PNNL - WRF-LES - Convective - TTU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosovic, Branko
This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
ANL - WRF-LES - Convective - TTU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosovic, Branko
This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
LLNL - WRF-LES - Neutral - TTU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosovic, Branko
This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
Kosovic, Branko
2018-06-20
This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
LANL - WRF-LES - Neutral - TTU
Kosovic, Branko
2018-06-20
This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
LANL - WRF-LES - Convective - TTU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosovic, Branko
This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
NASA Astrophysics Data System (ADS)
Zhuo, Congshan; Zhong, Chengwen
2016-11-01
In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB-LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB-LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB-D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosovic, Branko
This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosovic, Branko
This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosovic, Branko
This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
Using Reconstructed POD Modes as Turbulent Inflow for LES Wind Turbine Simulations
NASA Astrophysics Data System (ADS)
Nielson, Jordan; Bhaganagar, Kiran; Juttijudata, Vejapong; Sirisup, Sirod
2016-11-01
Currently, in order to get realistic atmospheric effects of turbulence, wind turbine LES simulations require computationally expensive precursor simulations. At times, the precursor simulation is more computationally expensive than the wind turbine simulation. The precursor simulations are important because they capture turbulence in the atmosphere and as stated above, turbulence impacts the power production estimation. On the other hand, POD analysis has been shown to be capable of capturing turbulent structures. The current study was performed to determine the plausibility of using lower dimension models from POD analysis of LES simulations as turbulent inflow to wind turbine LES simulations. The study will aid the wind energy community by lowering the computational cost of full scale wind turbine LES simulations, while maintaining a high level of turbulent information and being able to quickly apply the turbulent inflow to multi turbine wind farms. This will be done by comparing a pure LES precursor wind turbine simulation with simulations that use reduced POD mod inflow conditions. The study shows the feasibility of using lower dimension models as turbulent inflow of LES wind turbine simulations. Overall the power production estimation and velocity field of the wind turbine wake are well captured with small errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sibendu; Wang, Zihan; Pei, Yuanjiang
A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [ , , ], is applied to Large Eddy Simulations (LES) of vaporizing gasoline sprays. Simulations of non-combusting Spray G (gasoline fuel) from the Engine Combustion Network are performed. Adaptive mesh refinement (AMR) with cell sizes from 0.09 mm to 0.5 mm are utilized to further demonstrate grid convergence of the dynamic structure LES model for the gasoline sprays. Grid settings are recommended to optimize the accuracy/runtime tradeoff for LES-based spray simulations at different injection pressure conditions typically encountered in gasoline direct injection (GDI) applications. The influence of LESmore » sub-grid scale (SGS) models is explored by comparing the results from dynamic structure and Smagorinsky based models against simulations without any SGS model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable. Through a detailed analysis using the relevance index (RI) criteria, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of the gasoline sprays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosovic, Branko
This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.
NASA Astrophysics Data System (ADS)
Sondak, David; Oberai, Assad
2012-10-01
Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation (VMS) of LES to the equations of incompressible MHD, a new residual-based eddy viscosity model (RBEVM,) and a mixed LES model that combines the strengths of both of these models. The new models result in a consistent numerical method that is relatively simple to implement. A dynamic procedure for determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical and state-of-the art LES turbulence models as well as direct numerical simulations (DNS). These new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by A. Pouquet et al., for which the ratio of DNS modes to LES modes is 262,144. Additionally, we extend these models to a finite element setting in which boundary conditions play a role. A classic problem on which we test these models is turbulent channel flow, which in the case of MHD, is called Hartmann flow.
Multiscale Data Assimilation for Large-Eddy Simulations
NASA Astrophysics Data System (ADS)
Li, Z.; Cheng, X.; Gustafson, W. I., Jr.; Xiao, H.; Vogelmann, A. M.; Endo, S.; Toto, T.
2017-12-01
Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence, boundary layer physics and cloud development, and there is a great need for developing data assimilation methodologies that can constrain LES models. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES. The LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso) is generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. One of major objectives of LASSO is to develop the capability to observationally constrain LES using a hierarchy of ARM observations. We have implemented a multiscale data assimilation (MSDA) scheme, which allows data assimilation to be implemented separately for distinct spatial scales, so that the localized observations can be effectively assimilated to constrain the mesoscale fields in the LES area of about 15 km in width. The MSDA analysis is used to produce forcing data that drive LES. With such LES workflow we have examined 13 days with shallow convection selected from the period May-August 2016. We will describe the implementation of MSDA, present LES results, and address challenges and opportunities for applying data assimilation to LES studies.
NASA Astrophysics Data System (ADS)
Minakov, A.; Platonov, D.; Sentyabov, A.; Gavrilov, A.
2017-01-01
We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at three regimes, using two eddy-viscosity- (EVM) and a Reynolds stress (RSM) RANS models (realizable k-ɛ, k-ω SST, LRR) and detached-eddy-simulations (DES), as well as large-eddy simulations (LES). Comparison of calculation results with the experimental data was carried out. Unlike the linear EVMs, the RSM, DES, and LES reproduced well the mean velocity components, and pressure pulsations in the diffusor draft tube. Despite relatively coarse meshes and insufficient resolution of the near-wall region, LES, DES also reproduced well the intrinsic flow unsteadiness and the dominant flow structures and the associated pressure pulsations in the draft tube.
Nesting large-eddy simulations within mesoscale simulations for wind energy applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, J K; Mirocha, J D; Chow, F K
2008-09-08
With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting thatmore » a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.« less
Large eddy simulation of shock train in a convergent-divergent nozzle
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mahmood; Roohi, Ehsan
2014-12-01
This paper discusses the suitability of the Large Eddy Simulation (LES) turbulence modeling for the accurate simulation of the shock train phenomena in a convergent-divergent nozzle. To this aim, we selected an experimentally tested geometry and performed LES simulation for the same geometry. The structure and pressure recovery inside the shock train in the nozzle captured by LES model are compared with the experimental data, analytical expressions and numerical solutions obtained using various alternative turbulence models, including k-ɛ RNG, k-ω SST, and Reynolds stress model (RSM). Comparing with the experimental data, we observed that the LES solution not only predicts the "locations of the first shock" precisely, but also its results are quite accurate before and after the shock train. After validating the LES solution, we investigate the effects of the inlet total pressure on the shock train starting point and length. The effects of changes in the back pressure, nozzle inlet angle (NIA) and wall temperature on the behavior of the shock train are investigated by details.
Description of the LASSO Alpha 1 Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Vogelmann, Andrew M.; Cheng, Xiaoping
The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability has been named the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project. The availability of LES simulations with concurrent observations will serve many purposes. LES helps bridge the scale gap between DOE ARM observations and models, and the use of routine LES adds value to observations. It provides a self-consistent representation of the atmosphere and a dynamical context for the observations. Further,more » it elucidates unobservable processes and properties. LASSO will generate a simulation library for researchers that enables statistical approaches beyond a single-case mentality. It will also provide tools necessary for modelers to reproduce the LES and conduct their own sensitivity experiments. Many different uses are envisioned for the combined LASSO LES and observational library. For an observationalist, LASSO can help inform instrument remote-sensing retrievals, conduct Observation System Simulation Experiments (OSSEs), and test implications of radar scan strategies or flight paths. For a theoretician, LASSO will help calculate estimates of fluxes and co-variability of values, and test relationships without having to run the model yourself. For a modeler, LASSO will help one know ahead of time which days have good forcing, have co-registered observations at high-resolution scales, and have simulation inputs and corresponding outputs to test parameterizations. Further details on the overall LASSO project are available at http://www.arm. gov/science/themes/lasso.« less
Quadrature Moments Method for the Simulation of Turbulent Reactive Flows
NASA Technical Reports Server (NTRS)
Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.
2003-01-01
A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.
Regularization method for large eddy simulations of shock-turbulence interactions
NASA Astrophysics Data System (ADS)
Braun, N. O.; Pullin, D. I.; Meiron, D. I.
2018-05-01
The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k - 5 / 3, and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.
Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows
NASA Technical Reports Server (NTRS)
Blaisdell, Gregory A.
1996-01-01
The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.
Numerical simulation of turbulent combustion: Scientific challenges
NASA Astrophysics Data System (ADS)
Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan
2014-08-01
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Vogelmann, Andrew M.; Cheng, Xiaoping
The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability has been named the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project. The initial focus of LASSO is on shallow convection at the ARM Southern Great Plains (SGP) Climate Research Facility. The availability of LES simulations with concurrent observations will serve many purposes. LES helps bridge the scale gap between DOE ARM observations and models, and the use of routine LES addsmore » value to observations. It provides a self-consistent representation of the atmosphere and a dynamical context for the observations. Further, it elucidates unobservable processes and properties. LASSO will generate a simulation library for researchers that enables statistical approaches beyond a single-case mentality. It will also provide tools necessary for modelers to reproduce the LES and conduct their own sensitivity experiments. Many different uses are envisioned for the combined LASSO LES and observational library. For an observationalist, LASSO can help inform instrument remote sensing retrievals, conduct Observation System Simulation Experiments (OSSEs), and test implications of radar scan strategies or flight paths. For a theoretician, LASSO will help calculate estimates of fluxes and co-variability of values, and test relationships without having to run the model yourself. For a modeler, LASSO will help one know ahead of time which days have good forcing, have co-registered observations at high-resolution scales, and have simulation inputs and corresponding outputs to test parameterizations. Further details on the overall LASSO project are available at https://www.arm.gov/capabilities/modeling/lasso.« less
Hybrid RANS-LES using high order numerical methods
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael
2017-11-01
Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
Dynamic large eddy simulation: Stability via realizability
NASA Astrophysics Data System (ADS)
Mokhtarpoor, Reza; Heinz, Stefan
2017-10-01
The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.
Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations
NASA Astrophysics Data System (ADS)
Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto
2018-04-01
Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.
NASA Technical Reports Server (NTRS)
Sinha, Neeraj
2014-01-01
This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.
Shetty, Dinesh A.; Frankel, Steven H.
2013-01-01
Summary The physical space version of the stretched vortex subgrid scale model [Phys. Fluids 12, 1810 (2000)] is tested in large eddy simulations (LES) of the turbulent lid driven cubic cavity flow. LES is carried out using a higher order finite-difference method [J. Comput. Phys. 229, 8802 (2010)]. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against direct numerical simulations (DNS) [Phys. Fluids 12, 1363 (2000)]. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. PMID:24187423
NASA Technical Reports Server (NTRS)
Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette
2005-01-01
Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.
Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES
NASA Technical Reports Server (NTRS)
Okong'o, N.; Leboissetier, A.; Bellan, J.
2004-01-01
Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.
Large-eddy simulation of turbulent flow with a surface-mounted two-dimensional obstacle
NASA Technical Reports Server (NTRS)
Yang, Kyung-Soo; Ferziger, Joel H.
1993-01-01
In this paper, we perform a large eddy simulation (LES) of turbulent flow in a channel containing a two-dimensional obstacle on one wall using a dynamic subgrid-scale model (DSGSM) at Re = 3210, based on bulk velocity above the obstacle and obstacle height; the wall layers are fully resolved. The low Re enables us to perform a DNS (Case 1) against which to validate the LES results. The LES with the DSGSM is designated Case 2. In addition, an LES with the conventional fixed model constant (Case 3) is conducted to allow identification of improvements due to the DSGSM. We also include LES at Re = 82,000 (Case 4) using conventional Smagorinsky subgrid-scale model and a wall-layer model. The results will be compared with the experiment of Dimaczek et al.
A unified RANS–LES model: Computational development, accuracy and cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalan, Harish, E-mail: hgopalan@uwyo.edu; Heinz, Stefan, E-mail: heinz@uwyo.edu; Stöllinger, Michael K., E-mail: MStoell@uwyo.edu
2013-09-15
Large eddy simulation (LES) is computationally extremely expensive for the investigation of wall-bounded turbulent flows at high Reynolds numbers. A way to reduce the computational cost of LES by orders of magnitude is to combine LES equations with Reynolds-averaged Navier–Stokes (RANS) equations used in the near-wall region. A large variety of such hybrid RANS–LES methods are currently in use such that there is the question of which hybrid RANS-LES method represents the optimal approach. The properties of an optimal hybrid RANS–LES model are formulated here by taking reference to fundamental properties of fluid flow equations. It is shown that unifiedmore » RANS–LES models derived from an underlying stochastic turbulence model have the properties of optimal hybrid RANS–LES models. The rest of the paper is organized in two parts. First, a priori and a posteriori analyses of channel flow data are used to find the optimal computational formulation of the theoretically derived unified RANS–LES model and to show that this computational model, which is referred to as linear unified model (LUM), does also have all the properties of an optimal hybrid RANS–LES model. Second, a posteriori analyses of channel flow data are used to study the accuracy and cost features of the LUM. The following conclusions are obtained. (i) Compared to RANS, which require evidence for their predictions, the LUM has the significant advantage that the quality of predictions is relatively independent of the RANS model applied. (ii) Compared to LES, the significant advantage of the LUM is a cost reduction of high-Reynolds number simulations by a factor of 0.07Re{sup 0.46}. For coarse grids, the LUM has a significant accuracy advantage over corresponding LES. (iii) Compared to other usually applied hybrid RANS–LES models, it is shown that the LUM provides significantly improved predictions.« less
Calibration and Forward Uncertainty Propagation for Large-eddy Simulations of Engineering Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Templeton, Jeremy Alan; Blaylock, Myra L.; Domino, Stefan P.
2015-09-01
The objective of this work is to investigate the efficacy of using calibration strategies from Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods are for engineering LES, uncertainty from numerical aspects of the model must also be quantified. 15 The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such that the cost could be minimized given an accuracy prescribed by an engineering need. Realization of this goal would enable LES to serve as a predictive simulation tool within the engineering design process.
Computation of unsteady turbomachinery flows: Part 2—LES and hybrids
NASA Astrophysics Data System (ADS)
Tucker, P. G.
2011-10-01
The choice of turbulence model can have a strong impact on results for many turbomachinery zones. Palliative corrections to them and also transition modeling can have a further profound solution impact. The spectral gaps necessary for theoretically valid URANS solutions are also lacking in certain turbomachinery zones. Large Eddy Simulation (LES) alleviates the serious area of turbulence modeling uncertainty but with an extreme increase in computational cost. However, there seems a lack of validation data to explore in depth the performance of LES and thus strategies to refine it. LES best practices are needed. Although LES is, obviously, much less model dependent than RANS, grids currently used for more practical simulations are clearly insufficiently fine for the LES model and numerical schemes not to be playing an excessively strong role. Very few turbomachinery simulations make use of properly constructed, correlated turbulence inflow. Even if this is attempted, most measurement sets are incomplete and lack an adequate basis for modeling this inflow. Gas turbines are highly complex coupled systems and hence inflow and outflow boundary condition specification needs to go beyond just synthesizing turbulent structures and preventing their reflection. Despite the strong limitations of the dissipative Smagorinsky model, it still sees the most wide spread use, generally, in excessively dissipative flow solvers. Monotone Integrated LES (MILES) related approaches, hybrid LES-RANS and more advanced LES models seem to have an equal but subservient frequency of use in turbomachinery applications. Clearly the introduction of a RANS layer can have a substantial accuracy penalty. However, it does allow LES to be rationally used, albeit in a diluted sense for industrial applications. The Reynolds numbers found in turbomachinery are substantial. However, in certain areas evidence suggests they will not be enough to ensure a long inertial subrange and hence the use of standard LES modeling practices. Despite the excessively coarse grids used in much of the LES work reviewed, with essentially RANS based codes, meaningful results are often gained. This can perhaps be attributed to the choice of cases, these being ones for which RANS modeling gives extremely poor performance. It is a concern that for practical turbomachinery LES studies grid densities used tend to have an Reynolds number scaling to a strong negative power.
Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Curran, Thomas; Denner, Fabian; van Wachem, Berend
2017-11-01
The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Goyette, Stephane
1995-11-01
Le sujet de cette these concerne la modelisation numerique du climat regional. L'objectif principal de l'exercice est de developper un modele climatique regional ayant les capacites de simuler des phenomenes de meso-echelle spatiale. Notre domaine d'etude se situe sur la Cote Ouest nord americaine. Ce dernier a retenu notre attention a cause de la complexite du relief et de son controle sur le climat. Les raisons qui motivent cette etude sont multiples: d'une part, nous ne pouvons pas augmenter, en pratique, la faible resolution spatiale des modeles de la circulation generale de l'atmosphere (MCG) sans augmenter a outrance les couts d'integration et, d'autre part, la gestion de l'environnement exige de plus en plus de donnees climatiques regionales determinees avec une meilleure resolution spatiale. Jusqu'alors, les MCG constituaient les modeles les plus estimes pour leurs aptitudes a simuler le climat ainsi que les changements climatiques mondiaux. Toutefois, les phenomenes climatiques de fine echelle echappent encore aux MCG a cause de leur faible resolution spatiale. De plus, les repercussions socio-economiques des modifications possibles des climats sont etroitement liees a des phenomenes imperceptibles par les MCG actuels. Afin de circonvenir certains problemes inherents a la resolution, une approche pratique vise a prendre un domaine spatial limite d'un MCG et a y imbriquer un autre modele numerique possedant, lui, un maillage de haute resolution spatiale. Ce processus d'imbrication implique alors une nouvelle simulation numerique. Cette "retro-simulation" est guidee dans le domaine restreint a partir de pieces d'informations fournies par le MCG et forcee par des mecanismes pris en charge uniquement par le modele imbrique. Ainsi, afin de raffiner la precision spatiale des previsions climatiques de grande echelle, nous developpons ici un modele numerique appele FIZR, permettant d'obtenir de l'information climatique regionale valide a la fine echelle spatiale. Cette nouvelle gamme de modeles-interpolateurs imbriques qualifies d'"intelligents" fait partie de la famille des modeles dits "pilotes". L'hypothese directrice de notre etude est fondee sur la supposition que le climat de fine echelle est souvent gouverne par des forcages provenant de la surface plutot que par des transports atmospheriques de grande echelle spatiale. La technique que nous proposons vise donc a guider FIZR par la Dynamique echantillonnee d'un MCG et de la forcer par la Physique du MCG ainsi que par un forcage orographique de meso-echelle, en chacun des noeuds de la grille fine de calculs. Afin de valider la robustesse et la justesse de notre modele climatique regional, nous avons choisi la region de la Cote Ouest du continent nord americain. Elle est notamment caracterisee par une distribution geographique des precipitations et des temperatures fortement influencee par le relief sous-jacent. Les resultats d'une simulation d'un mois de janvier avec FIZR demontrent que nous pouvons simuler des champs de precipitations et de temperatures au niveau de l'abri beaucoup plus pres des observations climatiques comparativement a ceux simules a partir d'un MCG. Ces performances sont manifestement attribuees au forcage orographique de meso-echelle de meme qu'aux caracteristiques de surface determinees a fine echelle. Un modele similaire a FIZR peut, en principe, etre implante sur l'importe quel MCG, donc, tout organisme de recherche implique en modelisation numerique mondiale de grande echelle pourra se doter d'un el outil de regionalisation.
Uncertainty quantification in LES of channel flow
Safta, Cosmin; Blaylock, Myra; Templeton, Jeremy; ...
2016-07-12
Here, in this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence andmore » are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for.« less
Large Eddy Simulation of High Reynolds Number Complex Flows
NASA Astrophysics Data System (ADS)
Verma, Aman
Marine configurations are subject to a variety of complex hydrodynamic phenomena affecting the overall performance of the vessel. The turbulent flow affects the hydrodynamic drag, propulsor performance and structural integrity, control-surface effectiveness, and acoustic signature of the marine vessel. Due to advances in massively parallel computers and numerical techniques, an unsteady numerical simulation methodology such as Large Eddy Simulation (LES) is well suited to study such complex turbulent flows whose Reynolds numbers (Re) are typically on the order of 10. 6. LES also promises increasedaccuracy over RANS based methods in predicting unsteady phenomena such as cavitation and noise production. This dissertation develops the capability to enable LES of high Re flows in complex geometries (e.g. a marine vessel) on unstructured grids and provide physical insight into the turbulent flow. LES is performed to investigate the geometry induced separated flow past a marine propeller attached to a hull, in an off-design condition called crashback. LES shows good quantitative agreement with experiments and provides a physical mechanism to explain the increase in side-force on the propeller blades below an advance ratio of J=-0.7. Fundamental developments in the dynamic subgrid-scale model for LES are pursued to improve the LES predictions, especially for complex flows on unstructured grids. A dynamic procedure is proposed to estimate a Lagrangian time scale based on a surrogate correlation without any adjustable parameter. The proposed model is applied to turbulent channel, cylinder and marine propeller flows and predicts improved results over other model variants due to a physically consistent Lagrangian time scale. A wall model is proposed for application to LES of high Reynolds number wall-bounded flows. The wall model is formulated as the minimization of a generalized constraint in the dynamic model for LES and applied to LES of turbulent channel flow at various Reynolds numbers up to Reτ=10000 and coarse grid resolutions to obtain significant improvement.
A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation.
Breton, S-P; Sumner, J; Sørensen, J N; Hansen, K S; Sarmast, S; Ivanell, S
2017-04-13
Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation
Sumner, J.; Sørensen, J. N.; Hansen, K. S.; Sarmast, S.; Ivanell, S.
2017-01-01
Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265021
Criteria for Modeling in LES of Multicomponent Fuel Flow
NASA Technical Reports Server (NTRS)
Bellan, Josette; Selle, Laurent
2009-01-01
A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.
NASA Technical Reports Server (NTRS)
Wey, Thomas
2017-01-01
This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).
Large-Eddy Simulations of Dust Devils and Convective Vortices
NASA Astrophysics Data System (ADS)
Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei
2016-11-01
In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.
Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.; ...
2017-07-06
Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.
Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less
Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2017-11-01
The details of small-scale turbulence are not directly accessible in large-eddy simulations (LES), posing a modeling challenge because many important micro-physical processes depend strongly on the dynamics of turbulence in the viscous range. Here, we introduce a method for coupling existing stochastic models for the Lagrangian evolution of the velocity gradient tensor with LES to simulate unresolved dynamics. The proposed approach is implemented in LES of turbulent channel flow and detailed comparisons with DNS are carried out. An application to modeling the fate of deformable, small (sub-Kolmogorov) droplets at negligible Stokes number and low volume fraction with one-way coupling is carried out. These results illustrate the ability of the proposed model to predict the influence of small scale turbulence on droplet micro-physics in the context of LES. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...
2017-12-28
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jae; Manuel, Lance; Churchfield, Matthew
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
NASA Astrophysics Data System (ADS)
Rebaine, Ali
1997-08-01
Ce travail consiste en la simulation numerique des ecoulements internes compressibles bidimensionnels laminaires et turbulents. On s'interesse, particulierement, aux ecoulements dans les ejecteurs supersoniques. Les equations de Navier-Stokes sont formulees sous forme conservative et utilisent, comme variables independantes, les variables dites enthalpiques a savoir: la pression statique, la quantite de mouvement et l'enthalpie totale specifique. Une formulation variationnelle stable des equations de Navier-Stokes est utilisee. Elle est base sur la methode SUPG (Streamline Upwinding Petrov Galerkin) et utilise un operateur de capture des forts gradients. Un modele de turbulence, pour la simulation des ecoulements dans les ejecteurs, est mis au point. Il consiste a separer deux regions distinctes: une region proche de la paroi solide, ou le modele de Baldwin et Lomax est utilise et l'autre, loin de la paroi, ou une formulation nouvelle, basee sur le modele de Schlichting pour les jets, est proposee. Une technique de calcul de la viscosite turbulente, sur un maillage non structure, est implementee. La discretisation dans l'espace de la forme variationnelle est faite a l'aide de la methode des elements finis en utilisant une approximation mixte: quadratique pour les composantes de la quantite de mouvement et de la vitesse et lineaire pour le reste des variables. La discretisation temporelle est effectuee par une methode de differences finies en utilisant le schema d'Euler implicite. Le systeme matriciel, resultant de la discretisation spatio-temporelle, est resolu a l'aide de l'algorithme GMRES en utilisant un preconditionneur diagonal. Les validations numeriques ont ete menees sur plusieurs types de tuyeres et ejecteurs. La principale validation consiste en la simulation de l'ecoulement dans l'ejecteur teste au centre de recherche NASA Lewis. Les resultats obtenus sont tres comparables avec ceux des travaux anterieurs et sont nettement superieurs concernant les ecoulements turbulents dans les ejecteurs.
Recent advances in large-eddy simulation of spray and coal combustion
NASA Astrophysics Data System (ADS)
Zhou, L. X.
2013-07-01
Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.
Hybrid LES/RANS simulation of a turbulent boundary layer over a rectangular cavity
NASA Astrophysics Data System (ADS)
Zhang, Qi; Haering, Sigfried; Oliver, Todd; Moser, Robert
2016-11-01
We report numerical investigations of a turbulent boundary layer over a rectangular cavity using a new hybrid RANS/LES model and the traditional Detached Eddy Simulation (DES). Our new hybrid method aims to address many of the shortcomings from the traditional DES. In the new method, RANS/LES blending controlled by a parameter that measures the ratio of the modeled subgrid kinetic energy to an estimate of the subgrid energy based on the resolved scales. The result is a hybrid method automatically resolves as much turbulence as can be supported by the grid and transitions appropriately from RANS to LES without the need for ad hoc delaying functions that are often required for DES. Further, the new model is designed to improve upon DES by accounting for the effects of grid anisotropy and inhomogeneity in the LES region. We present comparisons of the flow features inside the cavity and the pressure time history and spectra as computed using the new hybrid model and DES.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1998-01-01
The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.
Detached-Eddy Simulations of Attached and Detached Boundary Layers
NASA Astrophysics Data System (ADS)
Caruelle, B.; Ducros, F.
2003-12-01
This article presents Detached-Eddy Simulations (DESs) of attached and detached turbulent boundary layers. This hybrid Reynolds Averaged Navier-Stokes (RANS) / Large Eddy Simulation (LES) model goes continuously from RANS to LES according to the mesh definition. We propose a parametric study of the model over two "academic" configurations, in order to get information on the influence of the mesh to correctly treat complex flow with attached and detached boundary layers.
Simulation of turbulent separated flows using a novel, evolution-based, eddy-viscosity formulation
NASA Astrophysics Data System (ADS)
Castellucci, Paul
Currently, there exists a lack of confidence in the computational simulation of turbulent separated flows at large Reynolds numbers. The most accurate methods available are too computationally costly to use in engineering applications. Thus, inexpensive models, developed using the Reynolds-averaged Navier-Stokes (RANS) equations, are often extended beyond their applicability. Although these methods will often reproduce integrated quantities within engineering tolerances, such metrics are often insensitive to details within a separated wake, and therefore, poor indicators of simulation fidelity. Using concepts borrowed from large-eddy simulation (LES), a two-equation RANS model is modified to simulate the turbulent wake behind a circular cylinder. This modification involves the computation of one additional scalar field, adding very little to the overall computational cost. When properly inserted into the baseline RANS model, this modification mimics LES in the separated wake, yet reverts to the unmodified form at the cylinder surface. In this manner, superior predictive capability may be achieved without the additional cost of fine spatial resolution associated with LES near solid boundaries. Simulations using modified and baseline RANS models are benchmarked against both LES and experimental data for a circular cylinder wake at Reynolds number 3900. In addition, the computational tool used in this investigation is subject to verification via the Method of Manufactured Solutions. Post-processing of the resultant flow fields includes both mean value and triple-decomposition analysis. These results reveal substantial improvements using the modified system and appear to drive the baseline wake solution toward that of LES, as intended.
NASA Astrophysics Data System (ADS)
Pradhan, Aniruddhe; Akhavan, Rayhaneh
2017-11-01
Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.
Smoothed particle hydrodynamics method from a large eddy simulation perspective
NASA Astrophysics Data System (ADS)
Di Mascio, A.; Antuono, M.; Colagrossi, A.; Marrone, S.
2017-03-01
The Smoothed Particle Hydrodynamics (SPH) method, often used for the modelling of the Navier-Stokes equations by a meshless Lagrangian approach, is revisited from the point of view of Large Eddy Simulation (LES). To this aim, the LES filtering procedure is recast in a Lagrangian framework by defining a filter that moves with the positions of the fluid particles at the filtered velocity. It is shown that the SPH smoothing procedure can be reinterpreted as a sort of LES Lagrangian filtering, and that, besides the terms coming from the LES convolution, additional contributions (never accounted for in the SPH literature) appear in the equations when formulated in a filtered fashion. Appropriate closure formulas are derived for the additional terms and a preliminary numerical test is provided to show the main features of the proposed LES-SPH model.
DNS and LES/FMDF of turbulent jet ignition and combustion
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Jaberi, Farhad
2014-11-01
The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.
Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.
Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B
2006-04-15
Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.
A large eddy simulation scheme for turbulent reacting flows
NASA Technical Reports Server (NTRS)
Gao, Feng
1993-01-01
The recent development of the dynamic subgrid-scale (SGS) model has provided a consistent method for generating localized turbulent mixing models and has opened up great possibilities for applying the large eddy simulation (LES) technique to real world problems. Given the fact that the direct numerical simulation (DNS) can not solve for engineering flow problems in the foreseeable future (Reynolds 1989), the LES is certainly an attractive alternative. It seems only natural to bring this new development in SGS modeling to bear on the reacting flows. The major stumbling block for introducing LES to reacting flow problems has been the proper modeling of the reaction source terms. Various models have been proposed, but none of them has a wide range of applicability. For example, some of the models in combustion have been based on the flamelet assumption which is only valid for relatively fast reactions. Some other models have neglected the effects of chemical reactions on the turbulent mixing time scale, which is certainly not valid for fast and non-isothermal reactions. The probability density function (PDF) method can be usefully employed to deal with the modeling of the reaction source terms. In order to fit into the framework of LES, a new PDF, the large eddy PDF (LEPDF), is introduced. This PDF provides an accurate representation for the filtered chemical source terms and can be readily calculated in the simulations. The details of this scheme are described.
LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3
NASA Astrophysics Data System (ADS)
Raghunath, Sriram; Brereton, Giles
2009-11-01
LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.
Numerical investigation of a helicopter combustion chamber using LES and tabulated chemistry
NASA Astrophysics Data System (ADS)
Auzillon, Pierre; Riber, Eléonore; Gicquel, Laurent Y. M.; Gicquel, Olivier; Darabiha, Nasser; Veynante, Denis; Fiorina, Benoît
2013-01-01
This article presents Large Eddy Simulations (LES) of a realistic aeronautical combustor device: the chamber CTA1 designed by TURBOMECA. Under nominal operating conditions, experiments show hot spots observed on the combustor walls, in the vicinity of the injectors. These high temperature regions disappear when modifying the fuel stream equivalence ratio. In order to account for detailed chemistry effects within LES, the numerical simulation uses the recently developed turbulent combustion model F-TACLES (Filtered TAbulated Chemistry for LES). The principle of this model is first to generate a lookup table where thermochemical variables are computed from a set of filtered laminar unstrained premixed flamelets. To model the interactions between the flame and the turbulence at the subgrid scale, a flame wrinkling analytical model is introduced and the Filtered Density Function (FDF) of the mixture fraction is modeled by a β function. Filtered thermochemical quantities are stored as a function of three coordinates: the filtered progress variable, the filtered mixture fraction and the mixture fraction subgrid scale variance. The chemical lookup table is then coupled with the LES using a mathematical formalism that ensures an accurate prediction of the flame dynamics. The numerical simulation of the CTA1 chamber with the F-TACLES turbulent combustion model reproduces fairly the temperature fields observed in experiments. In particular the influence of the fuel stream equivalence ratio on the flame position is well captured.
Large eddy simulation for aerodynamics: status and perspectives.
Sagaut, Pierre; Deck, Sébastien
2009-07-28
The present paper provides an up-to-date survey of the use of large eddy simulation (LES) and sequels for engineering applications related to aerodynamics. Most recent landmark achievements are presented. Two categories of problem may be distinguished whether the location of separation is triggered by the geometry or not. In the first case, LES can be considered as a mature technique and recent hybrid Reynolds-averaged Navier-Stokes (RANS)-LES methods do not allow for a significant increase in terms of geometrical complexity and/or Reynolds number with respect to classical LES. When attached boundary layers have a significant impact on the global flow dynamics, the use of hybrid RANS-LES remains the principal strategy to reduce computational cost compared to LES. Another striking observation is that the level of validation is most of the time restricted to time-averaged global quantities, a detailed analysis of the flow unsteadiness being missing. Therefore, a clear need for detailed validation in the near future is identified. To this end, new issues, such as uncertainty and error quantification and modelling, will be of major importance. First results dealing with uncertainty modelling in unsteady turbulent flow simulation are presented.
Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Dabiri, John O.
2017-04-01
Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.
Short-term Wind Forecasting at Wind Farms using WRF-LES and Actuator Disk Model
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan
2017-04-01
Short-term wind forecasts are obtained for a wind farm on a mountainous terrain using WRF-LES. Multi-scale simulations are also performed using different PBL parameterizations. Turbines are parameterized using Actuator Disc Model. LES models improved the forecasts. Statistical error analysis is performed and ramp events are analyzed. Complex topography of the study area affects model performance, especially the accuracy of wind forecasts were poor for cross valley-mountain flows. By means of LES, we gain new knowledge about the sources of spatial and temporal variability of wind fluctuations such as the configuration of wind turbines.
NASA Astrophysics Data System (ADS)
Gustafson, W. I., Jr.; Vogelmann, A. M.; Li, Z.; Cheng, X.; Endo, S.; Krishna, B.; Toto, T.; Xiao, H.
2017-12-01
Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence and cloud development. However, the results are sensitive to the choice of forcing data sets used to drive the LES model, and the most realistic forcing data is difficult to identify a priori. Knowing the sensitivity of boundary layer and cloud processes to forcing data selection is critical when using LES to understand atmospheric processes and when developing associated parameterizations. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES based on a selection of plausible input forcing data sets. The LES ARM Symbiotic Simulation and Observation (LASSO) project is initially generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. This talk will examine 13 days with shallow convection selected from the period May-August 2016, with multiple forcing sources and spatial scales used to generate an LES ensemble for each of the days, resulting in hundreds of LES runs with coincident observations from ARM's extensive suite of in situ and retrieval-based products. This talk will focus particularly on the sensitivity of the cloud development and its relation to forcing data. Variability of the PBL characteristics, lifting condensation level, cloud base height, cloud fraction, and liquid water path will be examined. More information about the LASSO project can be found at https://www.arm.gov/capabilities/modeling/lasso.
Large eddy simulation modelling of combustion for propulsion applications.
Fureby, C
2009-07-28
Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.
NASA Astrophysics Data System (ADS)
Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar
2017-07-01
Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.
NASA Astrophysics Data System (ADS)
Vogelmann, A. M.; Gustafson, W. I., Jr.; Toto, T.; Endo, S.; Cheng, X.; Li, Z.; Xiao, H.
2015-12-01
The Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facilities' Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) Workflow is currently being designed to provide output from routine LES to complement its extensive observations. The modeling portion of the LASSO workflow is presented by Gustafson et al., which will initially focus on shallow convection over the ARM megasite in Oklahoma, USA. This presentation describes how the LES output will be combined with observations to construct multi-dimensional and dynamically consistent "data cubes", aimed at providing the best description of the atmospheric state for use in analyses by the community. The megasite observations are used to constrain large-eddy simulations that provide a complete spatial and temporal coverage of observables and, further, the simulations also provide information on processes that cannot be observed. Statistical comparisons of model output with their observables are used to assess the quality of a given simulated realization and its associated uncertainties. A data cube is a model-observation package that provides: (1) metrics of model-observation statistical summaries to assess the simulations and the ensemble spread; (2) statistical summaries of additional model property output that cannot be or are very difficult to observe; and (3) snapshots of the 4-D simulated fields from the integration period. Searchable metrics are provided that characterize the general atmospheric state to assist users in finding cases of interest, such as categorization of daily weather conditions and their specific attributes. The data cubes will be accompanied by tools designed for easy access to cube contents from within the ARM archive and externally, the ability to compare multiple data streams within an event as well as across events, and the ability to use common grids and time sampling, where appropriate.
Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung
2015-01-01
A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Raj K.; Berg, Larry K.; Kosović, Branko
High resolution numerical simulation can provide insight into important physical processes that occur within the planetary boundary layer (PBL). The present work employs large eddy simulation (LES) using the Weather Forecasting and Research (WRF) model, with the LES domain nested within mesoscale simulation, to simulate real conditions in the convective PBL over an area of complex terrain. A multiple nesting approach has been used to downsize the grid spacing from 12.15 km (mesoscale) to 0.03 km (LES). A careful selection of grid spacing in the WRF Meso domain has been conducted to minimize artifacts in the WRF-LES solutions. The WRF-LESmore » results have been evaluated with in situ and remote sensing observations collected during the US Department of Energy-supported Columbia BasinWind Energy Study (CBWES). Comparison of the first- and second-order moments, turbulence spectrum, and probability density function (PDF) of wind speed shows good agreement between the simulations and data. Furthermore, the WRF-LES variables show a great deal of variability in space and time caused by the complex topography in the LES domain. The WRF-LES results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day. In addition to basic studies related to boundary-layer meteorology, results from these simulations can be used in other applications, such as studying wind energy resources, atmospheric dispersion, fire weather etc.« less
Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor
NASA Technical Reports Server (NTRS)
Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.;
2012-01-01
Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused convergence problems in some RANS simulations, was also captured in LES / RANS simulations, which were able to accommodate its effects accurately.
Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.
Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong
2017-06-01
Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.
Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds
Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M.; Tan, Zhihong
2017-01-01
Abstract Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS‐II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS‐II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid‐scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS‐II observations are identified. The results show that using weighted essentially non‐oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest‐fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high‐quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest‐fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model. PMID:28943997
Hybrid LES RANS technique based on a one-equation near-wall model
NASA Astrophysics Data System (ADS)
Breuer, M.; Jaffrézic, B.; Arora, K.
2008-05-01
In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196 205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid-scale and RANS models. Here, in addition to the study on the behavior of the suggested hybrid LES RANS approach, special emphasis is put on the investigation of suitable interface criteria and the adjustment of the RANS model. To investigate these issues, two different test cases are considered. Besides the standard plane channel flow test case, the flow over a periodic arrangement of hills is studied in detail. This test case includes a pressure-induced flow separation and subsequent reattachment. In comparison with a wall-resolved LES prediction encouraging results are achieved.
Wildfire simulation using LES with synthetic-velocity SGS models
NASA Astrophysics Data System (ADS)
McDonough, J. M.; Tang, Tingting
2016-11-01
Wildland fires are becoming more prevalent and intense worldwide as climate change leads to warmer, drier conditions; and large-eddy simulation (LES) is receiving increasing attention for fire spread predictions as computing power continues to improve (see, e.g.,). We report results from wildfire simulations over general terrain employing implicit LES for solution of the incompressible Navier-Stokes (N.-S.) and thermal energy equations with Boussinesq approximation, altered with Darcy, Forchheimer and Brinkman extensions, to represent forested regions as porous media with varying (in both space and time) porosity and permeability. We focus on subgrid-scale (SGS) behaviors computed with a synthetic-velocity model, a discrete dynamical system, based on the poor man's N.-S. equations and investigate the ability of this model to produce fire whirls (tornadoes of fire) at the (unresolved) SGS level. Professor, Mechanical Engineering and Mathematics.
NASA Technical Reports Server (NTRS)
Gullbrand, Jessica
2003-01-01
In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM consists of the scale-similarity model (SSM) by Bardina et al. (1983), which is an RSFS model, in linear combination with the DSM. In the DRM, the RSFS stresses are modeled by using an estimate of the unfiltered velocity in the unclosed term, while the USFS stresses are modeled by the DSM. The DSM and the DMM are two commonly used turbulence-closure models, while the DRM is a more recent model.
Stochasticity of convection in Giga-LES data
NASA Astrophysics Data System (ADS)
De La Chevrotière, Michèle; Khouider, Boualem; Majda, Andrew J.
2016-09-01
The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187-216, 2010) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were captured fairly well both qualitatively and quantitatively demonstrating the stochastic nature of convection in the Giga-LES simulation.
A multi-scalar PDF approach for LES of turbulent spray combustion
NASA Astrophysics Data System (ADS)
Raman, Venkat; Heye, Colin
2011-11-01
A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.
Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area
NASA Astrophysics Data System (ADS)
Du, Tangzheng; Liu, Chun-Ho
2013-04-01
Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderwende, Brian J.; Kosović, Branko; Lundquist, Julie K.
2016-08-27
Growth in wind power production has motivated investigation of wind-farm impacts on in situ flow fields and downstream interactions with agriculture and other wind farms. These impacts can be simulated with both large-eddy simulations (LES) and mesoscale wind-farm parameterizations (WFP). The Weather Research and Forecasting (WRF) model offers both approaches. We used the validated generalized actuator disk (GAD) parameterization in WRF-LES to assess WFP performance. A 12-turbine array was simulated using the GAD model and the WFP in WRF. We examined the performance of each scheme in both convective and stable conditions. The GAD model and WFP produced qualitatively similarmore » wind speed deficits and turbulent kinetic energy (TKE) production across the array in both stability regimes, though the magnitudes of velocity deficits and TKE production levels were underestimated and overestimated, respectively. While wake growth slowed in the latter half of the WFP array as expected, wakes did not approach steady state by the end of the array as simulated by the GAD model. A sensitivity test involving the deactivation of explicit TKE production by the WFP resulted in turbulence levels within the array well that were below those produced by the GAD in both stable and unstable conditions. Finally, the WFP overestimated downwind power production deficits in stable conditions because of the lack of wake stabilization in the latter half of the array.« less
Large-eddy simulation of flow in a plane, asymmetric diffuser
NASA Technical Reports Server (NTRS)
Kaltenbach, Hans-Jakob
1993-01-01
Recent improvements in subgrid-scale modeling as well as increases in computer power make it feasible to investigate flows using large-eddy simulation (LES) which have been traditionally studied with techniques based on Reynolds averaging. However, LES has not yet been applied to many flows of immediate technical interest. Preliminary results from LES of a plane diffuser flow are described. The long term goal of this work is to investigate flow separation as well as separation control in ducts and ramp-like geometries.
