NASA Astrophysics Data System (ADS)
Disse, M.; Rieger, W.
2009-04-01
Not only climate change affects hydrological systems but also land use change and agricultural tillage practises have an important impact on infiltration and runoff generation. In the last five to six decades monocropping, drainage and rectification of small rivers were carried out to optimize crop yields and economic benefits. However, in recent years more holistic and sustainable management concepts are required. The advantages of ecological management of land, soil and water resources are manifold: the biodiversity is higher, the buffer function of soils will be conserved and both low water and floods are positive affected. The target of the presented research project which is financed by the Bavarian environment agency, is to establish an optimal flood retention concept in a mesoscale catchment of 150 km² which emphasizes ecological flood measures like best tillage practices, small retention basins and renaturation of small rivers. To quantify the effects of these measures the water balance model WaSiM-ETH was used. The grid-based water flow and balance simulation model WaSiM-ETH is a well-established tool for investigating the spatial and temporal variability of hydrological processes in complex river basins. The model can be seen as a reasonable compromise between detailed physical basis and minimum data requirements (http://www.wasim.ch/en/index.html). WaSiM was coupled with a 2d-ground water model and an additional drainage tool. Different vegetation was parameterized with high spatial and temporal resolution. Additionally, future climate scenarios like the extension of vegetation periods were considered. The effectiveness of decentralized retention basins could be simulated by a new implemented see storage tool. The presentation will give quantitative results for different flood control measures. The pros and cons of physically based approaches in hydrological modelling will be discussed.
Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska
NASA Astrophysics Data System (ADS)
Daanen, R. P.; Liljedahl, A. K.
2017-12-01
Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.
Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf
2016-02-01
According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important in ungauged catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried
2017-04-01
WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2). Beside the question how many stations are necessary for reliable hydrological modeling, different interpolation methods like Inverse Distance Interpolation, Elevation Dependent Regression, and combinations will be tested. This presentation will show the first results from a scale-depending analysis of spatial and temporal structures of heavy rainfall events and responses of simulated runoff at the event scale in the WEGN region.
NASA Astrophysics Data System (ADS)
Labrecque, Geneviève; Boucher, Marie-Amélie; Chesnaux, Romain
2017-04-01
The modelling of ungauged catchments is a long standing problem in hydrology and there is still no general consensus regarding the best practices to adopt in a variety of situations. In addition to flood and drought forecasting, there are other interests of modelling the hydrological behaviour of a catchment, whether it is gauged or not. For instance, estimation of groundwater recharge can be performed through an integrated modeling of the catchment. In this study, the WaSim model is used to model the hydrology of the Caribou River catchment located in the province of Quebec, in Canada. Since this catchment includes an important aquifer that is used both for drinking water, industrial and potential agricultural purposes, an accurate recharge assessment is important and is the long-term objective of the project. The WaSim model was chosen due to its very versatile soil sub-model features which allow to simulate subsurface flows and calculate the groundwater recharge as an output variable. Since the Caribou River is ungauged, alternative means of calibrating the free parameters of WaSim had to be implemented. The implementation of a calibration protocol that can get the most out of the few available data is a secondary objective and is the subject of this presentation. First, a « twin » gauged catchment is selected for its physiographic and hydro-climatic similarities with the Caribou River catchment. Streamflow series from this « twin » catchment are then transferred and used jointly with the dynamically dimensioned search (DDS) algorithm (Tolson and Shoemaker 2007) to obtain a raw calibration of the WaSim model parameters. This initial calibration can be further refined using two available datasets: (1) snow water equivalent data interpolated on a 10 km by 10 km grid and (2) a short and discontinuous time series of streamflow obtained using the land-surface scheme of the environmental multiscale atmospheric model (GEM) at Environment and Climate Change Canada and a unit-hydrograph based routing model. The parameters thus obtained are then validated with a few point measurements of streamflow collected at two locations on the Caribou River during a field campaign realized in 2016-2017. The model performance is assessed using the mean absolute error (MAE) and the results show a satisfactory agreement of the WaSim model with the measured values. References: Tolson, B. A., and C. A. Shoemaker. 2007. "Dynamically dimensioned search algorithm for computationally efficient watershed model calibration." Water Resources Research 43 (1). doi: 10.1029/2005wr004723.
NASA Astrophysics Data System (ADS)
Ostman, J. S.; Loso, M.; Liljedahl, A. K.; Gaedeke, A.; Geck, J. E.
2017-12-01
Many Alaska glaciers are thinning and retreating, and glacier wastage is projected to affect runoff processes from glacierized basins. Accordingly, effective resource management in glacierized watersheds requires quantification of a glacier's role on streamflow generation. The Eklutna catchment (311 km2) supplies water and electricity for Anchorage, Alaska (pop. 300,000) via Eklutna Lake. The Eklutna headwaters include the West Fork (64 km2, 46% glacier), and the East Fork (101 km2, 12% glacier). Total average annual discharge (2009-2015) is similar from the West (42,100 m3) and East (42,200 m3) forks, while specific annual runoff from the West Fork (2940 mm) exceeds that of the East Fork (1500 mm). To better understand what controls runoff, we are simulating the Eklutna annual water budget using a distributed watershed-level hydrological model. We force the Water Flow and Balance Simulation Model (WaSiM) using continuous air temperature, precipitation, wind speed, shortwave incoming radiation, and relative humidity primarily measured in the West Fork basin. We use Eklutna Glacier snow accumulation and ablation to calibrate the snowmelt and glacier sub-modules. Melt season discharge from the West and East forks is used for runoff comparison. Preliminary results show 2013-2015 simulated glacier point balances (accumulation and melt) are within 15% of glacier stake observations. Runoff was effectively modeled in the West Fork (NSE=0.80), while being over-predicted in the East Fork , which we attribute to a lack of forcing data in the less-glacierized basin. The simulations suggest that 78% of West Fork total runoff is from glacier melt, compared with <40% in the East Fork where glacier runoff contribution is higher during low-snow years.
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Förster, Kristian; Meissl, Gertraud; Marke, Thomas; Schermer, Markus; Stotten, Rike; Formayer, Herbert; Themessl, Matthias
2017-04-01
We present a numerical modelling experiment with storylines of coupled land use and climate evolution as input in the physically-based, distributed water balance model WaSiM. The aim is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The climatic background is defined by simulations for the A1B and RCP 8.5 emission scenarios until 2050. These two climate projections were combined with three future land use developments for forest management, developed in an inter- and transdisciplinary assessment with local actors using plausible and consisent projections for forest management, policy, social cooperation, tourism and economy: (i) Ecological adaptation: The forest management consequently applies the political guidelines, and the forest cover is dominated by an ecological, place-adapted mixed cultivation with a harmonious age structure. (ii) Economical overexploitation and wildness: The increase in efficiency, cost reduction and short term results are in focus of the forest management. (iii) Withdrawal and wildness: Cultivation in general is decreasing, and the forest becomes vulnerable against natural hazards. A new module for snow-canopy interaction simulation, providing explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands, has been implemented in WaSiM. The new version of the model is used to model the coupled future climate/land use storylines for the Brixental. Results show the effects of climate change and land use on the water balance and streamflow in the catchment.
NASA Astrophysics Data System (ADS)
Meyer, Swen; Ludwig, Ralf
2013-04-01
According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating 7 test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. The Rio Mannu Basin, located in Sardinia; Italy, is one test site of the CLIMB project. The catchment has a size of 472.5 km2, it ranges from 62 to 946 meters in elevation, at mean annual temperatures of 16°C and precipitation of about 700 mm, the annual runoff volume is about 200 mm. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) was setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. State of the art remote sensing techniques and field measuring techniques were applied to improve the quality of hydrological input parameters. In a field campaign about 250 soil samples were collected and lab-analyzed. Different geostatistical regionalization methods were tested to improve the model setup. The soil parameterization of the model was tested against publically available soil data. Results show a significant improvement of modeled soil moisture outputs. To validate WaSiMs evapotranspiration (ETact) outputs, Landsat TM images were used to calculate the actual monthly mean ETact rates using the triangle method (Jiang and Islam, 1999). Simulated spatial ETact patterns and those derived from remote sensing show a good fit especially for the growing season. WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. Output results were analyzed for climate induced changes on selected hydrological variables. While the climate projections reveal increased precipitation rates in the spring season, first simulation results show an earlier onset and an increased duration of the dry season, imposing an increased irrigation demand and higher vulnerability of agricultural productivity.
