CAPS is designed to simulate common, everyday experiences among people living in poverty as participants take on the roles of family members working…

  7. Increasing Interest in Social Studies: Social Perspective Taking and Self-Efficacy in Stimulating Simulations

    ERIC Educational Resources Information Center

    Gehlbach, Hunter; Brown, Scott W.; Ioannou, Andri; Boyer, Mark A.; Hudson, Natalie; Niv-Solomon, Anat; Maneggia, Donalyn; Janik, Laura

    2008-01-01

    This study examined the potential of simulations to bolster interest in middle school social studies classrooms. Using a pre-post-design, we examined 305 middle school students (49% female) who participated in the web-based "GlobalEd" simulation. In contrast to the motivation declines middle school students usually experience, participants in this…

  8. Group Simulation for "Authentic" Assessment in a Maternal-Child Lecture Course

    ERIC Educational Resources Information Center

    Hensel, Desiree; Stanley, Leah

    2014-01-01

    The purpose of this pilot study was to explore student perceptions and outcomes surrounding the use of a labor and delivery simulation as a midterm exam in a maternal-newborn lecture course. An exploratory case study design was used to gain a holistic view of the simulation experience. Data from focus groups, written debriefings, simulation…

  9. Optimization of the NIF ignition point design hohlraum

    NASA Astrophysics Data System (ADS)

    Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.

    2008-05-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.

  10. Design, Modeling, Fabrication, and Evaluation of the Air Amplifier for Improved Detection of Biomolecules by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Robichaud, Guillaume; Dixon, R. Brent; Potturi, Amarnatha S.; Cassidy, Dan; Edwards, Jack R.; Sohn, Alex; Dow, Thomas A.; Muddiman, David C.

    2010-01-01

    Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds). PMID:21499524

  11. Design of a low parasitic inductance SiC power module with double-sided cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fei; Liang, Zhenxian; Wang, Fei

    In this paper, a low-parasitic inductance SiC power module with double-sided cooling is designed and compared with a baseline double-sided cooled module. With the unique 3D layout utilizing vertical interconnection, the power loop inductance is effectively reduced without sacrificing the thermal performance. Both simulations and experiments are carried out to validate the design. Q3D simulation results show a power loop inductance of 1.63 nH, verified by the experiment, indicating more than 60% reduction of power loop inductance compared with the baseline module. With 0Ω external gate resistance turn-off at 600V, the voltage overshoot is less than 9% of the busmore » voltage at a load of 44.6A.« less

  12. Mechanical behavior of deformed intravascular NiTi stents differing in design. Numerical simulation

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.; Smolin, Alexey Yu.; Krukovskii, Konstantin V.; Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryashov, Andrey N.

    2017-12-01

    Self-expanding intravascular NiTi stents serve to recover the lumen of vessels suffered from atherosclerotic stenosis. During their manufacturing or functioning in blood vessels, the stents experience different strains and local stresses that may result in dangerous defects or fracture. Here, using the method of movable cellular automata, we analyze how the design of a stent influences its stress state during shaping to a desired diameter on a mandrel. We consider repeated segments of different stents under two loads: uniform diametric expansion of their crown and expansion with relative displacements. The simulation data agree well with experiments, revealing critical strain, stress, and their localization sites at the shaping stage, and provide the way toward optimum stent designs to minimize the critical stress during shaping.

  13. (sup 4)He Experiments Near T(sub lambda) in a Low-Gravity Simulator

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Larson, M.; Israelsson, U.

    1998-01-01

    We report on our latest measurements of gravity reduction in the low-gravity simulator. We made these measurements using a new thermal conductivity cell design that is 0.5cm in diameter and 0.5cm in height.

  14. Using Bayesian variable selection to analyze regular resolution IV two-level fractional factorial designs

    DOE PAGES

    Chipman, Hugh A.; Hamada, Michael S.

    2016-06-02

    Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.

  15. Using Bayesian variable selection to analyze regular resolution IV two-level fractional factorial designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chipman, Hugh A.; Hamada, Michael S.

    Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.

  16. Experiences in integrating auto-translated state-chart designs for model checking

    NASA Technical Reports Server (NTRS)

    Pingree, P. J.; Benowitz, E. G.

    2003-01-01

    In the complex environment of JPL's flight missions with increasing dependency on advanced software designs, traditional software validation methods of simulation and testing are being stretched to adequately cover the needs of software development.

  17. Airfoil Shape Optimization based on Surrogate Model

    NASA Astrophysics Data System (ADS)

    Mukesh, R.; Lingadurai, K.; Selvakumar, U.

    2018-02-01

    Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.

  18. Validated simulator for space debris removal with nets and other flexible tethers applications

    NASA Astrophysics Data System (ADS)

    Gołębiowski, Wojciech; Michalczyk, Rafał; Dyrek, Michał; Battista, Umberto; Wormnes, Kjetil

    2016-12-01

    In the context of active debris removal technologies and preparation activities for the e.Deorbit mission, a simulator for net-shaped elastic bodies dynamics and their interactions with rigid bodies, has been developed. Its main application is to aid net design and test scenarios for space debris deorbitation. The simulator can model all the phases of the debris capturing process: net launch, flight and wrapping around the target. It handles coupled simulation of rigid and flexible bodies dynamics. Flexible bodies were implemented using Cosserat rods model. It allows to simulate flexible threads or wires with elasticity and damping for stretching, bending and torsion. Threads may be combined into structures of any topology, so the software is able to simulate nets, pure tethers, tether bundles, cages, trusses, etc. Full contact dynamics was implemented. Programmatic interaction with simulation is possible - i.e. for control implementation. The underlying model has been experimentally validated and due to significant gravity influence, experiment had to be performed in microgravity conditions. Validation experiment for parabolic flight was a downscaled process of Envisat capturing. The prepacked net was launched towards the satellite model, it expanded, hit the model and wrapped around it. The whole process was recorded with 2 fast stereographic camera sets for full 3D trajectory reconstruction. The trajectories were used to compare net dynamics to respective simulations and then to validate the simulation tool. The experiments were performed on board of a Falcon-20 aircraft, operated by National Research Council in Ottawa, Canada. Validation results show that model reflects phenomenon physics accurately enough, so it may be used for scenario evaluation and mission design purposes. The functionalities of the simulator are described in detail in the paper, as well as its underlying model, sample cases and methodology behind validation. Results are presented and typical use cases are discussed showing that the software may be used to design throw nets for space debris capturing, but also to simulate deorbitation process, chaser control system or general interactions between rigid and elastic bodies - all in convenient and efficient way. The presented work was led by SKA Polska under the ESA contract, within the CleanSpace initiative.

  19. Students' experiences of learning manual clinical skills through simulation.

    PubMed

    Johannesson, Eva; Silén, Charlotte; Kvist, Joanna; Hult, Håkan

    2013-03-01

    Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and thoughts about their learning through simulation skills training. The study was designed for an educational setting at a clinical skills centre. Ten third-year undergraduate nursing students performed urethral catheterisation, using the virtual reality simulator UrecathVision™, which has haptic properties. The students practised in pairs. Each session was videotaped and the video was used to stimulate recall in subsequent interviews. The interviews were analysed using qualitative content analysis. The analysis from interviews resulted in three themes: what the students learn, how the students learn, and the simulator's contribution to the students' learning. Students learned manual skills, how to perform the procedure, and professional behaviour. They learned by preparing, watching, practising and reflecting. The simulator contributed by providing opportunities for students to prepare for the skills training, to see anatomical structures, to feel resistance, and to become aware of their own performance ability. The findings show that the students related the task to previous experiences, used sensory information, tested themselves and practised techniques in a hands-on fashion, and reflected in and on action. The simulator was seen as a facilitator to learning the manual skills. The study design, with students working in pairs combined with video recording, was found to enhance opportunities for reflection.

  20. Vertical laser beam propagation through the troposphere

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  1. Observing System Simulation Experiments for Fun and Profit

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2015-01-01

    Observing System Simulation Experiments can be powerful tools for evaluating and exploring both the behavior of data assimilation systems and the potential impacts of future observing systems. With great power comes great responsibility - given a pure modeling framework, how can we be sure our results are meaningful? The challenges and pitfalls of OSSE calibration and validation will be addressed, as well as issues of incestuousness, selection of appropriate metrics, and experiment design. The use of idealized observational networks to investigate theoretical ideas in a fully complex modeling framework will also be discussed

  2. Numerical modeling of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Tsang, C. F.; Doughty, C.; Kincaid, C. T.

    1982-12-01

    During 1981 and 1982, Auburn University has been performing a three cycle ATES field experiment in Mobile County, Alabama. Details of the experiment are described elsewhere in this volume. Concurrent with the first two cycles (59 C and 82 C), Lawrence Berkeley Laboratory (LBL) did numerical simulations based on field operating conditions to predict the outcome of each cycle before its conclusion. Prior to the third cycle, a series of numerical simulations were made to aid in the design of an experiment that would yield the highest recovery factor possible.

  3. Modeling and HIL Simulation of Flight Conditions Simulating Control System for the Altitude Test Facility

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Shen, Li; Zhang, Tianhong

    2016-12-01

    Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.

  4. An integrated modeling and design tool for advanced optical spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1992-01-01

    Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.

  5. Identifiability of sorption parameters in stirred flow-through reactor experiments and their identification with a Bayesian approach.

    PubMed

    Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y

    2016-10-01

    This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the K d approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because K d,1 and k - were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Metamodels for Ozone - Comparison of Two Techniques

    EPA Science Inventory

    A metamodel is a mathematical relationship between the inputs and outputs of a simulation experiment, permitting calculation of outputs for scenarios of interest without having to run new (presumably costly) experiments. Ozone metamodels are typically designed to capture a parti...

  7. Study on model design and dynamic similitude relations of vibro-acoustic experiment for elastic cavity

    NASA Astrophysics Data System (ADS)

    Shi, Ao; Lu, Bo; Yang, Dangguo; Wang, Xiansheng; Wu, Junqiang; Zhou, Fangqi

    2018-05-01

    Coupling between aero-acoustic noise and structural vibration under high-speed open cavity flow-induced oscillation may bring about severe random vibration of the structure, and even cause structure to fatigue destruction, which threatens the flight safety. Carrying out the research on vibro-acoustic experiments of scaled down model is an effective means to clarify the effects of high-intensity noise of cavity on structural vibration. Therefore, in allusion to the vibro-acoustic experiments of cavity in wind tunnel, taking typical elastic cavity as the research object, dimensional analysis and finite element method were adopted to establish the similitude relations of structural inherent characteristics and dynamics for distorted model, and verifying the proposed similitude relations by means of experiments and numerical simulation. Research shows that, according to the analysis of scale-down model, the established similitude relations can accurately simulate the structural dynamic characteristics of actual model, which provides theoretic guidance for structural design and vibro-acoustic experiments of scaled down elastic cavity model.

  8. Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Landman, Drew

    2015-01-01

    Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.

  9. TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.

    Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven additional TREAT fuel elements to facilitate the experiment will not inhibit the ability to successfully simulate a RIA for the 2-pin or 3-pin bundle. This new water loop design leaves room for accommodating a larger fuel pin bundle than previously analyzed. The 7-pin fuel bundle in a hexagonal array with similar spacing of fuel pins in a SFR fuel assembly was considered the minimum needed for one central fuel pin to encounter the most correct thermal conditions. The 9-rod fuel bundle in a square array similar in spacing to pins in a LWR fuel assembly would be considered the LWR equivalent. MCNP analysis conducted on a preliminary LWR 9-rod bundle design shows that sufficient energy deposition into the central pin can be achieved well within range to investigate fuel and cladding performance in a simulated RIA. This is achieved by surrounding the flow channel with an additional annulus of water. Findings also show that a highly significant increase in TREAT to specimen power coupling factor (PCF) within the central pin can be achieved by surrounding the experiment with one to two rings of TREAT upgrade fuel assemblies. The experiment design holds promise for the performance evaluation of PWR fuel at extremely high burnup under similar reactor environment conditions.« less

  10. Apollo experience report: Guidance and control systems. Engineering simulation program

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  11. Minimizing the Discrepancy between Simulated and Historical Failures in Turbine Engines: A Simulation-Based Optimization Method (Postprint)

    DTIC Science & Technology

    2015-01-01

    Procedure. The simulated annealing (SA) algorithm is a well-known local search metaheuristic used to address discrete, continuous, and multiobjective...design of experiments (DOE) to tune the parameters of the optimiza- tion algorithm . Section 5 shows the results of the case study. Finally, concluding... metaheuristic . The proposed method is broken down into two phases. Phase I consists of a Monte Carlo simulation to obtain the simulated percentage of failure

  12. Introducing Teamwork Challenges in Simulation Using Game Cards.

    PubMed

    Chang, Todd P; Kwan, Karen Y; Liberman, Danica; Song, Eric; Dao, Eugene H; Chung, Dayun; Morton, Inge; Festekjian, Ara

    2015-08-01

    Poor teamwork and communication during resuscitations are linked to patient safety problems and poorer outcomes. We present a novel simulation-based educational intervention using game cards to introduce challenges in teamwork. This intervention uses sets of game cards that designate roles, limitations, or communication challenges designed to introduce common communication or teamwork problems. Game cards are designed to be applicable for any simulation-based scenario and are independent from patient physiology. In our example, participants were pediatric emergency medicine fellows undergoing simulation training for orientation. We describe the use of card sets in different scenarios with increasing teamwork challenge and difficulty. Both postscenario and summative debriefings were facilitated to allow participants to reflect on their performance and discover ways to apply their strategies to real resuscitations. In this article, we present our experience with the novel use of game cards to modify simulation scenarios to improve communication and teamwork skills.

  13. Five-Junction Solar Cell Optimization Using Silvaco Atlas

    DTIC Science & Technology

    2017-09-01

    experimental sources [1], [4], [6]. f. Numerical Method The method selected for solving the non -linear equations that make up the simulation can be...and maximize efficiency. Optimization of solar cell efficiency is carried out via nearly orthogonal balanced design of experiments methodology . Silvaco...Optimization of solar cell efficiency is carried out via nearly orthogonal balanced design of experiments methodology . Silvaco ATLAS is utilized to

  14. Spacelab simulation using a Lear Jet aircraft: Mission no. 4 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1975-01-01

    The fourth ASSESS Spacelab simulation mission utilizing a Lear Jet aircraft featured trained experiment operators (EOs) in place of the participating scientists, to simulate the role and functions of payload specialists in Spacelab who may conduct experiments developed by other scientists. The experiment was a broadband infrared photometer coupled to a 30-cm, open port, IR telescope. No compromises in equipment design or target selection were made to simplify operator tasks; the science goals of the mission were selected to advance the mainline research program of the principle investigator (PI). Training of the EOs was the responsibility of the PI team and consisted of laboratory sessions, on-site training during experiment integration, and integrated mission training using the aircraft as a high-fidelity simulator. The EO permission experience in these several disciplines proved adequate for normal experiment operations, but marginal for the identification and remedy of equipment malfunctions. During the mission, the PI utilized a TV communication system to assist the EOs to overcome equipment difficulties; both science and operations were successfully implemented.

  15. Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peoman G.

    1997-01-01

    The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction

  16. Historical disturbance regimes as a reference for forest policy. in a multiowner province: a simulation experiment

    Treesearch

    Jonathan R. Thompson; K. Norman Johnson; Marie Lennette; Thomas A. Spies; Pete Bettinger

    2006-01-01

    Using a landscape simulation model, we examined ecological and economic implications of forest policies designed to emulate the historical fire regime across the 2 x 106 ha Oregon Coast Range. Simulated policies included two variants of the current policy and three policies reflecting aspects of the historical fire regime. Policy development was...

  17. The Effect of Nursing Faculty Presence on Students' Level of Anxiety, Self-Confidence, and Clinical Performance during a Clinical Simulation Experience

    ERIC Educational Resources Information Center

    Horsley, Trisha Leann

    2012-01-01

    Nursing schools design their clinical simulation labs based upon faculty's perception of the optimal environment to meet the students' learning needs, other programs' success with integrating high-tech clinical simulation, and the funds available. No research has been conducted on nursing faculty presence during a summative evaluation. The…

  18. LAWS simulation: Sampling strategies and wind computation algorithms

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D. A.; Wood, S. A.; Houston, S. H.

    1989-01-01

    In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS.

  19. Dynamic Clamp in Cardiac and Neuronal Systems Using RTXI

    PubMed Central

    Ortega, Francis A.; Butera, Robert J.; Christini, David J.; White, John A.; Dorval, Alan D.

    2016-01-01

    The injection of computer-simulated conductances through the dynamic clamp technique has allowed researchers to probe the intercellular and intracellular dynamics of cardiac and neuronal systems with great precision. By coupling computational models to biological systems, dynamic clamp has become a proven tool in electrophysiology with many applications, such as generating hybrid networks in neurons or simulating channelopathies in cardiomyocytes. While its applications are broad, the approach is straightforward: synthesizing traditional patch clamp, computational modeling, and closed-loop feedback control to simulate a cellular conductance. Here, we present two example applications: artificial blocking of the inward rectifier potassium current in a cardiomyocyte and coupling of a biological neuron to a virtual neuron through a virtual synapse. The design and implementation of the necessary software to administer these dynamic clamp experiments can be difficult. In this chapter, we provide an overview of designing and implementing a dynamic clamp experiment using the Real-Time eXperiment Interface (RTXI), an open- source software system tailored for real-time biological experiments. We present two ways to achieve this using RTXI’s modular format, through the creation of a custom user-made module and through existing modules found in RTXI’s online library. PMID:25023319

  20. Issues and opportunities: beam simulations for heavy ion fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A

    1999-07-15

    UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high-more » current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to (2) electromagnetic or magnetoinductive PIC or hybrid PIG/ fluid simulations in the fusion chamber (which would finally pass their particle trajectory information to the radiation- hydrodynamics codes used for target design); in parallel, (3) detailed PIC, delta- f, core/ test- particle, and perhaps continuum Vlasov codes should be used to study individual sections of the driver and chamber very carefully; consistency may be assured by linking data from the PIC sequence, and knowledge gained may feed back into that sequence.« less

  1. Simulation methods to estimate design power: an overview for applied research.

    PubMed

    Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E

    2011-06-20

    Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.

  2. Simulation methods to estimate design power: an overview for applied research

    PubMed Central

    2011-01-01

    Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447

  3. Impact of detector simulation in particle physics collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvira, V. Daniel

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  4. Impact of detector simulation in particle physics collider experiments

    DOE PAGES

    Elvira, V. Daniel

    2017-06-01

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  5. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  6. Plasma contactor research, 1989

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1990-01-01

    The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.

  7. Extracting atomic numbers and electron densities from a dual source dual energy CT scanner: experiments and a simulation model.

