Sample records for simulation les methods

  1. Development of a Hybrid RANS/LES Method for Compressible Mixing Layer Simulations

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modem day aircraft and also those of hypersonic vehicles currently under development. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS/LES method on stretched, non-Cartesian grids. The hybrid RANS/LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two-dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Actual LES calculations, performed in three spatial directions, indicated an initial vortex shedding followed by rapid transition to turbulence, which is in agreement with experimental observations.

  2. Hybrid RANS-LES using high order numerical methods

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  3. Simulation d'ecoulements internes compressibles laminaires et turbulents par une methode d'elements finis

    NASA Astrophysics Data System (ADS)

    Rebaine, Ali

    1997-08-01

    Ce travail consiste en la simulation numerique des ecoulements internes compressibles bidimensionnels laminaires et turbulents. On s'interesse, particulierement, aux ecoulements dans les ejecteurs supersoniques. Les equations de Navier-Stokes sont formulees sous forme conservative et utilisent, comme variables independantes, les variables dites enthalpiques a savoir: la pression statique, la quantite de mouvement et l'enthalpie totale specifique. Une formulation variationnelle stable des equations de Navier-Stokes est utilisee. Elle est base sur la methode SUPG (Streamline Upwinding Petrov Galerkin) et utilise un operateur de capture des forts gradients. Un modele de turbulence, pour la simulation des ecoulements dans les ejecteurs, est mis au point. Il consiste a separer deux regions distinctes: une region proche de la paroi solide, ou le modele de Baldwin et Lomax est utilise et l'autre, loin de la paroi, ou une formulation nouvelle, basee sur le modele de Schlichting pour les jets, est proposee. Une technique de calcul de la viscosite turbulente, sur un maillage non structure, est implementee. La discretisation dans l'espace de la forme variationnelle est faite a l'aide de la methode des elements finis en utilisant une approximation mixte: quadratique pour les composantes de la quantite de mouvement et de la vitesse et lineaire pour le reste des variables. La discretisation temporelle est effectuee par une methode de differences finies en utilisant le schema d'Euler implicite. Le systeme matriciel, resultant de la discretisation spatio-temporelle, est resolu a l'aide de l'algorithme GMRES en utilisant un preconditionneur diagonal. Les validations numeriques ont ete menees sur plusieurs types de tuyeres et ejecteurs. La principale validation consiste en la simulation de l'ecoulement dans l'ejecteur teste au centre de recherche NASA Lewis. Les resultats obtenus sont tres comparables avec ceux des travaux anterieurs et sont nettement superieurs concernant les ecoulements turbulents dans les ejecteurs.

  4. Design optimization using adjoint of Long-time LES for the trailing edge of a transonic turbine vane

    NASA Astrophysics Data System (ADS)

    Talnikar, Chaitanya; Wang, Qiqi

    2017-11-01

    Adjoint-based design optimization methods have been applied to low-fidelity simulation methods like Reynolds Averaged Navier-Stokes (RANS) and are useful for designing fluid machinery components. But to reliably capture the complex flow phenomena involved in turbomachinery, high fidelity simulations like large eddy simulation (LES) are required. Unfortunately due to the chaotic dynamics of turbulence, the unsteady adjoint method for LES diverges and produces incorrect gradients. Using a viscosity stabilized unsteady adjoint method developed for LES, the gradient can be obtained with reasonable accuracy. In this paper, design of the trailing edge of a gas turbine inlet guide vane is performed with the objective to reduce stagnation pressure loss and heat transfer over the surface of the vane. Slight changes in the shape of trailing edge can significantly impact these quantities by altering the boundary layer development process and separation points. The trailing edge is parameterized using a linear combination of 5 convex designs. Bayesian optimization is used as a global optimizer with the objective function evaluated from the LES and gradients obtained using the viscosity adjoint method. Results from the optimization, performed on the supercomputer Mira, are presented.

  5. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.

    1993-01-01

    The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.

  6. WRF nested large-eddy simulations of deep convection during SEAC4RS

    NASA Astrophysics Data System (ADS)

    Heath, Nicholas K.; Fuelberg, Henry E.; Tanelli, Simone; Turk, F. Joseph; Lawson, R. Paul; Woods, Sarah; Freeman, Sean

    2017-04-01

    Large-eddy simulations (LES) and observations are often combined to increase our understanding and improve the simulation of deep convection. This study evaluates a nested LES method that uses the Weather Research and Forecasting (WRF) model and, specifically, tests whether the nested LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection that occurred during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Mesoscale WRF output (1.35 km grid length) was used to drive a nested LES with 450 m grid spacing, which then drove a 150 m domain. Results reveal that the 450 m nested LES reasonably simulates observed reflectivity distributions and aircraft-observed in-cloud vertical velocities during the study period. However, when examining convective updrafts, reducing the grid spacing to 150 m worsened results. We find that the simulated updrafts in the 150 m run become too diluted by entrainment, thereby generating updrafts that are weaker than observed. Lastly, the 450 m simulation is combined with observations to study the processes forcing strong midlevel cloud/updraft edge downdrafts that were observed on 2 September. Results suggest that these strong downdrafts are forced by evaporative cooling due to mixing and by perturbation pressure forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested LES approach, with further development and evaluation, could potentially provide an effective method for studying deep convection in real-world cases.

  7. Comparison of AGE and Spectral Methods for the Simulation of Far-Wakes

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Rogers, M. M.; Kega, Dennis (Technical Monitor)

    1999-01-01

    Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This report demonstrates that a good compromise is possible with the Advected Grid Explicit (AGE) method. AGE has proven to be both efficient and accurate for simulating turbulent free-shear flows, including planar mixing layers and planar jets. Its efficiency results from its localized fully explicit finite difference formulation (Bisset 1998a,b) that is very straightforward to compute, outweighing the need for a fairly small timestep. Also, most of the successful simulations were slightly under-resolved, and therefore they were, in effect, large-eddy simulations (LES) without a sub-grid-scale (SGS) model, rather than direct numerical simulations (DNS). The principle is that the role of the smallest scales of turbulent motion (when the Reynolds number is not too low) is to dissipate turbulent energy, and therefore they do not have to be simulated when the numerical method is inherently dissipative at its resolution limits. Such simulations are termed 'auto-LES' (LES with automatic SGS modeling) in this report.

  8. Quadrature Moments Method for the Simulation of Turbulent Reactive Flows

    NASA Technical Reports Server (NTRS)

    Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.

    2003-01-01

    A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.

  9. Numerical simulation of turbulent combustion: Scientific challenges

    NASA Astrophysics Data System (ADS)

    Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan

    2014-08-01

    Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.

  10. Nesting large-eddy simulations within mesoscale simulations for wind energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, J K; Mirocha, J D; Chow, F K

    2008-09-08

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting thatmore » a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.« less

  11. Large-eddy simulation using the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.

    1993-10-01

    In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulencemore » modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.« less

  12. A Hybrid Numerical Method for Turbulent Mixing Layers. Degree awarded by Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.

    2001-01-01

    A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modern day aircraft and also those of hypersonic vehicles currently under development. The method configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. Closure for the RANS equations was obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The wall-function approach enabled a continuous computational grid from the RANS regions to the LES region. The LES equations were closed using the Smagorinsky subgrid scale model. The hybrid RANS-LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Vortex shedding from the base region of a splitter plate separating the upstream flows was observed to eventually transition to turbulence. The location of the transition, however, was much further downstream than indicated by experiments. Actual LES calculations, performed in three spatial directions, also indicated vortex shedding, but the transition to turbulence was found to occur much closer to the beginning of the mixing section. which is in agreement with experimental observations. These calculations demonstrated that LES simulations must be performed in three dimensions. Comparisons of time-averaged axial velocities and turbulence intensities indicated reasonable agreement with experimental data.

  13. Smoothed particle hydrodynamics method from a large eddy simulation perspective

    NASA Astrophysics Data System (ADS)

    Di Mascio, A.; Antuono, M.; Colagrossi, A.; Marrone, S.

    2017-03-01

    The Smoothed Particle Hydrodynamics (SPH) method, often used for the modelling of the Navier-Stokes equations by a meshless Lagrangian approach, is revisited from the point of view of Large Eddy Simulation (LES). To this aim, the LES filtering procedure is recast in a Lagrangian framework by defining a filter that moves with the positions of the fluid particles at the filtered velocity. It is shown that the SPH smoothing procedure can be reinterpreted as a sort of LES Lagrangian filtering, and that, besides the terms coming from the LES convolution, additional contributions (never accounted for in the SPH literature) appear in the equations when formulated in a filtered fashion. Appropriate closure formulas are derived for the additional terms and a preliminary numerical test is provided to show the main features of the proposed LES-SPH model.

  14. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation.

    PubMed

    Breton, S-P; Sumner, J; Sørensen, J N; Hansen, K S; Sarmast, S; Ivanell, S

    2017-04-13

    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  15. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    PubMed Central

    Sumner, J.; Sørensen, J. N.; Hansen, K. S.; Sarmast, S.; Ivanell, S.

    2017-01-01

    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265021

  16. WRF nested large-eddy simulations of deep convection during SEAC4RS

    NASA Astrophysics Data System (ADS)

    Heath, Nicholas Kyle

    Deep convection is an important component of atmospheric circulations that affects many aspects of weather and climate. Therefore, improved understanding and realistic simulations of deep convection are critical to both operational and climate forecasts. Large-eddy simulations (LESs) often are used with observations to enhance understanding of convective processes. This study develops and evaluates a nested-LES method using the Weather Research and Forecasting (WRF) model. Our goal is to evaluate the extent to which the WRF nested-LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection having a robust set of ground and airborne data available for evaluation. A three domain mesoscale WRF simulation is run first. Then, the finest mesoscale output (1.35 km grid length) is used to separately drive nested-LES domains with grid lengths of 450 and 150 m. Results reveal that the nested-LES approach reasonably simulates a broad spectrum of observations, from reflectivity distributions to vertical velocity profiles, during the study period. However, reducing the grid spacing does not necessarily improve results for our case, with the 450 m simulation outperforming the 150 m version. We find that simulated updrafts in the 150 m simulation are too narrow to overcome the negative effects of entrainment, thereby generating convection that is weaker than observed. Increasing the sub-grid mixing length in the 150 m simulation leads to deeper, more realistic convection, but comes at the expense of delaying the onset of the convection. Overall, results show that both the 450 m and 150 m simulations are influenced considerably by the choice of sub-grid mixing length used in the LES turbulence closure. Finally, the simulations and observations are used to study the processes forcing strong midlevel cloud-edge downdrafts that were observed on 2 September. Results suggest that these downdrafts are forced by evaporative cooling due to mixing near cloud edge and by vertical perturbation pressure gradient forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested-LES approach provides an effective method for studying deep convection for our real-world case. The method can be used to provide insight into physical processes that are important to understanding observations. The WRF nested-LES approach could be adapted for other case studies in which high-resolution observations are available for validation.

  17. Regularization method for large eddy simulations of shock-turbulence interactions

    NASA Astrophysics Data System (ADS)

    Braun, N. O.; Pullin, D. I.; Meiron, D. I.

    2018-05-01

    The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k - 5 / 3, and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.

  18. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  19. Hybrid LES/RANS simulation of a turbulent boundary layer over a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Haering, Sigfried; Oliver, Todd; Moser, Robert

    2016-11-01

    We report numerical investigations of a turbulent boundary layer over a rectangular cavity using a new hybrid RANS/LES model and the traditional Detached Eddy Simulation (DES). Our new hybrid method aims to address many of the shortcomings from the traditional DES. In the new method, RANS/LES blending controlled by a parameter that measures the ratio of the modeled subgrid kinetic energy to an estimate of the subgrid energy based on the resolved scales. The result is a hybrid method automatically resolves as much turbulence as can be supported by the grid and transitions appropriately from RANS to LES without the need for ad hoc delaying functions that are often required for DES. Further, the new model is designed to improve upon DES by accounting for the effects of grid anisotropy and inhomogeneity in the LES region. We present comparisons of the flow features inside the cavity and the pressure time history and spectra as computed using the new hybrid model and DES.

  20. Simulation of turbulent separated flows using a novel, evolution-based, eddy-viscosity formulation

    NASA Astrophysics Data System (ADS)

    Castellucci, Paul

    Currently, there exists a lack of confidence in the computational simulation of turbulent separated flows at large Reynolds numbers. The most accurate methods available are too computationally costly to use in engineering applications. Thus, inexpensive models, developed using the Reynolds-averaged Navier-Stokes (RANS) equations, are often extended beyond their applicability. Although these methods will often reproduce integrated quantities within engineering tolerances, such metrics are often insensitive to details within a separated wake, and therefore, poor indicators of simulation fidelity. Using concepts borrowed from large-eddy simulation (LES), a two-equation RANS model is modified to simulate the turbulent wake behind a circular cylinder. This modification involves the computation of one additional scalar field, adding very little to the overall computational cost. When properly inserted into the baseline RANS model, this modification mimics LES in the separated wake, yet reverts to the unmodified form at the cylinder surface. In this manner, superior predictive capability may be achieved without the additional cost of fine spatial resolution associated with LES near solid boundaries. Simulations using modified and baseline RANS models are benchmarked against both LES and experimental data for a circular cylinder wake at Reynolds number 3900. In addition, the computational tool used in this investigation is subject to verification via the Method of Manufactured Solutions. Post-processing of the resultant flow fields includes both mean value and triple-decomposition analysis. These results reveal substantial improvements using the modified system and appear to drive the baseline wake solution toward that of LES, as intended.

  1. Calibration and Forward Uncertainty Propagation for Large-eddy Simulations of Engineering Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Jeremy Alan; Blaylock, Myra L.; Domino, Stefan P.

    2015-09-01

    The objective of this work is to investigate the efficacy of using calibration strategies from Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods are for engineering LES, uncertainty from numerical aspects of the model must also be quantified. 15 The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such that the cost could be minimized given an accuracy prescribed by an engineering need. Realization of this goal would enable LES to serve as a predictive simulation tool within the engineering design process.

  2. Assessment of sub-grid scale dispersion closure with regularized deconvolution method in a particle-laden turbulent jet

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Zhao, Xinyu; Ihme, Matthias

    2017-11-01

    Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).

  3. Numerical simulation of sloshing with large deforming free surface by MPS-LES method

    NASA Astrophysics Data System (ADS)

    Pan, Xu-jie; Zhang, Huai-xin; Sun, Xue-yao

    2012-12-01

    Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.

  4. Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Curran, Thomas; Denner, Fabian; van Wachem, Berend

    2017-11-01

    The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.

  5. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.

    1992-01-01

    The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.

  6. DNS and LES/FMDF of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  7. LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme

    NASA Technical Reports Server (NTRS)

    Hadjadj, A; Yee, H. C.; Sjogreen, B.

    2011-01-01

    An eighth-order filter method for a wide range of compressible flow speeds (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) are employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high order filter method is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The value of Mc considered is for the TML range from the quasi-incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self similarity property, compressibility effects and the presence of large-scale structure with shocklets for high Mc) are considered for the LES study. The LES results using the same scheme parameters for all studied cases agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002).

  8. Bridging the Transition from Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models

    NASA Astrophysics Data System (ADS)

    Muñoz-Esparza, Domingo; Kosović, Branko; Mirocha, Jeff; van Beeck, Jeroen

    2014-12-01

    With a focus towards developing multiscale capabilities in numerical weather prediction models, the specific problem of the transition from the mesoscale to the microscale is investigated. For that purpose, idealized one-way nested mesoscale to large-eddy simulation (LES) experiments were carried out using the Weather Research and Forecasting model framework. It is demonstrated that switching from one-dimensional turbulent diffusion in the mesoscale model to three-dimensional LES mixing does not necessarily result in an instantaneous development of turbulence in the LES domain. On the contrary, very large fetches are needed for the natural transition to turbulence to occur. The computational burden imposed by these long fetches necessitates the development of methods to accelerate the generation of turbulence on a nested LES domain forced by a smooth mesoscale inflow. To that end, four new methods based upon finite amplitude perturbations of the potential temperature field along the LES inflow boundaries are developed, and investigated under convective conditions. Each method accelerated the development of turbulence within the LES domain, with two of the methods resulting in a rapid generation of production and inertial range energy content associated to microscales that is consistent with non-nested simulations using periodic boundary conditions. The cell perturbation approach, the simplest and most efficient of the best performing methods, was investigated further under neutral and stable conditions. Successful results were obtained in all the regimes, where satisfactory agreement of mean velocity, variances and turbulent fluxes, as well as velocity and temperature spectra, was achieved with reference non-nested simulations. In contrast, the non-perturbed LES solution exhibited important energy deficits associated to a delayed establishment of fully-developed turbulence. The cell perturbation method has negligible computational cost, significantly accelerates the generation of realistic turbulence, and requires minimal parameter tuning, with the necessary information relatable to mean inflow conditions provided by the mesoscale solution.

  9. Assessment of stretched vortex subgrid-scale models for LES of incompressible inhomogeneous turbulent flow

    PubMed Central

    Shetty, Dinesh A.; Frankel, Steven H.

    2013-01-01

    Summary The physical space version of the stretched vortex subgrid scale model [Phys. Fluids 12, 1810 (2000)] is tested in large eddy simulations (LES) of the turbulent lid driven cubic cavity flow. LES is carried out using a higher order finite-difference method [J. Comput. Phys. 229, 8802 (2010)]. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against direct numerical simulations (DNS) [Phys. Fluids 12, 1363 (2000)]. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. PMID:24187423

  10. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1994-01-01

    The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.

  11. LES models for incompressible magnetohydrodynamics derived from the variational multiscale formulation

    NASA Astrophysics Data System (ADS)

    Sondak, David; Oberai, Assad

    2012-10-01

    Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation (VMS) of LES to the equations of incompressible MHD, a new residual-based eddy viscosity model (RBEVM,) and a mixed LES model that combines the strengths of both of these models. The new models result in a consistent numerical method that is relatively simple to implement. A dynamic procedure for determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical and state-of-the art LES turbulence models as well as direct numerical simulations (DNS). These new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by A. Pouquet et al., for which the ratio of DNS modes to LES modes is 262,144. Additionally, we extend these models to a finite element setting in which boundary conditions play a role. A classic problem on which we test these models is turbulent channel flow, which in the case of MHD, is called Hartmann flow.

  12. A method for obtaining a statistically stationary turbulent free shear flow

    NASA Technical Reports Server (NTRS)

    Timson, Stephen F.; Lele, S. K.; Moser, R. D.

    1994-01-01

    The long-term goal of the current research is the study of Large-Eddy Simulation (LES) as a tool for aeroacoustics. New algorithms and developments in computer hardware are making possible a new generation of tools for aeroacoustic predictions, which rely on the physics of the flow rather than empirical knowledge. LES, in conjunction with an acoustic analogy, holds the promise of predicting the statistics of noise radiated to the far-field of a turbulent flow. LES's predictive ability will be tested through extensive comparison of acoustic predictions based on a Direct Numerical Simulation (DNS) and LES of the same flow, as well as a priori testing of DNS results. The method presented here is aimed at allowing simulation of a turbulent flow field that is both simple and amenable to acoustic predictions. A free shear flow is homogeneous in both the streamwise and spanwise directions and which is statistically stationary will be simulated using equations based on the Navier-Stokes equations with a small number of added terms. Studying a free shear flow eliminates the need to consider flow-surface interactions as an acoustic source. The homogeneous directions and the flow's statistically stationary nature greatly simplify the application of an acoustic analogy.

  13. Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.; hide

    2012-01-01

    Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused convergence problems in some RANS simulations, was also captured in LES / RANS simulations, which were able to accommodate its effects accurately.

  14. Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott

    2017-11-01

    Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.

  15. Micro Blowing Simulations Using a Coupled Finite-Volume Lattice-Boltzman n L ES Approach

    NASA Technical Reports Server (NTRS)

    Menon, S.; Feiz, H.

    1990-01-01

    Three dimensional large-eddy simulations (LES) of single and multiple jet-in-cross-flow (JICF) are conducted using the 19-bit Lattice Boltzmann Equation (LBE) method coupled with a conventional finite-volume (FV) scheme. In this coupled LBE-FV approach, the LBE-LES is employed to simulate the flow inside the jet nozzles while the FV-LES is used to simulate the crossflow. The key application area is the use of this technique is to study the micro blowing technique (MBT) for drag control similar to the recent experiments at NASA/GRC. It is necessary to resolve the flow inside the micro-blowing and suction holes with high resolution without being restricted by the FV time-step restriction. The coupled LBE-FV-LES approach achieves this objectives in a computationally efficient manner. A single jet in crossflow case is used for validation purpose and the results are compared with experimental data and full LBE-LES simulation. Good agreement with data is obtained. Subsequently, MBT over a flat plate with porosity of 25% is simulated using 9 jets in a compressible cross flow at a Mach number of 0.4. It is shown that MBT suppresses the near-wall vortices and reduces the skin friction by up to 50 percent. This is in good agreement with experimental data.

  16. Development of Quality Assessment Techniques for Large Eddy Simulation of Propulsion and Power Systems in Complex Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacaze, Guilhem; Oefelein, Joseph

    Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy hasmore » become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.« less

  17. Techniques d'inspection par ondes guidees ultrasonores d'assemblages brases dans des reacteurs aeronautiques =

    NASA Astrophysics Data System (ADS)

    Comot, Pierre

    L'industrie aeronautique, cherche a etudier la possibilite d'utiliser de maniere structurelle des joints brases, dans une optique de reduction de poids et de cout. Le developpement d'une methode d'evaluation rapide, fiable et peu couteuse pour evaluer l'integrite structurelle des joints apparait donc indispensable. La resistance mecanique d'un joint brase dependant principalement de la quantite de phase fragile dans sa microstructure. Les ondes guidees ultrasonores permettent de detecter ce type de phase lorsqu'elles sont couplees a une mesure spatio-temporelle. De plus la nature de ce type d'ondes permet l'inspection de joints ayant des formes complexes. Ce memoire se concentre donc sur le developpement d'une technique basee sur l'utilisation d'ondes guidees ultrasonores pour l'inspection de joints brases a recouvrement d'Inconel 625 avec comme metal d'apport du BNi-2. Dans un premiers temps un modele elements finis du joint a ete utilise pour simuler la propagation des ultrasons et optimiser les parametres d'inspection, la simulation a permis egalement de demontrer la faisabilite de la technique pour la detection de la quantite de phase fragile dans ce type de joints. Les parametres optimises sont la forme de signal d'excitation, sa frequence centrale et la direction d'excitation. Les simulations ont montre que l'energie de l'onde ultrasonore transmise a travers le joint aussi bien que celle reflechie, toutes deux extraites des courbes de dispersion, etaient proportionnelles a la quantite de phase fragile presente dans le joint et donc cette methode permet d'identifier la presence ou non d'une phase fragile dans ce type de joint. Ensuite des experimentations ont ete menees sur trois echantillons typiques presentant differentes quantites de phase fragile dans le joint, pour obtenir ce type d'echantillons differents temps de brasage ont ete utilises (1, 60 et 180 min). Pour cela un banc d'essai automatise a ete developpe permettant d'effectuer une analyse similaire a celle utilisee en simulation. Les parametres experimentaux ayant ete choisis en accord avec l'optimisation effectuee lors des simulations et apres une premiere optimisation du procede experimental. Finalement les resultats experimentaux confirment les resultats obtenus en simulation, et demontrent le potentiel de la methode developpee.

  18. A New LES/PDF Method for Computational Modeling of Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Turkeri, Hasret; Muradoglu, Metin; Pope, Stephen B.

    2013-11-01

    A new LES/PDF method is developed for computational modeling of turbulent reacting flows. The open source package, OpenFOAM, is adopted as the LES solver and combined with the particle-based Monte Carlo method to solve the LES/PDF model equations. The dynamic Smagorinsky model is employed to account for the subgrid-scale motions. The LES solver is first validated for the Sandia Flame D using a steady flamelet method in which the chemical compositions, density and temperature fields are parameterized by the mean mixture fraction and its variance. In this approach, the modeled transport equations for the mean mixture fraction and the square of the mixture fraction are solved and the variance is then computed from its definition. The results are found to be in a good agreement with the experimental data. Then the LES solver is combined with the particle-based Monte Carlo algorithm to form a complete solver for the LES/PDF model equations. The in situ adaptive tabulation (ISAT) algorithm is incorporated into the LES/PDF method for efficient implementation of detailed chemical kinetics. The LES/PDF method is also applied to the Sandia Flame D using the GRI-Mech 3.0 chemical mechanism and the results are compared with the experimental data and the earlier PDF simulations. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant No. 111M067.

  19. Bayesian source term estimation of atmospheric releases in urban areas using LES approach.

    PubMed

    Xue, Fei; Kikumoto, Hideki; Li, Xiaofeng; Ooka, Ryozo

    2018-05-05

    The estimation of source information from limited measurements of a sensor network is a challenging inverse problem, which can be viewed as an assimilation process of the observed concentration data and the predicted concentration data. When dealing with releases in built-up areas, the predicted data are generally obtained by the Reynolds-averaged Navier-Stokes (RANS) equations, which yields building-resolving results; however, RANS-based models are outperformed by large-eddy simulation (LES) in the predictions of both airflow and dispersion. Therefore, it is important to explore the possibility of improving the estimation of the source parameters by using the LES approach. In this paper, a novel source term estimation method is proposed based on LES approach using Bayesian inference. The source-receptor relationship is obtained by solving the adjoint equations constructed using the time-averaged flow field simulated by the LES approach based on the gradient diffusion hypothesis. A wind tunnel experiment with a constant point source downwind of a single building model is used to evaluate the performance of the proposed method, which is compared with that of the existing method using a RANS model. The results show that the proposed method reduces the errors of source location and releasing strength by 77% and 28%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  1. Large-Eddy Simulation (LES) of a Compressible Mixing Layer and the Significance of Inflow Turbulence

    NASA Technical Reports Server (NTRS)

    Mankbadi, Mina Reda; Georgiadis, Nicholas J.; Debonis, James R.

    2017-01-01

    In the context of Large Eddy Simulations (LES), the effects of inflow turbulence are investigated through the Synthetic Eddy Method (SEM). The growth rate of a turbulent compressible mixing layer corresponding to operating conditions of GeobelDutton Case 2 is investigated herein. The effects of spanwise width on the growth rate of the mixing layer is investigated such that spanwise width independence is reached. The error in neglecting inflow turbulence effects is quantified by comparing two methodologies: (1) Hybrid-RANS-LES methodology and (2) SEM-LES methodology. Best practices learned from Case 2 are developed herein and then applied to a higher convective mach number corresponding to Case 4 experiments of GeobelDutton.

  2. Large eddy simulation for aerodynamics: status and perspectives.

    PubMed

    Sagaut, Pierre; Deck, Sébastien

    2009-07-28

    The present paper provides an up-to-date survey of the use of large eddy simulation (LES) and sequels for engineering applications related to aerodynamics. Most recent landmark achievements are presented. Two categories of problem may be distinguished whether the location of separation is triggered by the geometry or not. In the first case, LES can be considered as a mature technique and recent hybrid Reynolds-averaged Navier-Stokes (RANS)-LES methods do not allow for a significant increase in terms of geometrical complexity and/or Reynolds number with respect to classical LES. When attached boundary layers have a significant impact on the global flow dynamics, the use of hybrid RANS-LES remains the principal strategy to reduce computational cost compared to LES. Another striking observation is that the level of validation is most of the time restricted to time-averaged global quantities, a detailed analysis of the flow unsteadiness being missing. Therefore, a clear need for detailed validation in the near future is identified. To this end, new issues, such as uncertainty and error quantification and modelling, will be of major importance. First results dealing with uncertainty modelling in unsteady turbulent flow simulation are presented.

  3. A simple method for simulating wind profiles in the boundary layer of tropical cyclones

    DOE PAGES

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; ...

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method alsomore » requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.« less

  4. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2017-03-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.

  5. Algorithmes de couplage RANS et ecoulement potentiel

    NASA Astrophysics Data System (ADS)

    Gallay, Sylvain

    Dans le processus de developpement d'avion, la solution retenue doit satisfaire de nombreux criteres dans de nombreux domaines, comme par exemple le domaine de la structure, de l'aerodynamique, de la stabilite et controle, de la performance ou encore de la securite, tout en respectant des echeanciers precis et minimisant les couts. Les geometries candidates sont nombreuses dans les premieres etapes de definition du produit et de design preliminaire, et des environnements d'optimisations multidisciplinaires sont developpes par les differentes industries aeronautiques. Differentes methodes impliquant differents niveaux de modelisations sont necessaires pour les differentes phases de developpement du projet. Lors des phases de definition et de design preliminaires, des methodes rapides sont necessaires afin d'etudier les candidats efficacement. Le developpement de methodes ameliorant la precision des methodes existantes tout en gardant un cout de calcul faible permet d'obtenir un niveau de fidelite plus eleve dans les premieres phases de developpement du projet et ainsi grandement diminuer les risques associes. Dans le domaine de l'aerodynamisme, les developpements des algorithmes de couplage visqueux/non visqueux permettent d'ameliorer les methodes de calcul lineaires non visqueuses en methodes non lineaires prenant en compte les effets visqueux. Ces methodes permettent ainsi de caracteriser l'ecoulement visqueux sur les configurations et predire entre autre les mecanismes de decrochage ou encore la position des ondes de chocs sur les surfaces portantes. Cette these se focalise sur le couplage entre une methode d'ecoulement potentiel tridimensionnelle et des donnees de section bidimensionnelles visqueuses. Les methodes existantes sont implementees et leurs limites identifiees. Une methode originale est ensuite developpee et validee. Les resultats sur une aile elliptique demontrent la capacite de l'algorithme a de grands angles d'attaques et dans la region post-decrochage. L'algorithme de couplage a ete compare a des donnees de plus haute fidelite sur des configurations issues de la litterature. Un modele de fuselage base sur des relations empiriques et des simulations RANS a ete teste et valide. Les coefficients de portance, de trainee et de moment de tangage ainsi que les coefficients de pression extraits le long de l'envergure ont montre un bon accord avec les donnees de soufflerie et les modeles RANS pour des configurations transsoniques. Une configuration a geometrie hypersustentatoire a permis d'etudier la modelisation des surfaces hypersustentees de la methode d'ecoulement potentiel, demontrant que la cambrure peut etre prise en compte uniquement dans les donnees visqueuses.

  6. Investigation of extinction and re-ignition in piloted turbulent non-premixed methane-air flames using LES and high-speed OH-LIF

    NASA Astrophysics Data System (ADS)

    Prasad, Vinayaka N.; Juddoo, Mrinal; Masri, Assaad R.; Jones, William P.; Luo, Kai H.

    2013-06-01

    Extinction and re-ignition processes observed experimentally in thin reaction zones of piloted turbulent non-premixed methane flames approaching blow-off are analysed using Large Eddy Simulation (LES) along with the Eulerian stochastic field method representing the unresolved sub-grid turbulence-chemistry interactions. Eight stochastic fields in conjunction with a reduced chemical mechanism involving 19 species are employed to perform simulations of the Sydney flames L, B and M, which exhibit increasing levels of extinction. The agreement of the flame statistics of the velocities, mixture fraction and selected reactive species were found to be encouraging and highlight the ability of the method to capture quantitatively the effects of increasing jet velocity in this series. In a subsequent analysis of the flame structure using the LES simulation data, the strong three-dimensionality of the flame was emphasised. Quantitative comparisons with recent measurements using high-speed Planar Laser-Induced Fluorescence of OH (OH-PLIF) were found to be in reasonably good agreement with LES simulations and confirm the previous observations that the rates of flame breakages are greater than those of flame closures. This study, which also represents the first successful numerical attempt to describe the entire flame series, highlights the potential and complementary capabilities of a hybrid LES and high-speed imaging approach to resolve issues such as the role of out-of-plane motion in the investigation of transient processes such as flame breakages and re-ignition.

  7. A unified RANS–LES model: Computational development, accuracy and cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalan, Harish, E-mail: hgopalan@uwyo.edu; Heinz, Stefan, E-mail: heinz@uwyo.edu; Stöllinger, Michael K., E-mail: MStoell@uwyo.edu

    2013-09-15

    Large eddy simulation (LES) is computationally extremely expensive for the investigation of wall-bounded turbulent flows at high Reynolds numbers. A way to reduce the computational cost of LES by orders of magnitude is to combine LES equations with Reynolds-averaged Navier–Stokes (RANS) equations used in the near-wall region. A large variety of such hybrid RANS–LES methods are currently in use such that there is the question of which hybrid RANS-LES method represents the optimal approach. The properties of an optimal hybrid RANS–LES model are formulated here by taking reference to fundamental properties of fluid flow equations. It is shown that unifiedmore » RANS–LES models derived from an underlying stochastic turbulence model have the properties of optimal hybrid RANS–LES models. The rest of the paper is organized in two parts. First, a priori and a posteriori analyses of channel flow data are used to find the optimal computational formulation of the theoretically derived unified RANS–LES model and to show that this computational model, which is referred to as linear unified model (LUM), does also have all the properties of an optimal hybrid RANS–LES model. Second, a posteriori analyses of channel flow data are used to study the accuracy and cost features of the LUM. The following conclusions are obtained. (i) Compared to RANS, which require evidence for their predictions, the LUM has the significant advantage that the quality of predictions is relatively independent of the RANS model applied. (ii) Compared to LES, the significant advantage of the LUM is a cost reduction of high-Reynolds number simulations by a factor of 0.07Re{sup 0.46}. For coarse grids, the LUM has a significant accuracy advantage over corresponding LES. (iii) Compared to other usually applied hybrid RANS–LES models, it is shown that the LUM provides significantly improved predictions.« less

  8. Large eddy simulation for predicting turbulent heat transfer in gas turbines

    PubMed Central

    Tafti, Danesh K.; He, Long; Nagendra, K.

    2014-01-01

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. PMID:25024418

  9. GPU Accelerated DG-FDF Large Eddy Simulator

    NASA Astrophysics Data System (ADS)

    Inkarbekov, Medet; Aitzhan, Aidyn; Sammak, Shervin; Givi, Peyman; Kaltayev, Aidarkhan

    2017-11-01

    A GPU accelerated simulator is developed and implemented for large eddy simulation (LES) of turbulent flows. The filtered density function (FDF) is utilized for modeling of the subgrid scale quantities. The filtered transport equations are solved via a discontinuous Galerkin (DG) and the FDF is simulated via particle based Lagrangian Monte-Carlo (MC) method. It is demonstrated that the GPUs simulations are of the order of 100 times faster than the CPU-based calculations. This brings LES of turbulent flows to a new level, facilitating efficient simulation of more complex problems. The work at Al-Faraby Kazakh National University is sponsored by MoES of RK under Grant 3298/GF-4.

  10. Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Blaisdell, Gregory A.

    1996-01-01

    The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.

  11. Towards Large Eddy Simulation of gas turbine compressors

    NASA Astrophysics Data System (ADS)

    McMullan, W. A.; Page, G. J.

    2012-07-01

    With increasing computing power, Large Eddy Simulation could be a useful simulation tool for gas turbine axial compressor design. This paper outlines a series of simulations performed on compressor geometries, ranging from a Controlled Diffusion Cascade stator blade to the periodic sector of a stage in a 3.5 stage axial compressor. The simulation results show that LES may offer advantages over traditional RANS methods when off-design conditions are considered - flow regimes where RANS models often fail to converge. The time-dependent nature of LES permits the resolution of transient flow structures, and can elucidate new mechanisms of vorticity generation on blade surfaces. It is shown that accurate LES is heavily reliant on both the near-wall mesh fidelity and the ability of the imposed inflow condition to recreate the conditions found in the reference experiment. For components embedded in a compressor this requires the generation of turbulence fluctuations at the inlet plane. A recycling method is developed that improves the quality of the flow in a single stage calculation of an axial compressor, and indicates that future developments in both the recycling technique and computing power will bring simulations of axial compressors within reach of industry in the coming years.

  12. A multi-scalar PDF approach for LES of turbulent spray combustion

    NASA Astrophysics Data System (ADS)

    Raman, Venkat; Heye, Colin

    2011-11-01

    A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.

  13. Methodes de caracterisation des proprietes thermomecaniques d'un acier martensitique =

    NASA Astrophysics Data System (ADS)

    Ausseil, Lucas

    Le but de l'etude est de developper des methodes permettant de mesurer les proprietes thermomecaniques d'un acier martensitique lors de chauffe rapide. Ces donnees permettent d'alimenter les modeles d'elements finis existant avec des donnees experimentales. Pour cela, l'acier 4340 est utilise. Cet acier est notamment utilise dans les roues d'engrenage, il a des proprietes mecaniques tres interessantes. Il est possible de modifier ses proprietes grâce a des traitements thermiques. Le simulateur thermomecanique Gleeble 3800 est utilise. Il permet de tester theoriquement toutes les conditions presentes dans les procedes de fabrication. Avec les tests de dilatation realises dans ce projet, les temperatures exactes de changement de phases austenitiques et martensitiques sont obtenues. Des tests de traction ont aussi permis de deduire la limite d'elasticite du materiau dans le domaine austenitique allant de 850 °C a 1100 °C. L'effet des deformations sur la temperature de debut de transformation est montre qualitativement. Une simulation numerique est aussi realisee pour comprendre les phenomenes intervenant pendant les essais.

  14. Hybrid LES RANS technique based on a one-equation near-wall model

    NASA Astrophysics Data System (ADS)

    Breuer, M.; Jaffrézic, B.; Arora, K.

    2008-05-01

    In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196 205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid-scale and RANS models. Here, in addition to the study on the behavior of the suggested hybrid LES RANS approach, special emphasis is put on the investigation of suitable interface criteria and the adjustment of the RANS model. To investigate these issues, two different test cases are considered. Besides the standard plane channel flow test case, the flow over a periodic arrangement of hills is studied in detail. This test case includes a pressure-induced flow separation and subsequent reattachment. In comparison with a wall-resolved LES prediction encouraging results are achieved.

  15. LES Modeling with Experimental Validation of a Compound Channel having Converging Floodplain

    NASA Astrophysics Data System (ADS)

    Mohanta, Abinash; Patra, K. C.

    2018-04-01

    Computational fluid dynamics (CFD) is often used to predict flow structures in developing areas of a flow field for the determination of velocity field, pressure, shear stresses, effect of turbulence and others. A two phase three-dimensional CFD model along with the large eddy simulation (LES) model is used to solve the turbulence equation. This study aims to validate CFD simulations of free surface flow or open channel flow by using volume of fluid method by comparing the data observed in hydraulics laboratory of the National Institute of Technology, Rourkela. The finite volume method with a dynamic sub grid scale was carried out for a constant aspect ratio and convergence condition. The results show that the secondary flow and centrifugal force influence flow pattern and show good agreement with experimental data. Within this paper over-bank flows have been numerically simulated using LES in order to predict accurate open channel flow behavior. The LES results are shown to accurately predict the flow features, specifically the distribution of secondary circulations both for in-bank channels as well as over-bank channels at varying depth and width ratios in symmetrically converging flood plain compound sections.

  16. Annual Research Briefs, 1998

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1998-01-01

    The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.

  17. Experiments with explicit filtering for LES using a finite-difference method

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture most of the energy-containing eddies, and if explicit filtering is used, the mesh must be enlarged so that these motions are passed by the filter. Given the high cost of explicit filtering, the following interesting question arises. Since the mesh must be expanded in order to perform the explicit filter, might it be better to take advantage of the increased resolution and simply perform an unfiltered simulation on the larger mesh? The cost of the two approaches is roughly the same, but the philosophy is rather different. In the filtered simulation, resolution is sacrificed in order to minimize the various forms of numerical error. In the unfiltered simulation, the errors are left intact, but they are concentrated at very small scales that could be dynamically unimportant from a LES perspective. Very little is known about this tradeoff and the objective of this work is to study this relationship in high Reynolds number channel flow simulations using a second-order finite-difference method.

  18. Dynamic large eddy simulation: Stability via realizability

    NASA Astrophysics Data System (ADS)

    Mokhtarpoor, Reza; Heinz, Stefan

    2017-10-01

    The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.

  19. Large Eddy Simulation of Engineering Flows: A Bill Reynolds Legacy.

    NASA Astrophysics Data System (ADS)

    Moin, Parviz

    2004-11-01

    The term, Large eddy simulation, LES, was coined by Bill Reynolds, thirty years ago when he and his colleagues pioneered the introduction of LES in the engineering community. Bill's legacy in LES features his insistence on having a proper mathematical definition of the large scale field independent of the numerical method used, and his vision for using numerical simulation output as data for research in turbulence physics and modeling, just as one would think of using experimental data. However, as an engineer, Bill was pre-dominantly interested in the predictive capability of computational fluid dynamics and in particular LES. In this talk I will present the state of the art in large eddy simulation of complex engineering flows. Most of this technology has been developed in the Department of Energy's ASCI Program at Stanford which was led by Bill in the last years of his distinguished career. At the core of this technology is a fully implicit non-dissipative LES code which uses unstructured grids with arbitrary elements. A hybrid Eulerian/ Largangian approach is used for multi-phase flows, and chemical reactions are introduced through dynamic equations for mixture fraction and reaction progress variable in conjunction with flamelet tables. The predictive capability of LES is demonstrated in several validation studies in flows with complex physics and complex geometry including flow in the combustor of a modern aircraft engine. LES in such a complex application is only possible through efficient utilization of modern parallel super-computers which was recognized and emphasized by Bill from the beginning. The presentation will include a brief mention of computer science efforts for efficient implementation of LES.

  20. Five-equation and robust three-equation methods for solution verification of large eddy simulation

    NASA Astrophysics Data System (ADS)

    Dutta, Rabijit; Xing, Tao

    2018-02-01

    This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.

  1. Simulation of heat and mass transfer in turbulent channel flow using the spectral-element method: effect of spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhenkov, V.; Ivashchenko, V.; Vinuesa, R.; Mullyadzhanov, R.

    2016-10-01

    We use the open-source code nek5000 to assess the accuracy of high-order spectral element large-eddy simulations (LES) of a turbulent channel flow depending on the spatial resolution compared to the direct numerical simulation (DNS). The Reynolds number Re = 6800 is considered based on the bulk velocity and half-width of the channel. The filtered governing equations are closed with the dynamic Smagorinsky model for subgrid stresses and heat flux. The results show very good agreement between LES and DNS for time-averaged velocity and temperature profiles and their fluctuations. Even the coarse LES grid which contains around 30 times less points than the DNS one provided predictions of the friction velocity within 2.0% accuracy interval.

  2. LES-ODT Simulations of Turbulent Reacting Shear Layers

    NASA Astrophysics Data System (ADS)

    Hoffie, Andreas; Echekki, Tarek

    2012-11-01

    Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.

  3. Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Meneveau, Charles

    2017-11-01

    The details of small-scale turbulence are not directly accessible in large-eddy simulations (LES), posing a modeling challenge because many important micro-physical processes depend strongly on the dynamics of turbulence in the viscous range. Here, we introduce a method for coupling existing stochastic models for the Lagrangian evolution of the velocity gradient tensor with LES to simulate unresolved dynamics. The proposed approach is implemented in LES of turbulent channel flow and detailed comparisons with DNS are carried out. An application to modeling the fate of deformable, small (sub-Kolmogorov) droplets at negligible Stokes number and low volume fraction with one-way coupling is carried out. These results illustrate the ability of the proposed model to predict the influence of small scale turbulence on droplet micro-physics in the context of LES. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.

  4. Using Reconstructed POD Modes as Turbulent Inflow for LES Wind Turbine Simulations

    NASA Astrophysics Data System (ADS)

    Nielson, Jordan; Bhaganagar, Kiran; Juttijudata, Vejapong; Sirisup, Sirod

    2016-11-01

    Currently, in order to get realistic atmospheric effects of turbulence, wind turbine LES simulations require computationally expensive precursor simulations. At times, the precursor simulation is more computationally expensive than the wind turbine simulation. The precursor simulations are important because they capture turbulence in the atmosphere and as stated above, turbulence impacts the power production estimation. On the other hand, POD analysis has been shown to be capable of capturing turbulent structures. The current study was performed to determine the plausibility of using lower dimension models from POD analysis of LES simulations as turbulent inflow to wind turbine LES simulations. The study will aid the wind energy community by lowering the computational cost of full scale wind turbine LES simulations, while maintaining a high level of turbulent information and being able to quickly apply the turbulent inflow to multi turbine wind farms. This will be done by comparing a pure LES precursor wind turbine simulation with simulations that use reduced POD mod inflow conditions. The study shows the feasibility of using lower dimension models as turbulent inflow of LES wind turbine simulations. Overall the power production estimation and velocity field of the wind turbine wake are well captured with small errors.

  5. Large eddy simulation for predicting turbulent heat transfer in gas turbines.

    PubMed

    Tafti, Danesh K; He, Long; Nagendra, K

    2014-08-13

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. A large eddy simulation scheme for turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1993-01-01

    The recent development of the dynamic subgrid-scale (SGS) model has provided a consistent method for generating localized turbulent mixing models and has opened up great possibilities for applying the large eddy simulation (LES) technique to real world problems. Given the fact that the direct numerical simulation (DNS) can not solve for engineering flow problems in the foreseeable future (Reynolds 1989), the LES is certainly an attractive alternative. It seems only natural to bring this new development in SGS modeling to bear on the reacting flows. The major stumbling block for introducing LES to reacting flow problems has been the proper modeling of the reaction source terms. Various models have been proposed, but none of them has a wide range of applicability. For example, some of the models in combustion have been based on the flamelet assumption which is only valid for relatively fast reactions. Some other models have neglected the effects of chemical reactions on the turbulent mixing time scale, which is certainly not valid for fast and non-isothermal reactions. The probability density function (PDF) method can be usefully employed to deal with the modeling of the reaction source terms. In order to fit into the framework of LES, a new PDF, the large eddy PDF (LEPDF), is introduced. This PDF provides an accurate representation for the filtered chemical source terms and can be readily calculated in the simulations. The details of this scheme are described.

  7. A priori and a posteriori analysis of the flow around a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Cimarelli, A.; Leonforte, A.; Franciolini, M.; De Angelis, E.; Angeli, D.; Crivellini, A.

    2017-11-01

    The definition of a correct mesh resolution and modelling approach for the Large Eddy Simulation (LES) of the flow around a rectangular cylinder is recognized to be a rather elusive problem as shown by the large scatter of LES results present in the literature. In the present work, we aim at assessing this issue by performing an a priori analysis of Direct Numerical Simulation (DNS) data of the flow. This approach allows us to measure the ability of the LES field on reproducing the main flow features as a function of the resolution employed. Based on these results, we define a mesh resolution which maximize the opposite needs of reducing the computational costs and of adequately resolving the flow dynamics. The effectiveness of the resolution method proposed is then verified by means of an a posteriori analysis of actual LES data obtained by means of the implicit LES approach given by the numerical properties of the Discontinuous Galerkin spatial discretization technique. The present work represents a first step towards a best practice for LES of separating and reattaching flows.

  8. Electromagnetic modelling of conductive or superconductive microstrip lines using spice as electromagnetic solver

    NASA Astrophysics Data System (ADS)

    Dinh, Thanh Vu; Cabon, Béatrice; Daoud, Nahla; Chilo, Jean

    1992-11-01

    This paper presents a simple and efficient method for calculating the propagating line parameters (actually, a microstrip one) and its magnetic fields, by simulating an original equivalent circuit with an electrical nodal simulator (SPICE). The losses in the normal conducting line (due to DC losses and to skin effect losses) and also in the superconducting one can be investigated. This allows us to integrate the electromagnetic solutions to the CAD softwares. Dans ce papier, une méthode simple et efficace pour calculer les paramètres de propagation d'une ligne microruban et les champs magnétiques qu'elle engendre est présentée; pour cela, nous simulons un circuit original équivalent à l'aide du simulateur nodal SPICE. Les pertes dans une ligne conductrice (pertes continues et par effet de peau) ainsi que dans une ligne supraconductrice peuvent être considérées. Les solutions électromagnétiques peuvent être intégrées dans les simulateurs de CAO.