NASA Astrophysics Data System (ADS)
Willkofer, Florian; Wood, Raul R.; Schmid, Josef; von Trentini, Fabian; Ludwig, Ralf
2016-04-01
The ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) focuses on the effects of climate change on hydro-meteorological extreme events and their implications for water management in Bavaria and Québec. It builds on the conjoint analysis of a large ensemble of the CRCM5, driven by 50 members of the CanESM2, and the latest information provided through the CORDEX-initiative, to better assess the influence of natural climate variability and climatic change on the dynamics of extreme events. A critical point in the entire project is the preparation of a meteorological reference dataset with the required temporal (1-6h) and spatial (500m) resolution to be able to better evaluate hydrological extreme events in mesoscale river basins. For Bavaria a first reference data set (daily, 1km) used for bias-correction of RCM data was created by combining raster based data (E-OBS [1], HYRAS [2], MARS [3]) and interpolated station data using the meteorological interpolation schemes of the hydrological model WaSiM [4]. Apart from the coarse temporal and spatial resolution, this mosaic of different data sources is considered rather inconsistent and hence, not applicable for modeling of hydrological extreme events. Thus, the objective is to create a dataset with hourly data of temperature, precipitation, radiation, relative humidity and wind speed, which is then used for bias-correction of the RCM data being used as driver for hydrological modeling in the river basins. Therefore, daily data is disaggregated to hourly time steps using the 'Method of fragments' approach [5], based on available training stations. The disaggregation chooses fragments of daily values from observed hourly datasets, based on similarities in magnitude and behavior of previous and subsequent events. The choice of a certain reference station (hourly data, provision of fragments) for disaggregating daily station data (application of fragments) is crucial and several methods will be tested to achieve a profound spatial interpolation. This entire methodology shall be applicable for existing or newly developed datasets. References [1] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres) (2008), 113, D20119, doi:10.1029/2008JD10201. [2] Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A. and A. Gratzki. A Central European precipitation climatology - Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift (2013), 22/3, p.238-256. [3] MARS-AGRI4CAST. AGRI4CAST Interpolated Meteorological Data. http://mars.jrc.ec.europa.eu/mars/ About-us/AGRI4CAST/Data-distribution/AGRI4CAST-Interpolated-Meteorological-Data. 2007, last accessed May 10th, 2013. [4] Schulla, J. Model Description WaSiM - Water balance Simulation Model. 2015, available at: http://wasim.ch/en/products/wasim_description.htm. [5] Sharma, A. and S. Srikanthan. Continuous Rainfall Simulation: A Nonparametric Alternative. 30th Hydrology and Water Resources Symposium, Launceston, Tasmania, 4-7 December, 2006.
Exploring hydrological uncertainties and thresholds of a drought vulnerable region in Austria
NASA Astrophysics Data System (ADS)
Hohmann, Clara; Kirchengast, Gottfried; Birk, Steffen
2015-04-01
In the region of South-Eastern Styria, Austria, a strong increase of summer temperature over the last decades was recognized by Kabas et. al. (Meteorol. Z./ 20 (3), 277-289, 2011). With climate change the temperature will further increase, so that the possibility for more frequent droughts in summer will rise. This leads to the question if, for example, a steppe climate similar to that in the neighboring Hungarian Pussta can evolve in this region. Drastic climatic changes will be accompanied by strong changes in the hydrological balance. Since the region is strongly influenced by agriculture and other non-climatic factors as well, these human impacts on the water cycle must be considered. The Wegener Center, University of Graz is studying the Raab catchment in South-Eastern Styria, Austria, as an example of a small catchment of the climate-sensitive southern Alpine foothills. The available data indicate that the region is vulnerable to droughts in summer, signalled by a strong temperature increase over the recent decades and a tendency of precipitation decrease. The main goals of this study are to explore how the water balance in the region is going to change in the future, what the most significant uncertainties are and where there might be thresholds towards drastic changes. In this poster we report on the first steps, which is to build up a hydrological model for the Styrian Raab valley based on the Water balance Simulation Model (WaSiM) of ETH Zurich, Switzerland. Within the calibration the focus is on low flow conditions in summer. Given that the model shows good results for the well observed recent decades, a sensitivity analysis for changes in specific (control) parameters of the surface water balance is conducted. This will include anomalies of temperature and precipitation, water use for irrigation, and others. This enables to explore how warmer temperatures or changes in irrigation and crops affect the catchment. Model analyses do not only focus on flow conditions but also on internal variables, such as the soil moisture, which has a significant impact on the water balance and the drought vulnerability of the region.
P, Bhagath Kumar; K, Kasi Viswanath; S, Tuleshwori Devi; R, Sampath Kumar; Doucet, Daniel; Retnakaran, Arthur; Krell, Peter J; Feng, Qili; Ampasala, Dinakara Rao
2016-07-01
At the end of each stadium, insects undergo a precisely orchestrated process known as ecdysis which results in the replacement of the old cuticle with a new one. This physiological event is necessary to accommodate growth in arthropods since they have a rigid chitinous exoskeleton. Ecdysis is initiated by the direct action of Ecdysis Triggering Hormones on the central nervous system. Choristoneura fumiferana is a major defoliator of coniferous forests in Eastern North America. It is assumed that, studies on the ecdysis behavior of this pest might lead to the development of novel pest management strategies. Hence in this study, the cDNA of CfETH was cloned. The open reading frame of the cDNA sequence was found to encode three putative peptides viz., Pre-Ecdysis Triggering Hormone (PETH), Ecdysis Triggering Hormone (ETH), and Ecdysis Triggering Hormone Associated Peptide (ETH-AP). The CfETH transcript was detected in the epidermal tissue of larval and pupal stages, but not in eggs and adults. In order to explore the structural conformation of ETH, ab initio modelling and Molecular Dynamics (MD) Simulations were performed. Further, a library of insecticides was generated and virtual screening was performed to identify the compounds displaying high binding capacity to ETH. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulating low-flow conditions in an arctic watershed using WaSiM
NASA Astrophysics Data System (ADS)
Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.
2017-12-01
The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water extraction for winter water supply should be managed more conservatively. A better understanding of how these responses vary in this watershed will help guide management of fish habitat and lake water extraction in the National Petroleum Reserve - Alaska (NPR-A), where the Fish Creek watershed is located.
NASA Astrophysics Data System (ADS)
Gampe, David; Ludwig, Ralf
2013-04-01
According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating seven test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. One of those seven sites is the Gaza Strip, located in the Eastern Mediterranean and part of the Palestinian Autonomous Area, covers an area of 365km² with a length of 35km and 6 to 12km in width. Elevation ranges from sea level up to 104m in the East of the test site. Mean annual precipitation varies from 235mm in the South to 420mm in the North of the area. The inter annual variability of rainfall and the rapid population growth in an highly agricultural used area represent the major challenges in this area. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) is setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. WaSiM was driven with meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. State of the art remote sensing techniques and field measuring techniques were applied to improve the quality of hydrological input parameters. For the parameterization of the vegetation the Leaf Area Index (LAI) is a crucial component. However, the LAI is difficult to access at field scale, hence a simple remote sensing approach, using the Normalized Difference Vegetation Index (NDVI) and MODIS LAI information, was applied for the parameterization in WaSiM. As no permanent streams, hence no discharge measurements, exist in the Gaza Strip, the actual evapotranspiration (ETact) outputs of the model were used for model validation. Landsat TM images were applied to calculate the actual monthly mean ETact rates using the triangle method (Jiang and Islam, 1999). Simulated spatial ETact patterns and those derived from remote sensing show a good fit especially for the growing season.
A study of the Ljubljansko polje aquifer system behaviour and its simulations using multi-tools
NASA Astrophysics Data System (ADS)
Vrzel, J.; Ludwig, R.; Vižintin, G.; Ogrinc, N.
2017-12-01
Our study of comprehensive hydrological system behaviour, where understanding of the interfaces between groundwater and surface water is crucial, includes geochemical analyses for identification of groundwater sources (δ18O and δ2H) and estimation of groundwater mean residence time (3H, 3H/3He). The results of the geochemical analyses were compared with long-term data on precipitation, river discharge, hydraulic head, and groundwater pumping rate. The study is representative for the Ljubljansko polje in Slovenia, which belongs to the Sava River basin. The results show that the Sava River water and local precipitation are the main groundwater sources in this alluvial aquifer with high system sensitivity to both sources, which ranged from a day to a month. For a simulation of such a sensitive system different tools describing water cycle were coupled: simulation of the percolation of the local precipitation was done with the WaSiM-ETH, while the river and groundwater dynamics were performed with the MIKE 11 and FEFLOW, respectively. The WaSiM-ETH and MIKE 11 results were later employed as the upper boundary conditions in the FEFLOW model. The models have high spatial and daily temporal resolutions. A good agreement between geochemical data and modeling results was observed with two main highlights: (1) groundwater sources are in accordance with hydraulic heads and the Sava River water level/precipitation; (2) responsiveness of the aquifer on the high water level in the Sava River and on precipitation events is also synchronic with the mean groundwater residence time. The study shows that links between MIKE 11-FEFLOW-WaSiM-ETH tools is a great solution for a precise groundwater flow simulation, since all the tools are compatible and at the moment there is no routine approach for a precise parallel simulation of groundwater and surface water dynamics. The Project was financially supported by the the EU 7th Research Project - GLOBAQUA.
Gravitational Reference Sensor Front-End Electronics Simulator for LISA
NASA Astrophysics Data System (ADS)
Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; ten Pierick, Jan; Zweifel, Peter; Giardini, Domenico; ">LISA Pathfinder colaboration,
Viney, N.R.; Bormann, H.; Breuer, L.; Bronstert, A.; Croke, B.F.W.; Frede, H.; Graff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.J.; Kite, G.W.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Willems, P.
2009-01-01
This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models. Crown Copyright ?? 2008.