A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2012-01-01
Currently, the modeling of supercritical-pressure flows through Large Eddy Simulation (LES) uses models derived for atmospheric-pressure flows. Those atmospheric-pressure flows do not exhibit the particularities of high densitygradient magnitude features observed both in experiments and simulations of supercritical-pressure flows in the case of two species mixing. To assess whether the current LES modeling is appropriate and if found not appropriate to propose higher-fidelity models, a LES a posteriori study has been conducted for a mixing layer that initially contains different species in the lower and upper streams, and where the initial pressure is larger than the critical pressure of either species. An initially-imposed vorticity perturbation promotes roll-up and a double pairing of four initial span-wise vortices into an ultimate vortex that reaches a transitional state. The LES equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equation set uses transport properties depending on the thermodynamic variables. Unlike all LES models to date, the differential equations contain, additional to the subgrid scale (SGS) fluxes, a new SGS term that is a pressure correction in the momentum equation. This additional term results from filtering of Direct Numerical Simulation (DNS) equations, and represents the gradient of the difference between the filtered pressure and the pressure computed from the filtered flow field. A previous a priori analysis, using a DNS database for the same configuration, found this term to be of leading order in the momentum equation, a fact traced to the existence of high-densitygradient magnitude regions that populated the entire flow; in the study, models were proposed for the SGS fluxes as well as this new term. In the present study, the previously proposed constantcoefficient SGS-flux models of the a priori investigation are tested a posteriori in LES, devoid of or including, the SGS pressure correction term. The present pressure-correction model is different from, and more accurate as well as less computationally intensive than that of the a priori study. The constant-coefficient SGS-flux models encompass the Smagorinsky (SMC), in conjunction with the Yoshizawa (YO) model for the trace, the Gradient (GRC) and the Scale Similarity (SSC) models, all exercised with the a priori study constant coefficients calibrated at the transitional state. The LES comparison is performed with the filtered- and-coarsened (FC) DNS, which represents an ideal LES solution. Expectably, an LES model devoid of SGS terms is shown to be considerably inferior to models containing SGS effects. Among models containing SGS effects, those including the pressure-correction term are substantially superior to those devoid of it. The sensitivity of the predictions to the initial conditions and grid size are also investigated. Thus, it has been discovered that, additional to the atmospheric-pressure models currently used, a new model is necessary to simulate supercritical-pressure flows. This model depends on the thermodynamic characteristics of the chemical species involved.
NASA Technical Reports Server (NTRS)
Givi, Peyman; Jaberi, Farhad A.
2001-01-01
The basic objective of this work is to assess the influence of gravity on "the compositional and the spatial structures" of transitional and turbulent diffusion flames via large eddy simulation (LES), and direct numerical simulation (DNS). The DNS is conducted for appraisal of the various closures employed in LES, and to study the effect of buoyancy on the small scale flow features. The LES is based on our "filtered mass density function"' (FMDF) model. The novelty of the methodology is that it allows for reliable simulations with inclusion of "realistic physics." It also allows for detailed analysis of the unsteady large scale flow evolution and compositional flame structure which is not usually possible via Reynolds averaged simulations.
NASA Astrophysics Data System (ADS)
Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao
2017-11-01
The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.
NASA Technical Reports Server (NTRS)
Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.
2004-01-01
Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.
An LES study of vertical-axis wind turbine wakes aerodynamics
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Dabiri, John O.
2016-11-01
In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.
Large eddy simulations in 2030 and beyond
Piomelli, U
2014-01-01
Since its introduction, in the early 1970s, large eddy simulations (LES) have advanced considerably, and their application is transitioning from the academic environment to industry. Several landmark developments can be identified over the past 40 years, such as the wall-resolved simulations of wall-bounded flows, the development of advanced models for the unresolved scales that adapt to the local flow conditions and the hybridization of LES with the solution of the Reynolds-averaged Navier–Stokes equations. Thanks to these advancements, LES is now in widespread use in the academic community and is an option available in most commercial flow-solvers. This paper will try to predict what algorithmic and modelling advancements are needed to make it even more robust and inexpensive, and which areas show the most promise. PMID:25024415
Comparison of AGE and Spectral Methods for the Simulation of Far-Wakes
NASA Technical Reports Server (NTRS)
Bisset, D. K.; Rogers, M. M.; Kega, Dennis (Technical Monitor)
1999-01-01
Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This report demonstrates that a good compromise is possible with the Advected Grid Explicit (AGE) method. AGE has proven to be both efficient and accurate for simulating turbulent free-shear flows, including planar mixing layers and planar jets. Its efficiency results from its localized fully explicit finite difference formulation (Bisset 1998a,b) that is very straightforward to compute, outweighing the need for a fairly small timestep. Also, most of the successful simulations were slightly under-resolved, and therefore they were, in effect, large-eddy simulations (LES) without a sub-grid-scale (SGS) model, rather than direct numerical simulations (DNS). The principle is that the role of the smallest scales of turbulent motion (when the Reynolds number is not too low) is to dissipate turbulent energy, and therefore they do not have to be simulated when the numerical method is inherently dissipative at its resolution limits. Such simulations are termed 'auto-LES' (LES with automatic SGS modeling) in this report.
NASA Astrophysics Data System (ADS)
Fradeneck, Austen; Kimber, Mark
2017-11-01
The present study evaluates the effectiveness of current RANS and LES models in simulating natural convection in high-aspect ratio parallel plate channels. The geometry under consideration is based on a simplification of the coolant and bypass channels in the very high-temperature gas reactor (VHTR). Two thermal conditions are considered, asymmetric and symmetric wall heating with an applied heat flux to match Rayleigh numbers experienced in the VHTR during a loss of flow accident (LOFA). RANS models are compared to analogous high-fidelity LES simulations. Preliminary results demonstrate the efficacy of the low-Reynolds number k- ɛ formulations and their enhancement to the standard form and Reynolds stress transport model in terms of calculating the turbulence production due to buoyancy and overall mean flow variables.
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
NASA Astrophysics Data System (ADS)
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
DNS/LES Simulations of Separated Flows at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.
Capabilities of current wildfire models when simulating topographical flow
NASA Astrophysics Data System (ADS)
Kochanski, A.; Jenkins, M.; Krueger, S. K.; McDermott, R.; Mell, W.
2009-12-01
Accurate predictions of the growth, spread and suppression of wild fires rely heavily on the correct prediction of the local wind conditions and the interactions between the fire and the local ambient airflow. Resolving local flows, often strongly affected by topographical features like hills, canyons and ridges, is a prerequisite for accurate simulation and prediction of fire behaviors. In this study, we present the results of high-resolution numerical simulations of the flow over a smooth hill, performed using (1) the NIST WFDS (WUI or Wildland-Urban-Interface version of the FDS or Fire Dynamic Simulator), and (2) the LES version of the NCAR Weather Research and Forecasting (WRF-LES) model. The WFDS model is in the initial stages of development for application to wind flow and fire spread over complex terrain. The focus of the talk is to assess how well simple topographical flow is represented by WRF-LES and the current version of WFDS. If sufficient progress has been made prior to the meeting then the importance of the discrepancies between the predicted and measured winds, in terms of simulated fire behavior, will be examined.
LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei
2015-01-01
The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less
Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; ...
2015-10-14
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. Themore » LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.« less
A Test of the Validity of Inviscid Wall-Modeled LES
NASA Astrophysics Data System (ADS)
Redman, Andrew; Craft, Kyle; Aikens, Kurt
2015-11-01
Computational expense is one of the main deterrents to more widespread use of large eddy simulations (LES). As such, it is important to reduce computational costs whenever possible. In this vein, it may be reasonable to assume that high Reynolds number flows with turbulent boundary layers are inviscid when using a wall model. This assumption relies on the grid being too coarse to resolve either the viscous length scales in the outer flow or those near walls. We are not aware of other studies that have suggested or examined the validity of this approach. The inviscid wall-modeled LES assumption is tested here for supersonic flow over a flat plate on three different grids. Inviscid and viscous results are compared to those of another wall-modeled LES as well as experimental data - the results appear promising. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively, with the current LES application. Recommendations are presented as are future areas of research. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Hybrid LES/RANS Simulation of Transverse Sonic Injection into a Mach 2 Flow
NASA Technical Reports Server (NTRS)
Boles, John A.; Edwards, Jack R.; Baurle, Robert A.
2008-01-01
A computational study of transverse sonic injection of air and helium into a Mach 1.98 cross-flow is presented. A hybrid large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) turbulence model is used, with the two-equation Menter baseline (Menter-BSL) closure for the RANS part of the flow and a Smagorinsky-type model for the LES part of the flow. A time-dependent blending function, dependent on modeled turbulence variables, is used to shift the closure from RANS to LES. Turbulent structures are initiated and sustained through the use of a recycling / rescaling technique. Two higher-order discretizations, the Piecewise Parabolic Method (PPM) of Colella and Woodward, and the SONIC-A ENO scheme of Suresh and Huyhn are used in the study. The results using the hybrid model show reasonably good agreement with time-averaged Mie scattering data and with experimental surface pressure distributions, even though the penetration of the jet into the cross-flow is slightly over-predicted. The LES/RANS results are used to examine the validity of commonly-used assumptions of constant Schmidt and Prandtl numbers in the intense mixing zone downstream of the injection location.
Evaluation d'un ecosysteme pastoral sahelien: Apport de la geomatique (Oursi, Burkina Faso)
NASA Astrophysics Data System (ADS)
Kabore, Seraphine Sawadogo
L'objectif principal de cette recherche est la mise au point d'une architecture d'integration de donnees socio-bio-geographiques et de donnees satellitales dans un Systeme d'Information Geographique (SIG) en vue d'une aide a la prise de decisions dans un environnement semi-aride au nord du Burkina Faso. Elle repond a la question fondamentale de l'interpretation des effets des facteurs climatiques et socioeconomiques sur le milieu pastoral. La recherche s'est appuyee sur plusieurs hypotheses de travail: possibilite d'utilisation de modele de simulation, d'approche multicritere et de donnees de teledetection dans un cadre de systeme d'information geographique. L'evolution spatiotemporelle des parametres de productivite du milieu a ete evaluee par approche dynamique selon le modele de Wu et al. (1996) qui modelise les interactions entre le climat, le milieu physique, le vegetal et l'animal pour mieux quantifier la biomasse primaire. A ce modele, quatre parametres ont ete integres par approche floue et multicritere afin de prendre en compte la dimension socioeconomique de la productivite pastorale (apport majeur de la recherche): la sante, l'education, l'agriculture et l'eau. La teledetection (imagerie SPOT) a permis de definir la production primaire a partir de laquelle les simulations ont ete realisees sur 10 annees. Les resultats obtenus montrent une bonne correlation entre biomasse primaire in situ et celle calculee pour les deux modeles, avec toutefois une meilleure efficacite du modele modifie (4 fois plus) dans les zones de forte productivite ou l'on note un taux de surexploitation agricole eleve. A cause de la variabilite spatiale de la production primaire in situ, les erreurs des resultats de simulation (8 a 11%) sont acceptables et montrent la pertinence de l'approche grace a l'utilisation des SIG pour la spatialisation et l'integration des differents parametres des modeles. Les types de production secondaire preconises (production de lait pendant 7 mois ou de viande pendant 6 mois) sont bases sur les besoins de l'UBT et le disponible fourrager qui est de qualite mediocre en saison seche. Dans les deux cas de figure, un deficit fourrager est observe. Deux types de transhumance sont proposes afin d'assurer une production durable selon deux scenarios: exploitation rationnelle des unites pastorales selon un plan de rotation annuelle et mise en defens a moyen terme des zones degradees pour une regeneration. Les zones potentielles pour la transhumance ont ete determinees selon les limites acceptables des criteres d'exploitation durable des milieux saheliens definis par Kessler (1994) soit 0,2 UBT.ha-1.
LES of flow in the street canyon
NASA Astrophysics Data System (ADS)
Fuka, Vladimír; Brechler, Josef
2012-04-01
Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Roekel, Luke
We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.
NASA Technical Reports Server (NTRS)
Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.
2003-01-01
The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.
The Effect of Large Scale Salinity Gradient on Langmuir Turbulence
NASA Astrophysics Data System (ADS)
Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.
2017-12-01
Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by large fresh water inflow due to flooding from the Mississippi river. Model results indicate that the strong salinity gradient can reduce the mean flow in the ML and inhibit the turbulence in the planetary boundary layer. The Langmuir cells are also rotated clockwise by the pressure gradient.
Large-eddy simulation using the finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.
1993-10-01
In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulencemore » modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.« less
Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik; ...
2017-10-06
A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik
A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less
LES versus DNS: A comparative study
NASA Technical Reports Server (NTRS)
Shtilman, L.; Chasnov, J. R.
1992-01-01
We have performed Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of forced isotropic turbulence at moderate Reynolds numbers. The subgrid scale model used in the LES is based on an eddy viscosity which adjusts instantaneously the energy spectrum of the LES to that of the DNS. The statistics of the large scales of the DNS (filtered DNS field or fDNS) are compared to that of the LES. We present results for the transfer spectra, the skewness and flatness factors of the velocity components, the PDF's of the angle between the vorticity and the eigenvectors of the rate of strain, and that between the vorticity and the vorticity stretching tensor. The above LES statistics are found to be in good agreement with those measured in the fDNS field. We further observe that in all the numerical measurements, the trend was for the LES field to be more gaussian than the fDNS field. Future research on this point is planned.
Kemenov, Konstantin A.; Calhoon, William H.
2015-03-24
Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less
Toward Better Modeling of Supercritical Turbulent Mixing
NASA Technical Reports Server (NTRS)
Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth
2008-01-01
study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.
NASA Astrophysics Data System (ADS)
Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua
2015-07-01
A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).
LES Modeling with Experimental Validation of a Compound Channel having Converging Floodplain
NASA Astrophysics Data System (ADS)
Mohanta, Abinash; Patra, K. C.
2018-04-01
Computational fluid dynamics (CFD) is often used to predict flow structures in developing areas of a flow field for the determination of velocity field, pressure, shear stresses, effect of turbulence and others. A two phase three-dimensional CFD model along with the large eddy simulation (LES) model is used to solve the turbulence equation. This study aims to validate CFD simulations of free surface flow or open channel flow by using volume of fluid method by comparing the data observed in hydraulics laboratory of the National Institute of Technology, Rourkela. The finite volume method with a dynamic sub grid scale was carried out for a constant aspect ratio and convergence condition. The results show that the secondary flow and centrifugal force influence flow pattern and show good agreement with experimental data. Within this paper over-bank flows have been numerically simulated using LES in order to predict accurate open channel flow behavior. The LES results are shown to accurately predict the flow features, specifically the distribution of secondary circulations both for in-bank channels as well as over-bank channels at varying depth and width ratios in symmetrically converging flood plain compound sections.
Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data
NASA Astrophysics Data System (ADS)
Dorrestijn, Jesse; Crommelin, Daan T.; Siebesma, A. Pier.; Jonker, Harm J. J.
2013-02-01
In this paper, we report on the development of a methodology for stochastic parameterization of convective transport by shallow cumulus convection in weather and climate models. We construct a parameterization based on Large-Eddy Simulation (LES) data. These simulations resolve the turbulent fluxes of heat and moisture and are based on a typical case of non-precipitating shallow cumulus convection above sea in the trade-wind region. Using clustering, we determine a finite number of turbulent flux pairs for heat and moisture that are representative for the pairs of flux profiles observed in these simulations. In the stochastic parameterization scheme proposed here, the convection scheme jumps randomly between these pre-computed pairs of turbulent flux profiles. The transition probabilities are estimated from the LES data, and they are conditioned on the resolved-scale state in the model column. Hence, the stochastic parameterization is formulated as a data-inferred conditional Markov chain (CMC), where each state of the Markov chain corresponds to a pair of turbulent heat and moisture fluxes. The CMC parameterization is designed to emulate, in a statistical sense, the convective behaviour observed in the LES data. The CMC is tested in single-column model (SCM) experiments. The SCM is able to reproduce the ensemble spread of the temperature and humidity that was observed in the LES data. Furthermore, there is a good similarity between time series of the fractions of the discretized fluxes produced by SCM and observed in LES.
Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers
NASA Astrophysics Data System (ADS)
Inoue, Michio
The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.
2012-07-01
du monde de la modélisation et de la simulation et lui fournir des directives de mise en œuvre ; et fournir des ...définition ; rapports avec les normes ; spécification de procédure de gestion de la MC ; spécification d’artefact de MC. Considérations importantes...utilisant la présente directive comme référence. • Les VV&A (vérification, validation et acceptation) des MC doivent faire partie intégrante du
Spatial large-eddy simulations of contrail formation in the wake of an airliner
NASA Astrophysics Data System (ADS)
Paoli, R.
2015-12-01
Contrails and contrail-cirrus are the most uncertain contributors to aviation radiative forcing. In order to reduce this uncertainty one needs to gain more knowledge on the physicochemical processes occurring in the aircraft plume, which eventually lead to the transformation of contrails into cirrus. To that end, the accurate prediction of the number of activated particles and their spatial and size distributions at the end of the jet regime may be helpful to initialize simulations in the following vortex regime. We present the results from spatial large-eddy simulations (LES) of contrail formation in the near-field wake of a generic (but full-scale) airliner that is representative of those used in long-haul flights in current fleets. The flow around the aircraft has been computed using a RANS code taking into account the full geometry that include the engines and the aerodynamic set-up for cruise conditions. The data have been reconstructed at a plane closely behind the trailing edge of the wing and used as inflow boundary conditions for the LES. We employ fully compressible 3D LES coupled to Lagrangian microphysical module that tracks parcels of ice particles individually. The ice microphysical model is simple yet it contains the basic thermodynamic ingredients to model soot activation and water vapor deposition. Compared to one-dimensional models or even RANS, LES allow for more accurate predictions of the mixing between exhaust and ambient air. Hence, the number of activated particles and the ice growth rate can be also determined with higher accuracy. This is particularly crucial for particles located at the edge of the jet that experience large gradients of temperature and humidity. The results of the fully coupled LES (where the gas phase and the particles are solved together) are compared to offline simulations where the ice microphysics model is run using thermodynamic data from pre-calculated particle trajectories extracted from inert LES (where ice microphysics has been switched off).
Applications of large-eddy simulation: Synthesis of neutral boundary layer models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohmstede, W.D.
The object of this report is to describe progress made towards the application of large-eddy simulation (LES), in particular, to the study of the neutral boundary layer (NBL). The broad purpose of the study is to provide support to the LES project currently underway at LLNL. The specific purpose of this study is to lay the groundwork for the simulation of the SBL through the establishment and implementation of model criteria for the simulation of the NBL. The idealistic NBL is never observed in the atmosphere and therefore has little practical significance. However, it is of considerable theoretical interest formore » several reasons. The report discusses the concept of Rossby-number similarity theory as it applies to the NBL. A particular implementation of the concept is described. Then, the results from prior simulations of the NBL are summarized. Model design criteria for two versions of the Brost LES (BLES) model are discussed. The general guidelines for the development of Version 1 of the Brost model (BV1) were to implement the model with a minimum of modifications which would alter the design criteria as established by Brost. Two major modifications of BLES incorporated into BV1 pertain to the initialization/parameterization of the model and the generalization of the boundary conditions at the air/earth interface. 18 refs., 4 figs.« less
Zonal PANS: evaluation of different treatments of the RANS-LES interface
NASA Astrophysics Data System (ADS)
Davidson, L.
2016-03-01
The partially Reynolds-averaged Navier-Stokes (PANS) model can be used to simulate turbulent flows either as RANS, large eddy simulation (LES) or DNS. Its main parameter is fk whose physical meaning is the ratio of the modelled to the total turbulent kinetic energy. In RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1. Three different ways of prescribing fk are evaluated for decaying grid turbulence and fully developed channel flow: fk = 0.4, fk = k3/2tot/ɛ and, from its definition, fk = k/ktot where ktot is the sum of the modelled, k, and resolved, kres, turbulent kinetic energy. It is found that the fk = 0.4 gives the best results. In Girimaji and Wallin, a method was proposed to include the effect of the gradient of fk. This approach is used at RANS- LES interface in the present study. Four different interface models are evaluated in fully developed channel flow and embedded LES of channel flow: in both cases, PANS is used as a zonal model with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS- LES interface is parallel to the wall (horizontal) and in embedded LES, it is parallel to the inlet (vertical). The importance of the location of the horizontal interface in fully developed channel flow is also investigated. It is found that the location - and the choice of the treatment at the interface - may be critical at low Reynolds number or if the interface is placed too close to the wall. The reason is that the modelled turbulent shear stress at the interface is large and hence the relative strength of the resolved turbulence is small. In RANS, the turbulent viscosity - and consequently also the modelled Reynolds shear stress - is only weakly dependent on Reynolds number. It is found in the present work that it also applies in the URANS region.
Large-eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Zhou, Bowen
A stable atmospheric boundary layer (ABL) develops over land at night due to radiative surface cooling. The state of turbulence in the stable boundary layer (SBL) is determined by the competing forcings of shear production and buoyancy destruction. When both forcings are comparable in strength, the SBL falls into an intermittently turbulent state, where intense turbulent bursts emerge sporadically from an overall quiescent background. This usually occurs on clear nights with weak winds when the SBL is strongly stable. Although turbulent bursts are generally short-lived (half an hour or less), their impact on the SBL is significant since they are responsible for most of the turbulent mixing. The nighttime SBL can be modeled with large-eddy simulation (LES). LES is a turbulence-resolving numerical approach which separates the large-scale energy-containing eddies from the smaller ones based on application of a spatial filter. While the large eddies are explicitly resolved, the small ones are represented by a subfilter-scale (SFS) stress model. Simulation of the SBL is more challenging than the daytime convective boundary layer (CBL) because nighttime turbulent motions are limited by buoyancy stratification, thus requiring fine grid resolution at the cost of immense computational resources. The intermittently turbulent SBL adds additional levels of complexity, requiring the model to not only sustain resolved turbulence during quiescent periods, but also to transition into a turbulent state under appropriate conditions. As a result, LES of the strongly stable SBL potentially requires even finer grid resolution, and has seldom been attempted. This dissertation takes a different approach. By improving the SFS representation of turbulence with a more sophisticated model, intermittently turbulent SBL is simulated, to our knowledge, for the first time in the LES literature. The turbulence closure is the dynamic reconstruction model (DRM), applied under an explicit filtering and reconstruction LES framework. The DRM is a mixed model that consists of subgrid scale (SGS) and resolved subfilter scale (RSFS) components. The RSFS portion is represented by a scale-similarity model that allows for backscatter of energy from the SFS to the mean flow. Compared to conventional closures, the DRM is able to sustain resolved turbulence under moderate stability at coarser resolution (thus saving computational resources). The DRM performs equally well at fine resolution. Under strong stability, the DRM simulates an intermittently turbulent SBL, whereas conventional closures predict false laminar flows. The improved simulation methodology of the SBL has many potential applications in the area of wind energy, numerical weather prediction, pollution modeling and so on. The SBL is first simulated over idealized flat terrain with prescribed forcings and periodic lateral boundaries. A wide range of stability regimes, from weakly to strongly stable conditions, is tested to evaluate model performance. Under strongly stable conditions, intermittency due to mean shear and turbulence interactions is simulated and analyzed. Furthermore, results of the strongly stable SBL are used to improve wind farm siting and nighttime operations. Moving away from the idealized setting, the SBL is simulated over relatively flat terrain at a Kansas site over the Great Plains, where the Cooperative Atmospheric-Surface Exchange Study -- 1999 (CASES-99) took place. The LES obtains realistic initial and lateral boundary conditions from a meso-scale model reanalysis through a grid nesting procedure. Shear-instability induced intermittency observed on the night of Oct 5th during CASES-99 is reproduced to good temporal and magnitude agreement. The LES locates the origin of the shear-instability waves in a shallow upwind valley, and uncovers the intermittency mechanism to be wave breaking over a standing wave (formed over a stagnant cold-air bubble) across the valley. Finally, flow over the highly complex terrain of the Owens Valley in California is modeled with a similar nesting procedure. The LES results are validated with observation data from the 2006 Terrain-Induced Rotor Experiment (T-REX). The nested LES reproduces a transient nighttime warming event observed on the valley floor on April 17 during T-REX. The intermittency mechanism is shown to be through slope-valley flow transitions. In addition, a cold-air intrusion from the eastern valley sidewall is simulated. This generates an easterly cross-valley flow, and the associated top-down mixing through breaking Kelvin-Helmholtz billows is analyzed. Finally, the nesting methodology tested and optimized in the CASES-99 and T-REX studies is transferrable to general ABL applications. For example, a nested LES is performed to model daytime methane plume dispersion over a landfill and good results are obtained.
A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows
NASA Technical Reports Server (NTRS)
Bui, Trong T.
1999-01-01
A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.
NASA Astrophysics Data System (ADS)
Muñoz-Esparza, Domingo; Kosović, Branko; Mirocha, Jeff; van Beeck, Jeroen
2014-12-01
With a focus towards developing multiscale capabilities in numerical weather prediction models, the specific problem of the transition from the mesoscale to the microscale is investigated. For that purpose, idealized one-way nested mesoscale to large-eddy simulation (LES) experiments were carried out using the Weather Research and Forecasting model framework. It is demonstrated that switching from one-dimensional turbulent diffusion in the mesoscale model to three-dimensional LES mixing does not necessarily result in an instantaneous development of turbulence in the LES domain. On the contrary, very large fetches are needed for the natural transition to turbulence to occur. The computational burden imposed by these long fetches necessitates the development of methods to accelerate the generation of turbulence on a nested LES domain forced by a smooth mesoscale inflow. To that end, four new methods based upon finite amplitude perturbations of the potential temperature field along the LES inflow boundaries are developed, and investigated under convective conditions. Each method accelerated the development of turbulence within the LES domain, with two of the methods resulting in a rapid generation of production and inertial range energy content associated to microscales that is consistent with non-nested simulations using periodic boundary conditions. The cell perturbation approach, the simplest and most efficient of the best performing methods, was investigated further under neutral and stable conditions. Successful results were obtained in all the regimes, where satisfactory agreement of mean velocity, variances and turbulent fluxes, as well as velocity and temperature spectra, was achieved with reference non-nested simulations. In contrast, the non-perturbed LES solution exhibited important energy deficits associated to a delayed establishment of fully-developed turbulence. The cell perturbation method has negligible computational cost, significantly accelerates the generation of realistic turbulence, and requires minimal parameter tuning, with the necessary information relatable to mean inflow conditions provided by the mesoscale solution.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.
Measurements and Computations of Flow in an Urban Street System
NASA Astrophysics Data System (ADS)
Castro, Ian P.; Xie, Zheng-Tong; Fuka, V.; Robins, Alan G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O.
2017-02-01
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.
Impact of subgrid fluid turbulence on inertial particles subject to gravity
NASA Astrophysics Data System (ADS)
Rosa, Bogdan; Pozorski, Jacek
2017-07-01
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.
Time-Domain Filtering for Spatial Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Pruett, C. David
1997-01-01
An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.
A New LES/PDF Method for Computational Modeling of Turbulent Reacting Flows
NASA Astrophysics Data System (ADS)
Turkeri, Hasret; Muradoglu, Metin; Pope, Stephen B.
2013-11-01
A new LES/PDF method is developed for computational modeling of turbulent reacting flows. The open source package, OpenFOAM, is adopted as the LES solver and combined with the particle-based Monte Carlo method to solve the LES/PDF model equations. The dynamic Smagorinsky model is employed to account for the subgrid-scale motions. The LES solver is first validated for the Sandia Flame D using a steady flamelet method in which the chemical compositions, density and temperature fields are parameterized by the mean mixture fraction and its variance. In this approach, the modeled transport equations for the mean mixture fraction and the square of the mixture fraction are solved and the variance is then computed from its definition. The results are found to be in a good agreement with the experimental data. Then the LES solver is combined with the particle-based Monte Carlo algorithm to form a complete solver for the LES/PDF model equations. The in situ adaptive tabulation (ISAT) algorithm is incorporated into the LES/PDF method for efficient implementation of detailed chemical kinetics. The LES/PDF method is also applied to the Sandia Flame D using the GRI-Mech 3.0 chemical mechanism and the results are compared with the experimental data and the earlier PDF simulations. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant No. 111M067.
Statistical Ensemble of Large Eddy Simulations
NASA Technical Reports Server (NTRS)
Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.
Nijhuis, Rogier L; Stijnen, Theo; Peeters, Anna; Witteman, Jacqueline C M; Hofman, Albert; Hunink, M G Myriam
2006-01-01
To determine the apparent and internal validity of the Rotterdam Ischemic heart disease & Stroke Computer (RISC) model, a Monte Carlo-Markov model, designed to evaluate the impact of cardiovascular disease (CVD) risk factors and their modification on life expectancy (LE) and cardiovascular disease-free LE (DFLE) in a general population (hereinafter, these will be referred to together as (DF)LE). The model is based on data from the Rotterdam Study, a cohort follow-up study of 6871 subjects aged 55 years and older who visited the research center for risk factor assessment at baseline (1990-1993) and completed a follow-up visit 7 years later (original cohort). The transition probabilities and risk factor trends used in the RISC model were based on data from 3501 subjects (the study cohort). To validate the RISC model, the number of simulated CVD events during 7 years' follow-up were compared with the observed number of events in the study cohort and the original cohort, respectively, and simulated (DF)LEs were compared with the (DF)LEs calculated from multistate life tables. Both in the study cohort and in the original cohort, the simulated distribution of CVD events was consistent with the observed number of events (CVD deaths: 7.1% v. 6.6% and 7.4% v. 7.6%, respectively; non-CVD deaths: 11.2% v. 11.5% and 12.9% v. 13.0%, respectively). The distribution of (DF)LEs estimated with the RISC model consistently encompassed the (DF)LEs calculated with multistate life tables. The simulated events and (DF)LE estimates from the RISC model are consistent with observed data from a cohort follow-up study.
Temporal Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Pruett, C. D.; Thomas, B. C.
2004-01-01
In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.
NASA Astrophysics Data System (ADS)
Chaouat, Bruno
2012-04-01
The partially integrated transport modeling (PITM) method [B. Chaouat and R. Schiestel, "A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005), 10.1063/1.1928607; R. Schiestel and A. Dejoan, "Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005), 10.1007/s00162-004-0155-z; B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgridscale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3; B. Chaouat and R. Schiestel, "Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations," Int. J. Heat Fluid Flow 30, 602 (2009), 10.1016/j.ijheatfluidflow.2009.02.021] viewed as a continuous approach for hybrid RANS/LES (Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with seamless coupling between RANS and LES regions is used to derive a subfilter scale stress model in the framework of second-moment closure applicable in a rotating frame of reference. This present subfilter scale model is based on the transport equations for the subfilter stresses and the dissipation rate and appears well appropriate for simulating unsteady flows on relatively coarse grids or flows with strong departure from spectral equilibrium because the cutoff wave number can be located almost anywhere inside the spectrum energy. According to the spectral theory developed in the wave number space [B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3], the coefficients used in this model are no longer constants but they are some analytical functions of a dimensionless parameter controlling the spectral distribution of turbulence. The pressure-strain correlation term encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale, S. Sarkar, and T. B. Gatski, "Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach," J. Fluid Mech. 227, 245 (1991), 10.1017/S0022112091000101] developed initially for homogeneous rotating flows in RANS methodology. It is modeled in system rotation using the principle of objectivity. Its modeling is especially extended in a low Reynolds number version for handling non-homogeneous wall flows. The present subfilter scale stress model is then used for simulating large scales of rotating turbulent flows on coarse and medium grids at moderate, medium, and high rotation rates. It is also applied to perform a simulation on a refined grid at the highest rotation rate. As a result, it is found that the PITM simulations reproduce fairly well the mean features of rotating channel flows allowing a drastic reduction of the computational cost in comparison with the one required for performing highly resolved LES. Overall, the mean velocities and turbulent stresses are found to be in good agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M. Lesieur, "Spectral-dynamic model for large-eddy simulations of turbulent rotating flow," Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the flow resulting from the rotation effects is also well reproduced in accordance with the reference data. Moreover, the PITM2 simulations performed on the medium grid predict qualitatively well the three-dimensional flow structures as well as the longitudinal roll cells which appear in the anticyclonic wall-region of the rotating flows. As expected, the PITM3 simulation performed on the refined grid reverts to highly resolved LES. The present model based on a rational formulation appears to be an interesting candidate for tackling a large variety of engineering flows subjected to rotation.
NASA Astrophysics Data System (ADS)
Hoffie, Andreas Frank
Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky model. The chemical reaction is simulated with a global single-step, second-order equilibrium reaction with an Arrhenius reaction rate. The two benchmark cases of constant density reacting and variable density non-reacting shear layers used to determine ODT parameters yield perfect agreement with regards to first and second-order flow statistics as well as shear layer growth rate. The variable density non-reacting shear layer also serves as a testing case for the LES-ODT model to simulate passive scalar mixing. The variable density, reacting shear layer cases only agree reasonably well and indicate that more work is necessary to improve variable density coupling of ODT and LES. The disagreement is attributed to the fact that the ODT filtered density is kept constant across the Runge-Kutta steps. Furthermore, a more in-depth knowledge of large scale and subgrid turbulent kinetic energy (TKE) spectra at several downstream locations as well as TKE budgets need to be studied to obtain a better understanding about the model as well as about the flow under investigation. The local Reynolds number based on the one-percent thickness at the exit is Redelta ≈ 5300, for the constant density reacting and for the variable density non-reacting case. For the variable density reacting shear layer, the Reynolds number based on the 1% thickness is Redelta ≈ 2370. The variable density reacting shear layers show suppressed growth rates due to density variations caused by heat release. This has also been reported in literature. A Lewis number parameter study is performed to extract non-unity Lewis number effects. An increase in the Lewis number leads to a further suppression of the growth rate, however to an increase spread of second-order flow statistics. Major focus and challenge of this work is to improve and advance the three-dimensional coupling of the one-dimensional ODT domains while keeping the solution correct. This entails major restructuring of the model. The turbulent reacting shear layer poses a physical challenge to the model because of its nature being a statistically stationary, non-decaying inhomogeneous and anisotropic turbulent flow. This challenge also requires additions to the eddy sampling procedure. Besides physical advancements, the LES-ODT code is also improved regarding its ability to use general cuboid geometries, an array structure that allows to apply boundary conditions based on ghost-cells and non-uniform structured meshes. The use of transverse grid-stretching requires the implementation of the ODT triplet map on a stretched grid. Further, advancing subroutine structure handling with global variables that enable serial code speed-up and parallelization with OpenMP are undertaken. Porting the code to a higher-level language, object oriented, finite-volume based CFD platform, like OpenFoam for example that allows more advanced array and parallelization features with graphics processing units (GPUs) as well as parallelization with the message passing interface (MPI) to simulate complex geometries is recommended for future work.
Large eddy simulation of a wing-body junction flow
NASA Astrophysics Data System (ADS)
Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca
2014-11-01
We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Dartevelle
2005-09-05
The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either amore » spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of thermodynamics and fulfills the necessary requirements for a well-posed initial-value problem. In the next manuscripts, we will further develop specific closures for multiphase RANS, LES, and hybrid-LES.« less
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
NASA Astrophysics Data System (ADS)
Cheng, W.; Samtaney, R.
2014-01-01
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.
Assessment of zero-equation SGS models for simulating indoor environment
NASA Astrophysics Data System (ADS)
Taghinia, Javad; Rahman, Md Mizanur; Tse, Tim K. T.
2016-12-01
The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier-Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman-Agarwal-Siikonen-Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.
Towards LES Models of Jets and Plumes
NASA Technical Reports Server (NTRS)
Webb, A. T.; Mansour, N. N.
2000-01-01
As pointed out by Rodi standard integral solutions for jets and plumes developed for discharge into infinite, quiescent ambient are difficult to extend to complex situations, particularly in the presence of boundaries such as the sea floor or ocean surface. In such cases the assumption of similarity breaks down and it is impossible to find a suitable entrainment coefficient. The models are also incapable of describing any but the most slowly varying unsteady motions. There is therefore a need for full time-dependent modeling of the flow field for which there are three main approaches: (1) Reynolds averaged numerical simulation (RANS), (2) large eddy simulation (LES), and (3) direct numerical simulation (DNS). Rodi applied RANS modeling to both jets and plumes with considerable success, the test being a match with experimental data for time-averaged velocity and temperature profiles as well as turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still relies on empirical constants, some eleven in the case of the buoyant jet, and so would not be applicable to a partly laminar plume, may have limited use in the presence of boundaries, and would also be unsuitable if one is after details of the unsteady component of the flow (the turbulent eddies). At the other end of the scale DNS modeling includes all motions down to the viscous scales. Boersma et al. have built such a model for the non-buoyant case which also compares well with measured data for mean and turbulent velocity components. The model demonstrates its versatility by application to a laminar flow case. As its name implies, DNS directly models the Navier-Stokes equations without recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re) the cost can be prohibitive - the number of required grid points scaling with Re(exp 9/4) and the number of time steps with Re(exp 3/4). The middle road is provided by LES whereby the Navier-Stokes equations are formally filtered with the filter chosen to only exclude the smallest turbulent motions. If successful, LES should provide much of the detail available to DNS but at more bearable cost. Fatica et al. in comparing LES with DNS for a low Reynolds number jet showed that the LES could simulate the temporally evolving behavior including growth of the jet thickness. It is the intention of this report to explore the application of an LES model to jets and plumes. As always, before tackling complex situations, the model must be tested for the simplest of cases and so we address only two, a non-buoyant axisymmetric jet issuing steadily from an orifice into a semi-infinite stationary environment and a buoyant jet in the same environment. The work is a continuation of Basu and Mansour.
Dust devil characteristics and associated dust entrainment based on large-eddy simulations
NASA Astrophysics Data System (ADS)
Klose, Martina; Kwidzinski, Nick; Shao, Yaping
2015-04-01
The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.
NASA Astrophysics Data System (ADS)
Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.
2016-07-01
Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional k-ɛ model cannot solve the transient flow in ICF properly. With k-ω model transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.
GPU Accelerated DG-FDF Large Eddy Simulator
NASA Astrophysics Data System (ADS)
Inkarbekov, Medet; Aitzhan, Aidyn; Sammak, Shervin; Givi, Peyman; Kaltayev, Aidarkhan
2017-11-01
A GPU accelerated simulator is developed and implemented for large eddy simulation (LES) of turbulent flows. The filtered density function (FDF) is utilized for modeling of the subgrid scale quantities. The filtered transport equations are solved via a discontinuous Galerkin (DG) and the FDF is simulated via particle based Lagrangian Monte-Carlo (MC) method. It is demonstrated that the GPUs simulations are of the order of 100 times faster than the CPU-based calculations. This brings LES of turbulent flows to a new level, facilitating efficient simulation of more complex problems. The work at Al-Faraby Kazakh National University is sponsored by MoES of RK under Grant 3298/GF-4.
NASA Astrophysics Data System (ADS)
O'Neill, J. J.; Cai, X.; Kinnersley, R.
2015-12-01
Large-eddy simulation (LES) provides a powerful tool for developing our understanding of atmospheric boundary layer (ABL) dynamics, which in turn can be used to improve the parameterisations of simpler operational models. However, LES modelling is not without its own limitations - most notably, the need to parameterise the effects of all subgrid-scale (SGS) turbulence. Here, we employ a stochastic backscatter SGS model, which explicitly handles the effects of both forward and reverse energy transfer to/from the subgrid scales, to simulate the neutrally stratified ABL as well as flow within an idealised urban street canyon. In both cases, a clear improvement in LES output statistics is observed when compared with the performance of a SGS model that handles forward energy transfer only. In the neutral ABL case, the near-surface velocity profile is brought significantly closer towards its expected logarithmic form. In the street canyon case, the strength of the primary vortex that forms within the canyon is more accurately reproduced when compared to wind tunnel measurements. Our results indicate that grid-scale backscatter plays an important role in both these modelled situations.
WRF nested large-eddy simulations of deep convection during SEAC4RS
NASA Astrophysics Data System (ADS)
Heath, Nicholas K.; Fuelberg, Henry E.; Tanelli, Simone; Turk, F. Joseph; Lawson, R. Paul; Woods, Sarah; Freeman, Sean
2017-04-01
Large-eddy simulations (LES) and observations are often combined to increase our understanding and improve the simulation of deep convection. This study evaluates a nested LES method that uses the Weather Research and Forecasting (WRF) model and, specifically, tests whether the nested LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection that occurred during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Mesoscale WRF output (1.35 km grid length) was used to drive a nested LES with 450 m grid spacing, which then drove a 150 m domain. Results reveal that the 450 m nested LES reasonably simulates observed reflectivity distributions and aircraft-observed in-cloud vertical velocities during the study period. However, when examining convective updrafts, reducing the grid spacing to 150 m worsened results. We find that the simulated updrafts in the 150 m run become too diluted by entrainment, thereby generating updrafts that are weaker than observed. Lastly, the 450 m simulation is combined with observations to study the processes forcing strong midlevel cloud/updraft edge downdrafts that were observed on 2 September. Results suggest that these strong downdrafts are forced by evaporative cooling due to mixing and by perturbation pressure forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested LES approach, with further development and evaluation, could potentially provide an effective method for studying deep convection in real-world cases.
2001-07-01
hardware - in - loop (HWL) simulation is also developed...Firings / Engine Tests Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model...Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model Model
Nested high-resolution large-eddy simulations in WRF to support wind power
NASA Astrophysics Data System (ADS)
Mirocha, J.; Kirkil, G.; Kosovic, B.; Lundquist, J. K.
2009-12-01
The WRF model’s grid nesting capability provides a potentially powerful framework for simulating flow over a wide range of scales. One such application is computation of realistic inflow boundary conditions for large eddy simulations (LES) by nesting LES domains within mesoscale domains. While nesting has been widely and successfully applied at GCM to mesoscale resolutions, the WRF model’s nesting behavior at the high-resolution (Δx < 1000m) end of the spectrum is less well understood. Nesting LES within msoscale domains can significantly improve turbulent flow prediction at the scale of a wind park, providing a basis for superior site characterization, or for improved simulation of turbulent inflows encountered by turbines. We investigate WRF’s grid nesting capability at high mesh resolutions using nested mesoscale and large-eddy simulations. We examine the spatial scales required for flow structures to equilibrate to the finer mesh as flow enters a nest, and how the process depends on several parameters, including grid resolution, turbulence subfilter stress models, relaxation zones at nest interfaces, flow velocities, surface roughnesses, terrain complexity and atmospheric stability. Guidance on appropriate domain sizes and turbulence models for LES in light of these results is provided This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-ABS-416482
Investigations of Flow Over a Hemisphere Using Numerical Simulations (Postprint)
2015-06-22
ranging from missile defense, remote sensing , and imaging . An important aspect of these applications is determining the effective beam-on-target...Stokes (URANS), detached eddy simulation (DES), and hybrid RANS/LES. The numerical results were compared with the experiment conducted at Auburn...turret. Using the DES and hybrid RANS/LES turbulence models, Loci-Chem was able to capture the unsteady flow structures, such as the shear layer
Integrating Occupational Characteristics into Human Performance Models: IPME Versus ISMAT Approach
2009-08-01
modélisation générique de la performance humaine appelé Integrated Performance Modelling Environment (IPME). Ce projet a permis d’explorer l’utilisation de la...groupes professionnels dans des modèles de performance humaine : l’approche IPME et l’approche ISMAT Par Christy Lorenzen; RDDC RC 2009-059; R & D...application de simulation d’événements discrets disponible sur le marché et servant à développer des modèles qui simulent la performance humaine et de
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacaze, Guilhem; Oefelein, Joseph
Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy hasmore » become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.« less
NASA Astrophysics Data System (ADS)
Matsui, H.; Buffett, B. A.