  9. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.

    1990-01-01

    This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.

  10. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    NASA Astrophysics Data System (ADS)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  11. Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows

    NASA Astrophysics Data System (ADS)

    Chen, Jincai; Jin, Guodong; Zhang, Jian

    2016-03-01

    The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.

  12. Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035

    PubMed Central

    Gourdain, N.; Sicot, F.; Duchaine, F.; Gicquel, L.

    2014-01-01

    A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today. PMID:25024422

  13. PNNL - WRF-LES - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  14. ANL - WRF-LES - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  15. LLNL - WRF-LES - Neutral - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  16. ANL - WRF-LES - Neutral - TTU

    DOE Data Explorer

    Kosovic, Branko

    2018-06-20

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  17. LANL - WRF-LES - Neutral - TTU

    DOE Data Explorer

    Kosovic, Branko

    2018-06-20

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  18. LANL - WRF-LES - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  19. Filter and Grid Resolution in DG-LES

    NASA Astrophysics Data System (ADS)

    Miao, Ling; Sammak, Shervin; Madnia, Cyrus K.; Givi, Peyman

    2017-11-01

    The discontinuous Galerkin (DG) methodology has proven very effective for large eddy simulation (LES) of turbulent flows. Two important parameters in DG-LES are the grid resolution (h) and the filter size (Δ). In most previous work, the filter size is usually set to be proportional to the grid spacing. In this work, the DG method is combined with a subgrid scale (SGS) closure which is equivalent to that of the filtered density function (FDF). The resulting hybrid scheme is particularly attractive because a larger portion of the resolved energy is captured as the order of spectral approximation increases. Different cases for LES of a three-dimensional temporally developing mixing layer are appraised and a systematic parametric study is conducted to investigate the effects of grid resolution, the filter width size, and the order of spectral discretization. Comparative assessments are also made via the use of high resolution direct numerical simulation (DNS) data.

  20. Numerical methods for large eddy simulation of acoustic combustion instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton T.

    Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion instabilities and are shown to accurately predict the occurrence and frequency of the dominant mode of the instability observed in the experiment.

  1. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.

  2. A locally p-adaptive approach for Large Eddy Simulation of compressible flows in a DG framework

    NASA Astrophysics Data System (ADS)

    Tugnoli, Matteo; Abbà, Antonella; Bonaventura, Luca; Restelli, Marco

    2017-11-01

    We investigate the possibility of reducing the computational burden of LES models by employing local polynomial degree adaptivity in the framework of a high-order DG method. A novel degree adaptation technique especially featured to be effective for LES applications is proposed and its effectiveness is compared to that of other criteria already employed in the literature. The resulting locally adaptive approach allows to achieve significant reductions in computational cost of representative LES computations.

  3. Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Sale, Danny; Aliseda, Alberto

    2014-11-01

    Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.

  4. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.

    1991-01-01

    This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.

  5. Time-Domain Filtering for Spatial Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.

  6. Large Eddy Simulation of High Reynolds Number Complex Flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman

    Marine configurations are subject to a variety of complex hydrodynamic phenomena affecting the overall performance of the vessel. The turbulent flow affects the hydrodynamic drag, propulsor performance and structural integrity, control-surface effectiveness, and acoustic signature of the marine vessel. Due to advances in massively parallel computers and numerical techniques, an unsteady numerical simulation methodology such as Large Eddy Simulation (LES) is well suited to study such complex turbulent flows whose Reynolds numbers (Re) are typically on the order of 10. 6. LES also promises increasedaccuracy over RANS based methods in predicting unsteady phenomena such as cavitation and noise production. This dissertation develops the capability to enable LES of high Re flows in complex geometries (e.g. a marine vessel) on unstructured grids and provide physical insight into the turbulent flow. LES is performed to investigate the geometry induced separated flow past a marine propeller attached to a hull, in an off-design condition called crashback. LES shows good quantitative agreement with experiments and provides a physical mechanism to explain the increase in side-force on the propeller blades below an advance ratio of J=-0.7. Fundamental developments in the dynamic subgrid-scale model for LES are pursued to improve the LES predictions, especially for complex flows on unstructured grids. A dynamic procedure is proposed to estimate a Lagrangian time scale based on a surrogate correlation without any adjustable parameter. The proposed model is applied to turbulent channel, cylinder and marine propeller flows and predicts improved results over other model variants due to a physically consistent Lagrangian time scale. A wall model is proposed for application to LES of high Reynolds number wall-bounded flows. The wall model is formulated as the minimization of a generalized constraint in the dynamic model for LES and applied to LES of turbulent channel flow at various Reynolds numbers up to Reτ=10000 and coarse grid resolutions to obtain significant improvement.

  7. Nested mesoscale-to-LES modeling of the atmospheric boundary layer in the presence of under-resolved convective structures

    DOE PAGES

    Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.; ...

    2017-07-06

    Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less

  8. Nested mesoscale-to-LES modeling of the atmospheric boundary layer in the presence of under-resolved convective structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.

    Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less

  9. On the use of kinetic energy preserving DG-schemes for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Flad, David; Gassner, Gregor

    2017-12-01

    Recently, element based high order methods such as Discontinuous Galerkin (DG) methods and the closely related flux reconstruction (FR) schemes have become popular for compressible large eddy simulation (LES). Element based high order methods with Riemann solver based interface numerical flux functions offer an interesting dispersion dissipation behavior for multi-scale problems: dispersion errors are very low for a broad range of scales, while dissipation errors are very low for well resolved scales and are very high for scales close to the Nyquist cutoff. In some sense, the inherent numerical dissipation caused by the interface Riemann solver acts as a filter of high frequency solution components. This observation motivates the trend that element based high order methods with Riemann solvers are used without an explicit LES model added. Only the high frequency type inherent dissipation caused by the Riemann solver at the element interfaces is used to account for the missing sub-grid scale dissipation. Due to under-resolution of vortical dominated structures typical for LES type setups, element based high order methods suffer from stability issues caused by aliasing errors of the non-linear flux terms. A very common strategy to fight these aliasing issues (and instabilities) is so-called polynomial de-aliasing, where interpolation is exchanged with projection based on an increased number of quadrature points. In this paper, we start with this common no-model or implicit LES (iLES) DG approach with polynomial de-aliasing and Riemann solver dissipation and review its capabilities and limitations. We find that the strategy gives excellent results, but only when the resolution is such, that about 40% of the dissipation is resolved. For more realistic, coarser resolutions used in classical LES e.g. of industrial applications, the iLES DG strategy becomes quite inaccurate. We show that there is no obvious fix to this strategy, as adding for instance a sub-grid-scale models on top doesn't change much or in worst case decreases the fidelity even more. Finally, the core of this work is a novel LES strategy based on split form DG methods that are kinetic energy preserving. The scheme offers excellent stability with full control over the amount and shape of the added artificial dissipation. This premise is the main idea of the work and we will assess the LES capabilities of the novel split form DG approach when applied to shock-free, moderate Mach number turbulence. We will demonstrate that the novel DG LES strategy offers similar accuracy as the iLES methodology for well resolved cases, but strongly increases fidelity in case of more realistic coarse resolutions.

  10. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  11. A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Randall; Weinschenk, Craig

    2013-11-01

    A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.

  12. Implicit and explicit subgrid-scale modeling in discontinuous Galerkin methods for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime

    2017-11-01

    Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.

  13. Multiscale Data Assimilation for Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Li, Z.; Cheng, X.; Gustafson, W. I., Jr.; Xiao, H.; Vogelmann, A. M.; Endo, S.; Toto, T.

    2017-12-01

    Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence, boundary layer physics and cloud development, and there is a great need for developing data assimilation methodologies that can constrain LES models. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES. The LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso) is generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. One of major objectives of LASSO is to develop the capability to observationally constrain LES using a hierarchy of ARM observations. We have implemented a multiscale data assimilation (MSDA) scheme, which allows data assimilation to be implemented separately for distinct spatial scales, so that the localized observations can be effectively assimilated to constrain the mesoscale fields in the LES area of about 15 km in width. The MSDA analysis is used to produce forcing data that drive LES. With such LES workflow we have examined 13 days with shallow convection selected from the period May-August 2016. We will describe the implementation of MSDA, present LES results, and address challenges and opportunities for applying data assimilation to LES studies.

  14. Large-eddy simulation of a boundary layer with concave streamwise curvature

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1994-01-01

    Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.

  15. Application of wall-models to discontinuous Galerkin LES

    NASA Astrophysics Data System (ADS)

    Frère, Ariane; Carton de Wiart, Corentin; Hillewaert, Koen; Chatelain, Philippe; Winckelmans, Grégoire

    2017-08-01

    Wall-resolved Large-Eddy Simulations (LES) are still limited to moderate Reynolds number flows due to the high computational cost required to capture the inner part of the boundary layer. Wall-modeled LES (WMLES) provide more affordable LES by modeling the near-wall layer. Wall function-based WMLES solve LES equations up to the wall, where the coarse mesh resolution essentially renders the calculation under-resolved. This makes the accuracy of WMLES very sensitive to the behavior of the numerical method. Therefore, best practice rules regarding the use and implementation of WMLES cannot be directly transferred from one methodology to another regardless of the type of discretization approach. Whilst numerous studies present guidelines on the use of WMLES, there is a lack of knowledge for discontinuous finite-element-like high-order methods. Incidentally, these methods are increasingly used on the account of their high accuracy on unstructured meshes and their strong computational efficiency. The present paper proposes best practice guidelines for the use of WMLES in these methods. The study is based on sensitivity analyses of turbulent channel flow simulations by means of a Discontinuous Galerkin approach. It appears that good results can be obtained without the use of a spatial or temporal averaging. The study confirms the importance of the wall function input data location and suggests to take it at the bottom of the second off-wall element. These data being available through the ghost element, the suggested method prevents the loss of computational scalability experienced in unstructured WMLES. The study also highlights the influence of the polynomial degree used in the wall-adjacent element. It should preferably be of even degree as using polynomials of degree two in the first off-wall element provides, surprisingly, better results than using polynomials of degree three.

  16. Identification of flame transfer functions in the presence of intrinsic thermoacoustic feedback and noise

    NASA Astrophysics Data System (ADS)

    Jaensch, Stefan; Merk, Malte; Emmert, Thomas; Polifke, Wolfgang

    2018-05-01

    The Large Eddy Simulation/System Identification (LES/SI) approach is a general and efficient numerical method for deducing a Flame Transfer Function (FTF) from the LES of turbulent reacting flow. The method may be summarised as follows: a simulated flame is forced with a broadband excitation signal. The resulting fluctuations of the reference velocity and of the global heat release rate are post-processed via SI techniques in order to estimate a low-order model of the flame dynamics. The FTF is readily deduced from the low-order model. The SI method most frequently applied in aero- and thermo-acoustics has been Wiener-Hopf Inversion (WHI). This method is known to yield biased estimates in situations with feedback, thus it was assumed that non-reflective boundary conditions are required to generate accurate results with the LES/SI approach. Recent research has shown that the FTF is part of the so-called Intrinsic ThermoAcoustic (ITA) feedback loop. Hence, identifying an FTF from a compressible LES is always a closed-loop problem, and consequently one should expect that the WHI would yield biased results. However, several studies proved that WHI results compare favourably with validation data. To resolve this apparent contradiction, a variety of identification methods are compared against each other, including models designed for closed-loop identification. In agreement with theory, we show that the estimate given by WHI does not converge to the actual FTF. Fortunately, the error made is small if excitation amplitudes can be set such that the signal-to-noise ratio is large, but not large enough to trigger nonlinear flame dynamics. Furthermore, we conclude that non-reflective boundary conditions are not essentially necessary to apply the LES/SI approach.

  17. How do rigid-lid assumption affect LES simulation results at high Reynolds flows?

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Farhadzadeh, Ali; SBU Collaboration

    2017-11-01

    This research is motivated by the work of Kara et al., JHE, 2015. They employed LES to model flow around a model of abutment at a Re number of 27,000. They showed that first-order turbulence characteristics obtained by rigid-lid (RL) assumption compares fairly well with those of level-set (LS) method. Concerning the second-order statistics, however, their simulation results showed a significant dependence on the method used to describe the free surface. This finding can have important implications for open channel flow modeling. The Reynolds number for typical open channel flows, however, could be much larger than that of Kara et al.'s test case. Herein, we replicate the reported study by augmenting the geometric and hydraulic scales to reach a Re number of one order of magnitude larger ( 200,000). The Virtual Flow Simulator (VFS-Geophysics) model in its LES mode is used to simulate the test case using both RL and LS methods. The computational results are validated using measured flow and free-surface data from our laboratory experiments. Our goal is to investigate the effects of RL assumption on both first-order and second order statistics at high Reynolds numbers that occur in natural waterways. Acknowledgment: Computational resources are provided by the Center of Excellence in Wireless & Information Technology (CEWIT) of Stony Brook University.

  18. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows.

  19. LES of a ducted propeller with rotor and stator in crashback

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Mahesh, Krishnan

    2012-11-01

    A sliding interface method is developed for large eddy simulation (LES) of flow past ducted propellers with both rotor and stator. The method is developed for arbitrarily shaped unstructured elements on massively parallel computing platforms. Novel algorithms for searching sliding elements, interpolation at the sliding interface, and data structures for message passing are developed. We perform LES of flow past a ducted propeller with stator blades in the crashback mode of operation, where a marine vessel is quickly decelerated by rotating the propeller in reverse. The unsteady loads predicted by LES are in good agreement with experiments. A highly unsteady vortex ring is observed outside the duct. High pressure fluctuations are observed near the blade tips, which significantly contribute to the side-force. This work is supported by the United States Office of Naval Research.

  20. LES-based filter-matrix lattice Boltzmann model for simulating fully developed turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhuo, Congshan; Zhong, Chengwen

    2016-11-01

    In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB-LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB-LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB-D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.

  1. A Validation Study of the Compressible Rayleigh–Taylor Instability Comparing the Ares and Miranda Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.

    In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less

  2. A Validation Study of the Compressible Rayleigh–Taylor Instability Comparing the Ares and Miranda Codes

    DOE PAGES

    Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.

    2017-04-20

    In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less

  3. Temporal Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Thomas, B. C.

    2004-01-01

    In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.

  4. Numerical analysis of a high-order unstructured overset grid method for compressible LES of turbomachinery

    NASA Astrophysics Data System (ADS)

    de Laborderie, J.; Duchaine, F.; Gicquel, L.; Vermorel, O.; Wang, G.; Moreau, S.

    2018-06-01

    Large-Eddy Simulation (LES) is recognized as a promising method for high-fidelity flow predictions in turbomachinery applications. The presented approach consists of the coupling of several instances of the same LES unstructured solver through an overset grid method. A high-order interpolation, implemented within this coupling method, is introduced and evaluated on several test cases. It is shown to be third order accurate, to preserve the accuracy of various second and third order convective schemes and to ensure the continuity of diffusive fluxes and subgrid scale tensors even in detrimental interface configurations. In this analysis, three types of spurious waves generated at the interface are identified. They are significantly reduced by the high-order interpolation at the interface. The latter having the same cost as the original lower order method, the high-order overset grid method appears as a promising alternative to be used in all the applications.

  5. Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets

    NASA Astrophysics Data System (ADS)

    Rah, K. Jeff; Blanquart, Guillaume

    2016-11-01

    Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.

  6. Turbulence and sediment transport over sand dunes and ripples

    NASA Astrophysics Data System (ADS)

    Bennis, A.; Le Bot, S.; lafite, R.; Bonneton, P.; Ardhuin, F.

    2013-12-01

    Several bedforms are present near to the surfzone of natural beaches. Dunes and ripples are frequently observed. Understanding the turbulence over these forms is essential for the sediment transport. The turbulent flow and the suspended sand particles interact with each other. At the moment, the modelling strategy for turbulence is still a challenge. According to the spatial scales, some different methods to model the turbulence are employed, in particular the RANS (Reynolds Averaged Navier-Stokes) and the LES (Large Eddy Simulation). A hybrid method combining both RANS and LES is set up here. We have adapted this method, initially developed for atmospheric flow, to the oceanic flow. This new method is implemented inside the 3D hydrodynamic model, MARS 3D, which is forced by waves. LES is currently the best way to simulate turbulent flow but its higher cost prevents it from being used for large scale applications. So, here we use RANS near the bottom while LES is set elsewhere. It allows us minimize the computational cost and ensure a better accuracy of the results than with a fully RANS model. In the case of megaripples, the validation step was performed with two sets of field data (Sandy Duck'97 and Forsoms'13) but also with the data from Dune2D model which uses only RANS for turbulence. The main findings are: a) the vertical profiles of the velocity are similar throughout the data b) the turbulent kinetic energy, which was underestimated by Dune2D, is in line with the observations c) the concentration of the suspended sediment is simulated with a better accuracy than with Dune2D but this remains lower than the observations.

  7. Large-eddy simulation of turbulent cavitating flow in a micro channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Hickel, Stefan; Schmidt, Steffen J.

    2014-08-15

    Large-eddy simulations (LES) of cavitating flow of a Diesel-fuel-like fluid in a generic throttle geometry are presented. Two-phase regions are modeled by a parameter-free thermodynamic equilibrium mixture model, and compressibility of the liquid and the liquid-vapor mixture is taken into account. The Adaptive Local Deconvolution Method (ALDM), adapted for cavitating flows, is employed for discretizing the convective terms of the Navier-Stokes equations for the homogeneous mixture. ALDM is a finite-volume-based implicit LES approach that merges physically motivated turbulence modeling and numerical discretization. Validation of the numerical method is performed for a cavitating turbulent mixing layer. Comparisons with experimental data ofmore » the throttle flow at two different operating conditions are presented. The LES with the employed cavitation modeling predicts relevant flow and cavitation features accurately within the uncertainty range of the experiment. The turbulence structure of the flow is further analyzed with an emphasis on the interaction between cavitation and coherent motion, and on the statistically averaged-flow evolution.« less

  8. Studies of the flow and turbulence fields in a turbulent pulsed jet flame using LES/PDF

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Masri, Assaad R.; Wang, Haifeng

    2017-09-01

    A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.

  9. Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les

    NASA Astrophysics Data System (ADS)

    Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.

    2005-02-01

    Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.

  10. LES-based generation of high-frequency fluctuation in wind turbulence obtained by meteorological model

    NASA Astrophysics Data System (ADS)

    Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao

    2017-11-01

    The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.

  11. Large Eddy/Reynolds-Averaged Navier-Stokes Simulations of CUBRC Base Heating Experiments

    NASA Technical Reports Server (NTRS)

    Salazar, Giovanni; Edwards, Jack R.; Amar, Adam J.

    2012-01-01

    ven with great advances in computational techniques and computing power during recent decades, the modeling of unsteady separated flows, such as those encountered in the wake of a re-entry vehicle, continues to be one of the most challenging problems in CFD. Of most interest to the aerothermodynamics community is accurately predicting transient heating loads on the base of a blunt body, which would result in reduced uncertainties and safety margins when designing a re-entry vehicle. However, the prediction of heat transfer can vary widely depending on the turbulence model employed. Therefore, selecting a turbulence model which realistically captures as much of the flow physics as possible will result in improved results. Reynolds Averaged Navier Stokes (RANS) models have become increasingly popular due to their good performance with attached flows, and the relatively quick turnaround time to obtain results. However, RANS methods cannot accurately simulate unsteady separated wake flows, and running direct numerical simulation (DNS) on such complex flows is currently too computationally expensive. Large Eddy Simulation (LES) techniques allow for the computation of the large eddies, which contain most of the Reynolds stress, while modeling the smaller (subgrid) eddies. This results in models which are more computationally expensive than RANS methods, but not as prohibitive as DNS. By complimenting an LES approach with a RANS model, a hybrid LES/RANS method resolves the larger turbulent scales away from surfaces with LES, and switches to a RANS model inside boundary layers. As pointed out by Bertin et al., this type of hybrid approach has shown a lot of promise for predicting turbulent flows, but work is needed to verify that these models work well in hypersonic flows. The very limited amounts of flight and experimental data available presents an additional challenge for researchers. Recently, a joint study by NASA and CUBRC has focused on collecting heat transfer data on the backshell of a scaled model of the Orion Multi-Purpose Crew Vehicle (MPCV). Heat augmentation effects due to the presence of cavities and RCS jet firings were also investigated. The high quality data produced by this effort presents a new set of data which can be used to assess the performance of CFD methods. In this work, a hybrid LES/RANS model developed at North Carolina State University (NCSU) is used to simulate several runs from these experiments, and evaluate the performance of high fidelity methods as compared to more typical RANS models. .

  12. Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  13. LANL - Convective - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  14. LANL - Neutral - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  15. The effect of dense gas dynamics on loss in ORC transonic turbines

    NASA Astrophysics Data System (ADS)

    Durá Galiana, FJ; Wheeler, APS; Ong, J.; Ventura, CA de M.

    2017-03-01

    This paper describes a number of recent investigations into the effect of dense gas dynamics on ORC transonic turbine performance. We describe a combination of experimental, analytical and computational studies which are used to determine how, in-particular, trailing-edge loss changes with choice of working fluid. A Ludwieg tube transient wind-tunnel is used to simulate a supersonic base flow which mimics an ORC turbine vane trailing-edge flow. Experimental measurements of wake profiles and trailing-edge base pressure with different working fluids are used to validate high-order CFD simulations. In order to capture the correct mixing in the base region, Large-Eddy Simulations (LES) are performed and verified against the experimental data by comparing the LES with different spatial and temporal resolutions. RANS and Detached-Eddy Simulation (DES) are also compared with experimental data. The effect of different modelling methods and working fluid on mixed-out loss is then determined. Current results point at LES predicting the closest agreement with experimental results, and dense gas effects are consistently predicted to increase loss.

  16. LES of Temporally Evolving Mixing Layers by Three High Order Schemes

    NASA Astrophysics Data System (ADS)

    Yee, H.; Sjögreen, B.; Hadjadj, A.

    2011-10-01

    The performance of three high order shock-capturing schemes is compared for large eddy simulations (LES) of temporally evolving mixing layers for different convective Mach number (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7), and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (Yee & Sjögreen 2009) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) by Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.

  17. Detailed characteristics of drop-laden mixing layers: LES predictions compared to DNS

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Results have been compared from Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of a temporal mixing layer laden with evaporating drops, to assess the ability of LES to reproduce detailed characteristics of DNS.

  18. Hybrid LES/RANS Simulation of Transverse Sonic Injection into a Mach 2 Flow

    NASA Technical Reports Server (NTRS)

    Boles, John A.; Edwards, Jack R.; Baurle, Robert A.

    2008-01-01

    A computational study of transverse sonic injection of air and helium into a Mach 1.98 cross-flow is presented. A hybrid large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) turbulence model is used, with the two-equation Menter baseline (Menter-BSL) closure for the RANS part of the flow and a Smagorinsky-type model for the LES part of the flow. A time-dependent blending function, dependent on modeled turbulence variables, is used to shift the closure from RANS to LES. Turbulent structures are initiated and sustained through the use of a recycling / rescaling technique. Two higher-order discretizations, the Piecewise Parabolic Method (PPM) of Colella and Woodward, and the SONIC-A ENO scheme of Suresh and Huyhn are used in the study. The results using the hybrid model show reasonably good agreement with time-averaged Mie scattering data and with experimental surface pressure distributions, even though the penetration of the jet into the cross-flow is slightly over-predicted. The LES/RANS results are used to examine the validity of commonly-used assumptions of constant Schmidt and Prandtl numbers in the intense mixing zone downstream of the injection location.

  19. Effect of Turbulence Modeling on an Excited Jet

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Hixon, Ray

    2010-01-01

    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.

  20. NREL - SOWFA - Neutral - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  1. Simulation of supersonic turbulent flow in the vicinity of an inclined backward-facing step

    NASA Astrophysics Data System (ADS)

    El-Askary, W. A.

    2011-08-01

    Large eddy simulation (LES) is a viable and powerful tool to analyse unsteady three-dimensional turbulent flows. In this article, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion-compression ramp (inclined backward-facing step with leeward-face angle of 25°) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density data from an auxiliary simulation (inflow generator). To generate an appropriate realistic inflow condition to the inflow generator itself the rescaling technique for compressible flows is used. In this method, Morkovin's hypothesis, in which the total temperature fluctuations are neglected compared with the static temperature fluctuations, is applied to rescale and generate the temperature profile at inlet. This technique was successfully developed and applied by the present author for an LES of subsonic three-dimensional boundary layer of a smooth curved ramp. The present LES results are compared with the available experimental data as well as numerical data. The positive impact of the rescaling formulation of the temperature is proven by the convincing agreement of the obtained results with the experimental data compared with published numerical work and sheds light on the quality of the developed compressible inflow generator.

  2. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    PubMed

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.

  3. Stochasticity of convection in Giga-LES data

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem; Majda, Andrew J.

    2016-09-01

    The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187-216, 2010) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation.

  4. Developpement d'une methode de Monte Carlo dependante du temps et application au reacteur de type CANDU-6

    NASA Astrophysics Data System (ADS)

    Mahjoub, Mehdi

    La resolution de l'equation de Boltzmann demeure une etape importante dans la prediction du comportement d'un reacteur nucleaire. Malheureusement, la resolution de cette equation presente toujours un defi pour une geometrie complexe (reacteur) tout comme pour une geometrie simple (cellule). Ainsi, pour predire le comportement d'un reacteur nucleaire,un schema de calcul a deux etapes est necessaire. La premiere etape consiste a obtenir les parametres nucleaires d'une cellule du reacteur apres une etape d'homogeneisation et condensation. La deuxieme etape consiste en un calcul de diffusion pour tout le reacteur en utilisant les resultats de la premiere etape tout en simplifiant la geometrie du reacteur a un ensemble de cellules homogenes le tout entoure de reflecteur. Lors des transitoires (accident), ces deux etapes sont insuffisantes pour pouvoir predire le comportement du reacteur. Comme la resolution de l'equation de Boltzmann dans sa forme dependante du temps presente toujours un defi de taille pour tous types de geometries,un autre schema de calcul est necessaire. Afin de contourner cette difficulte, l'hypothese adiabatique est utilisee. Elle se concretise en un schema de calcul a quatre etapes. La premiere et deuxieme etapes demeurent les memes pour des conditions nominales du reacteur. La troisieme etape se resume a obtenir les nouvelles proprietes nucleaires de la cellule a la suite de la perturbation pour les utiliser, au niveau de la quatrieme etape, dans un nouveau calcul de reacteur et obtenir l'effet de la perturbation sur le reacteur. Ce projet vise a verifier cette hypothese. Ainsi, un nouveau schema de calcul a ete defini. La premiere etape de ce projet a ete de creer un nouveau logiciel capable de resoudre l'equation de Boltzmann dependante du temps par la methode stochastique Monte Carlo dans le but d'obtenir des sections efficaces qui evoluent dans le temps. Ce code a ete utilise pour simuler un accident LOCA dans un reacteur nucleaire de type CANDU-6. Les sections efficaces dependantes du temps ont ete par la suite utilisees dans un calcul de diffusion espace-temps pour un reacteur CANDU-6 subissant un accident de type LOCA affectant la moitie du coeur afin d'observer son comportement durant toutes les phases de la perturbation. Dans la phase de developpement, nous avons choisi de demarrer avec le code OpenMC, developpe au MIT,comme plateforme initiale de developpement. L'introduction et le traitement des neutrons retardes durant la simulation ont presente un grand defi a surmonter. Il est important de noter que le code developpe utilisant la methode Monte Carlo peut etre utilise a grande echelle pour la simulation de tous les types des reacteurs nucleaires si les supports informatiques sont disponibles.

  5. The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model

    NASA Astrophysics Data System (ADS)

    Wu, Jinshui; Wang, Zhenguo; Bai, Xuesong; Sun, Mingbo; Wang, Hongbo

    2016-10-01

    In order to describe partially premixed supersonic combustion numerically, G/Z flamelet model is developed and compared with finite rate model in hybrid RANS/LES simulation to study the strut-injection supersonic combustion flow field designed by the German Aerospace Center. A new temperature calculation method based on time-splitting method of total energy is introduced in G/Z flamelet model. Simulation results show that temperature predictions in partially premixed zone by G/Z flamelet model are more consistent with experiment than finite rate model. It is worth mentioning that low temperature reaction zone behind the strut is well reproduced. Other quantities such as average velocity and average velocity fluctuation obtained by developed G/Z flamelet model are also in good agreement with experiment. Besides, simulation results by G/Z flamelet also reveal the mechanism of partially premixed supersonic combustion by the analyses of the interaction between turbulent burning velocity and flow field.

  6. Numerical modeling of the transitional boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Ivanov, Dimitry; Chorny, Andrei

    2015-11-01

    Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.

  7. Implicit Large Eddy Simulation of a wingtip vortex at Rec =1.2x106

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Moxey, Dave; Sherwin, Spencer; SherwinLab Team

    2015-11-01

    We present recent developments in numerical methods for performing a Large Eddy Simulation (LES) of the formation and evolution of a wingtip vortex. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, make these types of test cases particularly challenging to investigate numerically. To demonstrate the method's viability, we present results from numerical simulations of flow over a NACA 0012 profile wingtip at Rec = 1.2 x106 and compare them against experimental data, which is to date the highest Reynolds number achieved for a LES that has been correlated with experiments for this test case. Our model correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex dominated flows over complex geometries. McLaren Racing/Royal Academy of Engineering Research Chair.

  8. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  9. Comparison of Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Raj K.; Berg, Larry K.; Kosović, Branko

    High resolution numerical simulation can provide insight into important physical processes that occur within the planetary boundary layer (PBL). The present work employs large eddy simulation (LES) using the Weather Forecasting and Research (WRF) model, with the LES domain nested within mesoscale simulation, to simulate real conditions in the convective PBL over an area of complex terrain. A multiple nesting approach has been used to downsize the grid spacing from 12.15 km (mesoscale) to 0.03 km (LES). A careful selection of grid spacing in the WRF Meso domain has been conducted to minimize artifacts in the WRF-LES solutions. The WRF-LESmore » results have been evaluated with in situ and remote sensing observations collected during the US Department of Energy-supported Columbia BasinWind Energy Study (CBWES). Comparison of the first- and second-order moments, turbulence spectrum, and probability density function (PDF) of wind speed shows good agreement between the simulations and data. Furthermore, the WRF-LES variables show a great deal of variability in space and time caused by the complex topography in the LES domain. The WRF-LES results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day. In addition to basic studies related to boundary-layer meteorology, results from these simulations can be used in other applications, such as studying wind energy resources, atmospheric dispersion, fire weather etc.« less

  10. The influence of geometry on jet plume development

    NASA Astrophysics Data System (ADS)

    Xia, H.; Tucker, P. G.; Eastwood, S.; Mahak, M.

    2012-07-01

    Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations.

  11. Detached eddy simulation for turbulent fluid-structure interaction of moving bodies using the constraint-based immersed boundary method

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Bhalla, Amneet P. S.; Griffith, Boyce E.; Patankar, Neelesh A.

    2016-11-01

    Flows over bodies of industrial importance often contain both an attached boundary layer region near the structure and a region of massively separated flow near its trailing edge. When simulating these flows with turbulence modeling, the Reynolds-averaged Navier-Stokes (RANS) approach is more efficient in the former, whereas large-eddy simulation (LES) is more accurate in the latter. Detached-eddy simulation (DES), based on the Spalart-Allmaras model, is a hybrid method that switches from RANS mode of solution in attached boundary layers to LES in detached flow regions. Simulations of turbulent flows over moving structures on a body-fitted mesh incur an enormous remeshing cost every time step. The constraint-based immersed boundary (cIB) method eliminates this operation by placing the structure on a Cartesian mesh and enforcing a rigidity constraint as an additional forcing in the Navier-Stokes momentum equation. We outline the formulation and development of a parallel DES-cIB method using adaptive mesh refinement. We show preliminary validation results for flows past stationary bodies with both attached and separated boundary layers along with results for turbulent flows past moving bodies. This work is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.

  12. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.

    1994-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.

  13. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions

    DOE PAGES

    Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; ...

    2015-10-14

    An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. Themore » LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.« less

  14. Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.

    1995-01-01

    This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sibendu; Wang, Zihan; Pei, Yuanjiang

    A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [ , , ], is applied to Large Eddy Simulations (LES) of vaporizing gasoline sprays. Simulations of non-combusting Spray G (gasoline fuel) from the Engine Combustion Network are performed. Adaptive mesh refinement (AMR) with cell sizes from 0.09 mm to 0.5 mm are utilized to further demonstrate grid convergence of the dynamic structure LES model for the gasoline sprays. Grid settings are recommended to optimize the accuracy/runtime tradeoff for LES-based spray simulations at different injection pressure conditions typically encountered in gasoline direct injection (GDI) applications. The influence of LESmore » sub-grid scale (SGS) models is explored by comparing the results from dynamic structure and Smagorinsky based models against simulations without any SGS model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable. Through a detailed analysis using the relevance index (RI) criteria, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of the gasoline sprays.« less

  16. Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study

    PubMed Central

    Chen, Jie; Gutmark, Ephraim

    2013-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  17. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  18. A multivariate quadrature based moment method for LES based modeling of supersonic combustion

    NASA Astrophysics Data System (ADS)

    Donde, Pratik; Koo, Heeseok; Raman, Venkat

    2012-07-01

    The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.

  19. Comparative Study of Three High Order Schemes for LES of Temporally Evolving Mixing Layers

    NASA Technical Reports Server (NTRS)

    Yee, Helen M. C.; Sjogreen, Biorn Axel; Hadjadj, C.

    2012-01-01

    Three high order shock-capturing schemes are compared for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7) and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.

  20. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Samtaney, R.

    2014-01-01

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  1. Assessing methane emission estimation methods based on atmospheric measurements from oil and gas production using LES simulations

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Steinhoff, D.; Kosovic, B.; Weil, J.; Smith, N.; Blewitt, D.; Delle Monache, L.

    2017-12-01

    There are a wide variety of methods that have been proposed and used to estimate methane emissions from oil and gas production by using air composition and meteorology observations in conjunction with dispersion models. Although there has been some verification of these methodologies using controlled releases and concurrent atmospheric measurements, it is difficult to assess the accuracy of these methods for more realistic scenarios considering factors such as terrain, emissions from multiple components within a well pad, and time-varying emissions representative of typical operations. In this work we use a large-eddy simulation (LES) to generate controlled but realistic synthetic observations, which can be used to test multiple source term estimation methods, also known as an Observing System Simulation Experiment (OSSE). The LES is based on idealized simulations of the Weather Research & Forecasting (WRF) model at 10 m horizontal grid-spacing covering an 8 km by 7 km domain with terrain representative of a region located in the Barnett shale. Well pads are setup in the domain following a realistic distribution and emissions are prescribed every second for the components of each well pad (e.g., chemical injection pump, pneumatics, compressor, tanks, and dehydrator) using a simulator driven by oil and gas production volume, composition and realistic operational conditions. The system is setup to allow assessments under different scenarios such as normal operations, during liquids unloading events, or during other prescribed operational upset events. Methane and meteorology model output are sampled following the specifications of the emission estimation methodologies and considering typical instrument uncertainties, resulting in realistic observations (see Figure 1). We will show the evaluation of several emission estimation methods including the EPA Other Test Method 33A and estimates using the EPA AERMOD regulatory model. We will also show source estimation results from advanced methods such as variational inverse modeling, and Bayesian inference and stochastic sampling techniques. Future directions including other types of observations, other hydrocarbons being considered, and assessment of additional emission estimation methods will be discussed.

  2. Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.

  3. Francis-99 turbine numerical flow simulation of steady state operation using RANS and RANS/LES turbulence model

    NASA Astrophysics Data System (ADS)

    Minakov, A.; Platonov, D.; Sentyabov, A.; Gavrilov, A.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at three regimes, using two eddy-viscosity- (EVM) and a Reynolds stress (RSM) RANS models (realizable k-ɛ, k-ω SST, LRR) and detached-eddy-simulations (DES), as well as large-eddy simulations (LES). Comparison of calculation results with the experimental data was carried out. Unlike the linear EVMs, the RSM, DES, and LES reproduced well the mean velocity components, and pressure pulsations in the diffusor draft tube. Despite relatively coarse meshes and insufficient resolution of the near-wall region, LES, DES also reproduced well the intrinsic flow unsteadiness and the dominant flow structures and the associated pressure pulsations in the draft tube.

  4. Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Rizzetta, Donald P.; Fureby, Christer

    2009-01-01

    This paper presents the results of an activity by the Large Eddy Simulation (LES) Working Group of the AIAA Fluid Dynamics Technical Committee to (1) address the current capabilities of LES, (2) outline recommended practices and key considerations for using LES, and (3) identify future research needs to advance the capabilities and reliability of LES for analysis of turbulent flows. To address the current capabilities and future needs, a survey comprised of eleven questions was posed to LES Working Group members to assemble a broad range of perspectives on important topics related to LES. The responses to these survey questions are summarized with the intent not to be a comprehensive dictate on LES, but rather the perspective of one group on some important issues. A list of recommended practices is also provided, which does not treat all aspects of a LES, but provides guidance on some of the key areas that should be considered.

  5. Assessment of zero-equation SGS models for simulating indoor environment

    NASA Astrophysics Data System (ADS)

    Taghinia, Javad; Rahman, Md Mizanur; Tse, Tim K. T.

    2016-12-01

    The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier-Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman-Agarwal-Siikonen-Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.

  6. A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Komen, E. M. J.; Camilo, L. H.; Shams, A.; Geurts, B. J.; Koren, B.

    2017-09-01

    LES for industrial applications with complex geometries is mostly characterised by: a) a finite volume CFD method using a non-staggered arrangement of the flow variables and second order accurate spatial and temporal discretisation schemes, b) an implicit top-hat filter, where the filter length is equal to the local computational cell size, and c) eddy-viscosity type LES models. LES based on these three main characteristics is indicated as industrial LES in this paper. It becomes increasingly clear that the numerical dissipation in CFD codes typically used in industrial applications with complex geometries may inhibit the predictive capabilities of explicit LES. Therefore, there is a need to quantify the numerical dissipation rate in such CFD codes. In this paper, we quantify the numerical dissipation rate in physical space based on an analysis of the transport equation for the mean turbulent kinetic energy. Using this method, we quantify the numerical dissipation rate in a quasi-Direct Numerical Simulation (DNS) and in under-resolved DNS of, as a basic demonstration case, fully-developed turbulent channel flow. With quasi-DNS, we indicate a DNS performed using a second order accurate finite volume method typically used in industrial applications. Furthermore, we determine and explain the trends in the performance of industrial LES for fully-developed turbulent channel flow for four different Reynolds numbers for three different LES mesh resolutions. The presented explanation of the mechanisms behind the observed trends is based on an analysis of the turbulent kinetic energy budgets. The presented quantitative analyses demonstrate that the numerical errors in the industrial LES computations of the considered turbulent channel flows result in a net numerical dissipation rate which is larger than the subgrid-scale dissipation rate. No new computational methods are presented in this paper. Instead, the main new elements in this paper are our detailed quantification method for the numerical dissipation rate, the application of this method to a quasi-DNS and under-resolved DNS of fully-developed turbulent channel flow, and the explanation of the effects of the numerical dissipation on the observed trends in the performance of industrial LES for fully-developed turbulent channel flows.

  7. Large-Eddy Simulations of Dust Devils and Convective Vortices

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei

    2016-11-01

    In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

  8. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  9. Large eddy simulation of shock train in a convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Mahmood; Roohi, Ehsan

    2014-12-01

    This paper discusses the suitability of the Large Eddy Simulation (LES) turbulence modeling for the accurate simulation of the shock train phenomena in a convergent-divergent nozzle. To this aim, we selected an experimentally tested geometry and performed LES simulation for the same geometry. The structure and pressure recovery inside the shock train in the nozzle captured by LES model are compared with the experimental data, analytical expressions and numerical solutions obtained using various alternative turbulence models, including k-ɛ RNG, k-ω SST, and Reynolds stress model (RSM). Comparing with the experimental data, we observed that the LES solution not only predicts the "locations of the first shock" precisely, but also its results are quite accurate before and after the shock train. After validating the LES solution, we investigate the effects of the inlet total pressure on the shock train starting point and length. The effects of changes in the back pressure, nozzle inlet angle (NIA) and wall temperature on the behavior of the shock train are investigated by details.

  10. Sampling Versus Filtering in Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Debliquy, O.; Knaepen, B.; Carati, D.; Wray, A. A.

    2004-01-01

    A LES formalism in which the filter operator is replaced by a sampling operator is proposed. The unknown quantities that appear in the LES equations originate only from inadequate resolution (Discretization errors). The resulting viewpoint seems to make a link between finite difference approaches and finite element methods. Sampling operators are shown to commute with nonlinearities and to be purely projective. Moreover, their use allows an unambiguous definition of the LES numerical grid. The price to pay is that sampling never commutes with spatial derivatives and the commutation errors must be modeled. It is shown that models for the discretization errors may be treated using the dynamic procedure. Preliminary results, using the Smagorinsky model, are very encouraging.

  11. Synchronized LES for acoustic near-field analysis of a supersonic jet

    NASA Astrophysics Data System (ADS)

    S, Unnikrishnan; Gaitonde, Datta; The Ohio State University Team

    2014-11-01

    We develop a novel method using simultaneous, synchronized Large Eddy Simulations (LES) to examine the manner in which the plume of a supersonic jet generates the near acoustic field. Starting from a statistically stationary state, at each time-step, the first LES (Baseline) is used to obtain native perturbations, which are then localized in space, scaled to small values and injected into the second LES (Twin). At any subsequent time, the difference between the two simulations can be processed to discern how disturbances from any particular zone in the jet are modulated and filtered by the non-linear core to form the combined hydrodynamic and acoustic near field and the fully acoustic farfield. Unlike inverse techniques that use correlations between jet turbulence and far-field signals to infer causality, the current forward analysis effectively tags and tracks native perturbations as they are processed by the jet. Results are presented for a Mach 1.3 cold jet. Statistical analysis of the baseline and perturbation boost provides insight into different mechanisms of disturbance propagation, amplification, directivity, generation of intermittent wave-packet like events and the direct and indirect effect of different parts of the jet on the acoustic field. Office of Naval Research.

  12. Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, Cyrus K.; Steinberger, C. J.; Frankel, S. H.

    1992-01-01

    The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented.

  13. Development of a High Level Architecture Federation of Ship Replenishment at Sea

    DTIC Science & Technology

    2011-10-01

    utiliser une infrastructure de simulation appelée architecture de haut niveau (HLA) afin de fournir des environne - ments de simulation interarmées...fournir un environnement de simulation qui modélise l’interactions entre les divers composants afin de simuler les conditions qui mènent aux

  14. A Sub-filter Scale Noise Equation far Hybrid LES Simulations

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2006-01-01

    Hybrid LES/subscale modeling approaches have an important advantage over the current noise prediction methods in that they only involve modeling of the relatively universal subscale motion and not the configuration dependent larger scale turbulence . Previous hybrid approaches use approximate statistical techniques or extrapolation methods to obtain the requisite information about the sub-filter scale motion. An alternative approach would be to adopt the modeling techniques used in the current noise prediction methods and determine the unknown stresses from experimental data. The present paper derives an equation for predicting the sub scale sound from information that can be obtained with currently available experimental procedures. The resulting prediction method would then be intermediate between the current noise prediction codes and previously proposed hybrid techniques.

  15. Large Eddy Simulations of Colorless Distributed Combustion Systems

    NASA Astrophysics Data System (ADS)

    Abdulrahman, Husam F.; Jaberi, Farhad; Gupta, Ashwani

    2014-11-01

    Development of efficient and low-emission colorless distributed combustion (CDC) systems for gas turbine applications require careful examination of the role of various flow and combustion parameters. Numerical simulations of CDC in a laboratory-scale combustor have been conducted to carefully examine the effects of these parameters on the CDC. The computational model is based on a hybrid modeling approach combining large eddy simulation (LES) with the filtered mass density function (FMDF) equations, solved with high order numerical methods and complex chemical kinetics. The simulated combustor operates based on the principle of high temperature air combustion (HiTAC) and has shown to significantly reduce the NOx, and CO emissions while improving the reaction pattern factor and stability without using any flame stabilizer and with low pressure drop and noise. The focus of the current work is to investigate the mixing of air and hydrocarbon fuels and the non-premixed and premixed reactions within the combustor by the LES/FMDF with the reduced chemical kinetic mechanisms for the same flow conditions and configurations investigated experimentally. The main goal is to develop better CDC with higher mixing and efficiency, ultra-low emission levels and optimum residence time. The computational results establish the consistency and the reliability of LES/FMDF and its Lagrangian-Eulerian numerical methodology.

  16. Etude aerodynamique d'un jet turbulent impactant une paroi concave

    NASA Astrophysics Data System (ADS)

    LeBlanc, Benoit

    Etant donne la demande croissante de temperatures elevees dans des chambres de combustion de systemes de propulsions en aerospatiale (turbomoteurs, moteur a reaction, etc.), l'interet dans le refroidissement par jets impactant s'est vu croitre. Le refroidissement des aubes de turbine permet une augmentation de temperature de combustion, ce qui se traduit en une augmentation de l'efficacite de combustion et donc une meilleure economie de carburant. Le transfert de chaleur dans les au bages est influence par les aspects aerodynamiques du refroidissement a jet, particulierement dans le cas d'ecoulements turbulents. Un manque de comprehension de l'aerodynamique a l'interieur de ces espaces confinees peut mener a des changements de transfert thermique qui sont inattendus, ce qui augmente le risque de fluage. Il est donc d'interet pour l'industrie aerospatiale et l'academie de poursuivre la recherche dans l'aerodynamique des jets turbulents impactant les parois courbes. Les jets impactant les surfaces courbes ont deja fait l'objet de nombreuses etudes. Par contre des conditions oscillatoires observees en laboratoire se sont averees difficiles a reproduire en numerique, puisque les structures d'ecoulements impactants des parois concaves sont fortement dependantes de la turbulence et des effets instationnaires. Une etude experimentale fut realisee a l'institut PPRIME a l'Universite de Poitiers afin d'observer le phenomene d'oscillation dans le jet. Une serie d'essais ont verifie les conditions d'ecoulement laminaires et turbulentes, toutefois le cout des essais experimentaux a seulement permis d'avoir un apercu du phenomene global. Une deuxieme serie d'essais fut realisee numeriquement a l'Universite de Moncton avec l'outil OpenFOAM pour des conditions d'ecoulement laminaire et bidimensionnel. Cette etude a donc comme but de poursuivre l'enquete de l'aerodynamique oscillatoire des jets impactant des parois courbes, mais pour un regime d'ecoulement transitoire, turbulent, tridimensionnel. Les nombres de Reynolds utilises dans l'etude numerique, bases sur le diametre du jet lineaire observe, sont de Red = 3333 et 6667, consideres comme etant en transition vers la turbulence. Dans cette etude, un montage numerique est construit. Le maillage, le schema numerique, les conditions frontiere et la discretisation sont discutes et choisis. Les resultats sont ensuite valides avec des donnees turbulentes experimentales. En modelisation numerique de turbulence, les modeles de Moyennage Reynolds des Equations Naviers Stokes (RANS) presentent des difficultes avec des ecoulements instationnaires en regime transitionnel. La Simulation des Grandes Echelles (LES) presente une solution plus precise, mais au cout encore hors de portee pour cette etude. La methode employee pour cette etude est la Simulation des Tourbillons Detaches (DES), qui est un hybride des deux methodes (RANS et LES). Pour analyser la topologie de l'ecoulement, la decomposition des modes propres (POD) a ete egalement ete effectuee sur les resultats numeriques. L'etude a demontre d'abord le temps de calcul relativement eleve associe a des essais DES pour garder le nombre de Courant faible. Les resultats numeriques ont cependant reussi a reproduire correctement le basculement asynchrone observe dans les essais experimentaux. Le basculement observe semble etre cause par des effets transitionnels, ce qui expliquerait la difficulte des modeles RANS a correctement reproduire l'aerodynamique de l'ecoulement. L'ecoulement du jet, a son tour, est pour la plupart du temps tridimensionnel et turbulent sauf pour de courtes periodes de temps stable et independant de la troisieme dimension. L'etude topologique de l'ecoulement a egalement permit la reconaissances de structures principales sousjacentes qui etaient brouillees par la turbulence. Mots cles : jet impactant, paroi concave, turbulence, transitionnel, simulation des tourbillons detaches (DES), OpenFOAM.