Cohen, Elisangela M L; Machado, Karina S; Cohen, Marcelo; de Souza, Osmar Norberto
2011-12-22
Protein/receptor explicit flexibility has recently become an important feature of molecular docking simulations. Taking the flexibility into account brings the docking simulation closer to the receptors' real behaviour in its natural environment. Several approaches have been developed to address this problem. Among them, modelling the full flexibility as an ensemble of snapshots derived from a molecular dynamics simulation (MD) of the receptor has proved very promising. Despite its potential, however, only a few studies have employed this method to probe its effect in molecular docking simulations. We hereby use ensembles of snapshots obtained from three different MD simulations of the InhA enzyme from M. tuberculosis (Mtb), the wild-type (InhA_wt), InhA_I16T, and InhA_I21V mutants to model their explicit flexibility, and to systematically explore their effect in docking simulations with three different InhA inhibitors, namely, ethionamide (ETH), triclosan (TCL), and pentacyano(isoniazid)ferrate(II) (PIF). The use of fully-flexible receptor (FFR) models of InhA_wt, InhA_I16T, and InhA_I21V mutants in docking simulation with the inhibitors ETH, TCL, and PIF revealed significant differences in the way they interact as compared to the rigid, InhA crystal structure (PDB ID: 1ENY). In the latter, only up to five receptor residues interact with the three different ligands. Conversely, in the FFR models this number grows up to an astonishing 80 different residues. The comparison between the rigid crystal structure and the FFR models showed that the inclusion of explicit flexibility, despite the limitations of the FFR models employed in this study, accounts in a substantial manner to the induced fit expected when a protein/receptor and ligand approach each other to interact in the most favourable manner. Protein/receptor explicit flexibility, or FFR models, represented as an ensemble of MD simulation snapshots, can lead to a more realistic representation of the induced fit effect expected in the encounter and proper docking of receptors to ligands. The FFR models of InhA explicitly characterizes the overall movements of the amino acid residues in helices, strands, loops, and turns, allowing the ligand to properly accommodate itself in the receptor's binding site. Utilization of the intrinsic flexibility of Mtb's InhA enzyme and its mutants in virtual screening via molecular docking simulation may provide a novel platform to guide the rational or dynamical-structure-based drug design of novel inhibitors for Mtb's InhA. We have produced a short video sequence of each ligand (ETH, TCL and PIF) docked to the FFR models of InhA_wt. These videos are available at http://www.inf.pucrs.br/~osmarns/LABIO/Videos_Cohen_et_al_19_07_2011.htm.
Mondal, Saptarsi; Chaterjee, Soumit; Halder, Ritaban; Jana, Biman; Singh, Prashant Chandra
2017-08-17
Perfluoro group containing molecules possess an important self-aggregation property through the fluorous (F···F) interaction which makes them useful for diverse applications such as medicinal chemistry, separation techniques, polymer technology, and biology. In this article, we have investigated the solvation dynamics of coumarin-153 (C153) and coumarin-6H (C6H) in ethanol (ETH), 2-fluoroethanol (MFE), and 2,2,2-trifluoroethanol (TFE) using the femtosecond upconversion technique and molecular dynamics (MD) simulation to understand the role of fluorous interaction between the solute and solvent molecules in the solvation dynamics of perfluoro group containing molecules. The femtosecond upconversion data show that the time scales of solvation dynamics of C6H in ETH, MFE, and TFE are approximately the same whereas the solvation dynamics of C153 in TFE is slow as compared to that of ETH and MFE. It has also been observed that the time scale of solvation dynamics of C6H in ETH and MFE is higher than that of C153 in the same solvents. MD simulation results show a qualitative agreement with the experimental data in terms of the time scale of the slow components of the solvation for all the systems. The experimental and simulation studies combined lead to the conclusion that the solvation dynamics of C6H in all solvents as well as C153 in ETH and MFE is mostly governed by the charge distribution of ester moieties (C═O and O) of dye molecules whereas the solvation of C153 in TFE is predominantly due to the dispersive fluorous interaction (F···F) between the perfluoro groups of the C153 and solvent molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, P
Purpose: To analyse the sensitivity of the creation of strand breaks (SB) to the threshold energy (Eth) and thresholding method and to quantify the impact of clustering conditions on single strand break (SSB) and double strand break (DSB) yields. Methods: Monte Carlo simulations using Geant4-DNA were conducted for electron tracks of 280 eV to 220 keV in a geometrical DNA model composed of nucleosomes of 396 phospho-diester groups (PDGs) each. A strand break was created inside a PDG when the sum of all energy deposits (method 1) or energy transfers (method 2) was higher than Eth or when at leastmore » one interaction deposited (method 3) or transferred (method 4) an energy higher than Eth. SBs were then clustered into SSBs and DSBs using clustering scoring criteria from the literature and compared to our own. Results: The total number of SBs decreases as Eth is increased. In addition, thresholding on the energy transfers (methods 2 and 4) produces a higher SB count than when thresholding on energy deposits (methods 1 and 3). Method 2 produces a step-like function and should be avoided when attempting to optimize Eth. When SBs are grouped into damage patterns, clustering conditions can underestimated SSBs by up to 18 % and DSBs can be overestimated by up to 12 % compared to our own implementation. Conclusion: We show that two often underreported simulation parameters have a non-negligible effect on overall DNA damage yields. First more SBs are counted when using energy transfers to the PDG rather than energy deposits. Also, SBs grouped according to different clustering conditions can influence reported SSB and DSB by as much as 20%. Careful handling of these parameters is required when trying to compare DNA damage yields from different authors. Research funding from the governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less
NASA Astrophysics Data System (ADS)
von Trentini, F.; Willkofer, F.; Wood, R. R.; Schmid, F. J.; Ludwig, R.
2017-12-01
The ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) focuses on the effects of climate change on hydro-meteorological extreme events and their implications for water management in Bavaria and Québec. Therefore, a hydro-meteorological model chain is applied. It employs high performance computing capacity of the Leibniz Supercomputing Centre facility SuperMUC to dynamically downscale 50 members of the Global Circulation Model CanESM2 over European and Eastern North American domains using the Canadian Regional Climate Model (RCM) CRCM5. Over Europe, the unique single model ensemble is conjointly analyzed with the latest information provided through the CORDEX-initiative, to better assess the influence of natural climate variability and climatic change in the dynamics of extreme events. Furthermore, these 50 members of a single RCM will enhance extreme value statistics (extreme return periods) by exploiting the available 1500 model years for the reference period from 1981 to 2010. Hence, the RCM output is applied to drive the process based, fully distributed, and deterministic hydrological model WaSiM in high temporal (3h) and spatial (500m) resolution. WaSiM and the large ensemble are further used to derive a variety of hydro-meteorological patterns leading to severe flood events. A tool for virtual perfect prediction shall provide a combination of optimal lead time and management strategy to mitigate certain flood events following these patterns.
Boakye-Gyasi, Eric; Henneh, Isaac Tabiri; Abotsi, Wonder Kofi Mensah; Ameyaw, Elvis Ofori; Woode, Eric
2017-04-26
Despite substantial advances in pain research and treatment, millions of people continue to suffer from pain and this has been attributed mainly to the unavailability of effective and safer analgesics. The use of plants as medicines is still widespread and plants constitute a large source of novel phytocompounds that might become leads for the discovery of newer, effective and safer alternatives. Various parts of Ziziphus abyssinica have been used in folk medicine in several African countries as painkillers. However, there is no report on the possible anti-nociceptive effects of this plant especially the leaves, hence the need for this current study. The possible anti-nociceptive activity of hydro-ethanolic leaf extract of Ziziphus abyssinica (EthE) was assessed in rodents using chemical (acetic acid, formalin and glutamate), thermal (tail-immersion test) and mechanical/inflammatory (carrageenan) models of nociception. EthE (30-300 mg/kg, p.o.) dose-dependently and significantly inhibited chemical-induced nociception with a maximum inhibition of 86.29 ± 2.27%, 76.34 ± 5.67%, 84.97 ± 5.35%, and 82.81 ± 5.97% respectively for acetic acid, formalin (phase 1), formalin (phase 2) and glutamate tests at its highest dose. EthE also dose-dependently and significantly increased reaction times in both tail-immersion and carrageenan-induced hypernociceptive tests. The activities of the extract in the various models were comparable with the effect of morphine hydrochloride and diclofenac sodium used as standard analgesic drugs. Oral administration of hydro-ethanolic leaf extract of Ziziphus abyssinica ameliorates nocifensive behaviours associated with chemical-, thermal- and mechanical/inflammatory - induced nociceptive pain.