    PubMed

    Landry, Guillaume; Reniers, Brigitte; Granton, Patrick Vincent; van Rooijen, Bart; Beaulieu, Luc; Wildberger, Joachim E; Verhaegen, Frank

    2011-09-01

    Dual energy CT (DECT) imaging can provide both the electron density ρ(e) and effective atomic number Z(eff), thus facilitating tissue type identification. This paper investigates the accuracy of a dual source DECT scanner by means of measurements and simulations. Previous simulation work suggested improved Monte Carlo dose calculation accuracy when compared to single energy CT for low energy photon brachytherapy, but lacked validation. As such, we aim to validate our DECT simulation model in this work. A cylindrical phantom containing tissue mimicking inserts was scanned with a second generation dual source scanner (SOMATOM Definition FLASH) to obtain Z(eff) and ρ(e). A model of the scanner was designed in ImaSim, a CT simulation program, and was used to simulate the experiment. Accuracy of measured Z(eff) (labelled Z) was found to vary from -10% to 10% from low to high Z tissue substitutes while the accuracy on ρ(e) from DECT was about 2.5%. Our simulation reproduced the experiments within ±5% for both Z and ρ(e). A clinical DECT scanner was able to extract Z and ρ(e) of tissue substitutes. Our simulation tool replicates the experiments within a reasonable accuracy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Towards a genetics-based adaptive agent to support flight testing

    NASA Astrophysics Data System (ADS)

    Cribbs, Henry Brown, III

    Although the benefits of aircraft simulation have been known since the late 1960s, simulation almost always entails interaction with a human test pilot. This "pilot-in-the-loop" simulation process provides useful evaluative information to the aircraft designer and provides a training tool to the pilot. Emulation of a pilot during the early phases of the aircraft design process might provide designers a useful evaluative tool. Machine learning might emulate a pilot in a simulated aircraft/cockpit setting. Preliminary work in the application of machine learning techniques, such as reinforcement learning, to aircraft maneuvering have shown promise. These studies used simplified interfaces between machine learning agent and the aircraft simulation. The simulations employed low order equivalent system models. High-fidelity aircraft simulations exist, such as the simulations developed by NASA at its Dryden Flight Research Center. To expand the applicational domain of reinforcement learning to aircraft designs, this study presents a series of experiments that examine a reinforcement learning agent in the role of test pilot. The NASA X-31 and F-106 high-fidelity simulations provide realistic aircraft for the agent to maneuver. The approach of the study is to examine an agent possessing a genetic-based, artificial neural network to approximate long-term, expected cost (Bellman value) in a basic maneuvering task. The experiments evaluate different learning methods based on a common feedback function and an identical task. The learning methods evaluated are: Q-learning, Q(lambda)-learning, SARSA learning, and SARSA(lambda) learning. Experimental results indicate that, while prediction error remain quite high, similar, repeatable behaviors occur in both aircraft. Similar behavior exhibits portability of the agent between aircraft with different handling qualities (dynamics). Besides the adaptive behavior aspects of the study, the genetic algorithm used in the agent is shown to play an additive role in the shaping of the artificial neural network to the prediction task.

  9. VISUALIZATION AND SIMULATION OF NON-AQUEOUS PHASE LIQUIDS SOLUBILIZATION IN PORE NETWORKS

    EPA Science Inventory

    The design of in-situ remediation of contaminated soils is mostly based on a description at the macroscopic scale using a averaged quantities. These cannot address issues at the pore and pore network scales. In this paper, visualization experiments and numerical simulations in ...

  10. The Serpent Strikes: Simulation in a Large First-Year Course.

    ERIC Educational Resources Information Center

    Schrag, Philip G.

    1989-01-01

    A year-long simulation of a single case supplements a traditional civil procedure course at Georgetown University. Experience with the approach suggests that design features can reduce the burdens on the instructor without reducing course effectiveness, making the approach feasible even with larger classes. (MSE)

  11. Simulated Group Counseling: An Experiential Training Model for Group Work.

    ERIC Educational Resources Information Center

    Romano, John L.

    1998-01-01

    Describes an experiential group training model designed for prepracticum-level counseling graduate students. Simulated Group Counseling (SCG) offers students an opportunity to experience being group members; facilitating a group; and processing the group with peers, an advanced graduate student observer, and the instructor. SGC reduces…

  12. Diversity of nursing student views about simulation design: a q-methodological study.

    PubMed

    Paige, Jane B; Morin, Karen H

    2015-05-01

    Education of future nurses benefits from well-designed simulation activities. Skillful teaching with simulation requires educators to be constantly aware of how students experience learning and perceive educators' actions. Because revision of simulation activities considers feedback elicited from students, it is crucial to understand the perspective from which students base their response. In a Q-methodological approach, 45 nursing students rank-ordered 60 opinion statements about simulation design into a distribution grid. Factor analysis revealed that nursing students hold five distinct and uniquely personal perspectives-Let Me Show You, Stand By Me, The Agony of Defeat, Let Me Think It Through, and I'm Engaging and So Should You. Results suggest that nurse educators need to reaffirm that students clearly understand the purpose of each simulation activity. Nurse educators should incorporate presimulation assignments to optimize learning and help allay anxiety. The five perspectives discovered in this study can serve as a tool to discern individual students' learning needs. Copyright 2015, SLACK Incorporated.

  13. Process for Design Optimization of Honeycomb Core Sandwich Panels for Blast Load Mitigation

    DTIC Science & Technology

    2012-12-01

    experiments. Numerical simulation using a single ‘Y’ cross-sectional unit cell model predicted the crush behavior quite well compared to experiments with...of foil glued together by an adhesive. LS-DYNA is used to carry out the virtual simulation . The foil is modeled by quadrilateral Belytschko-Tsay...aluminum alloy with bilinear isotropic-hardening elastoplastic material model is used for the foil. Since the yield and ultimate strength of the AL5052

  14. Report on results of current and future metal casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unal, Cetin; Carlson, Neil N.

    2015-09-28

    New modeling capabilities needed to simulate the casting of metallic fuels are added to Truchas code. In this report we summarize improvements we made in FY2015 in three areas; (1) Analysis of new casting experiments conducted with BCS and EFL designs, (2) the simulation of INL’s U-Zr casting experiments with Flow3D computer program, (3) the implementation of surface tension model into Truchas for unstructured mesh required to run U-Zr casting.

  15. Synthesis and Biological Testing of Penicillins: An Investigative Approach to the Undergraduate Teaching Laboratory

    ERIC Educational Resources Information Center

    Whitaker, Ragnhild D.; Truhlar, Laura M.; Yksel, Deniz; Walt, David R.; Williams, Mark D.

    2010-01-01

    The development and implementation of a research-based organic chemistry laboratory experiment is presented. The experiment was designed to simulate a scientific research environment, involve students in critical thinking, and develop the student's ability to analyze and present research-based data. In this experiment, a laboratory class…

  16. The evolution of the simulation environment in the ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Saez, Norman; Velez, Gaston; Staig, Tomas; Sepulveda, Jorge; Saez, Alejandro; Ovando, Nicolas; Ibsen, Jorge

    2016-07-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) has entered into operation phase since 2013. This transition changed the priorities within the observatory, in which, most of the available time will be dedicated to science observations at the expense of technical time. Therefore, it was planned to design and implement a new simulation environment, which must be comparable - or at least- be representative of the production environment. Concepts of model in the loop and hardware in the loop were explored. In this paper we review experiences gained and lessons learnt during the design and implementation of the new simulation environment.

  17. Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations

    NASA Astrophysics Data System (ADS)

    Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.

    2014-10-01

    The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-04-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.

  19. Simulation-based evaluation of an in-vehicle smart situation awareness enhancement system.

    PubMed

    Gregoriades, Andreas; Sutcliffe, Alistair

    2018-07-01

    Situation awareness (SA) constitutes a critical factor in road safety, strongly related to accidents. This paper describes the evaluation of a proposed SA enhancement system (SAES) that exploits augmented reality through a head-up display (HUD). Two SAES designs were evaluation (information rich vs. minimal information) using a custom-made simulator and the Situation Awareness Global Assessment Technique with performance and EEG measures. The paper describes the process of assessing the SA of drivers using the SAES, through a series of experiments with participants in a Cave Automatic Virtual Environment. The effectiveness of the SAES was tested in a within-group research design. The results showed that the information rich (radar-style display) was superior to the minimal (arrow hazard indicator) design and that both SAES improved drivers' SA and performance compared to the control (no HUD) design. Practitioner Summary: Even though driver situation awareness is considered as one of the leading causes of road accidents, little has been done to enhance it. The current study demonstrates the positive effect of a proposed situation awareness enhancement system on driver situation awareness, through an experiment using virtual prototyping in a simulator.

  20. Numerical design of a magnetized turbulence experiment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Feister, Scott; Tzeferacos, Petros; Meinecke, Jena; Bott, Archie; Caprioli, Damiano; Laune, Jt; Bell, Tony; Casner, Alexis; Koenig, Michel; Li, Chikang; Miniati, Francesco; Petrasso, Richard; Remington, Bruce; Reville, Brian; Ross, J. Steven; Ryu, Dongsu; Ryutov, Dmitri; Sio, Hong; Turnbull, David; Zylstra, Alex; Schekochihin, Alexander; Froula, Dustin; Park, Hye-Sook; Lamb, Don; Gregori, Gianluca

    2017-10-01

    The origin and amplification of magnetic fields remains an active astrophysical research topic. We discuss design (using three-dimensional FLASH simulations) of a magnetized turbulence experiment at the National Ignition Facility (NIF). NIF lasers drive together two counter-propagating plasma flows to form a hot, turbulent plasma at the center. In the simulations, plasma temperatures are high enough to reach super-critical values of magnetic Reynolds number (Rm). Biermann battery seed magnetic fields (generated during laser-target interaction) are advected into the turbulent region and amplified by fluctuation dynamo in the above-unity Prandtl number regime. Plasma diagnostics are modeled with FLASH for planning and direct comparison with NIF experimental data. This work was supported in part at the University of Chicago by the DOE NNSA, the DOE Office of Science, and the NSF. The numerical simulations were conducted at ALCF's Mira under the auspices of the DOE Office of Science ALCC program.

  1. Induction simulation of gas core nuclear engine

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1973-01-01

    The design, construction and operation of an induction heated plasma device known as a combined principles simulator is discussed. This device incorporates the major design features of the gas core nuclear rocket engine such as solid feed, propellant seeding, propellant injection through the walls, and a transpiration cooled, choked flow nozzle. Both argon and nitrogen were used as propellant simulating material, and sodium was used for fuel simulating material. In addition, a number of experiments were conducted utilizing depleted uranium as the fuel. The test program revealed that satisfactory operation of this device can be accomplished over a range of operating conditions and provided additional data to confirm the validity of the gas core concept.

  2. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    NASA Astrophysics Data System (ADS)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  3. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    NASA Astrophysics Data System (ADS)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  4. Economical graphics display system for flight simulation avionics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.

  5. Graphical Interfaces for Simulation.

    ERIC Educational Resources Information Center

    Hollan, J. D.; And Others

    This document presents a discussion of the development of a set of software tools to assist in the construction of interfaces to simulations and real-time systems. Presuppositions to the approach to interface design that was used are surveyed, the tools are described, and the conclusions drawn from these experiences in graphical interface design…

  6. Bootstrapping Methods Applied for Simulating Laboratory Works

    ERIC Educational Resources Information Center

    Prodan, Augustin; Campean, Remus

    2005-01-01

    Purpose: The aim of this work is to implement bootstrapping methods into software tools, based on Java. Design/methodology/approach: This paper presents a category of software e-tools aimed at simulating laboratory works and experiments. Findings: Both students and teaching staff use traditional statistical methods to infer the truth from sample…

  7. A Simulated Research Problem for Undergraduate Metamorphic Petrology.

    ERIC Educational Resources Information Center

    Amenta, Roddy V.

    1984-01-01

    Presents a laboratory problem in metamorphic petrology designed to simulate a research experience. The problem deals with data on scales ranging from a geologic map to hand specimens to thin sections. Student analysis includes identifying metamorphic index minerals, locating their isograds on the map, and determining the folding sequence. (BC)

  8. Learning from Simulation Design to Develop Better Experiential Learning Initiatives: An Integrative Approach

    ERIC Educational Resources Information Center

    Canhoto, Ana Isabel; Murphy, Jamie

    2016-01-01

    Simulations offer engaging learning experiences, via the provision of feedback or the opportunities for experimentation. However, they lack important attributes valued by marketing educators and employers. This article proposes a "back to basics" look at what constitutes an effective experiential learning initiative. Drawing on the…

  9. Using Computer Simulations in Chemistry Problem Solving

    ERIC Educational Resources Information Center

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  10. Students' Emotions in Simulation-Based Medical Education

    ERIC Educational Resources Information Center

    Keskitalo, Tuulikki; Ruokamo, Heli

    2017-01-01

    Medical education is emotionally charged for many reasons, especially the fact that simulation-based learning is designed to generate emotional experiences. However, there are very few studies that concentrate on learning and emotions, despite widespread interest in the topic, especially within healthcare education. The aim of this research is to…

  11. Quake Final Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Critical infrastructures of the world are at constant risks for earthquakes. Most of these critical structures are designed using archaic, seismic, simulation methods that were built from early digital computers from the 1970s. Idaho National Laboratory’s Seismic Research Group are working to modernize the simulation methods through computational research and large-scale laboratory experiments.

  12. Test track and driving simulator evaluations of warnings to prevent right-angle crashes at signalized intersections

    DOT National Transportation Integrated Search

    2008-10-01

    Two experiments (simulator and test track) were conducted to validate the concept of a system designed to warn potential victims of a likely red-light violator. The warning system uses sensors to detect vehicles that are unlikely to stop at red traff...

  13. Games and Simulations in Developmental Education.

    ERIC Educational Resources Information Center

    Clavner, Jerry B.

    Developmental education activities should attempt to provide experiences which do not hold the student back from the normal flow of learning and which utilize processes already in the student's repertoire. Virtually all areas of developmental instruction can be supplemented with games and simulations, that is, activities designed to show the…

  14. A DEVELOPMENTAL STUDY OF MEDICAL TRAINING SIMULATORS FOR ANESTHESIOLOGISTS. FINAL REPORT.

    ERIC Educational Resources Information Center

    ABRAHAMSON, STEPHEN; DENSON, JUDSON S.

    IN THIS STUDY, A COMPUTER-CONTROLLED PATIENT SIMULATOR (SIM ONE) WAS DESIGNED, CONSTRUCTED, AND TESTED FOR THE TRAINING OF ANESTHESIOLOGY RESIDENTS AT THE UNIVERSITY OF SOUTHERN CALIFORNIA SCHOOL OF MEDICINE. THE TRAINING INVOLVED THE DEVELOPMENT OF SKILL IN ENDOTRACHEAL INTUBATION. THE EXPERIMENT INVOLVED 10 ANESTHESIOLOGY RESIDENTS. FIVE WERE…

  15. Responses of southeast Alaska understory species to variation in light and simulated herbivory

    Treesearch

    Thomas A. Hanley; Jeffrey C. Barnard

    2014-01-01

    Responses to variation in light intensity, simulated herbivory by clipping, and their interaction were studied over three seasons in a factorial experimental design. Six major species of southeast Alaska forest understories were studied, each as a separate experiment: bunchberry, Cornus canadensis L.; threeleaf foamflower, Tiarella...

  16. Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penacchioni, A. V., E-mail: ana.penacchioni@inpe.br; Braga, J., E-mail: joao.braga@inpe.br; Castro, M. A., E-mail: manuel.castro@inpe.br

    2015-12-17

    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modelled the meridian transits of the Crab Nebula and the Galactic Centre (CG) region during balloon flights in Brazil (∼ −23° of latitude and an altitude of ∼40 km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and ofmore » three sources in the GC: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.« less

  17. Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches

    DOE PAGES

    Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; ...

    2014-12-10

    A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less

  18. The Zombie Instability: Using Numerical Simulation to Design a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Marcus, Philip

    2014-11-01

    A new type of finite amplitude-instability has been found in numerical simulations of stratified, rotating, shear flows. The instability occurs via baroclinic critical layers that create linearly unstable vortex layers, which roll-up into vortices. Under the right conditions, those vortices can form a new generation of vortices, resulting in ``vortex self-replication'' that fills the fluid with vortices. Creating this instability in a laboratory would provide further evidence for the existence of the instability, which we first found in numerical simulations of protoplanetary disks. To design a laboratory experiment we need to know how the flow parameters-- shear, rotation and stratification, etc. affect the instability. To build an experiment economically, we also need to know how the finite-amplitude trigger of the instability scales with viscosity and the size of the domain. In this talk, we summarize our findings. We present a map, in terms of the experimentally controllable parameters, that shows where the instability occurs and whether the instability creates a few isolated transient vortices, a few long-lived vortices, or long-lived, self-replicating vortices that fill the entire flow.

  19. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-06-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  20. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-02-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  1. RF Systems in Space. Volume I. Space Antennas Frequency (SARF) Simulation.

    DTIC Science & Technology

    1983-04-01

    lens SBR designs were investigated. The survivability of an SBR system was analyzed. The design of ground based SBR validation experiments for large...aperture SBR concepts were investigated. SBR designs were investigated for ground target detection. N1’IS GRAMI DTIC TAB E Unannounced E Justificat... designs :~~.~...: .-..:. ->.. - . *.* . ..- . . .. . -. . ..- . .4. To analyze the survivability of space radar 5. To design ground-based validation

  2. Numerical Simulation Applications in the Design of EGS Collab Experiment 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; White, Mark D.; Fu, Pengcheng

    The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less

  3. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  4. Validation of CFD simulation of recoilless EOD water cannon by firing experiments with high speed camera

    NASA Astrophysics Data System (ADS)

    Chantrasmi, Tonkid; Hongthong, Premsiri; Kongkaniti, Manop

    2018-01-01

    Water cannon used by Explosive Ordnance Disposal (EOD) were designed to propel a burst of water jet moving at high speed to target and disrupt an improvised explosive device (IED). The cannon could be mounted on a remotely controlled robot, so it is highly desirable for the cannon to be recoilless in order not to damage the robot after firing. In the previous work, a nonconventional design of the water cannon was conceived. The recoil was greatly reduced by backward sprays of water through a ring of slotted holes around the muzzle. This minimizes the need to manufacture new parts by utilizing all off-the-shelf components except the tailor-made muzzle. The design was then investigated numerically by a series of Computational Fluid Dynamics (CFD) simulations. In this work, high speed camera was employed in firing experiments to capture the motion of the water jet and the backward sprays. It was found that the experimental data agreed well with the simulation results in term of averaged exit velocities.

  5. SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys

    DOE PAGES

    Nord, B.; Amara, A.; Refregier, A.; ...

    2016-03-03

    The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less

  6. Simulations of dusty plasmas using a special-purpose computer system designed for gravitational N-body problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, K.; Mizuno, Y.; Hibino, S.

    2006-01-15

    Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{supmore » 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.« less

  7. Determining the Influence of Granule Size on Simulation Parameters and Residual Shear Stress Distribution in Tablets by Combining the Finite Element Method into the Design of Experiments.

    PubMed

    Hayashi, Yoshihiro; Kosugi, Atsushi; Miura, Takahiro; Takayama, Kozo; Onuki, Yoshinori

    2018-01-01

    The influence of granule size on simulation parameters and residual shear stress in tablets was determined by combining the finite element method (FEM) into the design of experiments (DoE). Lactose granules were prepared using a wet granulation method with a high-shear mixer and sorted into small and large granules using sieves. To simulate the tableting process using the FEM, parameters simulating each granule were optimized using a DoE and a response surface method (RSM). The compaction behavior of each granule simulated by FEM was in reasonable agreement with the experimental findings. Higher coefficients of friction between powder and die/punch (μ) and lower by internal friction angle (α y ) were generated in the case of small granules, respectively. RSM revealed that die wall force was affected by α y . On the other hand, the pressure transmissibility rate of punches value was affected not only by the α y value, but also by μ. The FEM revealed that the residual shear stress was greater for small granules than for large granules. These results suggest that the inner structure of a tablet comprising small granules was less homogeneous than that comprising large granules. To evaluate the contribution of the simulation parameters to residual stress, these parameters were assigned to the fractional factorial design and an ANOVA was applied. The result indicated that μ was the critical factor influencing residual shear stress. This study demonstrates the importance of combining simulation and statistical analysis to gain a deeper understanding of the tableting process.