2017-12-01
The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.
NASA Astrophysics Data System (ADS)
Zasimova, Marina; Ivanov, Nikolay
2018-05-01
The goal of the study is to validate Large Eddy Simulation (LES) data on mixing ventilation in an isothermal room at conditions of benchmark experiments by Hurnik et al. (2015). The focus is on the accuracy of the mean and rms velocity fields prediction in the quasi-free jet zone of the room with 3D jet supplied from a sidewall rectangular diffuser. Calculations were carried out using the ANSYS Fluent 16.2 software with an algebraic wall-modeled LES subgrid-scale model. CFD results on the mean velocity vector are compared with the Laser Doppler Anemometry data. The difference between the mean velocity vector and the mean air speed in the jet zone, both LES-computed, is presented and discussed.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent
2012-01-01
Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows.
NASA Technical Reports Server (NTRS)
Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.
1996-01-01
Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.
A Hybrid Numerical Method for Turbulent Mixing Layers. Degree awarded by Case Western Reserve Univ.
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.
2001-01-01
A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modern day aircraft and also those of hypersonic vehicles currently under development. The method configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. Closure for the RANS equations was obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The wall-function approach enabled a continuous computational grid from the RANS regions to the LES region. The LES equations were closed using the Smagorinsky subgrid scale model. The hybrid RANS-LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Vortex shedding from the base region of a splitter plate separating the upstream flows was observed to eventually transition to turbulence. The location of the transition, however, was much further downstream than indicated by experiments. Actual LES calculations, performed in three spatial directions, also indicated vortex shedding, but the transition to turbulence was found to occur much closer to the beginning of the mixing section. which is in agreement with experimental observations. These calculations demonstrated that LES simulations must be performed in three dimensions. Comparisons of time-averaged axial velocities and turbulence intensities indicated reasonable agreement with experimental data.
Large Eddy Simulation of "turbulent-like" flow in intracranial aneurysms
NASA Astrophysics Data System (ADS)
Khan, Muhammad Owais; Chnafa, Christophe; Steinman, David A.; Mendez, Simon; Nicoud, Franck
2016-11-01
Hemodynamic forces are thought to contribute to pathogenesis and rupture of intracranial aneurysms (IA). Recent high-resolution patient-specific computational fluid dynamics (CFD) simulations have highlighted the presence of "turbulent-like" flow features, characterized by transient high-frequency flow instabilities. In-vitro studies have shown that such "turbulent-like" flows can lead to lack of endothelial cell orientation and cell depletion, and thus, may also have relevance to IA rupture risk assessment. From a modelling perspective, previous studies have relied on DNS to resolve the small-scale structures in these flows. While accurate, DNS is clinically infeasible due to high computational cost and long simulation times. In this study, we present the applicability of LES for IAs using a LES/blood flow dedicated solver (YALES2BIO) and compare against respective DNS. As a qualitative analysis, we compute time-averaged WSS and OSI maps, as well as, novel frequency-based WSS indices. As a quantitative analysis, we show the differences in POD eigenspectra for LES vs. DNS and wavelet analysis of intra-saccular velocity traces. Differences in two SGS models (i.e. Dynamic Smagorinsky vs. Sigma) are also compared against DNS, and computational gains of LES are discussed.
Bayesian source term estimation of atmospheric releases in urban areas using LES approach.
Xue, Fei; Kikumoto, Hideki; Li, Xiaofeng; Ooka, Ryozo
2018-05-05
The estimation of source information from limited measurements of a sensor network is a challenging inverse problem, which can be viewed as an assimilation process of the observed concentration data and the predicted concentration data. When dealing with releases in built-up areas, the predicted data are generally obtained by the Reynolds-averaged Navier-Stokes (RANS) equations, which yields building-resolving results; however, RANS-based models are outperformed by large-eddy simulation (LES) in the predictions of both airflow and dispersion. Therefore, it is important to explore the possibility of improving the estimation of the source parameters by using the LES approach. In this paper, a novel source term estimation method is proposed based on LES approach using Bayesian inference. The source-receptor relationship is obtained by solving the adjoint equations constructed using the time-averaged flow field simulated by the LES approach based on the gradient diffusion hypothesis. A wind tunnel experiment with a constant point source downwind of a single building model is used to evaluate the performance of the proposed method, which is compared with that of the existing method using a RANS model. The results show that the proposed method reduces the errors of source location and releasing strength by 77% and 28%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Bowen; Chow, Fotini
2012-11-01
This numerical study investigates the nighttime flow dynamics in a steep valley. The Owens Valley in California is highly complex, and represents a challenging terrain for large-eddy simulations (LES). To ensure a faithful representation of the nighttime atmospheric boundary layer (ABL), realistic external boundary conditions are provided through grid nesting. The model obtains initial and lateral boundary conditions from reanalysis data, and bottom boundary conditions from a land-surface model. We demonstrate the ability to extend a mesoscale model to LES resolutions through a systematic grid-nesting framework, achieving accurate simulations of the stable ABL over complex terrain. Nighttime cold-air flow was channeled through a gap on the valley sidewall. The resulting katabatic current induced a cross-valley flow. Directional shear against the down-valley flow in the lower layers of the valley led to breaking Kelvin-Helmholtz waves at the interface, which is captured only on the LES grid. Later that night, the flow transitioned from down-slope to down-valley near the western sidewall, leading to a transient warming episode. Simulation results are verified against field observations and reveal good spatial and temporal precision. Supported by NSF grant ATM-0645784.
Large Eddy Simulation of Engineering Flows: A Bill Reynolds Legacy.
NASA Astrophysics Data System (ADS)
Moin, Parviz
2004-11-01
The term, Large eddy simulation, LES, was coined by Bill Reynolds, thirty years ago when he and his colleagues pioneered the introduction of LES in the engineering community. Bill's legacy in LES features his insistence on having a proper mathematical definition of the large scale field independent of the numerical method used, and his vision for using numerical simulation output as data for research in turbulence physics and modeling, just as one would think of using experimental data. However, as an engineer, Bill was pre-dominantly interested in the predictive capability of computational fluid dynamics and in particular LES. In this talk I will present the state of the art in large eddy simulation of complex engineering flows. Most of this technology has been developed in the Department of Energy's ASCI Program at Stanford which was led by Bill in the last years of his distinguished career. At the core of this technology is a fully implicit non-dissipative LES code which uses unstructured grids with arbitrary elements. A hybrid Eulerian/ Largangian approach is used for multi-phase flows, and chemical reactions are introduced through dynamic equations for mixture fraction and reaction progress variable in conjunction with flamelet tables. The predictive capability of LES is demonstrated in several validation studies in flows with complex physics and complex geometry including flow in the combustor of a modern aircraft engine. LES in such a complex application is only possible through efficient utilization of modern parallel super-computers which was recognized and emphasized by Bill from the beginning. The presentation will include a brief mention of computer science efforts for efficient implementation of LES.
LES-ODT Simulations of Turbulent Reacting Shear Layers
NASA Astrophysics Data System (ADS)
Hoffie, Andreas; Echekki, Tarek
2012-11-01
Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.
Numerical modeling of the transitional boundary layer over a flat plate
NASA Astrophysics Data System (ADS)
Ivanov, Dimitry; Chorny, Andrei
2015-11-01
Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.
NASA Astrophysics Data System (ADS)
Hansen, Akio; Ament, Felix; Lammert, Andrea
2017-04-01
Large-eddy simulations have been performed since several decades, but due to computational limits most studies were restricted to small domains or idealised initial-/boundary conditions. Within the High definition clouds and precipitation for advancing climate prediction (HD(CP)2) project realistic weather forecasting like LES simulations were performed with the newly developed ICON LES model for several days. The domain covers central Europe with a horizontal resolution down to 156 m. The setup consists of more than 3 billion grid cells, by what one 3D dump requires roughly 500 GB. A newly developed online evaluation toolbox was created to check instantaneously for realistic model simulations. The toolbox automatically combines model results with observations and generates several quicklooks for various variables. So far temperature-/humidity profiles, cloud cover, integrated water vapour, precipitation and many more are included. All kind of observations like aircraft observations, soundings or precipitation radar networks are used. For each dataset, a specific module is created, which allows for an easy handling and enhancement of the toolbox. Most of the observations are automatically downloaded from the Standardized Atmospheric Measurement Database (SAMD). The evaluation tool should support scientists at monitoring computational costly model simulations as well as to give a first overview about model's performance. The structure of the toolbox as well as the SAMD database are presented. Furthermore, the toolbox was applied on an ICON LES sensitivity study, where example results are shown.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre; ...
2018-05-16
Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre
Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less
The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model
NASA Astrophysics Data System (ADS)
Wu, Jinshui; Wang, Zhenguo; Bai, Xuesong; Sun, Mingbo; Wang, Hongbo
2016-10-01
In order to describe partially premixed supersonic combustion numerically, G/Z flamelet model is developed and compared with finite rate model in hybrid RANS/LES simulation to study the strut-injection supersonic combustion flow field designed by the German Aerospace Center. A new temperature calculation method based on time-splitting method of total energy is introduced in G/Z flamelet model. Simulation results show that temperature predictions in partially premixed zone by G/Z flamelet model are more consistent with experiment than finite rate model. It is worth mentioning that low temperature reaction zone behind the strut is well reproduced. Other quantities such as average velocity and average velocity fluctuation obtained by developed G/Z flamelet model are also in good agreement with experiment. Besides, simulation results by G/Z flamelet also reveal the mechanism of partially premixed supersonic combustion by the analyses of the interaction between turbulent burning velocity and flow field.
Large-eddy simulations of a forced homogeneous isotropic turbulence with polymer additives
NASA Astrophysics Data System (ADS)
Wang, Lu; Cai, Wei-Hua; Li, Feng-Chen
2014-03-01
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.
NASA Astrophysics Data System (ADS)
Ryzhenkov, V.; Ivashchenko, V.; Vinuesa, R.; Mullyadzhanov, R.
2016-10-01
We use the open-source code nek5000 to assess the accuracy of high-order spectral element large-eddy simulations (LES) of a turbulent channel flow depending on the spatial resolution compared to the direct numerical simulation (DNS). The Reynolds number Re = 6800 is considered based on the bulk velocity and half-width of the channel. The filtered governing equations are closed with the dynamic Smagorinsky model for subgrid stresses and heat flux. The results show very good agreement between LES and DNS for time-averaged velocity and temperature profiles and their fluctuations. Even the coarse LES grid which contains around 30 times less points than the DNS one provided predictions of the friction velocity within 2.0% accuracy interval.
Large Eddy Simulations and Turbulence Modeling for Film Cooling
NASA Technical Reports Server (NTRS)
Acharya, Sumanta
1999-01-01
The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.
Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study
Chen, Jie; Gutmark, Ephraim
2013-01-01
Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907
NASA Astrophysics Data System (ADS)
Yuen, Anthony C. Y.; Yeoh, Guan H.; Timchenko, Victoria; Cheung, Sherman C. P.; Chan, Qing N.; Chen, Timothy
2017-09-01
An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1997-01-01
This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning
We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less
Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...
2016-10-27
We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less
A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics
NASA Astrophysics Data System (ADS)
McDermott, Randall; Weinschenk, Craig
2013-11-01
A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2005-01-01
Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.
Large-eddy simulation of turbulent cavitating flow in a micro channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Hickel, Stefan; Schmidt, Steffen J.
2014-08-15
Large-eddy simulations (LES) of cavitating flow of a Diesel-fuel-like fluid in a generic throttle geometry are presented. Two-phase regions are modeled by a parameter-free thermodynamic equilibrium mixture model, and compressibility of the liquid and the liquid-vapor mixture is taken into account. The Adaptive Local Deconvolution Method (ALDM), adapted for cavitating flows, is employed for discretizing the convective terms of the Navier-Stokes equations for the homogeneous mixture. ALDM is a finite-volume-based implicit LES approach that merges physically motivated turbulence modeling and numerical discretization. Validation of the numerical method is performed for a cavitating turbulent mixing layer. Comparisons with experimental data ofmore » the throttle flow at two different operating conditions are presented. The LES with the employed cavitation modeling predicts relevant flow and cavitation features accurately within the uncertainty range of the experiment. The turbulence structure of the flow is further analyzed with an emphasis on the interaction between cavitation and coherent motion, and on the statistically averaged-flow evolution.« less
Large eddy simulation of a boundary layer with concave streamwise curvature
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1993-01-01
One of the most exciting recent developments in the field of large eddy simulation (LES) is the dynamic subgrid-scale model. The dynamic model concept is a general procedure for evaluating model constants by sampling a band of the smallest scales actually resolved in the simulation. To date, the procedure has been used primarily in conjunction with the Smagorinsky model. The dynamic procedure has the advantage that the value of the model constant need not be specified a priori, but rather is calculated as a function of space and time as the simulation progresses. This feature makes the dynamic model especially attractive for flows in complex geometries where it is difficult or impossible to calibrate model constants. The dynamic model was highly successful in benchmark tests involving homogeneous and channel flows. Having demonstrated the potential of the dynamic model in these simple flows, the overall direction of the LES effort at CTR shifted toward an evaluation of the model in more complex situations. The current test cases are basic engineering-type flows for which Reynolds averaged approaches were unable to model the turbulence to within engineering accuracy. Flows currently under investigation include a backward-facing step, wake behind a circular cylinder, airfoil at high angles of attack, separated flow in a diffuser, and boundary layer over a concave surface. Preliminary results from the backward-facing step and cylinder wake simulations are encouraging. Progress on the LES of a boundary layer on a concave surface is discussed. Although the geometry of a concave wall is not very complex, the boundary layer that develops on its surface is difficult to model due to the presence of streamwise Taylor-Gortler vortices. These vortices arise as a result of a centrifugal instability associated with the convex curvature.
Large Eddy/Reynolds-Averaged Navier-Stokes Simulations of CUBRC Base Heating Experiments
NASA Technical Reports Server (NTRS)
Salazar, Giovanni; Edwards, Jack R.; Amar, Adam J.
2012-01-01
ven with great advances in computational techniques and computing power during recent decades, the modeling of unsteady separated flows, such as those encountered in the wake of a re-entry vehicle, continues to be one of the most challenging problems in CFD. Of most interest to the aerothermodynamics community is accurately predicting transient heating loads on the base of a blunt body, which would result in reduced uncertainties and safety margins when designing a re-entry vehicle. However, the prediction of heat transfer can vary widely depending on the turbulence model employed. Therefore, selecting a turbulence model which realistically captures as much of the flow physics as possible will result in improved results. Reynolds Averaged Navier Stokes (RANS) models have become increasingly popular due to their good performance with attached flows, and the relatively quick turnaround time to obtain results. However, RANS methods cannot accurately simulate unsteady separated wake flows, and running direct numerical simulation (DNS) on such complex flows is currently too computationally expensive. Large Eddy Simulation (LES) techniques allow for the computation of the large eddies, which contain most of the Reynolds stress, while modeling the smaller (subgrid) eddies. This results in models which are more computationally expensive than RANS methods, but not as prohibitive as DNS. By complimenting an LES approach with a RANS model, a hybrid LES/RANS method resolves the larger turbulent scales away from surfaces with LES, and switches to a RANS model inside boundary layers. As pointed out by Bertin et al., this type of hybrid approach has shown a lot of promise for predicting turbulent flows, but work is needed to verify that these models work well in hypersonic flows. The very limited amounts of flight and experimental data available presents an additional challenge for researchers. Recently, a joint study by NASA and CUBRC has focused on collecting heat transfer data on the backshell of a scaled model of the Orion Multi-Purpose Crew Vehicle (MPCV). Heat augmentation effects due to the presence of cavities and RCS jet firings were also investigated. The high quality data produced by this effort presents a new set of data which can be used to assess the performance of CFD methods. In this work, a hybrid LES/RANS model developed at North Carolina State University (NCSU) is used to simulate several runs from these experiments, and evaluate the performance of high fidelity methods as compared to more typical RANS models. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Wang; Wang, Haiou; Kuenne, Guido
This supplementary material complements the article and provides additional information to the chemical mechanism used in this work, boundary conditions for the LES con guration and table generation, comparisons of axial velocities, results from a LES/ nite-rate chemistry (FRC) approach, and results from the LES/DTF/SPF approach with a particular chemistry table that is generated using a single strained premixed amelet solution.
NASA Astrophysics Data System (ADS)
Binci, L.; Clementi, G.; D'Alessandro, V.; Montelpare, S.; Ricci, R.
2017-11-01
This work presents the study of the flow field past of dimpled laminar airfoil. Fluid dynamic behaviour of these elements has been not still deeply studied in the scientific community. Therefore Computational Fluid-Dynamics (CFD) is here used to analyze the flow field induced by dimples on the NACA 64-014A laminar airfoil at Re = 1.75 · 105 at α = 0°. Reynolds Averaged Navier-Stokes (RANS) equations and Large-Eddy Simulations (LES) were compared with wind tunnel measurements in order to evaluate their effectiveness in the modeling this kind of flow field. LES equations were solved using a specifically developed OpenFOAM solver adopting an L-stable Singly Diagonally Implicit Runge-Kutta (SDIRK) technique with an iterated PISO-like procedure for handling pressure-velocity coupling within each RK stage. Dynamic Smagorinsky subgrid model was employed. LES results provided good agreement with experimental data, while RANS equations closed with \\[k-ω -γ -\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] approach overstimates laminar separation bubble (LSB) extension of dimpled and un-dimpled configurations. Moreover, through skin friction coefficient analysis, we found a different representation of the turbulent zone between the numerical models; indeed, with RANS model LSB seems to be divided in two different parts, meanwhile LES model shows a LSB global reduction.
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz
2017-10-01
Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric
2015-12-01
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a detailed combustion model along with a dynamic structure LES model to evaluate its performance at engine-relevant conditions and understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a detailed combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of RANS predictions. The LES data suggests that the first ignition initiatesmore » in lean mixture and propagates to rich mixture, and the main ignition happens in rich mixture, preferable less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled and modulated by flame propagation. Soot predictions by LES present much better agreement with experiments compared to RANS both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 2 and 5 realizations can reach 99\\% of similarity to the target average of 16 realizations on the temperature and mixture fraction fields, respectively. However, more realizations are necessary for OH and soot mass fraction due to their high fluctuations.« less
Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo; ...
2017-08-28
Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo
Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less
A priori and a posteriori analysis of the flow around a rectangular cylinder
NASA Astrophysics Data System (ADS)
Cimarelli, A.; Leonforte, A.; Franciolini, M.; De Angelis, E.; Angeli, D.; Crivellini, A.
2017-11-01
The definition of a correct mesh resolution and modelling approach for the Large Eddy Simulation (LES) of the flow around a rectangular cylinder is recognized to be a rather elusive problem as shown by the large scatter of LES results present in the literature. In the present work, we aim at assessing this issue by performing an a priori analysis of Direct Numerical Simulation (DNS) data of the flow. This approach allows us to measure the ability of the LES field on reproducing the main flow features as a function of the resolution employed. Based on these results, we define a mesh resolution which maximize the opposite needs of reducing the computational costs and of adequately resolving the flow dynamics. The effectiveness of the resolution method proposed is then verified by means of an a posteriori analysis of actual LES data obtained by means of the implicit LES approach given by the numerical properties of the Discontinuous Galerkin spatial discretization technique. The present work represents a first step towards a best practice for LES of separating and reattaching flows.
LES of Swirling Reacting Flows via the Unstructured scalar-FDF Solver
NASA Astrophysics Data System (ADS)
Ansari, Naseem; Pisciuneri, Patrick; Strakey, Peter; Givi, Peyman
2011-11-01
Swirling flames pose a significant challenge for computational modeling due to the presence of recirculation regions and vortex shedding. In this work, results are presented of LES of two swirl stabilized non-premixed flames (SM1 and SM2) via the FDF methodology. These flames are part of the database for validation of turbulent-combustion models. The scalar-FDF is simulated on a domain discretized by unstructured meshes, and is coupled with a finite volume flow solver. In the SM1 flame (with a low swirl number) chemistry is described by the flamelet model based on the full GRI 2.11 mechanism. The SM2 flame (with a high swirl number) is simulated via a 46-step 17-species mechanism. The simulated results are assessed via comparison with experimental data.
NASA Astrophysics Data System (ADS)
Rai, R. K.; Berg, L. K.; Kosovic, B.; Mirocha, J. D.; Pekour, M. S.; Shaw, W. J.
2015-12-01
Resolving the finest turbulent scales present in the lower atmosphere using numerical simulations helps to study the processes that occur in the atmospheric boundary layer, such as the turbulent inflow condition to the wind plant and the generation of the wake behind wind turbines. This work employs several nested domains in the WRF-LES framework to simulate conditions in a convectively driven cloud free boundary layer at an instrumented field site in complex terrain. The innermost LES domain (30 m spatial resolution) receives the boundary forcing from two other coarser resolution LES outer domains, which in turn receive boundary conditions from two WRF-mesoscale domains. Wind and temperature records from sonic anemometers mounted at two vertical levels (30 m and 60 m) are compared with the LES results in term of first and second statistical moments as well as power spectra and distributions of wind velocity. For the two mostly used boundary layer parameterizations (MYNN and YSU) tested in the WRF mesoscale domains, the MYNN scheme shows slightly better agreement with the observations for some quantities, such as time averaged velocity and Turbulent Kinetic Energy (TKE). However, LES driven by WRF-mesoscale simulations using either parameterization have similar velocity spectra and distributions of velocity. For each component of the wind velocity, WRF-LES power spectra are found to be comparable to the spectra derived from the measured data (for the frequencies that are accurately represented by WRF-LES). Furthermore, the analysis of LES results shows a noticeable variability of the mean and variance even over small horizontal distances that would be considered sub-grid scale in mesoscale simulations. This observed statistical variability in space and time can be utilized to further analyze the turbulence quantities over a heterogeneous surface and to improve the turbulence parameterization in the mesoscale model.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
NASA Astrophysics Data System (ADS)
Watanabe, T.; Nagata, K.
2016-08-01
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.
NASA Astrophysics Data System (ADS)
Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca
2018-06-01
We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.
Yang, X I A; Meneveau, C
2017-04-13
In recent years, there has been growing interest in large-eddy simulation (LES) modelling of atmospheric boundary layers interacting with arrays of wind turbines on complex terrain. However, such terrain typically contains geometric features and roughness elements reaching down to small scales that typically cannot be resolved numerically. Thus subgrid-scale models for the unresolved features of the bottom roughness are needed for LES. Such knowledge is also required to model the effects of the ground surface 'underneath' a wind farm. Here we adapt a dynamic approach to determine subgrid-scale roughness parametrizations and apply it for the case of rough surfaces composed of cuboidal elements with broad size distributions, containing many scales. We first investigate the flow response to ground roughness of a few scales. LES with the dynamic roughness model which accounts for the drag of unresolved roughness is shown to provide resolution-independent results for the mean velocity distribution. Moreover, we develop an analytical roughness model that accounts for the sheltering effects of large-scale on small-scale roughness elements. Taking into account the shading effect, constraints from fundamental conservation laws, and assumptions of geometric self-similarity, the analytical roughness model is shown to provide analytical predictions that agree well with roughness parameters determined from LES.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Dinh, Thanh Vu; Cabon, Béatrice; Daoud, Nahla; Chilo, Jean
1992-11-01
This paper presents a simple and efficient method for calculating the propagating line parameters (actually, a microstrip one) and its magnetic fields, by simulating an original equivalent circuit with an electrical nodal simulator (SPICE). The losses in the normal conducting line (due to DC losses and to skin effect losses) and also in the superconducting one can be investigated. This allows us to integrate the electromagnetic solutions to the CAD softwares. Dans ce papier, une méthode simple et efficace pour calculer les paramètres de propagation d'une ligne microruban et les champs magnétiques qu'elle engendre est présentée; pour cela, nous simulons un circuit original équivalent à l'aide du simulateur nodal SPICE. Les pertes dans une ligne conductrice (pertes continues et par effet de peau) ainsi que dans une ligne supraconductrice peuvent être considérées. Les solutions électromagnétiques peuvent être intégrées dans les simulateurs de CAO.
Large eddy simulations of time-dependent and buoyancy-driven channel flows
NASA Technical Reports Server (NTRS)
Cabot, William H.
1993-01-01
The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.
Part 2 of a Computational Study of a Drop-Laden Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
2004-01-01
This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES) models. The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS). The DNS method and the database are described in the first report of this series, Part 1 of a Computational Study of a Drop-Laden Mixing Layer (NPO-30719), NASA Tech Briefs, Vol. 28, No.7 (July 2004), page 59. The LES equations, which are derived by applying a spatial filter to the DNS set, govern the evolution of the larger scales of the flow and can therefore be solved on a coarser grid. Consistent with the reduction in grid points, the DNS drops would be represented by fewer drops, called computational drops in the LES context. The LES equations contain terms that cannot be directly computed on the coarser grid and that must instead be modeled. Two types of models are necessary: (1) those for the filtered source terms representing the effects of drops on the filtered flow field and (2) those for the sub-grid scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. All of the filtered-sourceterm models that were developed were found to overestimate the filtered source terms. For modeling the SGS fluxes, constant-coefficient Smagorinsky, gradient, and scale-similarity models were assessed and calibrated on the DNS database. The Smagorinsky model correlated poorly with the SGS fluxes, whereas the gradient and scale-similarity models were well correlated with the SGS quantities that they represented.
Large-eddy simulation of a boundary layer with concave streamwise curvature
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1994-01-01
Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035
Gourdain, N.; Sicot, F.; Duchaine, F.; Gicquel, L.
2014-01-01
A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today. PMID:25024422
Prediction of Turbulent Temperature Fluctuations in Hot Jets
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2017-01-01
Large-eddy simulations (LES) were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver was used to compute the flow from a 2-inch round nozzle. Three different flow conditions of varying jet Mach numbers and temperature ratios were examined. The LES results showed that the temperature field behaves similar to the velocity field, but with a more rapidly spreading mixing layer. Predictions of mean, mu-bar(sub i), and fluctuating, mu'(sub i), velocities were compared to particle image velocimetry data. Predictions of mean, T-bar, and fluctuating, T', temperature were compared to data obtained using Rayleigh scattering and Raman spectroscopy. Very good agreement with experimental data was demonstrated for the mean and fluctuating velocities. The LES correctly predicts the behavior of the turbulent temperature field, but over-predicts the levels of the fluctuations. The turbulent heat flux was examined and compared to Reynolds-averaged Navier-Stokes (RANS) results. The LES and RANS simulations produced very similar results for the radial heat flux. However, the axial heat flux obtained from the LES differed significantly from the RANS result in both structure and magnitude, indicating that the gradient diffusion type model in RANS is inadequate. Finally, the LES data was used to compute the turbulent Prandtl number and verify that a constant value of 0.7 used in the RANS models is a reasonable assumption.
NASA Astrophysics Data System (ADS)
Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren
2017-09-01
An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.
PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa
2006-01-01
This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, S; Longman, D. E.; Luo, Z
2012-01-01
Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well asmore » Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.« less
NASA Astrophysics Data System (ADS)
Chen, Jincai; Jin, Guodong; Zhang, Jian
2016-03-01
The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.
The influence of geometry on jet plume development
NASA Astrophysics Data System (ADS)
Xia, H.; Tucker, P. G.; Eastwood, S.; Mahak, M.
2012-07-01
Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations.
NASA Astrophysics Data System (ADS)
Aboutajeddine, Ahmed
Les modeles micromecaniques de transition d'echelles qui permettent de determiner les proprietes effectives des materiaux heterogenes a partir de la microstructure sont consideres dans ce travail. L'objectif est la prise en compte de la presence d'une interphase entre la matrice et le renforcement dans les modeles micromecaniques classiques, de meme que la reconsideration des approximations de base de ces modeles, afin de traiter les materiaux multiphasiques. Un nouveau modele micromecanique est alors propose pour tenir compte de la presence d'une interphase elastique mince lors de la determination des proprietes effectives. Ce modele a ete construit grace a l'apport de l'equation integrale, des operateurs interfaciaux de Hill et de la methode de Mori-Tanaka. Les expressions obtenues pour les modules globaux et les champs dans l'enrobage sont de nature analytique. L'approximation de base de ce modele est amelioree par la suite dans un nouveau modele qui s'interesse aux inclusions enrobees avec un enrobage mince ou epais. La resolution utilisee s'appuie sur une double homogeneisation realisee au niveau de l'inclusion enrobee et du materiau. Cette nouvelle demarche, permettra d'apprehender completement les implications des approximations de la modelisation. Les resultats obtenus sont exploites par la suite dans la solution de l'assemblage de Hashin. Ainsi, plusieurs modeles micromecaniques classiques d'origines differentes se voient unifier et rattacher, dans ce travail, a la representation geometrique de Hashin. En plus de pouvoir apprecier completement la pertinence de l'approximation de chaque modele dans cette vision unique, l'extension correcte de ces modeles aux materiaux multiphasiques est rendue possible. Plusieurs modeles analytiques et explicites sont alors proposee suivant des solutions de differents ordres de l'assemblage de Hashin. L'un des modeles explicite apparait comme une correction directe du modele de Mori-Tanaka, dans les cas ou celui ci echoue a donner de bons resultats. Finalement, ce modele de Mori-Tanaka corrige est utilise avec les operateurs de Hill pour construire un modele de transition d'echelle pour les materiaux ayant une interphase elastoplastique. La loi de comportement effective trouvee est de nature incrementale et elle est conjuguee a la relation de la plasticite de l'interphase. Des simulations d'essais mecaniques pour plusieurs proprietes de l'interphase plastique a permis de dresser des profils de l'enrobage octroyant un meilleur comportement au materiau.
Mihaescu, Mihai; Murugappan, Shanmugam; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim
2008-07-19
Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.
NASA Astrophysics Data System (ADS)
Syvitski, J. P.; Arango, H.; Harris, C. K.; Meiburg, E. H.; Jenkins, C. J.; Auad, G.; Hutton, E.; Kniskern, T. A.; Radhakrishnan, S.
2016-12-01
A loosely coupled numerical workflow is developed to address land-sea pathways for sediment routing from terrestrial and coastal sources, across the continental shelf and ultimately down the continental slope canyon system of the northern Gulf of Mexico (GOM). Model simulations represent a range of environmental conditions that might lead to the generation of turbidity-currents. The workflow comprises: 1) A simulator for the water and sediment discharged from rivers into the GOM with WMBsedv2 with calibration using USGS and USACE gauged river data; 2) Domain grids and bathymetry (ETOPO2) for the ocean models and realistic seabed sediment texture grids (dbSEABED) for the sediment transport models; 3) A spectral wave action simulator (10 km resolution) (WaveWatch III) driven by GFDL - GFS winds; 4) A simulator for ocean dynamics (ROMS) forced with ECMWF ERA winds; 5) A simulator for seafloor resuspension and transport (CSTMS); 6) Simulators (HurriSlip) of seafloor failure and flow ignition locations for boundary input to a turbidity current model; and 7) A RANS turbidity current model (TURBINS) to route sediment flows down GOM canyons, providing estimates of bottom shear stresses. TURBINS was developed first as a DNS model and then converted to an LES model wherein a dynamic turbulence closure scheme was employed. Like most DNS to LES model comparisons (these being done by the UCSB team), turbulence scaling allowed for higher Re applications but were found still not capable of simulating field scale (GOM continental canyons) environments. The LES model was next converted to a non-hydrostatic RANS model capable of field scale applications but only with a daisy-chain approach to multiple model runs along the simulated canyon floor. These model adaptations allowed the workflow to be tested for the year 1-Oct-2007 to 30-Sep-2008 that included two domain Hurricanes (Ike and Gustav). The RANS-TURBINS employed further boundary simplifications on both sediment erosion and deposition in line with the ocean model ROMS-CSTMS.
Large eddy simulation applications in gas turbines.
Menzies, Kevin
2009-07-28
The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.
Large-Eddy Simulation of Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Pruett, C. David; Sochacki, James S.
1999-01-01
This report summarizes work accomplished under a one-year NASA grant from NASA Langley Research Center (LaRC). The effort culminates three years of NASA-supported research under three consecutive one-year grants. The period of support was April 6, 1998, through April 5, 1999. By request, the grant period was extended at no-cost until October 6, 1999. Its predecessors have been directed toward adapting the numerical tool of large-eddy simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of subgrid-scale (SGS) models that incorporate time-domain filters.
Sampling Versus Filtering in Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Debliquy, O.; Knaepen, B.; Carati, D.; Wray, A. A.
2004-01-01
A LES formalism in which the filter operator is replaced by a sampling operator is proposed. The unknown quantities that appear in the LES equations originate only from inadequate resolution (Discretization errors). The resulting viewpoint seems to make a link between finite difference approaches and finite element methods. Sampling operators are shown to commute with nonlinearities and to be purely projective. Moreover, their use allows an unambiguous definition of the LES numerical grid. The price to pay is that sampling never commutes with spatial derivatives and the commutation errors must be modeled. It is shown that models for the discretization errors may be treated using the dynamic procedure. Preliminary results, using the Smagorinsky model, are very encouraging.
Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique
NASA Astrophysics Data System (ADS)
Plengsa-ard, C.; Kaewbumrung, M.
2018-01-01
Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.
How do rigid-lid assumption affect LES simulation results at high Reynolds flows?
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Farhadzadeh, Ali; SBU Collaboration
2017-11-01
This research is motivated by the work of Kara et al., JHE, 2015. They employed LES to model flow around a model of abutment at a Re number of 27,000. They showed that first-order turbulence characteristics obtained by rigid-lid (RL) assumption compares fairly well with those of level-set (LS) method. Concerning the second-order statistics, however, their simulation results showed a significant dependence on the method used to describe the free surface. This finding can have important implications for open channel flow modeling. The Reynolds number for typical open channel flows, however, could be much larger than that of Kara et al.'s test case. Herein, we replicate the reported study by augmenting the geometric and hydraulic scales to reach a Re number of one order of magnitude larger ( 200,000). The Virtual Flow Simulator (VFS-Geophysics) model in its LES mode is used to simulate the test case using both RL and LS methods. The computational results are validated using measured flow and free-surface data from our laboratory experiments. Our goal is to investigate the effects of RL assumption on both first-order and second order statistics at high Reynolds numbers that occur in natural waterways. Acknowledgment: Computational resources are provided by the Center of Excellence in Wireless & Information Technology (CEWIT) of Stony Brook University.
NASA Astrophysics Data System (ADS)
Afshar, Ali
An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.
Numerical simulation of sloshing with large deforming free surface by MPS-LES method
NASA Astrophysics Data System (ADS)
Pan, Xu-jie; Zhang, Huai-xin; Sun, Xue-yao
2012-12-01
Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.
Results of the GABLS3 diurnal-cycle benchmark for wind energy applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigo, J. Sanz; Allaerts, D.; Avila, M.
We present results of the GABLS3 model intercomparison benchmark revisited for wind energy applications. The case consists of a diurnal cycle, measured at the 200-m tall Cabauw tower in the Netherlands, including a nocturnal low-level jet. The benchmark includes a sensitivity analysis of WRF simulations using two input meteorological databases and five planetary boundary-layer schemes. A reference set of mesoscale tendencies is used to drive microscale simulations using RANS k-ϵ and LES turbulence models. The validation is based on rotor-based quantities of interest. Cycle-integrated mean absolute errors are used to quantify model performance. The results of the benchmark are usedmore » to discuss input uncertainties from mesoscale modelling, different meso-micro coupling strategies (online vs offline) and consistency between RANS and LES codes when dealing with boundary-layer mean flow quantities. Altogether, all the microscale simulations produce a consistent coupling with mesoscale forcings.« less
Results of the GABLS3 diurnal-cycle benchmark for wind energy applications
Rodrigo, J. Sanz; Allaerts, D.; Avila, M.; ...
2017-06-13
We present results of the GABLS3 model intercomparison benchmark revisited for wind energy applications. The case consists of a diurnal cycle, measured at the 200-m tall Cabauw tower in the Netherlands, including a nocturnal low-level jet. The benchmark includes a sensitivity analysis of WRF simulations using two input meteorological databases and five planetary boundary-layer schemes. A reference set of mesoscale tendencies is used to drive microscale simulations using RANS k-ϵ and LES turbulence models. The validation is based on rotor-based quantities of interest. Cycle-integrated mean absolute errors are used to quantify model performance. The results of the benchmark are usedmore » to discuss input uncertainties from mesoscale modelling, different meso-micro coupling strategies (online vs offline) and consistency between RANS and LES codes when dealing with boundary-layer mean flow quantities. Altogether, all the microscale simulations produce a consistent coupling with mesoscale forcings.« less
NASA Astrophysics Data System (ADS)
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2017-11-01
Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.
Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation
NASA Technical Reports Server (NTRS)
He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.
A locally p-adaptive approach for Large Eddy Simulation of compressible flows in a DG framework
NASA Astrophysics Data System (ADS)
Tugnoli, Matteo; Abbà, Antonella; Bonaventura, Luca; Restelli, Marco
2017-11-01
We investigate the possibility of reducing the computational burden of LES models by employing local polynomial degree adaptivity in the framework of a high-order DG method. A novel degree adaptation technique especially featured to be effective for LES applications is proposed and its effectiveness is compared to that of other criteria already employed in the literature. The resulting locally adaptive approach allows to achieve significant reductions in computational cost of representative LES computations.
NASA Astrophysics Data System (ADS)
Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.
2017-12-01
Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.
Parallel Simulation of Unsteady Turbulent Flames
NASA Technical Reports Server (NTRS)
Menon, Suresh
1996-01-01
Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics within each LES grid cell. Finite-rate kinetics can be included without any closure and this approach actually provides a means to predict the turbulent rates and the turbulent flame speed. The subgrid combustion model requires resolution of the local time scales associated with small-scale mixing, molecular diffusion and chemical kinetics and, therefore, within each grid cell, a significant amount of computations must be carried out before the large-scale (LES resolved) effects are incorporated. Therefore, this approach is uniquely suited for parallel processing and has been implemented on various systems such as: Intel Paragon, IBM SP-2, Cray T3D and SGI Power Challenge (PC) using the system independent Message Passing Interface (MPI) compiler. In this paper, timing data on these machines is reported along with some characteristic results.
Large eddy simulation of forest canopy flow for wildland fire modeling
Eric Mueller; William Mell; Albert Simeoni
2014-01-01
Large eddy simulation (LES) based computational fluid dynamics (CFD) simulators have obtained increasing attention in the wildland fire research community, as these tools allow the inclusion of important driving physics. However, due to the complexity of the models, individual aspects must be isolated and tested rigorously to ensure meaningful results. As wind is a...
Large Eddy Simulation of a Supercritical Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi
2017-11-01
Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.
NASA Astrophysics Data System (ADS)
Verma, Siddhartha; Blanquart, Guillaume; P. K. Yeung Collaboration
2011-11-01
Accurate simulation of high Schmidt number scalar transport in turbulent flows is essential to studying pollutant dispersion, weather, and several oceanic phenomena. Batchelor's theory governs scalar transport in such flows, but requires further validation at high Schmidt and high Reynolds numbers. To this end, we use a new approach with the velocity field fully resolved, but the scalar field only partially resolved. The grid used is fine enough to resolve scales up to the viscous-convective subrange where the decaying slope of the scalar spectrum becomes constant. This places the cutoff wavenumber between the Kolmogorov scale and the Batchelor scale. The subgrid scale terms, which affect transport at the supergrid scales, are modeled under the assumption that velocity fluctuations are negligible beyond this cutoff wavenumber. To ascertain the validity of this technique, we performed a-priori testing on existing DNS data. This Velocity-Resolved LES (VR-LES) technique significantly reduces the computational cost of turbulent simulations of high Schmidt number scalars, and yet provides valuable information of the scalar spectrum in the viscous-convective subrange.
NASA Astrophysics Data System (ADS)
Vogelmann, A. M.; Zhang, D.; Kollias, P.; Endo, S.; Lamer, K.; Gustafson, W. I., Jr.; Romps, D. M.
2017-12-01
Continental boundary layer clouds are important to simulations of weather and climate because of their impact on surface budgets and vertical transports of energy and moisture; however, model-parameterized boundary layer clouds do not agree well with observations in part because small-scale turbulence and convection are not properly represented. To advance parameterization development and evaluation, observational constraints are needed on critical parameters such as cloud-base mass flux and its relationship to cloud cover and the sub-cloud boundary layer structure including vertical velocity variance and skewness. In this study, these constraints are derived from Doppler lidar observations and ensemble large-eddy simulations (LES) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Facility Southern Great Plains (SGP) site in Oklahoma. The Doppler lidar analysis will extend the single-site, long-term analysis of Lamer and Kollias [2015] and augment this information with the short-term but unique 1-2 year period since five Doppler lidars began operation at the SGP, providing critical information on regional variability. These observations will be compared to the statistics obtained from ensemble, routine LES conducted by the LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso). An Observation System Simulation Experiment (OSSE) will be presented that uses the LASSO LES fields to determine criteria for which relationships from Doppler lidar observations are adequately sampled to yield convergence. Any systematic differences between the observed and simulated relationships will be examined to understand factors contributing to the differences. Lamer, K., and P. Kollias (2015), Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover, Geophys. Res. Lett., 42, 8693-8701, doi:10.1002/2015GL064534
Detached-Eddy Simulation Based on the v2-f Model
NASA Technical Reports Server (NTRS)
Jee, Sol Keun; Shariff, Karim
2012-01-01
Detached eddy simulation (DES) based on the v2-f RANS model is proposed. This RANS model incorporates the anisotropy of near-wall turbulence which is absent in other RANS models commonly used in the DES community. In LES mode, the proposed DES formulation reduces to a transport equation for the subgrid-scale kinetic energy. The constant, CDES, required by this model was calibrated by simulating isotropic turbulence. In the final paper, DES simulations of canonical separated flows will be presented.
Implementation of an Online Chemistry Model to a Large Eddy Simulation Model (PALM-4U0
NASA Astrophysics Data System (ADS)
Mauder, M.; Khan, B.; Forkel, R.; Banzhaf, S.; Russo, E. E.; Sühring, M.; Kanani-Sühring, F.; Raasch, S.; Ketelsen, K.