Leiba, Jade; Carrère-Kremer, Séverine; Blondiaux, Nicolas; Dimala, Martin Moune; Wohlkönig, Alexandre; Baulard, Alain; Kremer, Laurent; Molle, Virginie
2014-04-18
Recent efforts have underlined the role of Serine/Threonine Protein Kinases (STPKs) in growth, pathogenesis and cell wall metabolism in mycobacteria. Herein, we demonstrated that the Mycobacterium tuberculosis EthR, a transcriptional repressor that regulates the activation process of the antitubercular drug ethionamide (ETH) is a specific substrate of the mycobacterial kinase PknF. ETH is a prodrug that must undergo bioactivation by the monooxygenease EthA to exert its antimycobacterial activity and previous studies reported that EthR represses transcription of ethA by binding to the ethA-ethR intergenic region. Mass spectrometry analyses and site-directed mutagenesis identified a set of four phosphoacceptors, namely Thr2, Thr3, Ser4 and Ser7. This was further supported by the complete loss of PknF-dependent phosphorylation of a phosphoablative EthR mutant protein. Importantly, a phosphomimetic version of EthR, in which all phosphosites were replaced by Asp residues, exhibited markedly decreased DNA-binding activity compared with the wild-type protein. Together, these findings are the first demonstration of EthR phosphorylation and indicate that phosphorylation negatively affects its DNA-binding activity, which may impact ETH resistance levels in M. tb. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaedeke, A.; Arp, C. D.; Liljedahl, A. K.; Daanen, R. P.; Whitman, M. S.
2016-12-01
A changing climate is leading to rapid transformations of hydrological processes in low-gradient Arctic terrestrial ecosystems which are dominated by lakes and ponds, wetlands, polygonised tundra, and connecting stream and river networks. The aim of this study is to gain a deeper understanding of the impacts of climate and land use change on surface water availability and connectivity by utilizing the process-based, spatially distributed hydrological model WaSiM. Crea Creek Watershed (30 km2), which is located in the National Petroleum Reserve-Alaska (NPR-A) was chosen as study area because of its permafrost landforms (bedfast and floating ice lakes, high and low centered polygons), existing observational data (discharge, snow depth, and meteorological variables since 2009), and resource management issues related to permafrost degradation and aquatic habitat dynamics. Foremost of concern is oil development scheduled to begin starting in 2017 with the construction of a permanent road and drilling pad directly within the Crea Watershed. An interdisciplinary team consisting of scientists and regional stakeholders defined the following scenarios to be simulated using WaSiM: (1) industrial development (impact of water removal from lakes (winter) for ice road construction on downstream (summer) runoff), (2) permanent road construction to allow oil companies access to develop and extract petroleum, and (3) potential modes of climate change including warmer, snowier winters and prolonged drought during summers. Downscaled meteorological output from the Weather Research & Forecasting Model (WRF) will be used as the forcing for analysis of climate scenarios alone and for assessment of land-use responses under varying climate scenarios. Our results will provide regional stakeholders with information on the impacts of climate and land use change on surface water connectivity that affects aquatic habitat, as well as lake hydrologic interactions with permafrost. These finding will also benefit local communities that rely on these systems for subsistence and the petroleum industry in the mitigation of environmental impacts to permafrost landscapes within the NPR-A and elsewhere.
Mondal, Saptarsi; Halder, Ritaban; Biswas, Biswajit; Jana, Biman; Singh, Prashant Chandra
2016-05-14
The self-aggregation property of the perfluoro group containing molecules makes it important in the research fields of biology and polymer and organic synthesis. In the quest of understanding the role of the perfluoro group on the photophysical properties of perfluoro-containing molecules in biologically important fluoroethanol solvents, we have applied photophysical as well as molecular dynamics simulation techniques to explore the properties of perfluoro groups containing molecule coumarin-153 (C153) in ethanol (ETH), monofluoroethanol (MFE), difluoroethanol (DFE), and trifluoroethanol (TFE) and compared them with the molecules without perfluoro moiety, namely coumarin-6H (C6H) and coumarin-480 (C480). In contrast to C6H and C480, the excited state lifetime of C153 in fluorinated ETHs is not monotonic. The excited state lifetime of C153 decreases in MFE and DFE as compared to ETH, whereas in TFE, it increases as compared to MFE and DFE. Molecular dynamics simulation reveals that the carbon terminal away from the OH group of fluorinated ETHs has a preferential orientation near the perfluoro (CF3) group of C153. In MFE and DFE, the CF3 group of C153 prefers to have a CF2-F⋯H -(CHF) type of electrostatic interaction over CF2-F⋯F -(CH2) kind of dispersion interaction which increases the rate of nonradiative decay, probably due to the electrostatic nature of the CF2-F⋯H -(CHF) hydrogen bond. On the other hand, in TFE, C-F⋯ F-C type of dispersion interaction, also known as fluorous interaction, takes place between the CF3 groups of C153 and TFE which decreases the rate of nonradiative rate as compared to MFE and DFE, leading to the increased lifetime of C153 in TFE. Photophysical and MD simulation studies clearly depict that the structural organization of solvents and their interaction with the fluorocarbon group are crucial factors for the photophysical behavior of the fluorocarbon containing molecules.
NASA Astrophysics Data System (ADS)
Mondal, Saptarsi; Halder, Ritaban; Biswas, Biswajit; Jana, Biman; Singh, Prashant Chandra
2016-05-01
The self-aggregation property of the perfluoro group containing molecules makes it important in the research fields of biology and polymer and organic synthesis. In the quest of understanding the role of the perfluoro group on the photophysical properties of perfluoro-containing molecules in biologically important fluoroethanol solvents, we have applied photophysical as well as molecular dynamics simulation techniques to explore the properties of perfluoro groups containing molecule coumarin-153 (C153) in ethanol (ETH), monofluoroethanol (MFE), difluoroethanol (DFE), and trifluoroethanol (TFE) and compared them with the molecules without perfluoro moiety, namely coumarin-6H (C6H) and coumarin-480 (C480). In contrast to C6H and C480, the excited state lifetime of C153 in fluorinated ETHs is not monotonic. The excited state lifetime of C153 decreases in MFE and DFE as compared to ETH, whereas in TFE, it increases as compared to MFE and DFE. Molecular dynamics simulation reveals that the carbon terminal away from the OH group of fluorinated ETHs has a preferential orientation near the perfluoro (CF3) group of C153. In MFE and DFE, the CF3 group of C153 prefers to have a CF2—F⋯H —(CHF) type of electrostatic interaction over CF2—F⋯F —(CH2) kind of dispersion interaction which increases the rate of nonradiative decay, probably due to the electrostatic nature of the CF2—F⋯H —(CHF) hydrogen bond. On the other hand, in TFE, C—F⋯ F—C type of dispersion interaction, also known as fluorous interaction, takes place between the CF3 groups of C153 and TFE which decreases the rate of nonradiative rate as compared to MFE and DFE, leading to the increased lifetime of C153 in TFE. Photophysical and MD simulation studies clearly depict that the structural organization of solvents and their interaction with the fluorocarbon group are crucial factors for the photophysical behavior of the fluorocarbon containing molecules.
Storm time global thermosphere: A driven-dissipative thermodynamic system
NASA Astrophysics Data System (ADS)
Burke, W. J.; Lin, C. S.; Hagan, M. P.; Huang, C. Y.; Weimer, D. R.; Wise, J. O.; Gentile, L. C.; Marcos, F. A.
2009-06-01
Orbit-averaged mass densities $\\overline{\\rho and exospheric temperatures $\\overline{T ∞ inferred from measurements by accelerometers on the Gravity Recovery and Climate Experiment (GRACE) satellites are used to investigate global energy Eth and power Πth inputs to the thermosphere during two complex magnetic storms. Measurements show $\\overline{\\rho, $\\overline{T ∞, and Eth rising from and returning to prevailing baselines as the magnetospheric electric field $\\varepsilon$ VS and the Dst index wax and wane. Observed responses of Eth and $\\overline{T ∞ to $\\varepsilon$ VS driving suggest that the storm time thermosphere evolves as a driven-but-dissipative thermodynamic system, described by a first-order differential equation that is identical in form to that governing the behavior of Dst. Coupling and relaxation coefficients of the Eth, $\\overline{T ∞, and Dst equations are established empirically. Numerical solutions of the equations for $\\overline{T ∞ and Eth are shown to agree with GRACE data during large magnetic storms. Since $\\overline{T ∞ and Dst have the same $\\varepsilon$ VS driver, it is possible to combine their governing equations to obtain estimates of storm time thermospheric parameters, even when lacking information about interplanetary conditions. This approach has the potential for significantly improving the performance of operational models used to calculate trajectories of satellites and space debris and is also useful for developing forensic reconstructions of past magnetic storms. The essential correctness of the approach is supported by agreement between thermospheric power inputs calculated from both GRACE-based estimates of Eth and the Weimer Poynting flux model originally derived from electric and magnetic field measurements acquired by the Dynamics Explorer 2 satellite.
NASA Astrophysics Data System (ADS)
Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.
2016-06-01
This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007, and 2013. A reclassification procedure levels out differences between the classification schemes of the four maps. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during calibration and validation ranged between 0.6 and 0.9 for total discharge, soil moisture, and groundwater level, indicating a good agreement between observed and simulated variables. After a successful multivariate validation the model was applied to the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment it can be assumed that savannah was mainly converted to cropland. The conversion rate of savannah was lower than the annual population growth of 3%. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high peak flow, suggesting (i) an increase in water resources that are not available for plant growth and human consumption and (ii) an alteration of flood risk for both the population within and downstream of the catchment.
A review of the use of ethionamide and prothionamide in childhood tuberculosis.