  8. Simulation and Measurement of Stray Light in the CLASP

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Tsuzuki, Toshihiro; Katsukawa, Yukio; Ishikawa, Shin-nosuke; Giono, Gabriel; Suematsu, Yoshinori; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman Alpha line polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly?? lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For total flux of the sun visible light overwhelmingly larger and about 200 000 times the Ly?? line wavelength region, also hinder to 0.1% of the polarization photometric accuracy achieved in the stray light of slight visible light. Therefore we were first carried out using the illumination design analysis software called stray light simulation CLASP Light Tools. Feature of this simulation, using optical design file (ZEMAX format) and structural design file (STEP format), to reproduce realistic CLASP as possible to calculate machine is that it was stray study. And, at the stage in the actual equipment that made the provisional set of CLASP, actually put sunlight into CLASP using coelostat of National Astronomical Observatory of Japan, was subjected to measurement of stray light (San test). Pattern was not observed in the simulation is observed in the stray light measurement results need arise that measures. However, thanks to the stray light measurement and simulation was performed by adding, it was found this pattern is due to the diffracted light at the slit. Currently, the simulation results is where you have taken steps to reference. In this presentation, we report the stray light simulation and stray light measurement results that we have implemented

  9. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  10. Simulation of German PKL refill/reflood experiment K9A using RELAP4/MOD7. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M.T.; Davis, C.B.; Behling, S.R.

    This paper describes a RELAP4/MOD7 simulation of West Germany's Kraftwerk Union (KWU) Primary Coolant Loop (PKL) refill/reflood experiment K9A. RELAP4/MOD7, a best-estimate computer program for the calculation of thermal and hydraulic phenomena in a nuclear reactor or related system, is the latest version in the RELAP4 code development series. This study was the first major simulation using RELAP4/MOD7 since its release by the Idaho National Engineering Laboratory (INEL). The PKL facility is a reduced scale (1:134) representation of a typical West German four-loop 1300 MW pressurized water reactor (PWR). A prototypical scale of the total volume to power ratio wasmore » maintained. The test facility was designed specifically for an experiment simulating the refill/reflood phase of a Loss-of-Coolant Accident (LOCA).« less

  11. Controlled experiments for dense gas diffusion: Experimental design and execution, model comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egami, R.; Bowen, J.; Coulombe, W.

    1995-07-01

    An experimental baseline CO2 release experiment at the DOE Spill Test Facility on the Nevada Test Site in Southern Nevada is described. This experiment was unique in its use of CO2 as a surrogate gas representative of a variety of specific chemicals. Introductory discussion places the experiment in historical perspective. CO2 was selected as a surrogate gas to provide a data base suitable for evaluation of model scenarios involving a variety of specific dense gases. The experiment design and setup are described, including design rationale and quality assurance methods employed. Resulting experimental data are summarized. Data usefulness is examined throughmore » a preliminary comparison of experimental results with simulations performed using the SLAV and DEGADIS dense gas models.« less

  12. Simulation With Debriefing and Guided Reflective Journaling to Stimulate Critical Thinking in Prelicensure Baccalaureate Degree Nursing Students.

    PubMed

    Padden-Denmead, Mary L; Scaffidi, Rose M; Kerley, Regina M; Farside, Amy Lee

    2016-11-01

    Simulation and guided reflective journaling have been identified as effective teaching and learning methods to develop critical thinking (CT) and clinical reasoning skills in nursing students. A descriptive correlational design was used to determine the relationship between CT and level of reflection using the Holistic Critical Thinking Skills Rubric (HCTSR) and the level of reflection on action assessment (LORAA), respectively, to evaluate 23 baccalaureate student-guided reflective journal entries after a simulation exercise with guided debriefing and after two subsequent clinical experiences. A statistically significant positive relationship (p < .01) was found between mean HCTSR and LORAA scores on all three journal entries, but no relationship to CT during simulation or on standardized test scores. The results also indicated support for use of the guided reflection after significant learning experiences. The LORAA and the HCTSR are effective measures of level of reflection and CT to evaluate learning from simulation and clinical experiences. [J Nurs Educ. 2016;55(11):645-650.]. Copyright 2016, SLACK Incorporated.

  13. CSM digital autopilot testing in support of ASTP experiments control requirements

    NASA Technical Reports Server (NTRS)

    Rue, D. L.

    1975-01-01

    Results are presented of CSM digital autopilot (DAP) testing. The testing was performed to demonstrate and evaluate control modes which are currently planned or could be considered for use in support of experiments on the ASTP mission. The testing was performed on the Lockheed Guidance, Navigation, and Control System Functional Simulator (GNCFS). This simulator, which was designed to test the Apollo and Skylab DAP control system, has been used extensively and is a proven tool for CSM DAP analysis.

  14. Simulation of eye disease in virtual reality.

    PubMed

    Jin, Bei; Ai, Zhuming; Rasmussen, Mary

    2005-01-01

    It is difficult to understand verbal descriptions of visual phenomenon if one has no such experience. Virtual Reality offers a unique opportunity to "experience" diminished vision and the problems it causes in daily life. We have developed an application to simulate age-related macular degeneration, glaucoma, protanopia, and diabetic retinopathy in a familiar setting. The application also includes the introduction of eye anatomy representing both normal and pathologic states. It is designed for patient education, health care practitioner training, and eye care specialist education.

  15. PDSS configuration control plan and procedures

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The payload development support system (PDSS) configuration control plan and procedures are presented. These plans and procedures establish the process for maintaining configuration control of the PDSS system, especially the Spacelab experiment interface device's (SEID) RAU, HRM, and PDI interface simulations and the PDSS ECOS DEP Services simulation. The plans and procedures as specified are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of PDSS during experiment test activities.

  16. The Other Man's Argument

    ERIC Educational Resources Information Center

    Godsall, R. A.

    1974-01-01

    A management simulation course has been designed by Dunchurch Industrial Staff College (DISC) that is management oriented rather than marketing oriented. The computer assisted program has been successful in allowing managers to experience immediately the effects of their decisions and also to experience each other's jobs and problems. (DS)

  17. ACCELEROMETERS IN FLOW FIELDS: A STRUCTURAL ANALYSIS OF THE CHOPPED DUMMY INPILE TUBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, T. K.; Marcum, W. R.; Latimer, G. D.

    2016-06-01

    Four tests characterizing the structural response of the Chopped-Dummy In-Pile tube (CDIPT) experiment design were measured in the Hydro-Mechanical Fuel Test Facility (HMFTF). Four different test configurations were tried. These configurations tested the pressure drop and flow impact of various plate configurations and flow control orifices to be used later at different reactor power levels. Accelerometers were placed on the test vehicle and flow simulation housing. A total of five accelerometers were used with one on the top and bottom of the flow simulator and vehicle, and one on the outside of the flow simulator. Data were collected at amore » series of flow rates for 5 seconds each at an acquisition rate of 2 kHz for a Nyquist frequency of 1 kHz. The data were then analyzed using a Fast Fourier Transform (FFT) algorithm. The results show very coherent vibrations of the CDIPT experiment on the order of 50 Hz in frequency and 0.01 m/s2 in magnitude. The coherent vibrations, although small in magnitude pose a potential design problem if the frequencies coincide with the natural frequency of the fueled plates or test vehicle. The accelerometer data was integrated and combined to create a 3D trace of the experiment during the test. The merits of this data as well as further anomalies and artifacts are also discussed as well as their relation to the instrumentation and experiment design.« less

  18. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  19. A Generic Simulation Framework for Non-Entangled based Experimental Quantum Cryptography and Communication: Quantum Cryptography and Communication Simulator (QuCCs)

    NASA Astrophysics Data System (ADS)

    Buhari, Abudhahir; Zukarnain, Zuriati Ahmad; Khalid, Roszelinda; Zakir Dato', Wira Jaafar Ahmad

    2016-11-01

    The applications of quantum information science move towards bigger and better heights for the next generation technology. Especially, in the field of quantum cryptography and quantum computation, the world already witnessed various ground-breaking tangible product and promising results. Quantum cryptography is one of the mature field from quantum mechanics and already available in the markets. The current state of quantum cryptography is still under various researches in order to reach the heights of digital cryptography. The complexity of quantum cryptography is higher due to combination of hardware and software. The lack of effective simulation tool to design and analyze the quantum cryptography experiments delays the reaching distance of the success. In this paper, we propose a framework to achieve an effective non-entanglement based quantum cryptography simulation tool. We applied hybrid simulation technique i.e. discrete event, continuous event and system dynamics. We also highlight the limitations of a commercial photonic simulation tool based experiments. Finally, we discuss ideas for achieving one-stop simulation package for quantum based secure key distribution experiments. All the modules of simulation framework are viewed from the computer science perspective.

  20. CVT/GPL phase 3 integrated testing

    NASA Technical Reports Server (NTRS)

    Shurney, R. E.; Cantrell, E.; Maybee, G.; Schmitt, S.

    1975-01-01

    The hardware for 20 candidate shuttle program life sciences experiments was installed in the GPL and experiments were conducted during a 5-day simulated mission. The experiments involved humans, primates, rats, chickens, and marigold plants. All experiments were completed to the satisfaction of the experimenters. In addition to the scientific data gathered for each experiment, information was obtained concerning experiment hardware design and integration, experiment procedures, GPL support systems, and test operations. The results of the integrated tests are presented.

  1. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  2. Experimental evaluation of candidate graphical microburst alert displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Hansman, R. John

    1992-01-01

    The topics addressed are: (1) experimental evaluation of candidate graphical microburst displays; (2) microburst detection and alerting; (3) previous part-task simulator experiment-comparison of presentation modes; (4) presentation mode comparison-results; (5) advantages of graphical mode of presentation; (6) graphical microburst alert experiment-objectives; and graphical microburst alert experiment-overview; and (7) candidate display design.

  3. Conceptual Design of a Tiltrotor Transport Flight Deck

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of a tiltrotor transport may be effected through an inceptor other than the current center sticks in the XV-15 and V-22. Simulation and flight investigations of side-stick control inceptors for rotorcraft, augmented by a 1985 flight test of a side-stick controller in the XV-15 suggest the potential of such a device in a transport cockpit.

  4. Design and interpretation of cell trajectory assays

    PubMed Central

    Bowden, Lucie G.; Simpson, Matthew J.; Baker, Ruth E.

    2013-01-01

    Cell trajectory data are often reported in the experimental cell biology literature to distinguish between different types of cell migration. Unfortunately, there is no accepted protocol for designing or interpreting such experiments and this makes it difficult to quantitatively compare different published datasets and to understand how changes in experimental design influence our ability to interpret different experiments. Here, we use an individual-based mathematical model to simulate the key features of a cell trajectory experiment. This shows that our ability to correctly interpret trajectory data is extremely sensitive to the geometry and timing of the experiment, the degree of motility bias and the number of experimental replicates. We show that cell trajectory experiments produce data that are most reliable when the experiment is performed in a quasi-one-dimensional geometry with a large number of identically prepared experiments conducted over a relatively short time-interval rather than a few trajectories recorded over particularly long time-intervals. PMID:23985736

  5. Discriminating Among Probability Weighting Functions Using Adaptive Design Optimization

    PubMed Central

    Cavagnaro, Daniel R.; Pitt, Mark A.; Gonzalez, Richard; Myung, Jay I.

    2014-01-01

    Probability weighting functions relate objective probabilities and their subjective weights, and play a central role in modeling choices under risk within cumulative prospect theory. While several different parametric forms have been proposed, their qualitative similarities make it challenging to discriminate among them empirically. In this paper, we use both simulation and choice experiments to investigate the extent to which different parametric forms of the probability weighting function can be discriminated using adaptive design optimization, a computer-based methodology that identifies and exploits model differences for the purpose of model discrimination. The simulation experiments show that the correct (data-generating) form can be conclusively discriminated from its competitors. The results of an empirical experiment reveal heterogeneity between participants in terms of the functional form, with two models (Prelec-2, Linear in Log Odds) emerging as the most common best-fitting models. The findings shed light on assumptions underlying these models. PMID:24453406

  6. Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.

  7. 3D detectors with high space and time resolution

    NASA Astrophysics Data System (ADS)

    Loi, A.

    2018-01-01

    For future high luminosity LHC experiments it will be important to develop new detector systems with increased space and time resolution and also better radiation hardness in order to operate in high luminosity environment. A possible technology which could give such performances is 3D silicon detectors. This work explores the possibility of a pixel geometry by designing and simulating different solutions, using Sentaurus Tecnology Computer Aided Design (TCAD) as design and simulation tool, and analysing their performances. A key factor during the selection was the generated electric field and the carrier velocity inside the active area of the pixel.

  8. IMPACT OF THE GERIATRIC MEDICATION GAME® ON NURSING STUDENTS EMPATHY AND ATTITUDES TOWARD OLDER ADULTS

    PubMed Central

    Kiersma, Mary E.; Yehle, Karen S.; Plake, Kimberly S.

    2014-01-01

    Background Nurses should be well-prepared to improve and address health-related needs of older adults, but students may have difficulty understanding and empathizing, as they may not yet have personally experienced aging-related challenges. Simulation games can be used to help students understand the experiences of others, but limited information is available on the impact of simulation experiences on student empathy. Objective The objective of this study was to examine the impact of participation in an aging simulation game on nursing students’ empathy and attitudes toward older adults as well as their understanding of patients’ experiences in the healthcare system. Design This study used a quasi-experimental, pretest-posttest design. Setting A school of nursing in the Midwestern United States. Participants The convenience sample included 58 sophomore-level baccalaureate nursing students. Methods Students played the role of an older adult during a 3-hour laboratory aging simulation game, the Geriatric Medication Game® (GMG). Students completed the (1) Kiersma-Chen Empathy Scale (KCES, 15 items, 7-point Likert-type), (2) Jefferson Scale of Empathy – Health Professions Students (JSE-HPS, 20 items, 7-point Likert-type), and (3) Aging Simulation Experience Survey (13 items, 7-point Likert-type) pre- and post-game to assess study objectives. Descriptive statistics and paired t-tests (were performed in SPSS v.21.0, as the data were normally distributed. Results Students’ empathy (N=58) toward older adults significantly improved overall (KCES p=0.015, JSE-HPS p<0.001). Improvements also were seen on seven out of 13 questions related to attitudes and healthcare understanding (p<0.05). In the post-test, students agreed that they experienced frustration and impatience during the GMG. Conclusions Students may not be aware of older adults’ feelings and experiences prior to experiencing aging-related changes themselves. Simulation activities, such as the GMG, can be a useful mechanism for addressing empathy and caring during student education. PMID:24912741

  9. Simulation experience enhances physical therapist student confidence in managing a patient in the critical care environment.

    PubMed

    Ohtake, Patricia J; Lazarus, Marcilene; Schillo, Rebecca; Rosen, Michael

    2013-02-01

    Rehabilitation of patients in critical care environments improves functional outcomes. This finding has led to increased implementation of intensive care unit (ICU) rehabilitation programs, including early mobility, and an associated increased demand for physical therapists practicing in ICUs. Unfortunately, many physical therapists report being inadequately prepared to work in this high-risk environment. Simulation provides focused, deliberate practice in safe, controlled learning environments and may be a method to initiate academic preparation of physical therapists for ICU practice. The purpose of this study was to examine the effect of participation in simulation-based management of a patient with critical illness in an ICU setting on levels of confidence and satisfaction in physical therapist students. A one-group, pretest-posttest, quasi-experimental design was used. Physical therapist students (N=43) participated in a critical care simulation experience requiring technical (assessing bed mobility and pulmonary status), behavioral (patient and interprofessional communication), and cognitive (recognizing a patient status change and initiating appropriate responses) skill performance. Student confidence and satisfaction were surveyed before and after the simulation experience. Students' confidence in their technical, behavioral, and cognitive skill performance increased from "somewhat confident" to "confident" following the critical care simulation experience. Student satisfaction was highly positive, with strong agreement the simulation experience was valuable, reinforced course content, and was a useful educational tool. Limitations of the study were the small sample from one university and a control group was not included. Incorporating a simulated, interprofessional critical care experience into a required clinical course improved physical therapist student confidence in technical, behavioral, and cognitive performance measures and was associated with high student satisfaction. Using simulation, students were introduced to the critical care environment, which may increase interest in working in this practice area.

  10. A Simulation Base Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO mission provides ideal conditions for this study with crew in the loop, an active control center, and real-time flow of high latency communications and data. NEEMO crew and ground support will work through procedures including activation of the transit vehicle power system, opening the hatch between the transit vehicle and a Mars ascent vehicle, transferring simulated crewmembers between vehicles, overcoming subsystem malfunctions, sending simulated crewmember on extra-vehicular activities, and other housekeeping activities. This study is enhancing the understanding of high latency operations and the advantages and disadvantages of different communication methods. It is also providing results that will help improve the design of simulation interfaces and inform the design of Mars transit vehicles.

  11. Impact of an Advanced Cardiac Life Support Simulation Laboratory Experience on Pharmacy Student Confidence and Knowledge.

    PubMed

    Maxwell, Whitney D; Mohorn, Phillip L; Haney, Jason S; Phillips, Cynthia M; Lu, Z Kevin; Clark, Kimberly; Corboy, Alex; Ragucci, Kelly R

    2016-10-25

    Objective. To assess the impact of an advanced cardiac life support (ACLS) simulation on pharmacy student confidence and knowledge. Design. Third-year pharmacy students participated in a simulation experience that consisted of team roles training, high-fidelity ACLS simulations, and debriefing. Students completed a pre/postsimulation confidence and knowledge assessment. Assessment. Overall, student knowledge assessment scores and student confidence scores improved significantly. Student confidence and knowledge changes from baseline were not significantly correlated. Conversely, a significant, weak positive correlation between presimulation studying and both presimulation confidence and presimulation knowledge was discovered. Conclusions. Overall, student confidence and knowledge assessment scores in ACLS significantly improved from baseline; however, student confidence and knowledge were not significantly correlated.

  12. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops

    NASA Astrophysics Data System (ADS)

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  13. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.

    PubMed

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  14. Investigating the impact of design characteristics on statistical efficiency within discrete choice experiments: A systematic survey.

    PubMed

    Vanniyasingam, Thuva; Daly, Caitlin; Jin, Xuejing; Zhang, Yuan; Foster, Gary; Cunningham, Charles; Thabane, Lehana

    2018-06-01

    This study reviews simulation studies of discrete choice experiments to determine (i) how survey design features affect statistical efficiency, (ii) and to appraise their reporting quality. Statistical efficiency was measured using relative design (D-) efficiency, D-optimality, or D-error. For this systematic survey, we searched Journal Storage (JSTOR), Since Direct, PubMed, and OVID which included a search within EMBASE. Searches were conducted up to year 2016 for simulation studies investigating the impact of DCE design features on statistical efficiency. Studies were screened and data were extracted independently and in duplicate. Results for each included study were summarized by design characteristic. Previously developed criteria for reporting quality of simulation studies were also adapted and applied to each included study. Of 371 potentially relevant studies, 9 were found to be eligible, with several varying in study objectives. Statistical efficiency improved when increasing the number of choice tasks or alternatives; decreasing the number of attributes, attribute levels; using an unrestricted continuous "manipulator" attribute; using model-based approaches with covariates incorporating response behaviour; using sampling approaches that incorporate previous knowledge of response behaviour; incorporating heterogeneity in a model-based design; correctly specifying Bayesian priors; minimizing parameter prior variances; and using an appropriate method to create the DCE design for the research question. The simulation studies performed well in terms of reporting quality. Improvement is needed in regards to clearly specifying study objectives, number of failures, random number generators, starting seeds, and the software used. These results identify the best approaches to structure a DCE. An investigator can manipulate design characteristics to help reduce response burden and increase statistical efficiency. Since studies varied in their objectives, conclusions were made on several design characteristics, however, the validity of each conclusion was limited. Further research should be conducted to explore all conclusions in various design settings and scenarios. Additional reviews to explore other statistical efficiency outcomes and databases can also be performed to enhance the conclusions identified from this review.