2017-12-01
Large Eddy Simulation (LES) models permit to resolve relevant scales of turbulent motion, so that these models can capture the inherent unsteadiness of atmospheric turbulence. However, LES models are so far hardly applied for urban air quality studies, in particular chemical transformation of pollutants. In this context, BMBF (Bundesministerium für Bildung und Forschung) funded a joint project, MOSAIK (Modellbasierte Stadtplanung und Anwendung im Klimawandel / Model-based city planning and application in climate change) with the main goal to develop a new highly efficient urban climate model (UCM) that also includes atmospheric chemical processes. The state-of-the-art LES model PALM; Maronga et al, 2015, Geosci. Model Dev., 8, doi:10.5194/gmd-8-2515-2015), has been used as a core model for the new UCM named as PALM-4U. For the gas phase chemistry, a fully coupled 'online' chemistry model has been implemented into PALM. The latest version of the Kinetic PreProcessor (KPP) Version 2.3, has been utilized for the numerical integration of chemical species. Due to the high computational demands of the LES model, compromises in the description of chemical processes are required. Therefore, a reduced chemistry mechanism, which includes only major pollutants namely O3, NO, NO2, CO, a highly simplified VOC chemistry and a small number of products have been implemented. This work shows preliminary results of the advection, and chemical transformation of atmospheric pollutants. Non-cyclic boundaries have been used for inflow and outflow in east-west directions while periodic boundary conditions have been implemented to the south-north lateral boundaries. For practical applications, our approach is to go beyond the simulation of single street canyons to chemical transformation, advection and deposition of air pollutants in the larger urban canopy. Tests of chemistry schemes and initial studies of chemistry-turbulence, transport and transformations are presented.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.
1991-01-01
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.
Studies of the flow and turbulence fields in a turbulent pulsed jet flame using LES/PDF
NASA Astrophysics Data System (ADS)
Zhang, Pei; Masri, Assaad R.; Wang, Haifeng
2017-09-01
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.
Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests.
Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan
2010-05-07
Three different cyclist positions were evaluated with Computational Fluid Dynamics (CFD) and wind-tunnel experiments were used to provide reliable data to evaluate the accuracy of the CFD simulations. Specific features of this study are: (1) both steady Reynolds-averaged Navier-Stokes (RANS) and unsteady flow modelling, with more advanced turbulence modelling techniques (Large-Eddy Simulation - LES), were evaluated; (2) the boundary layer on the cyclist's surface was resolved entirely with low-Reynolds number modelling, instead of modelling it with wall functions; (3) apart from drag measurements, also surface pressure measurements on the cyclist's body were performed in the wind-tunnel experiment, which provided the basis for a more detailed evaluation of the predicted flow field by CFD. The results show that the simulated and measured drag areas differed about 11% (RANS) and 7% (LES), which is considered to be a close agreement in CFD studies. A fair agreement with wind-tunnel data was obtained for the predicted surface pressures, especially with LES. Despite the higher accuracy of LES, its much higher computational cost could make RANS more attractive for practical use in some situations. CFD is found to be a valuable tool to evaluate the drag of different cyclist positions and to investigate the influence of small adjustments in the cyclist's position. A strong advantage of CFD is that detailed flow field information is obtained, which cannot easily be obtained from wind-tunnel tests. This detailed information allows more insight in the causes of the drag force and provides better guidance for position improvements. Copyright 2010 Elsevier Ltd. All rights reserved.
WRF nested large-eddy simulations of deep convection during SEAC4RS
NASA Astrophysics Data System (ADS)
Heath, Nicholas Kyle
Deep convection is an important component of atmospheric circulations that affects many aspects of weather and climate. Therefore, improved understanding and realistic simulations of deep convection are critical to both operational and climate forecasts. Large-eddy simulations (LESs) often are used with observations to enhance understanding of convective processes. This study develops and evaluates a nested-LES method using the Weather Research and Forecasting (WRF) model. Our goal is to evaluate the extent to which the WRF nested-LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection having a robust set of ground and airborne data available for evaluation. A three domain mesoscale WRF simulation is run first. Then, the finest mesoscale output (1.35 km grid length) is used to separately drive nested-LES domains with grid lengths of 450 and 150 m. Results reveal that the nested-LES approach reasonably simulates a broad spectrum of observations, from reflectivity distributions to vertical velocity profiles, during the study period. However, reducing the grid spacing does not necessarily improve results for our case, with the 450 m simulation outperforming the 150 m version. We find that simulated updrafts in the 150 m simulation are too narrow to overcome the negative effects of entrainment, thereby generating convection that is weaker than observed. Increasing the sub-grid mixing length in the 150 m simulation leads to deeper, more realistic convection, but comes at the expense of delaying the onset of the convection. Overall, results show that both the 450 m and 150 m simulations are influenced considerably by the choice of sub-grid mixing length used in the LES turbulence closure. Finally, the simulations and observations are used to study the processes forcing strong midlevel cloud-edge downdrafts that were observed on 2 September. Results suggest that these downdrafts are forced by evaporative cooling due to mixing near cloud edge and by vertical perturbation pressure gradient forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested-LES approach provides an effective method for studying deep convection for our real-world case. The method can be used to provide insight into physical processes that are important to understanding observations. The WRF nested-LES approach could be adapted for other case studies in which high-resolution observations are available for validation.
Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency
NASA Astrophysics Data System (ADS)
Aikens, Kurt; Craft, Kyle; Redman, Andrew
2015-11-01
The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
A Nonlinear Interactions Approximation Model for Large-Eddy Simulation
NASA Astrophysics Data System (ADS)
Haliloglu, Mehmet U.; Akhavan, Rayhaneh
2003-11-01
A new approach to LES modelling is proposed based on direct approximation of the nonlinear terms \\overlineu_iuj in the filtered Navier-Stokes equations, instead of the subgrid-scale stress, τ_ij. The proposed model, which we call the Nonlinear Interactions Approximation (NIA) model, uses graded filters and deconvolution to parameterize the local interactions across the LES cutoff, and a Smagorinsky eddy viscosity term to parameterize the distant interactions. A dynamic procedure is used to determine the unknown eddy viscosity coefficient, rendering the model free of adjustable parameters. The proposed NIA model has been applied to LES of turbulent channel flows at Re_τ ≈ 210 and Re_τ ≈ 570. The results show good agreement with DNS not only for the mean and resolved second-order turbulence statistics but also for the full (resolved plus subgrid) Reynolds stress and turbulence intensities.
NASA Astrophysics Data System (ADS)
Berselli, Luigi C.; Spirito, Stefano
2018-06-01
Obtaining reliable numerical simulations of turbulent fluids is a challenging problem in computational fluid mechanics. The large eddy simulation (LES) models are efficient tools to approximate turbulent fluids, and an important step in the validation of these models is the ability to reproduce relevant properties of the flow. In this paper, we consider a fully discrete approximation of the Navier-Stokes-Voigt model by an implicit Euler algorithm (with respect to the time variable) and a Fourier-Galerkin method (in the space variables). We prove the convergence to weak solutions of the incompressible Navier-Stokes equations satisfying the natural local entropy condition, hence selecting the so-called physically relevant solutions.
Turbulence and sediment transport over sand dunes and ripples
NASA Astrophysics Data System (ADS)
Bennis, A.; Le Bot, S.; lafite, R.; Bonneton, P.; Ardhuin, F.
2013-12-01
Several bedforms are present near to the surfzone of natural beaches. Dunes and ripples are frequently observed. Understanding the turbulence over these forms is essential for the sediment transport. The turbulent flow and the suspended sand particles interact with each other. At the moment, the modelling strategy for turbulence is still a challenge. According to the spatial scales, some different methods to model the turbulence are employed, in particular the RANS (Reynolds Averaged Navier-Stokes) and the LES (Large Eddy Simulation). A hybrid method combining both RANS and LES is set up here. We have adapted this method, initially developed for atmospheric flow, to the oceanic flow. This new method is implemented inside the 3D hydrodynamic model, MARS 3D, which is forced by waves. LES is currently the best way to simulate turbulent flow but its higher cost prevents it from being used for large scale applications. So, here we use RANS near the bottom while LES is set elsewhere. It allows us minimize the computational cost and ensure a better accuracy of the results than with a fully RANS model. In the case of megaripples, the validation step was performed with two sets of field data (Sandy Duck'97 and Forsoms'13) but also with the data from Dune2D model which uses only RANS for turbulence. The main findings are: a) the vertical profiles of the velocity are similar throughout the data b) the turbulent kinetic energy, which was underestimated by Dune2D, is in line with the observations c) the concentration of the suspended sediment is simulated with a better accuracy than with Dune2D but this remains lower than the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scalemore » horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen; ...
2017-09-19
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
NASA Astrophysics Data System (ADS)
Miller, D. J.; Zhang, Z.; Ackerman, A. S.; Platnick, S. E.; Cornet, C.
2016-12-01
A remote sensing cloud retrieval simulator, created by coupling an LES cloud model with vector radiative transfer (RT) models is the ideal framework for assessing cloud remote sensing techniques. This simulator serves as a tool for understanding bi-spectral and polarimetric retrievals by comparing them directly to LES cloud properties (retrieval closure comparison) and for comparing the retrieval techniques to one another. Our simulator utilizes the DHARMA LES [Ackerman et al., 2004] with cloud properties based on marine boundary layer (MBL) clouds observed during the DYCOMS-II and ATEX field campaigns. The cloud reflectances are produced by the vectorized RT models based on polarized doubling adding and monte carlo techniques (PDA, MCPOL). Retrievals are performed utilizing techniques as similar as possible to those implemented on their corresponding well known instruments; polarimetric retrievals are based on techniques implemented for polarimeters (POLDER, AirMSPI, and RSP) and bi-spectral retrievals are performed using the Nakajima-King LUT method utilized on a number of spectral instruments (MODIS and VIIRS). Retrieval comparisons focus on cloud droplet effective radius (re), effective variance (ve), and cloud optical thickness (τ). This work explores the sensitivities of these two retrieval techniques to various observation limitations, such as spatial resolution/cloud inhomogeneity, impact of 3D radiative effects, and angular resolution requirements. With future remote sensing missions like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important to understand how these retrieval techniques compare to one another. The cloud retrieval simulator we've developed allows us to probe these important questions in a realistically relevant test bed.
LES ARM Symbiotic Simulation and Observation (LASSO) Implementation Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson Jr., WI; Vogelmann, AM
2015-09-01
This document illustrates the design of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) workflow to provide a routine, high-resolution modeling capability to augment the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s high-density observations. LASSO will create a powerful new capability for furthering ARM’s mission to advance understanding of cloud, radiation, aerosol, and land-surface processes. The combined observational and modeling elements will enable a new level of scientific inquiry by connecting processes and context to observations and providing needed statistics for details that cannot be measured. The result will be improved process understandingmore » that facilitates concomitant improvements in climate model parameterizations. The initial LASSO implementation will be for ARM’s Southern Great Plains site in Oklahoma and will focus on shallow convection, which is poorly simulated by climate models due in part to clouds’ typically small spatial scale compared to model grid spacing, and because the convection involves complicated interactions of microphysical and boundary layer processes.« less
Evaluation of a vortex-based subgrid stress model using DNS databases
NASA Technical Reports Server (NTRS)
Misra, Ashish; Lund, Thomas S.
1996-01-01
The performance of a SubGrid Stress (SGS) model for Large-Eddy Simulation (LES) developed by Misra k Pullin (1996) is studied for forced and decaying isotropic turbulence on a 32(exp 3) grid. The physical viability of the model assumptions are tested using DNS databases. The results from LES of forced turbulence at Taylor Reynolds number R(sub (lambda)) approximately equals 90 are compared with filtered DNS fields. Probability density functions (pdfs) of the subgrid energy transfer, total dissipation, and the stretch of the subgrid vorticity by the resolved velocity-gradient tensor show reasonable agreement with the DNS data. The model is also tested in LES of decaying isotropic turbulence where it correctly predicts the decay rate and energy spectra measured by Comte-Bellot & Corrsin (1971).
NASA Astrophysics Data System (ADS)
Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.
2017-12-01
At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.
NASA Astrophysics Data System (ADS)
Heinze, Rieke; Moseley, Christopher; Böske, Lennart Nils; Muppa, Shravan Kumar; Maurer, Vera; Raasch, Siegfried; Stevens, Bjorn
2017-06-01
Large-eddy simulations (LESs) of a multi-week period during the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE) conducted in Germany are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two LES models are used in a semi-idealized setup through forcing with mesoscale model output to account for the synoptic-scale conditions. Evaluation is performed based on the HOPE observations. The mean boundary layer characteristics like the boundary layer depth are in a principal agreement with observations. Simulating shallow-cumulus layers in agreement with the measurements poses a challenge for both LES models. Variance profiles agree satisfactorily with lidar measurements. The results depend on how the forcing data stemming from mesoscale model output are constructed. The mean boundary layer characteristics become less sensitive if the averaging domain for the forcing is large enough to filter out mesoscale fluctuations.
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1994-01-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence (e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anistropy, and stable stratification (gravity waves). In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation of these models into the presently available LES codes should begin with the SM, to be followed by the AM and finally by the CM.
NASA Astrophysics Data System (ADS)
Canuto, V. M.
1994-06-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 108 for the planetary boundary layer and Re approximately equals 1014 for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re9/4 exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence (e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anistropy, and stable stratification (gravity waves). In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation of these models into the presently available LES codes should begin with the SM, to be followed by the AM and finally by the CM.
Multi-scale Modeling of Arctic Clouds
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Roesler, E. L.; Dexheimer, D.
2017-12-01
The presence and properties of clouds are critically important to the radiative budget in the Arctic, but clouds are notoriously difficult to represent in global climate models (GCMs). The challenge stems partly from a disconnect in the scales at which these models are formulated and the scale of the physical processes important to the formation of clouds (e.g., convection and turbulence). Because of this, these processes are parameterized in large-scale models. Over the past decades, new approaches have been explored in which a cloud system resolving model (CSRM), or in the extreme a large eddy simulation (LES), is embedded into each gridcell of a traditional GCM to replace the cloud and convective parameterizations to explicitly simulate more of these important processes. This approach is attractive in that it allows for more explicit simulation of small-scale processes while also allowing for interaction between the small and large-scale processes. The goal of this study is to quantify the performance of this framework in simulating Arctic clouds relative to a traditional global model, and to explore the limitations of such a framework using coordinated high-resolution (eddy-resolving) simulations. Simulations from the global model are compared with satellite retrievals of cloud fraction partioned by cloud phase from CALIPSO, and limited-area LES simulations are compared with ground-based and tethered-balloon measurements from the ARM Barrow and Oliktok Point measurement facilities.
Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; ...
2015-06-19
A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less
Sensitivity of LES results from turbine rim seals to changes in grid resolution and sector size
NASA Astrophysics Data System (ADS)
O'Mahoney, T.; Hills, N.; Chew, J.
2012-07-01
Large-Eddy Simulations (LES) were carried out for a turbine rim seal and the sensitivity of the results to changes in grid resolution and the size of the computational domain are investigated. Ingestion of hot annulus gas into the rotor-stator cavity is compared between LES results and against experiments and Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations. The LES calculations show greater ingestion than the URANS calculation and show better agreement with experiments. Increased grid resolution shows a small improvement in ingestion predictions whereas increasing the sector model size has little effect on the results. The contrast between the different CFD models is most stark in the inner cavity, where the URANS shows almost no ingestion. Particular attention is also paid to the presence of low frequency oscillations in the disc cavity. URANS calculations show such low frequency oscillations at different frequencies than the LES. The oscillations also take a very long time to develop in the LES. The results show that the difficult problem of estimating ingestion through rim seals could be overcome by using LES but that the computational requirements were still restrictive.
NASA Astrophysics Data System (ADS)
Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.
2013-12-01
Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.
2011-10-01
de 2012 à Londres, les Jeux du Commonwealth de 2015 à Toronto et la gestion des cas d’urgence transfrontaliers...tels que les Jeux olympiques. La gestion de la sécurité lors d’événements comme Vancouver 2010 et les sommets du G8 et du G20 est un enjeu... des plans de gestion des mesures d’urgence et de continuité des opérations, une structure permanente a été mise sur pied
NASA Technical Reports Server (NTRS)
Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim
2010-01-01
This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.
Towards Large Eddy Simulation of gas turbine compressors
NASA Astrophysics Data System (ADS)
McMullan, W. A.; Page, G. J.
2012-07-01
With increasing computing power, Large Eddy Simulation could be a useful simulation tool for gas turbine axial compressor design. This paper outlines a series of simulations performed on compressor geometries, ranging from a Controlled Diffusion Cascade stator blade to the periodic sector of a stage in a 3.5 stage axial compressor. The simulation results show that LES may offer advantages over traditional RANS methods when off-design conditions are considered - flow regimes where RANS models often fail to converge. The time-dependent nature of LES permits the resolution of transient flow structures, and can elucidate new mechanisms of vorticity generation on blade surfaces. It is shown that accurate LES is heavily reliant on both the near-wall mesh fidelity and the ability of the imposed inflow condition to recreate the conditions found in the reference experiment. For components embedded in a compressor this requires the generation of turbulence fluctuations at the inlet plane. A recycling method is developed that improves the quality of the flow in a single stage calculation of an axial compressor, and indicates that future developments in both the recycling technique and computing power will bring simulations of axial compressors within reach of industry in the coming years.
NASA Astrophysics Data System (ADS)
Moonen, P.; Gromke, C.; Dorer, V.
2013-08-01
The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are considered. The model performance is assessed in several steps, ranging from a qualitative comparison to measured concentrations, over statistical data analysis by means of scatter plots and box plots, up to the calculation of objective validation metrics. The extensive validation effort highlights and quantifies notable features and shortcomings of the model, which would otherwise remain unnoticed. The model performance is found to be spatially non-uniform. Closer agreement with measurement data is achieved near the canyon ends than for the central part of the canyon, and typical model acceptance criteria are satisfied more easily for the leeward than for the windward canyon wall. This demonstrates the need for rigorous model evaluation. Only quality-assured models can be used with confidence to support assessment, planning and implementation of pollutant mitigation strategies.
Methodes de caracterisation des proprietes thermomecaniques d'un acier martensitique =
NASA Astrophysics Data System (ADS)
Ausseil, Lucas
Le but de l'etude est de developper des methodes permettant de mesurer les proprietes thermomecaniques d'un acier martensitique lors de chauffe rapide. Ces donnees permettent d'alimenter les modeles d'elements finis existant avec des donnees experimentales. Pour cela, l'acier 4340 est utilise. Cet acier est notamment utilise dans les roues d'engrenage, il a des proprietes mecaniques tres interessantes. Il est possible de modifier ses proprietes grâce a des traitements thermiques. Le simulateur thermomecanique Gleeble 3800 est utilise. Il permet de tester theoriquement toutes les conditions presentes dans les procedes de fabrication. Avec les tests de dilatation realises dans ce projet, les temperatures exactes de changement de phases austenitiques et martensitiques sont obtenues. Des tests de traction ont aussi permis de deduire la limite d'elasticite du materiau dans le domaine austenitique allant de 850 °C a 1100 °C. L'effet des deformations sur la temperature de debut de transformation est montre qualitativement. Une simulation numerique est aussi realisee pour comprendre les phenomenes intervenant pendant les essais.
Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli
2001-01-01
Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.
Large Eddy Simulations of Colorless Distributed Combustion Systems
NASA Astrophysics Data System (ADS)
Abdulrahman, Husam F.; Jaberi, Farhad; Gupta, Ashwani
2014-11-01
Development of efficient and low-emission colorless distributed combustion (CDC) systems for gas turbine applications require careful examination of the role of various flow and combustion parameters. Numerical simulations of CDC in a laboratory-scale combustor have been conducted to carefully examine the effects of these parameters on the CDC. The computational model is based on a hybrid modeling approach combining large eddy simulation (LES) with the filtered mass density function (FMDF) equations, solved with high order numerical methods and complex chemical kinetics. The simulated combustor operates based on the principle of high temperature air combustion (HiTAC) and has shown to significantly reduce the NOx, and CO emissions while improving the reaction pattern factor and stability without using any flame stabilizer and with low pressure drop and noise. The focus of the current work is to investigate the mixing of air and hydrocarbon fuels and the non-premixed and premixed reactions within the combustor by the LES/FMDF with the reduced chemical kinetic mechanisms for the same flow conditions and configurations investigated experimentally. The main goal is to develop better CDC with higher mixing and efficiency, ultra-low emission levels and optimum residence time. The computational results establish the consistency and the reliability of LES/FMDF and its Lagrangian-Eulerian numerical methodology.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
NASA Astrophysics Data System (ADS)
Varni, Marcelo R.; Usunoff, Eduardo J.
A three-dimensional modular model (MODFLOW) was used to simulate groundwater flow in the Azul River basin, Buenos Aires Province, Argentina, in order to assess the correctness of the conceptual model of the hydrogeological system. Simulated heads satisfactorily match observed heads in the regional water-table aquifer. Model results indicate that: (1) groundwater recharge is not uniform throughout the region but is best represented by three recharge rates, decreasing downgradient, similar to the distribution of soils and geomorphological characteristics; and (2) evapotranspiration rates are larger than previous estimates, which were made by using the Thornthwaite-Mather method. Evapotranspiration rates estimated by MODFLOW agree with results of independent studies of the region. Model results closely match historical surface-flow records, thereby suggesting that the model description of the aquifer-river relationship is correct. Résumé Un modèle modulaire tridimensionnel (MODFLOW) a été utilisé pour simuler les écoulements souterrains dans le bassin de la rivière Azul (Province de Buenos Aires, Argentine), dans le but d'évaluer la justesse du modèle conceptuel du système hydrogéologique. La piézométrie simulée s'ajuste de façon satisfaisante à celle observée pour l'ensemble de la nappe. Les résultats du modèle indiquent que: (1) la recharge de la nappe n'est pas uniforme sur toute la région, mais qu'elle est mieux approchée par trois valeurs différentes, décroissant vers l'aval-gradient, en suivant la même distribution que les sols et les caractéristiques géomorphologiques et (2) l'évapotranspiration est nettement plus importante que prévu initialement à partir de la méthode de Thornthwaite-Mather. Les valeurs d'évapotranspiration fournies par MODFLOW concordent bien avec les résultats d'autres études portant sur la région. Les résultats du modèle reproduisent convenablement les chroniques de débit des écoulements de surface, suggérant ainsi que la description par le modèle des relations rivière-nappe est correcte. Resumen Se ha utilizado el modelo MODFLOW, del Servicio Geológico de los Estados Unidos, para simular el flujo de agua subterránea en la cuenca del arroyo del Azul, Provincia de Buenos Aires, Argentina, con el objeto de evaluar el modelo hidrogeológico conceptual. Los niveles hidráulicos simulados ajustan satisfactoriamente con los niveles observados. Los resultados de la simulación indican que: (1) la recarga no es uniforme, sino que puede caracterizarse con tres zonas en las que sus valores decrecen en la medida en que decrece la pendiente, que guarda similitud con la distribución de suelos y características geomorfológicas y (2) la evapotranspiración sería mayor que la estimada en estudios previos, en los que se utilizó el método de Thornthwaite-Mather. La evapotranspiración estimada mediante la presente simulación concuerda con resultados de varios estudios independientes en la región. Respecto de la relación acuífero-río, existe un muy buen ajuste entre los aportes del acuífero al río simulados y los valores históricos de caudal base.
Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les
NASA Astrophysics Data System (ADS)
Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.
2005-02-01
Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.
LES/RANS Modeling of Aero-Optical Effects in a Supersonic Cavity Flow
2016-06-13
the wind tunnel is not modeled in the cavity simulation, a separate turbulent boundary layer simulation with identical free-stream conditions was...the wind tunnel experiments were provided by Dr. Donald J. Wittich and the testbed geometries were modeled by Mr. Jeremy Stanford. Dr. Maziar Hemati...and an auxiliary flat plate simulation is performed to replicate the effects of the wind - tunnel boundary layer on the computed optical path
Application of foam-extend on turbulent fluid-structure interaction
NASA Astrophysics Data System (ADS)
Rege, K.; Hjertager, B. H.
2017-12-01
Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.
NASA Astrophysics Data System (ADS)
Wang, Qing; Zhao, Xinyu; Ihme, Matthias
2017-11-01
Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).
Assessment of dynamic closure for premixed combustion large eddy simulation
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan
2015-09-01
Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.
NASA Astrophysics Data System (ADS)
Matsuda, K.; Onishi, R.; Takahashi, K.
2017-12-01
Urban high temperatures due to the combined influence of global warming and urban heat islands increase the risk of heat stroke. Greenery is one of possible countermeasures for mitigating the heat environments since the transpiration and shading effect of trees can reduce the air temperature and the radiative heat flux. In order to formulate effective measures, it is important to estimate the influence of the greenery on the heat stroke risk. In this study, we have developed a tree-crown-resolving large-eddy simulation (LES) model that is coupled with three-dimensional radiative transfer (3DRT) model. The Multi-Scale Simulator for the Geoenvironment (MSSG) is used for performing building- and tree-crown-resolving LES. The 3DRT model is implemented in the MSSG so that the 3DRT is calculated repeatedly during the time integration of the LES. We have confirmed that the computational time for the 3DRT model is negligibly small compared with that for the LES and the accuracy of the 3DRT model is sufficiently high to evaluate the radiative heat flux at the pedestrian level. The present model is applied to the analysis of the heat environment in an actual urban area around the Tokyo Bay area, covering 8 km × 8 km with 5-m grid mesh, in order to confirm its feasibility. The results show that the wet-bulb globe temperature (WBGT), which is an indicator of the heat stroke risk, is predicted in a sufficiently high accuracy to evaluate the influence of tree crowns on the heat environment. In addition, by comparing with a case without the greenery in the Tokyo Bay area, we have confirmed that the greenery increases the low WBGT areas in major pedestrian spaces by a factor of 3.4. This indicates that the present model can predict the greenery effect on the urban heat environment quantitatively.
Detailed characteristics of drop-laden mixing layers: LES predictions compared to DNS
NASA Technical Reports Server (NTRS)
Okong'o, N.; Leboissetier, A.; Bellan, J.
2004-01-01
Results have been compared from Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of a temporal mixing layer laden with evaporating drops, to assess the ability of LES to reproduce detailed characteristics of DNS.
Time-accurate simulations of a shear layer forced at a single frequency
NASA Technical Reports Server (NTRS)
Claus, R. W.; Huang, P. G.; Macinnes, J. M.
1988-01-01
Calculations are presented for the forced shear layer studied experimentally by Oster and Wygnanski, and Weisbrot. Two different computational approaches are examined: Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). The DNS approach solves the full three dimensional Navier-Stokes equations for a temporally evolving mixing layer, while the LES approach solves the two dimensional Navier-Stokes equations with a subgrid scale turbulence model. While the comparison between these calculations and experimental data was hampered by a lack of information on the inflow boundary conditions, the calculations are shown to qualitatively agree with several aspects of the experiment. The sensitivity of these calculations to factors such as mesh refinement and Reynolds number is illustrated.
A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2016-04-01
Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.
Large eddy simulations of a bluff-body stabilized hydrogen-methane jet flame
NASA Astrophysics Data System (ADS)
Drozda, Tomasz; Pope, Stephen
2005-11-01
Large eddy simulation (LES) is conducted of the turbulent bluff-body stabilized hydrogen-methane flame as considered in the experiments of the Combustion Research Facility at the Sandia National Laboratories and of the Thermal Research Group at the University of Sydney [1]. Both, reacting and non-reacting flows are considered. The subgrid scale (SGS) closure in LES is based on the scalar filtered mass density function (SFMDF) methodology [2]. A flamelet model is used to relate the chemical composition to the mixture fraction. The modeled SFMDF transport equation is solved by a hybrid finite-difference (FD) / Monte Carlo (MC) scheme. The FD component of the hybrid solver is validated by comparisons of the experimentally available flow statistics with those predicted by LES. The results via this method capture important features of the flames as observed experimentally.[1] A. R. Masri, R. W. Dibble, and R. S. Barlow. The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci., 22:307--362, 1996. [2] F. A. Jaberi, P. J. Colucci, S. James, P. Givi, and S. B. Pope. Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech., 401:85--121, 1999.
Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Avila, Marc
2018-04-01
We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2017-07-01
A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES
NASA Astrophysics Data System (ADS)
Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu
2016-11-01
Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.
The effect of dense gas dynamics on loss in ORC transonic turbines
NASA Astrophysics Data System (ADS)
Durá Galiana, FJ; Wheeler, APS; Ong, J.; Ventura, CA de M.
2017-03-01
This paper describes a number of recent investigations into the effect of dense gas dynamics on ORC transonic turbine performance. We describe a combination of experimental, analytical and computational studies which are used to determine how, in-particular, trailing-edge loss changes with choice of working fluid. A Ludwieg tube transient wind-tunnel is used to simulate a supersonic base flow which mimics an ORC turbine vane trailing-edge flow. Experimental measurements of wake profiles and trailing-edge base pressure with different working fluids are used to validate high-order CFD simulations. In order to capture the correct mixing in the base region, Large-Eddy Simulations (LES) are performed and verified against the experimental data by comparing the LES with different spatial and temporal resolutions. RANS and Detached-Eddy Simulation (DES) are also compared with experimental data. The effect of different modelling methods and working fluid on mixed-out loss is then determined. Current results point at LES predicting the closest agreement with experimental results, and dense gas effects are consistently predicted to increase loss.
NASA Astrophysics Data System (ADS)
Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-01
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-18
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less
NASA Astrophysics Data System (ADS)
Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.
2004-11-01
Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.
Five-equation and robust three-equation methods for solution verification of large eddy simulation
NASA Astrophysics Data System (ADS)
Dutta, Rabijit; Xing, Tao
2018-02-01
This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.
High-resolution numerical models for smoke transport in plumes from wildland fires
Philip Cunningham; Scott Goodrick
2013-01-01
A high-resolution large-eddy simulation (LES) model is employed to examine the fundamental structure and dynamics of buoyant plumes arising from heat sources representative of wildland fires. Herein we describe several aspects of the mean properties of the simulated plumes. Mean plume trajectories are apparently well described by the traditional two-thirds law for...
NASA Astrophysics Data System (ADS)
Comot, Pierre
L'industrie aeronautique, cherche a etudier la possibilite d'utiliser de maniere structurelle des joints brases, dans une optique de reduction de poids et de cout. Le developpement d'une methode d'evaluation rapide, fiable et peu couteuse pour evaluer l'integrite structurelle des joints apparait donc indispensable. La resistance mecanique d'un joint brase dependant principalement de la quantite de phase fragile dans sa microstructure. Les ondes guidees ultrasonores permettent de detecter ce type de phase lorsqu'elles sont couplees a une mesure spatio-temporelle. De plus la nature de ce type d'ondes permet l'inspection de joints ayant des formes complexes. Ce memoire se concentre donc sur le developpement d'une technique basee sur l'utilisation d'ondes guidees ultrasonores pour l'inspection de joints brases a recouvrement d'Inconel 625 avec comme metal d'apport du BNi-2. Dans un premiers temps un modele elements finis du joint a ete utilise pour simuler la propagation des ultrasons et optimiser les parametres d'inspection, la simulation a permis egalement de demontrer la faisabilite de la technique pour la detection de la quantite de phase fragile dans ce type de joints. Les parametres optimises sont la forme de signal d'excitation, sa frequence centrale et la direction d'excitation. Les simulations ont montre que l'energie de l'onde ultrasonore transmise a travers le joint aussi bien que celle reflechie, toutes deux extraites des courbes de dispersion, etaient proportionnelles a la quantite de phase fragile presente dans le joint et donc cette methode permet d'identifier la presence ou non d'une phase fragile dans ce type de joint. Ensuite des experimentations ont ete menees sur trois echantillons typiques presentant differentes quantites de phase fragile dans le joint, pour obtenir ce type d'echantillons differents temps de brasage ont ete utilises (1, 60 et 180 min). Pour cela un banc d'essai automatise a ete developpe permettant d'effectuer une analyse similaire a celle utilisee en simulation. Les parametres experimentaux ayant ete choisis en accord avec l'optimisation effectuee lors des simulations et apres une premiere optimisation du procede experimental. Finalement les resultats experimentaux confirment les resultats obtenus en simulation, et demontrent le potentiel de la methode developpee.
Effect of Turbulence Modeling on an Excited Jet
NASA Technical Reports Server (NTRS)
Brown, Clifford A.; Hixon, Ray
2010-01-01
The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.
NASA Astrophysics Data System (ADS)
Martinez, Luis; Meneveau, Charles
2014-11-01
Large Eddy Simulations (LES) of the flow past a single wind turbine with uniform inflow have been performed. A goal of the simulations is to compare two turbulence subgrid-scale models and their effects in predicting the initial breakdown, transition and evolution of the wake behind the turbine. Prior works have often observed negligible sensitivities to subgrid-scale models. The flow is modeled using an in-house LES with pseudo-spectral discretization in horizontal planes and centered finite differencing in the vertical direction. Turbines are represented using the actuator line model. We compare the standard constant-coefficient Smagorinsky subgrid-scale model with the Lagrangian Scale Dependent Dynamic model (LSDM). The LSDM model predicts faster transition to turbulence in the wake, whereas the standard Smagorinsky model predicts significantly delayed transition. The specified Smagorinsky coefficient is larger than the dynamic one on average, increasing diffusion thus delaying transition. A second goal is to compare the resulting near-blade properties such as local aerodynamic forces from the LES with Blade Element Momentum Theory. Results will also be compared with those of the SOWFA package, the wind energy CFD framework from NREL. This work is supported by NSF (IGERT and IIA-1243482) and computations use XSEDE resources, and has benefitted from interactions with Dr. M. Churchfield of NREL.
Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method
NASA Technical Reports Server (NTRS)
Winckelmans, G. S.
1995-01-01
This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.
NASA Astrophysics Data System (ADS)
Park, George Ilhwan; Moin, Parviz
2016-01-01
This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.
Studying Turbulence Using Numerical Simulation Databases - X Proceedings of the 2004 Summer Program
NASA Technical Reports Server (NTRS)
Moin, Parviz; Mansour, Nagi N.
2004-01-01
This Proceedings volume contains 32 papers that span a wide range of topics that reflect the ubiquity of turbulence. The papers have been divided into six groups: 1) Solar Simulations; 2) Magnetohydrodynamics (MHD); 3) Large Eddy Simulation (LES) and Numerical Simulations; 4) Reynolds Averaged Navier Stokes (RANS) Modeling and Simulations; 5) Stability and Acoustics; 6) Combustion and Multi-Phase Flow.
Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2012-01-01
The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q-correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES heat flux calculation. Further, results for a study conducted for temporal mixing layers initially containing oxygen in the lower stream, and hydrogen or helium in the upper stream, show that, for any LES, including SGS-flux models (constant-coefficient Gradient or Scale-Similarity models, dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/Gradient models), the inclusion of the q-correction in the LES leads to the theoretical maximum reduction of the SGS heat-flux difference. The remaining error in modeling this new subgrid term is thus irreducible.
Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames
NASA Astrophysics Data System (ADS)
Heye, Colin; Raman, Venkat
2012-11-01
A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.
Large Eddy Simulation of Flame Flashback in Swirling Premixed Flames
NASA Astrophysics Data System (ADS)
Lietz, Christopher; Raman, Venkatramanan
2014-11-01
In the design of high-hydrogen content gas turbines for power generation, flashback of the turbulent flame by propagation through the low velocity boundary layers in the premixing region is an operationally dangerous event. Predictive models that could accurately capture the onset and subsequent behavior of flashback would be indispensable in gas turbine design. The large eddy simulation (LES) approach is used here to model this process. The goal is to examine the validity of a probability distribution function (PDF) based model in the context of a lean premixed flame in a confined geometry. A turbulent swirling flow geometry and corresponding experimental data is used for validation. A suite of LES calculations are performed on a large unstructured mesh for varying fuel compositions operating at several equivalence ratios. It is shown that the PDF based method can predict some statistical properties of the flame front, with improvement over other models in the same application.
Large-eddy simulation of the passage of a shock wave through homogeneous turbulence
NASA Astrophysics Data System (ADS)
Braun, N. O.; Pullin, D. I.; Meiron, D. I.
2017-11-01
The passage of a nominally plane shockwave through homogeneous, compressible turbulence is a canonical problem representative of flows seen in supernovae, supersonic combustion engines, and inertial confinement fusion. The interaction of isotropic turbulence with a stationary normal shockwave is considered at inertial range Taylor Reynolds numbers, Reλ = 100 - 2500 , using Large Eddy Simulation (LES). The unresolved, subgrid terms are approximated by the stretched-vortex model (Kosovic et al., 2002), which allows self-consistent reconstruction of the subgrid contributions to the turbulent statistics of interest. The mesh is adaptively refined in the vicinity of the shock to resolve small amplitude shock oscillations, and the implications of mesh refinement on the subgrid modeling are considered. Simulations are performed at a range of shock Mach numbers, Ms = 1.2 - 3.0 , and turbulent Mach numbers, Mt = 0.06 - 0.18 , to explore the parameter space of the interaction at high Reynolds number. The LES shows reasonable agreement with linear analysis and lower Reynolds number direct numerical simulations. LANL Subcontract 305963.
NASA Astrophysics Data System (ADS)
Lozano-Durán, A.; Hack, M. J. P.; Moin, P.
2018-02-01
We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.
NASA Astrophysics Data System (ADS)
Leblois, T.; Tellier, C. R.
1992-07-01
We propose a theoretical model for the anisotropic etching of crystals, in order to be applied in the micromachining. The originality of the model is due to the introduction of dissolution tensors to express the representative surface of the dissolution slowness. The knowledge of the equation of the slowness surface allows us to determine the trajectories of all the elements which compose the starting surface. It is then possible to construct the final etched shape by numerical simulation. Several examples are given in this paper which show that the final etched shapes are correlated to the extrema of the dissolution slowness. Since the slowness surface must be determined from experiments, emphasis is placed on difficulties encountered when we correlate theory to experiments. Nous avons modélisé le processus de dissolution anisotrope des cristaux en vue d'une application à la simulation des formes obtenues par photolithogravure chimique. La principale originalité de ce modèle tient à l'introduction de tenseurs de dissolution pour exprimer la surface représentative de la lenteur de dissolution. La connaissance de l'équation de la lenteur de dissolution permet de calculer les trajectoires des différents éléments constituant la surface de départ puis de reconstituer par simulation la forme dissoute. Les simulations démontrent que les formes limites des cristaux dissous sont corrélées aux extrema de la lenteur de dissolution. La détermination de la surface de la lenteur se faisant à partir de mesures expérimetales, nous nous sommes efforcés de montrer toutes les difficultés attachées à cette analyse.
A Split Forcing Technique to Reduce Log-layer Mismatch in Wall-modeled Turbulent Channel Flows
NASA Astrophysics Data System (ADS)
Deleon, Rey; Senocak, Inanc
2016-11-01
The conventional approach to sustain a flow field in a periodic channel flow seems to be the culprit behind the log-law mismatch problem that has been reported in many studies hybridizing Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) techniques, commonly referred to as hybrid RANS-LES. To address this issue, we propose a split-forcing approach that relies only on the conservation of mass principle. We adopt a basic hybrid RANS-LES technique on a coarse mesh with wall-stress boundary conditions to simulate turbulent channel flows at friction Reynolds numbers of 2000 and 5200 and demonstrate good agreement with benchmark data. We also report a duality in velocity scale that is a specific consequence of the split forcing framework applied to hybrid RANS-LES. The first scale is the friction velocity derived from the wall shear stress. The second scale arises in the core LES region, a value different than at the wall. Second-order turbulence statistics agree well with the benchmark data when normalized by the core friction velocity, whereas the friction velocity at the wall remains the appropriate scale for the mean velocity profile. Based on our findings, we suggest reevaluating more sophisticated hybrid RANS-LES approaches within the split-forcing framework. Work funded by National Science Foundation under Grant No. 1056110 and 1229709. First author acknowledges the University of Idaho President's Doctoral Scholars Award.
A new approach for turbulent simulations in complex geometries
NASA Astrophysics Data System (ADS)
Israel, Daniel M.
Historically turbulence modeling has been sharply divided into Reynolds averaged Navier-Stokes (RANS), in which all the turbulent scales of motion are modeled, and large-eddy simulation (LES), in which only a portion of the turbulent spectrum is modeled. In recent years there have been numerous attempts to couple these two approaches either by patching RANS and LES calculations together (zonal methods) or by blending the two sets of equations. In order to create a proper bridging model, that is, a single set of equations which captures both RANS and LES like behavior, it is necessary to place both RANS and LES in a more general framework. The goal of the current work is threefold: to provide such a framework, to demonstrate how the Flow Simulation Methodology (FSM) fits into this framework, and to evaluate the strengths and weaknesses of the current version of the FSM. To do this, first a set of filtered Navier-Stokes (FNS) equations are introduced in terms of an arbitrary generalized filter. Additional exact equations are given for the second order moments and the generalized subfilter dissipation rate tensor. This is followed by a discussion of the role of implicit and explicit filters in turbulence modeling. The FSM is then described with particular attention to its role as a bridging model. In order to evaluate the method a specific implementation of the FSM approach is proposed. Simulations are presented using this model for the case of a separating flow over a "hump" with and without flow control. Careful attention is paid to error estimation, and, in particular, how using flow statistics and time series affects the error analysis. Both mean flow and Reynolds stress profiles are presented, as well as the phase averaged turbulent structures and wall pressure spectra. Using the phase averaged data it is possible to examine how the FSM partitions the energy between the coherent resolved scale motions, the random resolved scale fluctuations, and the subfilter quantities. The method proves to be qualitatively successful at reproducing large turbulent structures. However, like other hybrid methods, it has difficulty in the region where the model behavior transitions from RANS to LES. Consequently the phase averaged structures reproduce the experiments quite well, and the forcing does significantly reduce the length of the separated region. Nevertheless, the recirculation length is significantly too large for all the cases. Overall the current results demonstrate the promise of bridging models in general and the FSM in particular. However, current bridging techniques are still in their infancy. There is still important progress to be made and it is hoped that this work points out the more important avenues for exploration.
Developpement d'une commande pour une hydrolienne de riviere et optimisation =
NASA Astrophysics Data System (ADS)
Tetrault, Philippe
Suivant le developpement des energies renouvelables, la presente etude se veut une base theorique quant aux principes fondamentaux necessaires au bon fonctionnement et a l'implementation d'une hydrolienne de riviere. La problematique derriere ce nouveau type d'appareil est d'abord presentee. La machine electrique utilisee dans l'application, c'est-a-dire la machine synchrone a aimants permanents, est etudiee : ses equations dynamiques mecaniques et electriques sont developpees, introduisant en meme temps le concept de referentiel tournant. Le fonctionnement de l'onduleur utilise, soit un montage en pont complet a deux niveaux a semi-conducteurs, est explique et mit en equation pour permettre de comprendre les strategies de modulation disponibles. Un bref historique de ces strategies est fait avant de mettre l'emphase sur la modulation vectorielle qui sera celle utilisee pour l'application en cours. Les differents modules sont assembles dans une simulation Matlab pour confirmer leur bon fonctionnement et comparer les resultats de la simulation avec les calculs theoriques. Differents algorithmes permettant de traquer et maintenir un point de fonctionnement optimal sont presentes. Le comportement de la riviere est etudie afin d'evaluer l'ampleur des perturbations que le systeme devra gerer. Finalement, une nouvelle approche est presentee et comparee a une strategie plus conservatrice a l'aide d'un autre modele de simulation Matlab.