  17. Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames

    NASA Astrophysics Data System (ADS)

    Heye, Colin; Raman, Venkat

    2012-11-01

    A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.

  18. Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Moin, Parviz

    2016-01-01

    This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.

  19. LES/FMDF of turbulent jet ignition in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  20. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  1. Parallel Multi-cycle LES of an Optical Pent-roof DISI Engine Under Motored Operating Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dam, Noah; Sjöberg, Magnus; Zeng, Wei

    The use of Large-eddy Simulations (LES) has increased due to their ability to resolve the turbulent fluctuations of engine flows and capture the resulting cycle-to-cycle variability. One drawback of LES, however, is the requirement to run multiple engine cycles to obtain the necessary cycle statistics for full validation. The standard method to obtain the cycles by running a single simulation through many engine cycles sequentially can take a long time to complete. Recently, a new strategy has been proposed by our research group to reduce the amount of time necessary to simulate the many engine cycles by running individual enginemore » cycle simulations in parallel. With modern large computing systems this has the potential to reduce the amount of time necessary for a full set of simulated engine cycles to finish by up to an order of magnitude. In this paper, the Parallel Perturbation Methodology (PPM) is used to simulate up to 35 engine cycles of an optically accessible, pent-roof Directinjection Spark-ignition (DISI) engine at two different motored engine operating conditions, one throttled and one un-throttled. Comparisons are made against corresponding sequential-cycle simulations to verify the similarity of results using either methodology. Mean results from the PPM approach are very similar to sequential-cycle results with less than 0.5% difference in pressure and a magnitude structure index (MSI) of 0.95. Differences in cycle-to-cycle variability (CCV) predictions are larger, but close to the statistical uncertainty in the measurement for the number of cycles simulated. PPM LES results were also compared against experimental data. Mean quantities such as pressure or mean velocities were typically matched to within 5- 10%. Pressure CCVs were under-predicted, mostly due to the lack of any perturbations in the pressure boundary conditions between cycles. Velocity CCVs for the simulations had the same average magnitude as experiments, but the experimental data showed greater spatial variation in the root-mean-square (RMS). Conversely, circular standard deviation results showed greater repeatability of the flow directionality and swirl vortex positioning than the simulations.« less

  2. Methodes de calcul des forces aerodynamiques pour les etudes des interactions aeroservoelastiques

    NASA Astrophysics Data System (ADS)

    Biskri, Djallel Eddine

    L'aeroservoelasticite est un domaine ou interagissent la structure flexible d'un avion, l'aerodynamique et la commande de vol. De son cote, la commande du vol considere l'avion comme une structure rigide et etudie l'influence du systeme de commande sur la dynamique de vol. Dans cette these, nous avons code trois nouvelles methodes d'approximation de forces aerodynamiques: Moindres carres corriges, Etat minimal corrige et Etats combines. Dans les deux premieres methodes, les erreurs d'approximation entre les forces aerodynamiques approximees par les methodes classiques et celles obtenues par les nouvelles methodes ont les memes formes analytiques que celles des forces aerodynamiques calculees par LS ou MS. Quant a la troisieme methode, celle-ci combine les formulations des forces approximees avec les methodes standards LS et MS. Les vitesses et frequences de battement et les temps d'executions calcules par les nouvelles methodes versus ceux calcules par les methodes classiques ont ete analyses.

  3. Large eddy simulations of a bluff-body stabilized hydrogen-methane jet flame

    NASA Astrophysics Data System (ADS)

    Drozda, Tomasz; Pope, Stephen

    2005-11-01

    Large eddy simulation (LES) is conducted of the turbulent bluff-body stabilized hydrogen-methane flame as considered in the experiments of the Combustion Research Facility at the Sandia National Laboratories and of the Thermal Research Group at the University of Sydney [1]. Both, reacting and non-reacting flows are considered. The subgrid scale (SGS) closure in LES is based on the scalar filtered mass density function (SFMDF) methodology [2]. A flamelet model is used to relate the chemical composition to the mixture fraction. The modeled SFMDF transport equation is solved by a hybrid finite-difference (FD) / Monte Carlo (MC) scheme. The FD component of the hybrid solver is validated by comparisons of the experimentally available flow statistics with those predicted by LES. The results via this method capture important features of the flames as observed experimentally.[1] A. R. Masri, R. W. Dibble, and R. S. Barlow. The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci., 22:307--362, 1996. [2] F. A. Jaberi, P. J. Colucci, S. James, P. Givi, and S. B. Pope. Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech., 401:85--121, 1999.

  4. Large Eddy Simulation of Spatially Developing Turbulent Reacting Shear Layers with the One-Dimensional Turbulence Model

    NASA Astrophysics Data System (ADS)

    Hoffie, Andreas Frank

    Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky model. The chemical reaction is simulated with a global single-step, second-order equilibrium reaction with an Arrhenius reaction rate. The two benchmark cases of constant density reacting and variable density non-reacting shear layers used to determine ODT parameters yield perfect agreement with regards to first and second-order flow statistics as well as shear layer growth rate. The variable density non-reacting shear layer also serves as a testing case for the LES-ODT model to simulate passive scalar mixing. The variable density, reacting shear layer cases only agree reasonably well and indicate that more work is necessary to improve variable density coupling of ODT and LES. The disagreement is attributed to the fact that the ODT filtered density is kept constant across the Runge-Kutta steps. Furthermore, a more in-depth knowledge of large scale and subgrid turbulent kinetic energy (TKE) spectra at several downstream locations as well as TKE budgets need to be studied to obtain a better understanding about the model as well as about the flow under investigation. The local Reynolds number based on the one-percent thickness at the exit is Redelta ≈ 5300, for the constant density reacting and for the variable density non-reacting case. For the variable density reacting shear layer, the Reynolds number based on the 1% thickness is Redelta ≈ 2370. The variable density reacting shear layers show suppressed growth rates due to density variations caused by heat release. This has also been reported in literature. A Lewis number parameter study is performed to extract non-unity Lewis number effects. An increase in the Lewis number leads to a further suppression of the growth rate, however to an increase spread of second-order flow statistics. Major focus and challenge of this work is to improve and advance the three-dimensional coupling of the one-dimensional ODT domains while keeping the solution correct. This entails major restructuring of the model. The turbulent reacting shear layer poses a physical challenge to the model because of its nature being a statistically stationary, non-decaying inhomogeneous and anisotropic turbulent flow. This challenge also requires additions to the eddy sampling procedure. Besides physical advancements, the LES-ODT code is also improved regarding its ability to use general cuboid geometries, an array structure that allows to apply boundary conditions based on ghost-cells and non-uniform structured meshes. The use of transverse grid-stretching requires the implementation of the ODT triplet map on a stretched grid. Further, advancing subroutine structure handling with global variables that enable serial code speed-up and parallelization with OpenMP are undertaken. Porting the code to a higher-level language, object oriented, finite-volume based CFD platform, like OpenFoam for example that allows more advanced array and parallelization features with graphics processing units (GPUs) as well as parallelization with the message passing interface (MPI) to simulate complex geometries is recommended for future work.

  5. An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large eddy simulations

    NASA Astrophysics Data System (ADS)

    Ferrer, Esteban

    2017-11-01

    We present an implicit Large Eddy Simulation (iLES) h / p high order (≥2) unstructured Discontinuous Galerkin-Fourier solver with sliding meshes. The solver extends the laminar version of Ferrer and Willden, 2012 [34], to enable the simulation of turbulent flows at moderately high Reynolds numbers in the incompressible regime. This solver allows accurate flow solutions of the laminar and turbulent 3D incompressible Navier-Stokes equations on moving and static regions coupled through a high order sliding interface. The spatial discretisation is provided by the Symmetric Interior Penalty Discontinuous Galerkin (IP-DG) method in the x-y plane coupled with a purely spectral method that uses Fourier series and allows efficient computation of spanwise periodic three-dimensional flows. Since high order methods (e.g. discontinuous Galerkin and Fourier) are unable to provide enough numerical dissipation to enable under-resolved high Reynolds computations (i.e. as necessary in the iLES approach), we adapt the laminar version of the solver to increase (controllably) the dissipation and enhance the stability in under-resolved simulations. The novel stabilisation relies on increasing the penalty parameter included in the DG interior penalty (IP) formulation. The latter penalty term is included when discretising the linear viscous terms in the incompressible Navier-Stokes equations. These viscous penalty fluxes substitute the stabilising effect of non-linear fluxes, which has been the main trend in implicit LES discontinuous Galerkin approaches. The IP-DG penalty term provides energy dissipation, which is controlled by the numerical jumps at element interfaces (e.g. large in under-resolved regions) such as to stabilise under-resolved high Reynolds number flows. This dissipative term has minimal impact in well resolved regions and its implicit treatment does not restrict the use of large time steps, thus providing an efficient stabilization mechanism for iLES. The IP-DG stabilisation is complemented with a Spectral Vanishing Viscosity (SVV) method, in the z-direction, to enhance stability in the continuous Fourier space. The coupling between the numerical viscosity in the DG plane and the SVV damping, provides an efficient approach to stabilise high order methods at moderately high Reynolds numbers. We validate the formulation for three turbulent flow cases: a circular cylinder at Re = 3900, a static and pitch oscillating NACA 0012 airfoil at Re = 10000 and finally a rotating vertical-axis turbine at Re = 40000, with Reynolds based on the circular diameter, airfoil chord and turbine diameter, respectively. All our results compare favourably with published direct numerical simulations, large eddy simulations or experimental data. We conclude that the DG-Fourier high order solver, with IP-SVV stabilisation, proves to be a valuable tool to predict turbulent flows and associated statistics for both static and rotating machinery.

  6. Multi-Sensor Systems and Data Fusion for Telecommunications, Remote Sensing and Radar (les Systemes multi-senseurs et le fusionnement des donnees pour les telecommunications, la teledetection et les radars)

    DTIC Science & Technology

    1998-04-01

    The result of the project is a demonstration of the fusion process, the sensors management and the real-time capabilities using simulated sensors...demonstrator (TAD) is a system that demonstrates the core ele- ment of a battlefield ground surveillance system by simulation in near real-time. The core...Management and Sensor/Platform simulation . The surveillance system observes the real world through a non-collocated heterogene- ous multisensory system

  7. On the convergence of a fully discrete scheme of LES type to physically relevant solutions of the incompressible Navier-Stokes

    NASA Astrophysics Data System (ADS)

    Berselli, Luigi C.; Spirito, Stefano

    2018-06-01

    Obtaining reliable numerical simulations of turbulent fluids is a challenging problem in computational fluid mechanics. The large eddy simulation (LES) models are efficient tools to approximate turbulent fluids, and an important step in the validation of these models is the ability to reproduce relevant properties of the flow. In this paper, we consider a fully discrete approximation of the Navier-Stokes-Voigt model by an implicit Euler algorithm (with respect to the time variable) and a Fourier-Galerkin method (in the space variables). We prove the convergence to weak solutions of the incompressible Navier-Stokes equations satisfying the natural local entropy condition, hence selecting the so-called physically relevant solutions.

  8. Application d'une technique de modelisation aerodynamique conceptuelle sur la simulation d'un pilote automatique a commande optimale pour un avion d'affaires

    NASA Astrophysics Data System (ADS)

    Pollender-Moreau, Olivier

    Ce document présente, dans le cadre d'un contexte conceptuel, une méthode d'enchaînement servant à faire le lien entre les différentes étapes qui permettent de réaliser la simulation d'un aéronef à partir de ses données géométriques et de ses propriétés massiques. En utilisant le cas de l'avion d'affaires Hawker 800XP de la compagnie Hawker Beechcraft, on démontre, via des données, un processus de traitement par lots et une plate-forme de simulation, comment (1) modéliser la géométrie d'un aéronef en plusieurs surfaces, (2) calculer les forces aérodynamiques selon une technique connue sous le nom de Vortex Lattice Method, (3) construire un modèle de vol servant à la simulation des aéronefs pour leur enveloppe de vol en ajoutant des fonctions supplémentaires, (4) construire un modèle de turbosoufflante simplifié, (5) développer un algorithme d'équilibre (trim) du mouvement longitudinal, (6) développer des algorithmes de contrôle à commande moderne, (7) développer certaines fonctions d'un système de pilotage automatique, et (8) rassembler le tout sous une même plate-forme de simulation. Afin de supporter ce travail, une application publique Matlab, connue sous le nom de Tornado, est utilisée conjointement avec d'autres fonctions pour la conception du modèle de vol aérodynamique. D'ailleurs, il sera démontré que le modèle de vol, quoiqu'il soit quand même crédible, ne concorde pas tout à fait avec les données de référence. Par contre, puisque le modèle des moteurs fonctionne bien, que l'algorithme d'équilibrage du mouvement longitudinal fonctionne bien et que les pôles des systèmes dynamiques concordent avec la littérature, les tests dynamiques effectués au sein de la plate-forme de simulation permettent d'obtenir des résultats fonctionnels et crédibles. D'ailleurs, deux systèmes d'augmentation de la stabilité basés sur la méthode de contrôle moderne LQR et couvrant l'enveloppe de vol de l'aéronef via un système d'ordonnancement des gains sont implémentés respectivement selon les mouvements longitudinal et latéral. Ces fonctions fonctionnent bien et permettent de rencontrer les qualités de vol requises pour un avion d'affaires. Finalement, certaines fonctions concernant un système de pilotage automatique sont implémentées. Dans le cas du mouvement latéral, ces fonctions sont basées sur les méthodes de contrôle modernes et couvrent la totalité de l'enveloppe de vol; mais en ce qui concerne le mouvement longitudinal, elles sont basées sur des algorithmes d'équilibre difficile à gérer pour implémenter sur toute l'enveloppe de vol, c'est pourquoi les tests présentés sont limités à des scénarios bien précis. Dans les deux cas, les essais effectués donnent d'assez bons résultats.

  9. Zonal PANS: evaluation of different treatments of the RANS-LES interface

    NASA Astrophysics Data System (ADS)

    Davidson, L.

    2016-03-01

    The partially Reynolds-averaged Navier-Stokes (PANS) model can be used to simulate turbulent flows either as RANS, large eddy simulation (LES) or DNS. Its main parameter is fk whose physical meaning is the ratio of the modelled to the total turbulent kinetic energy. In RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1. Three different ways of prescribing fk are evaluated for decaying grid turbulence and fully developed channel flow: fk = 0.4, fk = k3/2tot/ɛ and, from its definition, fk = k/ktot where ktot is the sum of the modelled, k, and resolved, kres, turbulent kinetic energy. It is found that the fk = 0.4 gives the best results. In Girimaji and Wallin, a method was proposed to include the effect of the gradient of fk. This approach is used at RANS- LES interface in the present study. Four different interface models are evaluated in fully developed channel flow and embedded LES of channel flow: in both cases, PANS is used as a zonal model with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS- LES interface is parallel to the wall (horizontal) and in embedded LES, it is parallel to the inlet (vertical). The importance of the location of the horizontal interface in fully developed channel flow is also investigated. It is found that the location - and the choice of the treatment at the interface - may be critical at low Reynolds number or if the interface is placed too close to the wall. The reason is that the modelled turbulent shear stress at the interface is large and hence the relative strength of the resolved turbulence is small. In RANS, the turbulent viscosity - and consequently also the modelled Reynolds shear stress - is only weakly dependent on Reynolds number. It is found in the present work that it also applies in the URANS region.

  10. A fully coupled bolus-esophageal-gastric model for esophageal emptying based on the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2016-11-01

    In this work, we develop a fully coupled bolus-esophageal-gastric model to study esophageal emptying based on the immersed boundary method. The model includes an esophageal segment, an ellipsoid-shaped stomach, and a bolus. It can easily handle the passive and active function of the lower esophageal sphincter (LES). Two groups of case studies are presented. The first group is about the influence from tissue anisotropy. Simulation shows that the weaker (or more compliant) part suffers from a higher wall shear stress and higher pressure load when the bolus is filled in and emptied from the LES segment. This implies a degradation cycle in which a weaker tissue becomes much weaker due to an increased load, a possible pathway to the esophageal lower diverticulum. The second group is about bulge formation resulting from asymmetric anatomy and a compliant LES. In particular, we find a right bulge tends to develop for a compliant LES. The bulge is most pronounced with a highest stiffness of the gastric wall. This implies that the competition between the LES stiffness and gastric wall stiffness might be another factor related to the esophageal lower diverticulum. The support of Grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.

  11. Large Eddy Simulation of Air Escape through a Hospital Isolation Room Single Hinged Doorway—Validation by Using Tracer Gases and Simulated Smoke Videos

    PubMed Central

    Saarinen, Pekka E.; Kalliomäki, Petri; Tang, Julian W.; Koskela, Hannu

    2015-01-01

    The use of hospital isolation rooms has increased considerably in recent years due to the worldwide outbreaks of various emerging infectious diseases. However, the passage of staff through isolation room doors is suspected to be a cause of containment failure, especially in case of hinged doors. It is therefore important to minimize inadvertent contaminant airflow leakage across the doorway during such movements. To this end, it is essential to investigate the behavior of such airflows, especially the overall volume of air that can potentially leak across the doorway during door-opening and human passage. Experimental measurements using full-scale mock-ups are expensive and labour intensive. A useful alternative approach is the application of Computational Fluid Dynamics (CFD) modelling using a time-resolved Large Eddy Simulation (LES) method. In this study simulated air flow patterns are qualitatively compared with experimental ones, and the simulated total volume of air that escapes is compared with the experimentally measured volume. It is shown that the LES method is able to reproduce, at room scale, the complex transient airflows generated during door-opening/closing motions and the passage of a human figure through the doorway between two rooms. This was a basic test case that was performed in an isothermal environment without ventilation. However, the advantage of the CFD approach is that the addition of ventilation airflows and a temperature difference between the rooms is, in principle, a relatively simple task. A standard method to observe flow structures is dosing smoke into the flow. In this paper we introduce graphical methods to simulate smoke experiments by LES, making it very easy to compare the CFD simulation to the experiments. The results demonstrate that the transient CFD simulation is a promising tool to compare different isolation room scenarios without the need to construct full-scale experimental models. The CFD model is able to reproduce the complex airflows and estimate the volume of air escaping as a function of time. In this test, the calculated migrated air volume in the CFD model differed by 20% from the experimental tracer gas measurements. In the case containing only a hinged door operation, without passage, the difference was only 10%. PMID:26151865

  12. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  13. Improving Human Effectiveness Through Embedded Virtual Simulation (Amelioration de l’efficacite humaine grace a la simulation virtuelle integree)

    DTIC Science & Technology

    2014-01-01

    mesurer leur expérience. Le groupe a rencontré des experts des technologies associées : les environnements virtuels, la réalité augmentée, les agents...virtuels, l’entraînement, l’ergonomie et la performance humaine. Les réflexions et conclusions issues de ces réunions et discussions sont résumées dans...en matière de EVS/ET (incluant les caractéristiques de l’utilisateur, la mission et l’environnement) et la gestion de l’entraînement est un

  14. Description of the LASSO Alpha 1 Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, William I.; Vogelmann, Andrew M.; Cheng, Xiaoping

    The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability has been named the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project. The availability of LES simulations with concurrent observations will serve many purposes. LES helps bridge the scale gap between DOE ARM observations and models, and the use of routine LES adds value to observations. It provides a self-consistent representation of the atmosphere and a dynamical context for the observations. Further,more » it elucidates unobservable processes and properties. LASSO will generate a simulation library for researchers that enables statistical approaches beyond a single-case mentality. It will also provide tools necessary for modelers to reproduce the LES and conduct their own sensitivity experiments. Many different uses are envisioned for the combined LASSO LES and observational library. For an observationalist, LASSO can help inform instrument remote-sensing retrievals, conduct Observation System Simulation Experiments (OSSEs), and test implications of radar scan strategies or flight paths. For a theoretician, LASSO will help calculate estimates of fluxes and co-variability of values, and test relationships without having to run the model yourself. For a modeler, LASSO will help one know ahead of time which days have good forcing, have co-registered observations at high-resolution scales, and have simulation inputs and corresponding outputs to test parameterizations. Further details on the overall LASSO project are available at http://www.arm. gov/science/themes/lasso.« less

  15. Sensitivity of Shallow Convection in Large-Eddy Simulations to Forcing Datasets Across a Range of Days: Examining Results from the DOE LASSO Projec

    NASA Astrophysics Data System (ADS)

    Gustafson, W. I., Jr.; Vogelmann, A. M.; Li, Z.; Cheng, X.; Endo, S.; Krishna, B.; Toto, T.; Xiao, H.

    2017-12-01

    Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence and cloud development. However, the results are sensitive to the choice of forcing data sets used to drive the LES model, and the most realistic forcing data is difficult to identify a priori. Knowing the sensitivity of boundary layer and cloud processes to forcing data selection is critical when using LES to understand atmospheric processes and when developing associated parameterizations. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES based on a selection of plausible input forcing data sets. The LES ARM Symbiotic Simulation and Observation (LASSO) project is initially generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. This talk will examine 13 days with shallow convection selected from the period May-August 2016, with multiple forcing sources and spatial scales used to generate an LES ensemble for each of the days, resulting in hundreds of LES runs with coincident observations from ARM's extensive suite of in situ and retrieval-based products. This talk will focus particularly on the sensitivity of the cloud development and its relation to forcing data. Variability of the PBL characteristics, lifting condensation level, cloud base height, cloud fraction, and liquid water path will be examined. More information about the LASSO project can be found at https://www.arm.gov/capabilities/modeling/lasso.

  16. Large Eddy Simulation of Gravitational Effects on Transitional and Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Jaberi, Farhad A.

    2001-01-01

    The basic objective of this work is to assess the influence of gravity on "the compositional and the spatial structures" of transitional and turbulent diffusion flames via large eddy simulation (LES), and direct numerical simulation (DNS). The DNS is conducted for appraisal of the various closures employed in LES, and to study the effect of buoyancy on the small scale flow features. The LES is based on our "filtered mass density function"' (FMDF) model. The novelty of the methodology is that it allows for reliable simulations with inclusion of "realistic physics." It also allows for detailed analysis of the unsteady large scale flow evolution and compositional flame structure which is not usually possible via Reynolds averaged simulations.

  17. GAP Noise Computation By The CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Chang, Sin-Chung; Wang, Xiao Y.; Jorgenson, Philip C. E.

    2001-01-01

    A typical gap noise problem is considered in this paper using the new space-time conservation element and solution element (CE/SE) method. Implementation of the computation is straightforward. No turbulence model, LES (large eddy simulation) or a preset boundary layer profile is used, yet the computed frequency agrees well with the experimental one.

  18. A new approach for turbulent simulations in complex geometries

    NASA Astrophysics Data System (ADS)

    Israel, Daniel M.

    Historically turbulence modeling has been sharply divided into Reynolds averaged Navier-Stokes (RANS), in which all the turbulent scales of motion are modeled, and large-eddy simulation (LES), in which only a portion of the turbulent spectrum is modeled. In recent years there have been numerous attempts to couple these two approaches either by patching RANS and LES calculations together (zonal methods) or by blending the two sets of equations. In order to create a proper bridging model, that is, a single set of equations which captures both RANS and LES like behavior, it is necessary to place both RANS and LES in a more general framework. The goal of the current work is threefold: to provide such a framework, to demonstrate how the Flow Simulation Methodology (FSM) fits into this framework, and to evaluate the strengths and weaknesses of the current version of the FSM. To do this, first a set of filtered Navier-Stokes (FNS) equations are introduced in terms of an arbitrary generalized filter. Additional exact equations are given for the second order moments and the generalized subfilter dissipation rate tensor. This is followed by a discussion of the role of implicit and explicit filters in turbulence modeling. The FSM is then described with particular attention to its role as a bridging model. In order to evaluate the method a specific implementation of the FSM approach is proposed. Simulations are presented using this model for the case of a separating flow over a "hump" with and without flow control. Careful attention is paid to error estimation, and, in particular, how using flow statistics and time series affects the error analysis. Both mean flow and Reynolds stress profiles are presented, as well as the phase averaged turbulent structures and wall pressure spectra. Using the phase averaged data it is possible to examine how the FSM partitions the energy between the coherent resolved scale motions, the random resolved scale fluctuations, and the subfilter quantities. The method proves to be qualitatively successful at reproducing large turbulent structures. However, like other hybrid methods, it has difficulty in the region where the model behavior transitions from RANS to LES. Consequently the phase averaged structures reproduce the experiments quite well, and the forcing does significantly reduce the length of the separated region. Nevertheless, the recirculation length is significantly too large for all the cases. Overall the current results demonstrate the promise of bridging models in general and the FSM in particular. However, current bridging techniques are still in their infancy. There is still important progress to be made and it is hoped that this work points out the more important avenues for exploration.

  19. CFD study of mixing miscible liquid with high viscosity difference in a stirred tank

    NASA Astrophysics Data System (ADS)

    Madhania, S.; Cahyani, A. B.; Nurtono, T.; Muharam, Y.; Winardi, S.; Purwanto, W. W.

    2018-03-01

    The mixing process of miscible liquids with high viscosity difference is crucial role even though the solution mutually dissolved. This paper describes the mixing behaviour of the water-molasses system in a conical-bottomed cylindrical stirred tank (D = 0.28 m and H = 0.395 m) equipped with a side-entry Marine propeller (d = 0.036 m) under the turbulence regime using a three-dimensional and transient CFD-simulation. The objective of this work is to compare the solution strategies was applied in the computational analysis to capture the detail phenomena of mixing two miscible liquid with high viscosity difference. Four solution strategies that have been used are the RANS Standards k-ε (SKE) model as the turbulence model coupled with the Multiple Reference Frame (MRF) method for impeller motion, the RANS Realizable k-ε (RKE) combine with the MRF, the Large Eddy Simulation (LES) coupled with the Sliding Mesh (SM) method and the LES-MRF combination. The transient calculations were conducted with Ansys Fluent 17.1 version. The mixing behaviour and the propeller characteristic are to be compared and discussed in this work. The simulation results show the differences of flow pattern and the molasses distribution profile for every solution strategy. The variation of the flow pattern which happened in each solution strategy showing an instability of the mixing process in stirred tank. The LES-SM strategy shows the realistic direction of flow than another solution strategies.

  20. Large-eddy simulation of flow past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Mittal, R.

    1995-01-01

    Some of the most challenging applications of large-eddy simulation are those in complex geometries where spectral methods are of limited use. For such applications more conventional methods such as finite difference or finite element have to be used. However, it has become clear in recent years that dissipative numerical schemes which are routinely used in viscous flow simulations are not good candidates for use in LES of turbulent flows. Except in cases where the flow is extremely well resolved, it has been found that upwind schemes tend to damp out a significant portion of the small scales that can be resolved on the grid. Furthermore, it has been found that even specially designed higher-order upwind schemes that have been used successfully in the direct numerical simulation of turbulent flows produce too much dissipation when used in conjunction with large-eddy simulation. The objective of the current study is to perform a LES of incompressible flow past a circular cylinder at a Reynolds number of 3900 using a solver which employs an energy-conservative second-order central difference scheme for spatial discretization and compare the results obtained with those of Beaudan & Moin (1994) and with the experiments in order to assess the performance of the central scheme for this relatively complex geometry.

  1. LES versus DNS: A comparative study

    NASA Technical Reports Server (NTRS)

    Shtilman, L.; Chasnov, J. R.

    1992-01-01

    We have performed Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of forced isotropic turbulence at moderate Reynolds numbers. The subgrid scale model used in the LES is based on an eddy viscosity which adjusts instantaneously the energy spectrum of the LES to that of the DNS. The statistics of the large scales of the DNS (filtered DNS field or fDNS) are compared to that of the LES. We present results for the transfer spectra, the skewness and flatness factors of the velocity components, the PDF's of the angle between the vorticity and the eigenvectors of the rate of strain, and that between the vorticity and the vorticity stretching tensor. The above LES statistics are found to be in good agreement with those measured in the fDNS field. We further observe that in all the numerical measurements, the trend was for the LES field to be more gaussian than the fDNS field. Future research on this point is planned.

  2. Comparative evaluation of polarimetric and bi-spectral cloud microphysics retrievals: Retrieval closure experiments and comparisons based on idealized and LES case studies

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Zhang, Z.; Ackerman, A. S.; Platnick, S. E.; Cornet, C.

    2016-12-01

    A remote sensing cloud retrieval simulator, created by coupling an LES cloud model with vector radiative transfer (RT) models is the ideal framework for assessing cloud remote sensing techniques. This simulator serves as a tool for understanding bi-spectral and polarimetric retrievals by comparing them directly to LES cloud properties (retrieval closure comparison) and for comparing the retrieval techniques to one another. Our simulator utilizes the DHARMA LES [Ackerman et al., 2004] with cloud properties based on marine boundary layer (MBL) clouds observed during the DYCOMS-II and ATEX field campaigns. The cloud reflectances are produced by the vectorized RT models based on polarized doubling adding and monte carlo techniques (PDA, MCPOL). Retrievals are performed utilizing techniques as similar as possible to those implemented on their corresponding well known instruments; polarimetric retrievals are based on techniques implemented for polarimeters (POLDER, AirMSPI, and RSP) and bi-spectral retrievals are performed using the Nakajima-King LUT method utilized on a number of spectral instruments (MODIS and VIIRS). Retrieval comparisons focus on cloud droplet effective radius (re), effective variance (ve), and cloud optical thickness (τ). This work explores the sensitivities of these two retrieval techniques to various observation limitations, such as spatial resolution/cloud inhomogeneity, impact of 3D radiative effects, and angular resolution requirements. With future remote sensing missions like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important to understand how these retrieval techniques compare to one another. The cloud retrieval simulator we've developed allows us to probe these important questions in a realistically relevant test bed.

  3. Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz

    2003-01-01

    As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.

  4. Étude des perturbations conduites et rayonnées dans une cellule de commutation

    NASA Astrophysics Data System (ADS)

    Costa, F.; Forest, F.; Puzo, A.; Rojat, G.

    1993-12-01

    The principles used in static conversion and the rise of the performances of the new switching devices contribue to increase the level of electromagnetic noises emitted by electronic converters. We have studied the way how these perturbations are created and coupled through their environment in conducted and radiated mode by a switching cell. This one can work in hard switching, zero current or voltage switching modes. We first outline the general problems of electromagnetic pollution and their metrology in converters. Then we describe the experimental environment. We analyse the mechanisms of generation of parasitic signals in a switching cell related to the electrical constraints and its switching mode. The simulated results, issued of the analytical models obtained, are confronted with the experimental ones. Then we show a method to calculate analytically the E and H near fields. It has been confirmed by experimental results. At last, we present, in a synthetic manner, the main results obtained, relative to the switching mode and the electrical constraints, using a new characterizing method. Theses results will allow the designer to incorporate the electromagnetic considerations in the conception of a converter. Les principes de commutation employés en conversion statique, l'évolution des performances statiques et dynamiques des composants, contribuent à faire des dispositifs de conversion statique de puissants générateurs de perturbations conduites et rayonnées. Nous nous sommes attachés à étudier les mécanismes de génération et de couplage des perturbations, tant en mode conduit que rayonné dans des structures à une seule cellule de commutation et fonctionnant selon les trois principaux modes de commutation : commutation forcée, à zéro de courant (ZCS), et à zéro de tension (ZVS). Après la mise en évidence de la problématique de pollution électromagnétique dans les structures et leur métrologie, nous décrivons l'environnement expérimental étudié. Nous analysons ensuite les principaux mécanismes produisant les perturbations au sein d'une cellule de commutation en introduisant un certain nombre de composants parasites. Les modèles sont simulés et confrontés aux résultats expérimentaux. Nous décrivons alors une méthode, validée expérimentalement et permettant de calculer les intensités des champs E et H proches émis. Enfin, nous présentons de façon synthétique les résultats observés selon les régimes de fonctionnement de la cellule de commutation et les contraintes électriques et dynamiques qu'elle subit. Nous avons, pour ce faire, développé une méthode originale de quantification des signaux perturbateurs. Les résultats obtenus doivent permettre d'intégrer les problèmes de pollution électromagnétique au stade de la conception d'un dispositif.

  5. LES of stratified-wavy flows using novel near-interface treatment

    NASA Astrophysics Data System (ADS)

    Karnik, Aditya; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Matar, Omar K.

    2017-11-01

    The pressure drop in horizontal stratified wavy flows is influenced by interfacial shear stress. The near-interface behavior of the lighter phase is akin to that near a moving wall. We employ a front-tracking code, Blue, to simulate and capture the near-interface behaviour of both phases. Blue uses a modified Smagorinsky LES model incorporating a novel near-interface treatment for the sub-grid viscosity, which is influenced by damping due to the wall-like interface, and enhancement of the turbulent kinetic energy (TKE) due to the interfacial waves. Simulations are carried out for both air-water and oil-water stratified configurations to demonstrate the applicability of the present method. The mean velocities and tangential Reynolds stresses are compared with experiments for both configurations. At the higher Re, the waves penetrate well into the buffer region of the boundary layer above the interface thus altering its dynamics. Previous attempts to capture the secondary structures associated with such flows using RANS or standard LES methodologies have been unsuccessful. The ability of the present method to reproduce these structures is due to the correct estimation of the near-interface TKE governing energy transfer from the normal to tangential directions. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  6. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric

    2015-12-01

    An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a detailed combustion model along with a dynamic structure LES model to evaluate its performance at engine-relevant conditions and understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a detailed combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of RANS predictions. The LES data suggests that the first ignition initiatesmore » in lean mixture and propagates to rich mixture, and the main ignition happens in rich mixture, preferable less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled and modulated by flame propagation. Soot predictions by LES present much better agreement with experiments compared to RANS both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 2 and 5 realizations can reach 99\\% of similarity to the target average of 16 realizations on the temperature and mixture fraction fields, respectively. However, more realizations are necessary for OH and soot mass fraction due to their high fluctuations.« less

  7. Comparison of Measured and WRF-LES Turbulence Statistics in a Real Convective Boundary Layer over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Rai, R. K.; Berg, L. K.; Kosovic, B.; Mirocha, J. D.; Pekour, M. S.; Shaw, W. J.

    2015-12-01

    Resolving the finest turbulent scales present in the lower atmosphere using numerical simulations helps to study the processes that occur in the atmospheric boundary layer, such as the turbulent inflow condition to the wind plant and the generation of the wake behind wind turbines. This work employs several nested domains in the WRF-LES framework to simulate conditions in a convectively driven cloud free boundary layer at an instrumented field site in complex terrain. The innermost LES domain (30 m spatial resolution) receives the boundary forcing from two other coarser resolution LES outer domains, which in turn receive boundary conditions from two WRF-mesoscale domains. Wind and temperature records from sonic anemometers mounted at two vertical levels (30 m and 60 m) are compared with the LES results in term of first and second statistical moments as well as power spectra and distributions of wind velocity. For the two mostly used boundary layer parameterizations (MYNN and YSU) tested in the WRF mesoscale domains, the MYNN scheme shows slightly better agreement with the observations for some quantities, such as time averaged velocity and Turbulent Kinetic Energy (TKE). However, LES driven by WRF-mesoscale simulations using either parameterization have similar velocity spectra and distributions of velocity. For each component of the wind velocity, WRF-LES power spectra are found to be comparable to the spectra derived from the measured data (for the frequencies that are accurately represented by WRF-LES). Furthermore, the analysis of LES results shows a noticeable variability of the mean and variance even over small horizontal distances that would be considered sub-grid scale in mesoscale simulations. This observed statistical variability in space and time can be utilized to further analyze the turbulence quantities over a heterogeneous surface and to improve the turbulence parameterization in the mesoscale model.

  8. LES of cavitating flow inside a Diesel injector including dynamic needle movement

    NASA Astrophysics Data System (ADS)

    Örley, F.; Hickel, S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    We perform large-eddy simulations (LES) of the turbulent, cavitating flow inside a 9-hole solenoid common-rail injector including jet injection into gas during a full injection cycle. The liquid fuel, vapor, and gas phases are modelled by a homogeneous mixture approach. The cavitation model is based on a thermodynamic equilibrium assumption. The geometry of the injector is represented on a Cartesian grid by a conservative cut-element immersed boundary method. The strategy allows for the simulation of complex, moving geometries with sub-cell resolution. We evaluate the effects of needle movement on the cavitation characteristics in the needle seat and tip region during opening and closing of the injector. Moreover, we study the effect of cavitation inside the injector nozzles on primary jet break-up.

  9. Numerical Prediction of CCV in a PFI Engine using a Parallel LES Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameen, Muhsin M; Mirzaeian, Mohsen; Millo, Federico

    Cycle-to-cycle variability (CCV) is detrimental to IC engine operation and can lead to partial burn, misfire, and knock. Predicting CCV numerically is extremely challenging due to two key reasons. Firstly, high-fidelity methods such as large eddy simulation (LES) are required to accurately resolve the incylinder turbulent flowfield both spatially and temporally. Secondly, CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. Ameen et al. (Int. J. Eng. Res., 2017) developed a parallel perturbation model (PPM) approach to dissociate this long time-scale problem into several shorter timescale problems. The strategy ismore » to perform multiple single-cycle simulations in parallel by effectively perturbing the initial velocity field based on the intensity of the in-cylinder turbulence. This strategy was demonstrated for motored engine and it was shown that the mean and variance of the in-cylinder flowfield was captured reasonably well by this approach. In the present study, this PPM approach is extended to simulate the CCV in a fired port-fuel injected (PFI) SI engine. Two operating conditions are considered – a medium CCV operating case corresponding to 2500 rpm and 16 bar BMEP and a low CCV case corresponding to 4000 rpm and 12 bar BMEP. The predictions from this approach are also shown to be similar to the consecutive LES cycles. Both the consecutive and PPM LES cycles are observed to under-predict the variability in the early stage of combustion. The parallel approach slightly underpredicts the cyclic variability at all stages of combustion as compared to the consecutive LES cycles. However, it is shown that the parallel approach is able to predict the coefficient of variation (COV) of the in-cylinder pressure and burn rate related parameters with sufficient accuracy, and is also able to predict the qualitative trends in CCV with changing operating conditions. The convergence of the statistics predicted by the PPM approach with respect to the number of consecutive cycles required for each parallel simulation is also investigated. It is shown that this new approach is able to give accurate predictions of the CCV in fired engines in less than one-tenth of the time required for the conventional approach of simulating consecutive engine cycles.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, William I.; Vogelmann, Andrew M.; Cheng, Xiaoping

    The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability has been named the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project. The initial focus of LASSO is on shallow convection at the ARM Southern Great Plains (SGP) Climate Research Facility. The availability of LES simulations with concurrent observations will serve many purposes. LES helps bridge the scale gap between DOE ARM observations and models, and the use of routine LES addsmore » value to observations. It provides a self-consistent representation of the atmosphere and a dynamical context for the observations. Further, it elucidates unobservable processes and properties. LASSO will generate a simulation library for researchers that enables statistical approaches beyond a single-case mentality. It will also provide tools necessary for modelers to reproduce the LES and conduct their own sensitivity experiments. Many different uses are envisioned for the combined LASSO LES and observational library. For an observationalist, LASSO can help inform instrument remote sensing retrievals, conduct Observation System Simulation Experiments (OSSEs), and test implications of radar scan strategies or flight paths. For a theoretician, LASSO will help calculate estimates of fluxes and co-variability of values, and test relationships without having to run the model yourself. For a modeler, LASSO will help one know ahead of time which days have good forcing, have co-registered observations at high-resolution scales, and have simulation inputs and corresponding outputs to test parameterizations. Further details on the overall LASSO project are available at https://www.arm.gov/capabilities/modeling/lasso.« less

  11. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, Mina R.; Georgiadis, Nicholas J.; DeBonis, James R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  12. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.; DeBonis, J. R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  13. Large-eddy simulations of a solid-rocket booster jet

    NASA Astrophysics Data System (ADS)

    Paoli, Roberto; Poubeau, Adele; Cariolle, Daniel

    2014-11-01

    Emissions from solid-rocket boosters are responsible for a severe decrease in ozone concentration in the rocket plume during the first hours after a launch. The main source of ozone depletion is due to hydrogen chloride that is converted into chlorine in the high temperature regions of the jet (afterburning). The objective of this study is to evaluate the active chlorine concentration in the plume of a solid-rocket booster using large-eddy simulations. The gas is injected through the entire nozzle of the booster and a local time-stepping method based on coupling multi-instances of a fluid solver is used to extend the computational domain up to 600 nozzle exit diameters. The methodology is validated for a non-reactive case by analyzing the flow characteristics of supersonic co-flowing under expanded jets. Then, the chemistry of chlorine is studied offline using a complex chemistry solver and the LES data extracted from the mean trajectories of sample fluid particles. Finally, the online chemistry is analyzed by means of the multispecies version of the LES solver using a reduced chemistry scheme. The LES are able to capture the mixing of the exhaust with ambient air and the species concentrations, which is also useful to initialize atmospheric simulations on larger domains.

  14. Simulations of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method

    NASA Astrophysics Data System (ADS)

    Chaouat, Bruno

    2012-04-01

    The partially integrated transport modeling (PITM) method [B. Chaouat and R. Schiestel, "A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005), 10.1063/1.1928607; R. Schiestel and A. Dejoan, "Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005), 10.1007/s00162-004-0155-z; B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgridscale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3; B. Chaouat and R. Schiestel, "Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations," Int. J. Heat Fluid Flow 30, 602 (2009), 10.1016/j.ijheatfluidflow.2009.02.021] viewed as a continuous approach for hybrid RANS/LES (Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with seamless coupling between RANS and LES regions is used to derive a subfilter scale stress model in the framework of second-moment closure applicable in a rotating frame of reference. This present subfilter scale model is based on the transport equations for the subfilter stresses and the dissipation rate and appears well appropriate for simulating unsteady flows on relatively coarse grids or flows with strong departure from spectral equilibrium because the cutoff wave number can be located almost anywhere inside the spectrum energy. According to the spectral theory developed in the wave number space [B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3], the coefficients used in this model are no longer constants but they are some analytical functions of a dimensionless parameter controlling the spectral distribution of turbulence. The pressure-strain correlation term encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale, S. Sarkar, and T. B. Gatski, "Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach," J. Fluid Mech. 227, 245 (1991), 10.1017/S0022112091000101] developed initially for homogeneous rotating flows in RANS methodology. It is modeled in system rotation using the principle of objectivity. Its modeling is especially extended in a low Reynolds number version for handling non-homogeneous wall flows. The present subfilter scale stress model is then used for simulating large scales of rotating turbulent flows on coarse and medium grids at moderate, medium, and high rotation rates. It is also applied to perform a simulation on a refined grid at the highest rotation rate. As a result, it is found that the PITM simulations reproduce fairly well the mean features of rotating channel flows allowing a drastic reduction of the computational cost in comparison with the one required for performing highly resolved LES. Overall, the mean velocities and turbulent stresses are found to be in good agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M. Lesieur, "Spectral-dynamic model for large-eddy simulations of turbulent rotating flow," Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the flow resulting from the rotation effects is also well reproduced in accordance with the reference data. Moreover, the PITM2 simulations performed on the medium grid predict qualitatively well the three-dimensional flow structures as well as the longitudinal roll cells which appear in the anticyclonic wall-region of the rotating flows. As expected, the PITM3 simulation performed on the refined grid reverts to highly resolved LES. The present model based on a rational formulation appears to be an interesting candidate for tackling a large variety of engineering flows subjected to rotation.

  15. Development of a High-Order Space-Time Matrix-Free Adjoint Solver

    NASA Technical Reports Server (NTRS)

    Ceze, Marco A.; Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    The growth in computational power and algorithm development in the past few decades has granted the science and engineering community the ability to simulate flows over complex geometries, thus making Computational Fluid Dynamics (CFD) tools indispensable in analysis and design. Currently, one of the pacing items limiting the utility of CFD for general problems is the prediction of unsteady turbulent ows.1{3 Reynolds-averaged Navier-Stokes (RANS) methods, which predict a time-invariant mean flowfield, struggle to provide consistent predictions when encountering even mild separation, such as the side-of-body separation at a wing-body junction. NASA's Transformative Tools and Technologies project is developing both numerical methods and physical modeling approaches to improve the prediction of separated flows. A major focus of this e ort is efficient methods for resolving the unsteady fluctuations occurring in these flows to provide valuable engineering data of the time-accurate flow field for buffet analysis, vortex shedding, etc. This approach encompasses unsteady RANS (URANS), large-eddy simulations (LES), and hybrid LES-RANS approaches such as Detached Eddy Simulations (DES). These unsteady approaches are inherently more expensive than traditional engineering RANS approaches, hence every e ort to mitigate this cost must be leveraged. Arguably, the most cost-effective approach to improve the efficiency of unsteady methods is the optimal placement of the spatial and temporal degrees of freedom (DOF) using solution-adaptive methods.

  16. Compressible Boundary Layer Predictions at High Reynolds Number using Hybrid LES/RANS Methods

    NASA Technical Reports Server (NTRS)

    Choi, Jung-Il; Edwards, Jack R.; Baurle, Robert A.

    2008-01-01

    Simulations of compressible boundary layer flow at three different Reynolds numbers (Re(sub delta) = 5.59x10(exp 4), 1.78x10(exp 5), and 1.58x10(exp 6) are performed using a hybrid large-eddy/Reynolds-averaged Navier-Stokes method. Variations in the recycling/rescaling method, the higher-order extension, the choice of primitive variables, the RANS/LES transition parameters, and the mesh resolution are considered in order to assess the model. The results indicate that the present model can provide good predictions of the mean flow properties and second-moment statistics of the boundary layers considered. Normalized Reynolds stresses in the outer layer are found to be independent of Reynolds number, similar to incompressible turbulent boundary layers.

  17. LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Wu, Hao; Ihme, Matthias

    2015-11-01

    The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.

  18. Large-eddy simulation of flow in a plane, asymmetric diffuser

    NASA Technical Reports Server (NTRS)

    Kaltenbach, Hans-Jakob

    1993-01-01

    Recent improvements in subgrid-scale modeling as well as increases in computer power make it feasible to investigate flows using large-eddy simulation (LES) which have been traditionally studied with techniques based on Reynolds averaging. However, LES has not yet been applied to many flows of immediate technical interest. Preliminary results from LES of a plane diffuser flow are described. The long term goal of this work is to investigate flow separation as well as separation control in ducts and ramp-like geometries.