  15. Flight simulator platform motion and air transport pilot training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1987-01-01

    The effect of a flight simulator platform motion on the performance and training of a pilot was evaluated using subjective ratings and objective performance data obtained on experienced B-727 pilots and pilots with no prior heavy aircraft flying experience flying B-727-200 aircraft simulator used by the FAA in the upgrade and transition training for air carrier operations. The results on experienced pilots did not reveal any reliable effects of wide variations in platform motion design. On the other hand, motion variations significantly affected the behavior of pilots without heavy-aircraft experience. The effect was limited to pitch attitude control inputs during the early phase of landing training.

  16. Scattering Models and Basic Experiments in the Microwave Regime

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Blanchard, A. J. (Principal Investigator)

    1985-01-01

    The objectives of research over the next three years are: (1) to develop a randomly rough surface scattering model which is applicable over the entire frequency band; (2) to develop a computer simulation method and algorithm to simulate scattering from known randomly rough surfaces, Z(x,y); (3) to design and perform laboratory experiments to study geometric and physical target parameters of an inhomogeneous layer; (4) to develop scattering models for an inhomogeneous layer which accounts for near field interaction and multiple scattering in both the coherent and the incoherent scattering components; and (5) a comparison between theoretical models and measurements or numerical simulation.

  17. Simulation of Foam Impact Effects on Components of the Space Shuttle Thermal Protection System. Chapter 7

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Park, Young-Keun

    2004-01-01

    A series of three dimensional simulations has been performed to investigate analytically the effect of insulating foam impacts on ceramic tile and reinforced carbon-carbon components of the Space Shuttle thermal protection system. The simulations employed a hybrid particle-finite element method and a parallel code developed for use in spacecraft design applications. The conclusions suggested by the numerical study are in general consistent with experiment. The results emphasize the need for additional material testing work on the dynamic mechanical response of thermal protection system materials, and additional impact experiments for use in validating computational models of impact effects.

  18. Engineering and simulation of life science Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Bush, B.; Rummel, J.; Johnston, R. S.

    1977-01-01

    Approaches to the planning and realization of Spacelab life sciences experiments, which may involve as many as 16 Space Shuttle missions and 100 tests, are discussed. In particular, a Spacelab simulation program, designed to evaluate problems associated with the use of live animal specimens, the constraints imposed by zero gravity on equipment operation, training of investigators and data management, is described. The simulated facility approximates the hardware and support systems of a current European Space Agency Spacelab model. Preparations necessary for the experimental program, such as crew activity plans, payload documentation and inflight experimental procedures are developed; health problems of the crew, including human/animal microbial contamination, are also assessed.

  19. EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990-2010

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Andersson, Camilla; Manders, Astrid; Mar, Kathleen; Mircea, Mihaela; Pay, Maria-Teresa; Raffort, Valentin; Tsyro, Svetlana; Cuvelier, Cornelius; Adani, Mario; Bessagnet, Bertrand; Bergström, Robert; Briganti, Gino; Butler, Tim; Cappelletti, Andrea; Couvidat, Florian; D'Isidoro, Massimo; Doumbia, Thierno; Fagerli, Hilde; Granier, Claire; Heyes, Chris; Klimont, Zig; Ojha, Narendra; Otero, Noelia; Schaap, Martijn; Sindelarova, Katarina; Stegehuis, Annemiek I.; Roustan, Yelva; Vautard, Robert; van Meijgaard, Erik; Garcia Vivanco, Marta; Wind, Peter

    2017-09-01

    The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990-2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have - to date - completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990-2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.

  20. A Driving Simulator Evaluation of Cross-Sectional Design Elements and the Resulting Driving Behaviors

    DOT National Transportation Integrated Search

    2017-09-01

    This research explores the relationship between the cross-sectional design elements and the impact on selected driver attributes such as speed profiles and lateral positioning. In this experiment a traditional collector-type base roadway of 1.5 miles...

  1. A Comparison of Two Control Display Unit Concepts on Flight Management System Training

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1997-01-01

    One of the biggest challenges for a pilot in the transition to a 'glass' cockpit is understanding the flight management system (FMS). Because of both the complex nature of the FMS and the pilot-FMS interface, a large portion of transition training is devoted to the FMS. The current study examined the impact of the primary pilot-FMS interface, the control display unit (CDU), on FMS training. Based on the hypothesis that the interface design could have a significant impact on training, an FMS simulation with two separate interfaces was developed. One interface was similar to a current-generation design, and the other was a multiwindows CDU based on graphical user interface techniques. For both application and evaluation reasons, constraints were applied to the graphical CDU design to maintain as much similarity as possible with the conventional CDU. This preliminary experiment was conducted to evaluate the interface effects on training. Sixteen pilots with no FMS experience were used in a between-subjects test. A time-compressed, airline-type FMS training environment was simulated. The subjects were trained to a fixed-time criterion, and performance was measured in a final, full-mission simulation context. This paper describes the technical approach, simulation implementation, and experimental results of this effort.

  2. Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.

    PubMed

    Mathew, Jose V; Bhattacharjee, Sudeep

    2011-01-01

    Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.

  3. Granular Simulation of NEO Anchoring

    NASA Technical Reports Server (NTRS)

    Mazhar, Hammad

    2011-01-01

    NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.

  4. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho

    2013-12-01

    We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.

  5. YARNsim: Simulating Hadoop YARN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Yang, Xi; Sun, Xian-He

    Despite the popularity of the Apache Hadoop system, its success has been limited by issues such as single points of failure, centralized job/task management, and lack of support for programming models other than MapReduce. The next generation of Hadoop, Apache Hadoop YARN, is designed to address these issues. In this paper, we propose YARNsim, a simulation system for Hadoop YARN. YARNsim is based on parallel discrete event simulation and provides protocol-level accuracy in simulating key components of YARN. YARNsim provides a virtual platform on which system architects can evaluate the design and implementation of Hadoop YARN systems. Also, application developersmore » can tune job performance and understand the tradeoffs between different configurations, and Hadoop YARN system vendors can evaluate system efficiency under limited budgets. To demonstrate the validity of YARNsim, we use it to model two real systems and compare the experimental results from YARNsim and the real systems. The experiments include standard Hadoop benchmarks, synthetic workloads, and a bioinformatics application. The results show that the error rate is within 10% for the majority of test cases. The experiments prove that YARNsim can provide what-if analysis for system designers in a timely manner and at minimal cost compared with testing and evaluating on a real system.« less

  6. Modified optical fiber daylighting system with sunlight transportation in free space.

    PubMed

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  7. The JINR Tier1 Site Simulation for Research and Development Purposes

    NASA Astrophysics Data System (ADS)

    Korenkov, V.; Nechaevskiy, A.; Ososkov, G.; Pryahina, D.; Trofimov, V.; Uzhinskiy, A.; Voytishin, N.

    2016-02-01

    Distributed complex computing systems for data storage and processing are in common use in the majority of modern scientific centers. The design of such systems is usually based on recommendations obtained via a preliminary simulated model used and executed only once. However big experiments last for years and decades, and the development of their computing system is going on, not only quantitatively but also qualitatively. Even with the substantial efforts invested in the design phase to understand the systems configuration, it would be hard enough to develop a system without additional research of its future evolution. The developers and operators face the problem of the system behaviour predicting after the planned modifications. A system for grid and cloud services simulation is developed at LIT (JINR, Dubna). This simulation system is focused on improving the effciency of the grid/cloud structures development by using the work quality indicators of some real system. The development of such kind of software is very important for making a new grid/cloud infrastructure for such big scientific experiments like the JINR Tier1 site for WLCG. The simulation of some processes of the Tier1 site is considered as an example of our application approach.

  8. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    NASA Technical Reports Server (NTRS)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  9. An experiment on the use of disposable plastics as a reinforcement in concrete beams

    NASA Technical Reports Server (NTRS)

    Chowdhury, Mostafiz R.

    1992-01-01

    Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.

  10. Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise, quiet (no crew activity), and nominal conditions from STS-89 were used as simulation inputs as were periods of nominal. overboard water-dump, and free-drift (no orbit maneuvering operations) from STS-94. Steady-state acceleration environments of 0.0 and 10(exp -6) to 10(exp -1) g were also simulated, to serve as a comparison to the transient data and to assess an acceptable magnitude for the steady-state vehicle drag

  11. The design, fabrication and delivery of a spacelab neutral buoyancy Instrument Pointing System (IPS) mockup. [underwater training simulator

    NASA Technical Reports Server (NTRS)

    Vanvalkenburgh, C. N.

    1984-01-01

    Underwater simulations of EVA contingency operations such as manual jettison, payload disconnect, and payload clamp actuation were used to define crew aid needs and mockup pecularities and characteristics to verify the validity of simulation using the trainer. A set of mockup instrument pointing system tests was conducted and minor modifications and refinements were made. Flight configuration struts were tested and verified to be operable by the flight crew. Tasks involved in developing the following end items are described: IPS gimbal system, payload, and payload clamp assembly; the igloos (volumetric); spacelab pallets, experiments, and hardware; experiment, and hardware; experiment 7; and EVA hand tools, support hardware (handrails and foot restraints). The test plan preparation and test support are also covered.

  12. In Conversation: Transforming Experience Into Learning.

    ERIC Educational Resources Information Center

    Baker, Ann C.; And Others

    1997-01-01

    Simulations and games are designed to provide participants with an experiential context for reflection and learning in classrooms, corporate training centers, and community-based organizations. A conversational approach to debriefing sessions is one way to more deeply involve participants in exploring the meaning of their experience from multiple…

  13. Polyester: simulating RNA-seq datasets with differential transcript expression.

    PubMed

    Frazee, Alyssa C; Jaffe, Andrew E; Langmead, Ben; Leek, Jeffrey T

    2015-09-01

    Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Polyester is freely available from Bioconductor (http://bioconductor.org/). jtleek@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Optimisation of simulated team training through the application of learning theories: a debate for a conceptual framework.

    PubMed

    Stocker, Martin; Burmester, Margarita; Allen, Meredith

    2014-04-03

    As a conceptual review, this paper will debate relevant learning theories to inform the development, design and delivery of an effective educational programme for simulated team training relevant to health professionals. Kolb's experiential learning theory is used as the main conceptual framework to define the sequence of activities. Dewey's theory of reflective thought and action, Jarvis modification of Kolb's learning cycle and Schön's reflection-on-action serve as a model to design scenarios for optimal concrete experience and debriefing for challenging participants' beliefs and habits. Bandura's theory of self-efficacy and newer socio-cultural learning models outline that for efficient team training, it is mandatory to introduce the social-cultural context of a team. The ideal simulated team training programme needs a scenario for concrete experience, followed by a debriefing with a critical reflexive observation and abstract conceptualisation phase, and ending with a second scenario for active experimentation. Let them re-experiment to optimise the effect of a simulated training session. Challenge them to the edge: The scenario needs to challenge participants to generate failures and feelings of inadequacy to drive and motivate team members to critical reflect and learn. Not experience itself but the inadequacy and contradictions of habitual experience serve as basis for reflection. Facilitate critical reflection: Facilitators and group members must guide and motivate individual participants through the debriefing session, inciting and empowering learners to challenge their own beliefs and habits. To do this, learners need to feel psychological safe. Let the group talk and critical explore. Motivate with reality and context: Training with multidisciplinary team members, with different levels of expertise, acting in their usual environment (in-situ simulation) on physiological variables is mandatory to introduce cultural context and social conditions to the learning experience. Embedding in situ team training sessions into a teaching programme to enable repeated training and to assess regularly team performance is mandatory for a cultural change of sustained improvement of team performance and patient safety.

  15. A hybrid fuzzy logic/constraint satisfaction problem approach to automatic decision making in simulation game models.

    PubMed

    Braathen, Sverre; Sendstad, Ole Jakob

    2004-08-01

    Possible techniques for representing automatic decision-making behavior approximating human experts in complex simulation model experiments are of interest. Here, fuzzy logic (FL) and constraint satisfaction problem (CSP) methods are applied in a hybrid design of automatic decision making in simulation game models. The decision processes of a military headquarters are used as a model for the FL/CSP decision agents choice of variables and rulebases. The hybrid decision agent design is applied in two different types of simulation games to test the general applicability of the design. The first application is a two-sided zero-sum sequential resource allocation game with imperfect information interpreted as an air campaign game. The second example is a network flow stochastic board game designed to capture important aspects of land manoeuvre operations. The proposed design is shown to perform well also in this complex game with a very large (billionsize) action set. Training of the automatic FL/CSP decision agents against selected performance measures is also shown and results are presented together with directions for future research.

  16. CFD-based optimization in plastics extrusion

    NASA Astrophysics Data System (ADS)

    Eusterholz, Sebastian; Elgeti, Stefanie

    2018-05-01

    This paper presents novel ideas in numerical design of mixing elements in single-screw extruders. The actual design process is reformulated as a shape optimization problem, given some functional, but possibly inefficient initial design. Thereby automatic optimization can be incorporated and the design process is advanced, beyond the simulation-supported, but still experience-based approach. This paper proposes concepts to extend a method which has been developed and validated for die design to the design of mixing-elements. For simplicity, it focuses on single-phase flows only. The developed method conducts forward-simulations to predict the quasi-steady melt behavior in the relevant part of the extruder. The result of each simulation is used in a black-box optimization procedure based on an efficient low-order parameterization of the geometry. To minimize user interaction, an objective function is formulated that quantifies the products' quality based on the forward simulation. This paper covers two aspects: (1) It reviews the set-up of the optimization framework as discussed in [1], and (2) it details the necessary extensions for the optimization of mixing elements in single-screw extruders. It concludes with a presentation of first advances in the unsteady flow simulation of a metering and mixing section with the SSMUM [2] using the Carreau material model.

  17. Practicum for Simulated Methods in Office Occupation Education. Final Report.

    ERIC Educational Resources Information Center

    Hanson, Garth A.

    Thirty-six participants and four observers representing 34 states attended the practicum at the Utah State University campus in Logan, July 8-19, 1968. The purpose was to provide high school business teachers with practical knowledge, experience, and materials for designing and operating simulated business offices in their classrooms. The…

  18. Testing the Intervention Effect in Single-Case Experiments: A Monte Carlo Simulation Study

    ERIC Educational Resources Information Center

    Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick

    2017-01-01

    This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…

  19. CPU--Constructing Physics Understanding[TM]. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This CD-ROM consists of simulation software that allows students to conduct countless experiments using 20 Java simulators and curriculum units that explore light and color, forces and motion, sound and waves, static electricity and magnetism, current electricity, the nature of matter, and a unit on underpinnings. Setups can be designed by the…

  20. An Experiment in the Use of Computer-Based Education to Teach Energy Considerations in Architectural Design.

    ERIC Educational Resources Information Center

    Arumi, Francisco N.

    Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…

  1. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  2. Carotid artery phantom designment and simulation using field II

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yang, Xin; Ding, Mingyue

    2013-10-01

    Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of mortality and disability. Morphology and structure features of carotid plaques are the keys to identify plaques and monitoring the disease. Manually segmentation on the ultrasonic images to get the best-fitted actual size of the carotid plaques based on physicians personal experience, namely "gold standard", is a important step in the study of plaque size. However, it is difficult to qualitatively measure the segmentation error caused by the operator's subjective factors. In order to reduce the subjective factors, and the uncertainty factors of quantification, the experiments in this paper were carried out. In this study, we firstly designed a carotid artery phantom, and then use three different beam-forming algorithms of medical ultrasound to simulate the phantom. Finally obtained plaques areas were analyzed through manual segmentation on simulation images. We could (1) directly evaluate the different beam-forming algorithms for the ultrasound imaging simulation on the effect of carotid artery; (2) also analyze the sensitivity of detection on different size of plaques; (3) indirectly reflect the accuracy of the manual segmentation base on segmentation results the evaluation.

  3. Simulation in Nursing Education: iPod As a Teaching Tool for Undergraduate Nurses.

    PubMed

    Evans, Jennifer; Webster, Sue; Gallagher, Susan; Brown, Peter; Sinclair, John

    2015-07-01

    Most people with psychosis and schizophrenia experience auditory hallucinations, particularly the hearing of voices. A common cause of frustration and alienation for consumers is the lack of understanding by therapists, family members and caregivers, who find it difficult to relate to the consumers' experiences. The purpose of this study is to examine and evaluate whether students' participation in a simulated auditory hallucination will increase their understanding and knowledge about psychosis and auditory hallucinations. The design method consisted of a lecture on psychosis and schizophrenia disorders, followed by a simulation of auditory hallucinations using iPods. Students' knowledge and perceptions of psychosis and hallucinations was assessed using quasi-experimental pre-post matched-design questionnaires. The questionnaire was divided into two parts, the first comprised closed questions to assess students' knowledge, and the second part consisted of open-ended questions to collect information about students' perceptions of auditory hallucinations. The results confirmed that students' knowledge of psychosis and hallucination increased following the teaching session and simulation is a useful tool to prepare students for clinical placements in mental health practice.

  4. Simulated Performance of the Orbiting Wide-angle Light Collectors (OWL) Experiment

    NASA Technical Reports Server (NTRS)

    Krizmanic, J. F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Orbiting Wide-angle Light collectors (OWL) experiment is in NASA's mid-term strategic plan and will stereoscopically image, from equatorial orbit, the air fluorescence signal generated by airshowers induced by the ultrahigh energy (E greater than few x 10(exp 19) eV) component of the cosmic radiation. The use of a space-based platform enables an extremely large event acceptance aperture and thus will allow a high statistics measurement of these rare events. Detailed Monte Carlo simulations are required to quantify the physics potential of the mission as well as optimize the instrumental parameters. This paper reports on the results of the GSFC Monte Carlo simulation for two different, OWL instrument baseline designs. These results indicate that, assuming a continuation of the cosmic ray spectrum (theta approximately E(exp -2.75), OWL could have an event rate of 4000 events/year with E greater than or equal to 10(exp 20) eV. Preliminary results, based upon these Monte Carlo simulations, indicate that events can be accurately reconstructed in the detector focal plane arrays for the OWL instrument baseline designs under consideration.

  5. Design of field experiments: Influence of treatment response relative to standard deviation and blocking factor characteristics on efficient blocking strategy

    USDA-ARS?s Scientific Manuscript database

    Selection of experimental design can markedly influence efficiency of field research. This study used Monte Carlo simulations to compare the ability of different field experimental designs to distinguish defined treatment differences, and the paper concludes with a section on practical use of the in...

  6. Optimized Design and Analysis of Sparse-Sampling fMRI Experiments

    PubMed Central

    Perrachione, Tyler K.; Ghosh, Satrajit S.

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power. PMID:23616742

  7. Optimized design and analysis of sparse-sampling FMRI experiments.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power.