Simulation and stability analysis of supersonic impinging jet noise with microjet control
NASA Astrophysics Data System (ADS)
Hildebrand, Nathaniel; Nichols, Joseph W.
2014-11-01
A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K.
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting amore » value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.« less
LES on unstructured deforming meshes: Towards reciprocating IC engines
NASA Technical Reports Server (NTRS)
Haworth, D. C.; Jansen, K.
1996-01-01
A variable explicit/implicit characteristics-based advection scheme that is second-order accurate in space and time has been developed recently for unstructured deforming meshes (O'Rourke & Sahota 1996a). To explore the suitability of this methodology for Large-Eddy Simulation (LES), three subgrid-scale turbulence models have been implemented in the CHAD CFD code (O'Rourke & Sahota 1996b): a constant-coefficient Smagorinsky model, a dynamic Smagorinsky model for flows having one or more directions of statistical homogeneity, and a Lagrangian dynamic Smagorinsky model for flows having no spatial or temporal homogeneity (Meneveau et al. 1996). Computations have been made for three canonical flows, progressing towards the intended application of in-cylinder flow in a reciprocating engine. Grid sizes were selected to be comparable to the coarsest meshes used in earlier spectral LES studies. Quantitative results are reported for decaying homogeneous isotropic turbulence, and for a planar channel flow. Computations are compared to experimental measurements, to Direct-Numerical Simulation (DNS) data, and to Rapid-Distortion Theory (RDT) where appropriate. Generally satisfactory evolution of first and second moments is found on these coarse meshes; deviations are attributed to insufficient mesh resolution. Issues include mesh resolution and computational requirements for a specified level of accuracy, analytic characterization of the filtering implied by the numerical method, wall treatment, and inflow boundary conditions. To resolve these issues, finer-mesh simulations and computations of a simplified axisymmetric reciprocating piston-cylinder assembly are in progress.
Application of wall-models to discontinuous Galerkin LES
NASA Astrophysics Data System (ADS)
Frère, Ariane; Carton de Wiart, Corentin; Hillewaert, Koen; Chatelain, Philippe; Winckelmans, Grégoire
2017-08-01
Wall-resolved Large-Eddy Simulations (LES) are still limited to moderate Reynolds number flows due to the high computational cost required to capture the inner part of the boundary layer. Wall-modeled LES (WMLES) provide more affordable LES by modeling the near-wall layer. Wall function-based WMLES solve LES equations up to the wall, where the coarse mesh resolution essentially renders the calculation under-resolved. This makes the accuracy of WMLES very sensitive to the behavior of the numerical method. Therefore, best practice rules regarding the use and implementation of WMLES cannot be directly transferred from one methodology to another regardless of the type of discretization approach. Whilst numerous studies present guidelines on the use of WMLES, there is a lack of knowledge for discontinuous finite-element-like high-order methods. Incidentally, these methods are increasingly used on the account of their high accuracy on unstructured meshes and their strong computational efficiency. The present paper proposes best practice guidelines for the use of WMLES in these methods. The study is based on sensitivity analyses of turbulent channel flow simulations by means of a Discontinuous Galerkin approach. It appears that good results can be obtained without the use of a spatial or temporal averaging. The study confirms the importance of the wall function input data location and suggests to take it at the bottom of the second off-wall element. These data being available through the ghost element, the suggested method prevents the loss of computational scalability experienced in unstructured WMLES. The study also highlights the influence of the polynomial degree used in the wall-adjacent element. It should preferably be of even degree as using polynomials of degree two in the first off-wall element provides, surprisingly, better results than using polynomials of degree three.
NASA Astrophysics Data System (ADS)
Jaensch, Stefan; Merk, Malte; Emmert, Thomas; Polifke, Wolfgang
2018-05-01
The Large Eddy Simulation/System Identification (LES/SI) approach is a general and efficient numerical method for deducing a Flame Transfer Function (FTF) from the LES of turbulent reacting flow. The method may be summarised as follows: a simulated flame is forced with a broadband excitation signal. The resulting fluctuations of the reference velocity and of the global heat release rate are post-processed via SI techniques in order to estimate a low-order model of the flame dynamics. The FTF is readily deduced from the low-order model. The SI method most frequently applied in aero- and thermo-acoustics has been Wiener-Hopf Inversion (WHI). This method is known to yield biased estimates in situations with feedback, thus it was assumed that non-reflective boundary conditions are required to generate accurate results with the LES/SI approach. Recent research has shown that the FTF is part of the so-called Intrinsic ThermoAcoustic (ITA) feedback loop. Hence, identifying an FTF from a compressible LES is always a closed-loop problem, and consequently one should expect that the WHI would yield biased results. However, several studies proved that WHI results compare favourably with validation data. To resolve this apparent contradiction, a variety of identification methods are compared against each other, including models designed for closed-loop identification. In agreement with theory, we show that the estimate given by WHI does not converge to the actual FTF. Fortunately, the error made is small if excitation amplitudes can be set such that the signal-to-noise ratio is large, but not large enough to trigger nonlinear flame dynamics. Furthermore, we conclude that non-reflective boundary conditions are not essentially necessary to apply the LES/SI approach.
NASA Astrophysics Data System (ADS)
LeBlanc, Luc R.
Les materiaux composites sont de plus en plus utilises dans des domaines tels que l'aerospatiale, les voitures a hautes performances et les equipements sportifs, pour en nommer quelques-uns. Des etudes ont demontre qu'une exposition a l'humidite nuit a la resistance des composites en favorisant l'initiation et la propagation du delaminage. De ces etudes, tres peu traitent de l'effet de l'humidite sur l'initiation du delaminage en mode mixte I/II et aucune ne traite des effets de l'humidite sur le taux de propagation du delaminage en mode mixte I/II dans un composite. La premiere partie de cette these consiste a determiner les effets de l'humidite sur la propagation du delaminage lors d'une sollicitation en mode mixte I/II. Des eprouvettes d'un composite unidirectionnel de carbone/epoxy (G40-800/5276-1) ont ete immergees dans un bain d'eau distillee a 70°C jusqu'a leur saturation. Des essais experimentaux quasi-statiques avec des chargements d'une gamme de mixites des modes I/II (0%, 25%, 50%, 75% et 100%) ont ete executes pour determiner les effets de l'humidite sur la resistance au delaminage du composite. Des essais de fatigue ont ete realises, avec la meme gamme de mixite des modes I/II, pour determiner 1'effet de 1'humidite sur l'initiation et sur le taux de propagation du delaminage. Les resultats des essais en chargement quasi-statique ont demontre que l'humidite reduit la resistance au delaminage d'un composite carbone/epoxy pour toute la gamme des mixites des modes I/II, sauf pour le mode I ou la resistance au delaminage augmente apres une exposition a l'humidite. Pour les chargements en fatigue, l'humidite a pour effet d'accelerer l'initiation du delaminage et d'augmenter le taux de propagation pour toutes les mixites des modes I/II. Les donnees experimentales recueillies ont ete utilisees pour determiner lesquels des criteres de delaminage en statique et des modeles de taux de propagation du delaminage en fatigue en mode mixte I/II proposes dans la litterature representent le mieux le delaminage du composite etudie. Une courbe de regression a ete utilisee pour determiner le meilleur ajustement entre les donnees experimentales et les criteres de delaminage en statique etudies. Une surface de regression a ete utilisee pour determiner le meilleur ajustement entre les donnees experimentales et les modeles de taux de propagation en fatigue etudies. D'apres les ajustements, le meilleur critere de delaminage en statique est le critere B-K et le meilleur modele de propagation en fatigue est le modele de Kenane-Benzeggagh. Afin de predire le delaminage lors de la conception de pieces complexes, des modeles numeriques peuvent etre utilises. La prediction de la longueur de delaminage lors des chargements en fatigue d'une piece est tres importante pour assurer qu'une fissure interlaminaire ne va pas croitre excessivement et causer la rupture de cette piece avant la fin de sa duree de vie de conception. Selon la tendance recente, ces modeles sont souvent bases sur l'approche de zone cohesive avec une formulation par elements finis. Au cours des travaux presentes dans cette these, le modele de progression du delaminage en fatigue de Landry & LaPlante (2012) a ete ameliore en y ajoutant le traitement des chargements en mode mixte I/II et en y modifiant l'algorithme du calcul de la force d'entrainement maximale du delaminage. Une calibration des parametres de zone cohesive a ete faite a partir des essais quasi-statiques experimentaux en mode I et II. Des resultats de simulations numeriques des essais quasi-statiques en mode mixte I/II, avec des eprouvettes seches et humides, ont ete compares avec les essais experimentaux. Des simulations numeriques en fatigue ont aussi ete faites et comparees avec les resultats experimentaux du taux de propagation du delaminage. Les resultats numeriques des essais quasi-statiques et de fatigue ont montre une bonne correlation avec les resultats experimentaux pour toute la gamme des mixites des modes I/II etudiee.
Wall Modeled Large Eddy Simulation of Airfoil Trailing Edge Noise
NASA Astrophysics Data System (ADS)
Kocheemoolayil, Joseph; Lele, Sanjiva
2014-11-01
Large eddy simulation (LES) of airfoil trailing edge noise has largely been restricted to low Reynolds numbers due to prohibitive computational cost. Wall modeled LES (WMLES) is a computationally cheaper alternative that makes full-scale Reynolds numbers relevant to large wind turbines accessible. A systematic investigation of trailing edge noise prediction using WMLES is conducted. Detailed comparisons are made with experimental data. The stress boundary condition from a wall model does not constrain the fluctuating velocity to vanish at the wall. This limitation has profound implications for trailing edge noise prediction. The simulation over-predicts the intensity of fluctuating wall pressure and far-field noise. An improved wall model formulation that minimizes the over-prediction of fluctuating wall pressure is proposed and carefully validated. The flow configurations chosen for the study are from the workshop on benchmark problems for airframe noise computations. The large eddy simulation database is used to examine the adequacy of scaling laws that quantify the dependence of trailing edge noise on Mach number, Reynolds number and angle of attack. Simplifying assumptions invoked in engineering approaches towards predicting trailing edge noise are critically evaluated. We gratefully acknowledge financial support from GE Global Research and thank Cascade Technologies Inc. for providing access to their massively-parallel large eddy simulation framework.
NASA Astrophysics Data System (ADS)
Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano
2015-11-01
A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).
LES of cavitating flow inside a Diesel injector including dynamic needle movement
NASA Astrophysics Data System (ADS)
Örley, F.; Hickel, S.; Schmidt, S. J.; Adams, N. A.
2015-12-01
We perform large-eddy simulations (LES) of the turbulent, cavitating flow inside a 9-hole solenoid common-rail injector including jet injection into gas during a full injection cycle. The liquid fuel, vapor, and gas phases are modelled by a homogeneous mixture approach. The cavitation model is based on a thermodynamic equilibrium assumption. The geometry of the injector is represented on a Cartesian grid by a conservative cut-element immersed boundary method. The strategy allows for the simulation of complex, moving geometries with sub-cell resolution. We evaluate the effects of needle movement on the cavitation characteristics in the needle seat and tip region during opening and closing of the injector. Moreover, we study the effect of cavitation inside the injector nozzles on primary jet break-up.
Turbulence modeling for Francis turbine water passages simulation
NASA Astrophysics Data System (ADS)
Maruzewski, P.; Hayashi, H.; Munch, C.; Yamaishi, K.; Hashii, T.; Mombelli, H. P.; Sugow, Y.; Avellan, F.
2010-08-01
The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-epsilon model, or the standard k-epsilon model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Churchfield, M.; Mirocha, J.
Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, B. E.; Olson, B. J.; White, J. E.
High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less
Large Eddy Simulation of jets laden with evaporating drops
NASA Technical Reports Server (NTRS)
Leboissetier, A.; Okong'o, N.; Bellan, J.
2004-01-01
LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.
Comparison of two LES codes for wind turbine wake studies
NASA Astrophysics Data System (ADS)
Sarlak, H.; Pierella, F.; Mikkelsen, R.; Sørensen, J. N.
2014-06-01
For the third time a blind test comparison in Norway 2013, was conducted comparing numerical simulations for the rotor Cp and Ct and wake profiles with the experimental results. As the only large eddy simulation study among participants, results of the Technical University of Denmark (DTU) using their in-house CFD solver, EllipSys3D, proved to be more reliable among the other models for capturing the wake profiles and the turbulence intensities downstream the turbine. It was therefore remarked in the workshop to investigate other LES codes to compare their performance with EllipSys3D. The aim of this paper is to investigate on two CFD solvers, the DTU's in-house code, EllipSys3D and the open-sourse toolbox, OpenFoam, for a set of actuator line based LES computations. Two types of simulations are performed: the wake behind a signle rotor and the wake behind a cluster of three inline rotors. Results are compared in terms of velocity deficit, turbulence kinetic energy and eddy viscosity. It is seen that both codes predict similar near-wake flow structures with the exception of OpenFoam's simulations without the subgrid-scale model. The differences begin to increase with increasing the distance from the upstream rotor. From the single rotor simulations, EllipSys3D is found to predict a slower wake recovery in the case of uniform laminar flow. From the 3-rotor computations, it is seen that the difference between the codes is smaller as the disturbance created by the downstream rotors causes break down of the wake structures and more homogenuous flow structures. It is finally observed that OpenFoam computations are more sensitive to the SGS models.
Data-driven RANS for simulations of large wind farms
NASA Astrophysics Data System (ADS)
Iungo, G. V.; Viola, F.; Ciri, U.; Rotea, M. A.; Leonardi, S.
2015-06-01
In the wind energy industry there is a growing need for real-time predictions of wind turbine wake flows in order to optimize power plant control and inhibit detrimental wake interactions. To this aim, a data-driven RANS approach is proposed in order to achieve very low computational costs and adequate accuracy through the data assimilation procedure. The RANS simulations are implemented with a classical Boussinesq hypothesis and a mixing length turbulence closure model, which is calibrated through the available data. High-fidelity LES simulations of a utility-scale wind turbine operating with different tip speed ratios are used as database. It is shown that the mixing length model for the RANS simulations can be calibrated accurately through the Reynolds stress of the axial and radial velocity components, and the gradient of the axial velocity in the radial direction. It is found that the mixing length is roughly invariant in the very near wake, then it increases linearly with the downstream distance in the diffusive region. The variation rate of the mixing length in the downstream direction is proposed as a criterion to detect the transition between near wake and transition region of a wind turbine wake. Finally, RANS simulations were performed with the calibrated mixing length model, and a good agreement with the LES simulations is observed.
NASA Astrophysics Data System (ADS)
Yang, Zhengjun; Wang, Fujun; Zhou, Peijian
2012-09-01
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
NASA Astrophysics Data System (ADS)
Chamecki, M.; Pan, Y.; Nepf, H. M.; Follett, E.
2014-12-01
Flexible plants bend in response to fluid motion and this reconfiguration mechanism allows plants to minimize the increase of drag force with increasing velocity, ensuring survival in flow-dominated habitats. The effect of reconfiguration on the flow field can be modeled by introducing a drag coefficient that decreases with increasing velocity. Typically, a power-law decrease of the drag coefficient with increasing velocity is used, and the negative exponent is known as the Vogel number. In practice, the Vogel number is a function of canopy rigidity and flow conditions. In this work we show that accounting for the effect of reconfiguration is required for large-eddy simulation (LES) models to reproduce the skewness of the streamwise and vertical velocity components and the distribution of sweeps and ejections observed in a large cornfield. Additional LES runs are conducted to investigate the structure of turbulence in different reconfiguration regimes, with mean vertical momentum flux constrained by measurements. The change of the Vogel number has negligible effects on LES predictions of the total vertical momentum flux and the components of turbulent kinetic energy, but produces profound changes in the mechanisms of momentum transport. This work demonstrates the necessity to model the effect of reconfiguration in LES studies of canopy flows. It also highlights the impacts of reconfiguration on the structure of turbulence and the dynamics of momentum fluxes, as well as any other process that depends on velocity fluctuations above and within the canopy region.
LES with and without explicit filtering: comparison and assessment of various models
NASA Astrophysics Data System (ADS)
Winckelmans, Gregoire S.; Jeanmart, Herve; Wray, Alan A.; Carati, Daniele
2000-11-01
The proper mathematical formalism for large eddy simulation (LES) of turbulent flows assumes that a regular ``explicit" filter (i.e., a filter with a well-defined second moment, such as the gaussian, the top hat, etc.) is applied to the equations of fluid motion. This filter is then responsible for a ``filtered-scale" stress. Because of the discretization of the filtered equations, using the LES grid, there is also a ``subgrid-scale" stress. The global effective stress is found to be the discretization of a filtered-scale stress plus a subgrid-scale stress. The former can be partially reconstructed from an exact, infinite, series, the first term of which is the ``tensor-diffusivity" model of Leonard and is found, in practice, to be sufficient for modeling. Alternatively, sufficient reconstruction can also be achieved using the ``scale-similarity" model of Bardina. The latter corresponds to loss of information: it cannot be reconstructed; its effect (essentially dissipation) must be modeled using ad hoc modeling strategies (such as the dynamic version of the ``effective viscosity" model of Smagorinsky). Practitionners also often assume LES without explicit filtering: the effective stress is then only a subgrid-scale stress. We here compare the performance of various LES models for both approaches (with and without explicit filtering), and for cases without solid boundaries: (1) decay of isotropic turbulence; (2) decay of aircraft wake vortices in a turbulent atmosphere. One main conclusion is that better subgrid-scale models are still needed, the effective viscosity models being too active at the large scales.
NASA Astrophysics Data System (ADS)
Gemitzi, Alexandra; Tolikas, Demetrios
A simulation program, which works seamlessly with GIS and simulates flows in coastal aquifers, is presented in the present paper. The model is based on the Galerkin finite element discretization scheme and it simulates both steady and transient freshwater and saltwater flow, assuming that the two fluids are separated by a sharp interface. The model has been verified in simple cases where analytical solutions exist. The simulation program works as a tool of the GIS program, which is the main database that stores and manages all the necessary data. The combined use of the simulation and the GIS program forms an integrated management tool offering a simpler way of simulating and studying saline intrusion in coastal aquifers. Application of the model to the Yermasogia aquifer illustrates the coupled use of modeling and GIS techniques for the examination of regional coastal aquifer systems. Pour étudier un système aquifère côtier, nous avons développé un modèle aux éléments finis en quasi 3-D qui simule les écoulements d'eau douce et d'eau salée en régime aussi bien permanent que transitoire. Les équations qui les régissent sont discrétisées par un schéma de discrétisation de Garlekin aux éléments finis. Le modèle a été vérifié dans des cas simples où il existe des solutions analytiques. Toutes les données nécessaires sont introduites et gérées grâce à un logiciel de gestion de SIG. Le programme de simulation est utilisé comme un outil du logiciel de SIG, constituant ainsi un outil de gestion intégrée dont le but est de simuler et d'étudier l'intrusion saline dans les aquifères côtiers. L'application du modèle à l'aquifère de Yermasogia illustre l'utilisation couplée de la modélisation et des techniques de SIG pour l'étude des systèmes aquifères côtiers régionaux. Se ha desarrollado un modelo casi tridimensional de elementos finitos para simular el flujo de agua dulce y salada, tanto en régimen estacionario como en transitorio, en sistemas acuíferos costeros, bajo la hipótesis de separación por medio de una interfaz abrupta. Las ecuaciones del modelo han sido discretizadas mediante un esquema de Galerkin de discretización en elementos finitos. El modelo ha sido verificado en casos sencillos para los que existe solución analítica. Todos los datos necesarios se introducen y gestionan con un Sistema de Información Geográfica [SIG] por ordenador. El programa de simulación forma parte del programa de SIG, constituyendo una herramienta integrada de gestión para estudiar la intrusión salina en acuíferos costeros. La aplicación del modelo al acuífero de Yermasogia ilustra el uso acoplado de las técnicas de modelación y de SIG con el fin de examinar sistemas acuíferos costeros a escala regional.
Subgrid Combustion Modeling for the Next Generation National Combustion Code
NASA Technical Reports Server (NTRS)
Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher
2003-01-01
In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.
NASA Astrophysics Data System (ADS)
Garcia, M. H.
2016-12-01
Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos, (2011), Lagrangian model of bed-load transport in turbulent junction flows, Journal of Fluid Mechanics, 666,36-76. Niño and García, (1994), Gravel saltation: 2. Modeling, Water Resources Research, 30(6),1915-1924. Niño et al., (1994), Gravel saltation: 1. Experiments, Water Resources Research, 30(6), 1907-1914.
Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zinner, Tobias; Ackerman, S.
2008-01-01
Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.
On the use of kinetic energy preserving DG-schemes for large eddy simulation
NASA Astrophysics Data System (ADS)
Flad, David; Gassner, Gregor
2017-12-01
Recently, element based high order methods such as Discontinuous Galerkin (DG) methods and the closely related flux reconstruction (FR) schemes have become popular for compressible large eddy simulation (LES). Element based high order methods with Riemann solver based interface numerical flux functions offer an interesting dispersion dissipation behavior for multi-scale problems: dispersion errors are very low for a broad range of scales, while dissipation errors are very low for well resolved scales and are very high for scales close to the Nyquist cutoff. In some sense, the inherent numerical dissipation caused by the interface Riemann solver acts as a filter of high frequency solution components. This observation motivates the trend that element based high order methods with Riemann solvers are used without an explicit LES model added. Only the high frequency type inherent dissipation caused by the Riemann solver at the element interfaces is used to account for the missing sub-grid scale dissipation. Due to under-resolution of vortical dominated structures typical for LES type setups, element based high order methods suffer from stability issues caused by aliasing errors of the non-linear flux terms. A very common strategy to fight these aliasing issues (and instabilities) is so-called polynomial de-aliasing, where interpolation is exchanged with projection based on an increased number of quadrature points. In this paper, we start with this common no-model or implicit LES (iLES) DG approach with polynomial de-aliasing and Riemann solver dissipation and review its capabilities and limitations. We find that the strategy gives excellent results, but only when the resolution is such, that about 40% of the dissipation is resolved. For more realistic, coarser resolutions used in classical LES e.g. of industrial applications, the iLES DG strategy becomes quite inaccurate. We show that there is no obvious fix to this strategy, as adding for instance a sub-grid-scale models on top doesn't change much or in worst case decreases the fidelity even more. Finally, the core of this work is a novel LES strategy based on split form DG methods that are kinetic energy preserving. The scheme offers excellent stability with full control over the amount and shape of the added artificial dissipation. This premise is the main idea of the work and we will assess the LES capabilities of the novel split form DG approach when applied to shock-free, moderate Mach number turbulence. We will demonstrate that the novel DG LES strategy offers similar accuracy as the iLES methodology for well resolved cases, but strongly increases fidelity in case of more realistic coarse resolutions.
Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation
NASA Astrophysics Data System (ADS)
Sale, Danny; Aliseda, Alberto
2014-11-01
Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.
Large-eddy simulations of the restricted nonlinear system
NASA Astrophysics Data System (ADS)
Bretheim, Joel; Gayme, Dennice; Meneveau, Charles
2014-11-01
Wall-bounded shear flows often exhibit elongated flow structures with streamwise coherence (e.g. rolls/streaks), prompting the exploration of a streamwise-constant modeling framework to investigate wall-turbulence. Simulations of a streamwise-constant (2D/3C) model have been shown to produce the roll/streak structures and accurately reproduce the blunted turbulent mean velocity profile in plane Couette flow. The related restricted nonlinear (RNL) model captures these same features but also exhibits self-sustaining turbulent behavior. Direct numerical simulation (DNS) of the RNL system results in similar statistics for a number of flow quantities and a flow field that is consistent with DNS of the Navier-Stokes equations. Aiming to develop reduced-order models of wall-bounded turbulence at very high Reynolds numbers in which viscous near-wall dynamics cannot be resolved, this work presents the development of an RNL formulation of the filtered Navier-Stokes equations solved for in large-eddy simulations (LES). The proposed LES-RNL system is a computationally affordable reduced-order modeling tool that is of interest for studying the underlying dynamics of high-Reynolds wall-turbulence and for engineering applications where the flow field is dominated by streamwise-coherent motions. This work is supported by NSF (IGERT, SEP-1230788 and IIA-1243482).
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Rizzetta, Donald P.; Fureby, Christer
2009-01-01
This paper presents the results of an activity by the Large Eddy Simulation (LES) Working Group of the AIAA Fluid Dynamics Technical Committee to (1) address the current capabilities of LES, (2) outline recommended practices and key considerations for using LES, and (3) identify future research needs to advance the capabilities and reliability of LES for analysis of turbulent flows. To address the current capabilities and future needs, a survey comprised of eleven questions was posed to LES Working Group members to assemble a broad range of perspectives on important topics related to LES. The responses to these survey questions are summarized with the intent not to be a comprehensive dictate on LES, but rather the perspective of one group on some important issues. A list of recommended practices is also provided, which does not treat all aspects of a LES, but provides guidance on some of the key areas that should be considered.
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2016-11-01
In this work, we develop a fully coupled bolus-esophageal-gastric model to study esophageal emptying based on the immersed boundary method. The model includes an esophageal segment, an ellipsoid-shaped stomach, and a bolus. It can easily handle the passive and active function of the lower esophageal sphincter (LES). Two groups of case studies are presented. The first group is about the influence from tissue anisotropy. Simulation shows that the weaker (or more compliant) part suffers from a higher wall shear stress and higher pressure load when the bolus is filled in and emptied from the LES segment. This implies a degradation cycle in which a weaker tissue becomes much weaker due to an increased load, a possible pathway to the esophageal lower diverticulum. The second group is about bulge formation resulting from asymmetric anatomy and a compliant LES. In particular, we find a right bulge tends to develop for a compliant LES. The bulge is most pronounced with a highest stiffness of the gastric wall. This implies that the competition between the LES stiffness and gastric wall stiffness might be another factor related to the esophageal lower diverticulum. The support of Grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.
LES on Plume Dispersion in the Convective Boundary Layer Capped by a Temperature Inversion
NASA Astrophysics Data System (ADS)
Nakayama, Hiromasa; Tamura, Tetsuro; Abe, Satoshi
Large-eddy simulation (LES) is applied to the problem of plume dispersion in the spatially-developing convective boundary layer (CBL) capped by a temperature inversion. In order to generate inflow turbulence with buoyant forcing, we first, simulate the neutral boundary layer flow (NBL) in the driver region using Lund's method. At the same time, the temperature profile possessing the inversion part is imposed at the entrance of the driver region and the temperature field is calculated as a passive scalar. Next, the buoyancy effect is introduced into the flow field in the main region. We evaluate the applicability of the LES model for atmospheric dispersion in the CBL flow and compare the characteristics of plume dispersion in the CBL flow with those in the neutral boundary layer. The Richardson number based on the temperature increment across the inversion obtained by the present LES model is 22.4 and the capping effect of the temperature inversion can be captured qualitatively in the upper portion of the CBL. Characteristics of flow and temperature fields in the main portion of CBL flow are similar to those of previous experiments[1],[2] and observations[3]. Concerning dispersion behavior, we also find that mean concentrations decrease immediately above the inversion height and the peak values of r.m.s concentrations are located near the inversion height at larger distances from the point source.
Multiplicative Process in Turbulent Velocity Statistics: A Simplified Analysis
NASA Astrophysics Data System (ADS)
Chillà, F.; Peinke, J.; Castaing, B.
1996-04-01
A lot of models in turbulence links the energy cascade process and intermittency, the characteristic of which being the shape evolution of the probability density functions (pdf) for longitudinal velocity increments. Using recent models and experimental results, we show that the flatness factor of these pdf gives a simple and direct estimate for what is called the deepness of the cascade. We analyse in this way the published data of a Direct Numerical Simulation and show that the deepness of the cascade presents the same Reynolds number dependence as in laboratory experiments. Plusieurs modèles de turbulence relient la cascade d'énergie et l'intermittence, caractérisée par l'évolution des densités de probabilité (pdf) des incréments longitudinaux de vitesse. Nous appuyant aussi bien sur des modèles récents que sur des résultats expérimentaux, nous montrons que la Curtosis de ces pdf permet une estimation simple et directe de la profondeur de la cascade. Cela nous permet de réanalyser les résultats publiés d'une simulation numérique et de montrer que la profondeur de la cascade y évolue de la même façon que pour les expériences de laboratoire en fonction du nombre de Reynolds.
NASA Astrophysics Data System (ADS)
Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.
2017-11-01
Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.
NASA Astrophysics Data System (ADS)
Ait Hammou, Zouhair
Cette etude porte sur la conception d'un accumulateur echangeur de chaleur hybride (AECH) pour la gestion simultanee des energies solaire et electrique. Un modele mathematique reposant sur les equations de conservation de la quantite d'energie est expose. Il est developpe pour tester differents materiaux de stockage, entre autres, les materiaux a changement de phase (solide/liquide) et les materiaux de stockage sensible. Un code de calcul est mis en eeuvre sur ordinateur, puis valide a l'aide des resultats analytiques et numeriques de la litterature. En parallele, un prototype experimental a echelle reduite est concu au laboratoire afin de valider le code de calcul. Des simulations sont effectuees pour etudier les effets des parametres de conception et des materiaux de stockage sur le comportement thermique de l'AECH et sur la consommation d'energie electrique. Les resultats des simulations sur quatre mois d'hiver montrent que la paraffine n-octadecane et l'acide caprique sont deux candidats souhaitables pour le stockage d'energie destine au chauffage des habitats. L'utilisation de ces deux materiaux dans l'AECH permet de reduire la consommation d'energie electrique de 32% et d'aplanir le probleme de pointe electrique puisque 90% de l'energie electrique est consommee durant les heures creuses. En plus, en adoptant un tarif preferentiel, le calcul des couts lies a la consommation d'energie electrique montre que le consommateur adoptant ce systeme beneficie d'une reduction de 50% de la facture d'electricite.
Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number
NASA Technical Reports Server (NTRS)
Knaepen, B.; Moin, P.
2003-01-01
In this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results. Conclusions are presented in Sec. 5.
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony;
2013-01-01
1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations
Remillard, J.; Fridlind, Ann M.; Ackerman, A. S.; ...
2017-09-20
Here, a case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated withmore » an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remillard, J.; Fridlind, Ann M.; Ackerman, A. S.
Here, a case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated withmore » an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.« less
Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yidong, E-mail: yidong.xia@inl.gov; Wang, Chuanjin; Luo, Hong
Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the Hydra-TH code. -- Highlights: •We performed a comprehensive study to verify and validate the turbulence models in Hydra-TH. •Hydra-TH delivers 2nd-order grid convergence for the incompressible Navier–Stokes equations. •Hydra-TH can accurately simulate the laminar boundary layers. •Hydra-TH can accurately simulate the turbulent boundary layers with RANS turbulence models. •Hydra-TH delivers high-fidelity LES capability for simulating turbulent flows in confined space.« less
NASA Astrophysics Data System (ADS)
Zhang, Di
2017-10-01
This paper compares the performance of eight Reynolds-Averaged Navier-Stokes (RANS) two-equation turbulence models and two sub-grid scale (SGS) large eddy simulation (LES) models in the scenario of unsteady flow around a finite circular cylinder at an aspect ratio (AR) of 1.0 and a Reynolds number of Re=20000. It is found that, among all the eight RANS turbulence models considered, the K-Omega-SST model (viz. SST-V2003) developed by Menter et al. [1, 2] possesses the best overall performance (being closest to the numerical results of the two LES models considered, which can be deemed as the quasi-exact solution in view of the very fine computational mesh employed by the two LES models in this study) in terms of the mean surface pressure coefficient distribution (i.e. C p ), the mean drag coefficient (i.e. C d ), the mean streamline profiles in some characteristic planes (such as the mid-height plane and the symmetry plane of the cylinder) and the distribution of mean bed-shear-stress amplification on the bottom wall.
Numerical and Experimental Study of Wake Redirection Techniques in a Boundary Layer Wind Tunnel
NASA Astrophysics Data System (ADS)
Wang, J.; Foley, S.; Nanos, E. M.; Yu, T.; Campagnolo, F.; Bottasso, C. L.; Zanotti, A.; Croce, A.
2017-05-01
The aim of the present paper is to validate a wind farm LES framework in the context of two distinct wake redirection techniques: yaw misalignment and individual cyclic pitch control. A test campaign was conducted using scaled wind turbine models in a boundary layer wind tunnel, where both particle image velocimetry and hot-wire thermo anemometers were used to obtain high quality measurements of the downstream flow. A LiDAR system was also employed to determine the non-uniformity of the inflow velocity field. A high-fidelity large-eddy simulation lifting-line model was used to simulate the aerodynamic behavior of the system, including the geometry of the wind turbine nacelle and tower. A tuning-free Lagrangian scale-dependent dynamic approach was adopted to improve the sub-grid scale modeling. Comparisons with experimental measurements are used to systematically validate the simulations. The LES results are in good agreement with the PIV and hot-wire data in terms of time-averaged wake profiles, turbulence intensity and Reynolds shear stresses. Discrepancies are also highlighted, to guide future improvements.
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented.
Development of a High Level Architecture Federation of Ship Replenishment at Sea
2011-10-01
utiliser une infrastructure de simulation appelée architecture de haut niveau (HLA) afin de fournir des environne - ments de simulation interarmées...fournir un environnement de simulation qui modélise l’interactions entre les divers composants afin de simuler les conditions qui mènent aux
Implicit Large Eddy Simulation of a wingtip vortex at Rec =1.2x106
NASA Astrophysics Data System (ADS)
Lombard, Jean-Eloi; Moxey, Dave; Sherwin, Spencer; SherwinLab Team
2015-11-01
We present recent developments in numerical methods for performing a Large Eddy Simulation (LES) of the formation and evolution of a wingtip vortex. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, make these types of test cases particularly challenging to investigate numerically. To demonstrate the method's viability, we present results from numerical simulations of flow over a NACA 0012 profile wingtip at Rec = 1.2 x106 and compare them against experimental data, which is to date the highest Reynolds number achieved for a LES that has been correlated with experiments for this test case. Our model correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex dominated flows over complex geometries. McLaren Racing/Royal Academy of Engineering Research Chair.
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
NASA Astrophysics Data System (ADS)
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
NASA Astrophysics Data System (ADS)
Prasad, K.; Thorpe, A. K.; Duren, R. M.; Thompson, D. R.; Whetstone, J. R.
2016-12-01
The National Institute of Standards and Technology (NIST) has supported the development and demonstration of a measurement capability to accurately locate greenhouse gas sources and measure their flux to the atmosphere over urban domains. However, uncertainties in transport models which form the basis of all top-down approaches can significantly affect our capability to attribute sources and predict their flux to the atmosphere. Reducing uncertainties between bottom-up and top-down models will require high resolution transport models as well as validation and verification of dispersion models over an urban domain. Tracer experiments involving the release of Perfluorocarbon Tracers (PFTs) at known flow rates offer the best approach for validating dispersion / transport models. However, tracer experiments are limited by cost, ability to make continuous measurements, and environmental concerns. Natural tracer experiments, such as the leak from the Aliso Canyon underground storage facility offers a unique opportunity to improve and validate high resolution transport models, test leak hypothesis, and to estimate the amount of methane released.High spatial resolution (10 m) Large Eddy Simulations (LES) coupled with WRF atmospheric transport models were performed to simulate the dynamics of the Aliso Canyon methane plume and to quantify the source. High resolution forward simulation results were combined with aircraft and tower based in-situ measurements as well as data from NASA airborne imaging spectrometers. Comparison of simulation results with measurement data demonstrate the capability of the LES models to accurately model transport and dispersion of methane plumes over urban domains.
LES Modeling of Supersonic Combustion at SCRAMJET Conditions
NASA Astrophysics Data System (ADS)
Vane, Zachary; Lacaze, Guilhem; Oefelein, Joseph
2016-11-01
Results from a series of large-eddy simulations (LES) of the Hypersonic International Flight Research Experiment (HIFiRE) are examined with emphasis placed on the coupled performance of the wall and combustion models. The test case of interest corresponds to the geometry and conditions found in the ground based experiments performed in the HIFiRE Direct Connect Rig (HDCR) in dual-mode operation. In these calculations, the turbulence and mixing characteristics of the high Reynolds number turbulent boundary layer with multi-species fuel injection are analyzed using a simplified chemical model and combustion closure to predict the heat release measured experimentally. These simulations are then used to identify different flame regimes in the combustor section. Concurrently, the performance of an equilibrium wall-model is evaluated in the vicinity of the fuel injectors and in the flame-holding cavity where regions of boundary layer and thermochemical non-equilibrium are present. Support for this research was provided by the Defense Advanced Research Projects Agency (DARPA).
Improvements, testing and development of the ADM-τ sub-grid surface tension model for two-phase LES
NASA Astrophysics Data System (ADS)
Aniszewski, Wojciech
2016-12-01
In this paper, a specific subgrid term occurring in Large Eddy Simulation (LES) of two-phase flows is investigated. This and other subgrid terms are presented, we subsequently elaborate on the existing models for those and re-formulate the ADM-τ model for sub-grid surface tension previously published by these authors. This paper presents a substantial, conceptual simplification over the original model version, accompanied by a decrease in its computational cost. At the same time, it addresses the issues the original model version faced, e.g. introduces non-isotropic applicability criteria based on resolved interface's principal curvature radii. Additionally, this paper introduces more throughout testing of the ADM-τ, in both simple and complex flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-01-19
The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.
NASA Astrophysics Data System (ADS)
Pepiot, Perrine; Liang, Youwen; Newale, Ashish; Pope, Stephen
2016-11-01
A pre-partitioned adaptive chemistry (PPAC) approach recently developed and validated in the simplified framework of a partially-stirred reactor is applied to the simulation of turbulent flames using a LES/particle PDF framework. The PPAC approach was shown to simultaneously provide significant savings in CPU and memory requirements, two major limiting factors in LES/particle PDF. The savings are achieved by providing each particle in the PDF method with a specialized reduced representation and kinetic model adjusted to its changing composition. Both representation and model are identified efficiently from a pre-determined list using a low-dimensional binary-tree search algorithm, thereby keeping the run-time overhead associated with the adaptive strategy to a minimum. The Sandia D flame is used as benchmark to quantify the performance of the PPAC algorithm in a turbulent combustion setting. In particular, the CPU and memory benefits, the distribution of the various representations throughout the computational domain, and the relationship between the user-defined error tolerances used to derive the reduced representations and models and the actual errors observed in LES/PDF are characterized. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-90ER14128.
NASA Astrophysics Data System (ADS)
Sanford, Ward E.; Plummer, L. Niel; McAda, Douglas P.; Bexfield, Laura M.; Anderholm, Scott K.
The calibration of a groundwater model with the aid of hydrochemical data has demonstrated that low recharge rates in the Middle Rio Grande Basin may be responsible for a groundwater trough in the center of the basin and for a substantial amount of Rio Grande water in the regional flow system. Earlier models of the basin had difficulty reproducing these features without any hydrochemical data to constrain the rates and distribution of recharge. The objective of this study was to use the large quantity of available hydrochemical data to help calibrate the model parameters, including the recharge rates. The model was constructed using the US Geological Survey's software MODFLOW, MODPATH, and UCODE, and calibrated using 14C activities and the positions of certain flow zones defined by the hydrochemical data. Parameter estimation was performed using a combination of nonlinear regression techniques and a manual search for the minimum difference between field and simulated observations. The calibrated recharge values were substantially smaller than those used in previous models. Results from a 30,000-year transient simulation suggest that recharge was at a maximum about 20,000 years ago and at a minimum about 10,000 years ago. Le calibrage d'un modèle hydrogéologique avec l'aide de données hydrochimiques a démontré que la recharge relativement faible dans le Grand Bassin du Middle Rio est vraisemblablement responsable d'une dépression des eaux souterraines dans le centre du bassin et de la présence d'une quantité substantielle d'eau du Rio Grande dans l'aquifère du Groupe de Santa Fe. Les modèles antérieurs avaient des difficultés à reproduire ses conclusions sans l'aide de données hydrochimiques pour contraindre les taux et la distribution de la recharge. L'objectif de cette étude était d'utiliser une grande quantité de données hydrochimiques permettant de calibrer les paramètres du modèle, et notamment les taux de recharge. Le modèle a été construit avec les logiciels MODFLOW, MODPATH et UCODE, et calibré en utilisant les concentrations en 14C et la position de certaines zones définies par les données hydrochimiques. L'estimation de certains paramètres a été réalisée en utilisant une combinaison de techniques de régression non linéaire et une méthode de recherche exhaustive (Brute Force Search) de l'erreur minimum entre les résultats des observations et les simulations. Les valeurs de la recharge calibrée sont substantiellement plus basses que celles estimées dans les modèles antérieurs. Les résultats d'une simulation en régime transitoire sur 30.000 ans suggèrent que la recharge au maximum de la dernière glaciation (last glacial maximum, LGM) était 10 fois supérieure au taux actuel, mais que la recharge qui a suivit la LGM était plus bas que la recharge actuelle. La calibración de un modelo de aguas subterráneas con el apoyo de datos hidroquímicos ha demostrado que la recarga relativamente baja en la cuenca media del Río Grande es probablemente responsable de una depresión de aguas subterráneas en el centro de la cuenca y de la presencia de una cantidad considerable de agua del Río Grande en el acuífero del Grupo Santa Fe. Los modelos propuestos con anterioridad para la cuenca tenían dificultades para reproducir estas características ya que no tenían datos hidroquímicos que permitieran delimitar los ritmos y distribución de recarga. El objetivo del presente estudio consistió en utilizar una gran cantidad de datos hidroquímicos disponibles para ayudar a calibrar los parámetros del modelo, incluyendo los ritmos de recarga. El modelo se construyó utilizando los modelos MODFLOW, MODPATH, y UCODE del USGS, mientras que la calibración se realizó en base a concentraciones de 14C y a la posición de ciertas zonas definidas con los datos hidroquímicos. La estimación de parámetros se realizó en base a una combinación de técnicas de regresiones no lineares y a una búsqueda a viva fuerza del error mínimo entre los datos observados y los simulados. Los valores de recarga calibrados fueron significativamente más bajos que los estimados en los modelos anteriores. Los resultados de una simulación transitoria de 30,000 años sugieren que la recarga durante la última glacial máxima (LGM) fue diez veces el ritmo moderno, pero que la recarga que ocurrió inmediatamente después de la LGM fue más baja que el ritmo moderno.
The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System
NASA Technical Reports Server (NTRS)
Proctor, Fred H.
1998-01-01
Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.
A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation
NASA Astrophysics Data System (ADS)
Vollant, A.; Balarac, G.; Corre, C.