  19. Eulerian Time-Domain Filtering for Spatial LES

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  20. Damping parameter study of a perforated plate with bias flow

    NASA Astrophysics Data System (ADS)

    Mazdeh, Alireza

    One of the main impediments to successful operation of combustion systems in industrial and aerospace applications including gas turbines, ramjets, rocket motors, afterburners (augmenters) and even large heaters/boilers is the dynamic instability also known as thermo-acoustic instability. Concerns with this ongoing problem have grown with the introduction of Lean Premixed Combustion (LPC) systems developed to address the environmental concerns associated with the conventional combustion systems. The most common way to mitigate thermo-acoustic instability is adding acoustic damping to the combustor using acoustic liners. Recently damping properties of bias flow initially introduced to liners only for cooling purposes have been recognized and proven to be an asset in enhancing the damping effectiveness of liners. Acoustic liners are currently being designed using empirical design rules followed by build-test-improve steps; basically by trial and error. There is growing concerns on the lack of reliability associated with the experimental evaluation of the acoustic liners with small size apertures. The development of physics-based tools in assisting the design of such liners has become of great interest to practitioners recently. This dissertation focuses primarily on how Large-Eddy Simulations (LES) or similar techniques such as Scaled Adaptive Simulation (SAS) can be used to characterize damping properties of bias flow. The dissertation also reviews assumptions made in the existing analytical, semi-empirical, and numerical models, provides a criteria to rank order the existing models, and identifies the best existing theoretical model. Flow field calculations by LES provide good insight into the mechanisms that led to acoustic damping. Comparison of simulation results with empirical and analytical studies shows that LES simulation is a viable alternative to the empirical and analytical methods and can accurately predict the damping behavior of liners. Currently the role of LES for research studies concerned with damping properties of liners is limited to validation of other empirical or theoretical approaches. This research has shown that LES can go beyond that and can be used for performing parametric studies to characterize the sensitivity of acoustic properties of multi--perforated liners to the changes in the geometry and flow conditions and be used as a tool to design acoustic liners. The conducted research provides an insightful understanding about the contribution of different flow and geometry parameters such as perforated plate thickness, aperture radius, porosity factors and bias flow velocity. While the study agrees with previous observations obtained by analytical or experimental methods, it also quantifies the impact from these parameters on the acoustic impedance of perforated plate, a key parameter to determine the acoustic performance of any system. The conducted study has also explored the limitations and capabilities of commercial tool when are applied for performing simulation studies on damping properties of liners. The overall agreement between LES results and previous studies proves that commercial tools can be effectively used for these applications under certain conditions.

  1. Subgrid Combustion Modeling for the Next Generation National Combustion Code

    NASA Technical Reports Server (NTRS)

    Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher

    2003-01-01

    In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.

  2. A priori and a posteriori analyses of the flamelet/progress variable approach for supersonic combustion

    NASA Astrophysics Data System (ADS)

    Saghafian, Amirreza; Pitsch, Heinz

    2012-11-01

    A compressible flamelet/progress variable approach (CFPV) has been devised for high-speed flows. Temperature is computed from the transported total energy and tabulated species mass fractions and the source term of the progress variable is rescaled with pressure and temperature. The combustion is thus modeled by three additional scalar equations and a chemistry table that is computed in a pre-processing step. Three-dimensional direct numerical simulation (DNS) databases of reacting supersonic turbulent mixing layer with detailed chemistry are analyzed to assess the underlying assumptions of CFPV. Large eddy simulations (LES) of the same configuration using the CFPV method have been performed and compared with the DNS results. The LES computations are based on the presumed subgrid PDFs of mixture fraction and progress variable, beta function and delta function respectively, which are assessed using DNS databases. The flamelet equation budget is also computed to verify the validity of CFPV method for high-speed flows.

  3. Criteria for Modeling in LES of Multicomponent Fuel Flow

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2009-01-01

    A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.

  4. Large-eddy simulation of turbulent flow with a surface-mounted two-dimensional obstacle

    NASA Technical Reports Server (NTRS)

    Yang, Kyung-Soo; Ferziger, Joel H.

    1993-01-01

    In this paper, we perform a large eddy simulation (LES) of turbulent flow in a channel containing a two-dimensional obstacle on one wall using a dynamic subgrid-scale model (DSGSM) at Re = 3210, based on bulk velocity above the obstacle and obstacle height; the wall layers are fully resolved. The low Re enables us to perform a DNS (Case 1) against which to validate the LES results. The LES with the DSGSM is designated Case 2. In addition, an LES with the conventional fixed model constant (Case 3) is conducted to allow identification of improvements due to the DSGSM. We also include LES at Re = 82,000 (Case 4) using conventional Smagorinsky subgrid-scale model and a wall-layer model. The results will be compared with the experiment of Dimaczek et al.

  5. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yidong, E-mail: yidong.xia@inl.gov; Wang, Chuanjin; Luo, Hong

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the Hydra-TH code. -- Highlights: •We performed a comprehensive study to verify and validate the turbulence models in Hydra-TH. •Hydra-TH delivers 2nd-order grid convergence for the incompressible Navier–Stokes equations. •Hydra-TH can accurately simulate the laminar boundary layers. •Hydra-TH can accurately simulate the turbulent boundary layers with RANS turbulence models. •Hydra-TH delivers high-fidelity LES capability for simulating turbulent flows in confined space.« less

  6. High-fidelity Simulation of Jet Noise from Rectangular Nozzles . [Large Eddy Simulation (LES) Model for Noise Reduction in Advanced Jet Engines and Automobiles

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj

    2014-01-01

    This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.

  7. Impact of subgrid fluid turbulence on inertial particles subject to gravity

    NASA Astrophysics Data System (ADS)

    Rosa, Bogdan; Pozorski, Jacek

    2017-07-01

    Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.

  8. Fabrication par injection flexible de pieces coniques pour des applications aerospatiales

    NASA Astrophysics Data System (ADS)

    Shebib Loiselle, Vincent

    Les materiaux composites sont presents dans les tuyeres de moteurs spatiaux depuis les annees soixante. Aujourd'hui, l'avenement des tissus tridimensionnels apporte une solution innovatrice au probleme de delamination qui limitait les proprietes mecaniques de ces composites. L'utilisation de ces tissus necessite toutefois la conception de procedes de fabrication mieux adaptes. Une nouvelle methode de fabrication de pieces composites pour des applications aerospatiales a ete etudiee tout au long de ce travail. Celle-ci applique les principes de l'injection flexible (procede Polyflex) a la fabrication de pieces coniques de fortes epaisseurs. La piece de validation a fabriquer represente un modele reduit de piece de tuyere de moteur spatial. Elle est composee d'un renfort tridimensionnel en fibres de carbone et d'une resine phenolique. La reussite du projet est definie par plusieurs criteres sur la compaction et la formation de plis du renfort et sur la formation de porosites de la piece fabriquee. Un grand nombre d'etapes ont ete necessaires avant la fabrication de deux pieces de validation. Premierement, pour repondre au critere sur la compaction du renfort, la conception d'un outil de caracterisation a ete entreprise. L'etude de la compaction a ete effectuee afin d'obtenir les informations necessaires a la comprehension de la deformation d'un renfort 3D axisymetrique. Ensuite, le principe d'injection de la piece a ete defini pour ce nouveau procede. Pour en valider les concepts proposes, la permeabilite du renfort fibreux ainsi que la viscosite de la resine ont du etre caracterisees. A l'aide de ces donnees, une serie de simulations de l'ecoulement pendant l'injection de la piece ont ete realisees et une approximation du temps de remplissage calculee. Apres cette etape, la conception du moule de tuyere a ete entamee et appuyee par une simulation mecanique de la resistance aux conditions de fabrication. Egalement, plusieurs outillages necessaires pour la fabrication ont ete concus et installes au nouveau laboratoire CGD (composites grandes dimensions). En parallele, plusieurs etudes ont ete effectuees pour comprendre les phenomenes influencant la polymerisation de la resine.

  9. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  10. Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains

    NASA Astrophysics Data System (ADS)

    Han, Yi; Stoellinger, Michael; Naughton, Jonathan

    2016-09-01

    In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.

  11. LES on Plume Dispersion in the Convective Boundary Layer Capped by a Temperature Inversion

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiromasa; Tamura, Tetsuro; Abe, Satoshi

    Large-eddy simulation (LES) is applied to the problem of plume dispersion in the spatially-developing convective boundary layer (CBL) capped by a temperature inversion. In order to generate inflow turbulence with buoyant forcing, we first, simulate the neutral boundary layer flow (NBL) in the driver region using Lund's method. At the same time, the temperature profile possessing the inversion part is imposed at the entrance of the driver region and the temperature field is calculated as a passive scalar. Next, the buoyancy effect is introduced into the flow field in the main region. We evaluate the applicability of the LES model for atmospheric dispersion in the CBL flow and compare the characteristics of plume dispersion in the CBL flow with those in the neutral boundary layer. The Richardson number based on the temperature increment across the inversion obtained by the present LES model is 22.4 and the capping effect of the temperature inversion can be captured qualitatively in the upper portion of the CBL. Characteristics of flow and temperature fields in the main portion of CBL flow are similar to those of previous experiments[1],[2] and observations[3]. Concerning dispersion behavior, we also find that mean concentrations decrease immediately above the inversion height and the peak values of r.m.s concentrations are located near the inversion height at larger distances from the point source.

  12. Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Knaepen, B.; Moin, P.

    2003-01-01

    In this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results. Conclusions are presented in Sec. 5.

  13. Discontinuous Galerkin Methods and High-Speed Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Atak, Muhammed; Larsson, Johan; Munz, Claus-Dieter

    2014-11-01

    Discontinuous Galerkin methods gain increasing importance within the CFD community as they combine arbitrary high order of accuracy in complex geometries with parallel efficiency. Particularly the discontinuous Galerkin spectral element method (DGSEM) is a promising candidate for both the direct numerical simulation (DNS) and large eddy simulation (LES) of turbulent flows due to its excellent scaling attributes. In this talk, we present a DNS of a compressible turbulent boundary layer along a flat plate at a free-stream Mach number of M = 2.67 and assess the computational efficiency of the DGSEM at performing high-fidelity simulations of both transitional and turbulent boundary layers. We compare the accuracy of the results as well as the computational performance to results using a high order finite difference method.

  14. Turbulence in Electrically Conducting Fluids Driven by Rotating and Travelling Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Stiller, Jörg; Koal, Kristina; Blackburn, Hugh M.

    The turbulent flow driven by rotating and travelling magnetic fields in a closed cylinder is investigated by means of direct numerical simulations (DNS) and large eddy simulations (LES). Our model is based on the low-induction, low-frequency approximation and employs a spectral-element/Fourier method for discretisation. The spectral vanishing viscosity (SVV) technique was adopted for the LES. The study provides first insights into the developed turbulent flow. In the RMF case, Taylor-Görtler vortices remain the dominant turbulence mechanism, as already in the transitional regime. In contrast to previous predictions we found no evidence that the vortices are confined closer to the wall for higher forcing. In the TMF more than 50 percent of the kinetic energy is bound to the turbulent fluctuations, which renders this field an interesting candidate for mixing applications.

  15. Developpement D'un Modele Climatique Regional: Fizr Simulation des Conditions de Janvier de la Cote Ouest Nord Americaine

    NASA Astrophysics Data System (ADS)

    Goyette, Stephane

    1995-11-01

    Le sujet de cette these concerne la modelisation numerique du climat regional. L'objectif principal de l'exercice est de developper un modele climatique regional ayant les capacites de simuler des phenomenes de meso-echelle spatiale. Notre domaine d'etude se situe sur la Cote Ouest nord americaine. Ce dernier a retenu notre attention a cause de la complexite du relief et de son controle sur le climat. Les raisons qui motivent cette etude sont multiples: d'une part, nous ne pouvons pas augmenter, en pratique, la faible resolution spatiale des modeles de la circulation generale de l'atmosphere (MCG) sans augmenter a outrance les couts d'integration et, d'autre part, la gestion de l'environnement exige de plus en plus de donnees climatiques regionales determinees avec une meilleure resolution spatiale. Jusqu'alors, les MCG constituaient les modeles les plus estimes pour leurs aptitudes a simuler le climat ainsi que les changements climatiques mondiaux. Toutefois, les phenomenes climatiques de fine echelle echappent encore aux MCG a cause de leur faible resolution spatiale. De plus, les repercussions socio-economiques des modifications possibles des climats sont etroitement liees a des phenomenes imperceptibles par les MCG actuels. Afin de circonvenir certains problemes inherents a la resolution, une approche pratique vise a prendre un domaine spatial limite d'un MCG et a y imbriquer un autre modele numerique possedant, lui, un maillage de haute resolution spatiale. Ce processus d'imbrication implique alors une nouvelle simulation numerique. Cette "retro-simulation" est guidee dans le domaine restreint a partir de pieces d'informations fournies par le MCG et forcee par des mecanismes pris en charge uniquement par le modele imbrique. Ainsi, afin de raffiner la precision spatiale des previsions climatiques de grande echelle, nous developpons ici un modele numerique appele FIZR, permettant d'obtenir de l'information climatique regionale valide a la fine echelle spatiale. Cette nouvelle gamme de modeles-interpolateurs imbriques qualifies d'"intelligents" fait partie de la famille des modeles dits "pilotes". L'hypothese directrice de notre etude est fondee sur la supposition que le climat de fine echelle est souvent gouverne par des forcages provenant de la surface plutot que par des transports atmospheriques de grande echelle spatiale. La technique que nous proposons vise donc a guider FIZR par la Dynamique echantillonnee d'un MCG et de la forcer par la Physique du MCG ainsi que par un forcage orographique de meso-echelle, en chacun des noeuds de la grille fine de calculs. Afin de valider la robustesse et la justesse de notre modele climatique regional, nous avons choisi la region de la Cote Ouest du continent nord americain. Elle est notamment caracterisee par une distribution geographique des precipitations et des temperatures fortement influencee par le relief sous-jacent. Les resultats d'une simulation d'un mois de janvier avec FIZR demontrent que nous pouvons simuler des champs de precipitations et de temperatures au niveau de l'abri beaucoup plus pres des observations climatiques comparativement a ceux simules a partir d'un MCG. Ces performances sont manifestement attribuees au forcage orographique de meso-echelle de meme qu'aux caracteristiques de surface determinees a fine echelle. Un modele similaire a FIZR peut, en principe, etre implante sur l'importe quel MCG, donc, tout organisme de recherche implique en modelisation numerique mondiale de grande echelle pourra se doter d'un el outil de regionalisation.

  16. Skill of ship-following large-eddy simulations in reproducing MAGIC observations across the northeast Pacific stratocumulus to cumulus transition region

    DOE PAGES

    McGibbon, J.; Bretherton, C. S.

    2017-03-17

    During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons andmore » meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a –0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m –2 in sensible heat flux (SHF). Altogether, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.« less

  17. Status of turbulence modeling for hypersonic propulsion flowpaths

    NASA Astrophysics Data System (ADS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.

    2014-06-01

    This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer methods such as large eddy simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath, including laminar-to-turbulent boundary layer transition, shock wave/turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers), and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.

  18. Annual Research Briefs

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1997-01-01

    This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.

  19. Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model

    NASA Astrophysics Data System (ADS)

    Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren

    2017-09-01

    An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.

  20. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  1. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Pope, Stephen B.

    2014-05-01

    A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.

  2. Heart rate and pulmonary function while wearing the launch-entry crew escape suit (LES) during + Gx acceleration and simulated Shuttle launch

    NASA Technical Reports Server (NTRS)

    Krutz, Robert W., Jr.; Bagian, James P.; Burton, Russell R.; Meeker, Larry J.

    1990-01-01

    Space shuttle crewmembers have been equipped with a launch-entry crew escape system (LES) since the Challenger accident in 1986. Some crewmembers, wearing the new pressure suit, have reported breathing difficulties and increased effort to achieve the desired range of motion. This study was conducted to quantify the reported increased physical workloads and breathing difficulty associated with wearing the LES. Both veteran astronauts and centrifuge panel members were exposed to various + Gx profiles (including simulated shuttle launch) + Gx on the USAF School of Aerospace Medicine (USAFSAM) human-use centrifuge. Maximum heart rate data showed no increased workload associated with arm and head movement in the LES when compared to the flight suit/helmet ensemble (LEH). However, the LES did impose a significant increase in breathing difficulty beginning at +2.5 Gx which was demonstrated by a decrease in forced vital capacity and subjected questionnaries.

  3. Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.

    PubMed

    Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong

    2017-06-01

    Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.

  4. Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds

    PubMed Central

    Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M.; Tan, Zhihong

    2017-01-01

    Abstract Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS‐II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS‐II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid‐scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS‐II observations are identified. The results show that using weighted essentially non‐oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest‐fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high‐quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest‐fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model. PMID:28943997

  5. Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong

    Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.

  6. DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2014-01-01

    Direct numerical simulation (DNS) of turbulent compressible flows is performed using a higher-order space-time discontinuous-Galerkin finite-element method. The numerical scheme is validated by performing DNS of the evolution of the Taylor-Green vortex and turbulent flow in a channel. The higher-order method is shown to provide increased accuracy relative to low-order methods at a given number of degrees of freedom. The turbulent flow over a periodic array of hills in a channel is simulated at Reynolds number 10,595 using an 8th-order scheme in space and a 4th-order scheme in time. These results are validated against previous large eddy simulation (LES) results. A preliminary analysis provides insight into how these detailed simulations can be used to improve Reynoldsaveraged Navier-Stokes (RANS) modeling

  7. Computation of unsteady turbomachinery flows: Part 2—LES and hybrids

    NASA Astrophysics Data System (ADS)

    Tucker, P. G.

    2011-10-01

    The choice of turbulence model can have a strong impact on results for many turbomachinery zones. Palliative corrections to them and also transition modeling can have a further profound solution impact. The spectral gaps necessary for theoretically valid URANS solutions are also lacking in certain turbomachinery zones. Large Eddy Simulation (LES) alleviates the serious area of turbulence modeling uncertainty but with an extreme increase in computational cost. However, there seems a lack of validation data to explore in depth the performance of LES and thus strategies to refine it. LES best practices are needed. Although LES is, obviously, much less model dependent than RANS, grids currently used for more practical simulations are clearly insufficiently fine for the LES model and numerical schemes not to be playing an excessively strong role. Very few turbomachinery simulations make use of properly constructed, correlated turbulence inflow. Even if this is attempted, most measurement sets are incomplete and lack an adequate basis for modeling this inflow. Gas turbines are highly complex coupled systems and hence inflow and outflow boundary condition specification needs to go beyond just synthesizing turbulent structures and preventing their reflection. Despite the strong limitations of the dissipative Smagorinsky model, it still sees the most wide spread use, generally, in excessively dissipative flow solvers. Monotone Integrated LES (MILES) related approaches, hybrid LES-RANS and more advanced LES models seem to have an equal but subservient frequency of use in turbomachinery applications. Clearly the introduction of a RANS layer can have a substantial accuracy penalty. However, it does allow LES to be rationally used, albeit in a diluted sense for industrial applications. The Reynolds numbers found in turbomachinery are substantial. However, in certain areas evidence suggests they will not be enough to ensure a long inertial subrange and hence the use of standard LES modeling practices. Despite the excessively coarse grids used in much of the LES work reviewed, with essentially RANS based codes, meaningful results are often gained. This can perhaps be attributed to the choice of cases, these being ones for which RANS modeling gives extremely poor performance. It is a concern that for practical turbomachinery LES studies grid densities used tend to have an Reynolds number scaling to a strong negative power.

  8. PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa

    2006-01-01

    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.

  9. Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2017-07-01

    A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.

  10. Detached-Eddy Simulations of Attached and Detached Boundary Layers

    NASA Astrophysics Data System (ADS)

    Caruelle, B.; Ducros, F.

    2003-12-01

    This article presents Detached-Eddy Simulations (DESs) of attached and detached turbulent boundary layers. This hybrid Reynolds Averaged Navier-Stokes (RANS) / Large Eddy Simulation (LES) model goes continuously from RANS to LES according to the mesh definition. We propose a parametric study of the model over two "academic" configurations, in order to get information on the influence of the mesh to correctly treat complex flow with attached and detached boundary layers.

  11. Studying marine stratus with large eddy simulation

    NASA Technical Reports Server (NTRS)

    Moeng, Chin-Hoh

    1990-01-01

    Data sets from field experiments over the stratocumulus regime may include complications from larger scale variations, decoupled cloud layers, diurnal cycle, or entrainment instability, etc. On top of the already complicated turbulence-radiation-condensation processes within the cloud-topped boundary layer (CTBL), these complexities may sometimes make interpretation of the data sets difficult. To study these processes, a better understanding is needed of the basic processes involved in the prototype CTBL. For example, is cloud top radiative cooling the primary source of the turbulent kinetic energy (TKE) within the CTBL. Historically, laboratory measurements have played an important role in addressing the turbulence problems. The CTBL is a turbulent field which is probably impossible to generate in laboratories. Large eddy simulation (LES) is an alternative way of 'measuring' the turbulent structure under controlled environments, which allows the systematic examination of the basic physical processes involved. However, there are problems with the LES approach for the CTBL. The LES data need to be consistent with the observed data. The LES approach is discussed, and results are given which provide some insights into the simulated turbulent flow field. Problems with this approach for the CTBL and information from the FIRE experiment needed to justify the LES results are discussed.

  12. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  13. Adaptability in Coalition Teamwork (Faculte d’adaptation au travail d’ equipe en coalition)

    DTIC Science & Technology

    2008-04-01

    et des outils sont nécessaires au développement rapide d’équipes multiculturelles efficaces pour assurer le succès des missions, celles-ci étant...Les principaux résultats des 30 communications théoriques et de recherche ont été les suivants : • Les outils de formation (jeux, simulations...parmi les militaires ; • Le retour d’information sur le moral et les performances des équipes en opérations est un instrument qui est particulièrement

  14. Molecular diffusion in disordered interfacial media as probed by pulsed field gradients and nuclear magnetic relaxation dispersion

    NASA Astrophysics Data System (ADS)

    Levitz, P.; Korb, J.-P.; Bryant, R. G.

    1999-10-01

    We address the question of probing the fluid dynamics in disordered interfacial media by Pulsed field gradient (PFG) and Magnetic relaxation dispersion (MRD) techniques. We show that the PFG method is useful to separate the effects of morphology from the connectivity in disordered macroporous media. We propose simulations of molecular dynamics and spectral density functions, J(ω), in a reconstructed mesoporous medium for different limiting conditions at the pore surface. An algebraic form is found for J(ω) in presence of a surface diffusion and a local exploration of the pore network. A logarithmic form of J(ω) is found in presence of a pure surface diffusion. We present magnetic relaxation dispersion experiments (MRD) for water and acetone in calibrated mesoporous media to support the main results of our simulations and theories. Nous présentons les avantages respectifs des méthodes de gradients de champs pulsés (PFG) et de relaxation magnétique nucléaire en champs cyclés (MRD) pour sonder la dynamique moléculaire dans les milieux interfaciaux désordonnés. La méthode PFG est utile pour séparer la morphologie et la connectivité dans des milieux macroporeux. Des simulations de diffusion moléculaire et de densité spectrale J(ω) en milieux mésoporeux sont présentées dans différentes conditions limites aux interfaces des pores. Nous trouvons une forme de dispersion algébrique de J(ω) pour une diffusion de surface assistée d'une exploration locale du réseau de pores et une forme logarithmique dans le cas d'une simple diffusion de surface. Les résultats expérimentaux de la méthode MRD pour de l'eau et de l'acétone dans des milieux mésoporeux calibrés supportent les résultats principaux de nos simulations et théories.

  15. Large-eddy simulation of subtropical cloud-topped boundary layers: 1. A forcing framework with closed surface energy balance

    NASA Astrophysics Data System (ADS)

    Tan, Zhihong; Schneider, Tapio; Teixeira, João.; Pressel, Kyle G.

    2016-12-01

    Large-eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large-scale processes need to be prescribed or represented parameterically in the limited-area LES domains. It is important that the representation of large-scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e.g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change.

  16. Part 2 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES) models. The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS). The DNS method and the database are described in the first report of this series, Part 1 of a Computational Study of a Drop-Laden Mixing Layer (NPO-30719), NASA Tech Briefs, Vol. 28, No.7 (July 2004), page 59. The LES equations, which are derived by applying a spatial filter to the DNS set, govern the evolution of the larger scales of the flow and can therefore be solved on a coarser grid. Consistent with the reduction in grid points, the DNS drops would be represented by fewer drops, called computational drops in the LES context. The LES equations contain terms that cannot be directly computed on the coarser grid and that must instead be modeled. Two types of models are necessary: (1) those for the filtered source terms representing the effects of drops on the filtered flow field and (2) those for the sub-grid scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. All of the filtered-sourceterm models that were developed were found to overestimate the filtered source terms. For modeling the SGS fluxes, constant-coefficient Smagorinsky, gradient, and scale-similarity models were assessed and calibrated on the DNS database. The Smagorinsky model correlated poorly with the SGS fluxes, whereas the gradient and scale-similarity models were well correlated with the SGS quantities that they represented.

  17. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less

  18. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    DOE PAGES

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; ...

    2017-05-18

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less

  19. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier-Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    NASA Astrophysics Data System (ADS)

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; Harman, Todd; Nelson, Matthew A.; Brown, Michael J.; Pardyjak, Eric R.

    2017-08-01

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier-Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H_d/H_u) and street canyon-width to building-width aspect ratio ( S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.

  20. Transition between free, mixed and forced convection

    NASA Astrophysics Data System (ADS)

    Jaeger, W.; Trimborn, F.; Niemann, M.; Saini, V.; Hering, W.; Stieglitz, R.; Pritz, B.; Fröhlich, J.; Gabi, M.

    2017-07-01

    In this contribution, numerical methods are discussed to predict the heat transfer to liquid metal flowing in rectangular flow channels. A correct representation of the thermo-hydraulic behaviour is necessary, because these numerical methods are used to perform design and safety studies of components with rectangular channels. Hence, it must be proven that simulation results are an adequate representation of the real conditions. Up to now, the majority of simulations are related to forced convection of liquid metals flowing in circular pipes or rod bundle, because these geometries represent most of the components in process engineering (e.g. piping, heat exchanger). Open questions related to liquid metal heat transfer, among others, is the behaviour during the transition of the heat transfer regimes. Therefore, this contribution aims to provide useful information related to the transition from forced to mixed and free convection, with the focus on a rectangular flow channel. The assessment of the thermo-hydraulic behaviour under transitional heat transfer regimes is pursued by means of system code simulations, RANS CFD simulations, LES and DNS, and experimental investigations. Thereby, each of the results will compared to the others. The comparison of external experimental data, DNS data, RANS data and system code simulation results shows that the global heat transfer can be consistently represented for forced convection in rectangular flow channels by these means. Furthermore, LES data is in agreement with RANS CFD results for different Richardson numbers with respect to temperature and velocity distribution. The agreement of the simulation results among each other and the hopefully successful validation by means of experimental data will fosters the confidence in the predicting capabilities of numerical methods, which can be applied to engineering application.

  1. Large Eddy Simulation of Flame Flashback in Swirling Premixed Flames

    NASA Astrophysics Data System (ADS)

    Lietz, Christopher; Raman, Venkatramanan

    2014-11-01

    In the design of high-hydrogen content gas turbines for power generation, flashback of the turbulent flame by propagation through the low velocity boundary layers in the premixing region is an operationally dangerous event. Predictive models that could accurately capture the onset and subsequent behavior of flashback would be indispensable in gas turbine design. The large eddy simulation (LES) approach is used here to model this process. The goal is to examine the validity of a probability distribution function (PDF) based model in the context of a lean premixed flame in a confined geometry. A turbulent swirling flow geometry and corresponding experimental data is used for validation. A suite of LES calculations are performed on a large unstructured mesh for varying fuel compositions operating at several equivalence ratios. It is shown that the PDF based method can predict some statistical properties of the flame front, with improvement over other models in the same application.

  2. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.

    2007-05-01

    An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.

  3. Uncertainty quantification in LES of channel flow

    DOE PAGES

    Safta, Cosmin; Blaylock, Myra; Templeton, Jeremy; ...

    2016-07-12

    Here, in this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence andmore » are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for.« less

  4. Boundary Layer Simulation and Control in Wind Tunnels

    DTIC Science & Technology

    1988-04-01

    de l’art dans le domaine de la simulation de la couche limite, ou le nombre de Reynolds n’est pas ou ne peut pas etre simule, examine les effets ...pour la definition de certains essais en soufflerie oil les effets visqueux sont d’une importance particuliere. CONTENTS Page PREFACE iii 1...transition associated with cylindrical bodies at high incidence in subsonic flow. Other relevant references are given therein. Figures 11 a-b, from Ref

  5. Model Validation for Propulsion - On the TFNS and LES Subgrid Models for a Bluff Body Stabilized Flame

    NASA Technical Reports Server (NTRS)

    Wey, Thomas

    2017-01-01

    This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).

  6. Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.

    2012-01-01

    This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.

  7. Implicit LES using adaptive filtering

    NASA Astrophysics Data System (ADS)

    Sun, Guangrui; Domaradzki, Julian A.

    2018-04-01

    In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.

  8. Consistent Large-Eddy Simulation of a Temporal Mixing Layer Laden with Evaporating Drops. Part 2; A Posteriori Modelling

    NASA Technical Reports Server (NTRS)

    Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette

    2005-01-01

    Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.

  9. Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)

    NASA Astrophysics Data System (ADS)

    Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar

    2017-07-01

    Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.

  10. Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder

    DOE PAGES

    Morgan, B. E.; Greenough, J. A.

    2015-04-08

    Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a k–L approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the timemore » at which L becomes resolved on the computational mesh. As a result, it is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.« less

  11. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  12. Large Eddy Simulation of a Film Cooling Flow Injected from an Inclined Discrete Cylindrical Hole into a Crossflow with Zero-Pressure Gradient Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Johnson, Perry L.; Shyam, Vikram

    2012-01-01

    A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics

  13. Large eddy simulations in 2030 and beyond

    PubMed Central

    Piomelli, U

    2014-01-01

    Since its introduction, in the early 1970s, large eddy simulations (LES) have advanced considerably, and their application is transitioning from the academic environment to industry. Several landmark developments can be identified over the past 40 years, such as the wall-resolved simulations of wall-bounded flows, the development of advanced models for the unresolved scales that adapt to the local flow conditions and the hybridization of LES with the solution of the Reynolds-averaged Navier–Stokes equations. Thanks to these advancements, LES is now in widespread use in the academic community and is an option available in most commercial flow-solvers. This paper will try to predict what algorithmic and modelling advancements are needed to make it even more robust and inexpensive, and which areas show the most promise. PMID:25024415

  14. Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina

    NASA Astrophysics Data System (ADS)

    Varni, Marcelo R.; Usunoff, Eduardo J.

    A three-dimensional modular model (MODFLOW) was used to simulate groundwater flow in the Azul River basin, Buenos Aires Province, Argentina, in order to assess the correctness of the conceptual model of the hydrogeological system. Simulated heads satisfactorily match observed heads in the regional water-table aquifer. Model results indicate that: (1) groundwater recharge is not uniform throughout the region but is best represented by three recharge rates, decreasing downgradient, similar to the distribution of soils and geomorphological characteristics; and (2) evapotranspiration rates are larger than previous estimates, which were made by using the Thornthwaite-Mather method. Evapotranspiration rates estimated by MODFLOW agree with results of independent studies of the region. Model results closely match historical surface-flow records, thereby suggesting that the model description of the aquifer-river relationship is correct. Résumé Un modèle modulaire tridimensionnel (MODFLOW) a été utilisé pour simuler les écoulements souterrains dans le bassin de la rivière Azul (Province de Buenos Aires, Argentine), dans le but d'évaluer la justesse du modèle conceptuel du système hydrogéologique. La piézométrie simulée s'ajuste de façon satisfaisante à celle observée pour l'ensemble de la nappe. Les résultats du modèle indiquent que: (1) la recharge de la nappe n'est pas uniforme sur toute la région, mais qu'elle est mieux approchée par trois valeurs différentes, décroissant vers l'aval-gradient, en suivant la même distribution que les sols et les caractéristiques géomorphologiques et (2) l'évapotranspiration est nettement plus importante que prévu initialement à partir de la méthode de Thornthwaite-Mather. Les valeurs d'évapotranspiration fournies par MODFLOW concordent bien avec les résultats d'autres études portant sur la région. Les résultats du modèle reproduisent convenablement les chroniques de débit des écoulements de surface, suggérant ainsi que la description par le modèle des relations rivière-nappe est correcte. Resumen Se ha utilizado el modelo MODFLOW, del Servicio Geológico de los Estados Unidos, para simular el flujo de agua subterránea en la cuenca del arroyo del Azul, Provincia de Buenos Aires, Argentina, con el objeto de evaluar el modelo hidrogeológico conceptual. Los niveles hidráulicos simulados ajustan satisfactoriamente con los niveles observados. Los resultados de la simulación indican que: (1) la recarga no es uniforme, sino que puede caracterizarse con tres zonas en las que sus valores decrecen en la medida en que decrece la pendiente, que guarda similitud con la distribución de suelos y características geomorfológicas y (2) la evapotranspiración sería mayor que la estimada en estudios previos, en los que se utilizó el método de Thornthwaite-Mather. La evapotranspiración estimada mediante la presente simulación concuerda con resultados de varios estudios independientes en la región. Respecto de la relación acuífero-río, existe un muy buen ajuste entre los aportes del acuífero al río simulados y los valores históricos de caudal base.

  15. Analysis of a Simulation Experiment on Optimized Crewing for Damage Control

    DTIC Science & Technology

    2012-06-01

    base donnaient un rendement supérieur à l’automatisation moyenne pour l’intervention en cas d’inondation. À partir de ces analyses, les auteurs du...et l’analyse ultérieures de données aux fins d’expériences de simulation semblables. Enfin, les auteurs du rapport ont établi des pistes...DRDC Toronto. [6] Floyd, J., Hunt, S., Williams, F., & Tatem, P. (2004). Fire + Smoke Simulator (FSSIM), Version 1 - Theory manual (NRL/MR/6180-04

  16. Towards Direct Numerical Simulation of mass and energy fluxes at the soil-atmospheric interface with advanced Lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Krafczyk, Manfred; Geier, Martin; Schönherr, Martin

    2014-05-01

    The quantification of soil evaporation and of soil water content dynamics near the soil surface are critical in the physics of land-surface processes on many scales and are dominated by multi-component and multi-phase mass and energy fluxes between the ground and the atmosphere. Although it is widely recognized that both liquid and gaseous water movement are fundamental factors in the quantification of soil heat flux and surface evaporation, their computation has only started to be taken into account using simplified macroscopic models. As the flow field over the soil can be safely considered as turbulent, it would be natural to study the detailed transient flow dynamics by means of Large Eddy Simulation (LES [1]) where the three-dimensional flow field is resolved down to the laminar sub-layer. Yet this requires very fine resolved meshes allowing a grid resolution of at least one order of magnitude below the typical grain diameter of the soil under consideration. In order to gain reliable turbulence statistics, up to several hundred eddy turnover times have to be simulated which adds up to several seconds of real time. Yet, the time scale of the receding saturated water front dynamics in the soil is on the order of hours. Thus we are faced with the task of solving a transient turbulent flow problem including the advection-diffusion of water vapour over the soil-atmospheric interface represented by a realistic tomographic reconstruction of a real porous medium taken from laboratory probes. Our flow solver is based on the Lattice Boltzmann method (LBM) [2] which has been extended by a Cumulant approach similar to the one described in [3,4] to minimize the spurious coupling between the degrees of freedom in previous LBM approaches and can be used as an implicit LES turbulence model due to its low numerical dissipation and increased stability at high Reynolds numbers. The kernel has been integrated into the research code Virtualfluids [5] and delivers up to 30% of the peak performance of modern General Purpose Graphics Processing Units (GPGPU, [6]) allowing the simulation of several minutes real-time for an LES LBM model. In our contribution we will present detailed profiles of the velocity distribution for different surface roughnesses, describe our multi-scale approach for the advection diffusion and estimate water vapour fluxes from transient simulations of the coupled problem. REFERENCES [1] J. Fröhlich and D. von Terzi. Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences, 44(5):349 - 377, 2008. [2] S. Chen and G. D. Doolen, Annual Review, of Fluid Mechanics 30, 329, 1998, [3] S. Seeger and K. H. Hoffmann, The cumulant method for computational kinetic theory, Continuum Mech. Thermodyn., 12:403-421, 2000. [4] S. Seeger and K. H. Hoffmann, The cumulant method applied to a mixture of Maxwell gases, Continuum Mech. Thermodyn., 14:321-335, 2002. [5] S. Freudiger, J. Hegewald and M. Krafczyk. A parallelisation concept for a mult-physics Lattice Boltzmann prototype based on hierarchical grids. Progress in Computational Fluid Dynamics, 8(1):168-178, 2008. [6] M. Schönherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger and M. Krafczyk, Multi- thread implementations of the Lattice Boltzmann method on non-uniform grids for CPUs and GPUs. Computers & Mathematics with Applications, 61(12):3730-3743, 2011.

  17. Simulating wind and marine hydrokinetic turbines with actuator lines in RANS and LES

    NASA Astrophysics Data System (ADS)

    Bachant, Peter; Wosnik, Martin

    2015-11-01

    As wind and marine hydrokinetic (MHK) turbine designs mature, focus is shifting towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow or horizontal-axis turbines, or taking advantage of constructive wake interaction for cross-flow or vertical-axis turbines. Towards this goal, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with moderate Reynolds number experiments and body-fitted mesh, blade-resolving CFD. Work supported by NSF-CBET grant 1150797.

  18. Optimizing wind farm layout via LES-calibrated geometric models inclusive of wind direction and atmospheric stability effects

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Ghaisas, Niranjan

    2015-04-01

    The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.

  19. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE PAGES

    Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...

    2017-12-28

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  20. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jae; Manuel, Lance; Churchfield, Matthew

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  1. Validation de modeles d'eclairement incident a la surface de l'eau en Arctique

    NASA Astrophysics Data System (ADS)

    Julien, Laliberte

    Dans ce memoire, deux methodes d'estimation d'eclairement incident a la surface de l'Arctique sont evaluees. Une base de donnees in situ a ete constituee a partir de 16 campagnes oceanographiques en Arctique. Pour les dates ou l'eclairement est mesure, les estimations d'eclairement journalier incident a la surface obtenues a partir des satellites de la couleur de l'eau (Frouin et al. 2003) et a partir des satellites meteorologiques (Belanger et al. 2013) sont produites. De meme, un exercise de comparaison entre les estimations satellitaires est produit pour l'annee 2004 sur tout le territoire Arctique. La comparaison entre les donnees observees et les donnees estimees a partir des satellites meteorologiques donnent un biais de 6% et une quadratique moyenne 33%. La comparaison entre les observations et les satellites de la couleur de l'eau donnent un biais de 2% et 20%. Finalement, la difference moyenne entre les estimations des 2 methodes d'estimation satellitaires pour tout l'Arctique pour l'annee 2004 est de 0,29 Einstein/m2/jour avec un ecart-type de 6,78 Einstein/m2/jour. Les resultats montrent entre autres que la methode qui utilise les satellites de la couleur de l'eau est plus precise pour estimer l'eclairement sur une petite superficie puisqu'elle rend mieux les variations locales dans l'eclairement. La methode qui utilise les satellites meteorologique est plus precise pour estimer l'eclairement sur une grande superficie, puisqu'elle est moins restreinte dans les conditions qui permettent de fournir une estimation. Ainsi, la methode qui utilise les satellites meteorologiques montre qu'un eclairement annuel de l'Arctique de 38% n'est pas prise en compte par les satellites de la couleur de l'eau.

  2. The Interaction of the Space Shuttle Launch and Entry Suits and Sustained Weightless on Astronaut Egress Locomotion

    NASA Technical Reports Server (NTRS)

    Greenisen, M. C.; Bishop, P. A.; Sothmann, M.

    2008-01-01

    The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.

  3. Effet des Plastifiants sur la Temperature de Transition Vitreuse, Tg, du Butadiene a Terminaison Hydroxy et du Polyazoture de Glycidyle - Simulations et Experiences (Effect of the Plasticizers on the Vitreous Transition Temperature, Tg, of the Butadiene to Termination Hydroxy and the Polyazoture of Glycidyle - Simulations and Experiences)

    DTIC Science & Technology

    2008-09-01

    diverses temperatures 26 a) HTPB pur b) HTPB-DOA (polymere et plastifiant) c) GAP pur d) Gpl pur e)Gap-Gpl Liste des tableaux Tableau 1...Composition des mailles amorphes construites 11 Tableau 2. Proprietes des polymeres et plastifiants utilises 11 Tableau 3. Comparaisons entre les Tt...obtenues experimentalement, les T% publiees dans les ecrits scientifiques et celles predites a partir des 7"gdes composes purs 19 Tableau 4. Comparaison

  4. The transition prediction toolkit: LST, SIT, PSE, DNS, and LES

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Chang, Chau-Lyan; Ng, Lian L.

    1992-01-01

    The e(sup N) method for predicting transition onset is an amplitude ratio criterion that is on the verge of full maturation for three-dimensional, compressible, real gas flows. Many of the components for a more sophisticated, absolute amplitude criterion are now emerging: receptivity theory, secondary instability theory, parabolized stability equations approaches, direct numerical simulation and large-eddy simulation. This paper will provide a description of each of these new theoretical tools and provide indications of their current status.

  5. Hybrid LES/RANS Simulation of the Effects of Boundary Layer Control Devices Using Immersed Boundary Methods

    DTIC Science & Technology

    2010-02-22

    any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a... its use in simulating the effects of different types of flow control devices: micro vortex generators, bleed-hole arrays, aero- elastically...large scale, and that local pressure differences can lead to periodic blowing / suction even in “active” control devices [5], it appears that

  6. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    NASA Astrophysics Data System (ADS)

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail

    2011-01-01

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling multispecies processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense. Existing lower and upper bounds on linear correlation coefficients are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are populated here using a "cSigma" parameterization that we introduce based on the aforementioned bounds on correlations. The method has three advantages: (1) the computational expense is tolerable; (2) the correlations are, by construction, guaranteed to be consistent with each other; and (3) the methodology is fairly general and hence may be applicable to other problems. The method is tested noninteractively using simulations of three Arctic mixed-phase cloud cases from two field experiments: the Indirect and Semi-Direct Aerosol Campaign and the Mixed-Phase Arctic Cloud Experiment. Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.

  7. Calcul numérique accéléré de mesures de performance sur les modèles Markoviens appliqués aux systèmes informatiques et de télécommunications

    NASA Astrophysics Data System (ADS)

    Ghaddar, A.; Sinno, N.

    2005-05-01

    La complexité du phénomène de files d'attente dans les systèmes informatiques et télécommunications nécessite leur simulation par des modèles Markoviens pour les mesures de performance, mesure des délais d'attente au niveau des routeurs pour le modèle informatique et l'étude de la gestion des appels téléphoniques pour le modèle des circuits téléphoniques. L'optimisation des méthodes numériques de résolution des équations relatives à ces deux modèles va permettre d' ídentifier les critères de convergence rapide vers les états stationnaires correspondant à ces mesures.

  8. LES on unstructured deforming meshes: Towards reciprocating IC engines

    NASA Technical Reports Server (NTRS)

    Haworth, D. C.; Jansen, K.

    1996-01-01

    A variable explicit/implicit characteristics-based advection scheme that is second-order accurate in space and time has been developed recently for unstructured deforming meshes (O'Rourke & Sahota 1996a). To explore the suitability of this methodology for Large-Eddy Simulation (LES), three subgrid-scale turbulence models have been implemented in the CHAD CFD code (O'Rourke & Sahota 1996b): a constant-coefficient Smagorinsky model, a dynamic Smagorinsky model for flows having one or more directions of statistical homogeneity, and a Lagrangian dynamic Smagorinsky model for flows having no spatial or temporal homogeneity (Meneveau et al. 1996). Computations have been made for three canonical flows, progressing towards the intended application of in-cylinder flow in a reciprocating engine. Grid sizes were selected to be comparable to the coarsest meshes used in earlier spectral LES studies. Quantitative results are reported for decaying homogeneous isotropic turbulence, and for a planar channel flow. Computations are compared to experimental measurements, to Direct-Numerical Simulation (DNS) data, and to Rapid-Distortion Theory (RDT) where appropriate. Generally satisfactory evolution of first and second moments is found on these coarse meshes; deviations are attributed to insufficient mesh resolution. Issues include mesh resolution and computational requirements for a specified level of accuracy, analytic characterization of the filtering implied by the numerical method, wall treatment, and inflow boundary conditions. To resolve these issues, finer-mesh simulations and computations of a simplified axisymmetric reciprocating piston-cylinder assembly are in progress.

  9. Large Eddy Simulation of a Supercritical Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi

    2017-11-01

    Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.

  10. Velocity-Resolved LES (VR-LES) technique for simulating turbulent transport of high Schmidt number passive scalars

    NASA Astrophysics Data System (ADS)

    Verma, Siddhartha; Blanquart, Guillaume; P. K. Yeung Collaboration

    2011-11-01

    Accurate simulation of high Schmidt number scalar transport in turbulent flows is essential to studying pollutant dispersion, weather, and several oceanic phenomena. Batchelor's theory governs scalar transport in such flows, but requires further validation at high Schmidt and high Reynolds numbers. To this end, we use a new approach with the velocity field fully resolved, but the scalar field only partially resolved. The grid used is fine enough to resolve scales up to the viscous-convective subrange where the decaying slope of the scalar spectrum becomes constant. This places the cutoff wavenumber between the Kolmogorov scale and the Batchelor scale. The subgrid scale terms, which affect transport at the supergrid scales, are modeled under the assumption that velocity fluctuations are negligible beyond this cutoff wavenumber. To ascertain the validity of this technique, we performed a-priori testing on existing DNS data. This Velocity-Resolved LES (VR-LES) technique significantly reduces the computational cost of turbulent simulations of high Schmidt number scalars, and yet provides valuable information of the scalar spectrum in the viscous-convective subrange.

  11. Simulating effects of a wind-turbine array using LES and RANS: Simulating turbines using LES and RANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderwende, Brian J.; Kosović, Branko; Lundquist, Julie K.

    2016-08-27

    Growth in wind power production has motivated investigation of wind-farm impacts on in situ flow fields and downstream interactions with agriculture and other wind farms. These impacts can be simulated with both large-eddy simulations (LES) and mesoscale wind-farm parameterizations (WFP). The Weather Research and Forecasting (WRF) model offers both approaches. We used the validated generalized actuator disk (GAD) parameterization in WRF-LES to assess WFP performance. A 12-turbine array was simulated using the GAD model and the WFP in WRF. We examined the performance of each scheme in both convective and stable conditions. The GAD model and WFP produced qualitatively similarmore » wind speed deficits and turbulent kinetic energy (TKE) production across the array in both stability regimes, though the magnitudes of velocity deficits and TKE production levels were underestimated and overestimated, respectively. While wake growth slowed in the latter half of the WFP array as expected, wakes did not approach steady state by the end of the array as simulated by the GAD model. A sensitivity test involving the deactivation of explicit TKE production by the WFP resulted in turbulence levels within the array well that were below those produced by the GAD in both stable and unstable conditions. Finally, the WFP overestimated downwind power production deficits in stable conditions because of the lack of wake stabilization in the latter half of the array.« less

  12. Nested high-resolution large-eddy simulations in WRF to support wind power

    NASA Astrophysics Data System (ADS)

    Mirocha, J.; Kirkil, G.; Kosovic, B.; Lundquist, J. K.