  8. Design of a rapid magnetic microfluidic mixer

    NASA Astrophysics Data System (ADS)

    Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2015-11-01

    Using three-dimensional simulations and experiments, we demonstrate rapid mixing of fluid streams in a microchannel using orbiting magnetic microbeads. We use a lattice Boltzmann model coupled to a Brownian dynamics model to perform numerical simulations that study in depth the effect of system parameters such as channel configuration and fluid and bead velocities. We use our findings to aid the design of an experimental micromixer. Using this experimental device, we demonstrate rapid microfluidic mixing over a compact channel length, and validate our numerical simulation results. Finally, we use numerical simulations to study the physical mechanisms leading to microfluidic mixing in our system. Our findings demonstrate a promising method of rapid microfluidic mixing over a short distance, with applications in lab-on-a-chip sample testing.

  9. Design of a simulation environment for laboratory management by robot organizations

    NASA Technical Reports Server (NTRS)

    Zeigler, Bernard P.; Cellier, Francois E.; Rozenblit, Jerzy W.

    1988-01-01

    This paper describes the basic concepts needed for a simulation environment capable of supporting the design of robot organizations for managing chemical, or similar, laboratories on the planned U.S. Space Station. The environment should facilitate a thorough study of the problems to be encountered in assigning the responsibility of managing a non-life-critical, but mission valuable, process to an organized group of robots. In the first phase of the work, we seek to employ the simulation environment to develop robot cognitive systems and strategies for effective multi-robot management of chemical experiments. Later phases will explore human-robot interaction and development of robot autonomy.

  10. V/STOL flight simulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The requirements for a new research aircraft to provide in-flight V/STOL simulation were reviewed. The required capabilities were based on known limitations of ground based simulation and past/current experience with V/STOL inflight simulation. Results indicate that V/STOL inflight simulation capability is needed to aid in the design and development of high performance V/STOL aircraft. Although a new research V/STOL aircraft is preferred, an interim solution can be provided by use of the X-22A, the CH-47B, or the 4AV-8B aircraft modified for control/display flight research.

  11. An interactive tool for outdoor computer controlled cultivation of microalgae in a tubular photobioreactor system.

    PubMed

    Dormido, Raquel; Sánchez, José; Duro, Natividad; Dormido-Canto, Sebastián; Guinaldo, María; Dormido, Sebastián

    2014-03-06

    This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short). This virtual laboratory it makes possible to: (a) accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain); (b) simulate a generic tubular PBR by changing the PBR geometry; (c) simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.); (d) simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e) apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f) simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations.

  12. An Interactive Tool for Outdoor Computer Controlled Cultivation of Microalgae in a Tubular Photobioreactor System

    PubMed Central

    Dormido, Raquel; Sánchez, José; Duro, Natividad; Dormido-Canto, Sebastián; Guinaldo, María; Dormido, Sebastián

    2014-01-01

    This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short). This virtual laboratory it makes possible to: (a) accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain); (b) simulate a generic tubular PBR by changing the PBR geometry; (c) simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.); (d) simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e) apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f) simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations. PMID:24662450

  13. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  14. Decentralized control experiments on NASA's flexible grid

    NASA Technical Reports Server (NTRS)

    Ozguner, U.; Yurkowich, S.; Martin, J., III; Al-Abbass, F.

    1986-01-01

    Methods arising from the area of decentralized control are emerging for analysis and control synthesis for large flexible structures. In this paper the control strategy involves a decentralized model reference adaptive approach using a variable structure control. Local models are formulated based on desired damping and response time in a model-following scheme for various modal configurations. Variable structure controllers are then designed employing co-located angular rate and position feedback. In this scheme local control forces the system to move on a local sliding mode in some local error space. An important feature of this approach is that the local subsystem is made insensitive to dynamical interactions with other subsystems once the sliding surface is reached. Experiments based on the above have been performed for NASA's flexible grid experimental apparatus. The grid is designed to admit appreciable low-frequency structural dynamics, and allows for implementation of distributed computing components, inertial sensors, and actuation devices. A finite-element analysis of the grid provides the model for control system design and simulation; results of several simulations are reported on here, and a discussion of application experiments on the apparatus is presented.

  15. Study on general design of dual-DMD based infrared two-band scene simulation system

    NASA Astrophysics Data System (ADS)

    Pan, Yue; Qiao, Yang; Xu, Xi-ping

    2017-02-01

    Mid-wave infrared(MWIR) and long-wave infrared(LWIR) two-band scene simulation system is a kind of testing equipment that used for infrared two-band imaging seeker. Not only it would be qualified for working waveband, but also realize the essence requests that infrared radiation characteristics should correspond to the real scene. Past single-digital micromirror device (DMD) based infrared scene simulation system does not take the huge difference between targets and background radiation into account, and it cannot realize the separated modulation to two-band light beam. Consequently, single-DMD based infrared scene simulation system cannot accurately express the thermal scene model that upper-computer built, and it is not that practical. To solve the problem, we design a dual-DMD based, dual-channel, co-aperture, compact-structure infrared two-band scene simulation system. The operating principle of the system is introduced in detail, and energy transfer process of the hardware-in-the-loop simulation experiment is analyzed as well. Also, it builds the equation about the signal-to-noise ratio of infrared detector in the seeker, directing the system overall design. The general design scheme of system is given, including the creation of infrared scene model, overall control, optical-mechanical structure design and image registration. By analyzing and comparing the past designs, we discuss the arrangement of optical engine framework in the system. According to the main content of working principle and overall design, we summarize each key techniques in the system.

  16. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Edwards, Jack R.

    2010-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure assumptions.

  17. Teaching Classical Mechanics Concepts Using Visuo-Haptic Simulators

    ERIC Educational Resources Information Center

    Neri, Luis; Noguez, Julieta; Robledo-Rella, Victor; Escobar-Castillejos, David; Gonzalez-Nucamendi, Andres

    2018-01-01

    In this work, the design and implementation of several physics scenarios using haptic devices are presented and discussed. Four visuo-haptic applications were developed for an undergraduate engineering physics course. Experiments with experimental and control groups were designed and implemented. Activities and exercises related to classical…

  18. Using software simulators to enhance the learning of digital logic design for the information technology students

    NASA Astrophysics Data System (ADS)

    Alsadoon, Abeer; Prasad, P. W. C.; Beg, Azam

    2017-09-01

    Making the students understand the theoretical concepts of digital logic design concepts is one of the major issues faced by the academics, therefore the teachers have tried different techniques to link the theoretical information to the practical knowledge. Use of software simulations is a technique for learning and practice that can be applied to many different disciplines. Experimentation of different computer hardware components/integrated circuits with the use of the simulators enhances the student learning. The simulators can be rather simplistic or quite complex. This paper reports our evaluation of different simulators available for use in the higher education institutions. We also provide the experience of incorporating some selected tools in teaching introductory courses in computer systems. We justified the effectiveness of incorporating the simulators into the computer system courses by use of student survey and final grade results.

  19. Detailed design package for design of a video system providing optimal visual information for controlling payload and experiment operations with television

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A detailed description of a video system for controlling space shuttle payloads and experiments is presented in the preliminary design review and critical design review, first and second engineering design reports respectively, and in the final report submitted jointly with the design package. The material contained in the four subsequent sections of the package contains system descriptions, design data, and specifications for the recommended 2-view system. Section 2 contains diagrams relating to the simulation test configuration of the 2-view system. Section 3 contains descriptions and drawings of the deliverable breadboard equipment. A description of the recommended system is contained in Section 4 with equipment specifications in Section 5.

  20. Kicker field simulation and measurement for the muon g-2 experiment at FNAL

    NASA Astrophysics Data System (ADS)

    Chang, Seung Pyo; Kim, Young Im; Choi, Jihoon; Semertzidis, Yannis; muon g-2 experiment Collaboration

    2017-01-01

    In the Muon g-2 experiment, muon beam is injected to the storage ring in a slightly tilted orbit whose center is 77 mm away from the center of the ring. The kicker is needed to send the muon beam to the central orbit. The magnetic kicker is designed for the experiment and about 0.1 Tm field integral is needed. The peak current pulse is 4200 A to make this field integral. This strong kicker pulse could make unwanted eddy current occur. This eddy current could spoil the main magnetic field of the storage ring. This could be a critical threat to the precision of experiment. The kicker field simulation has done using OPERA to estimate the effects. Also the kicker field should be measured based on Faraday effect. The measurement has tested in the lab before install the experiment area. In this presentation, the simulation and measurement results will be discussed. This work was supported by IBS-R017-D1-2016-a00.

  1. Modeling Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team

    2013-10-01

    The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  2. Clarifying the learning experiences of healthcare professionals with in situ and off-site simulation-based medical education: a qualitative study

    PubMed Central

    Sørensen, Jette Led; Navne, Laura Emdal; Martin, Helle Max; Ottesen, Bent; Albrecthsen, Charlotte Krebs; Pedersen, Berit Woetmann; Kjærgaard, Hanne; van der Vleuten, Cees

    2015-01-01

    Objective To examine how the setting in in situ simulation (ISS) and off-site simulation (OSS) in simulation-based medical education affects the perceptions and learning experience of healthcare professionals. Design Qualitative study using focus groups and content analysis. Participants Twenty-five healthcare professionals (obstetricians, midwives, auxiliary nurses, anaesthesiologists, a nurse anaesthetist and operating theatre nurse) participated in four focus groups and were recruited due to their exposure to either ISS or OSS in multidisciplinary obstetric emergencies in a randomised trial. Setting Departments of obstetrics and anaesthesia, Rigshospitalet, Copenhagen, Denmark. Results Initially participants preferred ISS, but this changed after the training when the simulation site became of less importance. There was a strong preference for simulation in authentic roles. These perceptions were independent of the ISS or OSS setting. Several positive and negative factors in simulation were identified, but these had no relation to the simulation setting. Participants from ISS and OSS generated a better understanding of and collaboration with the various health professionals. They also provided individual and team reflections on learning. ISS participants described more experiences that would involve organisational changes than the OSS participants did. Conclusions Many psychological and sociological aspects related to the authenticity of the learning experience are important in simulation, but the physical setting of the simulation as an ISS and OSS is the least important. Based on these focus groups OSS can be used provided that all other authenticity elements are taken into consideration and respected. The only difference was that ISS had an organisational impact and ISS participants talked more about issues that would involve practical organisational changes. ISS and OSS participants did, however, go through similar individual and team learning experiences. PMID:26443655

  3. Analysis of the kinematics of different hip simulators used to study wear of candidate materials for the articulation of total hip arthroplasties.

    PubMed

    Ramamurti, B S; Estok, D M; Jasty, M; Harris, W H

    1998-05-01

    We developed an analytical technique to determine the paths traced by specific points on the femoral head against the acetabulum in the human hip joint during gait. The purpose of the study was to apply this technique to the mechanical hip simulators chosen to conduct wear tests on polymeric acetabular liners used in total hip replacements. These simulators differ from one another in the type of motion produced, apart from other variables such as type of lubricant and head position. Due to the variation in the kinematics between the machines, the paths traced by the points on the femoral head against the acetabular liner ranged from simple linear traces to figure-8 loops and quasi-elliptical paths during a single simulator cycle. The distances traveled by these points during the same period also varied appreciably among the different hip simulator designs. These results are important when combined with other studies that have shown that kinematics can play an important role in the outcome of in vitro wear experiments. The kinematic differences quantified in this study can partially explain the substantial differences in wear data reported from different simulator designs and also underscore the usefulness of the technique described in this study in judging the results from different hip simulator experiments.

  4. Simulation in mental health nurse education: The development, implementation and evaluation of an educational innovation.

    PubMed

    Felton, Anne; Wright, Nicola

    2017-09-01

    Simulation is an important learning approach for the development of skills for healthcare practice. However, it remains under used in the education of mental health practitioners. This article examines the development, implementation and evaluation of a simulated learning experience for final year undergraduate BSc mental health nursing students in the UK. Scenarios involving managing care in an acute in patient ward and community older persons' team were designed to enable students to develop their complex decision making skills. An evaluation of the simulation experience was undertaken. This was informed by the principles of improvement science methodology and data was collected from the student participants using questionnaires. The findings indicated that simulation provided a realistic environment in which students were able to develop skills and manage clinical situations autonomously without fear of being assessed or making mistakes. Reflecting Dieckmann et al.'s (2007) position that simulation is a social situation in itself, the learning approach enabled mental health students to both experience the safety of the Higher Education setting and also the reality of clinical practice. Simulation may therefore provide an important tool to prepare students for the responsibilities of a qualified nurse. Copyright © 2017. Published by Elsevier Ltd.

  5. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    PubMed Central

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-01-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design. PMID:27109208

  6. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy andmore » incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. Furthermore, we demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.« less

  7. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    DOE PAGES

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; ...

    2016-04-25

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy andmore » incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. Furthermore, we demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.« less

  8. Simulation workshops with first year midwifery students.

    PubMed

    Catling, Christine; Hogan, Rosemarie; Fox, Deborah; Cummins, Allison; Kelly, Michelle; Sheehan, Athena

    2016-03-01

    Simulated teaching methods enable a safe learning environment that are structured, constructive and reflective. We prepared a 2-day simulation project to help prepare students for their first clinical practice. A quasi-experimental pre-test - post-test design was conducted. Qualitative data from the open-ended survey questions were analysed using content analysis. Confidence intervals and p-values were calculated to demonstrate the changes in participants' levels of understanding/ability or confidence in clinical midwifery skills included in the simulation. 71 midwifery students participated. Students rated their understanding, confidence, and abilities as higher after the simulation workshop, and higher still after their clinical experience. There were five main themes arising from the qualitative data: having a learning experience, building confidence, identifying learning needs, developing communication skills and putting skills into practise. First year midwifery students felt well prepared for the clinical workplace following the simulation workshops. Self-rated understanding, confidence and abilities in clinical midwifery skills were significantly higher following consolidation during clinical placement. Longitudinal studies on the relationship between simulation activities and student's overall clinical experience, their intentions to remain in midwifery, and facility feedback, would be desirable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Impact of audio-visual storytelling in simulation learning experiences of undergraduate nursing students.

    PubMed

    Johnston, Sandra; Parker, Christina N; Fox, Amanda

    2017-09-01

    Use of high fidelity simulation has become increasingly popular in nursing education to the extent that it is now an integral component of most nursing programs. Anecdotal evidence suggests that students have difficulty engaging with simulation manikins due to their unrealistic appearance. Introduction of the manikin as a 'real patient' with the use of an audio-visual narrative may engage students in the simulated learning experience and impact on their learning. A paucity of literature currently exists on the use of audio-visual narratives to enhance simulated learning experiences. This study aimed to determine if viewing an audio-visual narrative during a simulation pre-brief altered undergraduate nursing student perceptions of the learning experience. A quasi-experimental post-test design was utilised. A convenience sample of final year baccalaureate nursing students at a large metropolitan university. Participants completed a modified version of the Student Satisfaction with Simulation Experiences survey. This 12-item questionnaire contained questions relating to the ability to transfer skills learned in simulation to the real clinical world, the realism of the simulation and the overall value of the learning experience. Descriptive statistics were used to summarise demographic information. Two tailed, independent group t-tests were used to determine statistical differences within the categories. Findings indicated that students reported high levels of value, realism and transferability in relation to the viewing of an audio-visual narrative. Statistically significant results (t=2.38, p<0.02) were evident in the subscale of transferability of learning from simulation to clinical practice. The subgroups of age and gender although not significant indicated some interesting results. High satisfaction with simulation was indicated by all students in relation to value and realism. There was a significant finding in relation to transferability on knowledge and this is vital to quality educational outcomes. Copyright © 2017. Published by Elsevier Ltd.

  10. Instruction Using Experiments in a Computer. Final Report.

    ERIC Educational Resources Information Center

    Fulton, John P.; Hazeltine, Barrett

    Included are four computer programs which simulate experiments suitable for freshman engineering and physics courses. The subjects of the programs are ballistic trajectories, variable mass systems, trajectory of a particle under various forces, and design of an electronic emplifier. The report includes the problem statement, its objectives, the…

  11. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  12. Virtual Simulation in Enhancing Procedural Training for Fluoroscopy-guided Lumbar Puncture: A Pilot Study.

    PubMed

    Ali, Saad; Qandeel, Monther; Ramakrishna, Rishi; Yang, Carina W

    2018-02-01

    Fluoroscopy-guided lumbar puncture (FGLP) is a basic procedural component of radiology residency and neuroradiology fellowship training. Performance of the procedure with limited experience is associated with increased patient discomfort as well as increased radiation dose, puncture attempts, and complication rate. Simulation in health care is a developing field that has potential for enhancing procedural training. We demonstrate the design and utility of a virtual reality simulator for performing FGLP. An FGLP module was developed on an ImmersiveTouch platform, which digitally reproduces the procedural environment with a hologram-like projection. From computed tomography datasets of healthy adult spines, we constructed a 3-D model of the lumbar spine and overlying soft tissues. We assigned different physical characteristics to each tissue type, which the user can experience through haptic feedback while advancing a virtual spinal needle. Virtual fluoroscopy as well as 3-D images can be obtained for procedural planning and guidance. The number of puncture attempts, the distance to the target, the number of fluoroscopic shots, and the approximate radiation dose can be calculated. Preliminary data from users who participated in the simulation were obtained in a postsimulation survey. All users found the simulation to be a realistic replication of the anatomy and procedure and would recommend to a colleague. On a scale of 1-5 (lowest to highest) rating the virtual simulator training overall, the mean score was 4.3 (range 3-5). We describe the design of a virtual reality simulator for performing FGLP and present the initial experience with this new technique. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Analytical and experimental investigation of liquid double drop dynamics: Preliminary design for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.

  14. Accounting for system dynamics in reserve design.

    PubMed

    Leroux, Shawn J; Schmiegelow, Fiona K A; Cumming, Steve G; Lessard, Robert B; Nagy, John

    2007-10-01

    Systematic conservation plans have only recently considered the dynamic nature of ecosystems. Methods have been developed to incorporate climate change, population dynamics, and uncertainty in reserve design, but few studies have examined how to account for natural disturbance. Considering natural disturbance in reserve design may be especially important for the world's remaining intact areas, which still experience active natural disturbance regimes. We developed a spatially explicit, dynamic simulation model, CONSERV, which simulates patch dynamics and fire, and used it to evaluate the efficacy of hypothetical reserve networks in northern Canada. We designed six networks based on conventional reserve design methods, with different conservation targets for woodland caribou habitat, high-quality wetlands, vegetation, water bodies, and relative connectedness. We input the six reserve networks into CONSERV and tracked the ability of each to maintain initial conservation targets through time under an active natural disturbance regime. None of the reserve networks maintained all initial targets, and some over-represented certain features, suggesting that both effectiveness and efficiency of reserve design could be improved through use of spatially explicit dynamic simulation during the planning process. Spatial simulation models of landscape dynamics are commonly used in natural resource management, but we provide the first illustration of their potential use for reserve design. Spatial simulation models could be used iteratively to evaluate competing reserve designs and select targets that have a higher likelihood of being maintained through time. Such models could be combined with dynamic planning techniques to develop a general theory for reserve design in an uncertain world.

  15. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study.

    PubMed

    Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li

    2016-02-21

    To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.

  16. Virtual reality welder training

    NASA Astrophysics Data System (ADS)

    White, Steven A.; Reiners, Dirk; Prachyabrued, Mores; Borst, Christoph W.; Chambers, Terrence L.