Thee, S; Garcia-Prats, A J; Donald, P R; Hesseling, A C; Schaaf, H S
2016-03-01
Ethionamide (ETH) and prothionamide (PTH), both thioamides, have proven efficacy in clinical studies and form important components for multidrug-resistant tuberculosis treatment regimens and for treatment of tuberculous meningitis in adults and children. ETH and PTH are pro-drugs that, following enzymatic activation by mycobacterial EthA inhibit InhA, a target shared with isoniazid (INH), and subsequently inhibit mycolic acid synthesis of Mycobacterium tuberculosis. Co-resistance to INH and ETH is conferred by mutations in the mycobacterial inhA promoter region; mutations in the ethA gene often underlie ETH and PTH monoresistance. An oral daily dose of ETH or PTH of 15-20 mg/kg with a maximum daily dose of 1000 mg is recommended in children to achieve adult-equivalent serum concentrations shown to be efficacious in adults, although information on optimal pharmacodynamic targets is still lacking. Gastrointestinal disturbances, and hypothyroidism during long-term therapy, are frequent adverse effects observed in adults and children, but are rarely life-threatening and seldom necessitate cessation of ETH therapy. More thorough investigation of the therapeutic effects and toxicity of ETH and PTH is needed in childhood TB while child-friendly formulations are needed to appropriately dose children. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecdysis triggering hormone signaling in the yellow fever mosquito Aedes aegypti.
Dai, Li; Adams, Michael E
2009-05-15
At the end of each developmental stage, the yellow fever mosquito Aedes aegypti performs the ecdysis behavioral sequence, a precisely timed series of behaviors that culminates in shedding of the old exoskeleton. Here we describe ecdysis triggering hormone-immunoreactive Inka cells located at branch points of major tracheal trunks and loss of staining coincident with ecdysis. Peptides (AeaETH1, AeaETH2) purified from extracts of pharate 4th instar larvae have--PRXamide C-terminal amino acid sequence motifs similar to ETHs previously identified in moths and flies. Injection of synthetic AeaETHs induced premature ecdysis behavior in pharate larvae, pupae and adults. Two functionally distinct subtypes of ETH receptors (AeaETHR-A, AeaETHR-B) of A. aegypti are identified and show high sensitivity and selectivity to ETHs. Increased ETHR transcript levels and behavioral sensitivity to AeaETHs arising in the hours preceding the 4th instar larva-to-pupa ecdysis are correlated with rising ecdysteroid levels, suggesting steroid regulation of receptor gene expression. Our description of natural and ETH-induced ecdysis in A. aegypti should facilitate future approaches directed toward hormone-based interference strategies for control of mosquitoes as human disease vectors.
Finite-size scaling of eigenstate thermalization
NASA Astrophysics Data System (ADS)
Beugeling, W.; Moessner, R.; Haque, Masudul
2014-04-01
According to the eigenstate thermalization hypothesis (ETH), even isolated quantum systems can thermalize because the eigenstate-to-eigenstate fluctuations of typical observables vanish in the limit of large systems. Of course, isolated systems are by nature finite and the main way of computing such quantities is through numerical evaluation for finite-size systems. Therefore, the finite-size scaling of the fluctuations of eigenstate expectation values is a central aspect of the ETH. In this work, we present numerical evidence that for generic nonintegrable systems these fluctuations scale with a universal power law D-1/2 with the dimension D of the Hilbert space. We provide heuristic arguments, in the same spirit as the ETH, to explain this universal result. Our results are based on the analysis of three families of models and several observables for each model. Each family includes integrable members and we show how the system size where the universal power law becomes visible is affected by the proximity to integrability.
Brandt, Simon D; Kavanagh, Pierce V; Westphal, Folker; Elliott, Simon P; Wallach, Jason; Stratford, Alexander; Nichols, David E; Halberstadt, Adam L
2017-10-01
The psychoactive properties of lysergic acid diethylamide (LSD) have fascinated scientists across disciplines and the exploration of other analogues and derivatives has been motivated by deepening the understanding of ligand-receptor interactions at the molecular level as well as by the search for new therapeutics. Several LSD congeners have appeared on the new psychoactive substances (NPS) market in the form of blotters or powders. Examples include 1-propionyl-LSD (1P-LSD), AL-LAD, and LSZ. The absence of analytical data for novel compounds is a frequent challenge encountered in clinical and toxicological investigations. Two newly emerging lysergamides, namely N 6 -ethyl-6-norlysergic acid diethylamide (ETH-LAD) and 1P-ETH-LAD, were characterized by gas chromatography-mass spectrometry (GC-MS), low and high mass accuracy electrospray MS(/MS), GC solid-state infrared analysis, high performance liquid chromatography diode array detection as well as nuclear magnetic resonance spectroscopy. Limited analytical data for ETH-LAD were previously available, whereas information about 1P-ETH-LAD has not previously been encountered in the scientific literature. This study extends the characterization of lysergamides distributed on the NPS market, which will help to make analytical data available to clinicians, toxicologists, and other stakeholders who are likely to encounter these substances. The analysis of a test incubation of 1P-ETH-LAD with human serum at 37°C by LC single quadrupole MS at various time points (0-6 h, once per hour and one measurement after 24 h) revealed the formation of ETH-LAD, suggesting that 1P-ETH-LAD might serve as a pro-drug. 1P-ETH-LAD was still detectable in serum after 24 h. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Universality of quantum information in chaotic CFTs
NASA Astrophysics Data System (ADS)
Lashkari, Nima; Dymarsky, Anatoly; Liu, Hong
2018-03-01
We study the Eigenstate Thermalization Hypothesis (ETH) in chaotic conformal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume limit when the full system is an energy eigenstate. This reduced density matrix is close in trace distance to a density matrix, to which we refer as the ETH density matrix, that is independent of all the details of an eigenstate except its energy and charges under global symmetries. In two dimensions, the ETH density matrix is universal for all theories with the same value of central charge. We argue that the ETH density matrix is close in trace distance to the reduced density matrix of the (micro)canonical ensemble. We support the argument in higher dimensions by comparing the Von Neumann entropy of the ETH density matrix with the entropy of a black hole in holographic systems in the low temperature limit. Finally, we generalize our analysis to the coherent states with energy density that varies slowly in space, and show that locally such states are well described by the ETH density matrix.
Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra
2017-09-20
The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.
Oliveira-Lima, A J; Santos, R; Hollais, A W; Gerardi-Junior, C A; Baldaia, M A; Wuo-Silva, R; Yokoyama, T S; Costa, J L; Malpezzi-Marinho, E L A; Ribeiro-Barbosa, P C; Berro, L F; Frussa-Filho, R; Marinho, E A V
2015-04-01
Hallucinogenic drugs were used to treat alcoholic patients in the past, and recent developments in the study of hallucinogens led to a renewal of interest regarding the application of these drugs in the treatment of addiction. In this scenario, accumulating evidence suggests that the hallucinogenic brew ayahuasca (Aya) may have therapeutic effects on substance abuse problems. We investigated the effects of Aya on spontaneous locomotor activity and ethanol(Eth)-induced hyperlocomotion and subsequent locomotor sensitization by a two-injection protocol. Additionally, we tested the effect of Aya on an 8-day counter-sensitization protocol to modify sensitized responses induced by a repeated treatment with Eth (1.8g/kg) for 8 alternate days. Aya showed high sensitivity in preventing the development of Eth-induced behavioral sensitization, attenuating it at all doses (30, 100, 200, 300 or 500 mg/kg) without modifying spontaneous locomotor activity. At the highest doses (300 and 500 mg/kg), Aya also showed selectivity to both acute and sensitized Eth responses. Finally, a counter-sensitization strategy with 100 or 300 mg/kg of Aya for 8 consecutive days after the establishment of Eth-induced behavioral sensitization was effective in blocking its subsequent expression on an Eth challenge. We demonstrated that Aya not only inhibits early behaviors associated with the initiation and development of Eth addiction, but also showed effectiveness in reversing long-term drug effects expression, inhibiting the reinstatement of Eth-induced behavioral sensitization when administered in the Eth-associated environment. Copyright © 2015 Elsevier Inc. All rights reserved.
Environmental novelty and illumination modify ethanol-induced open-field behavioral effects in mice.
Fukushiro, Daniela F; Benetti, Liliane F; Josino, Fabiana S; Oliveira, Gabriela P; Fernandes, Maiara deM; Saito, Luis P; Uehara, Regina A; Wuo-Silva, Raphael; Oliveira, Camila S; Frussa-Filho, Roberto
2010-03-01
Both spontaneous and drug-induced animal behaviors can be modified by exposure to novel stimuli or different levels of environmental illumination. However, research into how these factors specifically impact ethanol (ETH)-induced behavioral effects is currently lacking. We aimed to investigate the effects of these two factors, considered separately or in conjunction, on ETH-induced acute hyperlocomotor effect and its sensitization in adult male Swiss mice. Mice were placed in a novel or familiar open-field under normal light (200 lx) or low light (9 lx) immediately after receiving an ip injection of either 1.8 g/kg ETH or saline (SAL). After 7 days, all animals received an ip challenge injection of 1.8 g/kg ETH, and were placed in the open-field under the same light conditions described above. Novelty increased central locomotion and decreased grooming, while low light increased grooming. Acute ETH administration increased both total and peripheral locomotion and these effects were potentiated by low light. Both low light and novelty were able to facilitate ETH-induced locomotor sensitization, which was detected by the central locomotion parameter. However, there was no synergism between the effects of these two modulating factors on ETH-induced behavioral sensitization. We conclude that both the acute behavioral effects of ETH and behavioral sensitization induced by previous administration of this drug can be critically modified by environmental factors. In addition, our study stresses the importance of using different behavioral parameters to evaluate the interaction between environmental factors and ETH effects. (c) 2009 Elsevier Inc. All rights reserved.