    2009-12-01

    The WRF model’s grid nesting capability provides a potentially powerful framework for simulating flow over a wide range of scales. One such application is computation of realistic inflow boundary conditions for large eddy simulations (LES) by nesting LES domains within mesoscale domains. While nesting has been widely and successfully applied at GCM to mesoscale resolutions, the WRF model’s nesting behavior at the high-resolution (Δx < 1000m) end of the spectrum is less well understood. Nesting LES within msoscale domains can significantly improve turbulent flow prediction at the scale of a wind park, providing a basis for superior site characterization, or for improved simulation of turbulent inflows encountered by turbines. We investigate WRF’s grid nesting capability at high mesh resolutions using nested mesoscale and large-eddy simulations. We examine the spatial scales required for flow structures to equilibrate to the finer mesh as flow enters a nest, and how the process depends on several parameters, including grid resolution, turbulence subfilter stress models, relaxation zones at nest interfaces, flow velocities, surface roughnesses, terrain complexity and atmospheric stability. Guidance on appropriate domain sizes and turbulence models for LES in light of these results is provided This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-ABS-416482

  13. Performance assessment of a pre-partitioned adaptive chemistry approach in large-eddy simulation of turbulent flames

    NASA Astrophysics Data System (ADS)

    Pepiot, Perrine; Liang, Youwen; Newale, Ashish; Pope, Stephen

    2016-11-01

    A pre-partitioned adaptive chemistry (PPAC) approach recently developed and validated in the simplified framework of a partially-stirred reactor is applied to the simulation of turbulent flames using a LES/particle PDF framework. The PPAC approach was shown to simultaneously provide significant savings in CPU and memory requirements, two major limiting factors in LES/particle PDF. The savings are achieved by providing each particle in the PDF method with a specialized reduced representation and kinetic model adjusted to its changing composition. Both representation and model are identified efficiently from a pre-determined list using a low-dimensional binary-tree search algorithm, thereby keeping the run-time overhead associated with the adaptive strategy to a minimum. The Sandia D flame is used as benchmark to quantify the performance of the PPAC algorithm in a turbulent combustion setting. In particular, the CPU and memory benefits, the distribution of the various representations throughout the computational domain, and the relationship between the user-defined error tolerances used to derive the reduced representations and models and the actual errors observed in LES/PDF are characterized. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-90ER14128.

  14. Wildfire simulation using LES with synthetic-velocity SGS models

    NASA Astrophysics Data System (ADS)

    McDonough, J. M.; Tang, Tingting

    2016-11-01

    Wildland fires are becoming more prevalent and intense worldwide as climate change leads to warmer, drier conditions; and large-eddy simulation (LES) is receiving increasing attention for fire spread predictions as computing power continues to improve (see, e.g.,). We report results from wildfire simulations over general terrain employing implicit LES for solution of the incompressible Navier-Stokes (N.-S.) and thermal energy equations with Boussinesq approximation, altered with Darcy, Forchheimer and Brinkman extensions, to represent forested regions as porous media with varying (in both space and time) porosity and permeability. We focus on subgrid-scale (SGS) behaviors computed with a synthetic-velocity model, a discrete dynamical system, based on the poor man's N.-S. equations and investigate the ability of this model to produce fire whirls (tornadoes of fire) at the (unresolved) SGS level. Professor, Mechanical Engineering and Mathematics.

  15. Advancing Detached-Eddy Simulation

    DTIC Science & Technology

    2007-01-01

    fluxes leads to an improvement in the stability of the solution . This matrix is solved iteratively using a symmetric Gauss - Seidel procedure. Newtons sub...model (TLM) is a zonal approach, proposed by Balaras and Benocci (5) and Balaras et al. (4). The method involved the solution of filtered Navier...LES mesh. The method was subsequently used by Cabot (6) and Diurno et al. (7) to obtain the solution of the flow over a backward facing step and by

  16. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    NASA Astrophysics Data System (ADS)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  17. Investigations of Flow Over a Hemisphere Using Numerical Simulations (Postprint)

    DTIC Science & Technology

    2015-06-22

    ranging from missile defense, remote sensing , and imaging . An important aspect of these applications is determining the effective beam-on-target...Stokes (URANS), detached eddy simulation (DES), and hybrid RANS/LES. The numerical results were compared with the experiment conducted at Auburn...turret. Using the DES and hybrid RANS/LES turbulence models, Loci-Chem was able to capture the unsteady flow structures, such as the shear layer

  18. Skill of ship-following large-eddy simulations in reproducing MAGIC observations across the northeast Pacific stratocumulus to cumulus transition region

    NASA Astrophysics Data System (ADS)

    McGibbon, J.; Bretherton, C. S.