    2010-01-01

    This document describes the Virtual Reality Simulated MIG Lab (sMIG), a system for Virtual Reality welder training. It is designed to reproduce the experience of metal inert gas (MIG) welding faithfully enough to be used as a teaching tool for beginning welding students. To make the experience as realistic as possible it employs physically accurate and tracked input devices, a real-time welding simulation, real-time sound generation and a 3D display for output. Thanks to being a fully digital system it can go beyond providing just a realistic welding experience by giving interactive and immediate feedback to the student to avoid learning wrong movements from day 1.

  17. Design and implementation of self-balancing coaxial two wheel robot based on HSIC

    NASA Astrophysics Data System (ADS)

    Hu, Tianlian; Zhang, Hua; Dai, Xin; Xia, Xianfeng; Liu, Ran; Qiu, Bo

    2007-12-01

    This thesis has studied the control problem concerning position and orientation control of self-balancing coaxial two wheel robot based on the human simulated intelligent control (HSIC) theory. Adopting Lagrange equation, the dynamic model of self-balancing coaxial two-wheel Robot is built up, and the Sensory-motor Intelligent Schemas (SMIS) of HSIC controller for the robot is designed by analyzing its movement and simulating the human controller. In robot's motion process, by perceiving position and orientation of the robot and using multi-mode control strategy based on characteristic identification, the HSIC controller enables the robot to control posture. Utilizing Matlab/Simulink, a simulation platform is established and a motion controller is designed and realized based on RT-Linux real-time operating system, employing high speed ARM9 processor S3C2440 as kernel of the motion controller. The effectiveness of the new design is testified by the experiment.

  18. Robust design of an inkjet-printed capacitive sensor for position tracking of a MOEMS-mirror in a Michelson interferometer setup

    NASA Astrophysics Data System (ADS)

    Faller, Lisa-Marie; Zangl, Hubert

    2017-05-01

    To guarantee high performance of Micro Optical Electro Mechanical Systems (MOEMS), precise position feedback is crucial. To overcome drawbacks of widely used optical feedback, we propose an inkjet-printed capacitive position sensor as smart packaging solution. Printing processes suffer from tolerances in excess of those from standard processes. Thus, FEM simulations covering assumed tolerances of the system are adopted. These simulations are structured following a Design Of Computer Experiments (DOCE) and are then employed to determine a optimal sensor design. Based on the simulation results, statistical models are adopted for the dynamic system. These models are to be used together with specifically designed hardware, considered to cope with challenging requirements of ≍50nm position accuracy at 10MS/s with 1000μm measurement range. Noise analysis is performed considering the influence of uncertainties to assess resolution and bandwidth capabilities.

  19. The PMIP4 contribution to CMIP6 - Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations

    NASA Astrophysics Data System (ADS)

    Jungclaus, Johann H.; Bard, Edouard; Baroni, Mélanie; Braconnot, Pascale; Cao, Jian; Chini, Louise P.; Egorova, Tania; Evans, Michael; Fidel González-Rouco, J.; Goosse, Hugues; Hurtt, George C.; Joos, Fortunat; Kaplan, Jed O.; Khodri, Myriam; Klein Goldewijk, Kees; Krivova, Natalie; LeGrande, Allegra N.; Lorenz, Stephan J.; Luterbacher, Jürg; Man, Wenmin; Maycock, Amanda C.; Meinshausen, Malte; Moberg, Anders; Muscheler, Raimund; Nehrbass-Ahles, Christoph; Otto-Bliesner, Bette I.; Phipps, Steven J.; Pongratz, Julia; Rozanov, Eugene; Schmidt, Gavin A.; Schmidt, Hauke; Schmutz, Werner; Schurer, Andrew; Shapiro, Alexander I.; Sigl, Michael; Smerdon, Jason E.; Solanki, Sami K.; Timmreck, Claudia; Toohey, Matthew; Usoskin, Ilya G.; Wagner, Sebastian; Wu, Chi-Ju; Leng Yeo, Kok; Zanchettin, Davide; Zhang, Qiong; Zorita, Eduardo

    2017-11-01

    The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).

  20. Design and experiment of vehicular charger AC/DC system based on predictive control algorithm

    NASA Astrophysics Data System (ADS)

    He, Guangbi; Quan, Shuhai; Lu, Yuzhang

    2018-06-01

    For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.

  1. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computationalmore » experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.« less

  2. Transient climate simulations of the deglaciation 21-9 thousand years before present; PMIP4 Core experiment design and boundary conditions

    NASA Astrophysics Data System (ADS)

    Ivanovic, Ruza; Gregoire, Lauren; Kageyama, Masa; Roche, Didier; Valdes, Paul; Burke, Andrea; Drummond, Rosemarie; Peltier, W. Richard; Tarasov, Lev

    2016-04-01

    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 thousand years. Here, we present the design of a coordinated Core simulation over the period 21-9 thousand years before present (ka) with time varying orbital forcing, greenhouse gases, ice sheets, and other geographical changes. A choice of two ice sheet reconstructions is given. Additional focussed simulations will also be coordinated on an ad-hoc basis by the working group, for example to investigate the effect of ice sheet and iceberg meltwater, and the uncertainty in other forcings. Some of these focussed simulations will concentrate on shorter durations around specific events to allow the more computationally expensive models to take part. Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21-9 thousand years before present; PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev. Discuss., 8, 9045-9102, doi:10.5194/gmdd-8-9045-2015, 2015.

  3. The 1985 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Morrow, G. (Editor)

    1986-01-01

    The subjects covered include: advanced energy storage, lithium cell technology, nickel-cadmium design evaluation and component testing, simulated orbital cycling and flight experience, and nickel-hydrogen technology.

  4. Eurodelta-Trends, a Multi-Model Experiment of Air Quality Hindcast in Europe over 1990-2010. Experiment Design and Key Findings

    NASA Astrophysics Data System (ADS)

    Colette, A.; Ciarelli, G.; Otero, N.; Theobald, M.; Solberg, S.; Andersson, C.; Couvidat, F.; Manders-Groot, A.; Mar, K. A.; Mircea, M.; Pay, M. T.; Raffort, V.; Tsyro, S.; Cuvelier, K.; Adani, M.; Bessagnet, B.; Bergstrom, R.; Briganti, G.; Cappelletti, A.; D'isidoro, M.; Fagerli, H.; Ojha, N.; Roustan, Y.; Vivanco, M. G.

    2017-12-01

    The Eurodelta-Trends multi-model chemistry-transport experiment has been designed to better understand the evolution of air pollution and its drivers for the period 1990-2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional scale air quality. The experiment is designed in three tiers with increasing degree of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000 and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions and (iii) meteorology complements it. The most demanding tier consists in two complete time series from 1990 to 2010, simulated using either time varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and six models have completed the 21-year trend simulations. The modelling results are publicly available for further use by the scientific community. We assess the skill of the models in capturing observed air pollution trends for the 1990-2010 time period. The average particulate matter relative trends are well captured by the models, even if they display the usual lower bias in reproducing absolute levels. Ozone trends are also well reproduced, yet slightly overestimated in the 1990s. The attribution study emphasizes the efficiency of mitigation measures in reducing air pollution over Europe, although a strong impact of long range transport is pointed out for ozone trends. Meteorological variability is also an important factor in some regions of Europe. The results of the first health and ecosystem impact studies impacts building upon a regional scale multi-model ensemble over a 20yr time period will also be presented.

  5. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    NASA Astrophysics Data System (ADS)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  6. Fuel-Air Mixing and Combustion in Scramjets

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.

    2002-01-01

    Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.

  7. Designing Successful Next-Generation Instruments to Detect the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Hydrogen Epoch of Reionization Array (HERA) team, Murchison Widefield Array (MWA) team

    2018-01-01

    The Epoch of Reionization (EoR) signifies a period of intense evolution of the Inter-Galactic Medium (IGM) in the early Universe caused by the first generations of stars and galaxies, wherein they turned the neutral IGM to be completely ionized by redshift ≥ 6. This important epoch is poorly explored to date. Measurement of redshifted 21 cm line from neutral Hydrogen during the EoR is promising to provide the most direct constraints of this epoch. Ongoing experiments to detect redshifted 21 cm power spectrum during reionization, including the Murchison Widefield Array (MWA), Precision Array for Probing the Epoch of Reionization (PAPER), and the Low Frequency Array (LOFAR), appear to be severely affected by bright foregrounds and unaccounted instrumental systematics. For example, the spectral structure introduced by wide-field effects, aperture shapes and angular power patterns of the antennas, electrical and geometrical reflections in the antennas and electrical paths, and antenna position errors can be major limiting factors. These mimic the 21 cm signal and severely degrade the instrument performance. It is imperative for the next-generation of experiments to eliminate these systematics at their source via robust instrument design. I will discuss a generic framework to set cosmologically motivated antenna performance specifications and design strategies using the Precision Radio Interferometry Simulator (PRISim) -- a high-precision tool that I have developed for simulations of foregrounds and the instrument transfer function intended primarily for 21 cm EoR studies, but also broadly applicable to interferometer-based intensity mapping experiments. The Hydrogen Epoch of Reionization Array (HERA), designed in-part based on this framework, is expected to detect the 21 cm signal with high significance. I will present this framework and the simulations, and their potential for designing upcoming radio instruments such as HERA and the Square Kilometre Array (SKA).

  8. Bayesian cross-entropy methodology for optimal design of validation experiments

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Mahadevan, S.

    2006-07-01

    An important concern in the design of validation experiments is how to incorporate the mathematical model in the design in order to allow conclusive comparisons of model prediction with experimental output in model assessment. The classical experimental design methods are more suitable for phenomena discovery and may result in a subjective, expensive, time-consuming and ineffective design that may adversely impact these comparisons. In this paper, an integrated Bayesian cross-entropy methodology is proposed to perform the optimal design of validation experiments incorporating the computational model. The expected cross entropy, an information-theoretic distance between the distributions of model prediction and experimental observation, is defined as a utility function to measure the similarity of two distributions. A simulated annealing algorithm is used to find optimal values of input variables through minimizing or maximizing the expected cross entropy. The measured data after testing with the optimum input values are used to update the distribution of the experimental output using Bayes theorem. The procedure is repeated to adaptively design the required number of experiments for model assessment, each time ensuring that the experiment provides effective comparison for validation. The methodology is illustrated for the optimal design of validation experiments for a three-leg bolted joint structure and a composite helicopter rotor hub component.

  9. Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation

    NASA Astrophysics Data System (ADS)

    Melenka, G. W.; Nobes, D. S.; Major, P. W.; Carey, J. P.

    2013-12-01

    The design and testing of an orthodontic torque simulator that reproduces the effect of archwire rotation on orthodontic brackets is described. This unique device is capable of simultaneously measuring the deformation and loads applied to an orthodontic bracket due to archwire rotation. Archwire rotation is used by orthodontists to correct the inclination of teeth within the mouth. This orthodontic torque simulator will provide knowledge of the deformation and loads applied to orthodontic bracket that will aide clinicians by describing the effect of archwire rotation on brackets. This will also impact that design on new archwirebracket systems by providing an assessment of performance. Deformation of the orthodontic bracket tie wings is measured using a digital image correlation process to measure elastic and plastic deformation. The magnitude of force and moments applied to the bracket though the archwire is also measured using a six-axis load cell. Initial tests have been performed on two orthodontic brackets of varying geometry to demonstrate the measurement capability of the orthodontic torque simulator. The demonstration experiment shows that a Damon Q bracket had a final plastic deformation after a single loading of 0.022 mm while the Speed bracket deformed 0.071 mm. This indicates that the Speed bracket plastically deforms 3.2 times more than the Damon Q bracket for similar magnitude of applied moment. The demonstration experiment demonstrates that bracket geometry affect the deformation of orthodontic brackets and this difference can be detected using the orthodontic torque simulator.

  10. Creating an AI modeling application for designers and developers

    NASA Astrophysics Data System (ADS)

    Houlette, Ryan; Fu, Daniel; Jensen, Randy

    2003-09-01

    Simulation developers often realize an entity's AI by writing a program that exhibits the intended behavior. These behaviors are often the product of design documents written by designers. These individuals, while possessing a vast knowledge of the subject matter, might not have any programming knowledge whatsoever. To address this disconnect between design and subsequent development, we have created an AI application whereby a designer or developer sketches an entity's AI using a graphical "drag and drop" interface to quickly articulate behavior using a UML-like representation of state charts. Aside from the design-level benefits, the application also features a runtime engine that takes the application's data as input along with a simulation or game interface, and makes the AI operational. We discuss our experience in creating such an application for both designer and developer.

  11. An Overview of Atmospheric Composition OSSE Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    daSilva, Arlinda

    2012-01-01

    A model-based Observing System Simulation Experiment (OSSE) is a framework for numerical experimentation in which observables are simulated from fields generated by an earth system model, including a parameterized description of observational error characteristics. Simulated observations can be used for sampling studies, quantifying errors in analysis or retrieval algorithms, and ultimately being a planning tool for designing new observing missions. While this framework has traditionally been used to assess the impact of observations on numerical weather prediction, it has a much broader applicability, in particular to aerosols and chemical constituents. In this talk we will give a general overview of Observing System Simulation Experiments (OSSE) activities at NASA's Global Modeling and Assimilation Office, with focus on its emerging atmospheric composition component.

  12. The Role of Space Experiments in the Radiation Qualification of Electronic and Photonic Devices and Systems

    NASA Technical Reports Server (NTRS)

    Buchner, S.; LaBel, K.; Barth, J.; Campbell, A.

    2005-01-01

    Space experiments are occasionally launched to study the effects of radiation on electronic and photonic devices. This begs the following questions: Are space experiments necessary? Do the costs justify the benefits? How does one judge success of space experiment? What have we learned from past space experiments? How does one design a space experiment? This viewgraph presentation provides information on the usefulness of space and ground tests for simulating radiation damage to spacecraft components.

  13. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system havemore » been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.« less

  14. OSSE Evaluation of Aircraft Reconnaissance Observations and their Impact on Hurricane Analyses and Forecasts

    NASA Astrophysics Data System (ADS)

    Ryan, K. E.; Bucci, L. R.; Delgado, J.; Atlas, R. M.; Murillo, S.; Dodge, P.

    2016-12-01

    NOAA/AOML's Hurricane Research Division (HRD) annually conducts its Hurricane Field Program during which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in track design is valuable for determining the optimal air reconnaissance flight pattern for a prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories of NOAA aircraft are simulated in a variety of ways and are evaluated to examine the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.

  15. OSSE Evaluation of Prospective Aircraft Reconnaissance Flight Patterns and their Impact on Hurricane Forecasts

    NASA Astrophysics Data System (ADS)

    Ryan, K. E.; Bucci, L. R.; Christophersen, H.; Atlas, R. M.; Murillo, S.; Dodge, P.

    2015-12-01

    Each year, NOAA/AOML's Hurricane Research Division (HRD) conducts its Hurricane field Program in which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in design is valuable for determining the optimal air reconnaissance flight pattern for a given prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories are simulated in a variety of ways and are evaluated to investigate the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.

  16. Methodology and application of high performance electrostatic field simulation in the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Corona, Thomas

    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to make a direct, model independent measurement of the electron neutrino mass. The experimental apparatus employs strong ( O[T]) magnetostatic and (O[10 5 V/m]) electrostatic fields in regions of ultra high (O[10-11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near the endpoint of tritium beta-decay. The electrostatic fields in KATRIN are formed by multiscale electrode geometries, necessitating the development of high performance field simulation software. To this end, we present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We describe an implementation of these techniques for high performance computing environments in the software KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application of KEMField and KGeoBag to KATRIN's spectrometer and detector sections, and demonstrate its use in furthering several of KATRIN's scientific goals. Finally, we present the results of a measurement designed to probe the electrostatic profile of KATRIN's main spectrometer in comparison to simulated results.

  17. Design and evaluation of an advanced air-ground data-link system for air traffic control

    NASA Technical Reports Server (NTRS)

    Denbraven, Wim

    1992-01-01

    The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages.

  18. International Symposium on Military Applications of Blast Simulation (5th)

    DTIC Science & Technology

    1977-06-22

    Centre d’Etudes de Grainat, Gramat , France, de- scribed their work in designing a blast simulator with a test section of 12—rn width and 7—rn height...de Gramat , Gramat , France) on the dynamic behavior of limestone. Through a series of high—pressure experiments of the type developed in the recent

  19. A Presidential Election Simulation: Creating a School-Wide Interdisciplinary Program

    ERIC Educational Resources Information Center

    Joyce, Helen M.

    2008-01-01

    Given the low turnout among younger voters, it is important to seek innovative ways of engaging students in the electoral process, and a presidential year like this one offers exciting opportunities for doing so. In this article, the author describes her experiences with a schoolwide project designed by herself and colleagues that simulates the…

  20. Independence 2: A Simulation of the American Revolution, 1763-1776.

    ERIC Educational Resources Information Center

    Kennedy, Charles L.; DeKock, Paul

    This simulation allows students to experience colonial America during the days from the closing of the French and Indian War until the Declaration of Independence. It is designed to help students gain a knowledge of the historical period, an appreciation of the many cross-pressures that colonial citizens were subjected to, and a feeling for the…

  1. Network congestion control algorithm based on Actor-Critic reinforcement learning model

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2018-04-01

    Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.

  2. A numerical identifiability test for state-space models--application to optimal experimental design.

    PubMed

    Hidalgo, M E; Ayesa, E

    2001-01-01

    This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.

  3. Mathematical modelling and numerical simulation of forces in milling process

    NASA Astrophysics Data System (ADS)

    Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.

    2018-04-01

    Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.

  4. Study and Design of High G Augmentation Devices for Flight Simulators

    DTIC Science & Technology

    1981-12-01

    experiments . Non-invasive blood pressure moni- toring devices ave discussed in a following section (4.2.4). itI may be useful to conduct these experiments ...have experience in pressure suits and space suits. They also built a collapsible LBNP for Cooper and Ord (51) for their LBNP experiments . USE OF LBNP...the target illumination approaches the 42 mL level used in his dial reading experiments . Consequently, the model requires illumination level as an

  5. Design of a video system providing optimal visual information for controlling payload and experiment operations with television

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A program was conducted which included the design of a set of simplified simulation tasks, design of apparatus and breadboard TV equipment for task performance, and the implementation of a number of simulation tests. Performance measurements were made under controlled conditions and the results analyzed to permit evaluation of the relative merits (effectivity) of various TV systems. Burden factors were subsequently generated for each TV system to permit tradeoff evaluation of system characteristics against performance. For the general remote operation mission, the 2-view system is recommended. This system is characterized and the corresponding equipment specifications were generated.

  6. Design, Modeling and Simulations in the RACE Project: Preliminary study for the development of a transport line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, C. O.; Hunt, A. W.; Idaho State University, Department of Physics, PO Box 8106, Pocatello, ID 83209

    2007-02-12

    As part of the Reactor Accelerator Coupling Experiment (RACE) a set of preliminary studies were conducted to design a transport beam line that could bring a 25 MeV electron beam from a Linear Accelerator to a neutron-producing target inside a subcritical system. Because of the relatively low energy beam, the beam size and a relatively long beam line (implicating a possible divergence problem) different parameters and models were studied before a final design could be submitted for assembly. This report shows the first results obtained from different simulations of the transport line optics and dynamics.