2016-02-01
Large-eddy simulation (LES) solves only the large scales part of turbulent flows by using a scales separation based on a filtering operation. The solution of the filtered Navier-Stokes equations requires then to model the subgrid-scale (SGS) stress tensor to take into account the effect of scales smaller than the filter size. In this work, a new model is proposed for the SGS stress model. The model formulation is based on a regularization procedure of the gradient model to correct its unstable behavior. The model is developed based on a priori tests to improve the accuracy of the modeling for both structural and functional performances, i.e., the model ability to locally approximate the SGS unknown term and to reproduce enough global SGS dissipation, respectively. LES is then performed for a posteriori validation. This work is an extension to the SGS stress tensor of the regularization procedure proposed by Balarac et al. ["A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations," Phys. Fluids 25(7), 075107 (2013)] to model the SGS scalar flux. A set of dynamic regularized gradient (DRG) models is thus made available for both the momentum and the scalar equations. The second objective of this work is to compare this new set of DRG models with direct numerical simulations (DNS), filtered DNS in the case of classic flows simulated with a pseudo-spectral solver and with the standard set of models based on the dynamic Smagorinsky model. Various flow configurations are considered: decaying homogeneous isotropic turbulence, turbulent plane jet, and turbulent channel flows. These tests demonstrate the stable behavior provided by the regularization procedure, along with substantial improvement for velocity and scalar statistics predictions.
Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems
NASA Technical Reports Server (NTRS)
Drozda, T. G.; Sheikhi, R. M.; Givi, Peyman
2001-01-01
The objective of this research is to develop and implement new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. We have just completed two (2) years of Phase I of this research. This annual report provides a brief and up-to-date summary of our activities during the period: September 1, 2000 through August 31, 2001. In the work within the past year, a methodology termed "velocity-scalar filtered density function" (VSFDF) is developed and implemented for large eddy simulation (LES) of turbulent flows. In this methodology the effects of the unresolved subgrid scales (SGS) are taken into account by considering the joint probability density function (PDF) of all of the components of the velocity and scalar vectors. An exact transport equation is derived for the VSFDF in which the effects of the unresolved SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source terms appear in closed form. The remaining unclosed terms in this equation are modeled. A system of stochastic differential equations (SDEs) which yields statistically equivalent results to the modeled VSFDF transport equation is constructed. These SDEs are solved numerically by a Lagrangian Monte Carlo procedure. The consistency of the proposed SDEs and the convergence of the Monte Carlo solution are assessed by comparison with results obtained by an Eulerian LES procedure in which the corresponding transport equations for the first two SGS moments are solved. The unclosed SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source in the Eulerian LES are replaced by corresponding terms from VSFDF equation. The consistency of the results is then analyzed for a case of two dimensional mixing layer.
Development of a Hybrid RANS/LES Method for Compressible Mixing Layer Simulations
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli
2001-01-01
A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modem day aircraft and also those of hypersonic vehicles currently under development. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS/LES method on stretched, non-Cartesian grids. The hybrid RANS/LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two-dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Actual LES calculations, performed in three spatial directions, indicated an initial vortex shedding followed by rapid transition to turbulence, which is in agreement with experimental observations.
Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992
NASA Technical Reports Server (NTRS)
Liou, William W. (Editor)
1992-01-01
The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
NASA Astrophysics Data System (ADS)
Anderson, William; Meneveau, Charles
2010-05-01
A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).
Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest
NASA Astrophysics Data System (ADS)
McGibbon, J.; Bretherton, C. S.
2017-12-01
Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.
Morgan, B. E.; Olson, B. J.; White, J. E.; ...
2017-06-29
High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Qing; Kahn, Brian; Xiao, Heng
2013-08-16
Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared withmore » numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.« less
Algorithmes de couplage RANS et ecoulement potentiel
NASA Astrophysics Data System (ADS)
Gallay, Sylvain
Dans le processus de developpement d'avion, la solution retenue doit satisfaire de nombreux criteres dans de nombreux domaines, comme par exemple le domaine de la structure, de l'aerodynamique, de la stabilite et controle, de la performance ou encore de la securite, tout en respectant des echeanciers precis et minimisant les couts. Les geometries candidates sont nombreuses dans les premieres etapes de definition du produit et de design preliminaire, et des environnements d'optimisations multidisciplinaires sont developpes par les differentes industries aeronautiques. Differentes methodes impliquant differents niveaux de modelisations sont necessaires pour les differentes phases de developpement du projet. Lors des phases de definition et de design preliminaires, des methodes rapides sont necessaires afin d'etudier les candidats efficacement. Le developpement de methodes ameliorant la precision des methodes existantes tout en gardant un cout de calcul faible permet d'obtenir un niveau de fidelite plus eleve dans les premieres phases de developpement du projet et ainsi grandement diminuer les risques associes. Dans le domaine de l'aerodynamisme, les developpements des algorithmes de couplage visqueux/non visqueux permettent d'ameliorer les methodes de calcul lineaires non visqueuses en methodes non lineaires prenant en compte les effets visqueux. Ces methodes permettent ainsi de caracteriser l'ecoulement visqueux sur les configurations et predire entre autre les mecanismes de decrochage ou encore la position des ondes de chocs sur les surfaces portantes. Cette these se focalise sur le couplage entre une methode d'ecoulement potentiel tridimensionnelle et des donnees de section bidimensionnelles visqueuses. Les methodes existantes sont implementees et leurs limites identifiees. Une methode originale est ensuite developpee et validee. Les resultats sur une aile elliptique demontrent la capacite de l'algorithme a de grands angles d'attaques et dans la region post-decrochage. L'algorithme de couplage a ete compare a des donnees de plus haute fidelite sur des configurations issues de la litterature. Un modele de fuselage base sur des relations empiriques et des simulations RANS a ete teste et valide. Les coefficients de portance, de trainee et de moment de tangage ainsi que les coefficients de pression extraits le long de l'envergure ont montre un bon accord avec les donnees de soufflerie et les modeles RANS pour des configurations transsoniques. Une configuration a geometrie hypersustentatoire a permis d'etudier la modelisation des surfaces hypersustentees de la methode d'ecoulement potentiel, demontrant que la cambrure peut etre prise en compte uniquement dans les donnees visqueuses.
NASA Astrophysics Data System (ADS)
Wan, Kaidi; Xia, Jun; Vervisch, Luc; Liu, Yingzu; Wang, Zhihua; Cen, Kefa
2018-03-01
The numerical modelling of alkali metal reacting dynamics in turbulent pulverised-coal combustion is discussed using tabulated sodium chemistry in large eddy simulation (LES). A lookup table is constructed from a detailed sodium chemistry mechanism including five sodium species, i.e. Na, NaO, NaO2, NaOH and Na2O2H2, and 24 elementary reactions. This sodium chemistry table contains four coordinates, i.e. the equivalence ratio, the mass fraction of the sodium element, the gas-phase temperature, and a progress variable. The table is first validated against the detailed sodium chemistry mechanism by zero-dimensional simulations. Then, LES of a turbulent pulverised-coal jet flame is performed and major coal-flame parameters compared against experiments. The chemical percolation devolatilisation (CPD) model and the partially stirred reactor (PaSR) model are employed to predict coal pyrolysis and gas-phase combustion, respectively. The response of the five sodium species in the pulverised-coal jet flame is subsequently examined. Finally, a systematic global sensitivity analysis of the sodium lookup table is performed and the accuracy of the proposed tabulated sodium chemistry approach has been calibrated.
Evaluation of a strain-sensitive transport model in LES of turbulent nonpremixed sooting flames
NASA Astrophysics Data System (ADS)
Lew, Jeffry K.; Yang, Suo; Mueller, Michael E.
2017-11-01
Direct Numerical Simulations (DNS) of turbulent nonpremixed jet flames have revealed that Polycyclic Aromatic Hydrocarbons (PAH) are confined to spatially intermittent regions of low scalar dissipation rate due to their slow formation chemistry. The length scales of these regions are on the order of the Kolmogorov scale or smaller, where molecular diffusion effects dominate over turbulent transport effects irrespective of the large-scale turbulent Reynolds number. A strain-sensitive transport model has been developed to identify such species whose slow chemistry, relative to local mixing rates, confines them to these small length scales. In a conventional nonpremixed ``flamelet'' approach, these species are then modeled with their molecular Lewis numbers, while remaining species are modeled with an effective unity Lewis number. A priori analysis indicates that this strain-sensitive transport model significantly affects PAH yield in nonpremixed flames with essentially no impact on temperature and major species. The model is applied with Large Eddy Simulation (LES) to a series of turbulent nonpremixed sooting jet flames and validated via comparisons with experimental measurements of soot volume fraction.
Damping parameter study of a perforated plate with bias flow
NASA Astrophysics Data System (ADS)
Mazdeh, Alireza
One of the main impediments to successful operation of combustion systems in industrial and aerospace applications including gas turbines, ramjets, rocket motors, afterburners (augmenters) and even large heaters/boilers is the dynamic instability also known as thermo-acoustic instability. Concerns with this ongoing problem have grown with the introduction of Lean Premixed Combustion (LPC) systems developed to address the environmental concerns associated with the conventional combustion systems. The most common way to mitigate thermo-acoustic instability is adding acoustic damping to the combustor using acoustic liners. Recently damping properties of bias flow initially introduced to liners only for cooling purposes have been recognized and proven to be an asset in enhancing the damping effectiveness of liners. Acoustic liners are currently being designed using empirical design rules followed by build-test-improve steps; basically by trial and error. There is growing concerns on the lack of reliability associated with the experimental evaluation of the acoustic liners with small size apertures. The development of physics-based tools in assisting the design of such liners has become of great interest to practitioners recently. This dissertation focuses primarily on how Large-Eddy Simulations (LES) or similar techniques such as Scaled Adaptive Simulation (SAS) can be used to characterize damping properties of bias flow. The dissertation also reviews assumptions made in the existing analytical, semi-empirical, and numerical models, provides a criteria to rank order the existing models, and identifies the best existing theoretical model. Flow field calculations by LES provide good insight into the mechanisms that led to acoustic damping. Comparison of simulation results with empirical and analytical studies shows that LES simulation is a viable alternative to the empirical and analytical methods and can accurately predict the damping behavior of liners. Currently the role of LES for research studies concerned with damping properties of liners is limited to validation of other empirical or theoretical approaches. This research has shown that LES can go beyond that and can be used for performing parametric studies to characterize the sensitivity of acoustic properties of multi--perforated liners to the changes in the geometry and flow conditions and be used as a tool to design acoustic liners. The conducted research provides an insightful understanding about the contribution of different flow and geometry parameters such as perforated plate thickness, aperture radius, porosity factors and bias flow velocity. While the study agrees with previous observations obtained by analytical or experimental methods, it also quantifies the impact from these parameters on the acoustic impedance of perforated plate, a key parameter to determine the acoustic performance of any system. The conducted study has also explored the limitations and capabilities of commercial tool when are applied for performing simulation studies on damping properties of liners. The overall agreement between LES results and previous studies proves that commercial tools can be effectively used for these applications under certain conditions.
Micro Blowing Simulations Using a Coupled Finite-Volume Lattice-Boltzman n L ES Approach
NASA Technical Reports Server (NTRS)
Menon, S.; Feiz, H.
1990-01-01
Three dimensional large-eddy simulations (LES) of single and multiple jet-in-cross-flow (JICF) are conducted using the 19-bit Lattice Boltzmann Equation (LBE) method coupled with a conventional finite-volume (FV) scheme. In this coupled LBE-FV approach, the LBE-LES is employed to simulate the flow inside the jet nozzles while the FV-LES is used to simulate the crossflow. The key application area is the use of this technique is to study the micro blowing technique (MBT) for drag control similar to the recent experiments at NASA/GRC. It is necessary to resolve the flow inside the micro-blowing and suction holes with high resolution without being restricted by the FV time-step restriction. The coupled LBE-FV-LES approach achieves this objectives in a computationally efficient manner. A single jet in crossflow case is used for validation purpose and the results are compared with experimental data and full LBE-LES simulation. Good agreement with data is obtained. Subsequently, MBT over a flat plate with porosity of 25% is simulated using 9 jets in a compressible cross flow at a Mach number of 0.4. It is shown that MBT suppresses the near-wall vortices and reduces the skin friction by up to 50 percent. This is in good agreement with experimental data.
A multivariate quadrature based moment method for LES based modeling of supersonic combustion
NASA Astrophysics Data System (ADS)
Donde, Pratik; Koo, Heeseok; Raman, Venkat
2012-07-01
The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.
Simultaneous identification of transfer functions and combustion noise of a turbulent flame
NASA Astrophysics Data System (ADS)
Merk, M.; Jaensch, S.; Silva, C.; Polifke, W.
2018-05-01
The Large Eddy Simulation/System Identification (LES/SI) approach allows to deduce a flame transfer function (FTF) from LES of turbulent reacting flow: Time series of fluctuations of reference velocity and global heat release rate resulting from broad-band excitation of a simulated turbulent flame are post-processed via SI techniques to derive a low order model of the flame dynamics, from which the FTF is readily deduced. The current work investigates an extension of the established LES/SI approach: In addition to estimation of the FTF, a low order model for the combustion noise source is deduced from the same time series data. By incorporating such a noise model into a linear thermoacoustic model, it is possible to predict the overall level as well as the spectral distribution of sound pressure in confined combustion systems that do not exhibit self-excited thermoacoustic instability. A variety of model structures for estimation of a noise model are tested in the present study. The suitability and quality of these model structures are compared against each other, their sensitivity regarding certain time series properties is studied. The influence of time series length, signal-to-noise ratio as well as acoustic reflection coefficient of the boundary conditions on the identification are examined. It is shown that the Box-Jenkins model structure is superior to simpler approaches for the simultaneous identification of models that describe the FTF as well as the combustion noise source. Subsequent to the question of the most adequate model structure, the choice of optimal model order is addressed, as in particular the optimal parametrization of the noise model is not obvious. Akaike's Information Criterion and a model residual analysis are applied to draw qualitative and quantitative conclusions on the most suitable model order. All investigations are based on a surrogate data model, which allows a Monte Carlo study across a large parameter space with modest computationally effort. The conducted study constitutes a solid basis for the application of advanced SI techniques to actual LES data.
NASA Astrophysics Data System (ADS)
Santoni, Christian; Garcia-Cartagena, Edgardo J.; Zhan, Lu; Iungo, Giacomo Valerio; Leonardi, Stefano
2017-11-01
The integration of wind farm parameterizations into numerical weather prediction models is essential to study power production under realistic conditions. Nevertheless, recent models are unable to capture turbine wake interactions and, consequently, the mean kinetic energy entrainment, which are essential for the development of power optimization models. To address the study of wind turbine wake interaction, one-way nested mesoscale to large-eddy simulation (LES) were performed using the Weather Research and Forecasting model (WRF). The simulation contains five nested domains modeling the mesoscale wind on the entire North Texas Panhandle region to the microscale wind fluctuations and turbine wakes of a wind farm located at Panhandle, Texas. The wind speed, direction and boundary layer profile obtained from WRF were compared against measurements obtained with a sonic anemometer and light detection and ranging system located within the wind farm. Additionally, the power production were assessed against measurements obtained from the supervisory control and data acquisition system located in each turbine. Furthermore, to incorporate the turbines into very coarse LES, a modification to the implementation of the wind farm parameterization by Fitch et al. (2012) is proposed. This work was supported by the NSF, Grants No. 1243482 (WINDINSPIRE) and IIP 1362033 (WindSTAR), and TACC.
Simulating wind and marine hydrokinetic turbines with actuator lines in RANS and LES
NASA Astrophysics Data System (ADS)
Bachant, Peter; Wosnik, Martin
2015-11-01
As wind and marine hydrokinetic (MHK) turbine designs mature, focus is shifting towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow or horizontal-axis turbines, or taking advantage of constructive wake interaction for cross-flow or vertical-axis turbines. Towards this goal, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with moderate Reynolds number experiments and body-fitted mesh, blade-resolving CFD. Work supported by NSF-CBET grant 1150797.
Etude aerodynamique d'un jet turbulent impactant une paroi concave
NASA Astrophysics Data System (ADS)
LeBlanc, Benoit
Etant donne la demande croissante de temperatures elevees dans des chambres de combustion de systemes de propulsions en aerospatiale (turbomoteurs, moteur a reaction, etc.), l'interet dans le refroidissement par jets impactant s'est vu croitre. Le refroidissement des aubes de turbine permet une augmentation de temperature de combustion, ce qui se traduit en une augmentation de l'efficacite de combustion et donc une meilleure economie de carburant. Le transfert de chaleur dans les au bages est influence par les aspects aerodynamiques du refroidissement a jet, particulierement dans le cas d'ecoulements turbulents. Un manque de comprehension de l'aerodynamique a l'interieur de ces espaces confinees peut mener a des changements de transfert thermique qui sont inattendus, ce qui augmente le risque de fluage. Il est donc d'interet pour l'industrie aerospatiale et l'academie de poursuivre la recherche dans l'aerodynamique des jets turbulents impactant les parois courbes. Les jets impactant les surfaces courbes ont deja fait l'objet de nombreuses etudes. Par contre des conditions oscillatoires observees en laboratoire se sont averees difficiles a reproduire en numerique, puisque les structures d'ecoulements impactants des parois concaves sont fortement dependantes de la turbulence et des effets instationnaires. Une etude experimentale fut realisee a l'institut PPRIME a l'Universite de Poitiers afin d'observer le phenomene d'oscillation dans le jet. Une serie d'essais ont verifie les conditions d'ecoulement laminaires et turbulentes, toutefois le cout des essais experimentaux a seulement permis d'avoir un apercu du phenomene global. Une deuxieme serie d'essais fut realisee numeriquement a l'Universite de Moncton avec l'outil OpenFOAM pour des conditions d'ecoulement laminaire et bidimensionnel. Cette etude a donc comme but de poursuivre l'enquete de l'aerodynamique oscillatoire des jets impactant des parois courbes, mais pour un regime d'ecoulement transitoire, turbulent, tridimensionnel. Les nombres de Reynolds utilises dans l'etude numerique, bases sur le diametre du jet lineaire observe, sont de Red = 3333 et 6667, consideres comme etant en transition vers la turbulence. Dans cette etude, un montage numerique est construit. Le maillage, le schema numerique, les conditions frontiere et la discretisation sont discutes et choisis. Les resultats sont ensuite valides avec des donnees turbulentes experimentales. En modelisation numerique de turbulence, les modeles de Moyennage Reynolds des Equations Naviers Stokes (RANS) presentent des difficultes avec des ecoulements instationnaires en regime transitionnel. La Simulation des Grandes Echelles (LES) presente une solution plus precise, mais au cout encore hors de portee pour cette etude. La methode employee pour cette etude est la Simulation des Tourbillons Detaches (DES), qui est un hybride des deux methodes (RANS et LES). Pour analyser la topologie de l'ecoulement, la decomposition des modes propres (POD) a ete egalement ete effectuee sur les resultats numeriques. L'etude a demontre d'abord le temps de calcul relativement eleve associe a des essais DES pour garder le nombre de Courant faible. Les resultats numeriques ont cependant reussi a reproduire correctement le basculement asynchrone observe dans les essais experimentaux. Le basculement observe semble etre cause par des effets transitionnels, ce qui expliquerait la difficulte des modeles RANS a correctement reproduire l'aerodynamique de l'ecoulement. L'ecoulement du jet, a son tour, est pour la plupart du temps tridimensionnel et turbulent sauf pour de courtes periodes de temps stable et independant de la troisieme dimension. L'etude topologique de l'ecoulement a egalement permit la reconaissances de structures principales sousjacentes qui etaient brouillees par la turbulence. Mots cles : jet impactant, paroi concave, turbulence, transitionnel, simulation des tourbillons detaches (DES), OpenFOAM.
A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation
NASA Astrophysics Data System (ADS)
Chapelier, J.-B.; Wasistho, B.; Scalo, C.
2018-04-01
This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ < 1 which corresponds to a small-scale spectral broadening. The SGS dissipation is then fully activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.
1998-04-01
The result of the project is a demonstration of the fusion process, the sensors management and the real-time capabilities using simulated sensors...demonstrator (TAD) is a system that demonstrates the core ele- ment of a battlefield ground surveillance system by simulation in near real-time. The core...Management and Sensor/Platform simulation . The surveillance system observes the real world through a non-collocated heterogene- ous multisensory system
LES/FMDF of turbulent jet ignition in a rapid compression machine
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration
2015-11-01
Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.
NASA Astrophysics Data System (ADS)
Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang
2016-09-01
A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.
Validation of an LES Model for Soot Evolution against DNS Data in Turbulent Jet Flames
NASA Astrophysics Data System (ADS)
Mueller, Michael
2012-11-01
An integrated modeling approach for soot evolution in turbulent reacting flows is validated against three-dimensional Direct Numerical Simulation (DNS) data in a set of n-heptane nonpremixed temporal jet flames. As in the DNS study, the evolution of the soot population is described statistically with the Hybrid Method of Moments (HMOM). The oxidation of the fuel and formation of soot precursors are described with the Radiation Flamelet/Progress Variable (RFPV) model that includes an additional transport equation for Polycyclic Aromatic Hydrocarbons (PAH) to account for the slow chemistry governing these species. In addition, the small-scale interactions between soot, chemistry, and turbulence are described with a presumed subfilter PDF approach that accounts for the very large spatial intermittency characterizing soot in turbulent reacting flows. The DNS dataset includes flames at three different Damköhler numbers to study the influence of global mixing rates on the evolution of PAH and soot. In this work, the ability of the model to capture these trends quantitatively as Damköhler number varies is investigated. In order to reliably assess the LES approach, the LES is initialized from the filtered DNS data after an initial transitional period in an effort to minimize the hydrodynamic differences between the DNS and the LES.
Large Eddy Simulation including population dynamics model for polydisperse droplet evolution
NASA Astrophysics Data System (ADS)
Aiyer, Aditya; Yang, Di; Chamecki, Marcelo; Meneveau, Charles
2017-11-01
Previous studies have shown that dispersion patterns of oil droplets in the ocean following a deep sea oil spill depend critically on droplet diameter. Hence predicting the evolution of the droplet size distribution is of critical importance for predicting macroscopic features of dispersion in the ocean. We adopt a population dynamics model of polydisperse droplet distributions for use in LES. We generalize a breakup model from Reynolds averaging approaches to LES in which the breakup is modeled as due to bombardment of droplets by turbulent eddies of various sizes. The breakage rate is expressed as an integral of a collision frequency times a breakage efficiency over all eddy sizes. An empirical fit to the integral is proposed in order to avoid having to recalculate the integral at every LES grid point and time step. The fit is tested by comparison with various stirred tank experiments. As a flow application for LES we consider a jet of bubbles and large droplets injected at the bottom of the tank. The advected velocity and concentration fields of the drops are described using an Eulerian approach. We study the change of the oil droplet distribution due to breakup caused by interaction of turbulence with the oil droplets. This research was made possible by a Grant from the Gulf of Mexico Research Initiative.
A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.
2003-01-01
The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.
NASA Astrophysics Data System (ADS)
Geisler, Taylor; Padhy, Sourav; Shaqfeh, Eric; Iaccarino, Gianluca
2016-11-01
Both the human health benefit and risk from the inhalation of aerosolized medications is often predicted by extrapolating experimental data taken using nonhuman primates to human inhalation. In this study, we employ Large Eddy Simulation to simulate particle-fluid dynamics in realistic upper airway models of both humans and rhesus monkeys. We report laminar-to-turbulent flow transitions triggered by constrictions in the upper trachea and the persistence of unsteadiness into the low Reynolds number bifurcating lower airway. Micro-particle deposition fraction and locations are shown to depend significantly on particle size. In particular, particle filtration in the nasal airways is shown to approach unity for large aerosols (8 microns) or high-rate breathing. We validate the accuracy of LES mean flow predictions using MRV imaging results. Additionally, particle deposition fractions are validated against experiments in 3 model airways.
Effects of roadway configurations on near-road air quality and the implications on roadway designs
This paper presents an analysis of wind tunnel experiments of twelve different roadway configurations and modeling of these configurations using a Large-Eddy Simulation (LES) model, aiming at investigating how flow structures affect the impact of roadway features on near-road and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roux, A.; Gicquel, L.Y.M.; Staffelbach, G.
2010-01-15
Among all the undesired phenomena observed in ramjet combustors, combustion instabilities are of foremost importance and predicting them using Large Eddy Simulation (LES) is an active research field. While acoustics are naturally captured by compressible LES provided that the proper boundary conditions are applied, combustion/chemistry modelling remains a critical issue and its impact on numerical predictions must still be assessed for complex applications. To do so, two different ramjet LES's are compared here. The first simulation is based on a standard one-step chemistry known to over-estimate the laminar flame speed in fuel rich conditions. The second simulation uses the samemore » scheme but introduces a correction of reaction rates for rich flames to match a detailed mechanism provided by Peters (1993). Even though the two chemical schemes are very similar and very few points burn in rich regimes, distinct limit-cycles are obtained with LES depending on which scheme is used. Results obtained with the standard one-step chemistry exhibit high frequency self-sustained oscillations. Multiple flame fronts are stabilized in the vicinity of the shear layer developing at the exit of the air inlets. When compared to the experiment, the fitted one-step scheme yields better predictions than the standard scheme. With the fitted scheme, the flame is detached from the air inlets and stabilizes in the regions identified in the experiment (Ristori et al. (2005), Heid and Ristori (2003), Heid and Ristori (2005), Ristori et al. (1999)). LES and experiments exhibit all main low-frequency modes including the first longitudinal acoustic mode. The high frequencies excited with the standard scheme are damped with the fitted scheme. The chemical scheme is found, for this ramjet burner, to have a strong impact on the predicted stability: approximate chemical schemes even in a limited range of equivalence ratio can lead to the occurence of non-physical combustion oscillations. (author)« less
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.
Chumakov, Sergei G
2008-09-01
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.
Scalar excursions in large-eddy simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheou, Georgios; Dimotakis, Paul E.
Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less
Scalar excursions in large-eddy simulations
Matheou, Georgios; Dimotakis, Paul E.
2016-08-31
Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less
NASA Technical Reports Server (NTRS)
Bradshaw, Peter (Editor); Rogers, Michael M. (Technical Monitor)
2002-01-01
The ninth Summer Program of the Center for Turbulence Research was held during the period July 29th - August 23rd, 2002. The increase in number of participants, noted in the Preface to the Proceedings of the 2000 Program, continues: this year there were 50 participants from ten countries, and 30 hosts from Stanford and NASA-Ames. This Proceedings volume contains 32 papers that span a wide range of topics and an enormous range of physical scales. The papers have been divided into seven groups: Acoustics, RANS modeling, Combustion, Large-eddy simulation (LES), LES Numerics, Stratified Flows, and Fundamentals, In several cases, a paper could have fitted in more than one group so the classification is somewhat arbitrary.
2014-01-01
mesurer leur expérience. Le groupe a rencontré des experts des technologies associées : les environnements virtuels, la réalité augmentée, les agents...virtuels, l’entraînement, l’ergonomie et la performance humaine. Les réflexions et conclusions issues de ces réunions et discussions sont résumées dans...en matière de EVS/ET (incluant les caractéristiques de l’utilisateur, la mission et l’environnement) et la gestion de l’entraînement est un
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
NASA Astrophysics Data System (ADS)
Saide, P. E.; Steinhoff, D.; Kosovic, B.; Weil, J.; Smith, N.; Blewitt, D.; Delle Monache, L.
2017-12-01
There are a wide variety of methods that have been proposed and used to estimate methane emissions from oil and gas production by using air composition and meteorology observations in conjunction with dispersion models. Although there has been some verification of these methodologies using controlled releases and concurrent atmospheric measurements, it is difficult to assess the accuracy of these methods for more realistic scenarios considering factors such as terrain, emissions from multiple components within a well pad, and time-varying emissions representative of typical operations. In this work we use a large-eddy simulation (LES) to generate controlled but realistic synthetic observations, which can be used to test multiple source term estimation methods, also known as an Observing System Simulation Experiment (OSSE). The LES is based on idealized simulations of the Weather Research & Forecasting (WRF) model at 10 m horizontal grid-spacing covering an 8 km by 7 km domain with terrain representative of a region located in the Barnett shale. Well pads are setup in the domain following a realistic distribution and emissions are prescribed every second for the components of each well pad (e.g., chemical injection pump, pneumatics, compressor, tanks, and dehydrator) using a simulator driven by oil and gas production volume, composition and realistic operational conditions. The system is setup to allow assessments under different scenarios such as normal operations, during liquids unloading events, or during other prescribed operational upset events. Methane and meteorology model output are sampled following the specifications of the emission estimation methodologies and considering typical instrument uncertainties, resulting in realistic observations (see Figure 1). We will show the evaluation of several emission estimation methods including the EPA Other Test Method 33A and estimates using the EPA AERMOD regulatory model. We will also show source estimation results from advanced methods such as variational inverse modeling, and Bayesian inference and stochastic sampling techniques. Future directions including other types of observations, other hydrocarbons being considered, and assessment of additional emission estimation methods will be discussed.
Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES
NASA Astrophysics Data System (ADS)
Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team
2015-11-01
Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.
Saarinen, Pekka E.; Kalliomäki, Petri; Tang, Julian W.; Koskela, Hannu
2015-01-01
The use of hospital isolation rooms has increased considerably in recent years due to the worldwide outbreaks of various emerging infectious diseases. However, the passage of staff through isolation room doors is suspected to be a cause of containment failure, especially in case of hinged doors. It is therefore important to minimize inadvertent contaminant airflow leakage across the doorway during such movements. To this end, it is essential to investigate the behavior of such airflows, especially the overall volume of air that can potentially leak across the doorway during door-opening and human passage. Experimental measurements using full-scale mock-ups are expensive and labour intensive. A useful alternative approach is the application of Computational Fluid Dynamics (CFD) modelling using a time-resolved Large Eddy Simulation (LES) method. In this study simulated air flow patterns are qualitatively compared with experimental ones, and the simulated total volume of air that escapes is compared with the experimentally measured volume. It is shown that the LES method is able to reproduce, at room scale, the complex transient airflows generated during door-opening/closing motions and the passage of a human figure through the doorway between two rooms. This was a basic test case that was performed in an isothermal environment without ventilation. However, the advantage of the CFD approach is that the addition of ventilation airflows and a temperature difference between the rooms is, in principle, a relatively simple task. A standard method to observe flow structures is dosing smoke into the flow. In this paper we introduce graphical methods to simulate smoke experiments by LES, making it very easy to compare the CFD simulation to the experiments. The results demonstrate that the transient CFD simulation is a promising tool to compare different isolation room scenarios without the need to construct full-scale experimental models. The CFD model is able to reproduce the complex airflows and estimate the volume of air escaping as a function of time. In this test, the calculated migrated air volume in the CFD model differed by 20% from the experimental tracer gas measurements. In the case containing only a hinged door operation, without passage, the difference was only 10%. PMID:26151865
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
1993-01-01
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the effects of scalar fluctuations. The implementation of the model requires the knowledge of the local values of the first two SGS moments. These are provided by additional modeled transport equations. In both a priori and a posteriori analyses, the predicted results are appraised by comparison with subgrid averaged results generated by DNS. Based on these results, the paths to be followed in future investigations are identified.
A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Hosangadi, Ashvin; Ahuja, Vineet
2005-01-01
Contents include the following: Background on thermal effects in cavitation. Physical properties of hydrogen. Multi-phase cavitation with thermal effect. Solution procedure. Cavitation model overview. Cavitation source terms. New cavitation model. Source term for bubble growth. One equation les model. Unsteady ogive simulations: liquid nitrogen. Unsteady incompressible flow in a pipe. Time averaged cavity length for NACA15 flowfield.
Large eddy simulation for predicting turbulent heat transfer in gas turbines
Tafti, Danesh K.; He, Long; Nagendra, K.
2014-01-01
Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. PMID:25024418
Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz
2003-01-01
As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.
NASA Astrophysics Data System (ADS)
Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse
2016-08-01
Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the subkilometer resolution of 333 m is necessary to reproduce realistic air pollution patterns in this case of short-range transport over a complex terrain area. Globally, this work contributes to enrich the sparsely documented domain of real nested microscale air pollution modelling. This study dealing with the determination of the proper resolution grid and proper turbulence scheme, is of significant interest to the near-source and complex terrain air quality research community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zihan; Swantek, Andrew; Scarcelli, Riccardo
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence ismore » ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated. Additional parametric studies under different ambient and injection conditions were performed to study their influence on global and local flow structures for gasoline sprays. It is concluded that LES can generally well capture all experimental trends and comes close to matching the x-ray data. Discrepancies between experimental and simulation results can be correlated to uncertainties in boundary and initial conditions such as rate of injection and spray and turbulent dispersion sub-model constants.« less
LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure
NASA Astrophysics Data System (ADS)
Wang, Qing; Wu, Hao; Ihme, Matthias
2015-11-01
The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2018-03-01
Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.
A Sub-filter Scale Noise Equation far Hybrid LES Simulations
NASA Technical Reports Server (NTRS)
Goldstein, Marvin E.
2006-01-01
Hybrid LES/subscale modeling approaches have an important advantage over the current noise prediction methods in that they only involve modeling of the relatively universal subscale motion and not the configuration dependent larger scale turbulence . Previous hybrid approaches use approximate statistical techniques or extrapolation methods to obtain the requisite information about the sub-filter scale motion. An alternative approach would be to adopt the modeling techniques used in the current noise prediction methods and determine the unknown stresses from experimental data. The present paper derives an equation for predicting the sub scale sound from information that can be obtained with currently available experimental procedures. The resulting prediction method would then be intermediate between the current noise prediction codes and previously proposed hybrid techniques.
A dynamic wall model for Large-Eddy simulations of wind turbine dedicated airfoils
NASA Astrophysics Data System (ADS)
J, Calafell; O, Lehmkuhl; A, Carmona; D, Pérez-Segarra C.; A, Oliva
2014-06-01
This work aims at modelling the flow behavior past a wind turbine dedicated airfoil at high Reynolds number and large angle of attack (AoA). The DU-93-W-210 airfoil has been selected. To do this, Large Eddy Simulations (LES) have been performed. Momentum equations have been solved with a parallel unstructured symmetry preserving formulation while the wall-adapting local-eddy viscosity model within a variational multi-scale framework (VMS- WALE) is used as the subgrid-scales model. Since LES calculations are still very expensive at high Reynolds Number, specially at the near-wall region, a dynamic wall model has been implemented in order to overcome this limitation. The model has been validated with a very unresolved Channel Flow case at Reτ = 2000. Afterwards, the model is also tested with the Ahmed Car case, that from the flow physics point of view is more similar to an stalled airfoil than the Channel Flow is, including flow features as boundary layer detachment and recirculations. This case has been selected because experimental results of mean velocity profiles are available. Finally, a flow around a DU-93-W-210 airfoil is computed at Re = 3 x 106 and with an AoA of 15°. Numerical results are presented in comparison with Direct Numerical Simulation (DNS) or experimental data for all cases.
A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models
NASA Astrophysics Data System (ADS)
Pan, Yang; Archer, Cristina L.
2018-04-01
To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.
NASA Astrophysics Data System (ADS)
Chitta, Varun
Modeling of complex flows involving the combined effects of flow transition and streamline curvature using two advanced turbulence models, one in the Reynolds-averaged Navier-Stokes (RANS) category and the other in the hybrid RANS-Large eddy simulation (LES) category is considered in this research effort. In the first part of the research, a new scalar eddy-viscosity model (EVM) is proposed, designed to exhibit physically correct responses to flow transition, streamline curvature, and system rotation effects. The four equation model developed herein is a curvature-sensitized version of a commercially available three-equation transition-sensitive model. The physical effects of rotation and curvature (RC) enter the model through the added transport equation, analogous to a transverse turbulent velocity scale. The eddy-viscosity has been redefined such that the proposed model is constrained to reduce to the original transition-sensitive model definition in nonrotating flows or in regions with negligible RC effects. In the second part of the research, the developed four-equation model is combined with a LES technique using a new hybrid modeling framework, dynamic hybrid RANS-LES. The new framework is highly generalized, allowing coupling of any desired LES model with any given RANS model and addresses several deficiencies inherent in most current hybrid models. In the present research effort, the DHRL model comprises of the proposed four-equation model for RANS component and the MILES scheme for LES component. Both the models were implemented into a commercial computational fluid dynamics (CFD) solver and tested on a number of engineering and generic flow problems. Results from both the RANS and hybrid models show successful resolution of the combined effects of transition and curvature with reasonable engineering accuracy, and for only a small increase in computational cost. In addition, results from the hybrid model indicate significant levels of turbulent fluctuations in the flowfield, improved accuracy compared to RANS models predictions, and are obtained at a significant reduction of computational cost compared to full LES models. The results suggest that the advanced turbulence modeling techniques presented in this research effort have potential as practical tools for solving low/high Re flows over blunt/curved bodies for the prediction of transition and RC effects.
Stevensville West Central Study
J. G. Jones; J. D. Chew; N. K. Christianson; D. J. Silvieus; C. A. Stewart
2000-01-01
This paper reports on an application of two modeling systems in the assessment and planning effort for a 58,038-acre area on the Bitterroot National Forest: SIMulating Vegetative Patterns and Processes at Landscape ScaLEs (SIMPPLLE), and Multi-resource Analysis and Geographic Information System (MAGIS). SIMPPLLE was a useful model for tracking and analyzing an...
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model
Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...
2016-09-16
Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.
Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less
CFD study of mixing miscible liquid with high viscosity difference in a stirred tank
NASA Astrophysics Data System (ADS)
Madhania, S.; Cahyani, A. B.; Nurtono, T.; Muharam, Y.; Winardi, S.; Purwanto, W. W.
2018-03-01
The mixing process of miscible liquids with high viscosity difference is crucial role even though the solution mutually dissolved. This paper describes the mixing behaviour of the water-molasses system in a conical-bottomed cylindrical stirred tank (D = 0.28 m and H = 0.395 m) equipped with a side-entry Marine propeller (d = 0.036 m) under the turbulence regime using a three-dimensional and transient CFD-simulation. The objective of this work is to compare the solution strategies was applied in the computational analysis to capture the detail phenomena of mixing two miscible liquid with high viscosity difference. Four solution strategies that have been used are the RANS Standards k-ε (SKE) model as the turbulence model coupled with the Multiple Reference Frame (MRF) method for impeller motion, the RANS Realizable k-ε (RKE) combine with the MRF, the Large Eddy Simulation (LES) coupled with the Sliding Mesh (SM) method and the LES-MRF combination. The transient calculations were conducted with Ansys Fluent 17.1 version. The mixing behaviour and the propeller characteristic are to be compared and discussed in this work. The simulation results show the differences of flow pattern and the molasses distribution profile for every solution strategy. The variation of the flow pattern which happened in each solution strategy showing an instability of the mixing process in stirred tank. The LES-SM strategy shows the realistic direction of flow than another solution strategies.
NASA Astrophysics Data System (ADS)
Nangia, Nishant; Bhalla, Amneet P. S.; Griffith, Boyce E.; Patankar, Neelesh A.
2016-11-01
Flows over bodies of industrial importance often contain both an attached boundary layer region near the structure and a region of massively separated flow near its trailing edge. When simulating these flows with turbulence modeling, the Reynolds-averaged Navier-Stokes (RANS) approach is more efficient in the former, whereas large-eddy simulation (LES) is more accurate in the latter. Detached-eddy simulation (DES), based on the Spalart-Allmaras model, is a hybrid method that switches from RANS mode of solution in attached boundary layers to LES in detached flow regions. Simulations of turbulent flows over moving structures on a body-fitted mesh incur an enormous remeshing cost every time step. The constraint-based immersed boundary (cIB) method eliminates this operation by placing the structure on a Cartesian mesh and enforcing a rigidity constraint as an additional forcing in the Navier-Stokes momentum equation. We outline the formulation and development of a parallel DES-cIB method using adaptive mesh refinement. We show preliminary validation results for flows past stationary bodies with both attached and separated boundary layers along with results for turbulent flows past moving bodies. This work is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.
Advanced Signal Processing for Integrated LES-RANS Simulations: Anti-aliasing Filters
NASA Technical Reports Server (NTRS)
Schlueter, J. U.
2003-01-01
Currently, a wide variety of flow phenomena are addressed with numerical simulations. Many flow solvers are optimized to simulate a limited spectrum of flow effects effectively, such as single parts of a flow system, but are either inadequate or too expensive to be applied to a very complex problem. As an example, the flow through a gas turbine can be considered. In the compressor and the turbine section, the flow solver has to be able to handle the moving blades, model the wall turbulence, and predict the pressure and density distribution properly. This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS) approach. On the other hand, the flow in the combustion chamber is governed by large scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows that these phenomena require an unsteady approach. Hence, for the combustor, the use of a Large Eddy Simulation (LES) flow solver is desirable. While many design problems of a single flow passage can be addressed by separate computations, only the simultaneous computation of all parts can guarantee the proper prediction of multi-component phenomena, such as compressor/combustor instability and combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the compressor sections, an LES flow solver for the combustor, and again a RANS flow solver for the turbine section.