    2017-06-01

    During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons and meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a -0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m-2 in sensible heat flux (SHF). Overall, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.Plain Language SummaryDuring the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign in October 2011 to September 2012, a cargo container ship making regular cruises between Los Angeles, CA, and Honolulu, HI, was fitted with tools to measure aspects of the clouds and atmosphere above the ship. We used some of these observations to perform high-resolution computer simulations of the atmosphere in the region around the ship, with the goal of testing how well the simulation produces clouds and atmosphere similar to what was observed. Simulations of 13 one-way cruises to Honolulu, HI, were performed. We see the simulations skillfully produce changes in cloud properties that occur at different times of day and have average properties that match well with the observations. One error is that the air near the surface is slightly too cold in the simulations, meaning more heat is transferred up from the surface. Overall, this result builds confidence and trust in the ability of this type of simulation to produce realistic cloud properties in the northeast Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A21D0163V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A21D0163V"><span>Model-Observation "Data Cubes" for the DOE Atmospheric Radiation Measurement Program's LES ARM Symbiotic Simulation and Observation (LASSO) Workflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogelmann, A. M.; Gustafson, W. I., Jr.; Toto, T.; Endo, S.; Cheng, X.; Li, Z.; Xiao, H.</p> <p>2015-12-01</p> <p>The Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facilities' Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) Workflow is currently being designed to provide output from routine LES to complement its extensive observations. The modeling portion of the LASSO workflow is presented by Gustafson et al., which will initially focus on shallow convection over the ARM megasite in Oklahoma, USA. This presentation describes how the LES output will be combined with observations to construct multi-dimensional and dynamically consistent "data cubes", aimed at providing the best description of the atmospheric state for use in analyses by the community. The megasite observations are used to constrain large-eddy simulations that provide a complete spatial and temporal coverage of observables and, further, the simulations also provide information on processes that cannot be observed. Statistical comparisons of model output with their observables are used to assess the quality of a given simulated realization and its associated uncertainties. A data cube is a model-observation package that provides: (1) metrics of model-observation statistical summaries to assess the simulations and the ensemble spread; (2) statistical summaries of additional model property output that cannot be or are very difficult to observe; and (3) snapshots of the 4-D simulated fields from the integration period. Searchable metrics are provided that characterize the general atmospheric state to assist users in finding cases of interest, such as categorization of daily weather conditions and their specific attributes. The data cubes will be accompanied by tools designed for easy access to cube contents from within the ARM archive and externally, the ability to compare multiple data streams within an event as well as across events, and the ability to use common grids and time sampling, where appropriate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDE13006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDE13006L"><span>Resolving Low-Density Lipoprotein (LDL) on the Human Aortic Surface Using Large Eddy Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantz, Jonas; Karlsson, Matts</p> <p>2011-11-01</p> <p>The prediction and understanding of the genesis of vascular diseases is one of the grand challenges in biofluid engineering. The progression of atherosclerosis is correlated to the build- up of LDL on the arterial surface, which is affected by the blood flow. A multi-physics simulation of LDL mass transport in the blood and through the arterial wall of a subject specific human aorta was performed, employing a LES turbulence model to resolve the turbulent flow. Geometry and velocity measurements from magnetic resonance imaging (MRI) were incorporated to assure physiological relevance of the simulation. Due to the turbulent nature of the flow, consecutive cardiac cycles are not identical, neither in vivo nor in the simulations. A phase average based on a large number of cardiac cycles is therefore computed, which is the proper way to get reliable statistical results from a LES simulation. In total, 50 cardiac cycles were simulated, yielding over 2.5 Billion data points to be post-processed. An inverse relation between LDL and WSS was found; LDL accumulated on locations where WSS was low and vice-versa. Large temporal differences were present, with the concentration level decreasing during systolic acceleration and increasing during the deceleration phase. This method makes it possible to resolve the localization of LDL accumulation in the normal human aorta with its complex transitional flow.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020066763','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020066763"><span>Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.</p> <p>2002-01-01</p> <p>The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001tra..conf..199G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001tra..conf..199G"><span>Vents stellaires chauds et nébuleuses éjectées des étoiles chaudes: nécessaire inclusion des phénomènes radiatifs dans les simulations hydrodynamiques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grosdidier, Y.; Garcia-Segura, G.; Acker, A.; Moffat, A. F. J.</p> <p></p> <p>Nous décrivons, à l'instar de la formation et de l'évolution des nébuleuses planétaires, comment l'histoire des vents stellaires issus d'une même étoile chaude (massive ou non) détermine la morphologie des nébuleuses éjectées. Ensuite, nous présentons sommairement la structure et la dynamique des vents accélérés radiativement au sein des étoiles massives (O, Wolf-Rayet) et des étoiles centrales de nébuleuses planétaires de type [WC]. Enfin, nous tâchong d'illustrer en quoi la prise en compte des phénomènes radiatifs est nécessaire pour effectuer toute simulation hydrodynamique sensée reproduire les observations dans les deux contextes, i.e. les vents stellaires chauds eux-mêmes, la persistance de surdensités en leur sein, et les nébuleuses éjectées qui en résultent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A41G..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A41G..05K"><span>Capabilities of current wildfire models when simulating topographical flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochanski, A.; Jenkins, M.; Krueger, S. K.; McDermott, R.; Mell, W.</p> <p>2009-12-01</p> <p>Accurate predictions of the growth, spread and suppression of wild fires rely heavily on the correct prediction of the local wind conditions and the interactions between the fire and the local ambient airflow. Resolving local flows, often strongly affected by topographical features like hills, canyons and ridges, is a prerequisite for accurate simulation and prediction of fire behaviors. In this study, we present the results of high-resolution numerical simulations of the flow over a smooth hill, performed using (1) the NIST WFDS (WUI or Wildland-Urban-Interface version of the FDS or Fire Dynamic Simulator), and (2) the LES version of the NCAR Weather Research and Forecasting (WRF-LES) model. The WFDS model is in the initial stages of development for application to wind flow and fire spread over complex terrain. The focus of the talk is to assess how well simple topographical flow is represented by WRF-LES and the current version of WFDS. If sufficient progress has been made prior to the meeting then the importance of the discrepancies between the predicted and measured winds, in terms of simulated fire behavior, will be examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1343122','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1343122"><span>Scalar excursions in large-eddy simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Matheou, Georgios; Dimotakis, Paul E.</p> <p></p> <p>Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1343122-scalar-excursions-large-eddy-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1343122-scalar-excursions-large-eddy-simulations"><span>Scalar excursions in large-eddy simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Matheou, Georgios; Dimotakis, Paul E.</p> <p>2016-08-31</p> <p>Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1024076-parameterizing-correlations-between-hydrometeor-species-mixed-phase-arctic-clouds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1024076-parameterizing-correlations-between-hydrometeor-species-mixed-phase-arctic-clouds"><span>Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen</p> <p>2011-08-16</p> <p>Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense.Existing lower and upper bounds (inequalities) on linear correlation coefficients provide useful guidance, but these bounds are too loose to serve directly as a method to predict subgrid correlations. Therefore,more » this paper proposes an alternative method that is based on a blend of theory and empiricism. The method begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are parameterized here using a cosine row-wise formula that is inspired by the aforementioned bounds on correlations. The method has three advantages: 1) the computational expense is tolerable; 2) the correlations are, by construction, guaranteed to be consistent with each other; and 3) the methodology is fairly general and hence may be applicable to other problems. The method is tested non-interactively using simulations of three Arctic mixed-phase cloud cases from two different field experiments: the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE). Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CRMec.341..257A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CRMec.341..257A"><span>Numerical investigation of a helicopter combustion chamber using LES and tabulated chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Auzillon, Pierre; Riber, Eléonore; Gicquel, Laurent Y. M.; Gicquel, Olivier; Darabiha, Nasser; Veynante, Denis; Fiorina, Benoît</p> <p>2013-01-01</p> <p>This article presents Large Eddy Simulations (LES) of a realistic aeronautical combustor device: the chamber CTA1 designed by TURBOMECA. Under nominal operating conditions, experiments show hot spots observed on the combustor walls, in the vicinity of the injectors. These high temperature regions disappear when modifying the fuel stream equivalence ratio. In order to account for detailed chemistry effects within LES, the numerical simulation uses the recently developed turbulent combustion model F-TACLES (Filtered TAbulated Chemistry for LES). The principle of this model is first to generate a lookup table where thermochemical variables are computed from a set of filtered laminar unstrained premixed flamelets. To model the interactions between the flame and the turbulence at the subgrid scale, a flame wrinkling analytical model is introduced and the Filtered Density Function (FDF) of the mixture fraction is modeled by a β function. Filtered thermochemical quantities are stored as a function of three coordinates: the filtered progress variable, the filtered mixture fraction and the mixture fraction subgrid scale variance. The chemical lookup table is then coupled with the LES using a mathematical formalism that ensures an accurate prediction of the flame dynamics. The numerical simulation of the CTA1 chamber with the F-TACLES turbulent combustion model reproduces fairly the temperature fields observed in experiments. In particular the influence of the fuel stream equivalence ratio on the flame position is well captured.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........57S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........57S"><span>Development of a Regional Structured and Unstructured Grid Methodology for Chemically Reactive Turbulent Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stefanski, Douglas Lawrence</p> <p></p> <p>A finite volume method for solving the Reynolds Averaged Navier-Stokes (RANS) equations on unstructured hybrid grids is presented. Capabilities for handling arbitrary mixtures of reactive gas species within the unstructured framework are developed. The modeling of turbulent effects is carried out via the 1998 Wilcox k -- o model. This unstructured solver is incorporated within VULCAN -- a multi-block structured grid code -- as part of a novel patching procedure in which non-matching interfaces between structured blocks are replaced by transitional unstructured grids. This approach provides a fully-conservative alternative to VULCAN's non-conservative patching methods for handling such interfaces. In addition, the further development of the standalone unstructured solver toward large-eddy simulation (LES) applications is also carried out. Dual time-stepping using a Crank-Nicholson formulation is added to recover time-accuracy, and modeling of sub-grid scale effects is incorporated to provide higher fidelity LES solutions for turbulent flows. A switch based on the work of Ducros, et al., is implemented to transition from a monotonicity-preserving flux scheme near shocks to a central-difference method in vorticity-dominated regions in order to better resolve small-scale turbulent structures. The updated unstructured solver is used to carry out large-eddy simulations of a supersonic constrained mixing layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDD28008Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDD28008Y"><span>An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles</p> <p>2014-11-01</p> <p>A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017395','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017395"><span>Development of the Glenn-HT Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Philip; Thurman, Douglas; Steinthorsson, Erlendur</p> <p>2014-01-01</p> <p>Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations which are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminarturbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes which take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-HT code and applied to film cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30 holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and four blowing ratios of 0.5, 1.0, 1.5 and 2.0 are shown. Flow features under those conditions are also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150023513','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150023513"><span>DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garai, Anirban; Diosady, Laslo Tibor; Murman, Scott; Madavan, Nateri</p> <p>2015-01-01</p> <p>A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S88-42425&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Draft','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S88-42425&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Draft"><span>STS-26 Pilot Covey floats in life raft during JSC WETF exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1988-01-01</p> <p>STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28h5103W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28h5103W"><span>Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, T.; Nagata, K.</p> <p>2016-08-01</p> <p>We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.821a2010M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.821a2010M"><span>A flamelet model for transcritical LOx/GCH4 flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, Hagen; Pfitzner, Michael</p> <p>2017-03-01</p> <p>This work presents a numerical framework to efficiently simulate methane combustion at supercritical pressures. A LES flamelet approach is adapted to account for real-gas thermodynamics effects which are a prominent feature of flames at near-critical injection conditions. The thermodynamics model is based on the Peng-Robinson equation of state (PR-EoS) in conjunction with a novel volume-translation method to correct deficiencies in the transcritical regime. The resulting formulation is more accurate than standard cubic EoSs without deteriorating their good computational performance. To consistently account for pressure and strain fluctuations in the flamelet model, an additional enthalpy equation is solved along with the transport equations for mixture fraction and mixture fraction variance. The method is validated against available experimental data for a laboratory scale LOx/GCH4 flame at conditions that resemble those in liquid-propellant rocket engines. The LES result is in good agreement with the measured OH* radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.......150K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.......150K"><span>Evaluation d'un ecosysteme pastoral sahelien: Apport de la geomatique (Oursi, Burkina Faso)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kabore, Seraphine Sawadogo</p> <p></p> <p>L'objectif principal de cette recherche est la mise au point d'une architecture d'integration de donnees socio-bio-geographiques et de donnees satellitales dans un Systeme d'Information Geographique (SIG) en vue d'une aide a la prise de decisions dans un environnement semi-aride au nord du Burkina Faso. Elle repond a la question fondamentale de l'interpretation des effets des facteurs climatiques et socioeconomiques sur le milieu pastoral. La recherche s'est appuyee sur plusieurs hypotheses de travail: possibilite d'utilisation de modele de simulation, d'approche multicritere et de donnees de teledetection dans un cadre de systeme d'information geographique. L'evolution spatiotemporelle des parametres de productivite du milieu a ete evaluee par approche dynamique selon le modele de Wu et al. (1996) qui modelise les interactions entre le climat, le milieu physique, le vegetal et l'animal pour mieux quantifier la biomasse primaire. A ce modele, quatre parametres ont ete integres par approche floue et multicritere afin de prendre en compte la dimension socioeconomique de la productivite pastorale (apport majeur de la recherche): la sante, l'education, l'agriculture et l'eau. La teledetection (imagerie SPOT) a permis de definir la production primaire a partir de laquelle les simulations ont ete realisees sur 10 annees. Les resultats obtenus montrent une bonne correlation entre biomasse primaire in situ et celle calculee pour les deux modeles, avec toutefois une meilleure efficacite du modele modifie (4 fois plus) dans les zones de forte productivite ou l'on note un taux de surexploitation agricole eleve. A cause de la variabilite spatiale de la production primaire in situ, les erreurs des resultats de simulation (8 a 11%) sont acceptables et montrent la pertinence de l'approche grace a l'utilisation des SIG pour la spatialisation et l'integration des differents parametres des modeles. Les types de production secondaire preconises (production de lait pendant 7 mois ou de viande pendant 6 mois) sont bases sur les besoins de l'UBT et le disponible fourrager qui est de qualite mediocre en saison seche. Dans les deux cas de figure, un deficit fourrager est observe. Deux types de transhumance sont proposes afin d'assurer une production durable selon deux scenarios: exploitation rationnelle des unites pastorales selon un plan de rotation annuelle et mise en defens a moyen terme des zones degradees pour une regeneration. Les zones potentielles pour la transhumance ont ete determinees selon les limites acceptables des criteres d'exploitation durable des milieux saheliens definis par Kessler (1994) soit 0,2 UBT.ha-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A13D0367P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A13D0367P"><span>Spatial large-eddy simulations of contrail formation in the wake of an airliner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paoli, R.</p> <p>2015-12-01</p> <p>Contrails and contrail-cirrus are the most uncertain contributors to aviation radiative forcing. In order to reduce this uncertainty one needs to gain more knowledge on the physicochemical processes occurring in the aircraft plume, which eventually lead to the transformation of contrails into cirrus. To that end, the accurate prediction of the number of activated particles and their spatial and size distributions at the end of the jet regime may be helpful to initialize simulations in the following vortex regime. We present the results from spatial large-eddy simulations (LES) of contrail formation in the near-field wake of a generic (but full-scale) airliner that is representative of those used in long-haul flights in current fleets. The flow around the aircraft has been computed using a RANS code taking into account the full geometry that include the engines and the aerodynamic set-up for cruise conditions. The data have been reconstructed at a plane closely behind the trailing edge of the wing and used as inflow boundary conditions for the LES. We employ fully compressible 3D LES coupled to Lagrangian microphysical module that tracks parcels of ice particles individually. The ice microphysical model is simple yet it contains the basic thermodynamic ingredients to model soot activation and water vapor deposition. Compared to one-dimensional models or even RANS, LES allow for more accurate predictions of the mixing between exhaust and ambient air. Hence, the number of activated particles and the ice growth rate can be also determined with higher accuracy. This is particularly crucial for particles located at the edge of the jet that experience large gradients of temperature and humidity. The results of the fully coupled LES (where the gas phase and the particles are solved together) are compared to offline simulations where the ice microphysics model is run using thermodynamic data from pre-calculated particle trajectories extracted from inert LES (where ice microphysics has been switched off).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JTurb..18..373A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JTurb..18..373A"><span>Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abkar, Mahdi; Dabiri, John O.</p> <p>2017-04-01</p> <p>Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.......130A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.......130A"><span>Elaboration de nouvelles approches micromecaniques pour l'optimisation des performances mecaniques des materiaux heterogenes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aboutajeddine, Ahmed</p> <p></p> <p>Les modeles micromecaniques de transition d'echelles qui permettent de determiner les proprietes effectives des materiaux heterogenes a partir de la microstructure sont consideres dans ce travail. L'objectif est la prise en compte de la presence d'une interphase entre la matrice et le renforcement dans les modeles micromecaniques classiques, de meme que la reconsideration des approximations de base de ces modeles, afin de traiter les materiaux multiphasiques. Un nouveau modele micromecanique est alors propose pour tenir compte de la presence d'une interphase elastique mince lors de la determination des proprietes effectives. Ce modele a ete construit grace a l'apport de l'equation integrale, des operateurs interfaciaux de Hill et de la methode de Mori-Tanaka. Les expressions obtenues pour les modules globaux et les champs dans l'enrobage sont de nature analytique. L'approximation de base de ce modele est amelioree par la suite dans un nouveau modele qui s'interesse aux inclusions enrobees avec un enrobage mince ou epais. La resolution utilisee s'appuie sur une double homogeneisation realisee au niveau de l'inclusion enrobee et du materiau. Cette nouvelle demarche, permettra d'apprehender completement les implications des approximations de la modelisation. Les resultats obtenus sont exploites par la suite dans la solution de l'assemblage de Hashin. Ainsi, plusieurs modeles micromecaniques classiques d'origines differentes se voient unifier et rattacher, dans ce travail, a la representation geometrique de Hashin. En plus de pouvoir apprecier completement la pertinence de l'approximation de chaque modele dans cette vision unique, l'extension correcte de ces modeles aux materiaux multiphasiques est rendue possible. Plusieurs modeles analytiques et explicites sont alors proposee suivant des solutions de differents ordres de l'assemblage de Hashin. L'un des modeles explicite apparait comme une correction directe du modele de Mori-Tanaka, dans les cas ou celui ci echoue a donner de bons resultats. Finalement, ce modele de Mori-Tanaka corrige est utilise avec les operateurs de Hill pour construire un modele de transition d'echelle pour les materiaux ayant une interphase elastoplastique. La loi de comportement effective trouvee est de nature incrementale et elle est conjuguee a la relation de la plasticite de l'interphase. Des simulations d'essais mecaniques pour plusieurs proprietes de l'interphase plastique a permis de dresser des profils de l'enrobage octroyant un meilleur comportement au materiau.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT.......169G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT.......169G"><span>Synthese de champs sonores adaptative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gauthier, Philippe-Aubert</p> <p></p> <p>La reproduction de champs acoustiques est une approche physique au probleme technologique de la spatialisation sonore. Cette these concerne l'aspect physique de la reproduction de champs acoustiques. L'objectif principal est l'amelioration de la reproduction de champs acoustiques par "synthese de champs acoustiques" ("Wave Field Synthesis", WFS), une approche connue, basee sur des hypotheses de champ libre, a l'aide du controle actif par l'ajout de capteurs de l'erreur de reproduction et d'une boucle fermee. Un premier chapitre technique (chapitre 4) expose les resultats d'appreciation objective de la WFS par simulations et mesures experimentales. L'effet indesirable de la salle de reproduction sur les qualites objectives de la WFS fut illustre. Une premiere question de recherche fut ensuite abordee (chapitre 5), a savoir s'il est possible de reproduire des champs progressifs en salle dans un paradigme physique de controle actif: cette possibilite fut prouvee. L'approche technique privilegiee, "synthese de champs adaptative" ("Adaptive Wave Field Synthesis" [AWFS]), fut definie, puis simulee (chapitre 6). Cette approche d'AWFS comporte une originalite en controle actif et en reproduction de champs acoustiques: la fonction cout quadratique representant la minimisation des erreurs de reproduction inclut une regularisation de Tikhonov avec solution a priori qui vient de la WFS. L'etude de l'AWFS a l'aide de la decomposition en valeurs singulieres (chapitre 7) a permis de comprendre les mecanismes propres a l'AWFS. C'est la deuxieme principale originalite de la these. L'algorithme FXLMS (LMS et reference filtree) est modifie pour l'AWFS (chapitre 8). Le decouplage du systeme par decomposition en valeurs singulieres est illustre dans le domaine du traitement de signal et l'AWFS basee sur le controle independant des modes de rayonnement est simulee (chapitre 8). Ce qui constitue la troisieme originalite principale de cette these. Ces simulations du traitement de signal montrent l'efficacite des algorithmes et la capacite de l'AWFS a attenuer les erreurs attribuables a des reflexions acoustiques. Le neuvieme chapitre presente des resultats experimentaux d'AWFS. L'objectif etait de valider la methode et d'evaluer les performances de l'AWFS. Un autre algorithme prometteur est aussi teste. Les resultats demontrent la bonne marche de l'AWFS et des algorithmes testes. Autant dans le cas de la reproduction de champs harmoniques que dans le cas de la reproduction de champs a large bande, l'AWFS reduit l'erreur de reproduction de la WFS et les effets indesirables causes par les lieux de reproduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.F2009C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.F2009C"><span>Method of moments comparison for soot population modeling in turbulent combustion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chong, Shao Teng; Im, Hong; Raman, Venkat</p> <p>2017-11-01</p> <p>Representation of soot population is an important component in the efficient computational prediction of particulate emissions. However, there are a number of moments-based techniques with varying numerical complexity. In the past, development of such methods has been principally carried out on canonical laminar and 0-D flows. However, their applications in realistic solvers developed for turbulent combustion may face challenges from turbulence closure to selection of moment sets. In this work, the accuracy and relative computational expense of a few common soot method of moments are tested in canonical turbulent flames for different configurations. Large eddy simulation (LES) will be used as the turbulence modeling framework. In grid-filtered LES, the interaction of numerical and modeling errors is a first-order problem that can undermine the accuracy of soot predictions. In the past, special moments-based methods for solvers that transport high frequency content fluid with ability to reconstruct particle size distribution have been developed. Here, a similar analysis will be carried out for the moment-based soot modeling approaches above. Specifically, realizability of moments methods with nonlinear advection schemes will be discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002APS..DFD.JJ002W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002APS..DFD.JJ002W"><span>A Method for Large Eddy Simulation of Acoustic Combustion Instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wall, Clifton; Pierce, Charles; Moin, Parviz</p> <p>2002-11-01</p> <p>A method for performing Large Eddy Simulation of acoustic combustion instabilities is presented. By extending the low Mach number pressure correction method to the case of compressible flow, a numerical method is developed in which the Poisson equation for pressure is replaced by a Helmholtz equation. The method avoids the acoustic CFL condition by using implicit time advancement, leading to large efficiency gains at low Mach number. The method also avoids artificial damping of acoustic waves. The numerical method is attractive for the simulation of acoustic combustion instabilities, since these flows are typically at low Mach number, and the acoustic frequencies of interest are usually low. Both of these characteristics suggest the use of larger time steps than those allowed by an acoustic CFL condition. The turbulent combustion model used is the Combined Conserved Scalar/Level Set Flamelet model of Duchamp de Lageneste and Pitsch for partially premixed combustion. Comparison of LES results to the experiments of Besson et al will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDKP1014K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDKP1014K"><span>Large Eddy Simulation of "turbulent-like" flow in intracranial aneurysms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, Muhammad Owais; Chnafa, Christophe; Steinman, David A.; Mendez, Simon; Nicoud, Franck</p> <p>2016-11-01</p> <p>Hemodynamic forces are thought to contribute to pathogenesis and rupture of intracranial aneurysms (IA). Recent high-resolution patient-specific computational fluid dynamics (CFD) simulations have highlighted the presence of "turbulent-like" flow features, characterized by transient high-frequency flow instabilities. In-vitro studies have shown that such "turbulent-like" flows can lead to lack of endothelial cell orientation and cell depletion, and thus, may also have relevance to IA rupture risk assessment. From a modelling perspective, previous studies have relied on DNS to resolve the small-scale structures in these flows. While accurate, DNS is clinically infeasible due to high computational cost and long simulation times. In this study, we present the applicability of LES for IAs using a LES/blood flow dedicated solver (YALES2BIO) and compare against respective DNS. As a qualitative analysis, we compute time-averaged WSS and OSI maps, as well as, novel frequency-based WSS indices. As a quantitative analysis, we show the differences in POD eigenspectra for LES vs. DNS and wavelet analysis of intra-saccular velocity traces. Differences in two SGS models (i.e. Dynamic Smagorinsky vs. Sigma) are also compared against DNS, and computational gains of LES are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CTM....19..628L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CTM....19..628L"><span>Assessment of dynamic closure for premixed combustion large eddy simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan</p> <p>2015-09-01</p> <p>Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........26J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........26J"><span>Large Eddy Simulation of Crashback in Marine Propulsors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jang, Hyunchul</p> <p></p> <p>Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A11G3083T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A11G3083T"><span>Long range lidar data processing for validating LES of wind turbine wakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trabucchi, D.; van Dooren, M.; Vollmer, L.; Schneemann, J.; Trujillo, J. J.; Witha, B.; Kühn, M.</p> <p>2014-12-01</p> <p>Scanning wind lidars offer the possibility to compare full-scale measurements in the wake of a wind turbine with LES wind fields calculated for the same test case. Due to the novelty and the peculiarity of lidar measurements, a comparison between experimental data and simulation results is non-trivial and several methods can be applied. This study presents validation methods for single and dual-doppler lidar measurements respectively.Consecutive azimuthal scans - commonly indicated as Plan Position Indicator (PPI) - at a low fixed elevation and centered on the wind turbine wake provide the radial wind speed, i.e. the wind component along the laser beam, on an almost flat polar grid. This data can be directly compared with the radial wind speed evaluated at the measurement point from the simulated wind field. This approach provides a detailed spatial description of the wind field and can be applied to averaged data for steady analysis. For the comparison with LES results, time average and spatial interpolation of the computed wind field are needed. Moreover, a proper wind direction should be chosen to evaluate the radial wind speed.With two lidars performing consecutive PPI scans over the same region from different places it is possible to estimate the horizontal wind field where the scanned regions overlap. Due to the limits in the synchronization of the PPI scans by the lidars, only steady analysis based on time averaged data can be done. A horizontal grid based on the one used for the LES is overlapped to the region covered by the two non-co-planar scans. The horizontal wind field at a considered point can be evaluated solving the system given by at least two non-aligned radial directions about this point. For each node, the data sampled by the lidars in a well defined volume during the considered time interval is used to write this system. Moreover, a discrete approximation of the continuity equation is applied to link the solutions for all the grid nodes. Instead of an interpolation on the LES wind field, this approach requires a temporal and vertical average over the considered time and height intervals.The application of these two approaches to lidar measurements performed in the offshore wind farm »alpha ventus« is presented in this work. The results are going to be used to evaluate different wind turbine wake models applied to LES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918988K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918988K"><span>Short-term Wind Forecasting at Wind Farms using WRF-LES and Actuator Disk Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirkil, Gokhan</p> <p>2017-04-01</p> <p>Short-term wind forecasts are obtained for a wind farm on a mountainous terrain using WRF-LES. Multi-scale simulations are also performed using different PBL parameterizations. Turbines are parameterized using Actuator Disc Model. LES models improved the forecasts. Statistical error analysis is performed and ramp events are analyzed. Complex topography of the study area affects model performance, especially the accuracy of wind forecasts were poor for cross valley-mountain flows. By means of LES, we gain new knowledge about the sources of spatial and temporal variability of wind fluctuations such as the configuration of wind turbines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1429724-large-eddy-simulation-dynamic-thickened-flame-modeling-high-karlovitz-number-turbulent-premixed-jet-flame-supplementary-material','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1429724-large-eddy-simulation-dynamic-thickened-flame-modeling-high-karlovitz-number-turbulent-premixed-jet-flame-supplementary-material"><span>Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame (Supplementary material).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Han, Wang; Wang, Haiou; Kuenne, Guido</p> <p></p> <p>This supplementary material complements the article and provides additional information to the chemical mechanism used in this work, boundary conditions for the LES con guration and table generation, comparisons of axial velocities, results from a LES/ nite-rate chemistry (FRC) approach, and results from the LES/DTF/SPF approach with a particular chemistry table that is generated using a single strained premixed amelet solution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..DFD.HC010R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..DFD.HC010R"><span>LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raghunath, Sriram; Brereton, Giles</p> <p>2009-11-01</p> <p>LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDR25005K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDR25005K"><span>LES of propeller crashback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Praveen; Mahesh, Krishnan</p> <p>2014-11-01</p> <p>Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield a negative thrust. In crashback, the freestream interacts with the strong reverse flow from the propeller leading to massive flow separation and highly unsteady loads. We have used Large-Eddy Simulation (LES) in recent years to accurately simulate the flowfield in crashback around a stand-alone open propeller, hull-attached (posterior alone) open propeller and a ducted propeller with stator blades. This talk will discuss our work towards LES of crashback inclusive of the entire hull. The results will be compared to available experimental data, and the flow physics will be discussed. This work is supported by the Office of Naval Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EPJWC..2501018F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EPJWC..2501018F"><span>LES of flow in the street canyon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fuka, Vladimír; Brechler, Josef</p> <p>2012-04-01</p> <p>Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1419712','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1419712"><span>Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Van Roekel, Luke</p> <p></p> <p>We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA569241','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA569241"><span>Conceptual Modeling (CM) for Military Modeling and Simulation (M&S) (Modelisation conceptuelle (MC) pour la modelisation et la simulation (M&S) militaires)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-07-01</p> <p>du monde de la modélisation et de la simulation et lui fournir des directives de mise en œuvre ; et fournir des ...définition ; rapports avec les normes ; spécification de procédure de gestion de la MC ; spécification d’artefact de MC. Considérations importantes...utilisant la présente directive comme référence. • Les VV&A (vérification, validation et acceptation) des MC doivent faire partie intégrante du</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDL12003G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDL12003G"><span>Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano</p> <p>2015-11-01</p> <p>A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16683605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16683605"><span>Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B</p> <p>2006-04-15</p> <p>Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014437','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014437"><span>Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bellan, Josette; Radhakrishnan, Senthilkumaran</p> <p>2013-01-01</p> <p>Multiphase turbulent flows are encountered in many practical applications including turbine engines or natural phenomena involving particle dispersion. Numerical computations of multiphase turbulent flows are important because they provide a cheaper alternative to performing experiments during an engine design process or because they can provide predictions of pollutant dispersion, etc. Two-phase flows contain millions and sometimes billions of particles. For flows with volumetrically dilute particle loading, the most accurate method of numerically simulating the flow is based on direct numerical simulation (DNS) of the governing equations in which all scales of the flow including the small scales that are responsible for the overwhelming amount of dissipation are resolved. DNS, however, requires high computational cost and cannot be used in engineering design applications where iterations among several design conditions are necessary. Because of high computational cost, numerical simulations of such flows cannot track all these drops. The objective of this work is to quantify the influence of the number of computational drops and grid spacing on the accuracy of predicted flow statistics, and to possibly identify the minimum number, or, if not possible, the optimal number of computational drops that provide minimal error in flow prediction. For this purpose, several Large Eddy Simulation (LES) of a mixing layer with evaporating drops have been performed by using coarse, medium, and fine grid spacings and computational drops, rather than physical drops. To define computational drops, an integer NR is introduced that represents the ratio of the number of existing physical drops to the desired number of computational drops; for example, if NR=8, this means that a computational drop represents 8 physical drops in the flow field. The desired number of computational drops is determined by the available computational resources; the larger NR is, the less computationally intensive is the simulation. A set of first order and second order flow statistics, and of drop statistics are extracted from LES predictions and are compared to results obtained by filtering a DNS database. First order statistics such as Favre averaged stream-wise velocity, Favre averaged vapor mass fraction, and the drop stream-wise velocity, are predicted accurately independent of the number of computational drops and grid spacing. Second order flow statistics depend both on the number of computational drops and on grid spacing. The scalar variance and turbulent vapor flux are predicted accurately by the fine mesh LES only when NR is less than 32, and by the coarse mesh LES reasonably accurately for all NR values. This is attributed to the fact that when the grid spacing is coarsened, the number of drops in a computational cell must not be significantly lower than that in the DNS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDKP1033R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDKP1033R"><span>A Test of the Validity of Inviscid Wall-Modeled LES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Redman, Andrew; Craft, Kyle; Aikens, Kurt</p> <p>2015-11-01</p> <p>Computational expense is one of the main deterrents to more widespread use of large eddy simulations (LES). As such, it is important to reduce computational costs whenever possible. In this vein, it may be reasonable to assume that high Reynolds number flows with turbulent boundary layers are inviscid when using a wall model. This assumption relies on the grid being too coarse to resolve either the viscous length scales in the outer flow or those near walls. We are not aware of other studies that have suggested or examined the validity of this approach. The inviscid wall-modeled LES assumption is tested here for supersonic flow over a flat plate on three different grids. Inviscid and viscous results are compared to those of another wall-modeled LES as well as experimental data - the results appear promising. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively, with the current LES application. Recommendations are presented as are future areas of research. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19531515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19531515"><span>Large eddy simulation modelling of combustion for propulsion applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fureby, C</p> <p>2009-07-28</p> <p>Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830068584&hterms=Stanford&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DStanford','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830068584&hterms=Stanford&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DStanford"><span>Simulation of turbulent shear flows at Stanford and NASA-Ames - What can we do and what have we learned?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reynolds, W. C.</p> <p>1983-01-01</p> <p>The capabilities and limitations of large eddy simulation (LES) and full turbulence simulation (FTS) are outlined. It is pointed out that LES, although limited at the present time by the need for periodic boundary conditions, produces large-scale flow behavior in general agreement with experiments. What is more, FTS computations produce small-scale behavior that is consistent with available experiments. The importance of the development work being done on the National Aerodynamic Simulator is emphasized. Studies at present are limited to situations in which periodic boundary conditions can be applied on boundaries of the computational domain where the flow is turbulent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA640332','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA640332"><span>Supporting Uncertainty Reasoning in SIMulated Operators for Networks (SIMON) (Le support du raisonnement dans l’incertitude pour des operateurs simules dans un reseau)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2005-12-01</p> <p>moteur de simulation de l’Environnement Intégré de Modélisation de la Performance est utilisé de pair avec l’approche pour démontrer comment des...d’être utilisé dans les forces générées par ordinateur. Le travail ultérieur inclura plus d’essais, l’intégration avec les moteurs de simulateurs et...Aspects are reasoning units relevant to simulated tasks. Each Aspect schema is a 4-tuple: AspectSchema = <MA, WM, LM, CL>, where MA refers to meta</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL31002C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL31002C"><span>Very-high-Reynolds-number vortex dynamics via Coherent-vorticity-Preserving (CvP) Large-eddy simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chapelier, Jean-Baptiste; Wasistho, Bono; Scalo, Carlo</p> <p>2017-11-01</p> <p>A new approach to Large-Eddy Simulation (LES) is introduced, where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated in regions dominated by large-scale vortical motion. The proposed CvP-LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy: σ = ξ ∧ / ξ . Values of σ = 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale model. Values of σ < 1 span conditions ranging from incipient spectral broadening σ <= 1 , to equilibrium turbulence σ =σeq < 1 , where σeq is solely as a function of the test-to-grid filter-width ratio Δ ∧ / Δ , derived assuming a Kolmogorov's spectrum. Eddy viscosity is fully restored for σ <=σeq . The proposed approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. A CvP-LES of a pair of unstable helical vortices, representative of rotor-blade wake dynamics, show the ability of the method to sort the coherent motion from the small-scale dynamics. This work is funded by subcontract KSC-17-001 between Purdue University and Kord Technologies, Inc (Huntsville), under the US Navy Contract N68335-17-C-0159 STTR-Phase II, Purdue Proposal No. 00065007, Topic N15A-T002.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DFD.ND005T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DFD.ND005T"><span>Tests of dynamic Lagrangian eddy viscosity models in Large Eddy Simulations of flow over three-dimensional bluff bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.</p> <p>2004-11-01</p> <p>Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.F2005H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.F2005H"><span>Impact of Subgrid Scale Models and Heat Loss on Large Eddy Simulations of a Premixed Jet Burner Using Flamelet-Generated Manifolds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.</p> <p>2017-11-01</p> <p>Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ThCFD..27..133D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ThCFD..27..133D"><span>Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dorrestijn, Jesse; Crommelin, Daan T.; Siebesma, A. Pier.; Jonker, Harm J. J.</p> <p>2013-02-01</p> <p>In this paper, we report on the development of a methodology for stochastic parameterization of convective transport by shallow cumulus convection in weather and climate models. We construct a parameterization based on Large-Eddy Simulation (LES) data. These simulations resolve the turbulent fluxes of heat and moisture and are based on a typical case of non-precipitating shallow cumulus convection above sea in the trade-wind region. Using clustering, we determine a finite number of turbulent flux pairs for heat and moisture that are representative for the pairs of flux profiles observed in these simulations. In the stochastic parameterization scheme proposed here, the convection scheme jumps randomly between these pre-computed pairs of turbulent flux profiles. The transition probabilities are estimated from the LES data, and they are conditioned on the resolved-scale state in the model column. Hence, the stochastic parameterization is formulated as a data-inferred conditional Markov chain (CMC), where each state of the Markov chain corresponds to a pair of turbulent heat and moisture fluxes. The CMC parameterization is designed to emulate, in a statistical sense, the convective behaviour observed in the LES data. The CMC is tested in single-column model (SCM) experiments. The SCM is able to reproduce the ensemble spread of the temperature and humidity that was observed in the LES data. Furthermore, there is a good similarity between time series of the fractions of the discretized fluxes produced by SCM and observed in LES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.120..101C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.120..101C"><span>SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu</p> <p>2017-12-01</p> <p>A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT.......256D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT.......256D"><span>Developpement d'une methode calorimetrique de mesure des pertes ac pour des rubans supraconducteurs a haute temperature critique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolez, Patricia</p> <p></p> <p>Le travail de recherche effectue dans le cadre de ce projet de doctorat a permis la mise au point d'une methode de mesure des pertes ac destinee a l'etude des supraconducteurs a haute temperature critique. Pour le choix des principes de cette methode, nous nous sommes inspires de travaux anterieurs realises sur les supraconducteurs conventionnels, afin de proposer une alternative a la technique electrique, presentant lors du debut de cette these des problemes lies a la variation du resultat des mesures selon la position des contacts de tension sur la surface de l'echantillon, et de pouvoir mesurer les pertes ac dans des conditions simulant la realite des futures applications industrielles des rubans supraconducteurs: en particulier, cette methode utilise la technique calorimetrique, associee a une calibration simultanee et in situ. La validite de la methode a ete verifiee de maniere theorique et experimentale: d'une part, des mesures ont ete realisees sur des echantillons de Bi-2223 recouverts d'argent ou d'alliage d'argent-or et comparees avec les predictions theoriques donnees par Norris, nous indiquant la nature majoritairement hysteretique des pertes ac dans nos echantillons; d'autre part, une mesure electrique a ete realisee in situ dont les resultats correspondent parfaitement a ceux donnes par notre methode calorimetrique. Par ailleurs, nous avons compare la dependance en courant et en frequence des pertes ac d'un echantillon avant et apres qu'il ait ete endommage. Ces mesures semblent indiquer une relation entre la valeur du coefficient de la loi de puissance modelisant la dependance des pertes avec le courant, et les inhomogeneites longitudinales du courant critique induites par l'endommagement. De plus, la variation en frequence montre qu'au niveau des grosses fractures transverses creees par l'endommagement dans le coeur supraconducteur, le courant se partage localement de maniere a peu pres equivalente entre les quelques grains de matiere supraconductrice qui restent fixes a l'interface coeur-enveloppe, et le revetement en alliage d'argent. L'interet d'une methode calorimetrique par rapport a la technique electrique, plus rapide, plus sensible et maintenant fiable, reside dans la possibilite de realiser des mesures de pertes ac dans des environnements complexes, reproduisant la situation presente par exemple dans un cable de transport d'energie ou dans un transformateur. En particulier, la superposition d'un courant dc en plus du courant ac habituel nous a permis d'observer experimentalement, pour la premiere fois a notre connaissance, un comportement particulier des pertes ac en fonction de la valeur du courant dc decrit theoriquement par LeBlanc. Nous avons pu en deduire la presence d'un courant d'ecrantage Meissner de 16 A, ce qui nous permet de determiner les conditions dans lesquelles une reduction du niveau de pertes ac pourrait etre obtenue par application d'un courant dc, phenomene denomme "vallee de Clem".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JCoPh.325..272A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JCoPh.325..272A"><span>Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis</p> <p>2016-11-01</p> <p>A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates the potential of the method to simulate turbulent flows past geometrically complex bodies on locally refined meshes. In all the cases, the results are found to be in very good agreement with published data and savings in computational resources are achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ChPhB..23c4701W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ChPhB..23c4701W"><span>Large-eddy simulations of a forced homogeneous isotropic turbulence with polymer additives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Lu; Cai, Wei-Hua; Li, Feng-Chen</p> <p>2014-03-01</p> <p>Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA271731','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA271731"><span>High-Lift System Aerodynamics (L’Aerodynamique des Systems Hypersustentateurs)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-09-01</p> <p>les kcouleinents incoinpressibles sur les profils L -a pr~sente m~thode num~rique montre que la simulation multi-corps, qui est un...de l ’&oulement du d𔄀chelle de discrdtisation, d’origine physique, introduit des m~me ordre que l ’~paisseur des couches limites sur le point de...hypersustentateurs. Enfin, les consequences des exigences de furtivite sur la forme des aeronefs - c’est it dire la creation de configurations telles que</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S92-36821&hterms=Water+exercise&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWater%2Bexercise','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S92-36821&hterms=Water+exercise&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWater%2Bexercise"><span>STS-47 Commander Gibson and MS Apt in JSC WETF for bailout exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1992-01-01</p> <p>STS-47 Endeavour, Orbiter Vehicle (OV) 105, Commander Robert L. Gibson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to instructions before participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Trainining Facility (WETF) Bldg 29. Mission Specialist (MS) Jerome Apt, wearing LES and LES parachute, is seen in the background. This exercise is conducted in the WETF pool to simulate a water landing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDH29005D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDH29005D"><span>A Split Forcing Technique to Reduce Log-layer Mismatch in Wall-modeled Turbulent Channel Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deleon, Rey; Senocak, Inanc</p> <p>2016-11-01</p> <p>The conventional approach to sustain a flow field in a periodic channel flow seems to be the culprit behind the log-law mismatch problem that has been reported in many studies hybridizing Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) techniques, commonly referred to as hybrid RANS-LES. To address this issue, we propose a split-forcing approach that relies only on the conservation of mass principle. We adopt a basic hybrid RANS-LES technique on a coarse mesh with wall-stress boundary conditions to simulate turbulent channel flows at friction Reynolds numbers of 2000 and 5200 and demonstrate good agreement with benchmark data. We also report a duality in velocity scale that is a specific consequence of the split forcing framework applied to hybrid RANS-LES. The first scale is the friction velocity derived from the wall shear stress. The second scale arises in the core LES region, a value different than at the wall. Second-order turbulence statistics agree well with the benchmark data when normalized by the core friction velocity, whereas the friction velocity at the wall remains the appropriate scale for the mean velocity profile. Based on our findings, we suggest reevaluating more sophisticated hybrid RANS-LES approaches within the split-forcing framework. Work funded by National Science Foundation under Grant No. 1056110 and 1229709. First author acknowledges the University of Idaho President's Doctoral Scholars Award.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007700','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007700"><span>Prediction of Turbulent Temperature Fluctuations in Hot Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DeBonis, James R.</p> <p>2017-01-01</p> <p>Large-eddy simulations (LES) were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver was used to compute the flow from a 2-inch round nozzle. Three different flow conditions of varying jet Mach numbers and temperature ratios were examined. The LES results showed that the temperature field behaves similar to the velocity field, but with a more rapidly spreading mixing layer. Predictions of mean, mu-bar(sub i), and fluctuating, mu'(sub i), velocities were compared to particle image velocimetry data. Predictions of mean, T-bar, and fluctuating, T', temperature were compared to data obtained using Rayleigh scattering and Raman spectroscopy. Very good agreement with experimental data was demonstrated for the mean and fluctuating velocities. The LES correctly predicts the behavior of the turbulent temperature field, but over-predicts the levels of the fluctuations. The turbulent heat flux was examined and compared to Reynolds-averaged Navier-Stokes (RANS) results. The LES and RANS simulations produced very similar results for the radial heat flux. However, the axial heat flux obtained from the LES differed significantly from the RANS result in both structure and magnitude, indicating that the gradient diffusion type model in RANS is inadequate. Finally, the LES data was used to compute the turbulent Prandtl number and verify that a constant value of 0.7 used in the RANS models is a reasonable assumption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21O..06V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21O..06V"><span>Continental Shallow Convection Cloud-Base Mass Flux from Doppler Lidar and LASSO Ensemble Large-Eddy Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogelmann, A. M.; Zhang, D.; Kollias, P.; Endo, S.; Lamer, K.; Gustafson, W. I., Jr.; Romps, D. M.</p> <p>2017-12-01</p> <p>Continental boundary layer clouds are important to simulations of weather and climate because of their impact on surface budgets and vertical transports of energy and moisture; however, model-parameterized boundary layer clouds do not agree well with observations in part because small-scale turbulence and convection are not properly represented. To advance parameterization development and evaluation, observational constraints are needed on critical parameters such as cloud-base mass flux and its relationship to cloud cover and the sub-cloud boundary layer structure including vertical velocity variance and skewness. In this study, these constraints are derived from Doppler lidar observations and ensemble large-eddy simulations (LES) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Facility Southern Great Plains (SGP) site in Oklahoma. The Doppler lidar analysis will extend the single-site, long-term analysis of Lamer and Kollias [2015] and augment this information with the short-term but unique 1-2 year period since five Doppler lidars began operation at the SGP, providing critical information on regional variability. These observations will be compared to the statistics obtained from ensemble, routine LES conducted by the LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso). An Observation System Simulation Experiment (OSSE) will be presented that uses the LASSO LES fields to determine criteria for which relationships from Doppler lidar observations are adequately sampled to yield convergence. Any systematic differences between the observed and simulated relationships will be examined to understand factors contributing to the differences. Lamer, K., and P. Kollias (2015), Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover, Geophys. Res. Lett., 42, 8693-8701, doi:10.1002/2015GL064534</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFDG16009L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFDG16009L"><span>Quantifying Turbulent Kinetic Energy in an Aortic Coarctation with Large Eddy Simulation and Magnetic Resonance Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantz, Jonas; Ebbers, Tino; Karlsson, Matts</p> <p>2012-11-01</p> <p>In this study, turbulent kinetic energy (TKE) in an aortic coarctation was studied using both a numerical technique (large eddy simulation, LES) and in vivo measurements using magnetic resonance imaging (MRI). High levels of TKE are undesirable, as kinetic energy is extracted from the mean flow to feed the turbulent fluctuations. The patient underwent surgery to widen the coarctation, and the flow before and after surgery was computed and compared to MRI measurements. The resolution of the MRI was about 7 × 7 voxels in axial cross-section while 50x50 mesh cells with increased resolution near the walls was used in the LES simulation. In general, the numerical simulations and MRI measurements showed that the aortic arch had no or very low levels of TKE, while elevated values were found downstream the coarctation. It was also found that TKE levels after surgery were lowered, indicating that the diameter of the constriction was increased enough to decrease turbulence effects. In conclusion, both the numerical simulation and MRI measurements gave very similar results, thereby validating the simulations and suggesting that MRI measured TKE can be used as an initial estimation in clinical practice, while LES results can be used for detailed quantification and further research of aortic flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040028003','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040028003"><span>Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.</p> <p>2003-01-01</p> <p>The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFDL26008M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFDL26008M"><span>Validation of an LES Model for Soot Evolution against DNS Data in Turbulent Jet Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, Michael</p> <p>2012-11-01</p> <p>An integrated modeling approach for soot evolution in turbulent reacting flows is validated against three-dimensional Direct Numerical Simulation (DNS) data in a set of n-heptane nonpremixed temporal jet flames. As in the DNS study, the evolution of the soot population is described statistically with the Hybrid Method of Moments (HMOM). The oxidation of the fuel and formation of soot precursors are described with the Radiation Flamelet/Progress Variable (RFPV) model that includes an additional transport equation for Polycyclic Aromatic Hydrocarbons (PAH) to account for the slow chemistry governing these species. In addition, the small-scale interactions between soot, chemistry, and turbulence are described with a presumed subfilter PDF approach that accounts for the very large spatial intermittency characterizing soot in turbulent reacting flows. The DNS dataset includes flames at three different Damköhler numbers to study the influence of global mixing rates on the evolution of PAH and soot. In this work, the ability of the model to capture these trends quantitatively as Damköhler number varies is investigated. In order to reliably assess the LES approach, the LES is initialized from the filtered DNS data after an initial transitional period in an effort to minimize the hydrodynamic differences between the DNS and the LES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003361','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003361"><span>Testing the Two-Layer Model for Correcting Near Cloud Reflectance Enhancement Using LES SHDOM Simulated Radiances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert</p> <p>2016-01-01</p> <p>A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JPhy4.130..179C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JPhy4.130..179C"><span>Dynamique moléculaire et canaux ioniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crouzy, S.</p> <p>2005-11-01</p> <p>Diffusion de neutrons et Dynamique Moléculaire (DM) sont deux techniques intimement liées car elles portent sur les mêmes échelles de temps: la première apporte des informations structurales ou dynamiques sur le système physique ou biologique, la seconde permet de décoder ces informations à travers un modèle facilitant l'interprétation des résultats. Au delà de l'intérêt que la technique de DM peut avoir en relation directe avec les neutrons, il est intéressant de comprendre comment les modèles sont construits et comment les techniques de simulation peuvent aller beaucoup plus loin que de simples modélisations. Nous décrirons brièvement, dans la suite de cet exposé, la technique de DM et les méthodes plus sophistiquées de calculs d'énergie libre et de potentiels de force moyenne à partir des simulations de DM. Puis nous verrons avec deux exemples tirés de nos travaux théoriques sur les canaux ioniques comment ces calculs peuvent nous donner accès à des vitesses de réaction ou des constantes d'affinité ou de liaison. La première étude porte sur un analogue de la gramicidine A qui forme un canal conducteur d'ions interrompus par le basculement d'un cycle dioxolane [1]. La seconde concerne le canal potassique KcsA dont nous avons étudié le blocage du coté extracellulaire par l'ion Tetra Ethyl Ammonium [2].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1959e0033Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1959e0033Z"><span>Numerical simulation of air distribution in a room with a sidewall jet under benchmark test conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zasimova, Marina; Ivanov, Nikolay</p> <p>2018-05-01</p> <p>The goal of the study is to validate Large Eddy Simulation (LES) data on mixing ventilation in an isothermal room at conditions of benchmark experiments by Hurnik et al. (2015). The focus is on the accuracy of the mean and rms velocity fields prediction in the quasi-free jet zone of the room with 3D jet supplied from a sidewall rectangular diffuser. Calculations were carried out using the ANSYS Fluent 16.2 software with an algebraic wall-modeled LES subgrid-scale model. CFD results on the mean velocity vector are compared with the Laser Doppler Anemometry data. The difference between the mean velocity vector and the mean air speed in the jet zone, both LES-computed, is presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDA33005F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDA33005F"><span>Evaluation of RANS and LES models for Natural Convection in High-Aspect-Ratio Parallel Plate Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fradeneck, Austen; Kimber, Mark</p> <p>2017-11-01</p> <p>The present study evaluates the effectiveness of current RANS and LES models in simulating natural convection in high-aspect ratio parallel plate channels. The geometry under consideration is based on a simplification of the coolant and bypass channels in the very high-temperature gas reactor (VHTR). Two thermal conditions are considered, asymmetric and symmetric wall heating with an applied heat flux to match Rayleigh numbers experienced in the VHTR during a loss of flow accident (LOFA). RANS models are compared to analogous high-fidelity LES simulations. Preliminary results demonstrate the efficacy of the low-Reynolds number k- ɛ formulations and their enhancement to the standard form and Reynolds stress transport model in terms of calculating the turbulence production due to buoyancy and overall mean flow variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFD.D2002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFD.D2002A"><span>An LES study of vertical-axis wind turbine wakes aerodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abkar, Mahdi; Dabiri, John O.</p> <p>2016-11-01</p> <p>In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BoLMe.162..207C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BoLMe.162..207C"><span>Measurements and Computations of Flow in an Urban Street System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castro, Ian P.; Xie, Zheng-Tong; Fuka, V.; Robins, Alan G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O.</p> <p>2017-02-01</p> <p>We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......126T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......126T"><span>Developpement d'une commande pour une hydrolienne de riviere et optimisation =</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tetrault, Philippe</p> <p></p> <p>Suivant le developpement des energies renouvelables, la presente etude se veut une base theorique quant aux principes fondamentaux necessaires au bon fonctionnement et a l'implementation d'une hydrolienne de riviere. La problematique derriere ce nouveau type d'appareil est d'abord presentee. La machine electrique utilisee dans l'application, c'est-a-dire la machine synchrone a aimants permanents, est etudiee : ses equations dynamiques mecaniques et electriques sont developpees, introduisant en meme temps le concept de referentiel tournant. Le fonctionnement de l'onduleur utilise, soit un montage en pont complet a deux niveaux a semi-conducteurs, est explique et mit en equation pour permettre de comprendre les strategies de modulation disponibles. Un bref historique de ces strategies est fait avant de mettre l'emphase sur la modulation vectorielle qui sera celle utilisee pour l'application en cours. Les differents modules sont assembles dans une simulation Matlab pour confirmer leur bon fonctionnement et comparer les resultats de la simulation avec les calculs theoriques. Differents algorithmes permettant de traquer et maintenir un point de fonctionnement optimal sont presentes. Le comportement de la riviere est etudie afin d'evaluer l'ampleur des perturbations que le systeme devra gerer. Finalement, une nouvelle approche est presentee et comparee a une strategie plus conservatrice a l'aide d'un autre modele de simulation Matlab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A21I..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A21I..01S"><span>Scalar Dispersion from Point Sources in a Realistic Urban Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salesky, S.; Giometto, M. G.; Christen, A.; Parlange, M. B.</p> <p>2016-12-01</p> <p>Accurate modeling of scalar dispersion within and above urban canopies is critical to properly predict air quality and dispersion (e.g. accidental contaminant release) in urban environments. We perform large eddy simulations (LES) of scalar dispersion from point sources in a typical North American neighborhood using topography and foliage density derived from airborne LIDAR scans with 1 m resolution in Vancouver, BC, Canada. The added drag force due to trees is parameterized in the LES as a function of the leaf area density (LAD) profile. Conversely, drag from buildings is accounted for using a direct forcing approach immersed-boundary method. The scalar advection-diffusion equation is discretized in a finite-volume framework, and accurate mass conservation is enforced through a recently developed Cartesian cut cell method. Simulations are performed with trees for different values of LAD, representative of summer and winter conditions, as well as a case without trees. The effects of varying mean wind direction (derived from observed wind climatologies) on dispersion patterns are also considered. Scalar release locations in the LES are informed by spatially distributed measurements of carbon dioxide concentration; CO2 is used as a tracer for fossil fuel emissions, since source strengths are well-known and the contribution from biological processes in this setting is small (<10%). The effects of leaf area density, source height, and wind direction on scalar statistics including the growth of the mean concentration plume and the fraction that escapes the urban canopy layer will be considered. In a companion study, the presence of trees was found to strongly modify sweep and ejection patterns for the momentum flux; here we consider the related issue of how vegetation influences coherent structures responsible for scalar transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........35I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........35I"><span>Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inoue, Michio</p> <p></p> <p>The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010MsT..........3D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010MsT..........3D"><span>Navigation d'un vehicule autonome autour d'un asteroide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dionne, Karine</p> <p></p> <p>Les missions d'exploration planetaire utilisent des vehicules spatiaux pour acquerir les donnees scientifiques qui font avancer notre connaissance du systeme solaire. Depuis les annees 90, ces missions ciblent non seulement les planetes, mais aussi les corps celestes de plus petite taille comme les asteroides. Ces astres representent un defi particulier du point de vue des systemes de navigation, car leur environnement dynamique est complexe. Une sonde spatiale doit reagir rapidement face aux perturbations gravitationnelles en presence, sans quoi sa securite pourrait etre compromise. Les delais de communication avec la Terre pouvant souvent atteindre plusieurs dizaines de minutes, il est necessaire de developper des logiciels permettant une plus grande autonomie d'operation pour ce type de mission. Ce memoire presente un systeme de navigation autonome qui determine la position et la vitesse d'un satellite en orbite autour d'un asteroide. Il s'agit d'un filtre de Kalman etendu adaptatif a trois degres de liberte. Le systeme propose se base sur l'imagerie optique pour detecter des " points de reperes " qui ont ete prealablement cartographies. Il peut s'agir de crateres, de rochers ou de n'importe quel trait physique discernable a la camera. Les travaux de recherche realises se concentrent sur les techniques d'estimation d'etat propres a la navigation autonome. Ainsi, on suppose l'existence d'un logiciel approprie qui realise les fonctions de traitement d'image. La principale contribution de recherche consiste en l'inclusion, a chaque cycle d'estimation, d'une mesure de distance afin d'ameliorer les performances de navigation. Un estimateur d'etat de type adaptatif est necessaire pour le traitement de ces mesures, car leur precision varie dans le temps en raison de l'erreur de pointage. Les contributions secondaires de recherche sont liees a l'analyse de l'observabilite du systeme ainsi qu'a une analyse de sensibilite pour six parametres principaux de conception. Les resultats de simulation montrent que l'ajout d'une mesure de distance par cycle de mise a jour entraine une amelioration significative des performances de navigation. Ce procede reduit l'erreur d'estimation ainsi que les periodes de non-observabilite en plus de contrer la dilution de precision des mesures. Les analyses de sensibilite confirment quant a elles la contribution des mesures de distance a la diminution globale de l'erreur d'estimation et ce pour une large gamme de parametres de conception. Elles indiquent egalement que l'erreur de cartographie est un parametre critique pour les performances du systeme de navigation developpe. Mots cles : Estimation d'etat, filtre de Kalman adaptatif, navigation optique, lidar, asteroide, simulations numeriques</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017758','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017758"><span>Development of the Glenn-Heat-Transfer (Glenn-HT) Computer Code to Enable Time-Filtered Navier Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ameri, Ali A.; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur</p> <p>2014-01-01</p> <p>Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005328','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005328"><span>Development of the Glenn Heat-Transfer (Glenn-HT) Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur</p> <p>2014-01-01</p> <p>Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA145365','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA145365"><span>Advanced Technology for SAM Systems Analysis Synthesis and Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-05-01</p> <p>aides de nature op~ratlcnnelle, Einanci~rv et technicue. Ainsi peut-on esp6rer iu’en r~sulte- ront les rhoix les rroilloura. Trois des neuf expras~s...EAST (Royal Military College of Science, UNITED KINGDOM) traite des structures des boucles de quidaqe at compare los lois d’ali- gnement t~l~command~es...avec les lois de navigation des missiles autoquid~s. Dants los structures en alignement, le Dr EAST montre qu’il est possible et indispensable</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005QJRMS.131.2665C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005QJRMS.131.2665C"><span>Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Couvreux, F.; Guichard, F.; Redelsperger, J. L.; Kiemle, C.; Masson, V.; Lafore, J. P.; Flamant, C.</p> <p>2005-10-01</p> <p>This study presents a comprehensive analysis of the variability of water vapour in a growing convective boundary-layer (CBL) over land, highlighting the complex links between advection, convective activity and moisture heterogeneity in the boundary layer. A Large-eddy Simulation (LES) is designed, based on observations, and validated, using an independent data-set collected during the International H2O Project (IHOP 2002) fieldexperiment. Ample information about the moisture distribution in space and time, as well as other important CBL parameters are acquired by mesonet stations, balloon soundings, instruments on-board two aircraft and the DLR airborne water-vapour differential-absorption lidar. Because it can deliver two-dimensional cross-sections at high spatial resolution (140 m horizontal, 200 m vertical), the airborne lidar offers valuable insights of small-scale moisture-variability throughout the CBL. The LES is able to reproduce the development of the CBL in the morning and early afternoon, as assessed by comparisons of simulated mean profiles of key meteorological variables with sounding data. Simulated profiles of the variance of water-vapour mixing-ratio were found to be in good agreement with the lidar-derived counterparts. Finally, probability-density functions of potential temperature, vertical velocity and water-vapour mixing-ratio calculated from the LES show great consistency with those derived from aircraft in situ measurements in the middle of the CBL. Downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature.The observed water-vapour variability exhibits contributions from different scales. The influence of the mesoscale (larger than LES domain size, i.e. 10 km) on the smaller-scale variability is assessed using LES and observations. The small-scale variability of water vapour is found to be important and to be driven by the dynamics of the CBL. Both lidar observations and LES evidence that dry downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature and vertical velocity. In particular, intrusions of drier free-troposphere air from above the growing CBL impose a marked negative skewness on the water-vapour distribution within it, both as observed and in the simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......230A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......230A"><span>High-fidelity large eddy simulation for supersonic jet noise prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aikens, Kurt M.