Ruddraraju, Kasi Viswanatharaju; Hillebrand, Roman; Barnes, Charles L; Gates, Kent S
2015-04-01
The title compound, C24H32N4O8S, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl] side chain is protonated, while the 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intra-molecular N-H⋯O hydrogen bond. The 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, mol-ecules are linked by N-H⋯O and N-H⋯N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π inter-actions present.
Bennett, Richard A. O.
1999-01-01
The recently sequenced Saccharomyces cerevisiae genome was searched for a gene with homology to the gene encoding the major human AP endonuclease, a component of the highly conserved DNA base excision repair pathway. An open reading frame was found to encode a putative protein (34% identical to the Schizosaccharomyces pombe eth1+ [open reading frame SPBC3D6.10] gene product) with a 347-residue segment homologous to the exonuclease III family of AP endonucleases. Synthesis of mRNA from ETH1 in wild-type cells was induced sixfold relative to that in untreated cells after exposure to the alkylating agent methyl methanesulfonate (MMS). To investigate the function of ETH1, deletions of the open reading frame were made in a wild-type strain and a strain deficient in the known yeast AP endonuclease encoded by APN1. eth1 strains were not more sensitive to killing by MMS, hydrogen peroxide, or phleomycin D1, whereas apn1 strains were ∼3-fold more sensitive to MMS and ∼10-fold more sensitive to hydrogen peroxide than was the wild type. Double-mutant strains (apn1 eth1) were ∼15-fold more sensitive to MMS and ∼2- to 3-fold more sensitive to hydrogen peroxide and phleomycin D1 than were apn1 strains. Elimination of ETH1 in apn1 strains also increased spontaneous mutation rates 9- or 31-fold compared to the wild type as determined by reversion to adenine or lysine prototrophy, respectively. Transformation of apn1 eth1 cells with an expression vector containing ETH1 reversed the hypersensitivity to MMS and limited the rate of spontaneous mutagenesis. Expression of ETH1 in a dut-1 xthA3 Escherichia coli strain demonstrated that the gene product functionally complements the missing AP endonuclease activity. Thus, in apn1 cells where the major AP endonuclease activity is missing, ETH1 offers an alternate capacity for repair of spontaneous or induced damage to DNA that is normally repaired by Apn1 protein. PMID:10022867
NASA Astrophysics Data System (ADS)
Chandran, A.; Schulz, Marc D.; Burnell, F. J.
2016-12-01
Many phases of matter, including superconductors, fractional quantum Hall fluids, and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has primarily been studied in unconstrained Hilbert spaces. In this paper, we investigate whether constrained Hilbert spaces permit local thermalization. Specifically, we explore whether the eigenstate thermalization hypothesis (ETH) holds in a pinned Fibonacci anyon chain, which serves as a representative case study. We first establish that the constrained Hilbert space admits a notion of locality by showing that the influence of a measurement decays exponentially in space. This suggests that the constraints are no impediment to thermalization. We then provide numerical evidence that ETH holds for the diagonal and off-diagonal matrix elements of various local observables in a generic disorder-free nonintegrable model. We also find that certain nonlocal observables obey ETH.
MODELING VOLATILE ORGANIC COMPOUND PHARMACOKINETICS IN RAT PUPS
PBPK model predictions of internal dosimetry in young rats were compared to adult animals for benzene, chloroform (CHL), methylene chloride, methyl ethly ketone (MEK), perchloroethylene, and trichloroethylene.
Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants.
Wang, Shengman; Wang, Lihong; Hua, Weiqi; Zhou, Min; Wang, Qingqing; Zhou, Qing; Huang, Xiaohua
2015-11-01
Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical in the environment that exerts potential harm to plants. Phytohormones play important roles both in regulating multiple aspects of plant growth and in plants' responses to environmental stresses. But how BPA affects plant growth by regulating endogenous hormones remains poorly understood. Here, we found that treatment with 1.5 mg L(-1) BPA improved the growth of soybean seedlings, companied by increases in the contents of indole-3-acetic acid (IAA) and zeatin (ZT), and decreases in the ratios of abscisic acid (ABA)/IAA, ABA/gibberellic acid (GA), ABA/ZT, ethylene (ETH)/GA, ETH/IAA, and ETH/ZT. Treatment with higher concentrations of BPA (from 3 to 96 mg L(-1)) inhibited the growth of soybean seedlings, meanwhile, decreased the contents of IAA, GA, ZT, and ETH, and increased the content of ABA and the ratios of ABA/IAA, ABA/GA, ABA/ZT, ETH/GA, ETH/IAA, and ETH/ZT. The increases in the ratios of growth and stress hormones were correlated with the increase in the BPA content of the roots. Thus, BPA could affect plant growth through changing the levels of single endogenous hormone and the ratios of growth and stress hormones in the roots because of BPA absorption by the roots.
NASA Astrophysics Data System (ADS)
Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.
2015-12-01
This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007 and 2013. A reclassification procedure of the maps permitted to assess the major land use changes in the catchment from 1990 to 2013. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during the calibration and the validation ranged between 0.9 and 0.6 for total discharge, soil moisture, and groundwater level, indicating satisfying to good agreements between observed and simulated variables. After a successful multi-criteria validation the model was run with the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment in 2013 it can be assumed that savannah was mainly converted to cropland. The increase in cropland area results from the population growth and the farming system in the catchment. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high discharge and peak flow, suggesting (i) an increase in water resources that is not available for plant growth and the population of the catchment and (ii) an alteration of flood risk for both the population within and downstream of the catchment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantelias, M.; Volmert, B.; Caruso, S.
MCNP models of all Swiss Nuclear Power Plants have been developed by the National Cooperative for the Disposal of Radioactive Waste (Nagra), in collaboration with the utilities and ETH Zurich, for the 2011 decommissioning cost study. The estimation of the residual radionuclide inventories and corresponding activity levels of irradiated structures and components following the NPP shut-down is of crucial importance for the planning of the dismantling process, the waste packaging concept and, consequently, for the estimation of the decommissioning costs. Based on NPP specific data, the neutron transport simulations lead to the best yet knowledge of the neutron spectra necessarymore » for the ensuing activation calculations. In this paper, the modeling concept towards the MCNP-NPPs is outlined and the resulting flux distribution maps are presented. (authors)« less
Tang, Wei; Song, Liyan; Li, Dou; Qiao, Jing; Zhao, Tiantao; Zhao, Heping
2014-01-01
Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2), produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa) and multi-functional groups (hydroxyl, amide and carboxyl) that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1∶2.9∶9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application. PMID:25485629
Development of a salt drug with improved solubility: Ethionamide nitrate
NASA Astrophysics Data System (ADS)
Diniz, Luan F.; Carvalho, Paulo S.; de Melo, Cristiane C.; Ellena, Javier
2017-06-01
To avoid drug resistance, an adequate tuberculosis treatment should include not only a first-line drug but also at least one second-line drug such as, for example, Ethionamide (ETH). However, the dissolution rate and oral absorption of ETH is highly limited by its low aqueous solubility. Considering that a salt is in general more soluble than its parent compound, herein we depicted a new supramolecular modification of ETH, an Ethionamide nitrate salt (ETHNO3). This salt is the first ETH structure that has been crystallized with four independent ionic pairs (ETH+NO3-) in the asymmetric unit. In addition to the structural study, the salt formation was also identified on the FT-IR and FT-Raman spectra. The thermal behavior of ETHNO3 was also investigated here together with its solubility profile in three dissolution media (purified water, pH 4.0 and 7.0).