  7. Simulation studies for the PANDA experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopf, B.

    2005-10-26

    One main component of the planned Facility for Antiproton and Ion Research (FAIR) is the High Energy Storage Ring (HESR) at GSI, Darmstadt, which will provide cooled antiprotons with momenta between 1.5 and 15 GeV/c. The PANDA experiment will investigate p-barannihilations with internal hydrogen and nuclear targets. Due to the planned extensive physics program a multipurpose detector with nearly complete solid angle coverage, proper particle identification over a large momentum range, and high resolution calorimetry for neutral particles is required. For the optimization of the detector design simulation studies of several benchmark channels are in progress which are covering themore » most relevant physics topics. Some important simulation results are discussed here.« less

  8. An electron-beam dose deposition experiment: TIGER 1-D simulation code versus thermoluminescent dosimetry

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Tipton, Charles W.; Self, Charles T.

    1991-03-01

    The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.

  9. A preliminary 6 DOF attitude and translation control system design for Starprobe

    NASA Technical Reports Server (NTRS)

    Mak, P.; Mettler, E.; Vijayarahgavan, A.

    1981-01-01

    The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.

  10. Active-learning diabetes simulation in an advanced pharmacy practice experience to develop patient empathy.

    PubMed

    Whitley, Heather P

    2012-12-12

    To develop and integrate an active-learning diabetes simulation into an advanced pharmacy practice experience to improve pharmacy students' empathy toward patients with diabetes mellitus. Students simulated the experience of having diabetes mellitus by conducting activities commonly prescribed to those with this disease state for 7 days, after which they submitted a standardized diabetes log and narrative reflection. Interpretive phenomenology design with thematic analysis was used to determine the impact of this experience on the students. As shown in student reflections, 95% developed empathy, 97% found the experience beneficial, and 67% improved their ability to relate to and counsel patients. Most (95%) found difficulty adhering to the regimen. On average, students consumed 179 grams of carbohydrates per day and exercised 5 days or 215 minutes per week. Additionally, 69% decided to modify their personal habits to become healthier. Inclusion of the 7-day active-learning exercise greatly impacted student pharmacists' self-reported empathy toward and ability to relate to patients with diabetes mellitus. Completion of this experience may result in long-lasting personal behavior modifications.

  11. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    NASA Astrophysics Data System (ADS)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  12. Design and experimental study on Fresnel lens of the combination of equal-width and equal-height of grooves

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Liu, Youqiang; Huang, Rui; Wang, Zhiyong

    2017-06-01

    High concentrating PV systems rely on large Fresnel lens that must be precisely oriented in the direction of the Sun to maintain high concentration ratio. We propose a new Fresnel lens design method combining equal-width and equal-height of grooves in this paper based on the principle of focused spot maximum energy. In the ring band near the center of Fresnel lens, the design with equal-width grooves is applied, and when the given condition is reached, the design with equal-height grooves is introduced near the edges of the Fresnel lens, which ensures all the lens grooves are planar. In this paper, we establish a Fresnel lens design example model by Solidworks, and simulate it with the software ZEMAX. An experimental test platform is built to test, and the simulation correctness is proved by experiments. Experimental result shows the concentrating efficiency of this example is 69.3%, slightly lower than the simulation result 75.1%.

  13. Development of display design and command usage guidelines for Spacelab experiment computer applications

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1979-01-01

    Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.

  14. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. WFIRST: Data/Instrument Simulation Support at IPAC

    NASA Astrophysics Data System (ADS)

    Laine, Seppo; Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    As part of WFIRST Science Center preparations, the IPAC Science Operations Center (ISOC) maintains a repository of 1) WFIRST data and instrument simulations, 2) tools to facilitate scientific performance and feasibility studies using the WFIRST, and 3) parameters summarizing the current design and predicted performance of the WFIRST telescope and instruments. The simulation repository provides access for the science community to simulation code, tools, and resulting analyses. Examples of simulation code with ISOC-built web-based interfaces include EXOSIMS (for estimating exoplanet yields in CGI surveys) and the Galaxy Survey Exposure Time Calculator. In the future the repository will provide an interface for users to run custom simulations of a wide range of coronagraph instrument (CGI) observations and sophisticated tools for designing microlensing experiments. We encourage those who are generating simulations or writing tools for exoplanet observations with WFIRST to contact the ISOC team so we can work with you to bring these to the attention of the broader astronomical community as we prepare for the exciting science that will be enabled by WFIRST.

  16. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  17. MuSim, a Graphical User Interface for Multiple Simulation Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Thomas; Cummings, Mary Anne; Johnson, Rolland

    2016-06-01

    MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X,more » and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.« less

  18. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  19. Mesoscale Thermodynamic Analysis of Atomic-Scale Dislocation-Obstacle Interactions Simulated by Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monet, Giath; Bacon, David J; Osetskiy, Yury N

    2010-01-01

    Given the time and length scales in molecular dynamics (MD) simulations of dislocation-defect interactions, quantitative MD results cannot be used directly in larger scale simulations or compared directly with experiment. A method to extract fundamental quantities from MD simulations is proposed here. The first quantity is a critical stress defined to characterise the obstacle resistance. This mesoscopic parameter, rather than the obstacle 'strength' designed for a point obstacle, is to be used for an obstacle of finite size. At finite temperature, our analyses of MD simulations allow the activation energy to be determined as a function of temperature. The resultsmore » confirm the proportionality between activation energy and temperature that is frequently observed by experiment. By coupling the data for the activation energy and the critical stress as functions of temperature, we show how the activation energy can be deduced at a given value of the critical stress.« less

  20. Simulated Order Verification and Medication Reconciliation during an Introductory Pharmacy Practice Experience.

    PubMed

    Metzger, Nicole L; Chesson, Melissa M; Momary, Kathryn M

    2015-09-25

    Objective. To create, implement, and assess a simulated medication reconciliation and an order verification activity using hospital training software. Design. A simulated patient with medication orders and home medications was built into existing hospital training software. Students in an institutional introductory pharmacy practice experience (IPPE) reconciled the patient's medications and determined whether or not to verify the inpatient orders based on his medical history and laboratory data. After reconciliation, students identified medication discrepancies and documented their rationale for rejecting inpatient orders. Assessment. For a 3-year period, the majority of students agreed the simulation enhanced their learning, taught valuable clinical decision-making skills, integrated material from previous courses, and stimulated their interest in institutional pharmacy. Overall feedback from student evaluations about the IPPE also was favorable. Conclusion. Use of existing hospital training software can affordably simulate the pharmacist's role in order verification and medication reconciliation, as well as improve clinical decision-making.

  1. Evaluation of the flame propagation within an SI engine using flame imaging and LES

    NASA Astrophysics Data System (ADS)

    He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes

    2017-11-01

    This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.

  2. PIV Study of Aeration Efficient of Stepped Spillway System

    NASA Astrophysics Data System (ADS)

    Abas, M. A.; Jamil, R.; Rozainy, M. R.; Zainol, M. A.; Adlan, M. N.; Keong, C. W.

    2017-06-01

    This paper investigates the three-dimensional (3D) simulation of Cascade aerator system using Lattice Boltzmann simulation and laboratory experiment was carried out to investigate the flow, aeration and cavitation in the spillway. Different configurations of stepped spillway are designed in this project in order to investigate the relationship between the configurations of stepped spillway and cavitation in the flow. The aeration in the stepped spillway will also be investigated. The experimental result will be compared with the simulated result at the end of this project. The figure of flow pattern at the 3rd step in simulation and experiment for Set 1 and Set 2 are look similar between LBM simulation and the experiment findings. This will provide a better understanding of the cavitation, aeration and flow in different configurations of the stepped spillway. In addition the occurrence of negative pressure region in the stepped spillway, increases the possibility of cavitation to occur. The cavitation will damage the structure of the stepped spillway. Furthermore, it also founds that increasing in barrier thickness of the stepped spillway will improve the aeration efficiency and reduce the cavitation in stepped spillway.

  3. Sensitivity Observing System Experiment (SOSE)-a new effective NWP-based tool in designing the global observing system

    NASA Astrophysics Data System (ADS)

    Marseille, Gert-Jan; Stoffelen, Ad; Barkmeijer, Jan

    2008-03-01

    Lacking an established methodology to test the potential impact of prospective extensions to the global observing system (GOS) in real atmospheric cases we developed such a method, called Sensitivity Observing System Experiment (SOSE). For example, since the GOS is non uniform it is of interest to investigate the benefit of complementary observing systems filling its gaps. In a SOSE adjoint sensitivity structures are used to define a pseudo true atmospheric state for the simulation of the prospective observing system. Next, the synthetic observations are used together with real observations from the existing GOS in a state-of-the-art Numerical Weather Prediction (NWP) model to assess the potential added value of the new observing system. Unlike full observing system simulation experiments (OSSE), SOSE can be applied to real extreme events that were badly forecast operationally and only requires the simulation of the new instrument. As such SOSE is an effective tool, for example, to define observation requirements for extensions to the GOS. These observation requirements may serve as input for the design of an operational network of prospective observing systems. In a companion paper we use SOSE to simulate potential future space borne Doppler Wind Lidar (DWL) scenarios and assess their capability to sample meteorologically sensitive areas not well captured by the current GOS, in particular over the Northern Hemisphere oceans.

  4. Using the CAE technologies of engineering analysis for designing steam turbines at ZAO Ural Turbine Works

    NASA Astrophysics Data System (ADS)

    Goloshumova, V. N.; Kortenko, V. V.; Pokhoriler, V. L.; Kultyshev, A. Yu.; Ivanovskii, A. A.

    2008-08-01

    We describe the experience ZAO Ural Turbine Works specialists gained from mastering the series of CAD/CAE/CAM/PDM technologies, which are modern software tools of computer-aided engineering. We also present the results obtained from mathematical simulation of the process through which high-and intermediate-pressure rotors are heated for revealing the most thermally stressed zones, as well as the results from mathematical simulation of a new design of turbine cylinder shells for improving the maneuverability of these turbines.

  5. Study for the dispersion of double-diffraction spectrometers

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Huang, Zhanhua; Xu, Mingming; Jin, Guofan

    2018-01-01

    Double-cascade spectrometers and double-pass spectrometers can be uniformly called double-diffraction spectrometers. In current double-diffraction spectrometers design theory, the differences of the incident angles in the second diffraction are ignored. There is a significant difference between the design in theory and the actual result. In this study, based on the geometries of the double-diffraction spectrometers, we strictly derived the theoretical formulas of their dispersion. By employing the ZEMAX simulation software, verification of our theoretical model is implemented, and the simulation results show big agreement with our theoretical formulas. Based on the conclusions, a double-pass spectrometer was set up and tested, and the experiment results agree with the theoretical model and the simulation.

  6. Control Law-Control Allocation Interaction: F/A-18 PA Simulation Test - Bed

    NASA Technical Reports Server (NTRS)

    Durham, Wayne; Nelson, Mark

    2001-01-01

    This report documents the first stage of research into Control Law - Control Allocation Interactions. A three-year research effort was originally proposed: 1. Create a desktop flight simulation environment under which experiments related to the open questions may be conducted. 2. Conduct research to determine which aspects of control allocation have impact upon control law design that merits further research. 3. Conduct research into those aspects of control allocation identified above, and their impacts upon control law design. Simulation code was written utilizing the F/A-18 airframe in the power approach (PA) configuration. A dynamic inversion control law was implemented and used to drive a state-of-the-art control allocation subroutine.

  7. Laser program annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R.

    1981-06-01

    Volume 2 contains five sections that cover the areas of target design, target fabrication, diagnostics, and fusion experiments. Section 3 reports on target design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication Group, Section 5 contains the results of our diagnostics development, and Section 6 describes advances made in the management and analysis of experimental data. Finally, Section 7 in Volume 2 reports the results of laser target experiments conducted during the year.

  8. A Next-Generation Apparatus for Lithium Optical Lattice Experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv

    Quantum simulation is emerging as an ambitious and active subfield of atomic physics. This thesis describes progress towards the goal of simulating condensed matter systems, in particular the physics of the Fermi-Hubbard model, using ultracold Lithium atoms in an optical lattice. A major goal of the quantum simulation program is to observe phase transitions of the Hubbard model, into Neal antiferromagnetic phases and d-wave superfluid phases. Phase transitions are generally accompanied by a change in an underlying correlation in a physical system. Such correlations may be most amenable to probing by looking at fluctuations in the system. Experimental techniques for probing density and magnetization fluctuations in a variety of atomic Fermi systems are developed. The suppression of density fluctuations (or atom "shot noise") in an ideal degenerate Fermi gas is observed by absorption imaging of time-of-flight expanded clouds. In-trap measurements of density and magnetization fluctuations are not easy to probe with absorption imaging, due to their extremely high attenuation. A method to probe these fluctuations based on speckle patterns, caused by fluctuations in the index of refraction for a detuned illumination beam, is developed and applied first to weakly interacting and then to strongly interacting in-trap gases. Fluctuation probes such as these will be a crucial tool in future quantum simulation of condensed matter systems. The quantum simulation experiments that we want to perform require a complex sequence of precisely timed computer controlled events. A distributed GUI-based control system designed with such experiments in mind, The Cicero Word Generator, is described. The system makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature allows this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using an FPGA-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100ns achieved over effectively arbitrary sequence lengths. Experimental set-ups for producing, manipulating, and probing ultracold atomic gases can be quite complicated. To move forward with a quantum simulation program, it is necessary to have an apparatus that operates with a reliability that is not easily achieved in the face of this complexity. The design of a new apparatus is discussed. This Sodium-Lithium ultracold gas production machine has been engineered to incorporate as much experimental experience as possible to enhance its reliability. Particular attention has been paid to maximizing optical access and the utilization of this optical access, controlling the ambient temperature of the experiment, achieving a high vacuum, and simplifying subsystems where possible. The apparatus is now on the verge of producing degenerate gases, and should serve as a stable platform on which to perform future lattice quantum simulation experiments. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  9. Development and Evaluation of a Vocational Experience Curriculum for Educable and Disadvantaged Students. Final Report.

    ERIC Educational Resources Information Center

    Hardin County Board of Education, Elizabethtown, KY.

    A project was designed to measure the effects of integrating basic reading and mathematical instruction with prevocational instruction through the addition of a basic skills resource room, a technical simulation unit, and guidance and counseling to the ninth grade vocational experience program for educable mentally handicapped and disadvantaged…

  10. SUPERFUND TREATABILITY CLEARINGHOUSE: CERCLA BDAT SARM PREPARATION AND RESULTS OF PHYSICAL SOILS WASHING EXPERIMENTS (FINAL REPORT)

    EPA Science Inventory

    This study reports on the results of work preparing 30,000 Ibs of SARM or synthetic analytical reference matrix, a surrogate Superfund soil containing a vide range of contaminants. It also reports the results ©f bench scale treatability experiments designed to simulate the EP...

  11. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  12. Metabolic and cardiovascular adaptation, monkey. NASA SMD 3, project 76, experiment 44 conducted at NASA/JSC, 14-25 May 1977

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1977-01-01

    The biomedical results from an experiment on a monkey subjected to space flight conditions are reported. A background history of the development and testing of an experiment system designed to permit measurement of physiological parameters in subhuman primates during continuous, comfortable, couch restraint for periods of up to 30 days is reviewed. Of major importance in the experimental design of the system was the use of a fiberglass pod, which could be sealed and subdivided into upper and lower parts, to monitor and control the physiological responses for various parts of the animal's body. The experiment was conducted within the Spacelab Simulator for a period of 11 days. Data recorded includes: Spacelab Simulator cabin temperature; ventilation rate; pod internal temperature; fraction percent oxygen; fraction percent carbon dioxide; oxygen consumption rate; carbon dioxide production rate; respiratory quotient; intrathoracic temperature; heart rate; mean aortic pressure; mean ventricular pressure; diurnal variation of parameters measured; comparison of mean preflight, flight, and postflight values of the parameters measured; and correlation matrix for the parameters measured.

  13. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Amara, A.; Refregier, A.

    The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less

  15. Piloted simulation of one-on-one helicopter air combat at NOE flight levels

    NASA Technical Reports Server (NTRS)

    Lewis, M. S.; Aiken, E. W.

    1985-01-01

    A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.

  16. Using stochastic activity networks to study the energy feasibility of automatic weather stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassano, Luca; Cesarini, Daniel; Avvenuti, Marco

    Automatic Weather Stations (AWSs) are systems equipped with a number of environmental sensors and communication interfaces used to monitor harsh environments, such as glaciers and deserts. Designing such systems is challenging, since designers have to maximize the amount of sampled and transmitted data while considering the energy needs of the system that, in most cases, is powered by rechargeable batteries and exploits energy harvesting, e.g., solar cells and wind turbines. To support designers of AWSs in the definition of the software tasks and of the hardware configuration of the AWS we designed and implemented an energy-aware simulator of such systems.more » The simulator relies on the Stochastic Activity Networks (SANs) formalism and has been developed using the Möbius tool. In this paper we first show how we used the SAN formalism to model the various components of an AWS, we then report results from an experiment carried out to validate the simulator against a real-world AWS and we finally show some examples of usage of the proposed simulator.« less

  17. Molecular dynamics and Monte Carlo simulations for protein-ligand binding and inhibitor design.

    PubMed

    Cole, Daniel J; Tirado-Rives, Julian; Jorgensen, William L

    2015-05-01

    Non-nucleoside inhibitors of HIV reverse transcriptase are an important component of treatment against HIV infection. Novel inhibitors are sought that increase potency against variants that contain the Tyr181Cys mutation. Molecular dynamics based free energy perturbation simulations have been run to study factors that contribute to protein-ligand binding, and the results are compared with those from previous Monte Carlo based simulations and activity data. Predictions of protein-ligand binding modes are very consistent for the two simulation methods; the accord is attributed to the use of an enhanced sampling protocol. The Tyr181Cys binding pocket supports large, hydrophobic substituents, which is in good agreement with experiment. Although some discrepancies exist between the results of the two simulation methods and experiment, free energy perturbation simulations can be used to rapidly test small molecules for gains in binding affinity. Free energy perturbation methods show promise in providing fast, reliable and accurate data that can be used to complement experiment in lead optimization projects. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Computational studies of physical properties of Nb-Si based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered latticesmore » including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.« less

  19. Teaching Workflow Analysis and Lean Thinking via Simulation: A Formative Evaluation

    PubMed Central

    Campbell, Robert James; Gantt, Laura; Congdon, Tamara

    2009-01-01

    This article presents the rationale for the design and development of a video simulation used to teach lean thinking and workflow analysis to health services and health information management students enrolled in a course on the management of health information. The discussion includes a description of the design process, a brief history of the use of simulation in healthcare, and an explanation of how video simulation can be used to generate experiential learning environments. Based on the results of a survey given to 75 students as part of a formative evaluation, the video simulation was judged effective because it allowed students to visualize a real-world process (concrete experience), contemplate the scenes depicted in the video along with the concepts presented in class in a risk-free environment (reflection), develop hypotheses about why problems occurred in the workflow process (abstract conceptualization), and develop solutions to redesign a selected process (active experimentation). PMID:19412533

  20. Distributed dynamic simulations of networked control and building performance applications.

    PubMed

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  1. Modelling and Simulation on Multibody Dynamics for Vehicular Cold Launch Systems Based on Subsystem Synthesis Method

    NASA Astrophysics Data System (ADS)

    Panyun, YAN; Guozhu, LIANG; Yongzhi, LU; Zhihui, QI; Xingdou, GAO

    2017-12-01

    The fast simulation of the vehicular cold launch system (VCLS) in the launch process is an essential requirement for practical engineering applications. In particular, a general and fast simulation model of the VCLS will help the designer to obtain the optimum scheme in the initial design phase. For these purposes, a system-level fast simulation model was established for the VCLS based on the subsystem synthesis method. Moreover, a comparison of the load of a seven-axis VCLS on the rigid ground through both theoretical calculations and experiments was carried out. It was found that the error of the load of the rear left outrigger is less than 7.1%, and the error of the total load of all the outriggers is less than 2.8%. Moreover, time taken for completion of the simulation model is only 9.5 min, which is 5% of the time taken by conventional algorithms.