</p> <p></p> <p>The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the wall model treatment are then utilized to simulate military-style nozzles with and without beveling of the nozzle exit plane. Experiments of beveled converging-diverging nozzles have found reduced noise levels for some observer locations. Predicting the noise for these geometries provides a good initial test of the overall methodology for a more complex nozzle. The jet flowfield and acoustic data are analyzed and compared to similar experiments and excellent agreement is found. Potential areas of improvement are discussed for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDA21006P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDA21006P"><span>Evaluating the far-field sound of a turbulent jet with one-way Navier-Stokes equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pickering, Ethan; Rigas, Georgios; Towne, Aaron; Colonius, Tim</p> <p>2017-11-01</p> <p>The one-way Navier-Stokes (OWNS) method has shown promising ability to predict both near field coherent structures (i.e. wave packets) and far field acoustics of turbulent jets while remaining computationally efficient through implementation of a spatial marching scheme. Considering the speed and relative accuracy of OWNS, a predictive model for various jet configurations may be conceived and applied for noise control. However, there still remain discrepancies between OWNS and large eddy simulation (LES) databases which may be linked to the previous neglect of nonlinear forcing. Therefore, to better predict wave packets and far field acoustics, this study investigates the effect of nonlinear forcing terms derived from high-fidelity LES databases. The results of the nonlinear forcings are evaluated for several azimuthal modes and frequencies, as well as compared to LES derived acoustics using spectral proper orthogonal decomposition (SPOD). This research was supported by the Department of Defense (DoD) through the Office of Naval Research (Grant No. N00014-16-1-2445) and the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1409966','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1409966"><span>Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen</p> <p></p> <p>Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scalemore » horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1392734-large-eddy-simulation-shallow-cumulus-over-land-composite-case-based-arm-long-term-observations-its-southern-great-plains-site','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1392734-large-eddy-simulation-shallow-cumulus-over-land-composite-case-based-arm-long-term-observations-its-southern-great-plains-site"><span>Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen</p> <p></p> <p>Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1392734-large-eddy-simulation-shallow-cumulus-over-land-composite-case-based-arm-long-term-observations-its-southern-great-plains-site','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1392734-large-eddy-simulation-shallow-cumulus-over-land-composite-case-based-arm-long-term-observations-its-southern-great-plains-site"><span>Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen; ...</p> <p>2017-09-19</p> <p>Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-s88-42425.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-s88-42425.html"><span>STS-26 Pilot Covey floats in life raft during JSC WETF exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1988-07-08</p> <p>S88-42425 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADP011077','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADP011077"><span>Severe Decompression Illness Following Simulated Rescue from a Pressurized Distressed Submarine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2001-06-01</p> <p>TITLE: Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou... hyperbares ] To order the complete compilation report, use: ADA395680 The component part is provided here to allow users access to individually authored...upon the relationship between pressure exposure and risk of a bad outcome, which needs to be elucidated. Additionally, any non- hyperbaric methods of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S88-42414&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Draft','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S88-42414&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Draft"><span>STS-26 Pilot Covey floats in life raft during JSC WETF exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1988-01-01</p> <p>STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey has paddle-like gloves on his hands. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010087133','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010087133"><span>Perspectives on the Future of CFD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwak, Dochan</p> <p>2000-01-01</p> <p>This viewgraph presentation gives an overview of the future of computational fluid dynamics (CFD), which in the past has pioneered the field of flow simulation. Over time CFD has progressed as computing power. Numerical methods have been advanced as CPU and memory capacity increases. Complex configurations are routinely computed now and direct numerical simulations (DNS) and large eddy simulations (LES) are used to study turbulence. As the computing resources changed to parallel and distributed platforms, computer science aspects such as scalability (algorithmic and implementation) and portability and transparent codings have advanced. Examples of potential future (or current) challenges include risk assessment, limitations of the heuristic model, and the development of CFD and information technology (IT) tools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......109Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......109Z"><span>Large-eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Bowen</p> <p></p> <p>A stable atmospheric boundary layer (ABL) develops over land at night due to radiative surface cooling. The state of turbulence in the stable boundary layer (SBL) is determined by the competing forcings of shear production and buoyancy destruction. When both forcings are comparable in strength, the SBL falls into an intermittently turbulent state, where intense turbulent bursts emerge sporadically from an overall quiescent background. This usually occurs on clear nights with weak winds when the SBL is strongly stable. Although turbulent bursts are generally short-lived (half an hour or less), their impact on the SBL is significant since they are responsible for most of the turbulent mixing. The nighttime SBL can be modeled with large-eddy simulation (LES). LES is a turbulence-resolving numerical approach which separates the large-scale energy-containing eddies from the smaller ones based on application of a spatial filter. While the large eddies are explicitly resolved, the small ones are represented by a subfilter-scale (SFS) stress model. Simulation of the SBL is more challenging than the daytime convective boundary layer (CBL) because nighttime turbulent motions are limited by buoyancy stratification, thus requiring fine grid resolution at the cost of immense computational resources. The intermittently turbulent SBL adds additional levels of complexity, requiring the model to not only sustain resolved turbulence during quiescent periods, but also to transition into a turbulent state under appropriate conditions. As a result, LES of the strongly stable SBL potentially requires even finer grid resolution, and has seldom been attempted. This dissertation takes a different approach. By improving the SFS representation of turbulence with a more sophisticated model, intermittently turbulent SBL is simulated, to our knowledge, for the first time in the LES literature. The turbulence closure is the dynamic reconstruction model (DRM), applied under an explicit filtering and reconstruction LES framework. The DRM is a mixed model that consists of subgrid scale (SGS) and resolved subfilter scale (RSFS) components. The RSFS portion is represented by a scale-similarity model that allows for backscatter of energy from the SFS to the mean flow. Compared to conventional closures, the DRM is able to sustain resolved turbulence under moderate stability at coarser resolution (thus saving computational resources). The DRM performs equally well at fine resolution. Under strong stability, the DRM simulates an intermittently turbulent SBL, whereas conventional closures predict false laminar flows. The improved simulation methodology of the SBL has many potential applications in the area of wind energy, numerical weather prediction, pollution modeling and so on. The SBL is first simulated over idealized flat terrain with prescribed forcings and periodic lateral boundaries. A wide range of stability regimes, from weakly to strongly stable conditions, is tested to evaluate model performance. Under strongly stable conditions, intermittency due to mean shear and turbulence interactions is simulated and analyzed. Furthermore, results of the strongly stable SBL are used to improve wind farm siting and nighttime operations. Moving away from the idealized setting, the SBL is simulated over relatively flat terrain at a Kansas site over the Great Plains, where the Cooperative Atmospheric-Surface Exchange Study -- 1999 (CASES-99) took place. The LES obtains realistic initial and lateral boundary conditions from a meso-scale model reanalysis through a grid nesting procedure. Shear-instability induced intermittency observed on the night of Oct 5th during CASES-99 is reproduced to good temporal and magnitude agreement. The LES locates the origin of the shear-instability waves in a shallow upwind valley, and uncovers the intermittency mechanism to be wave breaking over a standing wave (formed over a stagnant cold-air bubble) across the valley. Finally, flow over the highly complex terrain of the Owens Valley in California is modeled with a similar nesting procedure. The LES results are validated with observation data from the 2006 Terrain-Induced Rotor Experiment (T-REX). The nested LES reproduces a transient nighttime warming event observed on the valley floor on April 17 during T-REX. The intermittency mechanism is shown to be through slope-valley flow transitions. In addition, a cold-air intrusion from the eastern valley sidewall is simulated. This generates an easterly cross-valley flow, and the associated top-down mixing through breaking Kelvin-Helmholtz billows is analyzed. Finally, the nesting methodology tested and optimized in the CASES-99 and T-REX studies is transferrable to general ABL applications. For example, a nested LES is performed to model daytime methane plume dispersion over a landfill and good results are obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1167511-study-strain-rate-effects-turbulent-premixed-flames-application-les-gas-turbine-combustor-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1167511-study-strain-rate-effects-turbulent-premixed-flames-application-les-gas-turbine-combustor-model"><span>A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kemenov, Konstantin A.; Calhoon, William H.</p> <p>2015-03-24</p> <p>Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080048187','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080048187"><span>Toward Better Modeling of Supercritical Turbulent Mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth</p> <p>2008-01-01</p> <p>study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDF11001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDF11001C"><span>LES of an Advancing Helicopter Rotor, and Near to Far Wake Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caprace, Denis-Gabriel; Duponcheel, Matthieu; Chatelain, Philippe; Winckelmans, Grégoire</p> <p>2017-11-01</p> <p>Helicopter wake physics involve complex, unsteady vortical flows which have been only scarcely addressed in past studies. The present work focuses on LES of the wake flow behind an advancing rotor, to support the investigation of rotorcraft wake physics and decay mechanisms. A hybrid Vortex Particle-Mesh (VPM) method is employed to simulate the wake of an articulated four-bladed rotor in trimmed conditions, at an advance ratio of 0.41. The simulation domain extends to 30 rotor diameters downstream. The coarse scale aerodynamics of the blades are accounted for through enhanced immersed lifting lines. The vorticity generation mechanisms, the roll-up of the near wake and the resulting established far wake are described (i) qualitatively in terms of vortex dynamics using rotor polar plots and 3D visualizations; (ii) quantitatively using classical integral diagnostics. The power spectra measured by velocity probes in the wake are also presented. The analysis shows that the wake reaches a fully turbulent equilibrium state at a distance of about 30 diameters downstream. This work is supported by the Belgian french community F.R.S.-FNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1365556-parallel-perturbation-model-cycle-cycle-variability-ppm4ccv','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1365556-parallel-perturbation-model-cycle-cycle-variability-ppm4ccv"><span>PARALLEL PERTURBATION MODEL FOR CYCLE TO CYCLE VARIABILITY PPM4CCV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ameen, Muhsin Mohammed; Som, Sibendu</p> <p></p> <p>This code consists of a Fortran 90 implementation of the parallel perturbation model to compute cyclic variability in spark ignition (SI) engines. Cycle-to-cycle variability (CCV) is known to be detrimental to SI engine operation resulting in partial burn and knock, and result in an overall reduction in the reliability of the engine. Numerical prediction of cycle-to-cycle variability (CCV) in SI engines is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are required to accurately capture the in-cylinder turbulent flow field, and (ii) CCV is experienced over long timescales and hence the simulations needmore » to be performed for hundreds of consecutive cycles. In the new technique, the strategy is to perform multiple parallel simulations, each of which encompasses 2-3 cycles, by effectively perturbing the simulation parameters such as the initial and boundary conditions. The PPM4CCV code is a pre-processing code and can be coupled with any engine CFD code. PPM4CCV was coupled with Converge CFD code and a 10-time speedup was demonstrated over the conventional multi-cycle LES in predicting the CCV for a motored engine. Recently, the model is also being applied to fired engines including port fuel injected (PFI) and direct injection spark ignition engines and the preliminary results are very encouraging.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL36006D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL36006D"><span>Anisotropic Stochastic Vortex Structure Method for Simulating Particle Collision in Turbulent Shear Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dizaji, Farzad; Marshall, Jeffrey; Grant, John; Jin, Xing</p> <p>2017-11-01</p> <p>Accounting for the effect of subgrid-scale turbulence on interacting particles remains a challenge when using Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) approaches for simulation of turbulent particulate flows. The standard stochastic Lagrangian method for introducing turbulence into particulate flow computations is not effective when the particles interact via collisions, contact electrification, etc., since this method is not intended to accurately model relative motion between particles. We have recently developed the stochastic vortex structure (SVS) method and demonstrated its use for accurate simulation of particle collision in homogeneous turbulence; the current work presents an extension of the SVS method to turbulent shear flows. The SVS method simulates subgrid-scale turbulence using a set of randomly-positioned, finite-length vortices to generate a synthetic fluctuating velocity field. It has been shown to accurately reproduce the turbulence inertial-range spectrum and the probability density functions for the velocity and acceleration fields. In order to extend SVS to turbulent shear flows, a new inversion method has been developed to orient the vortices in order to generate a specified Reynolds stress field. The extended SVS method is validated in the present study with comparison to direct numerical simulations for a planar turbulent jet flow. This research was supported by the U.S. National Science Foundation under Grant CBET-1332472.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1336936-les-simulating-gas-exchange-process-spark-ignition-engine','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1336936-les-simulating-gas-exchange-process-spark-ignition-engine"><span>LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei</p> <p>2015-01-01</p> <p>The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT.......127A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT.......127A"><span>Un accumulateur echangeur de chaleur hybride pour la gestion simultanee des energies solaire et electrique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ait Hammou, Zouhair</p> <p></p> <p>Cette etude porte sur la conception d'un accumulateur echangeur de chaleur hybride (AECH) pour la gestion simultanee des energies solaire et electrique. Un modele mathematique reposant sur les equations de conservation de la quantite d'energie est expose. Il est developpe pour tester differents materiaux de stockage, entre autres, les materiaux a changement de phase (solide/liquide) et les materiaux de stockage sensible. Un code de calcul est mis en eeuvre sur ordinateur, puis valide a l'aide des resultats analytiques et numeriques de la litterature. En parallele, un prototype experimental a echelle reduite est concu au laboratoire afin de valider le code de calcul. Des simulations sont effectuees pour etudier les effets des parametres de conception et des materiaux de stockage sur le comportement thermique de l'AECH et sur la consommation d'energie electrique. Les resultats des simulations sur quatre mois d'hiver montrent que la paraffine n-octadecane et l'acide caprique sont deux candidats souhaitables pour le stockage d'energie destine au chauffage des habitats. L'utilisation de ces deux materiaux dans l'AECH permet de reduire la consommation d'energie electrique de 32% et d'aplanir le probleme de pointe electrique puisque 90% de l'energie electrique est consommee durant les heures creuses. En plus, en adoptant un tarif preferentiel, le calcul des couts lies a la consommation d'energie electrique montre que le consommateur adoptant ce systeme beneficie d'une reduction de 50% de la facture d'electricite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JPhy3...5.1953P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JPhy3...5.1953P"><span>Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peyre, P.; Fabbro, R.</p> <p>1995-12-01</p> <p>The laser-shock behaviour of three industrial aluminum alloys has been analyzed with an Electromagnetic Gauge Method (EMV) for measuring the velocity of the back free surface of thin foils submitted to plane laser irradiation. Surface pressure, shock decay in depth and Hugoniot Elastic Limits (HEL) of the materials were investigated with increasing thicknesses of foils to be shocked. First, surface peak pressures values as a function of laser power density gave a good agreement with conventional piezoelectric quartz measurements. Therefore, comparison of experimental results with computer simulations, using a 1D hydrodynamic Lagrangian finite difference code, were also in good accordance. Lastly, HEL values were compared with static and dynamic compressive tests in order to estimate the effects of a very large range of strain rates (10^{-3} s^{-1} to 10^6 s^{-1}) on the mechanical properties of the alloys. Cet article fait la synthèse d'une étude récente sur la caractérisation du comportement sous choc-laser de trois alliages d'aluminium largement utilisés dans l'industrie à travers la méthode dite de la jauge électromagnétique. Cette méthode permet de mesurer les vitesses matérielles induites en face arrière de plaques d'épaisseurs variables par un impact laser. La mise en vitesse de plaques nous a permis, premièrement, de vérifier la validité des pressions d'impact superficielles obtenues en les comparant avec des résultats antérieurs obtenus par des mesures sur capteurs quartz. Sur des plaques d'épaisseurs croissantes, nous avons caractérisé l'atténuation des ondes de choc en profondeur dans les alliages étudiés et mesuré les limites d'élasticité sous choc (pressions d'Hugoniot) des alliages. Les résultats ont été comparés avec succès à des simulations numériques grâce à un code de calcul monodimensionnel Lagrangien. Enfin, les valeurs des pressions d'Hugoniot mesurées ont permis de tracer l'évolution des contraintes d'écoulement plastique en fonction de la vitesse de déformation pour des valeurs comprises entre 10^{-3} s^{-1} et 10^6 s^{-1}.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003APS..DFD.JL012W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003APS..DFD.JL012W"><span>A Method for Large Eddy Simulation of Acoustic Combustion Instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wall, Clifton; Moin, Parviz</p> <p>2003-11-01</p> <p>A method for performing Large Eddy Simulation of acoustic combustion instabilities is presented. By extending the low Mach number pressure correction method to the case of compressible flow, a numerical method is developed in which the Poisson equation for pressure is replaced by a Helmholtz equation. The method avoids the acoustic CFL condition by using implicit time advancement, leading to large efficiency gains at low Mach number. The method also avoids artificial damping of acoustic waves. The numerical method is attractive for the simulation of acoustics combustion instabilities, since these flows are typically at low Mach number, and the acoustic frequencies of interest are usually low. Additionally, new boundary conditions based on the work of Poinsot and Lele have been developed to model the acoustic effect of a long channel upstream of the computational inlet, thus avoiding the need to include such a channel in the computational domain. The turbulent combustion model used is the Level Set model of Duchamp de Lageneste and Pitsch for premixed combustion. Comparison of LES results to the reacting experiments of Besson et al. will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940010954','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940010954"><span>Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.</p> <p>1993-01-01</p> <p>The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the effects of scalar fluctuations. The implementation of the model requires the knowledge of the local values of the first two SGS moments. These are provided by additional modeled transport equations. In both a priori and a posteriori analyses, the predicted results are appraised by comparison with subgrid averaged results generated by DNS. Based on these results, the paths to be followed in future investigations are identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080044858&hterms=3d+formation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D3d%2Bformation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080044858&hterms=3d+formation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D3d%2Bformation"><span>Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Platnick, Steven; Zinner, Tobias; Ackerman, S.</p> <p>2008-01-01</p> <p>Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040027958','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040027958"><span>Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow using Three-Dimensional Explicit Filtering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gullbrand, Jessica</p> <p>2003-01-01</p> <p>In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM consists of the scale-similarity model (SSM) by Bardina et al. (1983), which is an RSFS model, in linear combination with the DSM. In the DRM, the RSFS stresses are modeled by using an estimate of the unfiltered velocity in the unclosed term, while the USFS stresses are modeled by the DSM. The DSM and the DMM are two commonly used turbulence-closure models, while the DRM is a more recent model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA509262','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA509262"><span>Integrating Occupational Characteristics into Human Performance Models: IPME Versus ISMAT Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-08-01</p> <p>modélisation générique de la performance humaine appelé Integrated Performance Modelling Environment (IPME). Ce projet a permis d’explorer l’utilisation de la...groupes professionnels dans des modèles de performance humaine : l’approche IPME et l’approche ISMAT Par Christy Lorenzen; RDDC RC 2009-059; R & D...application de simulation d’événements discrets disponible sur le marché et servant à développer des modèles qui simulent la performance humaine et de</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930046735&hterms=xie&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CLT%2B20031231%26N%3D0%26No%3D50%26Ntt%3Dxie','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930046735&hterms=xie&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CLT%2B20031231%26N%3D0%26No%3D50%26Ntt%3Dxie"><span>Large-eddy simulations of compressible convection on massively parallel computers. [stellar physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xie, Xin; Toomre, Juri</p> <p>1993-01-01</p> <p>We report preliminary implementation of the large-eddy simulation (LES) technique in 2D simulations of compressible convection carried out on the CM-2 massively parallel computer. The convective flow fields in our simulations possess structures similar to those found in a number of direct simulations, with roll-like flows coherent across the entire depth of the layer that spans several density scale heights. Our detailed assessment of the effects of various subgrid scale (SGS) terms reveals that they may affect the gross character of convection. Yet, somewhat surprisingly, we find that our LES solutions, and another in which the SGS terms are turned off, only show modest differences. The resulting 2D flows realized here are rather laminar in character, and achieving substantial turbulence may require stronger forcing and less dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDA29008H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDA29008H"><span>Simulation and stability analysis of supersonic impinging jet noise with microjet control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hildebrand, Nathaniel; Nichols, Joseph W.</p> <p>2014-11-01</p> <p>A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG14A..08F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG14A..08F"><span>The Effect of Large Scale Salinity Gradient on Langmuir Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.</p> <p>2017-12-01</p> <p>Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by large fresh water inflow due to flooding from the Mississippi river. Model results indicate that the strong salinity gradient can reduce the mean flow in the ML and inhibit the turbulence in the planetary boundary layer. The Langmuir cells are also rotated clockwise by the pressure gradient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029134&hterms=hierarchy+effects+model&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhierarchy%2Beffects%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029134&hterms=hierarchy+effects+model&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhierarchy%2Beffects%2Bmodel"><span>Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Canuto, V. M.</p> <p>1994-01-01</p> <p>The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence (e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anistropy, and stable stratification (gravity waves). In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation of these models into the presently available LES codes should begin with the SM, to be followed by the AM and finally by the CM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994ApJ...428..729C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994ApJ...428..729C"><span>Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Canuto, V. M.</p> <p>1994-06-01</p> <p>The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 108 for the planetary boundary layer and Re approximately equals 1014 for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re9/4 exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence (e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anistropy, and stable stratification (gravity waves). In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation of these models into the presently available LES codes should begin with the SM, to be followed by the AM and finally by the CM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9173K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9173K"><span>Dust devil characteristics and associated dust entrainment based on large-eddy simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klose, Martina; Kwidzinski, Nick; Shao, Yaping</p> <p>2015-04-01</p> <p>The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFD.L1004Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFD.L1004Z"><span>Nested large-eddy simulations of nighttime shear-instability waves and transient warming in a steep valley</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Bowen; Chow, Fotini</p> <p>2012-11-01</p> <p>This numerical study investigates the nighttime flow dynamics in a steep valley. The Owens Valley in California is highly complex, and represents a challenging terrain for large-eddy simulations (LES). To ensure a faithful representation of the nighttime atmospheric boundary layer (ABL), realistic external boundary conditions are provided through grid nesting. The model obtains initial and lateral boundary conditions from reanalysis data, and bottom boundary conditions from a land-surface model. We demonstrate the ability to extend a mesoscale model to LES resolutions through a systematic grid-nesting framework, achieving accurate simulations of the stable ABL over complex terrain. Nighttime cold-air flow was channeled through a gap on the valley sidewall. The resulting katabatic current induced a cross-valley flow. Directional shear against the down-valley flow in the lower layers of the valley led to breaking Kelvin-Helmholtz waves at the interface, which is captured only on the LES grid. Later that night, the flow transitioned from down-slope to down-valley near the western sidewall, leading to a transient warming episode. Simulation results are verified against field observations and reveal good spatial and temporal precision. Supported by NSF grant ATM-0645784.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010048921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010048921"><span>Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)</p> <p>2001-01-01</p> <p>Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130008784','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130008784"><span>A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bellan, Josette; Taskinoglu, Ezgi</p> <p>2012-01-01</p> <p>Currently, the modeling of supercritical-pressure flows through Large Eddy Simulation (LES) uses models derived for atmospheric-pressure flows. Those atmospheric-pressure flows do not exhibit the particularities of high densitygradient magnitude features observed both in experiments and simulations of supercritical-pressure flows in the case of two species mixing. To assess whether the current LES modeling is appropriate and if found not appropriate to propose higher-fidelity models, a LES a posteriori study has been conducted for a mixing layer that initially contains different species in the lower and upper streams, and where the initial pressure is larger than the critical pressure of either species. An initially-imposed vorticity perturbation promotes roll-up and a double pairing of four initial span-wise vortices into an ultimate vortex that reaches a transitional state. The LES equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equation set uses transport properties depending on the thermodynamic variables. Unlike all LES models to date, the differential equations contain, additional to the subgrid scale (SGS) fluxes, a new SGS term that is a pressure correction in the momentum equation. This additional term results from filtering of Direct Numerical Simulation (DNS) equations, and represents the gradient of the difference between the filtered pressure and the pressure computed from the filtered flow field. A previous a priori analysis, using a DNS database for the same configuration, found this term to be of leading order in the momentum equation, a fact traced to the existence of high-densitygradient magnitude regions that populated the entire flow; in the study, models were proposed for the SGS fluxes as well as this new term. In the present study, the previously proposed constantcoefficient SGS-flux models of the a priori investigation are tested a posteriori in LES, devoid of or including, the SGS pressure correction term. The present pressure-correction model is different from, and more accurate as well as less computationally intensive than that of the a priori study. The constant-coefficient SGS-flux models encompass the Smagorinsky (SMC), in conjunction with the Yoshizawa (YO) model for the trace, the Gradient (GRC) and the Scale Similarity (SSC) models, all exercised with the a priori study constant coefficients calibrated at the transitional state. The LES comparison is performed with the filtered- and-coarsened (FC) DNS, which represents an ideal LES solution. Expectably, an LES model devoid of SGS terms is shown to be considerably inferior to models containing SGS effects. Among models containing SGS effects, those including the pressure-correction term are substantially superior to those devoid of it. The sensitivity of the predictions to the initial conditions and grid size are also investigated. Thus, it has been discovered that, additional to the atmospheric-pressure models currently used, a new model is necessary to simulate supercritical-pressure flows. This model depends on the thermodynamic characteristics of the chemical species involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100003412','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100003412"><span>LES/RANS Simulation of a Supersonic Reacting Wall Jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Edwards, Jack R.; Boles, John A.; Baurle, Robert A.</p> <p>2010-01-01</p> <p>This work presents results from large-eddy / Reynolds-averaged Navier-Stokes (LES/RANS) simulations of the well-known Burrows-Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 10 and 22 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data and to results from a Reynolds-averaged Navier-Stokes calculation. If the experimental data can be considered as being accurate, this result indicates that the present LES/RANS method does not correctly capture the cascade of turbulence scales that should be resolvable on the present mesh. Instead, energy is concentrated in the very largest scales, which provide an over-mixing effect that excessively cools and strains the flame. Predictions improve with the use of a low-dissipation version of the baseline piecewise parabolic advection scheme, which captures the formation of smaller-scale structures superimposed on larger structures of the order of the shear-layer width.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880010356','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880010356"><span>Time-accurate simulations of a shear layer forced at a single frequency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Claus, R. W.; Huang, P. G.; Macinnes, J. M.</p> <p>1988-01-01</p> <p>Calculations are presented for the forced shear layer studied experimentally by Oster and Wygnanski, and Weisbrot. Two different computational approaches are examined: Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). The DNS approach solves the full three dimensional Navier-Stokes equations for a temporally evolving mixing layer, while the LES approach solves the two dimensional Navier-Stokes equations with a subgrid scale turbulence model. While the comparison between these calculations and experimental data was hampered by a lack of information on the inflow boundary conditions, the calculations are shown to qualitatively agree with several aspects of the experiment. The sensitivity of these calculations to factors such as mesh refinement and Reynolds number is illustrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990111593','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990111593"><span>Large Eddy Simulations and Turbulence Modeling for Film Cooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Acharya, Sumanta</p> <p>1999-01-01</p> <p>The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21248857-analysis-unsteady-reacting-flows-impact-chemistry-description-large-eddy-simulations-side-dump-ramjet-combustors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21248857-analysis-unsteady-reacting-flows-impact-chemistry-description-large-eddy-simulations-side-dump-ramjet-combustors"><span>Analysis of unsteady reacting flows and impact of chemistry description in Large Eddy Simulations of side-dump ramjet combustors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roux, A.; Gicquel, L.Y.M.; Staffelbach, G.</p> <p>2010-01-15</p> <p>Among all the undesired phenomena observed in ramjet combustors, combustion instabilities are of foremost importance and predicting them using Large Eddy Simulation (LES) is an active research field. While acoustics are naturally captured by compressible LES provided that the proper boundary conditions are applied, combustion/chemistry modelling remains a critical issue and its impact on numerical predictions must still be assessed for complex applications. To do so, two different ramjet LES's are compared here. The first simulation is based on a standard one-step chemistry known to over-estimate the laminar flame speed in fuel rich conditions. The second simulation uses the samemore » scheme but introduces a correction of reaction rates for rich flames to match a detailed mechanism provided by Peters (1993). Even though the two chemical schemes are very similar and very few points burn in rich regimes, distinct limit-cycles are obtained with LES depending on which scheme is used. Results obtained with the standard one-step chemistry exhibit high frequency self-sustained oscillations. Multiple flame fronts are stabilized in the vicinity of the shear layer developing at the exit of the air inlets. When compared to the experiment, the fitted one-step scheme yields better predictions than the standard scheme. With the fitted scheme, the flame is detached from the air inlets and stabilizes in the regions identified in the experiment (Ristori et al. (2005), Heid and Ristori (2003), Heid and Ristori (2005), Ristori et al. (1999)). LES and experiments exhibit all main low-frequency modes including the first longitudinal acoustic mode. The high frequencies excited with the standard scheme are damped with the fitted scheme. The chemical scheme is found, for this ramjet burner, to have a strong impact on the predicted stability: approximate chemical schemes even in a limited range of equivalence ratio can lead to the occurence of non-physical combustion oscillations. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1201350-racoro-continental-boundary-layer-cloud-investigations-large-eddy-simulations-cumulus-clouds-evaluation-situ-ground-based-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1201350-racoro-continental-boundary-layer-cloud-investigations-large-eddy-simulations-cumulus-clouds-evaluation-situ-ground-based-observations"><span>RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; ...</p> <p>2015-06-19</p> <p>A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040034211','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040034211"><span>DNS and LES of a Shear-Free Mixing Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knaepen, B.; Debliquy, O.; Carati, D.</p> <p>2003-01-01</p> <p>The purpose of this work is twofold. First, given the computational resources available today, it is possible to reach, using DNS, higher Reynolds numbers than in Briggs et al.. In the present study, the microscale Reynolds numbers reached in the low- and high-energy homogeneous regions are, respectively, 32 and 69. The results reported earlier can thus be complemented and their robustness in the presence of increased turbulence studied. The second aim of this work is to perform a detailed and documented LES of the shear-free mixing layer. In that respect, the creation of a DNS database at higher Reynolds number is necessary in order to make meaningful LES assessments. From the point of view of LES, the shear-free mixing-layer is interesting since it allows one to test how traditional LES models perform in the presence of an inhomogeneity without having to deal with difficult numerical issues. Indeed, as argued in Briggs et al., it is possible to use a spectral code to study the shear-free mixing layer and one can thus focus on the accuracy of the modelling while avoiding contamination of the results by commutation errors etc. This paper is organized as follows. First we detail the initialization procedure used in the simulation. Since the flow is not statistically stationary, this initialization procedure has a fairly strong influence on the evolution. Although we will focus here on the shear-free mixing layer, the method proposed in the present work can easily be used for other flows with one inhomogeneous direction. The next section of the article is devoted to the description of the DNS. All the relevant parameters are listed and comparison with the Veeravalli & Warhaft experiment is performed. The section on the LES of the shear-free mixing layer follows. A detailed comparison between the filtered DNS data and the LES predictions is presented. It is shown that simple eddy viscosity models perform very well for the present test case, most probably because the flow seems to be almost isotropic in the small-scale range that is not resolved by the LES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA574108','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA574108"><span>Modelling, Simulation & Analysis (MS&A): Potent Enabling Tools for Planning and Executing Complex Major National Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-10-01</p> <p>de 2012 à Londres, les Jeux du Commonwealth de 2015 à Toronto et la gestion des cas d’urgence transfrontaliers...tels que les Jeux olympiques. La gestion de la sécurité lors d’événements comme Vancouver 2010 et les sommets du G8 et du G20 est un enjeu... des plans de gestion des mesures d’urgence et de continuité des opérations, une structure permanente a été mise sur pied</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008161','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008161"><span>LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim</p> <p>2010-01-01</p> <p>This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA639917','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA639917"><span>Adaptability in Coalition Teamwork (Facultes d’adaptation au travail d’equipe en coalition)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-04-01</p> <p>principaux résultats des 30 communications théoriques et de recherche ont été les suivants : • Les outils de formation (jeux, simulations) fonctionnent...militaires ; • Le retour d’information sur le moral et les performances des équipes en opérations est un instrument qui est particulièrement apprécié...during operations is an instrument that is highly valued by commanders in the field; and • Differences in language proficiency in English confound</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MsT.........12C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MsT.........12C"><span>Modelisation de photodetecteurs a base de matrices de diodes avalanche monophotoniques pour tomographie d'emission par positrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corbeil Therrien, Audrey</p> <p></p> <p>La tomographie d'emission par positrons (TEP) est un outil precieux en recherche preclinique et pour le diagnostic medical. Cette technique permet d'obtenir une image quantitative de fonctions metaboliques specifiques par la detection de photons d'annihilation. La detection des ces photons se fait a l'aide de deux composantes. D'abord, un scintillateur convertit l'energie du photon 511 keV en photons du spectre visible. Ensuite, un photodetecteur convertit l'energie lumineuse en signal electrique. Recemment, les photodiodes avalanche monophotoniques (PAMP) disposees en matrice suscitent beaucoup d'interet pour la TEP. Ces matrices forment des detecteurs sensibles, robustes, compacts et avec une resolution en temps hors pair. Ces qualites en font un photodetecteur prometteur pour la TEP, mais il faut optimiser les parametres de la matrice et de l'electronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une operation difficile, car les differents parametres interagissent de maniere complexe avec les processus d'avalanche et de generation de bruit. Enfin, l'electronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser differentes strategies de lecture. Pour repondre a cette question, la solution la plus economique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce memoire presentent le developpement d'un tel simulateur. Celui-ci modelise le comportement d'une matrice de PAMP en se basant sur les equations de physique des semiconducteurs et des modeles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les declenchements intempestifs correles et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'electronique de lecture plus adaptees a ce type de detecteur. Au final, le simulateur vise a quantifier l'impact des parametres du photodetecteur sur la resolution en energie et la resolution en temps et ainsi optimiser les performances de la matrice de PAMP. Par exemple, l'augmentation du ratio de surface active ameliore les performances, mais seulement jusqu'a un certain point. D'autres phenomenes lies a la surface active, comme le bruit thermique, provoquent une degradation du resultat. Le simulateur nous permet de trouver un compromis entre ces deux extremes. Les simulations avec les parametres initiaux demontrent une efficacite de detection de 16,7 %, une resolution en energie de 14,2 % LMH et une resolution en temps de 0.478 ns LMH. Enfin, le simulateur propose, bien qu'il vise une application en TEP, peut etre adapte pour d'autres applications en modifiant la source de photons et en adaptant les objectifs de performances. Mots-cles : Photodetecteurs, photodiodes avalanche monophotoniques, semiconducteurs, tomographie d'emission par positrons, simulations, modelisation, detection monophotonique, scintillateurs, circuit d'etouffement, SPAD, SiPM, Photodiodes avalanche operees en mode Geiger</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21285644-large-eddy-simulation-forced-ignition-annular-bluff-body-burner','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21285644-large-eddy-simulation-forced-ignition-annular-bluff-body-burner"><span>Large eddy simulation of forced ignition of an annular bluff-body burner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Subramanian, V.; Domingo, P.; Vervisch, L.</p> <p>2010-03-15</p> <p>The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Timemore » histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1372375','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1372375"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pluquet, Alain</p> <p></p> <p>Cette théetudie les techniques d'identication de l'electron dans l'experience D0 au laboratoire Fermi pres de Chicago Le premier chapitre rappelle quelques unes des motivations physiques de l'experience physique des jets physique electrofaible physique du quark top Le detecteur D0 est decrit en details dans le second chapitre Le troisieme cha pitre etudie les algorithmes didentication de lelectron trigger reconstruction ltres et leurs performances Le quatrieme chapitre est consacre au detecteur a radiation de transition TRD construit par le Departement dAstrophysique Physique des Particules Physique Nucleaire et dInstrumentation Associee de Saclay il presente son principe sa calibration et ses performances Ennmore » le dernier chapitre decrit la methode mise au point pour lanalyse des donnees avec le TRD et illustre son emploi sur quelques exemples jets simulant des electrons recherche du quark top« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S88-42416&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Draft','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S88-42416&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Draft"><span>STS-26 Pilot Covey floats in life raft during JSC WETF exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1988-01-01</p> <p>STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey pulls and fastens life raft protective cover over himself. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5459A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5459A"><span>A dynamic subgrid-scale parameterization of the effective wall stress in atmospheric boundary layer flows over multiscale, fractal-like surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, William; Meneveau, Charles</p> <p>2010-05-01</p> <p>A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000020594&hterms=inflation+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dinflation%2Brate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000020594&hterms=inflation+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dinflation%2Brate"><span>CO2 Accumulation in the Non-Conformal Helmet of the NASA Launch and Entry Suit During Simulated Unaided Egress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenisen, M. C.; Bishop, P. A.; Lee, S. M. C.; Moore, A.; Williams, J.</p> <p>1999-01-01</p> <p>The Launch and Entry Suit (LES) has been worn by astronauts since 1988 for Space Shuttle launch and landing. Previous work indicated that carbon dioxide (CO2) accumulation in the LES non-conformal helmet might be high during locomotion while wearing the LES. The purpose of this study was to characterize the inspired CO2%, metabolic requirements, and egress performance during a simulation of an unaided egress from the Space Shuttle in healthy male subjects wearing the LES and walking on a treadmill. With the helmet visor closed, 12 male subjects completed a 6-min seated prebreathe with 100% O2 followed by a 2-min stand and 5 min of walking at 1.56 m/sec (5.6 km/h, 3.5 mph) as a simulation of unaided egress. All subjects walked with four different G-suit pressures (0.0, 0.5, 1.0, 1.5 psi). After a 10-min recovery, subjects walked 5 min with the same G-suit pressure and helmet visor open for the measurement of metabolic rate (VO2). When G-suit inflation levels were 1.0 or 1.5 psi, only 4 of our 12 healthy, non-micro-gravity exposed subjects completed the unaided egress. Inspired CO2 levels greater than 4% were routinely observed during walking. The metabolic cost at the 1.5 psi G-suit inflation was over 135% of the metabolic cost at 0.0 psi inflation. During unaided egress, G-suit inflation pressures of 1.0 (required inflation for missions greater than 11 days) and 1.5 psi resulted in elevated CO2 in the LES helmet and increased metabolic cost of walking, either of which could impact unaided egress by returning space flight crews.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998EPJAP...1...27H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998EPJAP...1...27H"><span>Modélisation des charges d'espace dans les isolants solides par une analyse spectrale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haas, V.; Scouarnec, Ch.; Franceschi, J. L.</p> <p>1998-01-01</p> <p>A mathematical method based on spectral algebra is developped for the thermal modulation method. These methods permit to measure the space charge distribution in solid insulators. The modelling presented permits to evaluate the performances and the limitations of the measurement method. Une linéarisation par l'algèbre spectrale a été développée dans une méthode de modulation thermique pour mesurer la distribution des charges électriques dans les isolants solides. La modélisation présentée permet d'évaluer les performances et les limites tant numériques que physiques de la méthode de mesure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/881277','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/881277"><span>Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>S. Dartevelle</p> <p>2005-09-05</p> <p>The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either amore » spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of thermodynamics and fulfills the necessary requirements for a well-posed initial-value problem. In the next manuscripts, we will further develop specific closures for multiphase RANS, LES, and hybrid-LES.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA169553','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA169553"><span>Methode des Rayons avec Calcul d’Intensite Appliquee a la Propagation Anormale (Method of Ray Intensity Calculation as Applied to Anomalous Propagation),</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-06-01</p> <p>D’INTENSITE 0 APPLIQUEE A LA PROPAGATION "ANORNALE" par D. Dion DEFENCE RESEARCH ESTABLISHMENT CENTRE DE RECHERCHES POUR LA DEFENSE VALCARTI ER 6- Tel: (418...faqon ils sont reli~s aux conditions atmosph~riques. Les ph~no- manes les plus importants A signaler sont les conduits et les "trous radio". En effet...6tant tr~s fr~quents en mer, 11 est d’int&rt pour la marine de rechercher des m~thodes simples permettant de les caract~riser. Des 6quations d’int</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19531505','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19531505"><span>Large eddy simulation applications in gas turbines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Menzies, Kevin</p> <p>2009-07-28</p> <p>The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020008664','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020008664"><span>Statistical Ensemble of Large Eddy Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)</p> <p>2001-01-01</p> <p>A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000004243&hterms=james+madison&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djames%2Bmadison','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000004243&hterms=james+madison&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djames%2Bmadison"><span>Large-Eddy Simulation of Aeroacoustic Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pruett, C. David; Sochacki, James S.</p> <p>1999-01-01</p> <p>This report summarizes work accomplished under a one-year NASA grant from NASA Langley Research Center (LaRC). The effort culminates three years of NASA-supported research under three consecutive one-year grants. The period of support was April 6, 1998, through April 5, 1999. By request, the grant period was extended at no-cost until October 6, 1999. Its predecessors have been directed toward adapting the numerical tool of large-eddy simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of subgrid-scale (SGS) models that incorporate time-domain filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1338608','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1338608"><span>CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning</p> <p></p> <p>We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1338608-cgils-phase-les-intercomparison-response-subtropical-marine-low-cloud-regimes-co-quadrupling-cmip3-composite-forcing-change-large-eddy-simulation-cloud-feedbacks','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1338608-cgils-phase-les-intercomparison-response-subtropical-marine-low-cloud-regimes-co-quadrupling-cmip3-composite-forcing-change-large-eddy-simulation-cloud-feedbacks"><span>CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...</p> <p>2016-10-27</p> <p>We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JPhy4..12..335R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JPhy4..12..335R"><span>Apport de la simulation numérique à la compréhension des mécanismes d'interaction de cavités dans le cadre de la modélisation de l'endommagement ductile sous sollicitation dynamique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roy, G.; Buy, F.; Llorca, F.</p> <p>2002-12-01</p> <p>L'étude présentée s'inscrit dans le cadre d'une démarche menant à la construction d'un modèle analytique ou semi analytique de comportement élasto-visco-plastique endommageable, applicable aux chargements rencontrés en configuration d'impact violent et générant de l'écaillage ductile. La prise en compte des effets de compressibilité et de micro inertie est essentielle pour modéliser la phase de croissance. Des simulations numériques globales de la structure et locales à l'échelle des hétérogénéités permettent d'évaluer les niveaux de sollicitations dans les zones susceptibles de s'endommager, dévaluer des critères analytiques de germination de l'endommagement et de comprendre les mécanismes d'interaction entre les défauts. Les effets micro inertiels et de compressibilité sont ainsi mis en évidence dans les phases de germination et de coalescence des micro défauts. II s'agit ici d'une illustration non exhaustive de travaux engagés au CEA Valduc sur le tantale, dans le cadre d'une thèse [10]. Un programme matériaux en partenariat CEA-CNRS sur la modélisation multi échelles du comportement de structures a également été initié dans ce contexte.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6695893-applications-large-eddy-simulation-synthesis-neutral-boundary-layer-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6695893-applications-large-eddy-simulation-synthesis-neutral-boundary-layer-models"><span>Applications of large-eddy simulation: Synthesis of neutral boundary layer models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ohmstede, W.D.</p> <p></p> <p>The object of this report is to describe progress made towards the application of large-eddy simulation (LES), in particular, to the study of the neutral boundary layer (NBL). The broad purpose of the study is to provide support to the LES project currently underway at LLNL. The specific purpose of this study is to lay the groundwork for the simulation of the SBL through the establishment and implementation of model criteria for the simulation of the NBL. The idealistic NBL is never observed in the atmosphere and therefore has little practical significance. However, it is of considerable theoretical interest formore » several reasons. The report discusses the concept of Rossby-number similarity theory as it applies to the NBL. A particular implementation of the concept is described. Then, the results from prior simulations of the NBL are summarized. Model design criteria for two versions of the Brost LES (BLES) model are discussed. The general guidelines for the development of Version 1 of the Brost model (BV1) were to implement the model with a minimum of modifications which would alter the design criteria as established by Brost. Two major modifications of BLES incorporated into BV1 pertain to the initialization/parameterization of the model and the generalization of the boundary conditions at the air/earth interface. 18 refs., 4 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDR25010R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDR25010R"><span>Large eddy simulation of a wing-body junction flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca</p> <p>2014-11-01</p> <p>We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050061082','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050061082"><span>Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.</p> <p>2004-01-01</p> <p>Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BoLMe.163....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BoLMe.163....1S"><span>Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shamsoddin, Sina; Porté-Agel, Fernando</p> <p>2017-04-01</p> <p>Large-eddy simulation (LES) has recently been well validated and applied in the context of wind turbines over flat terrain; however, to date its accuracy has not been tested systematically in the case of turbine-wake flows over topography. Here, we investigate the wake flow in a wind farm situated on hilly terrain using LES for a case where wind-tunnel experimental data are available. To this end, first boundary-layer flow is simulated over a two-dimensional hill in order to characterize the spatial distribution of the mean velocity and the turbulence statistics. A flow simulation is then performed through a wind farm consisting of five horizontal-axis wind turbines sited over the same hill in an aligned layout. The resulting flow characteristics are compared with the former case, i.e., without wind turbines. To assess the validity of the simulations, the results are compared with the wind-tunnel measurements. It is found that LES can reproduce the flow field effectively, and, specifically, the speed-up over the hilltop and the velocity deficit and turbulence intensity enhancement induced by the turbines are well captured by the simulations. Besides, the vertical profiles of the mean velocity and turbulence intensity at different streamwise positions match well those for the experiment. In addition, another numerical experiment is carried out to show how higher (and more realistic) thrust coefficients of the turbines lead to stronger wakes and, at the same time, higher turbulence intensities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PrAeS..52...48O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PrAeS..52...48O"><span>Sensitivity of LES results from turbine rim seals to changes in grid resolution and sector size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Mahoney, T.; Hills, N.; Chew, J.</p> <p>2012-07-01</p> <p>Large-Eddy Simulations (LES) were carried out for a turbine rim seal and the sensitivity of the results to changes in grid resolution and the size of the computational domain are investigated. Ingestion of hot annulus gas into the rotor-stator cavity is compared between LES results and against experiments and Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations. The LES calculations show greater ingestion than the URANS calculation and show better agreement with experiments. Increased grid resolution shows a small improvement in ingestion predictions whereas increasing the sector model size has little effect on the results. The contrast between the different CFD models is most stark in the inner cavity, where the URANS shows almost no ingestion. Particular attention is also paid to the presence of low frequency oscillations in the disc cavity. URANS calculations show such low frequency oscillations at different frequencies than the LES. The oscillations also take a very long time to develop in the LES. The results show that the difficult problem of estimating ingestion through rim seals could be overcome by using LES but that the computational requirements were still restrictive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S92-40027&hterms=Water+exercise&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWater%2Bexercise','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S92-40027&hterms=Water+exercise&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWater%2Bexercise"><span>STS-52 Commander Wetherbee, in LES/LEH, during JSC WETF bailout exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1992-01-01</p> <p>STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, fully outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used to simulate a water landing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA549640','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA549640"><span>Studying Hostile, Deceptive, and Dangerous Surroundings: Report of a Workshop on Social Research Methods for Non-Permissive Environments (Etudier des Milieux Hostiles, Trompeurs et Dangereux - Rapport Concernant un Atelier sur les Methodes de Recherche Sociale an Milieu non Permissif)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-08-01</p> <p>des groupes de consultation pour déterminer l’effet des opérations communes sur la population locale. Ils ont établi des « mesures de rendement...fondées sur les relations avec les habitants et les résultats des groupes de consultation ainsi que des « mesures de production » basées sur la ...l’ethnographie de combat, et la recherche d’initié étranger peuvent aider à tracer les microcosmes sociaux dans un</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL28004T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL28004T"><span>On the ``optimal'' spatial distribution and directional anisotropy of the filter-width and grid-resolution in large eddy simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toosi, Siavash; Larsson, Johan</p> <p>2017-11-01</p> <p>The accuracy of an LES depends directly on the accuracy of the resolved part of the turbulence. The continuing increase in computational power enables the application of LES to increasingly complex flow problems for which the LES community lacks the experience of knowing what the ``optimal'' or even an ``acceptable'' grid (or equivalently filter-width distribution) is. The goal of this work is to introduce a systematic approach to finding the ``optimal'' grid/filter-width distribution and their ``optimal'' anisotropy. The method is tested first on the turbulent channel flow, mainly to see if it is able to predict the right anisotropy of the filter/grid, and then on the more complicated case of flow over a backward-facing step, to test its ability to predict the right distribution and anisotropy of the filter/grid simultaneously, hence leading to a converged solution. This work has been supported by the Naval Air Warfare Center Aircraft Division at Pax River, MD, under contract N00421132M021. Computing time has been provided by the University of Maryland supercomputing resources (http://hpcc.umd.edu).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1354832-modeling-transport-phenomena-tokamak-plasmas-neural-networks','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1354832-modeling-transport-phenomena-tokamak-plasmas-neural-networks"><span>Modeling of transport phenomena in tokamak plasmas with neural networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Meneghini, Orso; Luna, Christopher J.; Smith, Sterling P.; ...</p> <p>2014-06-23</p> <p>A new transport model that uses neural networks (NNs) to yield electron and ion heat ux pro les has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest delity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport pro les. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range ofmore » plasma regimes. Although each radial location is calculated independently from the others, the heat ux pro les are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-de ned, non-stochastic relationship between the input parameters and the experimentally measured transport uxes. Finally, the numerical efficiency of this method, requiring only a few CPU-μs per data point, makes it ideal for scenario development simulations and real-time plasma control.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090028777','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090028777"><span>An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tucker, Paul K.; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor</p> <p>2007-01-01</p> <p>Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000056872&hterms=nora&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnora','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000056872&hterms=nora&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnora"><span>A Priori Subgrid Analysis of Temporal Mixing Layers with Evaporating Droplets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Okongo, Nora; Bellan, Josette</p> <p>1999-01-01</p> <p>Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using three sets of results from a Direct Numerical Simulation (DNS) database, with Reynolds numbers (based on initial vorticity thickness) as large as 600 and with droplet mass loadings as large as 0.5. In the DNS, the gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. The Large Eddy Simulation (LES) equations corresponding to the DNS are first derived, and key assumptions in deriving them are first confirmed by computing the terms using the DNS database. Since LES of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be the sum of the filtered variables and a correction based on the filtered standard deviation; this correction is then computed from the Subgrid Scale (SGS) standard deviation. This model predicts the unfiltered variables at droplet locations considerably better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: the Smagorinsky approach, the Gradient model and the Scale-Similarity formulation. When the proportionality constant inherent in the SGS models is properly calculated, the Gradient and Scale-Similarity methods give results in excellent agreement with the DNS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADP010490','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADP010490"><span>Methode d’Identification des Forces Aerodynamiques Instationnaires sur les Essais en Vol, Validation Experimentale (Method of Mathematical Identification of Unsteady Airloads From Flight Measurements, Experimental Validation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-05-01</p> <p>gage en vol de rdponses de jauges de contraintes en responses in maneuver, illustrated by an example manoeuvre, illustrd par un exemple issu de la coming...sous ddrapage, ... , braquages gouvernes,..) la forme: -Les mesures sont directement les rkponses de - minimiser Z = Q(k - Xj tb) 2 jauges de...3, la rdponse - les facteurs de ponddration des mesures, fli ou incidence de l’avion, la rdponse de la jauge plus ou momns subjectifs, sont remplacds</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......211P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......211P"><span>Methodes d'amas quantiques a temperature finie appliquees au modele de Hubbard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plouffe, Dany</p> <p></p> <p>Depuis leur decouverte dans les annees 80, les supraconducteurs a haute temperature critique ont suscite beaucoup d'interet en physique du solide. Comprendre l'origine des phases observees dans ces materiaux, telle la supraconductivite, est l'un des grands defis de la physique theorique du solide des 25 dernieres annees. L'un des mecanismes pressentis pour expliquer ces phenomenes est la forte interaction electron-electron. Le modele de Hubbard est l'un des modeles les plus simples pour tenir compte de ces interactions. Malgre la simplicite apparente de ce modele, certaines de ses caracteristiques, dont son diagramme de phase, ne sont toujours pas bien etablies, et ce malgre plusieurs avancements theoriques dans les dernieres annees. Cette etude se consacre a faire une analyse de methodes numeriques permettant de calculer diverses proprietes du modele de Hubbard en fonction de la temperature. Nous decrivons des methodes (la VCA et la CPT) qui permettent de calculer approximativement la fonction de Green a temperature finie sur un systeme infini a partir de la fonction de Green calculee sur un amas de taille finie. Pour calculer ces fonctions de Green, nous allons utiliser des methodes permettant de reduire considerablement les efforts numeriques necessaires pour les calculs des moyennes thermodynamiques, en reduisant considerablement l'espace des etats a considerer dans ces moyennes. Bien que cette etude vise d'abord a developper des methodes d'amas pour resoudre le modele de Hubbard a temperature finie de facon generale ainsi qu'a etudier les proprietes de base de ce modele, nous allons l'appliquer a des conditions qui s'approchent de supraconducteurs a haute temperature critique. Les methodes presentees dans cette etude permettent de tracer un diagramme de phase pour l'antiferromagnetisme et la supraconductivite qui presentent plusieurs similarites avec celui des supraconducteurs a haute temperature. Mots-cles : modele de Hubbard, thermodynamique, antiferromagnetisme, supraconductivite, methodes numeriques, larges matrices</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JPhy3...2.1259L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JPhy3...2.1259L"><span>Determination of the dissolution slowness surface by study of etched shapes I. Morphology of the dissolution slowness surface and theoretical etched shapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leblois, T.; Tellier, C. R.</p> <p>1992-07-01</p> <p>We propose a theoretical model for the anisotropic etching of crystals, in order to be applied in the micromachining. The originality of the model is due to the introduction of dissolution tensors to express the representative surface of the dissolution slowness. The knowledge of the equation of the slowness surface allows us to determine the trajectories of all the elements which compose the starting surface. It is then possible to construct the final etched shape by numerical simulation. Several examples are given in this paper which show that the final etched shapes are correlated to the extrema of the dissolution slowness. Since the slowness surface must be determined from experiments, emphasis is placed on difficulties encountered when we correlate theory to experiments. Nous avons modélisé le processus de dissolution anisotrope des cristaux en vue d'une application à la simulation des formes obtenues par photolithogravure chimique. La principale originalité de ce modèle tient à l'introduction de tenseurs de dissolution pour exprimer la surface représentative de la lenteur de dissolution. La connaissance de l'équation de la lenteur de dissolution permet de calculer les trajectoires des différents éléments constituant la surface de départ puis de reconstituer par simulation la forme dissoute. Les simulations démontrent que les formes limites des cristaux dissous sont corrélées aux extrema de la lenteur de dissolution. La détermination de la surface de la lenteur se faisant à partir de mesures expérimetales, nous nous sommes efforcés de montrer toutes les difficultés attachées à cette analyse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16525167','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16525167"><span>Apparent and internal validity of a Monte Carlo-Markov model for cardiovascular disease in a cohort follow-up study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nijhuis, Rogier L; Stijnen, Theo; Peeters, Anna; Witteman, Jacqueline C M; Hofman, Albert; Hunink, M G Myriam</p> <p>2006-01-01</p> <p>To determine the apparent and internal validity of the Rotterdam Ischemic heart disease & Stroke Computer (RISC) model, a Monte Carlo-Markov model, designed to evaluate the impact of cardiovascular disease (CVD) risk factors and their modification on life expectancy (LE) and cardiovascular disease-free LE (DFLE) in a general population (hereinafter, these will be referred to together as (DF)LE). The model is based on data from the Rotterdam Study, a cohort follow-up study of 6871 subjects aged 55 years and older who visited the research center for risk factor assessment at baseline (1990-1993) and completed a follow-up visit 7 years later (original cohort). The transition probabilities and risk factor trends used in the RISC model were based on data from 3501 subjects (the study cohort). To validate the RISC model, the number of simulated CVD events during 7 years' follow-up were compared with the observed number of events in the study cohort and the original cohort, respectively, and simulated (DF)LEs were compared with the (DF)LEs calculated from multistate life tables. Both in the study cohort and in the original cohort, the simulated distribution of CVD events was consistent with the observed number of events (CVD deaths: 7.1% v. 6.6% and 7.4% v. 7.6%, respectively; non-CVD deaths: 11.2% v. 11.5% and 12.9% v. 13.0%, respectively). The distribution of (DF)LEs estimated with the RISC model consistently encompassed the (DF)LEs calculated with multistate life tables. The simulated events and (DF)LE estimates from the RISC model are consistent with observed data from a cohort follow-up study.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1207..951L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1207..951L"><span>Study of cluster behavior in the riser of CFB by the DSMC method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, H. P.; Liu, D. Y.; Liu, H.</p> <p>2010-03-01</p> <p>The flow behaviors of clusters in the riser of a two-dimensional (2D) circulating fluidized bed was numerically studied based on the Euler-Lagrangian approach. Gas turbulence was modeled by means of Large Eddy Simulation (LES). Particle collision was modeled by means of the direct simulation Monte Carlo (DSMC) method. Clusters' hydrodynamic characteristics are obtained using a cluster identification method proposed by sharrma et al. (2000). The descending clusters near the wall region and the up- and down-flowing clusters in the core were studied separately due to their different flow behaviors. The effects of superficial gas velocity on the cluster behavior were analyzed. Simulated results showed that near wall clusters flow downward and the descent velocity is about -45 cm/s. The occurrence frequency of the up-flowing cluster is higher than that of down-flowing cluster in the core of riser. With the increase of superficial gas velocity, the solid concentration and occurrence frequency of clusters decrease, while the cluster axial velocity increase. Simulated results were in agreement with experimental data. The stochastic method used in present paper is feasible for predicting the cluster flow behavior in CFBs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ChPhB..24g4701L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ChPhB..24g4701L"><span>A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua</p> <p>2015-07-01</p> <p>A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1439548-comparison-four-large-eddy-simulation-research-codes-effects-model-coefficient-inflow-turbulence-actuator-line-based-wind-turbine-modeling','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1439548-comparison-four-large-eddy-simulation-research-codes-effects-model-coefficient-inflow-turbulence-actuator-line-based-wind-turbine-modeling"><span>Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre; ...</p> <p>2018-05-16</p> <p>Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439548-comparison-four-large-eddy-simulation-research-codes-effects-model-coefficient-inflow-turbulence-actuator-line-based-wind-turbine-modeling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439548-comparison-four-large-eddy-simulation-research-codes-effects-model-coefficient-inflow-turbulence-actuator-line-based-wind-turbine-modeling"><span>Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre</p> <p></p> <p>Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010067781','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010067781"><span>The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DeBonis, James R.</p> <p>2001-01-01</p> <p>A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22218327','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22218327"><span>A general strategy for performing temperature-programming in high performance liquid chromatography--further improvements in the accuracy of retention time predictions of segmented temperature gradients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C</p> <p>2012-01-27</p> <p>In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23863384','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23863384"><span>Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W</p> <p>2013-09-15</p> <p>Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........61V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........61V"><span>Mesure Objective De L'attenuation et De L'effet D'occlusion Des Protecteurs Auditifs a Partir Des Potentiels Evoques Stationnaires et Multiples =</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valentin, Olivier</p> <p></p> <p>Selon l'Organisation mondiale de la sante, le nombre de travailleurs exposes quotidiennement a des niveaux de bruit prejudiciables a leur audition est passe de 120 millions en 1995 a 250 millions en 2004. Meme si la reduction du bruit a la source devrait etre toujours privilegiee, la solution largement utilisee pour lutter contre le bruit au travail reste la protection auditive individuelle. Malheureusement, le port des protecteurs auditifs n'est pas toujours respecte par les travailleurs car il est difficile de fournir un protecteur auditif dont le niveau d'attenuation effective est approprie a l'environnement de travail d'un individu. D'autre part, l'occlusion du canal auditif induit une modification de la perception de la parole, ce qui cree un inconfort incitant les travailleurs a retirer leurs protecteurs. Ces deux problemes existent parce que les methodes actuelles de mesure de l'effet d'occlusion et de l'attenuation sont limitees. Les mesures objectives basees sur des mesures microphoniques intra-auriculaires ne tiennent pas compte de la transmission directe du son a la cochlee par conduction osseuse. Les mesures subjectives au seuil de l'audition sont biaisees a cause de l'effet de masquage aux basses frequences induit par le bruit physiologique. L'objectif principal de ce travail de these de doctorat est d'ameliorer la mesure de l'attenuation et de l'effet d'occlusion des protecteurs auditifs intra-auriculaires. L'approche generale consiste a : (i) verifier s'il est possible de mesurer l'attenuation des protecteurs auditifs grâce au recueil des potentiels evoques stationnaires et multiples (PEASM) avec et sans protecteur auditif (protocole 1), (ii) adapter cette methodologie pour mesurer l'effet d'occlusion induit par le port de protecteur auditifs intra-auriculaires (protocole 2), et (iii) valider chaque protocole par l'intermediaire de mesures realisees sur sujets humains. Les resultats du protocole 1 demontrent que les PEASM peuvent etre utilises pour mesurer objectivement l'attenuation des protecteurs auditifs : les resultats obtenus a 500 Hz et 1 kHz demontrent que l'attenuation mesuree a partir des PEASM est relativement equivalente a l'attenuation calculee par la methode REAT, ce qui est en accord avec ce qui etait attendu puisque l'effet de masquage induit par le bruit physiologique aux basses frequences est relativement negligeable a ces frequences. Les resultats du protocole 2 demontrent que les PEASM peuvent etre egalement utilises pour mesurer objectivement l'effet d'occlusion induit par le port de protecteurs auditifs : l'effet d'occlusion mesure a partir des PEASM a 500 Hz est plus eleve que celui calcule par l'intermediaire de la methode subjective au seuil de l'audition, ce qui est en accord avec ce qui etait attendu puisqu'en dessous d'1 kHz, l'effet de masquage induit par le bruit physiologique aux basses frequences est source de biais pour les resultats obtenus par la methode subjective car il y a surestimation des seuils de l'audition en basse frequence lors du port de protecteurs auditifs. Toutefois, les resultats obtenus a 250 Hz sont en contradiction avec les resultats attendus. D'un point de vue scientifique, ce travail de these a permis de realiser deux nouvelles methodes innovantes pour mesurer objectivement l'attenuation et l'effet d'occlusion des protecteurs auditifs intra-auriculaires par electroencephalographie. D'un point de vue sante et securite au travail, les avancees presentees dans cette these pourraient aider a concevoir des protecteurs auditifs plus performants. En effet, si ces deux nouvelles methodes objectives etaient normalisees pour caracteriser les protecteurs auditifs intra-auriculaires, elles pourraient permettre : (i) de mieux apprehender l'efficacite reelle de la protection auditive et (ii) de fournir une mesure de l'inconfort induit par l'occlusion du canal auditif lors du port de protecteurs. Fournir un protecteur auditif dont l'efficacite reelle est adaptee a l'environnement de travail et dont le confort est optimise permettrait, sur le long terme, d'ameliorer les conditions des travailleurs en minimisant le risque lie a la degradation de leur appareil auditif. Les perspectives de travail proposees a la fin de cette these consistent principalement a : (i) exploiter ces deux methodes avec une gamme frequentielle plus etendue, (ii) explorer la variabilite intra-individuelle de chacune des methodes, (iii) comparer les resultats des deux methodes avec ceux obtenus par l'intermediaire de la methode "Microphone in Real Ear" (MIRE) et (iv) verifier la compatibilite de chacune des methodes avec tous les types de protecteurs auditifs. De plus, pour la methode de mesure de l'effet d'occlusion utilisant les PEASM, une etude complementaire est necessaire pour lever la contradiction observee a 250 Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP42A..