Lenaerts, Cynthia; Cools, Dorien; Verdonck, Rik; Verbakel, Lina; Vanden Broeck, Jozef; Marchal, Elisabeth
2017-01-01
Insects are enclosed in a rigid exoskeleton, providing protection from desiccation and mechanical injury. To allow growth, this armour needs to be replaced regularly in a process called moulting. Moulting entails the production of a new exoskeleton and shedding of the old one and is induced by a pulse in ecdysteroids, which activates a peptide-mediated signalling cascade. In Holometabola, ecdysis triggering hormone (ETH) is the key factor in this cascade. Very little functional information is available in Hemimetabola, which display a different kind of development characterized by gradual changes. This paper reports on the identification of the ETH precursor and the pharmacological and functional characterisation of the ETH receptor in a hemimetabolous pest species, the desert locust, Schistocerca gregaria. Activation of SchgrETHR by SchgrETH results in an increase of both Ca2+ and cyclic AMP, suggesting that SchgrETHR displays dual coupling properties in an in vitro cell-based assay. Using qRT-PCR, an in-depth profiling study of SchgrETH and SchgrETHR transcripts was performed. Silencing of SchgrETH and SchgrETHR resulted in lethality at the expected time of ecdysis, thereby showing their crucial role in moulting. PMID:28417966
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Formayer, Herbert; Förster, Kristian; Marke, Thomas; Meißl, Gertraud; Schermer, Markus; Stotten, Friederike; Themessl, Matthias
2016-04-01
Future land use in Alpine catchments is controlled by the evolution of socio-economy and climate. Estimates of their coupled development should hence fulfill the principles of plausibility (be convincing) and consistency (be unambiguous). In the project STELLA, coupled future climate and land use scenarios are used as input in a hydrological modelling exercise with the physically-based, distributed water balance model WaSiM. The aim of the project is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The so-called „storylines" of future coupled climate and forest/land use management, policy, social cooperation, tourism and economy have jointly been developed in an inter- and transdisciplinary assessment with local actors. The climate background is given by simulations for the A1B (temperature conditions like today in Merano/Italy, 46.7°N) and RCP 8.5 (temperature conditions like today in Bologna/Italy, 44.5°N) emission scenarios. These two climate scenarios were combined with three potential socio-economic developments („local"/„glocal"/ „superglobal"), each in a positive and in a negative specification. From these twelve storylines of coupled climate/land use future, a set of four storylines was selected to be used in transient hydrological modelling experiments. Historical simulations of the water balance for the test site reveal the pattern of land use being the most prominent factor for the spatial distribution of its components. A new prototype for a snow-canopy interaction simulation module provides explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands in the catchment. This new canopy module will be used to model the coupled climate/land use future storylines for the Brixental. The aim is to quantify the effects of climate change and land use on the water balance and streamflow, both separately and in their respective combination.
Mohanta, Dayanidhi; Jana, Madhurima
2018-04-18
Monohydric alcohols, such as methanol (MEH), ethanol (ETH) and 2,2,2-trifluoroethanol (TFE), have significant effects on biological processes including the protein folding-unfolding phenomenon. Among the several monohydric alcohols, TFE, a fluorine-substituted alcohol, is known to induce a helical structure in proteins. In this work, we report the heterogeneous unfolding phenomenon of a small protein Chymotrypsin Inhibitor 2 in various concentrations of methanol, ethanol and TFE solutions by performing atomistic molecular dynamics simulation studies. Our study reveals that the unfolding phenomenon of CI2 under thermal stress majorly depends on the concentration and the nature of the alcohol. The presence of alcohols in general has been noted to accelerate the unfolding process compared to pure water and TFE, among them all, has been found to speed up the unfolding time scale at low concentrations. The molecular contact frequency between protein and alcohol follows the trend, MEH < ETH < TFE at low concentrations, whereas the trend becomes MEH ∼ ETH > TFE at more concentrated solutions. The differential water-mediated and self-clustering phenomena of alcohols, diverse protein-alcohol hydrogen bond strengths and the concentration dependent restricted inhomogeneous protein-water as well as protein-alcohol hydrogen bond dynamics suggest that TFE, a well known α-helix stabilizer, could be a good competitor among its class of denaturants.
Zhang, Dongyan; Takahashi, Junko; Seno, Taiko; Tani, Yoshihiko; Honda, Takeshi
1999-01-01
El Tor hemolysin (ETH), a pore-forming toxin secreted by Vibrio cholerae O1 biotype El Tor and most Vibrio cholerae non-O1 isolates, is able to lyse erythrocytes and other mammalian cells. To study the receptor for this toxin or the related molecule(s) on erythrocyte, we first isolated a monoclonal antibody, B1, against human erythrocyte membrane, which not only blocks the binding of ETH to human erythrocyte but also inhibits the hemolytic activity of ETH. Biochemical characterization and immunoblotting revealed that this antibody recognized an epitope on the extracellular domain of glycophorin B, a sialoglycoprotein of erythrocyte membrane. Erythrocytes lacking glycophorin B but not glycophorin A were less sensitive to the toxin than were normal human erythrocytes. These results indicate that glycophorin B is a receptor for ETH or at least an associated molecule of the receptor for ETH on human erythrocytes. PMID:10496913
Wang, Yonglin; Xiong, Dianguang; Jiang, Ning; Li, Xuewu; Yang, Qiqing; Tian, Chengming
2016-01-01
Arceuthobium (dwarf mistletoes) are hemiparasites that may cause great damage to infected trees belonging to Pinaceae and Cupressaceae. Currently, dwarf mistletoe control involves the use of the ethylene-producing product ethephon (ETH), which acts by inducing dwarf mistletoe shoot abscission. However, the process by which ETH functions is mostly unknown. Therefore, the transcriptome of the ETH-exposed plants was compared to non-exposed controls to identify genes associated with the response to ethephon. In this study, the reference transcriptome was contained 120,316 annotated unigenes, with a total of 21,764 ETH-responsive differentially expressed unigenes were identified. These ETH-associated genes clustered into 20 distinctly expressed pattern groups, providing a view of molecular events with good spatial and temporal resolution. As expected, the greatest number of unigenes with changed expression were observed at the onset of abscission, suggesting induction by ethylene. ETH also affected genes associated with shoot abscission processes including hormone biosynthesis and signaling, cell wall hydrolysis and modification, lipid transference, and more. The comprehensive transcriptome data set provides a wealth of genomic resources for dwarf mistletoe communities and contributes to a better understanding of the molecular regulatory mechanism of ethylene-caused shoots abscission. PMID:27941945
Crystal structures of ten enantiopure Schiff bases bearing a naphthyl group
Hernández-Téllez, Guadalupe; Moreno, Gloria E.; Bernès, Sylvain; Mendoza, Angel; Portillo, Oscar; Sharma, Pankaj; Gutiérrez, René
2016-01-01
Using a general solvent-free procedure for the synthesis of chiral Schiff bases, the following compounds were synthesized and their crystal structures determined: (S)-(+)-2-{[(1-phenylethyl)imino]methyl}naphthalene, C19H17N, (1), (S)-(+)-2-({[(4-methylphenyl)ethyl]imino}methyl)naphthalene, C20H19N, (2), (R)-(−)-2-({[(4-methoxylphenyl)ethyl]imino}methyl)naphthalene, C20H19NO, (3), (R)-(−)-2-({[(4-fluorophenyl)ethyl]imino}methyl)naphthalene, C19H16FN, (4), (S)-(+)-2-({[(4-chlorophenyl)ethyl]imino}methyl)naphthalene, C19H16ClN, (5), (S)-(+)-2-({[(4-bromophenyl)ethyl]imino}methyl)naphthalene, C19H16BrN, (6), (S)-(+)-2-({[1-(naphthalen-1-yl)ethyl]imino}methyl)naphthalene, C23H19N, (7), (S)-(+)-2-{[(1-cyclohexylethyl)imino]methyl}naphthalene, C19H23N, (8), (S)-(−)-2-{[(1,2,3,4-tetrahydronaphthalen-1-yl)imino]methyl}naphthalene, C21H19N, (9), and (+)-2-({[(1S,2S,3S,5R)-2,6,6-trimethylbicyclo[3.1.1]hept-3-yl]imino}methyl}naphthalene, C21H25N, (10). The moiety provided by the amine generates conformational flexibility for these imines. In the crystals, no strong intermolecular contacts are observed, in spite of the presence of aromatic groups. PMID:27375893
Pan-European climate at convection-permitting scale: a model intercomparison study
NASA Astrophysics Data System (ADS)
Berthou, Ségolène; Kendon, Elizabeth J.; Chan, Steven C.; Ban, Nikolina; Leutwyler, David; Schär, Christoph; Fosser, Giorgia
2018-03-01
We investigate the effect of using convection-permitting models (CPMs) spanning a pan-European domain on the representation of precipitation distribution at a climatic scale. In particular we compare two 2.2 km models with two 12 km models run by ETH Zürich (ETH-12 km and ETH-2.2 km) and the Met-Office (UKMO-12 km and UKMO-2.2 km). The two CPMs yield qualitatively similar differences to the precipitation climatology compared to the 12 km models, despite using different dynamical cores and different parameterization packages. A quantitative analysis confirms that the CPMs give the largest differences compared to 12 km models in the hourly precipitation distribution in regions and seasons where convection is a key process: in summer across the whole of Europe and in autumn over the Mediterranean Sea and coasts. Mean precipitation is increased over high orography, with an increased amplitude of the diurnal cycle. We highlight that both CPMs show an increased number of moderate to intense short-lasting events and a decreased number of longer-lasting low-intensity events everywhere, correcting (and often over-correcting) biases in the 12 km models. The overall hourly distribution and the intensity of the most intense events is improved in Switzerland and to a lesser extent in the UK but deteriorates in Germany. The timing of the peak in the diurnal cycle of precipitation is improved. At the daily time-scale, differences in the precipitation distribution are less clear but the greater Alpine region stands out with the largest differences. Also, Mediterranean autumnal intense events are better represented at the daily time-scale in both 2.2 km models, due to improved representation of mesoscale processes.