Characterization and Modeling of Atmospheric Flow Within and Above Plant Canopies
NASA Astrophysics Data System (ADS)
Souza Freire Grion, Livia
The turbulent flow within and above plant canopies is responsible for the exchange of momentum, heat, gases and particles between vegetation and the atmosphere. Turbulence is also responsible for the mixing of air inside the canopy, playing an important role in chemical and biophysical processes occurring in the plants' environment. In the last fifty years, research has significantly advanced the understanding of and ability to model the flow field within and above the canopy, but important issues remain unsolved. In this work, we focus on (i) the estimation of turbulent mixing timescales within the canopy from field data; and (ii) the development of new computationally efficient modeling approaches for the coupled canopy-atmosphere flow field. The turbulent mixing timescale represents how quickly turbulence creates a well-mixed environment within the canopy. When the mixing timescale is much smaller than the timescale of other relevant processes (e.g. chemical reactions, deposition), the system can be assumed to be well-mixed and detailed modeling of turbulence is not critical to predict the system evolution. Conversely, if the mixing timescale is comparable or larger than the other timescales, turbulence becomes a controlling factor for the concentration of the variables involved; hence, turbulence needs to be taken into account when studying and modeling such processes. In this work, we used a combination of ozone concentration and high-frequency velocity data measured within and above the canopy in the Amazon rainforest to characterize turbulent mixing. The eddy diffusivity parameter (used as a proxy for mixing efficiency) was applied in a simple theoretical model of one-dimensional diffusion, providing an estimate of turbulent mixing timescales as a function of height within the canopy and time-of-day. Results showed that, during the day, the Amazon rainforest is characterized by well-mixed conditions with mixing timescales smaller than thirty minutes in the upper-half of the canopy, and partially mixed conditions in the lower half of the canopy. During the night, most of the canopy (except for the upper 20%) is either partially or poorly mixed, resulting in mixing timescales of up to several hours. For the specific case of ozone, the mixing timescales observed during the day are much lower than the chemical and deposition timescales, whereas chemical processes and turbulence have comparable timescales during the night. In addition, the high day-to-day variability in mixing conditions and the fast increase in mixing during the morning transition period indicate that turbulence within the canopy needs to be properly investigated and modeled in many studies involving plant-atmosphere interactions. Motivated by the findings described above, this work proposes and tests a new approach for modeling canopy flows. Typically, vertical profiles of flow statistics are needed to represent canopy-atmosphere exchanges in chemical and biophysical processes happening within the canopy. Current single-column models provide only steady-state (equilibrium) profiles, and rely on closure assumptions that do not represent the dominant non-local turbulent fluxes present in canopy flows. We overcome these issues by adapting the one-dimensional turbulent (ODT) model to represent atmospheric flows from the ground up to the top of the atmospheric boundary layer (ABL). The ODT model numerically resolves the one-dimensional diffusion equation along a vertical line (representing a horizontally homogeneous ABL column), and the presence of three-dimensional turbulence is added through the effect of stochastic eddies. Simulations of ABL without canopy were performed for different atmospheric stabilities and a diurnal cycle, to test the capabilities of this modeling approach in representing unsteady flows with strong non-local transport. In addition, four different types of canopies were simulated, one of them including the transport of scalar with a point source located inside the canopy. The comparison of all simulations with theory and field data provided satisfactory results. The main advantages of using ODT compared to typical 1D canopy-flow models are the ability to represent the coupled canopy-ABL flow with one single modeling approach, the presence of non-local turbulent fluxes, the ability to simulate transient conditions, the straightforward representation of multiple scalar fields, and the presence of only one adjustable parameter (as opposed to the several adjustable constants and boundary conditions needed for other modeling approaches). The results obtained with ODT as a stand-alone model motivated its use as a surface parameterization for Large-Eddy Simulation (LES). In this two-way coupling between LES and ODT, the former is used to simulate the ABL in a case where a canopy is present but cannot be resolved by the LES (i.e., the LES first vertical grid point is above the canopy). ODT is used to represent the flow field between the ground and the first LES grid point, including the region within and just above the canopy. In this work, we tested the ODT-LES model for three different types of canopies and obtained promising results. Although more work is needed in order to improve first and second-order statistics within the canopy (i.e. in the ODT domain), the results obtained for the flow statistics in the LES domain and for the third order statistics in the ODT domain demonstrate that the ODT-LES model is capable of capturing some important features of the canopy-atmosphere interaction. This new surface superparameterization approach using ODT provides a new alternative for simulations that require complex interactions between the flow field and near-surface processes (e.g. sand and snow drift, waves over water surfaces) and can potentially be extended to other large-scale models, such as mesoscale and global circulation models.
A simple method for simulating wind profiles in the boundary layer of tropical cyclones
Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; ...
2016-11-01
A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method alsomore » requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.« less
Turbulent flame spreading mechanisms after spark ignition
NASA Astrophysics Data System (ADS)
Subramanian, V.; Domingo, Pascale; Vervisch, Luc
2009-12-01
Numerical simulation of forced ignition is performed in the framework of Large-Eddy Simulation (LES) combined with a tabulated detailed chemistry approach. The objective is to reproduce the flame properties observed in a recent experimental work reporting probability of ignition in a laboratory-scale burner operating with Methane/air non premixed mixture [1]. The smallest scales of chemical phenomena, which are unresolved by the LES grid, are approximated with a flamelet model combined with presumed probability density functions, to account for the unresolved part of turbulent fluctuations of species and temperature. Mono-dimensional flamelets are simulated using GRI-3.0 [2] and tabulated under a set of parameters describing the local mixing and progress of reaction. A non reacting case was simulated at first, to study the unsteady velocity and mixture fields. The time averaged velocity and mixture fraction, and their respective turbulent fluctuations, are compared against the experimental measurements, in order to estimate the prediction capabilities of LES. The time history of axial and radial components of velocity and mixture fraction is cumulated and analysed for different burner regimes. Based on this information, spark ignition is mimicked on selected ignition spots and the dynamics of kernel development analyzed to be compared against the experimental observations. The possible link between the success or failure of the ignition and the flow conditions (in terms of velocity and composition) at the sparking time are then explored.
A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones
NASA Astrophysics Data System (ADS)
Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.
2017-03-01
A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert
2016-01-01
A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.
A normal stress subgrid-scale eddy viscosity model in large eddy simulation
NASA Technical Reports Server (NTRS)
Horiuti, K.; Mansour, N. N.; Kim, John J.
1993-01-01
The Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly used in large eddy simulations (LES) to represent the effects of the unresolved scales on the resolved scales. This model is known to be limited because its constant must be optimized in different flows, and it must be modified with a damping function to account for near-wall effects. The recent dynamic model is designed to overcome these limitations but is compositionally intensive as compared to the traditional SGS-EVM. In a recent study using direct numerical simulation data, Horiuti has shown that these drawbacks are due mainly to the use of an improper velocity scale in the SGS-EVM. He also proposed the use of the subgrid-scale normal stress as a new velocity scale that was inspired by a high-order anisotropic representation model. The testing of Horiuti, however, was conducted using DNS data from a low Reynolds number channel flow simulation. It was felt that further testing at higher Reynolds numbers and also using different flows (other than wall-bounded shear flows) were necessary steps needed to establish the validity of the new model. This is the primary motivation of the present study. The objective is to test the new model using DNS databases of high Reynolds number channel and fully developed turbulent mixing layer flows. The use of both channel (wall-bounded) and mixing layer flows is important for the development of accurate LES models because these two flows encompass many characteristic features of complex turbulent flows.
The Role of Free-Stream Turbulence on High Pressure Turbine Aero-Thermal Stage Interaction
NASA Astrophysics Data System (ADS)
Kopriva, James Earl
Turbulence plays an important role on the aero-thermal performance of modern aircraft engine High Pressure Turbines (HPT). The role of the vane wake and passage turbulence on the downstream blade flow field is an important consideration for both performance and durability. Obtaining measurements to fully characterize the flow field can be challenging and costly in an experimental facility. Advances in computational Fluid Dynamic (CFD) modeling and High Performance Computing (HPC) are providing opportunity to close these measurement gaps. In order for CFD to be adopted, methods need to be both accurate and efficient. Meshing approaches must also be able to resolve complex HPT geometry while maintaining quality adequate for scale-resolved simulations. Therefore, the accuracy of executing scale-resolved simulations with a second-order code on a mesh of prisms and tetrahedrals in Fluent is considered. Before execution of the HPT computational study, a building block approach is taken to gain quantified predictive performance in the modeling approach as well as understanding limitations in lower computational cost modeling approaches. The predictive capability for Reynolds Averaged Navier Stokes (RANS), Hybrid Large Eddy Simulation (LES), and wall-resolved LES turbulence modeling approaches are first assessed for a cylinder in cross-flow at a Reynolds number of 2580. The flow condition and simple geometry facilitate a quick turn-around for modeling assessment before moving the HPT vane study at high Reynolds and Mach number conditions. Modeling approaches are then assessed relative to the experimental measurements of Arts and Rouvroit (1992) on a pitch-line HPT uncooled vane at high Mach and Reynolds numbers conditions with low (0-6%) free-stream turbulence. The current unstructured second-order LES approach agrees with experimental data and is found to be within the equivalent experimental uncertainty when compared to the structured high-ordered solver FDL3DI. The unstructured Hybrid LES aero-thermal predictions are found to be in close agreement with LES predictions and 4 times more computationally efficient. A sliding mesh approach is then used to understand the complex HPT vane and blade stage aero-thermal interaction at 0 and 20% inlet turbulence. A HPT blade has been designed to pair with the uncooled vane of Arts and Rouvroit (1992) to evaluate the impact of passage turbulence and vane wake on the downstream blade boundary layer as well as wake formation and evolution. The learnings from the statistical 2D pitch-line stage simulations are applied to a 3D annular representation of the geometry including endwalls and blade tip clearance to demonstrate the impact of secondary flows on the overall aero-thermal performance. Compared to the 2D pitchline predictions, the vane and blade overall mass average relative total pressure loss for the 3D geometry increases by 73 and 107%, respectively. The blade loss is shown to be largely driven by the formation of the tip vortex. Hybrid LES predictions show that by increasing stage inlet turbulence by 20% results in up to a 40% increase for the surface heat flux on the vane. However, the impact of stage inlet turbulence is found to be secondary compared to the periodic unsteadiness generated by the vane wake on the downstream blade surface heat transfer and mixing.
NASA Astrophysics Data System (ADS)
Poll, Stefan; Shrestha, Prabhakar; Simmer, Clemens
2017-04-01
Land heterogeneity influences the atmospheric boundary layer (ABL) structure including organized (secondary) circulations which feed back on land-atmosphere exchange fluxes. Especially the latter effects cannot be incorporated explicitly in regional and climate models due to their coarse computational spatial grids, but must be parameterized. Current parameterizations lead, however, to uncertainties in modeled surface fluxes and boundary layer evolution, which feed back to cloud initiation and precipitation. This study analyzes the impact of different horizontal grid resolutions on the simulated boundary layer structures in terms of stability, height and induced secondary circulations. The ICON-LES (Icosahedral Nonhydrostatic in LES mode) developed by the MPI-M and the German weather service (DWD) and conducted within the framework of HD(CP)2 is used. ICON is dynamically downscaled through multiple scales of 20 km, 7 km, 2.8 km, 625 m, 312 m, and 156 m grid spacing for several days over Germany and partial neighboring countries for different synoptic conditions. We examined the entropy spectrum of the land surface heterogeneity at these grid resolutions for several locations close to measurement sites, such as Lindenberg, Jülich, Cabauw and Melpitz, and studied its influence on the surface fluxes and the evolution of the boundary layer profiles.
NASA Astrophysics Data System (ADS)
Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Emory, Mike; Bodart, Julien; Palacios, Francisco; Iaccarino, Gianluca; Eaton, John
2013-11-01
We study the interaction between an oblique shock wave and the turbulent boundary layers inside a nearly-square duct by combining wall-modeled LES, 2D and 3D RANS simulations, targeting the experiment of Campo, Helmer & Eaton, 2012 (nominal conditions: M = 2 . 05 , Reθ = 6 , 500). A primary objective is to quantify the effect of aleatory and epistemic uncertainties on the STBLI. Aleatory uncertainties considered include the inflow conditions (Mach number of the incoming air stream and thickness of the boundary layers) and perturbations of the duct geometry upstream of the interaction. The epistemic uncertainty under consideration focuses on the RANS turbulence model form by injecting perturbations in the Reynolds stress anisotropy in regions of the flow where the model assumptions (in particular, the Boussinesq eddy-viscosity hypothesis) may be invalid. These perturbations are then propagated through the flow solver into the solution. The uncertainty quantification (UQ) analysis is done through 2D and 3D RANS simulations, assessing the importance of the three-dimensional effects imposed by the nearly-square duct geometry. Wall-modeled LES are used to verify elements of the UQ methodology and to explore the flow features and physics of the STBLI for multiple shock strengths. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.
Numerical Prediction of CCV in a PFI Engine using a Parallel LES Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M; Mirzaeian, Mohsen; Millo, Federico
Cycle-to-cycle variability (CCV) is detrimental to IC engine operation and can lead to partial burn, misfire, and knock. Predicting CCV numerically is extremely challenging due to two key reasons. Firstly, high-fidelity methods such as large eddy simulation (LES) are required to accurately resolve the incylinder turbulent flowfield both spatially and temporally. Secondly, CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. Ameen et al. (Int. J. Eng. Res., 2017) developed a parallel perturbation model (PPM) approach to dissociate this long time-scale problem into several shorter timescale problems. The strategy ismore » to perform multiple single-cycle simulations in parallel by effectively perturbing the initial velocity field based on the intensity of the in-cylinder turbulence. This strategy was demonstrated for motored engine and it was shown that the mean and variance of the in-cylinder flowfield was captured reasonably well by this approach. In the present study, this PPM approach is extended to simulate the CCV in a fired port-fuel injected (PFI) SI engine. Two operating conditions are considered – a medium CCV operating case corresponding to 2500 rpm and 16 bar BMEP and a low CCV case corresponding to 4000 rpm and 12 bar BMEP. The predictions from this approach are also shown to be similar to the consecutive LES cycles. Both the consecutive and PPM LES cycles are observed to under-predict the variability in the early stage of combustion. The parallel approach slightly underpredicts the cyclic variability at all stages of combustion as compared to the consecutive LES cycles. However, it is shown that the parallel approach is able to predict the coefficient of variation (COV) of the in-cylinder pressure and burn rate related parameters with sufficient accuracy, and is also able to predict the qualitative trends in CCV with changing operating conditions. The convergence of the statistics predicted by the PPM approach with respect to the number of consecutive cycles required for each parallel simulation is also investigated. It is shown that this new approach is able to give accurate predictions of the CCV in fired engines in less than one-tenth of the time required for the conventional approach of simulating consecutive engine cycles.« less
Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone
NASA Astrophysics Data System (ADS)
Green, Benjamin W.; Zhang, Fuqing
2015-03-01
Current numerical simulations of tropical cyclones (TCs) use a horizontal grid spacing as small as Δx = 103 m, with all boundary layer (BL) turbulence parameterized. Eventually, TC simulations can be conducted at Large Eddy Simulation (LES) resolution, which requires Δx to fall in the inertial subrange (often <102 m) to adequately resolve the large, energy-containing eddies. Between the two lies the so-called "terra incognita" because some of the assumptions used by mesoscale models and LES to treat BL turbulence are invalid. This study performs several 4-6 h simulations of Hurricane Katrina (2005) without a BL parameterization at extremely fine Δx [333, 200, and 111 m, hereafter "Large Eddy Permitting (LEP) runs"] and compares with mesoscale simulations with BL parameterizations (Δx = 3 km, 1 km, and 333 m, hereafter "PBL runs"). There are profound differences in the hurricane BL structure between the PBL and LEP runs: the former have a deeper inflow layer and secondary eyewall formation, whereas the latter have a shallow inflow layer without a secondary eyewall. Among the LEP runs, decreased Δx yields weaker subgrid-scale vertical momentum fluxes, but the sum of subgrid-scale and "grid-scale" fluxes remain similar. There is also evidence that the size of the prevalent BL eddies depends upon Δx, suggesting that convergence to true LES has not yet been reached. Nevertheless, the similarities in the storm-scale BL structure among the LEP runs indicate that the net effect of the BL on the rest of the hurricane may be somewhat independent of Δx.
NASA Astrophysics Data System (ADS)
van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro
2017-08-01
This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.
NASA Astrophysics Data System (ADS)
Saito, Namiko
Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Retau = O(102) - O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Re tau ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.
2-D eddy resolving simulations of flow past a circular array of cylindrical plant stems
NASA Astrophysics Data System (ADS)
Chang, Kyoungsik; Constantinescu, George; Park, Sanghyun
2018-04-01
In the present study, 2-D large eddy simulations (LES) are conducted for flow past a porous circular array with a solid volume fraction (SVF) of 8.8%, 15.4% and 21.5%. Such simulations are relevant to understanding flow in natural streams and channels containing patches of emerged vegetation. In the simulations discussed in the paper, the porous cylinder of diameter D contains a variable number of identical solid circular cylinders (rigid plant stems) of diameter d = 0.048 D. Most of the simulations are conducted at a Reynolds number of 2 100 based on the diameter D and the velocity of the steady uniform incoming flow. Though in all cases wake billows are shed in the regions where the separated shear layers (SSLs) forming on the sides of the porous cylinder interact, the effect of these wake billows on the mean drag is different. While in the high SVF case (21.5%), the total drag force oscillates quasi-regularly in time, similar to the canonical case of a large solid cylinder, in the cases with a lower SVF the shedding of the wake billows takes place sufficiently far from the cylinder such that the unsteady component of the total drag force is negligible. The mean amplitude of the oscillations of the drag force on the individual cylinders is the largest in a streamwise band centered around the center of the porous cylinder, where the wake to wake interactions are the strongest. In all cases the maximum drag force on the individual cylinders is the largest for the cylinders directly exposed to the flow, but this force is always smaller than the one induced on a small isolated cylinder and the average magnitude of the force on the cylinders directly exposed to the flow decreases monotonically with the increase in the SVF. Predictions of the global drag coefficients, Strouhal numbers associated with the wake vortex shedding and individual forces on the cylinders in the array from the present LES are in very good agreement with those of 2-D direct numerical simulations conducted on finer meshes, which suggests LES is a better option to numerically investigate flow in channels containing canopy patches, given that LES is computationally much less expensive than DNS at high Reynolds number. To prove this point, the paper also discusses results of 2-D LES conducted at a much higher Reynolds number, where the near-wake flow is strongly turbulent. For the higher Reynolds number cases, where the influence of the turbulence model is important, the effect of the sub-grid scale model and the predictive capabilities of the unsteady Reynolds averaged Navier-Stokes (RANS) approach to predict flow past porous cylinders are discussed.
Eulerian Time-Domain Filtering for Spatial LES
NASA Technical Reports Server (NTRS)
Pruett, C. David
1997-01-01
Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.
A novel VLES model accounting for near-wall turbulence: physical rationale and applications
NASA Astrophysics Data System (ADS)
Jakirlic, Suad; Chang, Chi-Yao; Kutej, Lukas; Tropea, Cameron
2014-11-01
A novel VLES (Very Large Eddy Simulation) model whose non-resolved residual turbulence is modelled by using an advanced near-wall eddy-viscosity model accounting for the near-wall Reynolds stress anisotropy influence on the turbulence viscosity by modelling appropriately the velocity scale in the relevant formulation (Hanjalic et al., 2004) is proposed. It represents a variable resolution Hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) computational scheme enabling a seamless transition from RANS to LES depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and the `unsteady' scales pertinent to the turbulent properties of the VLES residual motion, which varies within the flow domain. The VLES method is validated interactively in the process of the model derivation by computing fully-developed flow in a plane channel (important representative of wall-bounded flows, underlying the log-law for the velocity field, for studying near-wall Reynolds stress anisotropy) and a separating flow over a periodic arrangement of smoothly-contoured 2-D hills. The model performances are also assessed in capturing the natural decay of the homogeneous isotropic turbulence. The model is finally applied to swirling flow in a vortex tube, flow in an IC-engine configuration and flow past a realistic car model.
Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II
2017-08-11
inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean
Large eddy simulation for predicting turbulent heat transfer in gas turbines.
Tafti, Danesh K; He, Long; Nagendra, K
2014-08-13
Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Torkelson, G. Q.; Stoll, R., II
2017-12-01
Large Eddy Simulation (LES) is a tool commonly used to study the turbulent transport of momentum, heat, and moisture in the Atmospheric Boundary Layer (ABL). For a wide range of ABL LES applications, representing the full range of turbulent length scales in the flow field is a challenge. This is an acute problem in regions of the ABL with strong velocity or scalar gradients, which are typically poorly resolved by standard computational grids (e.g., near the ground surface, in the entrainment zone). Most efforts to address this problem have focused on advanced sub-grid scale (SGS) turbulence model development, or on the use of massive computational resources. While some work exists using embedded meshes, very little has been done on the use of grid refinement. Here, we explore the benefits of grid refinement in a pseudo-spectral LES numerical code. The code utilizes both uniform refinement of the grid in horizontal directions, and stretching of the grid in the vertical direction. Combining the two techniques allows us to refine areas of the flow while maintaining an acceptable grid aspect ratio. In tests that used only refinement of the vertical grid spacing, large grid aspect ratios were found to cause a significant unphysical spike in the stream-wise velocity variance near the ground surface. This was especially problematic in simulations of stably-stratified ABL flows. The use of advanced SGS models was not sufficient to alleviate this issue. The new refinement technique is evaluated using a series of idealized simulation test cases of neutrally and stably stratified ABLs. These test cases illustrate the ability of grid refinement to increase computational efficiency without loss in the representation of statistical features of the flow field.
Large Eddy Simulation Study for Fluid Disintegration and Mixing
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2011-01-01
A new modeling approach is based on the concept of large eddy simulation (LES) within which the large scales are computed and the small scales are modeled. The new approach is expected to retain the fidelity of the physics while also being computationally efficient. Typically, only models for the small-scale fluxes of momentum, species, and enthalpy are used to reintroduce in the simulation the physics lost because the computation only resolves the large scales. These models are called subgrid (SGS) models because they operate at a scale smaller than the LES grid. In a previous study of thermodynamically supercritical fluid disintegration and mixing, additional small-scale terms, one in the momentum and one in the energy conservation equations, were identified as requiring modeling. These additional terms were due to the tight coupling between dynamics and real-gas thermodynamics. It was inferred that if these terms would not be modeled, the high density-gradient magnitude regions, experimentally identified as a characteristic feature of these flows, would not be accurately predicted without the additional term in the momentum equation; these high density-gradient magnitude regions were experimentally shown to redistribute turbulence in the flow. And it was also inferred that without the additional term in the energy equation, the heat flux magnitude could not be accurately predicted; the heat flux to the wall of combustion devices is a crucial quantity that determined necessary wall material properties. The present work involves situations where only the term in the momentum equation is important. Without this additional term in the momentum equation, neither the SGS-flux constant-coefficient Smagorinsky model nor the SGS-flux constant-coefficient Gradient model could reproduce in LES the pressure field or the high density-gradient magnitude regions; the SGS-flux constant- coefficient Scale-Similarity model was the most successful in this endeavor although not totally satisfactory. With a model for the additional term in the momentum equation, the predictions of the constant-coefficient Smagorinsky and constant-coefficient Scale-Similarity models were improved to a certain extent; however, most of the improvement was obtained for the Gradient model. The previously derived model and a newly developed model for the additional term in the momentum equation were both tested, with the new model proving even more successful than the previous model at reproducing the high density-gradient magnitude regions. Several dynamic SGS-flux models, in which the SGS-flux model coefficient is computed as part of the simulation, were tested in conjunction with the new model for this additional term in the momentum equation. The most successful dynamic model was a "mixed" model combining the Smagorinsky and Gradient models. This work is directly applicable to simulations of gas turbine engines (aeronautics) and rocket engines (astronautics).
Wall modeled LES of wind turbine wakes with geometrical effects
NASA Astrophysics Data System (ADS)
Bricteux, Laurent; Benard, Pierre; Zeoli, Stephanie; Moureau, Vincent; Lartigue, Ghislain; Vire, Axelle
2017-11-01
This study focuses on prediction of wind turbine wakes when geometrical effects such as nacelle, tower, and built environment, are taken into account. The aim is to demonstrate the ability of a high order unstructured solver called YALES2 to perform wall modeled LES of wind turbine wake turbulence. The wind turbine rotor is modeled using an Actuator Line Model (ALM) while the geometrical details are explicitly meshed thanks to the use of an unstructured grid. As high Reynolds number flows are considered, sub-grid scale models as well as wall modeling are required. The first test case investigated concerns a wind turbine flow located in a wind tunnel that allows to validate the proposed methodology using experimental data. The second test case concerns the simulation of a wind turbine wake in a complex environment (e.g. a Building) using realistic turbulent inflow conditions.
NASA Astrophysics Data System (ADS)
Corbeil Therrien, Audrey
La tomographie d'emission par positrons (TEP) est un outil precieux en recherche preclinique et pour le diagnostic medical. Cette technique permet d'obtenir une image quantitative de fonctions metaboliques specifiques par la detection de photons d'annihilation. La detection des ces photons se fait a l'aide de deux composantes. D'abord, un scintillateur convertit l'energie du photon 511 keV en photons du spectre visible. Ensuite, un photodetecteur convertit l'energie lumineuse en signal electrique. Recemment, les photodiodes avalanche monophotoniques (PAMP) disposees en matrice suscitent beaucoup d'interet pour la TEP. Ces matrices forment des detecteurs sensibles, robustes, compacts et avec une resolution en temps hors pair. Ces qualites en font un photodetecteur prometteur pour la TEP, mais il faut optimiser les parametres de la matrice et de l'electronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une operation difficile, car les differents parametres interagissent de maniere complexe avec les processus d'avalanche et de generation de bruit. Enfin, l'electronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser differentes strategies de lecture. Pour repondre a cette question, la solution la plus economique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce memoire presentent le developpement d'un tel simulateur. Celui-ci modelise le comportement d'une matrice de PAMP en se basant sur les equations de physique des semiconducteurs et des modeles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les declenchements intempestifs correles et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'electronique de lecture plus adaptees a ce type de detecteur. Au final, le simulateur vise a quantifier l'impact des parametres du photodetecteur sur la resolution en energie et la resolution en temps et ainsi optimiser les performances de la matrice de PAMP. Par exemple, l'augmentation du ratio de surface active ameliore les performances, mais seulement jusqu'a un certain point. D'autres phenomenes lies a la surface active, comme le bruit thermique, provoquent une degradation du resultat. Le simulateur nous permet de trouver un compromis entre ces deux extremes. Les simulations avec les parametres initiaux demontrent une efficacite de detection de 16,7 %, une resolution en energie de 14,2 % LMH et une resolution en temps de 0.478 ns LMH. Enfin, le simulateur propose, bien qu'il vise une application en TEP, peut etre adapte pour d'autres applications en modifiant la source de photons et en adaptant les objectifs de performances. Mots-cles : Photodetecteurs, photodiodes avalanche monophotoniques, semiconducteurs, tomographie d'emission par positrons, simulations, modelisation, detection monophotonique, scintillateurs, circuit d'etouffement, SPAD, SiPM, Photodiodes avalanche operees en mode Geiger
Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.
2012-01-01
This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.
Status of turbulence modeling for hypersonic propulsion flowpaths
NASA Astrophysics Data System (ADS)
Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.
2014-06-01
This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer methods such as large eddy simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath, including laminar-to-turbulent boundary layer transition, shock wave/turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers), and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.
PARALLEL PERTURBATION MODEL FOR CYCLE TO CYCLE VARIABILITY PPM4CCV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin Mohammed; Som, Sibendu
This code consists of a Fortran 90 implementation of the parallel perturbation model to compute cyclic variability in spark ignition (SI) engines. Cycle-to-cycle variability (CCV) is known to be detrimental to SI engine operation resulting in partial burn and knock, and result in an overall reduction in the reliability of the engine. Numerical prediction of cycle-to-cycle variability (CCV) in SI engines is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are required to accurately capture the in-cylinder turbulent flow field, and (ii) CCV is experienced over long timescales and hence the simulations needmore » to be performed for hundreds of consecutive cycles. In the new technique, the strategy is to perform multiple parallel simulations, each of which encompasses 2-3 cycles, by effectively perturbing the simulation parameters such as the initial and boundary conditions. The PPM4CCV code is a pre-processing code and can be coupled with any engine CFD code. PPM4CCV was coupled with Converge CFD code and a 10-time speedup was demonstrated over the conventional multi-cycle LES in predicting the CCV for a motored engine. Recently, the model is also being applied to fired engines including port fuel injected (PFI) and direct injection spark ignition engines and the preliminary results are very encouraging.« less
Center for Modeling of Turbulence and Transition (CMOTT). Research briefs: 1990
NASA Technical Reports Server (NTRS)
Povinelli, Louis A. (Compiler); Liou, Meng-Sing (Compiler); Shih, Tsan-Hsing (Compiler)
1991-01-01
Brief progress reports of the Center for Modeling of Turbulence and Transition (CMOTT) research staff from May 1990 to May 1991 are given. The objectives of the CMOTT are to develop, validate, and implement the models for turbulence and boundary layer transition in the practical engineering flows. The flows of interest are three dimensional, incompressible, and compressible flows with chemistry. The schemes being studied include the two-equation and algebraic Reynolds stress models, the full Reynolds stress (or second moment closure) models, the probability density function models, the Renormalization Group Theory (RNG) and Interaction Approximation (DIA), the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains
NASA Astrophysics Data System (ADS)
Han, Yi; Stoellinger, Michael; Naughton, Jonathan
2016-09-01
In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.
Self-contained filtered density function
Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...
2017-09-18
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less
The Influence of Roof Material on Diurnal Urban Canyon Breathing
NASA Astrophysics Data System (ADS)
Abuhegazy, Mohamed; Yaghoobian, Neda
2017-11-01
Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.
Self-contained filtered density function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less
Self-contained filtered density function
NASA Astrophysics Data System (ADS)
Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.
2017-09-01
The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
NASA Astrophysics Data System (ADS)
Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Maalick, Z.; Korhonen, H.; Liqing, H.
2015-12-01
A new cloud-resolving model setup for studying aerosol-cloud interactions, with a special emphasis on partitioning and wet deposition of semi-volatile aerosol species, is presented. The model is based on modified versions of two well-established model components: the Large-Eddy Simulator (LES) UCLALES, and the sectional aerosol model SALSA, previously employed in the ECHAM climate model family. Implementation of the UCLALES-SALSA is described in detail. As the basis for this work, SALSA has been extended to include a sectional representation of the size distributions of cloud droplets and precipitation. Microphysical processes operating on clouds and precipitation have also been added. Given our main motivation, the cloud droplet size bins are defined according to the dry particle diameter. The droplet wet diameter is solved dynamically through condensation equations, but represents an average droplet diameter inside each size bin. This approach allows for accurate tracking of the aerosol properties inside clouds, but minimizes the computational cost. Since the actual cloud droplet diameter is not fully resolved inside the size bins, processes such as precipitation formation rely on parameterizations. For realistic growth of drizzle drops to rain, which is critical for the aerosol wet deposition, the precipitation size bins are defined according to the actual drop size. With these additions, the implementation of the SALSA model replaces most of the microphysical and thermodynamical components within the LES. The cloud properties and aerosol-cloud interactions simulated by the model are analysed and evaluated against detailed cloud microphysical boxmodel results and in-situ aerosol-cloud interaction observations from the Puijo measurement station in Kuopio, Finland. The ability of the model to reproduce the impacts of wet deposition on the aerosol population is demonstrated.
LES study of microphysical variability bias in shallow cumulus
NASA Astrophysics Data System (ADS)
Kogan, Yefim
2017-05-01
Subgrid-scale (SGS) variability of cloud microphysical variables over the mesoscale numerical weather prediction (NWP) model has been evaluated by means of joint probability distribution functions (JPDFs). The latter were obtained using dynamically balanced Large Eddy Simulation (LES) model dataset from a case of marine trade cumulus initialized with soundings from Rain in Cumulus Over the Ocean (RICO) field project. Bias in autoconversion and accretion rates from different formulations of the JPDFs was analyzed. Approximating the 2-D PDF using a generic
(fixed-in-time), but variable-in-height JPDFs give an acceptable level of accuracy, whereas neglecting the SGS variability altogether results in a substantial underestimate of the grid-mean total conversion rate and producing negative bias in rain water. Nevertheless the total effect on rain formation may be uncertain in the long run due to the fact that the negative bias in rain water may be counterbalanced by the positive bias in cloud water. Consequently, the overall effect of SGS neglect needs to be investigated in direct simulations with a NWP model.
Evaluation of probabilistic flow in two unsaturated soils
NASA Astrophysics Data System (ADS)
Boateng, Samuel
2001-11-01
A variably saturated flow model is coupled to a first-order reliability algorithm to simulate unsaturated flow in two soils. The unsaturated soil properties are considered as uncertain variables with means, standard deviations, and marginal probability distributions. Thus, each simulation constitutes an unsaturated probability flow event. Sensitivities of the uncertain variables are estimated for each event. The unsaturated hydraulic properties of a fine-textured soil and a coarse-textured soil are used. The properties are based on the van Genuchten model. The flow domain has a recharge surface, a seepage boundary along the bottom, and a no-flow boundary along the sides. The uncertain variables are saturated water content, residual water content, van Genuchten model parameters alpha (α) and n, and saturated hydraulic conductivity. The objective is to evaluate the significance of each uncertain variable to the probabilistic flow. Under wet conditions, saturated water content and residual water content are the most significant uncertain variables in the sand. For dry conditions in the sand, however, the van Genuchten model parameters α and n are the most significant. Model parameter n and saturated hydraulic conductivity are the most significant for the wet clay loam. Saturated water content is most significant for the dry clay loam. Résumé. Un modèle d'écoulement variable en milieu saturé est couplé à un algorithme d'exactitude de premier ordre pour simuler les écoulements en milieu non saturé dans deux sols. Les propriétés des sols non saturés sont considérés comme des variables incertaines avec des moyennes, des écarts-types et des distributions de probabilité marginale. Ainsi chaque simulation constitue un événement d'écoulement non saturé probable. La sensibilité des variables incertaines est estimée pour chaque événement. Les propriétés hydrauliques non saturées d'un sol à texture fine et d'un sol à texture grossière sont utilisées. Les propriétés sont basées sur le modèle de van Genuchten. Le domaine d'écoulement possède une surface de recharge, une limite de fuite à sa base et des limites sans écoulement sur les côtés. Les variables incertaines sont la teneur en eau à saturation, la teneur en eau résiduelle, les paramètres alpha (α) et n du modèle de van Genuchten et la conductivité hydraulique à saturation. L'objectif est d'évaluer la signification de chacune des variables incertaines dans l'écoulement probabiliste. Dans des conditions humides, la teneur en eau à saturation et la teneur en eau résiduelle sont les variables incertaines les plus significatives dans le sable. Toutefois, dans des conditions sèches dans le sable, les paramètres α et n du modèle de van Genuchten sont les plus significatifs. Le paramètre n du modèle et la conductivité hydraulique à saturation sont les plus significatifs pour un sol argileux humide. La teneur en eau à saturation est très significative pour le sol argileux sec. Resumen. Se ha acoplado un modelo de flujo de saturación variable con un algoritmo de fiabilidad de primer orden con el fin de simular el flujo no saturado en dos tipos de suelos. Se ha tratado las propiedades del suelo no saturado como variables inciertas, a las que se asigna las medias, desviaciones estándar y distribuciones de probabilidad marginal correspondientes. Así, cada simulación constituye un evento probabilístico de flujo no saturado y la sensibilidad de las variables inciertas es estimada para cada evento. Se ha utilizado las propiedades de la conductividad hidráulica no saturada de dos suelos con dos tipos de textura - fina y gruesa - mediante el modelo de van Genuchten. El dominio de flujo está delimitado por una superficie de recarga, base de goteo y contornos laterales de flujo nulo. Las variables inciertas son el contenido de agua residual, el de saturación, los parámetros del modelo de van Genuchten (α y n) y la conductividad hidráulica saturada. El objetivo era evaluar la contribución de cada variable incierta al flujo probabilístico. Para arenas, las variables inciertas más importantes, en condiciones de humedad, son el contenido de agua residual y el de saturación en ausencia de humedad, lo son ambos parámetros del modelo de van Genuchten. Para margas arcillosas, las variables más significativas en condiciones húmedas son el parámetro n y la conductividad hidráulica saturada; en condiciones secas, el contenido de agua en saturación.
1993-11-01
In this section, we recall definitions of dual linear incoherent KH,’ radar measurables, rainfall rate and the specific attenuation (7) due to...reflectivity data. Two different path lengths (d1,) 10 and 20 from a C-band dual linear polarization radar measurements, Km., have been considered...model for simulation of dual linear polarization radar 7. REFERENCES measurement fields", to be published on lEE 1. Leitao, M. J. and P. A. Watson
Fabrication par injection flexible de pieces coniques pour des applications aerospatiales
NASA Astrophysics Data System (ADS)
Shebib Loiselle, Vincent
Les materiaux composites sont presents dans les tuyeres de moteurs spatiaux depuis les annees soixante. Aujourd'hui, l'avenement des tissus tridimensionnels apporte une solution innovatrice au probleme de delamination qui limitait les proprietes mecaniques de ces composites. L'utilisation de ces tissus necessite toutefois la conception de procedes de fabrication mieux adaptes. Une nouvelle methode de fabrication de pieces composites pour des applications aerospatiales a ete etudiee tout au long de ce travail. Celle-ci applique les principes de l'injection flexible (procede Polyflex) a la fabrication de pieces coniques de fortes epaisseurs. La piece de validation a fabriquer represente un modele reduit de piece de tuyere de moteur spatial. Elle est composee d'un renfort tridimensionnel en fibres de carbone et d'une resine phenolique. La reussite du projet est definie par plusieurs criteres sur la compaction et la formation de plis du renfort et sur la formation de porosites de la piece fabriquee. Un grand nombre d'etapes ont ete necessaires avant la fabrication de deux pieces de validation. Premierement, pour repondre au critere sur la compaction du renfort, la conception d'un outil de caracterisation a ete entreprise. L'etude de la compaction a ete effectuee afin d'obtenir les informations necessaires a la comprehension de la deformation d'un renfort 3D axisymetrique. Ensuite, le principe d'injection de la piece a ete defini pour ce nouveau procede. Pour en valider les concepts proposes, la permeabilite du renfort fibreux ainsi que la viscosite de la resine ont du etre caracterisees. A l'aide de ces donnees, une serie de simulations de l'ecoulement pendant l'injection de la piece ont ete realisees et une approximation du temps de remplissage calculee. Apres cette etape, la conception du moule de tuyere a ete entamee et appuyee par une simulation mecanique de la resistance aux conditions de fabrication. Egalement, plusieurs outillages necessaires pour la fabrication ont ete concus et installes au nouveau laboratoire CGD (composites grandes dimensions). En parallele, plusieurs etudes ont ete effectuees pour comprendre les phenomenes influencant la polymerisation de la resine.
Large eddy simulations and reduced models of the Unsteady Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Momen, M.; Bou-Zeid, E.
2013-12-01
Most studies of the dynamics of Atmospheric Boundary Layers (ABLs) have focused on steady geostrophic conditions, such as the classic Ekman boundary layer problem. However, real-world ABLs are driven by a time-dependent geostrophic forcing that changes at sub-diurnal scales. Hence, to advance our understanding of the dynamics of atmospheric flows, and to improve their modeling, the unsteady cases have to be analyzed and understood. This is particularly relevant to new applications related to wind energy (e.g. short-term forecast of wind power changes) and pollutant dispersion (forecasting of rapid changes in wind velocity and direction after an accidental spill), as well as to classic weather prediction and hydrometeorological applications. The present study aims to investigate the ABL behavior under variable forcing and to derive a simple model to predict the ABL response under these forcing fluctuations. Simplifications of the governing Navier-Stokes equations, with the Coriolis force, are tested using LES and then applied to derive a physical model of the unsteady ABL. LES is then exploited again to validate the analogy and the output of the simpler model. Results from the analytical model, as well as LES outputs, open the way for inertial oscillations to play an important role in the dynamics. Several simulations with different variable forcing patterns are then conducted to investigate some of the characteristics of the unsteady ABL such as resonant frequency, ABL response time, equilibrium states, etc. The variability of wind velocity profiles and hodographs, turbulent kinetic energy, and vertical profiles of the total stress and potential temperature are also examined. Wind Hodograph of the Unsteady ABL at Different Heights - This figure shows fluctuations in the mean u and v components of the velocity as time passes due to variable geostrophic forcing
A large eddy lattice Boltzmann simulation of magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Flint, Christopher; Vahala, George
2018-02-01
Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin-Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.
McGibbon, J.; Bretherton, C. S.
2017-03-17
During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons andmore » meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a –0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m –2 in sensible heat flux (SHF). Altogether, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.« less
NASA Astrophysics Data System (ADS)
Chandler, H.; Mechem, D. B.; Fridlind, A. M.; Ackerman, A. S.
2016-12-01
Although the classical model of how a population of cloud droplets grows to precipitation-sized drops through the condensation and coalescence processes is well accepted, it does not fully address the history of how nascent precipitation drops come about in warm clouds. Precipitation initiation is influenced by the properties of the cloud drop distribution and in bulk large-eddy simulation (LES) models is parameterized by autoconversion. Double-moment formulations of autoconversion rate generally weight cloud water content qc more than cloud drop concentration Nc (e.g., qc2.47Nc-1.79, Khairoutdinov and Kogan 2000) and precipitation rate scalings derived from field campaigns suggest a dominance of thermodynamic over aerosol factors. However, the mechanisms that drive precipitation initiation in any given cloud are still uncertain. From the perspective of autoconversion, do the regions where precipitation onset occurs experience large liquid water content values (large qc), or are they anomalously clean (small Nc)? Recent laboratory measurements suggest that fluctuations in the supersaturation field may also play a role in precipitation initiation. This study explores the nature of precursor conditions to precipitation onset within marine stratocumulus clouds. We apply an LES model with size-resolving microphysics to a case of marine stratocumulus over the eastern north Atlantic. Backward trajectories originating from regions of precipitation initiation are calculated from the time-evolving LES flow fields to examine the history of fluid parcels that ultimately contain embryonic precipitation.
NASA Astrophysics Data System (ADS)
Donnadieu, P.; Dénoyer, F.
1996-11-01
A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.
1993-01-01
The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.
An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows
NASA Astrophysics Data System (ADS)
Sewerin, Fabian; Rigopoulos, Stelios
2017-10-01
Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also indicates the computational efficiency of the numerical solution scheme.
DNS and LES of a Shear-Free Mixing Layer
NASA Technical Reports Server (NTRS)
Knaepen, B.; Debliquy, O.; Carati, D.
2003-01-01
The purpose of this work is twofold. First, given the computational resources available today, it is possible to reach, using DNS, higher Reynolds numbers than in Briggs et al.. In the present study, the microscale Reynolds numbers reached in the low- and high-energy homogeneous regions are, respectively, 32 and 69. The results reported earlier can thus be complemented and their robustness in the presence of increased turbulence studied. The second aim of this work is to perform a detailed and documented LES of the shear-free mixing layer. In that respect, the creation of a DNS database at higher Reynolds number is necessary in order to make meaningful LES assessments. From the point of view of LES, the shear-free mixing-layer is interesting since it allows one to test how traditional LES models perform in the presence of an inhomogeneity without having to deal with difficult numerical issues. Indeed, as argued in Briggs et al., it is possible to use a spectral code to study the shear-free mixing layer and one can thus focus on the accuracy of the modelling while avoiding contamination of the results by commutation errors etc. This paper is organized as follows. First we detail the initialization procedure used in the simulation. Since the flow is not statistically stationary, this initialization procedure has a fairly strong influence on the evolution. Although we will focus here on the shear-free mixing layer, the method proposed in the present work can easily be used for other flows with one inhomogeneous direction. The next section of the article is devoted to the description of the DNS. All the relevant parameters are listed and comparison with the Veeravalli & Warhaft experiment is performed. The section on the LES of the shear-free mixing layer follows. A detailed comparison between the filtered DNS data and the LES predictions is presented. It is shown that simple eddy viscosity models perform very well for the present test case, most probably because the flow seems to be almost isotropic in the small-scale range that is not resolved by the LES.
NASA Technical Reports Server (NTRS)
Krutz, Robert W., Jr.; Bagian, James P.; Burton, Russell R.; Meeker, Larry J.