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP42A..04G"><span>Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia, M. H.</p> <p>2016-12-01</p> <p>Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos, (2011), Lagrangian model of bed-load transport in turbulent junction flows, Journal of Fluid Mechanics, 666,36-76. Niño and García, (1994), Gravel saltation: 2. Modeling, Water Resources Research, 30(6),1915-1924. Niño et al., (1994), Gravel saltation: 1. Experiments, Water Resources Research, 30(6), 1907-1914.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29j5105S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29j5105S"><span>An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sewerin, Fabian; Rigopoulos, Stelios</p> <p>2017-10-01</p> <p>Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also indicates the computational efficiency of the numerical solution scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A52C..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A52C..05S"><span>Effects of trees on momentum exchange within and above a real urban environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salesky, S.; Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, T. R.; Coops, N. C.; Parlange, M. B.</p> <p>2017-12-01</p> <p>Large-eddy simulations (LES) are used to gain insight into the effects of trees on momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighbourhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Buildings and vegetation geometries are obtained from airborne light detection and ranging (LiDAR) data. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed varying wind direction and leaf area densities. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI/λ < 3 parameter, where LAI is the leaf area index and λ is the frontal area fraction of buildings characterizing a given canopy. For instance, tower measurements predict a 19% seasonal increase in z0, slightly lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI/λ = 0.74, leaves-on LAI/λ = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI/λ increases, due to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. Within the urban canopy, the effects of trees are twofold: on one hand, they act as a direct momentum sink for the mean flow; on the other, they reduce downward turbulent transport of high-momentum fluid, significantly reducing the wind intensity at the heights where people live and buildings consume energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011142','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011142"><span>LES of a Jet Excited by the Localized Arc Filament Plasma Actuators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, Clifford A.</p> <p>2011-01-01</p> <p>The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MAR.V1189B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MAR.V1189B"><span>A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue</p> <p>2013-03-01</p> <p>The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD17005A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD17005A"><span>Wind Farm LES Simulations Using an Overset Methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ananthan, Shreyas; Yellapantula, Shashank</p> <p>2017-11-01</p> <p>Accurate simulation of wind farm wakes under realistic atmospheric inflow conditions and complex terrain requires modeling a wide range of length and time scales. The computational domain can span several kilometers while requiring mesh resolutions in O(10-6) to adequately resolve the boundary layer on the blade surface. Overset mesh methodology offers an attractive option to address the disparate range of length scales; it allows embedding body-confirming meshes around turbine geomtries within nested wake capturing meshes of varying resolutions necessary to accurately model the inflow turbulence and the resulting wake structures. Dynamic overset hole-cutting algorithms permit relative mesh motion that allow this nested mesh structure to track unsteady inflow direction changes, turbine control changes (yaw and pitch), and wake propagation. An LES model with overset mesh for localized mesh refinement is used to analyze wind farm wakes and performance and compared with local mesh refinements using non-conformal (hanging node) unstructured meshes. Turbine structures will be modeled using both actuator line approaches and fully-resolved structures to test the efficacy of overset methods for wind farm applications. Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science and the National Nuclear Security Administration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JPhy3...4..751K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JPhy3...4..751K"><span>Des schémas équivalents pour les circuits couplés multi-enroulements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keradec, J. P.; Cogitore, B.; Laveuve, E.; Bensoam, M.</p> <p>1994-04-01</p> <p>The aim of this paper is to represent the electrical behaviour of any number of magnetically coupled windings with couplers and inductors. Two methods, mathematicaly justified, are proposed. The second one introduces only positive inductances. As an exemple, it is applied to the representation of a three column three phase transformer. The obtained circuits supply the requisite guide to design more complete circuits which allow the high frequency behaviour of wound components to be taken into account, especialy in electronics simulation softwares. Le but de cet article est de traduire le comportement électrique d'un nombre quelconque d'enroulements magnétiquement couplés, par des coupleurs et des inductances. Deux méthodes, établies mathématiquement, sont proposées. La seconde n'introduit que des inductances positives. A titre d'exemple, elle est appliquée à la représentation d'un transformateur triphasé à trois colonnes. Les schémas obtenus fournissent l'indispensable ossature de schémas plus complets, aptes à représenter le comportement haute fréquence des composants bobinés, notamment dans un logiciel de simulation électronique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA135042','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA135042"><span>Fuel-Air Explosive Simulation of Far-Field Nuclear Airblasts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-12-31</p> <p>Blastwave Simulator," Sixieme Symposium International sur Les A19 plications Militaires de La Simulation de Souffle, Centre D’Etudes de Gramat , Gramat ... Gramat , Gramat , France, p. 4.2.1, June 1979. 207 7............................. 64. Cooperwaithe, M. and Zwisler, W. H., "TIGER Computer Program</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JPhy3...5..647H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JPhy3...5..647H"><span>Lévitation magnétique par association d'aimants permanents et de supraconducteurs à haute température critique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiebel, P.; Tixador, P.; Chaud, X.</p> <p>1995-06-01</p> <p>Since their discovery in the years 1986/87, the high critical temperature superconductors have reached nowadays performances interesting enough to conceive passive magnetic bearings and suspensions which would combined permanent magnets and naturally stable superconducting pellets. After underlining the principal factors that affect the superconductormagnet interaction, different experimental results are given about vertical and axial forces with some stiffness values. The magnetization curve of a superconductor help to understand the hysteretic behavior of the force as a function of the distance between superconductor and magnet. So called simple and hybrid structures of superconducting magnetic suspension are presented. Finally simple numerical simulations allow to draw some interesting conclusions about both geometry and best fitting structure of permanent magnets. Depuis leur découverte dans les années 1986/87, les supraconducteurs à haute température critique ont désormais atteint des performances intéressantes et rendent envisageables des paliers et suspensions magnétiques passives associant aimants permanents et pastilles supraconductrices naturellement stables. Après avoir indiqué les termes importants influençant l'interaction supraconducteur - aimant, différents relevés expérimentaux sont donnés pour les forces verticales et transversales avec quelques valeurs de raideurs. La courbe d'aimantation d'un supraconducteur permet de comprendre le comportement hystérétique de la force en fonction de la distance supraconducteur-aimant. Les structures dites simple et hybride des suspensions magnétiques supraconductrices sont présentées. Enfin quelques simulations numériques simples permettent de dégager quelques conclusions intéressantes quant aux géométries respectives et aux structures d'aimants permanents les mieux adaptées.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402664-flow-adjustment-inside-homogeneous-canopies-after-leading-edge-analytical-approach-backed-les','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402664-flow-adjustment-inside-homogeneous-canopies-after-leading-edge-analytical-approach-backed-les"><span>Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik; ...</p> <p>2017-10-06</p> <p>A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1402664-flow-adjustment-inside-homogeneous-canopies-after-leading-edge-analytical-approach-backed-les','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1402664-flow-adjustment-inside-homogeneous-canopies-after-leading-edge-analytical-approach-backed-les"><span>Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik</p> <p></p> <p>A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......254B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......254B"><span>Explicit filtering in large eddy simulation using a discontinuous Galerkin method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brazell, Matthew J.</p> <p></p> <p>The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005APS..DFD.KS007P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005APS..DFD.KS007P"><span>Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pantano, Carlos</p> <p>2005-11-01</p> <p>We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5429404','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5429404"><span>Forme pseudotumorale de la tuberculose : à propos d’un cas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Salama, Tarik; Aghoutane, El Mohtadi; Fezzazi, Redouane El</p> <p>2017-01-01</p> <p>La tuberculose osseuse peut prendre l'aspect d'une tumeur maligne. Nous présentons le cas d'un enfant de 4 ans porteur d'une tuberculose osseuse ayant simulé un ostéosarcome fémoral. Le diagnostic a été redressé par l'étude anatomopathologique. Ce cas souligne l'importance de connaitre les des différents aspects cliniques et radiologiques de la tuberculose osseuse qui peut simuler une tumeur maligne. Afin d'éviter tout retard diagnostic, chirurgiens pédiatres et radiologues doivent savoir que la tuberculose peut revêtir les tableaux cliniques et radiologiques de nombreuses pathologies. PMID:28533858</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33B0138O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33B0138O"><span>Improved Large-Eddy Simulation Using a Stochastic Backscatter Model: Application to the Neutral Atmospheric Boundary Layer and Urban Street Canyon Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neill, J. J.; Cai, X.; Kinnersley, R.</p> <p>2015-12-01</p> <p>Large-eddy simulation (LES) provides a powerful tool for developing our understanding of atmospheric boundary layer (ABL) dynamics, which in turn can be used to improve the parameterisations of simpler operational models. However, LES modelling is not without its own limitations - most notably, the need to parameterise the effects of all subgrid-scale (SGS) turbulence. Here, we employ a stochastic backscatter SGS model, which explicitly handles the effects of both forward and reverse energy transfer to/from the subgrid scales, to simulate the neutrally stratified ABL as well as flow within an idealised urban street canyon. In both cases, a clear improvement in LES output statistics is observed when compared with the performance of a SGS model that handles forward energy transfer only. In the neutral ABL case, the near-surface velocity profile is brought significantly closer towards its expected logarithmic form. In the street canyon case, the strength of the primary vortex that forms within the canyon is more accurately reproduced when compared to wind tunnel measurements. Our results indicate that grid-scale backscatter plays an important role in both these modelled situations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815977S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815977S"><span>A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shamsoddin, Sina; Porté-Agel, Fernando</p> <p>2016-04-01</p> <p>Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDM17005A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDM17005A"><span>LES of Swirling Reacting Flows via the Unstructured scalar-FDF Solver</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ansari, Naseem; Pisciuneri, Patrick; Strakey, Peter; Givi, Peyman</p> <p>2011-11-01</p> <p>Swirling flames pose a significant challenge for computational modeling due to the presence of recirculation regions and vortex shedding. In this work, results are presented of LES of two swirl stabilized non-premixed flames (SM1 and SM2) via the FDF methodology. These flames are part of the database for validation of turbulent-combustion models. The scalar-FDF is simulated on a domain discretized by unstructured meshes, and is coupled with a finite volume flow solver. In the SM1 flame (with a low swirl number) chemistry is described by the flamelet model based on the full GRI 2.11 mechanism. The SM2 flame (with a high swirl number) is simulated via a 46-step 17-species mechanism. The simulated results are assessed via comparison with experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010022651&hterms=infinite+sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DThe%2Binfinite%2Bsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010022651&hterms=infinite+sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DThe%2Binfinite%2Bsea"><span>Towards LES Models of Jets and Plumes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Webb, A. T.; Mansour, N. N.</p> <p>2000-01-01</p> <p>As pointed out by Rodi standard integral solutions for jets and plumes developed for discharge into infinite, quiescent ambient are difficult to extend to complex situations, particularly in the presence of boundaries such as the sea floor or ocean surface. In such cases the assumption of similarity breaks down and it is impossible to find a suitable entrainment coefficient. The models are also incapable of describing any but the most slowly varying unsteady motions. There is therefore a need for full time-dependent modeling of the flow field for which there are three main approaches: (1) Reynolds averaged numerical simulation (RANS), (2) large eddy simulation (LES), and (3) direct numerical simulation (DNS). Rodi applied RANS modeling to both jets and plumes with considerable success, the test being a match with experimental data for time-averaged velocity and temperature profiles as well as turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still relies on empirical constants, some eleven in the case of the buoyant jet, and so would not be applicable to a partly laminar plume, may have limited use in the presence of boundaries, and would also be unsuitable if one is after details of the unsteady component of the flow (the turbulent eddies). At the other end of the scale DNS modeling includes all motions down to the viscous scales. Boersma et al. have built such a model for the non-buoyant case which also compares well with measured data for mean and turbulent velocity components. The model demonstrates its versatility by application to a laminar flow case. As its name implies, DNS directly models the Navier-Stokes equations without recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re) the cost can be prohibitive - the number of required grid points scaling with Re(exp 9/4) and the number of time steps with Re(exp 3/4). The middle road is provided by LES whereby the Navier-Stokes equations are formally filtered with the filter chosen to only exclude the smallest turbulent motions. If successful, LES should provide much of the detail available to DNS but at more bearable cost. Fatica et al. in comparing LES with DNS for a low Reynolds number jet showed that the LES could simulate the temporally evolving behavior including growth of the jet thickness. It is the intention of this report to explore the application of an LES model to jets and plumes. As always, before tackling complex situations, the model must be tested for the simplest of cases and so we address only two, a non-buoyant axisymmetric jet issuing steadily from an orifice into a semi-infinite stationary environment and a buoyant jet in the same environment. The work is a continuation of Basu and Mansour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..276a2031R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..276a2031R"><span>Application of foam-extend on turbulent fluid-structure interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rege, K.; Hjertager, B. H.</p> <p>2017-12-01</p> <p>Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......255C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......255C"><span>Elaboration d'un plan de transition et de mise en oeuvre pour ameliorer la gestion de l'obsolescence dans une entreprise du secteur aeronautique =</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conrad, Heloise</p> <p></p> <p>L'evolution technologique des composants electroniques entraine des problemes de gestion de l'obsolescence dans le secteur aeronautique. Les systemes aeronautiques ont en effet des durees de vie nettement superieures aux composants qu'ils contiennent. Cette difference de duree de vie et les normes strictes propres a l'aeronautique obligent les constructeurs a mettre en place une gestion efficace de l'obsolescence pour eviter les couts supplementaires de maintenance et de retards. De plus, a cause des faibles volumes de production qu'ils representent, les constructeurs aeronautiques n'ont que peu de controle sur leur chaine d'approvisionnement. La litterature offre beaucoup d'etudes sur l'obsolescence, appliquees a l'aeronautique. Les auteurs recommandent de mettre en place des processus de gestion et de prevision de l'obsolescence, et de construire des relations de collaboration avec leurs fournisseurs, qui ont plus de visibilite sur la chaine d'approvisionnement. Cette recherche presente d'abord l'elaboration d'une liste de criteres de bonne gestion de l'obsolescence, ainsi que la creation d'une methode de generation de plan de transition et de mise en oeuvre de l'amelioration de la gestion et de la prevision de l'obsolescence pour un cas concret. La methode est creee pour un manufacturier aeronautique ne possedant pas de systemes de gestion proactive ou de prevision de l'obsolescence. La creation de la methode s'est faite en suivant la methodologie de la science de la conception, en impliquant les employes concernes par la gestion de l'obsolescence. La methode comporte douze (12) etapes, amenant au developpement du plan de transition et de mise en oeuvre. Pour applique la methode, divers entretiens individuels et de groupe ont ete realises. Ces entretiens ont aussi permis de lister les criteres de gestion et de prevision efficaces de l'obsolescence. Cette liste a ete comparee avec les criteres issus de la litterature. En respect des besoins enonces par les employes et des conseils d'un industriel expert en obsolescence des composants avioniques, le plan de transition et de mise en oeuvre cree se divise en trois (3) phases : 1) amelioration de la gestion de l'obsolescence, 2) amelioration de la prevision de l'obsolescence et 3) gestion des fournisseurs. Meme si le plan de transition n'a pas ete applique dans l'entreprise partenaire, la methode et le plan cree ont ete approuves par les employes et utilisateurs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.......113T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.......113T"><span>Etude microdosimetrique de l'influence des materiaux sur l'efficacite biologique d'une source d'iode-125</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taschereau, Richard</p> <p></p> <p>Cette these concerne les implants permanents pour la prostate. Les isotopes employes, le 103Pd et l'125I, semblent produire les memes resultats cliniques: le premier a cause d'une radiation plus efficace et le second a cause de sa demi-vie plus longue. La recherche utilise le cadre theorique de la microdosimetrie et des simulations Monte Carlo. Elle propose d'employer le spectre d'ejection dans le calcul de l'efficacite; ce changement fait passer l'efficacite relative du 103Pd de 10% a 5%. Elle montre ensuite qu'il est possible d'ameliorer l'efficacite de la radiation de 125I par l'exploitation des rayons X caracteristiques de la capsule. Une source amelioree faite de molybdene et d'yttrium est donnee en exemple. Elle procure une radiation de 5--7% plus efficace, ce qui surclasse les deux sources existantes. Les applications ne se limitent pas au traitement de la prostate; le traitement du melanome oculaire et la curietherapie endovasculaire pourraient en beneficier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1331M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1331M"><span>Advances in the U.S. Navy Non-hydrostatic Unified Model of the Atmosphere (NUMA): LES as a Stabilization Methodology for High-Order Spectral Elements in the Simulation of Deep Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marras, Simone; Giraldo, Frank</p> <p>2015-04-01</p> <p>The prediction of extreme weather sufficiently ahead of its occurrence impacts society as a whole and coastal communities specifically (e.g. Hurricane Sandy that impacted the eastern seaboard of the U.S. in the fall of 2012). With the final goal of solving hurricanes at very high resolution and numerical accuracy, we have been developing the Non-hydrostatic Unified Model of the Atmosphere (NUMA) to solve the Euler and Navier-Stokes equations by arbitrary high-order element-based Galerkin methods on massively parallel computers. NUMA is a unified model with respect to the following criteria: (a) it is based on unified numerics in that element-based Galerkin methods allow the user to choose between continuous (spectral elements, CG) or discontinuous Galerkin (DG) methods and from a large spectrum of time integrators, (b) it is unified across scales in that it can solve flow in limited-area mode (flow in a box) or in global mode (flow on the sphere). NUMA is the dynamical core that powers the U.S. Naval Research Laboratory's next-generation global weather prediction system NEPTUNE (Navy's Environmental Prediction sysTem Utilizing the NUMA corE). Because the solution of the Euler equations by high order methods is prone to instabilities that must be damped in some way, we approach the problem of stabilization via an adaptive Large Eddy Simulation (LES) scheme meant to treat such instabilities by modeling the sub-grid scale features of the flow. The novelty of our effort lies in the extension to high order spectral elements for low Mach number stratified flows of a method that was originally designed for low order, adaptive finite elements in the high Mach number regime [1]. The Euler equations are regularized by means of a dynamically adaptive stress tensor that is proportional to the residual of the unperturbed equations. Its effect is close to none where the solution is sufficiently smooth, whereas it increases elsewhere, with a direct contribution to the stabilization of the otherwise oscillatory solution. As a first step toward the Large Eddy Simulation of a hurricane, we verify the model via a high-order and high resolution idealized simulation of deep convection on the sphere. References [1] M. Nazarov and J. Hoffman (2013) Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods Int. J. Numer. Methods Fluids, 71:339-357</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAMES...7..142G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAMES...7..142G"><span>Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Green, Benjamin W.; Zhang, Fuqing</p> <p>2015-03-01</p> <p>Current numerical simulations of tropical cyclones (TCs) use a horizontal grid spacing as small as Δx = 103 m, with all boundary layer (BL) turbulence parameterized. Eventually, TC simulations can be conducted at Large Eddy Simulation (LES) resolution, which requires Δx to fall in the inertial subrange (often <102 m) to adequately resolve the large, energy-containing eddies. Between the two lies the so-called "terra incognita" because some of the assumptions used by mesoscale models and LES to treat BL turbulence are invalid. This study performs several 4-6 h simulations of Hurricane Katrina (2005) without a BL parameterization at extremely fine Δx [333, 200, and 111 m, hereafter "Large Eddy Permitting (LEP) runs"] and compares with mesoscale simulations with BL parameterizations (Δx = 3 km, 1 km, and 333 m, hereafter "PBL runs"). There are profound differences in the hurricane BL structure between the PBL and LEP runs: the former have a deeper inflow layer and secondary eyewall formation, whereas the latter have a shallow inflow layer without a secondary eyewall. Among the LEP runs, decreased Δx yields weaker subgrid-scale vertical momentum fluxes, but the sum of subgrid-scale and "grid-scale" fluxes remain similar. There is also evidence that the size of the prevalent BL eddies depends upon Δx, suggesting that convergence to true LES has not yet been reached. Nevertheless, the similarities in the storm-scale BL structure among the LEP runs indicate that the net effect of the BL on the rest of the hurricane may be somewhat independent of Δx.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22598910-mixing-model-multi-particle-interactions-lagrangian-simulations-turbulent-mixing','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22598910-mixing-model-multi-particle-interactions-lagrangian-simulations-turbulent-mixing"><span>Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K.</p> <p></p> <p>We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting amore » value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1441170-large-eddy-simulation-sensitivities-variations-configuration-forcing-parameters-canonical-boundary-layer-flows-wind-energy-applications','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1441170-large-eddy-simulation-sensitivities-variations-configuration-forcing-parameters-canonical-boundary-layer-flows-wind-energy-applications"><span>Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo; ...</p> <p>2017-08-28</p> <p>Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031724','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031724"><span>Advanced Signal Processing for Integrated LES-RANS Simulations: Anti-aliasing Filters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schlueter, J. U.</p> <p>2003-01-01</p> <p>Currently, a wide variety of flow phenomena are addressed with numerical simulations. Many flow solvers are optimized to simulate a limited spectrum of flow effects effectively, such as single parts of a flow system, but are either inadequate or too expensive to be applied to a very complex problem. As an example, the flow through a gas turbine can be considered. In the compressor and the turbine section, the flow solver has to be able to handle the moving blades, model the wall turbulence, and predict the pressure and density distribution properly. This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS) approach. On the other hand, the flow in the combustion chamber is governed by large scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows that these phenomena require an unsteady approach. Hence, for the combustor, the use of a Large Eddy Simulation (LES) flow solver is desirable. While many design problems of a single flow passage can be addressed by separate computations, only the simultaneous computation of all parts can guarantee the proper prediction of multi-component phenomena, such as compressor/combustor instability and combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the compressor sections, an LES flow solver for the combustor, and again a RANS flow solver for the turbine section.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910088H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910088H"><span>Online model evaluation of large-eddy simulations covering Germany with a horizontal resolution of 156 m</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, Akio; Ament, Felix; Lammert, Andrea</p> <p>2017-04-01</p> <p>Large-eddy simulations have been performed since several decades, but due to computational limits most studies were restricted to small domains or idealised initial-/boundary conditions. Within the High definition clouds and precipitation for advancing climate prediction (HD(CP)2) project realistic weather forecasting like LES simulations were performed with the newly developed ICON LES model for several days. The domain covers central Europe with a horizontal resolution down to 156 m. The setup consists of more than 3 billion grid cells, by what one 3D dump requires roughly 500 GB. A newly developed online evaluation toolbox was created to check instantaneously for realistic model simulations. The toolbox automatically combines model results with observations and generates several quicklooks for various variables. So far temperature-/humidity profiles, cloud cover, integrated water vapour, precipitation and many more are included. All kind of observations like aircraft observations, soundings or precipitation radar networks are used. For each dataset, a specific module is created, which allows for an easy handling and enhancement of the toolbox. Most of the observations are automatically downloaded from the Standardized Atmospheric Measurement Database (SAMD). The evaluation tool should support scientists at monitoring computational costly model simulations as well as to give a first overview about model's performance. The structure of the toolbox as well as the SAMD database are presented. Furthermore, the toolbox was applied on an ICON LES sensitivity study, where example results are shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1441170','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1441170"><span>Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo</p> <p></p> <p>Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S88-42406&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Draft','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S88-42406&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Draft"><span>STS-26 MS Hilmers floats in life raft during JSC WETF exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1988-01-01</p> <p>STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Hilmers pulls his legs into the inflating raft while he is assisted by two SCUBA-equipped divers. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S88-42419&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Draft','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S88-42419&hterms=raft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Draft"><span>STS-26 Commander Hauck floats in life raft during JSC WETF exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1988-01-01</p> <p>STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Removing water from his raft, Hauck awaits the assistance of SCUBA-equipped divers (one of whom is partially visible at bottom right). The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JCoPh.322..511R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JCoPh.322..511R"><span>An immersed boundary method for direct and large eddy simulation of stratified flows in complex geometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rapaka, Narsimha R.; Sarkar, Sutanu</p> <p>2016-10-01</p> <p>A sharp-interface Immersed Boundary Method (IBM) is developed to simulate density-stratified turbulent flows in complex geometry using a Cartesian grid. The basic numerical scheme corresponds to a central second-order finite difference method, third-order Runge-Kutta integration in time for the advective terms and an alternating direction implicit (ADI) scheme for the viscous and diffusive terms. The solver developed here allows for both direct numerical simulation (DNS) and large eddy simulation (LES) approaches. Methods to enhance the mass conservation and numerical stability of the solver to simulate high Reynolds number flows are discussed. Convergence with second-order accuracy is demonstrated in flow past a cylinder. The solver is validated against past laboratory and numerical results in flow past a sphere, and in channel flow with and without stratification. Since topographically generated internal waves are believed to result in a substantial fraction of turbulent mixing in the ocean, we are motivated to examine oscillating tidal flow over a triangular obstacle to assess the ability of this computational model to represent nonlinear internal waves and turbulence. Results in laboratory-scale (order of few meters) simulations show that the wave energy flux, mean flow properties and turbulent kinetic energy agree well with our previous results obtained using a body-fitted grid (BFG). The deviation of IBM results from BFG results is found to increase with increasing nonlinearity in the wave field that is associated with either increasing steepness of the topography relative to the internal wave propagation angle or with the amplitude of the oscillatory forcing. LES is performed on a large scale ridge, of the order of few kilometers in length, that has the same geometrical shape and same non-dimensional values for the governing flow and environmental parameters as the laboratory-scale topography, but significantly larger Reynolds number. A non-linear drag law is utilized in the large-scale application to parameterize turbulent losses due to bottom friction at high Reynolds number. The large scale problem exhibits qualitatively similar behavior to the laboratory scale problem with some differences: slightly larger intensification of the boundary flow and somewhat higher non-dimensional values for the energy fluxed away by the internal wave field. The phasing of wave breaking and turbulence exhibits little difference between small-scale and large-scale obstacles as long as the important non-dimensional parameters are kept the same. We conclude that IBM is a viable approach to the simulation of internal waves and turbulence in high Reynolds number stratified flows over topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........66K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........66K"><span>The Role of Free-Stream Turbulence on High Pressure Turbine Aero-Thermal Stage Interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopriva, James Earl</p> <p></p> <p>Turbulence plays an important role on the aero-thermal performance of modern aircraft engine High Pressure Turbines (HPT). The role of the vane wake and passage turbulence on the downstream blade flow field is an important consideration for both performance and durability. Obtaining measurements to fully characterize the flow field can be challenging and costly in an experimental facility. Advances in computational Fluid Dynamic (CFD) modeling and High Performance Computing (HPC) are providing opportunity to close these measurement gaps. In order for CFD to be adopted, methods need to be both accurate and efficient. Meshing approaches must also be able to resolve complex HPT geometry while maintaining quality adequate for scale-resolved simulations. Therefore, the accuracy of executing scale-resolved simulations with a second-order code on a mesh of prisms and tetrahedrals in Fluent is considered. Before execution of the HPT computational study, a building block approach is taken to gain quantified predictive performance in the modeling approach as well as understanding limitations in lower computational cost modeling approaches. The predictive capability for Reynolds Averaged Navier Stokes (RANS), Hybrid Large Eddy Simulation (LES), and wall-resolved LES turbulence modeling approaches are first assessed for a cylinder in cross-flow at a Reynolds number of 2580. The flow condition and simple geometry facilitate a quick turn-around for modeling assessment before moving the HPT vane study at high Reynolds and Mach number conditions. Modeling approaches are then assessed relative to the experimental measurements of Arts and Rouvroit (1992) on a pitch-line HPT uncooled vane at high Mach and Reynolds numbers conditions with low (0-6%) free-stream turbulence. The current unstructured second-order LES approach agrees with experimental data and is found to be within the equivalent experimental uncertainty when compared to the structured high-ordered solver FDL3DI. The unstructured Hybrid LES aero-thermal predictions are found to be in close agreement with LES predictions and 4 times more computationally efficient. A sliding mesh approach is then used to understand the complex HPT vane and blade stage aero-thermal interaction at 0 and 20% inlet turbulence. A HPT blade has been designed to pair with the uncooled vane of Arts and Rouvroit (1992) to evaluate the impact of passage turbulence and vane wake on the downstream blade boundary layer as well as wake formation and evolution. The learnings from the statistical 2D pitch-line stage simulations are applied to a 3D annular representation of the geometry including endwalls and blade tip clearance to demonstrate the impact of secondary flows on the overall aero-thermal performance. Compared to the 2D pitchline predictions, the vane and blade overall mass average relative total pressure loss for the 3D geometry increases by 73 and 107%, respectively. The blade loss is shown to be largely driven by the formation of the tip vortex. Hybrid LES predictions show that by increasing stage inlet turbulence by 20% results in up to a 40% increase for the surface heat flux on the vane. However, the impact of stage inlet turbulence is found to be secondary compared to the periodic unsteadiness generated by the vane wake on the downstream blade surface heat transfer and mixing.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53C0905S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53C0905S"><span>The Modelling Analysis of the Response of Convective Transport of Energy and Water to Multiscale Surface Heterogeneity over Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>SUN, G.; Hu, Z.; Ma, Y.; Ma, W.</p> <p>2017-12-01</p> <p>The land-atmospheric interactions over a heterogeneous surface is a tricky issue for accurately understanding the energy-water exchanges between land surface and atmosphere. We investigate the vertical transport of energy and water over a heterogeneous land surface in Tibetan Plateau during the evolution of the convective boundary layer using large eddy simulation (WRF_LES). The surface heterogeneity is created according to remote sensing images from high spatial resolution LandSat ETM+ images. The PBL characteristics over a heterogeneous surface are analyzed in terms of secondary circulations under different background wind conditions based on the horizontal and vertical distribution and evolution of wind. The characteristics of vertical transport of energy and heat over a heterogeneous surface are analyzed in terms of the horizontal distribution as well as temporal evolution of sensible and latent heat fluxes at different heights under different wind conditions on basis of the simulated results from WRF_LES. The characteristics of the heat and water transported into the free atmosphere from surface are also analyzed and quantified according to the simulated results from WRF_LES. The convective transport of energy and water are analyzed according to horizontal and vertical distributions of potential temperature and vapor under different background wind conditions. With the analysis based on the WRF_LES simulation, the performance of PBL schemes of mesoscale simulation (WRF_meso) is evaluated. The comparison between horizontal distribution of vertical fluxes and domain-averaged vertical fluxes of the energy and water in the free atmosphere is used to evaluate the performance of PBL schemes of WRF_meso in the simulation of vertical exchange of energy and water. This is an important variable because only the energy and water transported into free atmosphere is able to influence the regional and even global climate. This work would will be of great significance not only for understanding the land atmosphere interactions over a heterogeneous surface by evaluating and improving the performance PBL schemes in WRF-meso, but also for the understanding the profound effect of Tibetan Plateau on the regional and global climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdWR..106..154G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdWR..106..154G"><span>Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, R. T.; Coops, N. C.; Parlange, M. B.</p> <p>2017-08-01</p> <p>Large-eddy simulations (LES) are used to gain insight into the effects of trees on turbulence, aerodynamic parameters, and momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighborhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Data from airborne light detection and ranging (LiDAR) are used to represent both buildings and vegetation at the LES resolution. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed including and excluding vegetation from the considered urban areas, varying wind direction and leaf area density. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI /λfb < 3 parameter, where LAI is the leaf area index and λfb is the frontal area fraction of buildings characterizing a given canopy. For instance, tower measurements predict a 19% seasonal increase in z0, slightly lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI / λfSUP>b = 0.74 , leaves-on LAI /λfb = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI / λfb increases, due in large part to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. LES and measurements both predict an increase in the ratio of turbulent to mean kinetic energy (TKE/MKE) at the tower sampling height going from winter to summer, and LES also show how including vegetation results in a more (positive) negatively skewed (horizontal) vertical velocity distribution - reflecting a more intermittent velocity field which favors sweep motions when compared to ejections. Within the urban canopy, the effects of trees are twofold: on one hand, they act as a direct momentum sink for the mean flow; on the other, they reduce downward turbulent transport of high-momentum fluid, significantly reducing the wind intensity at the heights where people live and buildings consume energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1190...68S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1190...68S"><span>Turbulent flame spreading mechanisms after spark ignition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Subramanian, V.; Domingo, Pascale; Vervisch, Luc</p> <p>2009-12-01</p> <p>Numerical simulation of forced ignition is performed in the framework of Large-Eddy Simulation (LES) combined with a tabulated detailed chemistry approach. The objective is to reproduce the flame properties observed in a recent experimental work reporting probability of ignition in a laboratory-scale burner operating with Methane/air non premixed mixture [1]. The smallest scales of chemical phenomena, which are unresolved by the LES grid, are approximated with a flamelet model combined with presumed probability density functions, to account for the unresolved part of turbulent fluctuations of species and temperature. Mono-dimensional flamelets are simulated using GRI-3.0 [2] and tabulated under a set of parameters describing the local mixing and progress of reaction. A non reacting case was simulated at first, to study the unsteady velocity and mixture fields. The time averaged velocity and mixture fraction, and their respective turbulent fluctuations, are compared against the experimental measurements, in order to estimate the prediction capabilities of LES. The time history of axial and radial components of velocity and mixture fraction is cumulated and analysed for different burner regimes. Based on this information, spark ignition is mimicked on selected ignition spots and the dynamics of kernel development analyzed to be compared against the experimental observations. The possible link between the success or failure of the ignition and the flow conditions (in terms of velocity and composition) at the sparking time are then explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..297a2035P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..297a2035P"><span>Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plengsa-ard, C.; Kaewbumrung, M.</p> <p>2018-01-01</p> <p>Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21216525','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21216525"><span>Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H</p> <p>2011-09-15</p> <p>The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. Copyright © 2010 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFD.A4007K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFD.A4007K"><span>Large-eddy simulation of propeller noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keller, Jacob; Mahesh, Krishnan</p> <p>2016-11-01</p> <p>We will discuss our ongoing work towards developing the capability to predict far field sound from the large-eddy simulation of propellers. A porous surface Ffowcs-Williams and Hawkings (FW-H) acoustic analogy, with a dynamic endcapping method (Nitzkorski and Mahesh, 2014) is developed for unstructured grids in a rotating frame of reference. The FW-H surface is generated automatically using Delaunay triangulation and is representative of the underlying volume mesh. The approach is validated for tonal trailing edge sound from a NACA 0012 airfoil. LES of flow around a propeller at design advance ratio is compared to experiment and good agreement is obtained. Results for the emitted far field sound will be discussed. This work is supported by ONR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960047495','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960047495"><span>LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colucci, P. J.; Jaberi, F. A.; Givi, P.</p> <p>1996-01-01</p> <p>A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.923a2030B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.923a2030B"><span>Study of the flow field past dimpled aerodynamic surfaces: numerical simulation and experimental verification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Binci, L.; Clementi, G.; D'Alessandro, V.; Montelpare, S.; Ricci, R.</p> <p>2017-11-01</p> <p>This work presents the study of the flow field past of dimpled laminar airfoil. Fluid dynamic behaviour of these elements has been not still deeply studied in the scientific community. Therefore Computational Fluid-Dynamics (CFD) is here used to analyze the flow field induced by dimples on the NACA 64-014A laminar airfoil at Re = 1.75 · 105 at α = 0°. Reynolds Averaged Navier-Stokes (RANS) equations and Large-Eddy Simulations (LES) were compared with wind tunnel measurements in order to evaluate their effectiveness in the modeling this kind of flow field. LES equations were solved using a specifically developed OpenFOAM solver adopting an L-stable Singly Diagonally Implicit Runge-Kutta (SDIRK) technique with an iterated PISO-like procedure for handling pressure-velocity coupling within each RK stage. Dynamic Smagorinsky subgrid model was employed. LES results provided good agreement with experimental data, while RANS equations closed with \\[k-ω -γ -\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] approach overstimates laminar separation bubble (LSB) extension of dimpled and un-dimpled configurations. Moreover, through skin friction coefficient analysis, we found a different representation of the turbulent zone between the numerical models; indeed, with RANS model LSB seems to be divided in two different parts, meanwhile LES model shows a LSB global reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050051959','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050051959"><span>Studying Turbulence Using Numerical Simulation Databases - X Proceedings of the 2004 Summer Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moin, Parviz; Mansour, Nagi N.</p> <p>2004-01-01</p> <p>This Proceedings volume contains 32 papers that span a wide range of topics that reflect the ubiquity of turbulence. The papers have been divided into six groups: 1) Solar Simulations; 2) Magnetohydrodynamics (MHD); 3) Large Eddy Simulation (LES) and Numerical Simulations; 4) Reynolds Averaged Navier Stokes (RANS) Modeling and Simulations; 5) Stability and Acoustics; 6) Combustion and Multi-Phase Flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CTM....22...38M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CTM....22...38M"><span>Evaluation of deconvolution modelling applied to numerical combustion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehl, Cédric; Idier, Jérôme; Fiorina, Benoît</p> <p>2018-01-01</p> <p>A possible modelling approach in the large eddy simulation (LES) of reactive flows is to deconvolve resolved scalars. Indeed, by inverting the LES filter, scalars such as mass fractions are reconstructed. This information can be used to close budget terms of filtered species balance equations, such as the filtered reaction rate. Being ill-posed in the mathematical sense, the problem is very sensitive to any numerical perturbation. The objective of the present study is to assess the ability of this kind of methodology to capture the chemical structure of premixed flames. For that purpose, three deconvolution methods are tested on a one-dimensional filtered laminar premixed flame configuration: the approximate deconvolution method based on Van Cittert iterative deconvolution, a Taylor decomposition-based method, and the regularised deconvolution method based on the minimisation of a quadratic criterion. These methods are then extended to the reconstruction of subgrid scale profiles. Two methodologies are proposed: the first one relies on subgrid scale interpolation of deconvolved profiles and the second uses parametric functions to describe small scales. Conducted tests analyse the ability of the method to capture the chemical filtered flame structure and front propagation speed. Results show that the deconvolution model should include information about small scales in order to regularise the filter inversion. a priori and a posteriori tests showed that the filtered flame propagation speed and structure cannot be captured if the filter size is too large.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1338727','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1338727"><span>HPC Institutional Computing Project: W15_lesreactiveflow KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carrington, David Bradley; Waters, Jiajia</p> <p></p> <p>KIVA-hpFE is a high performance computer software for solving the physics of multi-species and multiphase turbulent reactive flow in complex geometries having immersed moving parts. The code is written in Fortran 90/95 and can be used on any computer platform with any popular complier. The code is in two versions, a serial version and a parallel version utilizing MPICH2 type Message Passing Interface (MPI or Intel MPI) for solving distributed domains. The parallel version is at least 30x faster than the serial version and much faster than our previous generation of parallel engine modeling software, by many factors. The 5thmore » generation algorithm construction is a Galerkin type Finite Element Method (FEM) solving conservative momentum, species, and energy transport equations along with two-equation turbulent model k-ω Reynolds Averaged Navier-Stokes (RANS) model and a Vreman type dynamic Large Eddy Simulation (LES) method. The LES method is capable modeling transitional flow from laminar to fully turbulent; therefore, this LES method does not require special hybrid or blending to walls. The FEM projection method also uses a Petrov-Galerkin (P-G) stabilization along with pressure stabilization. We employ hierarchical basis sets, constructed on the fly with enrichment in areas associated with relatively larger error as determined by error estimation methods. In addition, when not using the hp-adaptive module, the code employs Lagrangian basis or shape functions. The shape functions are constructed for hexahedral, prismatic and tetrahedral elements. The software is designed to solve many types of reactive flow problems, from burners to internal combustion engines and turbines. In addition, the formulation allows for direct integration of solid bodies (conjugate heat transfer), as in heat transfer through housings, parts, cylinders. It can also easily be extended to stress modeling of solids, used in fluid structure interactions problems, solidification, porous media modeling and magneto hydrodynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20171640','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20171640"><span>Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan</p> <p>2010-05-07</p> <p>Three different cyclist positions were evaluated with Computational Fluid Dynamics (CFD) and wind-tunnel experiments were used to provide reliable data to evaluate the accuracy of the CFD simulations. Specific features of this study are: (1) both steady Reynolds-averaged Navier-Stokes (RANS) and unsteady flow modelling, with more advanced turbulence modelling techniques (Large-Eddy Simulation - LES), were evaluated; (2) the boundary layer on the cyclist's surface was resolved entirely with low-Reynolds number modelling, instead of modelling it with wall functions; (3) apart from drag measurements, also surface pressure measurements on the cyclist's body were performed in the wind-tunnel experiment, which provided the basis for a more detailed evaluation of the predicted flow field by CFD. The results show that the simulated and measured drag areas differed about 11% (RANS) and 7% (LES), which is considered to be a close agreement in CFD studies. A fair agreement with wind-tunnel data was obtained for the predicted surface pressures, especially with LES. Despite the higher accuracy of LES, its much higher computational cost could make RANS more attractive for practical use in some situations. CFD is found to be a valuable tool to evaluate the drag of different cyclist positions and to investigate the influence of small adjustments in the cyclist's position. A strong advantage of CFD is that detailed flow field information is obtained, which cannot easily be obtained from wind-tunnel tests. This detailed information allows more insight in the causes of the drag force and provides better guidance for position improvements. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1190....3G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1190....3G"><span>Prediction of the Ignition Phases in Aeronautical and Laboratory Burners using Large Eddy Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gicquel, L. Y. M.; Staffelbach, G.; Sanjose, M.; Boileau, M.</p> <p>2009-12-01</p> <p>Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many aeronautical gas turbine manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are two phenomena that are usually not studied. The present work presents on-going and past Large Eddy Simulations (LES) on this specific subject and as investigated at CERFACS (European Centre for Research and Advanced Training in Scientific Computation) located in Toulouse, France. Validation steps and potential difficulties are underlined to ensure reliability of LES for such problems. Preliminary LES results on simple burners are then presented, followed by simulations of a complete ignition sequence in an annular helicopter chamber. For all cases and when possible, two-phase or purely gaseous LES have been applied to the experimentally simplified or the full geometries. For the latter, massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform the computation. Results show that liquid fuel injection has a strong influence on the ignition times and the rate at which the flame progresses from burner to burner. The propagation speed characteristic of these phenomena is much higher than the turbulent flame speed. Based on an in-depth analysis of the computational data, the difference in speed is mainly identified as being due to thermal expansion and the flame speed is strongly modified by the main burner aerodynamics issued by the swirled injection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011qrle.book..231W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011qrle.book..231W"><span>Grid Effects on LES Thermo-Acoustic Limit-Cycle of a Full Annular Aeronautical Engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolf, Pierre; Gicquel, Laurent Y. M.; Staffelbach, Gabriel; Poinsot, Thierry</p> <p></p> <p>Recent developments in large scale computer architectures allow Large Eddy Simulation (LES) to be considered for the prediction of turbulent reacting flows in geometries encountered in industry. To do so, various difficulties must be overcome and the first one is to ensure that proper meshes can be used for LES. Indeed, the quality of meshes is known to be a critical factor in LES of reacting flows. This issue becomes even more crucial when LES is used to compute large configurations such as full annular combustion chambers. Various analysis of mesh effects on LES results have been published before but all are limited to single-sector computational domains. However, real annular gas-turbine engines contain ten to twenty of such sectors and LES must also be used in such full chambers for the study of ignition or azimuthal thermo-acoustic interactions. Instabilities (mostly azimuthal modes involving the full annular geometry) remain a critical issue to aeronautical or power-generation industries and LES seems to be a promising path to properly apprehend such complex unsteady couplings. Based on these observations, mesh effects on LES in a full annular gas-turbine combustion chamber (including its casing) is studied here in the context of its azimuthal thermo-acoustic response. To do so, a fully compressible, multi-species reacting LES is used on two meshes yielding two fully unsteady turbulent reacting predictions of the same configuration. The two tetrahedra meshes contain respectively 38 and 93 millions cells. Limit-cycles as obtained by the two LES are gauged against each other for various flow quantities such as mean velocity profiles, flame position and temperature fields. The thermo-acoustic limit-cycles are observed to be relatively indepedent of the grid resolution which comforts the use of LES tools to provide insights and understanding of the mechanisms triggering the coupling between the system acoustic eigenmodes and combustion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......128F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......128F"><span>Methodologies nouvelles pour la realisation d'essais dans la soufflerie Price-Paidoussis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flores Salinas, Manuel</p> <p></p> <p>Le present memoire en genie de la production automatisee vise a decrire le travail effectue dans la soufflerie Price-Paidoussis du laboratoire LARCASE pour trouver les methodologies experimentales et les procedures de tests, qui seront utilisees avec les modeles d'ailes actuellement au laboratoire. Les methodologies et procedures presentees ici vont permettre de preparer les tests en soufflerie du projet MDO-505 Architectures et technologies deformables pour l'amelioration des performances des ailes, qui se derouleront durant l'annee 2015. D'abord, un bref historique des souffleries subsoniques sera fait. Les differentes sections de la soufflerie Price-Paidoussis seront decrites en mettant l'emphase sur leur influence dans la qualite de l'ecoulement qui se retrouve dans la chambre d'essai. Ensuite, une introduction a la pression, a sa mesure lors de tests en soufflerie et les instruments utilises pour les tests en soufflerie au laboratoire LARCASE sera presente, en particulier le capteur piezoelectrique XCQ-062. Une attention particuliere sera portee au mode de fonctionnement, a son installation, a la mesure et a la detection des frequences et aux sources d'erreurs lorsqu'on utilise des capteurs de haute precision comme la serie XCQ-062 du fournisseur Kulite. Finalement, les procedures et les methodologies elaborees pour les tests dans la soufflerie Price-Paidoussis seront utilisees sur quatre types d'ailes differentes. L'article New methodology for wind tunnel calibration using neural networks - EGD approch portant sur une nouvelle facon de predire les caracteristiques de l'ecoulement a l'interieur de la soufflerie Price-Paidoussis se trouve dans l'annexe 2 de ce document. Cet article porte sur la creation d'un reseau de neurones multicouche et sur l'entrainement des neurones, Ensuite, une comparaison des resultats du reseau de neurones a ete fait avec des valeurs simules avec le logiciel Fluent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990094265','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990094265"><span>Numerical Simulation of High-Speed Turbulent Reacting Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.</p> <p>1999-01-01</p> <p>The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29132119','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29132119"><span>How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aristodemou, Elsa; Boganegra, Luz Maria; Mottet, Laetitia; Pavlidis, Dimitrios; Constantinou, Achilleas; Pain, Christopher; Robins, Alan; ApSimon, Helen</p> <p>2018-02-01</p> <p>The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings ("skyscrapers") with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of "dead-zones" and high-concentration "hotspots" in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030032536','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030032536"><span>Large-Eddy/Lattice Boltzmann Simulations of Micro-blowing Strategies for Subsonic and Supersonic Drag Control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Menon, Suresh</p> <p>2003-01-01</p> <p>This report summarizes the progress made in the first 8 to 9 months of this research. The Lattice Boltzmann Equation (LBE) methodology for Large-eddy Simulations (LES) of microblowing has been validated using a jet-in-crossflow test configuration. In this study, the flow intake is also simulated to allow the interaction to occur naturally. The Lattice Boltzmann Equation Large-eddy Simulations (LBELES) approach is capable of capturing not only the flow features associated with the flow, such as hairpin vortices and recirculation behind the jet, but also is able to show better agreement with experiments when compared to previous RANS predictions. The LBELES is shown to be computationally very efficient and therefore, a viable method for simulating the injection process. Two strategies have been developed to simulate multi-hole injection process as in the experiment. In order to allow natural interaction between the injected fluid and the primary stream, the flow intakes for all the holes have to be simulated. The LBE method is computationally efficient but is still 3D in nature and therefore, there may be some computational penalty. In order to study a large number or holes, a new 1D subgrid model has been developed that will simulate a reduced form of the Navier-Stokes equation in these holes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872098','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872098"><span>Method for altering the luminescence of a semiconductor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Barbour, J. Charles; Dimos, Duane B.</p> <p>1999-01-01</p> <p>A method is described for altering the luminescence of a light emitting semiconductor (LES) device. In particular, a method is described whereby a silicon LES device can be selectively irradiated with a radiation source effective for altering the intensity of luminescence of the irradiated region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADP010482','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADP010482"><span>Methode de Calcul du Flutter en Presence de jeu Mecanique et Verification Experimentale (Flutter Analysis Method in Presence of Mechanical Play and Experimental Verification)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-05-01</p> <p>Flexible Aircraft Control", held in Ottawa, Canada, 18-20 October 1999, and published in RTO MP-36. 9-2 INTRODUCTION 2. PRINCIPES DE LA METHODE DE CALCUL...constitude par un .les pressions sur la gouveme et le ensemble de 17 pouts de jauge , de 20 moment de charni~re sont surestimds accildrom~tes, de 5...les corrdlations calcul-essais 130 mm). des rdponses dc jauges de contraintes A 12 Le calcul, comme les essais, permettent chargements statiques. Cette</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22572325-efficient-implicit-les-method-simulation-turbulent-cavitating-flows','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22572325-efficient-implicit-les-method-simulation-turbulent-cavitating-flows"><span>Efficient implicit LES method for the simulation of turbulent cavitating flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan</p> <p>2016-07-01</p> <p>We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ29002P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ29002P"><span>Scale-Resolving simulations (SRS): How much resolution do we really need?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, Filipe M. S.; Girimaji, Sharath</p> <p>2017-11-01</p> <p>Scale-resolving simulations (SRS) are emerging as the computational approach of choice for many engineering flows with coherent structures. The SRS methods seek to resolve only the most important features of the coherent structures and model the remainder of the flow field with canonical closures. With reference to a typical Large-Eddy Simulation (LES), practical SRS methods aim to resolve a considerably narrower range of scales (reduced physical resolution) to achieve an adequate degree of accuracy at reasonable computational effort. While the objective of SRS is well-founded, the criteria for establishing the optimal degree of resolution required to achieve an acceptable level of accuracy are not clear. This study considers the canonical case of the flow around a circular cylinder to address the issue of `optimal' resolution. Two important criteria are developed. The first condition addresses the issue of adequate resolution of the flow field. The second guideline provides an assessment of whether the modeled field is canonical (stochastic) turbulence amenable to closure-based computations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFD.D9004H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFD.D9004H"><span>Numerical modeling of turbulent swirling flow in a multi-inlet vortex nanoprecipitation reactor using dynamic DDES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.</p> <p>2015-11-01</p> <p>The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240388-assessment-hybrid-finite-element-finite-volume-code-turbulent-incompressible-flows','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240388-assessment-hybrid-finite-element-finite-volume-code-turbulent-incompressible-flows"><span>Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xia, Yidong; Wang, Chuanjin; Luo, Hong; ...</p> <p>2015-12-15</p> <p>Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, we have attempted some form of solution verification to identify sensitivities in the solution methods, and to suggest best practices when using the Hydra-TH code.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1240388','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1240388"><span>Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xia, Yidong; Wang, Chuanjin; Luo, Hong</p> <p></p> <p>Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, we have attempted some form of solution verification to identify sensitivities in the solution methods, and to suggest best practices when using the Hydra-TH code.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1058936-pratham-parallel-thermal-hydraulics-simulations-using-advanced-mesoscopic-methods','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1058936-pratham-parallel-thermal-hydraulics-simulations-using-advanced-mesoscopic-methods"><span>PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A</p> <p>2012-01-01</p> <p>At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM.more » To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/321306','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/321306"><span>Method for altering the luminescence of a semiconductor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Barbour, J.C.; Dimos, D.B.</p> <p>1999-01-12</p> <p>A method is described for altering the luminescence of a light emitting semiconductor (LES) device. In particular, a method is described whereby a silicon LES device can be selectively irradiated with a radiation source effective for altering the intensity of luminescence of the irradiated region. 4 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFD.R2002J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFD.R2002J"><span>A novel VLES model accounting for near-wall turbulence: physical rationale and applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakirlic, Suad; Chang, Chi-Yao; Kutej, Lukas; Tropea, Cameron</p> <p>2014-11-01</p> <p>A novel VLES (Very Large Eddy Simulation) model whose non-resolved residual turbulence is modelled by using an advanced near-wall eddy-viscosity model accounting for the near-wall Reynolds stress anisotropy influence on the turbulence viscosity by modelling appropriately the velocity scale in the relevant formulation (Hanjalic et al., 2004) is proposed. It represents a variable resolution Hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) computational scheme enabling a seamless transition from RANS to LES depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and the `unsteady' scales pertinent to the turbulent properties of the VLES residual motion, which varies within the flow domain. The VLES method is validated interactively in the process of the model derivation by computing fully-developed flow in a plane channel (important representative of wall-bounded flows, underlying the log-law for the velocity field, for studying near-wall Reynolds stress anisotropy) and a separating flow over a periodic arrangement of smoothly-contoured 2-D hills. The model performances are also assessed in capturing the natural decay of the homogeneous isotropic turbulence. The model is finally applied to swirling flow in a vortex tube, flow in an IC-engine configuration and flow past a realistic car model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......269K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......269K"><span>Investigation of heat transfer and flow using ribs within gas turbine blade cooling passage: Experimental and hybrid LES/RANS modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Sourabh</p> <p></p> <p>Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped ribs on one side of the two pass square channel into the core of blade. Despite extensive research on ribs, only few papers have validated the numerical data with experimental results in two pass channel. In the present study, detailed experimental investigation is carried out for two pass square channels with 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for steady state experiment. Four different combinations of 60° and Broken 60° V ribs in channel are considered. Thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for various Reynolds numbers, within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the ribs with. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. Computational Fluid Dynamics (CFD) simulations were carried out for the same geometries using different turbulence models such as k-o Shear stress transport (SST) and Reynolds stress model (RSM). These CFD simulations were based on advanced computing in order to improve the accuracy of three dimensional metal temperature prediction which can be applied routinely in the design stage of turbine cooled vanes and blades. This study presents an attempt to collect information about Nusselt number inside the ribbed duct and a series of measurement is performed in steady state eliminating the error sources inherently connected with transient method. A Large Eddy Simulation (LES) is carried out on the best V and Broken V rib arrangements to analyze the flow pattern inside the channel. A novel method is devised to analyze the results obtained from CFD simulation. Hybrid LES/Reynolds Averaged Navier Strokes (RANS) modeling is used to modify Reynolds stresses using Algebraic Stress Model (ASM).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA564889','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA564889"><span>Toward Active Control of Noise from Hot Supersonic Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-07-24</p> <p>1.5 heated jet simulated by way of LES. spreading angles of the jet which were determined from prelimi- nary LES computations performed by CRAFT Tech...system allowed time-resolved and high dynamic range measurements to be ob- tained for a heated , supersonic jet. Each component of the system is...independently operated, temporal spacing between frames is variable and can be set in an asynchronous fashion. Such flexibility even allows eight</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860050223&hterms=system+thought+process&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsystem%2Bthought%2Bprocess','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860050223&hterms=system+thought+process&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsystem%2Bthought%2Bprocess"><span>A knowledge based expert system for propellant system monitoring at the Kennedy Space Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jamieson, J. R.; Delaune, C.; Scarl, E.</p> <p>1985-01-01</p> <p>The Lox Expert System (LES) is the first attempt to build a realtime expert system capable of simulating the thought processes of NASA system engineers, with regard to fluids systems analysis and troubleshooting. An overview of the hardware and software describes the techniques used, and possible applications to other process control systems. LES is now in the advanced development stage, with a full implementation planned for late 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S92-40013&hterms=Water+exercise&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWater%2Bexercise','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S92-40013&hterms=Water+exercise&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWater%2Bexercise"><span>STS-52 Pilot Baker, in LES, dons parachute during JSC WETF bailout exercises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1992-01-01</p> <p>STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker is assisted with a training version of his Shuttle partial-pressure launch and entry suit (LES). A technician adjusts his parachute harness prior to the emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S92-40025&hterms=Water+exercise&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWater%2Bexercise','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S92-40025&hterms=Water+exercise&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWater%2Bexercise"><span>STS-52 Mission Specialist Veach, in LES/LEH, during JSC WETF bailout exercise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1992-01-01</p> <p>STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach, wearing launch and entry suit (LES) and launch and entry helmet (LEH), smiles as he observes emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Veach waits his turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of his water landing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170008798','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170008798"><span>LES Investigation of Wake Development in a Transonic Fan Stage for Aeroacoustic Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hah, Chunill; Romeo, Michael</p> <p>2017-01-01</p> <p>Detailed development of the rotor wake and its interaction with the stator are investigated with a large eddy simulation (LES). Typical steady and unsteady Navier-Stokes approaches (RANS and URANS) do not calculate wake development accurately and do not provide all the necessary information for an aeroacoustic analysis. It is generally believed that higher fidelity analysis tools are required for an aeroacoustic investigation of transonic fan stages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960021012','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960021012"><span>Parallel Simulation of Unsteady Turbulent Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Menon, Suresh</p> <p>1996-01-01</p> <p>Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics within each LES grid cell. Finite-rate kinetics can be included without any closure and this approach actually provides a means to predict the turbulent rates and the turbulent flame speed. The subgrid combustion model requires resolution of the local time scales associated with small-scale mixing, molecular diffusion and chemical kinetics and, therefore, within each grid cell, a significant amount of computations must be carried out before the large-scale (LES resolved) effects are incorporated. Therefore, this approach is uniquely suited for parallel processing and has been implemented on various systems such as: Intel Paragon, IBM SP-2, Cray T3D and SGI Power Challenge (PC) using the system independent Message Passing Interface (MPI) compiler. In this paper, timing data on these machines is reported along with some characteristic results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120012901','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120012901"><span>Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.</p> <p>2012-01-01</p> <p>Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1430929-self-similarity-rayleightaylor-mixing-layer-low-atwood-number-multimode-initial-perturbation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1430929-self-similarity-rayleightaylor-mixing-layer-low-atwood-number-multimode-initial-perturbation"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morgan, B. E.; Olson, B. J.; White, J. E.</p> <p></p> <p>High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...49b2010W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...49b2010W"><span>Head losses prediction and analysis in a bulb turbine draft tube under different operating conditions using unsteady simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilhelm, S.; Balarac, G.; Métais, O.; Ségoufin, C.</p> <p>2016-11-01</p> <p>Flow prediction in a bulb turbine draft tube is conducted for two operating points using Unsteady RANS (URANS) simulations and Large Eddy Simulations (LES). The inlet boundary condition of the draft tube calculation is a rotating two dimensional velocity profile exported from a RANS guide vane- runner calculation. Numerical results are compared with experimental data in order to validate the flow field and head losses prediction. Velocity profiles prediction is improved with LES in the center of the draft tube compared to URANS results. Moreover, more complex flow structures are obtained with LES. A local analysis of the predicted flow field using the energy balance in the draft tube is then introduced in order to detect the hydrodynamic instabilities responsible for head losses in the draft tube. In particular, the production of turbulent kinetic energy next to the draft tube wall and in the central vortex structure is found to be responsible for a large part of the mean kinetic energy dissipation in the draft tube and thus for head losses. This analysis is used in order to understand the differences in head losses for different operating points. The numerical methodology could then be improved thanks to an in-depth understanding of the local flow topology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28060717','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28060717"><span>Designing Hyperchaotic Cat Maps With Any Desired Number of Positive Lyapunov Exponents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hua, Zhongyun; Yi, Shuang; Zhou, Yicong; Li, Chengqing; Wu, Yue</p> <p>2018-02-01</p> <p>Generating chaotic maps with expected dynamics of users is a challenging topic. Utilizing the inherent relation between the Lyapunov exponents (LEs) of the Cat map and its associated Cat matrix, this paper proposes a simple but efficient method to construct an -dimensional ( -D) hyperchaotic Cat map (HCM) with any desired number of positive LEs. The method first generates two basic -D Cat matrices iteratively and then constructs the final -D Cat matrix by performing similarity transformation on one basic -D Cat matrix by the other. Given any number of positive LEs, it can generate an -D HCM with desired hyperchaotic complexity. Two illustrative examples of -D HCMs were constructed to show the effectiveness of the proposed method, and to verify the inherent relation between the LEs and Cat matrix. Theoretical analysis proves that the parameter space of the generated HCM is very large. Performance evaluations show that, compared with existing methods, the proposed method can construct -D HCMs with lower computation complexity and their outputs demonstrate strong randomness and complex ergodicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.3145V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.3145V"><span>MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro</p> <p>2017-08-01</p> <p>This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>