  2. Optimally analyzing and implementing of bolt fittings in steel structure based on ANSYS

    NASA Astrophysics Data System (ADS)

    Han, Na; Song, Shuangyang; Cui, Yan; Wu, Yongchun

    2018-03-01

    ANSYS simulation software for its excellent performance become outstanding one in Computer-aided Engineering (CAE) family, it is committed to the innovation of engineering simulation to help users to shorten the design process. First, a typical procedure to implement CAE was design. The framework of structural numerical analysis on ANSYS Technology was proposed. Then, A optimally analyzing and implementing of bolt fittings in beam-column join of steel structure was implemented by ANSYS, which was display the cloud chart of XY-shear stress, the cloud chart of YZ-shear stress and the cloud chart of Y component of stress. Finally, ANSYS software simulating results was compared with the measured results by the experiment. The result of ANSYS simulating and analyzing is reliable, efficient and optical. In above process, a structural performance's numerical simulating and analyzing model were explored for engineering enterprises' practice.

  3. Distributed dynamic simulations of networked control and building performance applications

    PubMed Central

    Yahiaoui, Azzedine

    2017-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135

  4. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  5. A mathematical simulation model of the CH-47B helicopter, volume 1

    NASA Technical Reports Server (NTRS)

    Weber, J. M.; Liu, T. Y.; Chung, W.

    1984-01-01

    A nonlinear simulation model of the CH-47B helicopter was adapted for use in the NASA Ames Research Center (ARC) simulation facility. The model represents the specific configuration of the ARC variable stability CH-47B helicopter and will be used in ground simulation research and to expedite and verify flight experiment design. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatlely-Bailey equations including steady-state flapping dynamics. Also included in the model is the option for simulation of external suspension, slung-load equations of motion.

  6. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  7. Methods for simulating nutritional requirement and response studies with all organisms to increase research efficiency.

    PubMed

    Vedenov, Dmitry; Alhotan, Rashed A; Wang, Runlian; Pesti, Gene M

    2017-02-01

    Nutritional requirements and responses of all organisms are estimated using various models representing the response to different dietary levels of the nutrient in question. To help nutritionists design experiments for estimating responses and requirements, we developed a simulation workbook using Microsoft Excel. The objective of the present study was to demonstrate the influence of different numbers of nutrient levels, ranges of nutrient levels and replications per nutrient level on the estimates of requirements based on common nutritional response models. The user provides estimates of the shape of the response curve, requirements and other parameters and observation to observation variation. The Excel workbook then produces 1-1000 randomly simulated responses based on the given response curve and estimates the standard errors of the requirement (and other parameters) from different models as an indication of the expected power of the experiment. Interpretations are based on the assumption that the smaller the standard error of the requirement, the more powerful the experiment. The user can see the potential effects of using one or more subjects, different nutrient levels, etc., on the expected outcome of future experiments. From a theoretical perspective, each organism should have some enzyme-catalysed reaction whose rate is limited by the availability of some limiting nutrient. The response to the limiting nutrient should therefore be similar to enzyme kinetics. In conclusion, the workbook eliminates some of the guesswork involved in designing experiments and determining the minimum number of subjects needed to achieve desired outcomes.

  8. Role of interfacial bonding in the design and realization of Magnetically Applied Pressure Shear (MAPS) experiments

    NASA Astrophysics Data System (ADS)

    Ding, Jow; Alexander, C. Scott

    2017-06-01

    MAPS (Magnetically Applied Pressure Shear) is a new technique that can be used to explore the material behavior under dynamic compression-shear loadings at strain rates and pressures that are much higher than those that can be achieved by gas-gun driven pressure shear experiments. A significant challenge for MAPS is the transmission of large shear stress through material interfaces. In this study, numerical simulations were used to gain insights on the behavior of the interface between molybdenum, which is the driver, and zirconia, the anvil, in MAPS experiments. Molybdenum was stressed into the plastic regime and zirconia stayed elastic but appeared to have incurred some spall damage at the later stage of the experiments. By including damage for the anvil and interfacial sliding in the simulations, both the longitudinal and transverse velocity data were able to be reasonably simulated. The results indicate that the interfacial slip appears to usually occur at the beginning stage of the shear loading when the pressure is relatively low. After the pressure reaches a certain level, the shear stress could be fully transmitted. Some other possible experiment designs to minimize the role of interface in MAPS are discussed. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Does mental illness stigma contribute to adolescent standardized patients' discomfort with simulations of mental illness and adverse psychosocial experiences?

    PubMed

    Hanson, Mark D; Johnson, Samantha; Niec, Anne; Pietrantonio, Anna Marie; High, Bradley; MacMillan, Harriet; Eva, Kevin W

    2008-01-01

    Adolescent mental illness stigma-related factors may contribute to adolescent standardized patients' (ASP) discomfort with simulations of psychiatric conditions/adverse psychosocial experiences. Paradoxically, however, ASP involvement may provide a stigma-reduction strategy. This article reports an investigation of this hypothetical association between simulation discomfort and mental illness stigma. ASPs were randomly assigned to one of two simulation conditions: one was associated with mental illness stigma and one was not. ASP training methods included carefully written case simulations, educational materials, and active teaching methods. After training, ASPs completed the adapted Project Role Questionnaire to rate anticipated role discomfort with hypothetical adolescent psychiatric conditions/adverse psychosocial experiences and to respond to open-ended questions regarding this discomfort. A mixed design ANOVA was used to compare comfort levels across simulation conditions. Narrative responses to an open-ended question were reviewed for relevant themes. Twenty-four ASPs participated. A significant effect of simulation was observed, indicating that ASPs participating in the simulation associated with mental illness stigma anticipated greater comfort with portraying subsequent stigma-associated roles than did ASPs in the simulation not associated with stigma. ASPs' narrative responses regarding their reasons for anticipating discomfort focused upon the role of knowledge-related factors. ASPs' work with a psychiatric case simulation was associated with greater anticipated comfort with hypothetical simulations of psychiatric/adverse psychosocial conditions in comparison to ASPs lacking a similar work experience. The ASPs provided explanations for this anticipated discomfort that were suggestive of stigma-related knowledge factors. This preliminary research suggests an association between ASP anticipated role discomfort and mental illness stigma, and that ASP work may contribute to stigma reduction.

  10. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study

    PubMed Central

    Hedman, Leif; Felländer-Tsai, Li

    2016-01-01

    Objectives To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Methods Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience.  Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. Results A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). Conclusions This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.  PMID:26897701

  11. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  12. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  13. A comparison of traditional physical laboratory and computer-simulated laboratory experiences in relation to engineering undergraduate students' conceptual understandings of a communication systems topic

    NASA Astrophysics Data System (ADS)

    Javidi, Giti

    2005-07-01

    This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.

  14. Providing Simulated Online and Mobile Learning Experiences in a Prison Education Setting: Lessons Learned from the PLEIADES Pilot Project

    ERIC Educational Resources Information Center

    Farley, Helen; Murphy, Angela; Bedford, Tasman

    2014-01-01

    This article reports on the preliminary findings, design criteria and lessons learned while developing and piloting an alternative to traditional print-based education delivery within a prison environment. PLEIADES (Portable Learning Environments for Incarcerated Distance Education Students), was designed to provide incarcerated students with…

  15. The Evolution of Computer Based Learning Software Design: Computer Assisted Teaching Unit Experience.

    ERIC Educational Resources Information Center

    Blandford, A. E.; Smith, P. R.

    1986-01-01

    Describes the style of design of computer simulations developed by Computer Assisted Teaching Unit at Queen Mary College with reference to user interface, input and initialization, input data vetting, effective display screen use, graphical results presentation, and need for hard copy. Procedures and problems relating to academic involvement are…

  16. Design of a Professional Practice Simulator for Educating and Motivating First-Year Engineering Students

    ERIC Educational Resources Information Center

    Chesler, Naomi C.; Arastoopour, Golnaz; D'Angelo, Cynthia M.; Bagley, Elizabeth A.; Shaffer, David Williamson

    2013-01-01

    Increasingly, first-year engineering curricula incorporate design projects. However, the faculty and staff effort and physical resources required for the number of students enrolled can be daunting and affect the quality of instruction. To reduce these costs, ensure a high quality educational experience, and reduce variability in student outcomes…

  17. NIF Rugby High Foot Campaign from the design side

    NASA Astrophysics Data System (ADS)

    Leidinger, J.-P.; Callahan, D. A.; Berzak-Hopkins, L. F.; Ralph, J. E.; Amendt, P.; Hinkel, D. E.; Michel, P.; Moody, J. D.; Ross, J. S.; Rygg, J. R.; Celliers, P.; Clouët, J.-F.; Dewald, E. L.; Kaiser, P.; Khan, S.; Kritcher, A. L.; Liberatore, S.; Marion, D.; Masson-Laborde, P.-E.; Milovich, J. L.; Morice, O.; Pak, A. E.; Poujade, O.; Strozzi, D.; Hurricane, O. A.

    2016-05-01

    The NIF Rugby High Foot campaign results, with 8 shots to date, are compared with the 2D FCI2 design simulations. A special emphasis is placed on the predictive features and on those areas where some work is still required to achieve the best possible modelling of these MJ-class experiments.

  18. Exploring the Applied Arts. Publication No. 0041.

    ERIC Educational Resources Information Center

    Sokolowski, Kathleen

    The program covered in this curriculum guide deals with applied arts, concentrating on the areas of advertising, fashion illustration, graphic design, cartooning, and textile design and decoration. These areas have been developed to give a hands-on experience to the students by simulating the working world and the student's place in it. Each area…

  19. AMPS data management concepts. [Atmospheric, Magnetospheric and Plasma in Space experiment

    NASA Technical Reports Server (NTRS)

    Metzelaar, P. N.

    1975-01-01

    Five typical AMPS experiments were formulated to allow simulation studies to verify data management concepts. Design studies were conducted to analyze these experiments in terms of the applicable procedures, data processing and displaying functions. Design concepts for AMPS data management system are presented which permit both automatic repetitive measurement sequences and experimenter-controlled step-by-step procedures. Extensive use is made of a cathode ray tube display, the experimenters' alphanumeric keyboard, and the computer. The types of computer software required by the system and the possible choices of control and display procedures available to the experimenter are described for several examples. An electromagnetic wave transmission experiment illustrates the methods used to analyze data processing requirements.

  20. Studies for the electro-magnetic calorimeter SplitCal for the SHiP experiment at CERN with shower direction reconstruction capability

    NASA Astrophysics Data System (ADS)

    Bonivento, Walter M.

    2018-02-01

    This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.

  1. Polar-Drive--Implosion Physics on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Radha, P. B.

    2012-10-01

    Polar drive (PD) permits the execution of direct-drive--ignition experiments on facilities that are configured for x-ray drive such as the National Ignition Facility (NIF) and Laser M'egajoule. Experiments on the OMEGA laser are used to develop and validate models of PD implosions. Results from OMEGA PD shock-timing and warm implosions are presented. Experiments are simulated with the 2-D hydrodynamic code DRACO including full 3-D ray trace to model oblique beams. Excellent agreement is obtained in shock velocity and catch-up in PD geometry in warm, plastic shells. Predicted areal densities are measured in PD implosion experiments. Good agreement between simulation and experiments is obtained in the overall shape of the compressing shell when observed through x-ray backlighting. Simulated images of the hot core, including the effect of magnetic fields, are compared with experiments. Comparisons of simulated and observed scattered light and bang time in PD geometry are presented. Several techniques to increase implosion velocity are presented including beam profile variations and different ablator materials. Results from shimmed-target PD experiments will also be presented. Designs for future PD OMEGA experiments at ignition-relevant intensities will be presented. The implication of these results for NIF-scale plasmas is discussed. Experiments for the NIF in its current configuration, with indirect-drive phase plates, are proposed to study implosion energetics and shell asymmetries. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  2. Modeling of laser transmission contour welding process using FEA and DoE

    NASA Astrophysics Data System (ADS)

    Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten

    2012-07-01

    In this research, a systematic investigation on laser transmission contour welding process is carried out using finite element analysis (FEA) and design of experiments (DoE) techniques. First of all, a three-dimensional thermal model is developed to simulate the laser transmission contour welding process with a moving heat source. The commercial finite element code ANSYS® multi-physics is used to obtain the numerical results by implementing a volumetric Gaussian heat source, and combined convection-radiation boundary conditions. Design of experiments together with regression analysis is then employed to plan the experiments and to develop mathematical models based on simulation results. Four key process parameters, namely power, welding speed, beam diameter, and carbon black content in absorbing polymer, are considered as independent variables, while maximum temperature at weld interface, weld width, and weld depths in transparent and absorbing polymers are considered as dependent variables. Sensitivity analysis is performed to determine how different values of an independent variable affect a particular dependent variable.

  3. Robotic experiment with a force reflecting handcontroller onboard MIR space station

    NASA Technical Reports Server (NTRS)

    Delpech, M.; Matzakis, Y.

    1994-01-01

    During the French CASSIOPEE mission that will fly onboard MIR space station in 1996, ergonomic evaluations of a force reflecting handcontroller will be performed on a simulated robotic task. This handcontroller is a part of the COGNILAB payload that will be used also for experiments in neurophysiology. The purpose of the robotic experiment is the validation of a new control and design concept that would enhance the task performances for telemanipulating space robots. Besides the handcontroller and its control unit, the experimental system includes a simulator of the slave robot dynamics for both free and constrained motions, a flat display screen and a seat with special fixtures for holding the astronaut.

  4. Foundational Terminal Operations HITL: Experimental Design Slides

    NASA Technical Reports Server (NTRS)

    Rorie, Robert Conrad

    2017-01-01

    The UAS (Unmanned Aircraft Systems) in the NAS (National Airspace System) project is conducting its first investigation of UAS operations in the terminal environment. A workshop is being held to get input from key stakeholders on the experimental design and scenario development occuring for this simulation, which intends to begin data collection in September 2017. These slides cover the proposed design and methodolgy for the experiment.

  5. Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

    NASA Astrophysics Data System (ADS)

    Le, Tuyen Quang; Lee, Kwang-Soo; Park, Jin-Soon; Ko, Jin Hwan

    2014-06-01

    In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

  6. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.

    2014-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  7. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander Wong

    2013-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  8. Conceptual Design of Simulation Models in an Early Development Phase of Lunar Spacecraft Simulator Using SMP2 Standard

    NASA Astrophysics Data System (ADS)

    Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.

  9. Effects of a Haptic Augmented Simulation on K-12 Students' Achievement and Their Attitudes Towards Physics

    ERIC Educational Resources Information Center

    Civelek, Turhan; Ucar, Erdem; Ustunel, Hakan; Aydin, Mehmet Kemal

    2014-01-01

    The current research aims to explore the effects of a haptic augmented simulation on students' achievement and their attitudes towards Physics in an immersive virtual reality environment (VRE). A quasi-experimental post-test design was employed utilizing experiment and control groups. The participants were 215 students from a K-12 school in…

  10. Allegany Ballistics Lab: sensor test target system

    NASA Astrophysics Data System (ADS)

    Eaton, Deran S.

    2011-06-01

    Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).

  11. Investigation related to hydrogen isotopes separation by cryogenic distillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornea, A.; Zamfirache, M.; Stefanescu, I.

    2008-07-15

    Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (formore » The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)« less

  12. Liquid cooling applications on automotive exterior LED lighting

    NASA Astrophysics Data System (ADS)

    Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin

    2018-02-01

    In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.

  13. NIMROD simulations and physics assessment of possible designs for a next generation Steady Inductive Helicity Injection HIT device

    NASA Astrophysics Data System (ADS)

    Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas

    2017-10-01

    The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.

  14. Analyst-to-Analyst Variability in Simulation-Based Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glickman, Matthew R.; Romero, Vicente J.

    This report describes findings from the culminating experiment of the LDRD project entitled, "Analyst-to-Analyst Variability in Simulation-Based Prediction". For this experiment, volunteer participants solving a given test problem in engineering and statistics were interviewed at different points in their solution process. These interviews are used to trace differing solutions to differing solution processes, and differing processes to differences in reasoning, assumptions, and judgments. The issue that the experiment was designed to illuminate -- our paucity of understanding of the ways in which humans themselves have an impact on predictions derived from complex computational simulations -- is a challenging and openmore » one. Although solution of the test problem by analyst participants in this experiment has taken much more time than originally anticipated, and is continuing past the end of this LDRD, this project has provided a rare opportunity to explore analyst-to-analyst variability in significant depth, from which we derive evidence-based insights to guide further explorations in this important area.« less

  15. Simulation of Combustion Systems with Realistic g-Jitter

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; McGrattan, K. B.; Nakamura, Y.; Baum, H. R.

    2001-01-01

    A number of facilities are available for microgravity combustion experiments: aircraft, drop towers, sounding rockets, the space shuttle, and, in the future, the International Space Station (ISS). Acceleration disturbances or g-jitter about the background level of reduced gravity exist in all these microgravity facilities. While g-jitter is routinely measured, a quantitative comparison of the quality of g-jitter among the different microgravity facilities, in terms of its affects on combustion experiments, has not been compiled. Low frequency g-jitter (< 1 Hz) has been repeatedly observed to disturb a number of combustion systems. Guidelines regarding tolerable levels of acceleration disturbances for combustion experiments have been developed for use in the design of ISS experiments. The validity of these guidelines, however, remains unknown. In this project a transient, 3-D numerical model is under development to simulate the effects of realistic g-jitter on a number of combustion systems. The measured acceleration vector or some representation of it can be used as input to the simulation.

  16. Optimising electron microscopy experiment through electron optics simulation.

    PubMed

    Kubo, Y; Gatel, C; Snoeck, E; Houdellier, F

    2017-04-01

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Injector design for liner-on-target gas-puff experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  18. Injector design for liner-on-target gas-puff experiments.

    PubMed

    Valenzuela, J C; Krasheninnikov, I; Conti, F; Wessel, F; Fadeev, V; Narkis, J; Ross, M P; Rahman, H U; Ruskov, E; Beg, F N

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  19. Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.; Tsui, P.; Chait, A.

    1989-01-01

    The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors.

  20. Design and experimental verification for optical module of optical vector-matrix multiplier.

    PubMed

    Zhu, Weiwei; Zhang, Lei; Lu, Yangyang; Zhou, Ping; Yang, Lin

    2013-06-20

    Optical computing is a new method to implement signal processing functions. The multiplication between a vector and a matrix is an important arithmetic algorithm in the signal processing domain. The optical vector-matrix multiplier (OVMM) is an optoelectronic system to carry out this operation, which consists of an electronic module and an optical module. In this paper, we propose an optical module for OVMM. To eliminate the cross talk and make full use of the optical elements, an elaborately designed structure that involves spherical lenses and cylindrical lenses is utilized in this optical system. The optical design software package ZEMAX is used to optimize the parameters and simulate the whole system. Finally, experimental data is obtained through experiments to evaluate the overall performance of the system. The results of both simulation and experiment indicate that the system constructed can implement the multiplication between a matrix with dimensions of 16 by 16 and a vector with a dimension of 16 successfully.

Top