1990-01-01
Space shuttle crewmembers have been equipped with a launch-entry crew escape system (LES) since the Challenger accident in 1986. Some crewmembers, wearing the new pressure suit, have reported breathing difficulties and increased effort to achieve the desired range of motion. This study was conducted to quantify the reported increased physical workloads and breathing difficulty associated with wearing the LES. Both veteran astronauts and centrifuge panel members were exposed to various + Gx profiles (including simulated shuttle launch) + Gx on the USAF School of Aerospace Medicine (USAFSAM) human-use centrifuge. Maximum heart rate data showed no increased workload associated with arm and head movement in the LES when compared to the flight suit/helmet ensemble (LEH). However, the LES did impose a significant increase in breathing difficulty beginning at +2.5 Gx which was demonstrated by a decrease in forced vital capacity and subjected questionnaries.
Modeling of transport phenomena in tokamak plasmas with neural networks
Meneghini, Orso; Luna, Christopher J.; Smith, Sterling P.; ...
2014-06-23
A new transport model that uses neural networks (NNs) to yield electron and ion heat ux pro les has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest delity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport pro les. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range ofmore » plasma regimes. Although each radial location is calculated independently from the others, the heat ux pro les are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-de ned, non-stochastic relationship between the input parameters and the experimentally measured transport uxes. Finally, the numerical efficiency of this method, requiring only a few CPU-μs per data point, makes it ideal for scenario development simulations and real-time plasma control.« less
Methodologies nouvelles pour la realisation d'essais dans la soufflerie Price-Paidoussis
NASA Astrophysics Data System (ADS)
Flores Salinas, Manuel
Le present memoire en genie de la production automatisee vise a decrire le travail effectue dans la soufflerie Price-Paidoussis du laboratoire LARCASE pour trouver les methodologies experimentales et les procedures de tests, qui seront utilisees avec les modeles d'ailes actuellement au laboratoire. Les methodologies et procedures presentees ici vont permettre de preparer les tests en soufflerie du projet MDO-505 Architectures et technologies deformables pour l'amelioration des performances des ailes, qui se derouleront durant l'annee 2015. D'abord, un bref historique des souffleries subsoniques sera fait. Les differentes sections de la soufflerie Price-Paidoussis seront decrites en mettant l'emphase sur leur influence dans la qualite de l'ecoulement qui se retrouve dans la chambre d'essai. Ensuite, une introduction a la pression, a sa mesure lors de tests en soufflerie et les instruments utilises pour les tests en soufflerie au laboratoire LARCASE sera presente, en particulier le capteur piezoelectrique XCQ-062. Une attention particuliere sera portee au mode de fonctionnement, a son installation, a la mesure et a la detection des frequences et aux sources d'erreurs lorsqu'on utilise des capteurs de haute precision comme la serie XCQ-062 du fournisseur Kulite. Finalement, les procedures et les methodologies elaborees pour les tests dans la soufflerie Price-Paidoussis seront utilisees sur quatre types d'ailes differentes. L'article New methodology for wind tunnel calibration using neural networks - EGD approch portant sur une nouvelle facon de predire les caracteristiques de l'ecoulement a l'interieur de la soufflerie Price-Paidoussis se trouve dans l'annexe 2 de ce document. Cet article porte sur la creation d'un reseau de neurones multicouche et sur l'entrainement des neurones, Ensuite, une comparaison des resultats du reseau de neurones a ete fait avec des valeurs simules avec le logiciel Fluent.
Turbulence in Electrically Conducting Fluids Driven by Rotating and Travelling Magnetic Fields
NASA Astrophysics Data System (ADS)
Stiller, Jörg; Koal, Kristina; Blackburn, Hugh M.
The turbulent flow driven by rotating and travelling magnetic fields in a closed cylinder is investigated by means of direct numerical simulations (DNS) and large eddy simulations (LES). Our model is based on the low-induction, low-frequency approximation and employs a spectral-element/Fourier method for discretisation. The spectral vanishing viscosity (SVV) technique was adopted for the LES. The study provides first insights into the developed turbulent flow. In the RMF case, Taylor-Görtler vortices remain the dominant turbulence mechanism, as already in the transitional regime. In contrast to previous predictions we found no evidence that the vortices are confined closer to the wall for higher forcing. In the TMF more than 50 percent of the kinetic energy is bound to the turbulent fluctuations, which renders this field an interesting candidate for mixing applications.
Large-Eddy Simulation (LES) of a Compressible Mixing Layer and the Significance of Inflow Turbulence
NASA Technical Reports Server (NTRS)
Mankbadi, Mina Reda; Georgiadis, Nicholas J.; Debonis, James R.
2017-01-01
In the context of Large Eddy Simulations (LES), the effects of inflow turbulence are investigated through the Synthetic Eddy Method (SEM). The growth rate of a turbulent compressible mixing layer corresponding to operating conditions of GeobelDutton Case 2 is investigated herein. The effects of spanwise width on the growth rate of the mixing layer is investigated such that spanwise width independence is reached. The error in neglecting inflow turbulence effects is quantified by comparing two methodologies: (1) Hybrid-RANS-LES methodology and (2) SEM-LES methodology. Best practices learned from Case 2 are developed herein and then applied to a higher convective mach number corresponding to Case 4 experiments of GeobelDutton.
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Pope, Stephen B.
2014-05-01
A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.
NASA Astrophysics Data System (ADS)
SUN, G.; Hu, Z.; Ma, Y.; Ma, W.
2017-12-01
The land-atmospheric interactions over a heterogeneous surface is a tricky issue for accurately understanding the energy-water exchanges between land surface and atmosphere. We investigate the vertical transport of energy and water over a heterogeneous land surface in Tibetan Plateau during the evolution of the convective boundary layer using large eddy simulation (WRF_LES). The surface heterogeneity is created according to remote sensing images from high spatial resolution LandSat ETM+ images. The PBL characteristics over a heterogeneous surface are analyzed in terms of secondary circulations under different background wind conditions based on the horizontal and vertical distribution and evolution of wind. The characteristics of vertical transport of energy and heat over a heterogeneous surface are analyzed in terms of the horizontal distribution as well as temporal evolution of sensible and latent heat fluxes at different heights under different wind conditions on basis of the simulated results from WRF_LES. The characteristics of the heat and water transported into the free atmosphere from surface are also analyzed and quantified according to the simulated results from WRF_LES. The convective transport of energy and water are analyzed according to horizontal and vertical distributions of potential temperature and vapor under different background wind conditions. With the analysis based on the WRF_LES simulation, the performance of PBL schemes of mesoscale simulation (WRF_meso) is evaluated. The comparison between horizontal distribution of vertical fluxes and domain-averaged vertical fluxes of the energy and water in the free atmosphere is used to evaluate the performance of PBL schemes of WRF_meso in the simulation of vertical exchange of energy and water. This is an important variable because only the energy and water transported into free atmosphere is able to influence the regional and even global climate. This work would will be of great significance not only for understanding the land atmosphere interactions over a heterogeneous surface by evaluating and improving the performance PBL schemes in WRF-meso, but also for the understanding the profound effect of Tibetan Plateau on the regional and global climate.
Mechem, David B.; Giangrande, Scott E.; Wittman, Carly S.; ...
2015-03-13
A case of shallow cumulus and precipitating cumulus congestus sampled at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) supersite is analyzed using a multi-sensor observational approach and numerical simulation. Observations from a new radar suite surrounding the facility are used to characterize the evolving statistical behavior of the precipitating cloud system. This is accomplished using distributions of different measures of cloud geometry and precipitation properties. Large-eddy simulation (LES) with size-resolved (bin) microphysics is employed to determine the forcings most important in producing the salient aspects of the cloud system captured in the radar observations. Our emphasis ismore » on assessing the importance of time-varying vs. steady-state large-scale forcing on the model's ability to reproduce the evolutionary behavior of the cloud system. Additional consideration is given to how the characteristic spatial scale and homogeneity of the forcing imposed on the simulation influences the evolution of cloud system properties. Results indicate that several new scanning radar estimates such as distributions of cloud top are useful to differentiate the value of time-varying (or at least temporally well-matched) forcing on LES solution fidelity.« less
Computational modeling of unsteady loads in tidal boundary layers
NASA Astrophysics Data System (ADS)
Alexander, Spencer R.
As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.
A resolvable subfilter-scale model specific to large-eddy simulation of under-resolved turbulence
NASA Astrophysics Data System (ADS)
Zhou, Yong; Brasseur, James G.; Juneja, Anurag
2001-09-01
Large-eddy simulation (LES) of boundary-layer flows has serious deficiencies near the surface when a viscous sublayer either does not exist (rough walls) or is not practical to resolve (high Reynolds numbers). In previous work, we have shown that the near-surface errors arise from the poor performance of algebraic subfilter-scale (SFS) models at the first several grid levels, where integral scales are necessarily under-resolved and the turbulence is highly anisotropic. In under-resolved turbulence, eddy viscosity and similarity SFS models create a spurious feedback loop between predicted resolved-scale (RS) velocity and modeled SFS acceleration, and are unable to simultaneously capture SFS acceleration and RS-SFS energy flux. To break the spurious coupling in a dynamically meaningful manner, we introduce a new modeling strategy in which the grid-resolved subfilter velocity is estimated from a separate dynamical equation containing the essential inertial interactions between SFS and RS velocity. This resolved SFS (RSFS) velocity is then used as a surrogate for the complete SFS velocity in the SFS stress tensor. We test the RSFS model by comparing LES of highly under-resolved anisotropic buoyancy-generated homogeneous turbulence with a corresponding direct numerical simulation (DNS). The new model successfully suppresses the spurious feedback loop between RS velocity and SFS acceleration, and greatly improves model predictions of the anisotropic structure of SFS acceleration and resolved velocity fields. Unlike algebraic models, the RSFS model accurately captures SFS acceleration intensity and RS-SFS energy flux, even during the nonequilibrium transient, and properly partitions SFS acceleration between SFS stress divergence and SFS pressure force.
Progress Towards an LES Wall Model Including Unresolved Roughness
NASA Astrophysics Data System (ADS)
Craft, Kyle; Redman, Andrew; Aikens, Kurt
2015-11-01
Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Wind Farm LES Simulations Using an Overset Methodology
NASA Astrophysics Data System (ADS)
Ananthan, Shreyas; Yellapantula, Shashank
2017-11-01
Accurate simulation of wind farm wakes under realistic atmospheric inflow conditions and complex terrain requires modeling a wide range of length and time scales. The computational domain can span several kilometers while requiring mesh resolutions in O(10-6) to adequately resolve the boundary layer on the blade surface. Overset mesh methodology offers an attractive option to address the disparate range of length scales; it allows embedding body-confirming meshes around turbine geomtries within nested wake capturing meshes of varying resolutions necessary to accurately model the inflow turbulence and the resulting wake structures. Dynamic overset hole-cutting algorithms permit relative mesh motion that allow this nested mesh structure to track unsteady inflow direction changes, turbine control changes (yaw and pitch), and wake propagation. An LES model with overset mesh for localized mesh refinement is used to analyze wind farm wakes and performance and compared with local mesh refinements using non-conformal (hanging node) unstructured meshes. Turbine structures will be modeled using both actuator line approaches and fully-resolved structures to test the efficacy of overset methods for wind farm applications. Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science and the National Nuclear Security Administration.
NASA Astrophysics Data System (ADS)
Chapelier, Jean-Baptiste; Wasistho, Bono; Scalo, Carlo
2017-11-01
A new approach to Large-Eddy Simulation (LES) is introduced, where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated in regions dominated by large-scale vortical motion. The proposed CvP-LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy: σ = ξ ∧ / ξ . Values of σ = 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale model. Values of σ < 1 span conditions ranging from incipient spectral broadening σ <= 1 , to equilibrium turbulence σ =σeq < 1 , where σeq is solely as a function of the test-to-grid filter-width ratio Δ ∧ / Δ , derived assuming a Kolmogorov's spectrum. Eddy viscosity is fully restored for σ <=σeq . The proposed approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. A CvP-LES of a pair of unstable helical vortices, representative of rotor-blade wake dynamics, show the ability of the method to sort the coherent motion from the small-scale dynamics. This work is funded by subcontract KSC-17-001 between Purdue University and Kord Technologies, Inc (Huntsville), under the US Navy Contract N68335-17-C-0159 STTR-Phase II, Purdue Proposal No. 00065007, Topic N15A-T002.
Anisotropy of Observed and Simulated Turbulence in Marine Stratocumulus
NASA Astrophysics Data System (ADS)
Pedersen, J. G.; Ma, Y.-F.; Grabowski, W. W.; Malinowski, S. P.
2018-02-01
Anisotropy of turbulence near the top of the stratocumulus-topped boundary layer (STBL) is studied using large-eddy simulation (LES) and measurements from the POST and DYCOMS-II field campaigns. Focusing on turbulence ˜100 m below the cloud top, we see remarkable similarity between daytime and nocturnal flight data covering different inversion strengths and free-tropospheric conditions. With λ denoting wavelength and zt cloud-top height, we find that turbulence at λ/zt≃0.01 is weakly dominated by horizontal fluctuations, while turbulence at λ/zt>1 becomes strongly dominated by horizontal fluctuations. Between are scales at which vertical fluctuations dominate. Typical-resolution LES of the STBL (based on POST flight 13 and DYCOMS-II flight 1) captures observed characteristics of below-cloud-top turbulence reasonably well. However, using a fixed vertical grid spacing of 5 m, decreasing the horizontal grid spacing and increasing the subgrid-scale mixing length leads to increased dominance of vertical fluctuations, increased entrainment velocity, and decreased liquid water path. Our analysis supports the notion that entrainment parameterizations (e.g., in climate models) could potentially be improved by accounting more accurately for anisotropic deformation of turbulence in the cloud-top region. While LES has the potential to facilitate improved understanding of anisotropic cloud-top turbulence, sensitivity to grid spacing, grid-box aspect ratio, and subgrid-scale model needs to be addressed.
Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows
NASA Astrophysics Data System (ADS)
Xiao, Xudong
Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.
Large Eddy Simulation of Flow in Turbine Cascades Using LESTool and UNCLE Codes
NASA Technical Reports Server (NTRS)
Huang, P. G.
2004-01-01
During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Large Eddy Simulation of Flow in Turbine Cascades Using LEST and UNCLE Codes
NASA Technical Reports Server (NTRS)
Ashpis, David (Technical Monitor); Huang, P. G.
2004-01-01
During the period December 23, 1997 and December August 31, 2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Large eddy simulations of compressible magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Grete, Philipp
2017-02-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the subsonic (sonic Mach number M s ≈ 0.2) to the highly supersonic (M s ≈ 20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ≈ 3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.
A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin
NASA Astrophysics Data System (ADS)
Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.
2016-12-01
Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.
Studying marine stratus with large eddy simulation
NASA Technical Reports Server (NTRS)
Moeng, Chin-Hoh
1990-01-01
Data sets from field experiments over the stratocumulus regime may include complications from larger scale variations, decoupled cloud layers, diurnal cycle, or entrainment instability, etc. On top of the already complicated turbulence-radiation-condensation processes within the cloud-topped boundary layer (CTBL), these complexities may sometimes make interpretation of the data sets difficult. To study these processes, a better understanding is needed of the basic processes involved in the prototype CTBL. For example, is cloud top radiative cooling the primary source of the turbulent kinetic energy (TKE) within the CTBL. Historically, laboratory measurements have played an important role in addressing the turbulence problems. The CTBL is a turbulent field which is probably impossible to generate in laboratories. Large eddy simulation (LES) is an alternative way of 'measuring' the turbulent structure under controlled environments, which allows the systematic examination of the basic physical processes involved. However, there are problems with the LES approach for the CTBL. The LES data need to be consistent with the observed data. The LES approach is discussed, and results are given which provide some insights into the simulated turbulent flow field. Problems with this approach for the CTBL and information from the FIRE experiment needed to justify the LES results are discussed.
Design optimization using adjoint of Long-time LES for the trailing edge of a transonic turbine vane
NASA Astrophysics Data System (ADS)
Talnikar, Chaitanya; Wang, Qiqi
2017-11-01
Adjoint-based design optimization methods have been applied to low-fidelity simulation methods like Reynolds Averaged Navier-Stokes (RANS) and are useful for designing fluid machinery components. But to reliably capture the complex flow phenomena involved in turbomachinery, high fidelity simulations like large eddy simulation (LES) are required. Unfortunately due to the chaotic dynamics of turbulence, the unsteady adjoint method for LES diverges and produces incorrect gradients. Using a viscosity stabilized unsteady adjoint method developed for LES, the gradient can be obtained with reasonable accuracy. In this paper, design of the trailing edge of a gas turbine inlet guide vane is performed with the objective to reduce stagnation pressure loss and heat transfer over the surface of the vane. Slight changes in the shape of trailing edge can significantly impact these quantities by altering the boundary layer development process and separation points. The trailing edge is parameterized using a linear combination of 5 convex designs. Bayesian optimization is used as a global optimizer with the objective function evaluated from the LES and gradients obtained using the viscosity adjoint method. Results from the optimization, performed on the supercomputer Mira, are presented.
Adaptability in Coalition Teamwork (Faculte d’adaptation au travail d’ equipe en coalition)
2008-04-01
et des outils sont nécessaires au développement rapide d’équipes multiculturelles efficaces pour assurer le succès des missions, celles-ci étant...Les principaux résultats des 30 communications théoriques et de recherche ont été les suivants : • Les outils de formation (jeux, simulations...parmi les militaires ; • Le retour d’information sur le moral et les performances des équipes en opérations est un instrument qui est particulièrement
Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
You, Jiaping; Yang, Yue
2016-11-01
We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).
Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Hamilton, David W.; Han, Jongil
2000-01-01
Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quon, Eliot; Churchfield, Matthew; Cheung, Lawrence
This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatiallymore » averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.« less
Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quon, Eliot W.; Churchfield, Matthew J.; Cheung, Lawrence
This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatiallymore » averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.« less
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya
2015-01-01
Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.
NASA Astrophysics Data System (ADS)
Tan, Zhihong; Schneider, Tapio; Teixeira, João.; Pressel, Kyle G.
2016-12-01
Large-eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large-scale processes need to be prescribed or represented parameterically in the limited-area LES domains. It is important that the representation of large-scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e.g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change.
LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme
NASA Technical Reports Server (NTRS)
Hadjadj, A; Yee, H. C.; Sjogreen, B.
2011-01-01
An eighth-order filter method for a wide range of compressible flow speeds (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) are employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high order filter method is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The value of Mc considered is for the TML range from the quasi-incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self similarity property, compressibility effects and the presence of large-scale structure with shocklets for high Mc) are considered for the LES study. The LES results using the same scheme parameters for all studied cases agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002).
NASA Astrophysics Data System (ADS)
Khani, Sina; Porté-Agel, Fernando
2017-12-01
The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.
Crosswind Shear Gradient Affect on Wake Vortices
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
Effect of LES models on the entrainment characteristics in a turbulent planar jet
NASA Astrophysics Data System (ADS)
Chambel Lopes, Diogo; da Silva, Carlos; Raman, Venkat
2012-11-01
The effect of subgrid-scale (SGS) models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent: it has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. In this work direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. LES show that different SGS modes lead to different spreading rates for the velocity and scalar fields, and the scalar quantities are more affected than the velocity e.g. SGS models affect strongly the centreline mean scalar decay than the centreline mean velocity decay. The results suggest the need for a minimum resolution close to the Taylor micro-scale in order to recover the correct results for the integral quantities and this can be explained by recent results on the dynamics of the T/NT interface.
Local dynamic subgrid-scale models in channel flow
NASA Technical Reports Server (NTRS)
Cabot, William H.
1994-01-01
The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.
1995-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.
The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2001-01-01
A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borghesi, Giulio; Bellan, Josette, E-mail: josette.bellan@jpl.nasa.gov; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099
2015-03-15
A Direct Numerical Simulation (DNS) database was created representing mixing of species under high-pressure conditions. The configuration considered is that of a temporally evolving mixing layer. The database was examined and analyzed for the purpose of modeling some of the unclosed terms that appear in the Large Eddy Simulation (LES) equations. Several metrics are used to understand the LES modeling requirements. First, a statistical analysis of the DNS-database large-scale flow structures was performed to provide a metric for probing the accuracy of the proposed LES models as the flow fields obtained from accurate LESs should contain structures of morphology statisticallymore » similar to those observed in the filtered-and-coarsened DNS (FC-DNS) fields. To characterize the morphology of the large-scales structures, the Minkowski functionals of the iso-surfaces were evaluated for two different fields: the second-invariant of the rate of deformation tensor and the irreversible entropy production rate. To remove the presence of the small flow scales, both of these fields were computed using the FC-DNS solutions. It was found that the large-scale structures of the irreversible entropy production rate exhibit higher morphological complexity than those of the second invariant of the rate of deformation tensor, indicating that the burden of modeling will be on recovering the thermodynamic fields. Second, to evaluate the physical effects which must be modeled at the subfilter scale, an a priori analysis was conducted. This a priori analysis, conducted in the coarse-grid LES regime, revealed that standard closures for the filtered pressure, the filtered heat flux, and the filtered species mass fluxes, in which a filtered function of a variable is equal to the function of the filtered variable, may no longer be valid for the high-pressure flows considered in this study. The terms requiring modeling are the filtered pressure, the filtered heat flux, the filtered pressure work, and the filtered species mass fluxes. Improved models were developed based on a scale-similarity approach and were found to perform considerably better than the classical ones. These improved models were also assessed in an a posteriori study. Different combinations of the standard models and the improved ones were tested. At the relatively small Reynolds numbers achievable in DNS and at the relatively small filter widths used here, the standard models for the filtered pressure, the filtered heat flux, and the filtered species fluxes were found to yield accurate results for the morphology of the large-scale structures present in the flow. Analysis of the temporal evolution of several volume-averaged quantities representative of the mixing layer growth, and of the cross-stream variation of homogeneous-plane averages and second-order correlations, as well as of visualizations, indicated that the models performed equivalently for the conditions of the simulations. The expectation is that at the much larger Reynolds numbers and much larger filter widths used in practical applications, the improved models will have much more accurate performance than the standard one.« less
Boundary Layer Simulation and Control in Wind Tunnels
1988-04-01
de l’art dans le domaine de la simulation de la couche limite, ou le nombre de Reynolds n’est pas ou ne peut pas etre simule, examine les effets ...pour la definition de certains essais en soufflerie oil les effets visqueux sont d’une importance particuliere. CONTENTS Page PREFACE iii 1...transition associated with cylindrical bodies at high incidence in subsonic flow. Other relevant references are given therein. Figures 11 a-b, from Ref
Macroscopic analysis of gas-jet wiping: Numerical simulation and experimental approach
NASA Astrophysics Data System (ADS)
Lacanette, Delphine; Gosset, Anne; Vincent, Stéphane; Buchlin, Jean-Marie; Arquis, Éric
2006-04-01
Coating techniques are frequently used in industrial processes such as paper manufacturing, wire sleeving, and in the iron and steel industry. Depending on the application considered, the thickness of the resulting substrate is controlled by mechanical (scraper), electromagnetic (if the entrained fluid is appropriated), or hydrodynamic (gas-jet wiping) operations. This paper deals with the latter process, referred to as gas-jet wiping, in which a turbulent slot jet is used to wipe the coating film dragged by a moving substrate. This mechanism relies on the gas-jet-liquid film interaction taking place on the moving surface. The aim of this study is to compare the results obtained by a lubrication one-dimensional model, numerical volume of fluid-large eddy simulation (VOF-LES) modeling and an experimental approach. The investigation emphasizes the effect of the controlling wiping parameters, i.e., the pressure gradient and shear stress distributions induced by the jet, on the shape of the liquid film. Those profiles obtained experimentally and numerically for a jet impinging on a dry fixed surface are compared. The effect of the substrate motion and the presence of the dragged liquid film on these actuators are analyzed through numerical simulations. Good agreement is found between the film thickness profile in the wiping zone obtained from the VOF-LES simulations and with the analytical model, provided that a good model for the wiping actuators is used. The effect of the gas-jet nozzle to substrate standoff distance on the final coating thickness is analyzed; the experimental and predicted values are compared for a wide set of conditions. Finally, the occurrence of the splashing phenomenon, which is characterized by the ejection of droplets from the runback film flow at jet impingement, thus limiting the wiping process, is investigated through experiments and numerical simulations.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applicationsmore » and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.« less
Artificial fluid properties for large-eddy simulation of compressible turbulent mixing
NASA Astrophysics Data System (ADS)
Cook, Andrew W.
2007-05-01
An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.
Idealized gas turbine combustor for performance research and validation of large eddy simulations.
Williams, Timothy C; Schefer, Robert W; Oefelein, Joseph C; Shaddix, Christopher R
2007-03-01
This paper details the design of a premixed, swirl-stabilized combustor that was designed and built for the express purpose of obtaining validation-quality data for the development of large eddy simulations (LES) of gas turbine combustors. The combustor features nonambiguous boundary conditions, a geometrically simple design that retains the essential fluid dynamics and thermochemical processes that occur in actual gas turbine combustors, and unrestrictive access for laser and optical diagnostic measurements. After discussing the design detail, a preliminary investigation of the performance and operating envelope of the combustor is presented. With the combustor operating on premixed methane/air, both the equivalence ratio and the inlet velocity were systematically varied and the flame structure was recorded via digital photography. Interesting lean flame blowout and resonance characteristics were observed. In addition, the combustor exhibited a large region of stable, acoustically clean combustion that is suitable for preliminary validation of LES models.
Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...
2015-04-29
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less
Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500.
Janiga, Gábor
2014-04-01
This work investigates the flow in a benchmark nozzle model of an idealized medical device proposed by the FDA using computational fluid dynamics (CFD). It was in particular shown that a proper modeling of the transitional flow features is particularly challenging, leading to large discrepancies and inaccurate predictions from the different research groups using Reynolds-averaged Navier-Stokes (RANS) modeling. In spite of the relatively simple, axisymmetric computational geometry, the resulting turbulent flow is fairly complex and non-axisymmetric, in particular due to the sudden expansion. The resulting flow cannot be well predicted with simple modeling approaches. Due to the varying diameters and flow velocities encountered in the nozzle, different typical flow regions and regimes can be distinguished, from laminar to transitional and to weakly turbulent. The purpose of the present work is to re-examine the FDA-CFD benchmark nozzle model at a Reynolds number of 6500 using large eddy simulation (LES). The LES results are compared with published experimental data obtained by Particle Image Velocimetry (PIV) and an excellent agreement can be observed considering the temporally averaged flow velocities. Different flow regimes are characterized by computing the temporal energy spectra at different locations along the main axis. Copyright © 2014 Elsevier Ltd. All rights reserved.
"Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow
NASA Technical Reports Server (NTRS)
Gorokhovski, M.; Chtab, A.
2003-01-01
The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.
A method for obtaining a statistically stationary turbulent free shear flow
NASA Technical Reports Server (NTRS)
Timson, Stephen F.; Lele, S. K.; Moser, R. D.
1994-01-01
The long-term goal of the current research is the study of Large-Eddy Simulation (LES) as a tool for aeroacoustics. New algorithms and developments in computer hardware are making possible a new generation of tools for aeroacoustic predictions, which rely on the physics of the flow rather than empirical knowledge. LES, in conjunction with an acoustic analogy, holds the promise of predicting the statistics of noise radiated to the far-field of a turbulent flow. LES's predictive ability will be tested through extensive comparison of acoustic predictions based on a Direct Numerical Simulation (DNS) and LES of the same flow, as well as a priori testing of DNS results. The method presented here is aimed at allowing simulation of a turbulent flow field that is both simple and amenable to acoustic predictions. A free shear flow is homogeneous in both the streamwise and spanwise directions and which is statistically stationary will be simulated using equations based on the Navier-Stokes equations with a small number of added terms. Studying a free shear flow eliminates the need to consider flow-surface interactions as an acoustic source. The homogeneous directions and the flow's statistically stationary nature greatly simplify the application of an acoustic analogy.
NASA Technical Reports Server (NTRS)
Senocak, Inane
2003-01-01
The objective of the present study is to evaluate the dynamic procedure in LES of stratocumulus topped atmospheric boundary layer and assess the relative importance of subgrid-scale modeling, cloud microphysics and radiation modeling on the predictions. The simulations will also be used to gain insight into the processes leading to cloud top entrainment instability and cloud breakup. In this report we document the governing equations, numerical schemes and physical models that are employed in the Goddard Cumulus Ensemble model (GCEM3D). We also present the subgrid-scale dynamic procedures that have been implemented in the GCEM3D code for the purpose of the present study.
Compressible Boundary Layer Predictions at High Reynolds Number using Hybrid LES/RANS Methods
NASA Technical Reports Server (NTRS)
Choi, Jung-Il; Edwards, Jack R.; Baurle, Robert A.
2008-01-01
Simulations of compressible boundary layer flow at three different Reynolds numbers (Re(sub delta) = 5.59x10(exp 4), 1.78x10(exp 5), and 1.58x10(exp 6) are performed using a hybrid large-eddy/Reynolds-averaged Navier-Stokes method. Variations in the recycling/rescaling method, the higher-order extension, the choice of primitive variables, the RANS/LES transition parameters, and the mesh resolution are considered in order to assess the model. The results indicate that the present model can provide good predictions of the mean flow properties and second-moment statistics of the boundary layers considered. Normalized Reynolds stresses in the outer layer are found to be independent of Reynolds number, similar to incompressible turbulent boundary layers.
NASA Astrophysics Data System (ADS)
O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.
2016-10-01
The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.
Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder
Morgan, B. E.; Greenough, J. A.
2015-04-08
Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a k–L approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the timemore » at which L becomes resolved on the computational mesh. As a result, it is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.« less
A Priori Analyses of Three Subgrid-Scale Models for One-Parameter Families of Filters
NASA Technical Reports Server (NTRS)
Pruett, C. David; Adams, Nikolaus A.
1998-01-01
The decay of isotropic turbulence a compressible flow is examined by direct numerical simulation (DNS). A priori analyses of the DNS data are then performed to evaluate three subgrid-scale (SGS) models for large-eddy simulation (LES): a generalized Smagorinsky model (M1), a stress-similarity model (M2), and a gradient model (M3). The models exploit one-parameter second- or fourth-order filters of Pade type, which permit the cutoff wavenumber k(sub c) to be tuned independently of the grid increment (delta)x. The modeled (M) and exact (E) SGS-stresses are compared component-wise by correlation coefficients of the form C(E,M) computed over the entire three-dimensional fields. In general, M1 correlates poorly against exact stresses (C < 0.2), M3 correlates moderately well (C approx. 0.6), and M2 correlates remarkably well (0.8 < C < 1.0). Specifically, correlations C(E, M2) are high provided the grid and test filters are of the same order. Moreover, the highest correlations (C approx.= 1.0) result whenever the grid and test filters are identical (in both order and cutoff). Finally, present results reveal the exact SGS stresses obtained by grid filters of differing orders to be only moderately well correlated. Thus, in LES the model should not be specified independently of the filter.
Large Eddy Simulation of stratified flows over structures
NASA Astrophysics Data System (ADS)
Fuka, V.; Brechler, J.
2013-04-01
We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.
NASA Technical Reports Server (NTRS)
Johnson, Perry L.; Shyam, Vikram
2012-01-01
A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics
Unstrained and strained flamelets for LES of premixed combustion
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian
2016-05-01
The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane-air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.
Analysis of a Simulation Experiment on Optimized Crewing for Damage Control
2012-06-01
base donnaient un rendement supérieur à l’automatisation moyenne pour l’intervention en cas d’inondation. À partir de ces analyses, les auteurs du...et l’analyse ultérieures de données aux fins d’expériences de simulation semblables. Enfin, les auteurs du rapport ont établi des pistes...DRDC Toronto. [6] Floyd, J., Hunt, S., Williams, F., & Tatem, P. (2004). Fire + Smoke Simulator (FSSIM), Version 1 - Theory manual (NRL/MR/6180-04
GAP Noise Computation By The CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Chang, Sin-Chung; Wang, Xiao Y.; Jorgenson, Philip C. E.
2001-01-01
A typical gap noise problem is considered in this paper using the new space-time conservation element and solution element (CE/SE) method. Implementation of the computation is straightforward. No turbulence model, LES (large eddy simulation) or a preset boundary layer profile is used, yet the computed frequency agrees well with the experimental one.
Turbulence in Compressible Flows
NASA Technical Reports Server (NTRS)
1997-01-01
Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.
Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds
NASA Astrophysics Data System (ADS)
Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.
2015-12-01
An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.
A high resolution WRF model for wind energy forecasting
NASA Astrophysics Data System (ADS)
Vincent, Claire Louise; Liu, Yubao
2010-05-01
The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the diffusion constant caused damping of the unrealistic fluctuations, but did not completely solve the problem. Using two-way nesting also mitigated the unrealistic fluctuations significantly. It can be concluded that for real case LES modelling of wind farm circulations, care should be taken to ensure the consistency between the mesoscale weather forcing and LES models to avoid exciting spurious noise along the forcing boundary. The development of algorithms that adequately model the sub-grid-scale mixing that cannot be resolved by LES models is an important area for further research. References Liu, Y. Y._W. Liu, W. Y.Y. Cheng, W. Wu, T. T. Warner and K. Parks, 2009: Simulating intra-farm wind variations with the WRF-RTFDDA-LES modeling system. 10th WRF Users' Workshop, Boulder, C, USA. June 23 - 26, 2009. Skamarock, W., J. Dudhia, D.O. Gill, D.M. Barker, M.G.Duda, X-Y. Huang, W. Wang and J.G. Powers, A Description of the Advanced Research WRF version 3, NCAR Technical Note TN-475+STR, NCAR, Boulder, Colorado, 2008.
From large-eddy simulation to multi-UAVs sampling of shallow cumulus clouds
NASA Astrophysics Data System (ADS)
Lamraoui, Fayçal; Roberts, Greg; Burnet, Frédéric
2016-04-01
In-situ sampling of clouds that can provide simultaneous measurements at satisfying spatio-temporal resolutions to capture 3D small scale physical processes continues to present challenges. This project (SKYSCANNER) aims at bringing together cloud sampling strategies using a swarm of unmanned aerial vehicles (UAVs) based on Large-eddy simulation (LES). The multi-UAV-based field campaigns with a personalized sampling strategy for individual clouds and cloud fields will significantly improve the understanding of the unresolved cloud physical processes. An extensive set of LES experiments for case studies from ARM-SGP site have been performed using MesoNH model at high resolutions down to 10 m. The carried out simulations led to establishing a macroscopic model that quantifies the interrelationship between micro- and macrophysical properties of shallow convective clouds. Both the geometry and evolution of individual clouds are critical to multi-UAV cloud sampling and path planning. The preliminary findings of the current project reveal several linear relationships that associate many cloud geometric parameters to cloud related meteorological variables. In addition, the horizontal wind speed indicates a proportional impact on cloud number concentration as well as triggering and prolonging the occurrence of cumulus clouds. In the framework of the joint collaboration that involves a Multidisciplinary Team (including institutes specializing in aviation, robotics and atmospheric science), this model will be a reference point for multi-UAVs sampling strategies and path planning.
NASA Astrophysics Data System (ADS)
Prasad, Vinayaka N.; Juddoo, Mrinal; Masri, Assaad R.; Jones, William P.; Luo, Kai H.
2013-06-01
Extinction and re-ignition processes observed experimentally in thin reaction zones of piloted turbulent non-premixed methane flames approaching blow-off are analysed using Large Eddy Simulation (LES) along with the Eulerian stochastic field method representing the unresolved sub-grid turbulence-chemistry interactions. Eight stochastic fields in conjunction with a reduced chemical mechanism involving 19 species are employed to perform simulations of the Sydney flames L, B and M, which exhibit increasing levels of extinction. The agreement of the flame statistics of the velocities, mixture fraction and selected reactive species were found to be encouraging and highlight the ability of the method to capture quantitatively the effects of increasing jet velocity in this series. In a subsequent analysis of the flame structure using the LES simulation data, the strong three-dimensionality of the flame was emphasised. Quantitative comparisons with recent measurements using high-speed Planar Laser-Induced Fluorescence of OH (OH-PLIF) were found to be in reasonably good agreement with LES simulations and confirm the previous observations that the rates of flame breakages are greater than those of flame closures. This study, which also represents the first successful numerical attempt to describe the entire flame series, highlights the potential and complementary capabilities of a hybrid LES and high-speed imaging approach to resolve issues such as the role of out-of-plane motion in the investigation of transient processes such as flame breakages and re-ignition.
Direct and Large Eddy Simulation of non-equilibrium wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Park, Hee-Jun
2005-11-01
The performance of several existing SGS models in non-equilibrium wall-bounded turbulent flows is investigated through comparisons of LES and DNS. The test problem is a shear-driven three-dimensional turbulent channel flow at base Reτ˜210 established by impulsive motion of one of the channel walls in the spanwise direction with a spanwise velocity equal to 3/4 of the bulk mean velocity in the channel. The DNS and LES are performed using pseudo-spectral methods with resolutions of 128x128x129 and 32x64x65, respectively. The SGS models tested include the nonlinear Interactions Approximation model (NIA) [Haliloglu and Akhavan (2004)], the Dynamic Smagorinsky model (DSM) [Germano et al. (1991)], and the Dynamic Mixed Model (DMM) [Zang et al. (1993)]. The results show that NIA gives the best overall agreement with DNS. Both DMM and DSM over-predict the decay of the mean streamwise wall shear stress on the moving wall, while NIA gives results in close agreements with DNS. Similarly, NIA gives the best agreement with DNS in the prediction of the mean velocity, the higher-order turbulence statistics, and the lag angle between the mean shear and the turbulent shear stress. These results suggest that non-equilibrium wall-bounded turbulent flows can be accurately computed by LES with NIA as the SGS model.
A flamelet model for transcritical LOx/GCH4 flames
NASA Astrophysics Data System (ADS)
Müller, Hagen; Pfitzner, Michael
2017-03-01
This work presents a numerical framework to efficiently simulate methane combustion at supercritical pressures. A LES flamelet approach is adapted to account for real-gas thermodynamics effects which are a prominent feature of flames at near-critical injection conditions. The thermodynamics model is based on the Peng-Robinson equation of state (PR-EoS) in conjunction with a novel volume-translation method to correct deficiencies in the transcritical regime. The resulting formulation is more accurate than standard cubic EoSs without deteriorating their good computational performance. To consistently account for pressure and strain fluctuations in the flamelet model, an additional enthalpy equation is solved along with the transport equations for mixture fraction and mixture fraction variance. The method is validated against available experimental data for a laboratory scale LOx/GCH4 flame at conditions that resemble those in liquid-propellant rocket engines. The LES result is in good agreement with the measured OH* radiation.
NASA Astrophysics Data System (ADS)
Boddupalli, Nibodh; Goenka, Vikash; Chandra, Laltu
2017-06-01
Heliostats are used for concentrating beam radiation onto a receiver. The flow induced dust deposition on these reflectors will lead to failure of the receiver. For this purpose, the wake behind a heliostat is analyzed at 25° of inclination and at a Reynolds number of 60000. In this paper the Reynolds Averaged Navier-Stokes (RANS) and the Large Eddy Simulation (LES) approaches are used for analyzing the air-flow behind a heliostat. LES and RANS are performed with a wall-resolved grid. For the purpose of validation, the horizontal velocity is measured in a wind-tunnel with a model heliostat using laser Doppler velocimetry technique. RANS and LES approaches are found to qualitatively predict the statistical quantities, like the mean horizontal-velocity in comparison to experiment. RANS under-predicts root-mean-square of the horizontal-velocity and even failed to capture the flow features behind heliostat. Thus, it is concluded that RANS will suffice with well-resolved grid for analyzing mean flow features. For analyzing wake and to understand the induced dust deposition LES is required. Further, the analysis reveals that the wake-affected region is up to three times the length of the heliostat's mirror. This can be recommended as the minimum distance between any two aligned heliostats in Jodhpur.
NASA Technical Reports Server (NTRS)
Greenisen, M. C.; Bishop, P. A.; Sothmann, M.
2008-01-01
The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.
2008-09-01
diverses temperatures 26 a) HTPB pur b) HTPB-DOA (polymere et plastifiant) c) GAP pur d) Gpl pur e)Gap-Gpl Liste des tableaux Tableau 1...Composition des mailles amorphes construites 11 Tableau 2. Proprietes des polymeres et plastifiants utilises 11 Tableau 3. Comparaisons entre les Tt...obtenues experimentalement, les T% publiees dans les ecrits scientifiques et celles predites a partir des 7"gdes composes purs 19 Tableau 4. Comparaison
Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study
NASA Astrophysics Data System (ADS)
Selle, Laurent C.; Okong'o, Nora A.; Bellan, Josette; Harstad, Kenneth G.
A database of transitional direct numerical simulation (DNS) realizations of a supercritical mixing layer is analysed for understanding small-scale behaviour and examining subgrid-scale (SGS) models duplicating that behaviour. Initially, the mixing layer contains a single chemical species in each of the two streams, and a perturbation promotes roll-up and a double pairing of the four spanwise vortices initially present. The database encompasses three combinations of chemical species, several perturbation wavelengths and amplitudes, and several initial Reynolds numbers specifically chosen for the sole purpose of achieving transition. The DNS equations are the Navier-Stokes, total energy and species equations coupled to a real-gas equation of state; the fluxes of species and heat include the Soret and Dufour effects. The large-eddy simulation (LES) equations are derived from the DNS ones through filtering. Compared to the DNS equations, two types of additional terms are identified in the LES equations: SGS fluxes and other terms for which either assumptions or models are necessary. The magnitude of all terms in the LES conservation equations is analysed on the DNS database, with special attention to terms that could possibly be neglected. It is shown that in contrast to atmospheric-pressure gaseous flows, there are two new terms that must be modelled: one in each of the momentum and the energy equations. These new terms can be thought to result from the filtering of the nonlinear equation of state, and are associated with regions of high density-gradient magnitude both found in DNS and observed experimentally in fully turbulent high-pressure flows. A model is derived for the momentum-equation additional term that performs well at small filter size but deteriorates as the filter size increases, highlighting the necessity of ensuring appropriate grid resolution in LES. Modelling approaches for the energy-equation additional term are proposed, all of which may be too computationally intensive in LES. Several SGS flux models are tested on an a priori basis. The Smagorinsky (SM) model has a poor correlation with the data, while the gradient (GR) and scale-similarity (SS) models have high correlations. Calibrated model coefficients for the GR and SS models yield good agreement with the SGS fluxes, although statistically, the coefficients are not valid over all realizations. The GR model is also tested for the variances entering the calculation of the new terms in the momentum and energy equations; high correlations are obtained, although the calibrated coefficients are not statistically significant over the entire database at fixed filter size. As a manifestation of the small-scale supercritical mixing peculiarities, both scalar-dissipation visualizations and the scalar-dissipation probability density functions (PDF) are examined. The PDF is shown to exhibit minor peaks, with particular significance for those at larger scalar dissipation values than the mean, thus significantly departing from the Gaussian behaviour.
Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan
2010-08-26
This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. 2010 Elsevier Ltd. All rights reserved.