DeAtley, K L; Rincon, G; Farber, C R; Medrano, J F; Luna-Nevarez, P; Enns, R M; VanLeeuwen, D M; Silver, G A; Thomas, M G
2011-07-01
ETH10 is a dinucleotide microsatellite within the promoter of signal transducer and activator of transcription 6 (STAT6) gene on bovine chromosome 5. ETH10 is included in the panel of genetic markers used in parentage testing procedures of cattle breed associations. Allelic sizes of ETH10 PCR amplicons range from 199 to 225 bp. Objectives of this study were to use microsatellite data from beef cattle breed associations to investigate genetic distance and population stratification among Angus- and Brahman-influenced cattle and to use ETH10 genotypes and growth and ultrasound carcass data to investigate their statistical relationships. Three series of genotype to phenotype association analyses were conducted with 1) Angus data (n=5,094), 2) Brangus data (3/8 Brahman × 5/8 Angus; n=2,296), and 3) multibreed data (n=4,426) of Angus and Brangus cattle. Thirteen alleles and 38 genotypes were observed, but frequencies varied among breed groups. Tests of genetic identity and distance among 6 breed composition groups increasing in Brahman influence from 0 to 75% revealed that as Brahman-influence increased to ≥50%, genetic distance from Angus ranged from 18.3 to 43.5%. This was accomplished with 10 microsatellite loci. A mixed effects model involving genotype as a fixed effect and sire as a random source of variation suggested that Angus cattle with the 217/219 genotype tended to have 2.1% heavier (P=0.07) 205-d BW than other genotypes. In Brangus cattle, allele combinations were classified as small (≤215 bp) or large (≥217 bp). Brangus cattle with the small/large genotype had 2.0% heavier (P<0.05) birth weight, yet cattle with the large/large genotype had approximately 5.1% greater (P<0.05) percentage of fat within LM and more LM per BW than cattle with small/large or small/small genotypes. Genotype-to-phenotype relationships were not detected in multibreed analyses. The ETH10 locus appears to be associated with growth and carcass traits in Angus and Brangus cattle. Results from this study provide support for STAT6 as one of the candidate genes underlying cattle growth QTL on chromosome 5. © 2011 American Society of Animal Science. All rights reserved.
Waterman, Amy D; McSorley, Anna-Michelle M; Peipert, John D; Goalby, Christina J; Peace, Leanne J; Lutz, Patricia A; Thein, Jessica L
2015-08-28
Compared to others, dialysis patients who are socioeconomically disadvantaged or Black are less likely to receive education about deceased donor kidney transplant (DDKT) and living donor kidney transplant (LDKT) before they reach transplant centers, often due to limited availability of transplant education within dialysis centers. Since these patients are often less knowledgeable or ready to pursue transplant, educational content must be simplified, made culturally sensitive, and presented gradually across multiple sessions to increase learning and honor where they are in their decision-making about transplant. The Explore Transplant at Home (ETH) program was developed to help patients learn more about DDKT and LDKT at home, with and without telephone conversations with an educator. In this randomized controlled trial (RCT), 540 low-income Black and White dialysis patients with household incomes at or below 250 % of the federal poverty line, some of whom receive financial assistance from the Missouri Kidney Program, will be randomly assigned to one of three education conditions: (1) standard-of-care transplant education provided by the dialysis center, (2) patient-guided ETH (ETH-PG), and (3) health educator-guided ETH (ETH-EG). Patients in the standard-of-care condition will only receive education provided in their dialysis centers. Those in the two ETH conditions will receive four video and print modules delivered over an 8 month period by mail, with the option of receiving supplementary text messages weekly. In addition, patients in the ETH-EG condition will participate in multiple telephonic educational sessions with a health educator. Changes in transplant knowledge, decisional balance, self-efficacy, and informed decision making will be captured with surveys administered before and after the ETH education. At the conclusion of this RCT, we will have determined whether an education program administered to socioeconomically disadvantaged dialysis patients, over several months directly in their homes, can help more individuals learn about the options of DDKT and LDKT. We also will be able to examine the efficacy of different educational delivery approaches to further understand whether the addition of a telephone educator is necessary for increasing transplant knowledge. ClinicalTrials.gov, NCT02268682.
Dover, Lynn G.; Alahari, Anuradha; Gratraud, Paul; Gomes, Jessica M.; Bhowruth, Veemal; Reynolds, Robert C.; Besra, Gurdyal S.; Kremer, Laurent
2007-01-01
Many of the current antimycobacterial agents require some form of cellular activation unmasking reactive groups, which in turn will bind to their specific targets. Therefore, understanding the mechanisms of activation of current antimycobacterials not only helps to decipher mechanisms of drug resistance but may also facilitate the development of alternative activation strategies or of analogues that do not require such processes. Herein, through the use of genetically defined strains of Mycobacterium bovis BCG we provide evidence that EthA, previously shown to activate ethionamide, also converts isoxyl (ISO) and thiacetazone (TAC) into reactive species. These results were further supported by the development of an in vitro assay using purified recombinant EthA, which allowed direct assessment of the metabolism of ISO. Interestingly, biochemical analysis of [14C]acetate-labeled cultures suggested that all of these EthA-activated drugs inhibit mycolic acid biosynthesis via different mechanisms through binding to specific targets. This report is also the first description of the molecular mechanism of action of TAC, a thiosemicarbazone antimicrobial agent that is still used in the treatment of tuberculosis as a second-line drug in many developing countries. Altogether, the results suggest that EthA is a common activator of thiocarbamide-containing drugs. The broad specificity of EthA can now be used to improve the activation process of these drugs, which may help overcome the toxicity problems associated with clinical thiocarbamide use. PMID:17220416
Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar
2015-01-01
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578
Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1.
Ikigai, H; Akatsuka, A; Tsujiyama, H; Nakae, T; Shimamura, T
1996-08-01
El Tor hemolysin (ETH; molecular mass, 65 kDa) derived from Vibrio cholerae O1 spontaneously assembled oligomeric aggregates on the membranes of rabbit erythrocyte ghosts and liposomes. Membrane-associated oligomers were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting into two to nine bands with apparent molecular masses of 170 to 350 kDa. ETH assembled oligomers on a liposomal membrane consisting of phosphatidylcholine and cholesterol, but not on a membrane of phosphatidylcholine alone. Cholesterol could be replaced with diosgenin or ergosterol but not with 5alpha-cholestane-3-one, suggesting that sterol is essential for the oligomerization. The treatment of carboxyfluorescein-encapsulated liposomes with ETH caused a rapid release of carboxyfluorescein into the medium. Because dextrin 20 (molecular mass, 900 Da) osmotically protected ETH-mediated hemolysis, this hemolysis is likely to be caused by pore formation on the membrane. The pore size(s) estimated from osmotic protection assays was in the range of 1.2 to 1.6 nm. The pore formed on a rabbit erythrocyte membrane was confirmed morphologically by electron microscopy. Thus, we provide evidence that ETH damages the target by the assembly of hemolysin oligomers and pore formation on the membrane.
Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1.
Ikigai, H; Akatsuka, A; Tsujiyama, H; Nakae, T; Shimamura, T
1996-01-01
El Tor hemolysin (ETH; molecular mass, 65 kDa) derived from Vibrio cholerae O1 spontaneously assembled oligomeric aggregates on the membranes of rabbit erythrocyte ghosts and liposomes. Membrane-associated oligomers were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting into two to nine bands with apparent molecular masses of 170 to 350 kDa. ETH assembled oligomers on a liposomal membrane consisting of phosphatidylcholine and cholesterol, but not on a membrane of phosphatidylcholine alone. Cholesterol could be replaced with diosgenin or ergosterol but not with 5alpha-cholestane-3-one, suggesting that sterol is essential for the oligomerization. The treatment of carboxyfluorescein-encapsulated liposomes with ETH caused a rapid release of carboxyfluorescein into the medium. Because dextrin 20 (molecular mass, 900 Da) osmotically protected ETH-mediated hemolysis, this hemolysis is likely to be caused by pore formation on the membrane. The pore size(s) estimated from osmotic protection assays was in the range of 1.2 to 1.6 nm. The pore formed on a rabbit erythrocyte membrane was confirmed morphologically by electron microscopy. Thus, we provide evidence that ETH damages the target by the assembly of hemolysin oligomers and pore formation on the membrane. PMID:8757822
Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model.
Knox, D; Nault, T; Henderson, C; Liberzon, I
2012-10-25
Single prolonged stress (SPS) is a rodent model of post traumatic stress disorder that is comprised of serial application of restraint (r), forced swim (fs), and ether (eth) followed by a 7-day quiescent period. SPS induces extinction retention deficits and it is believed that these deficits are caused by the combined stressful effect of serial exposure to r, fs, and eth. However, this hypothesis remains untested. Neurobiological mechanisms by which SPS induces extinction retention deficits are unknown, but SPS enhances glucocorticoid receptor (GR) expression in the hippocampus, which is critical for contextual modulation of extinction retrieval. Upregulation of GRs in extinction circuits may be a mechanism by which SPS induces extinction retention deficits, but this hypothesis has not been examined. In this study, we systematically altered the stressors that constitute SPS (i.e. r, fs, eth), generating a number of partial SPS (p-SPS) groups, and observed the effects SPS and p-SPSs had on extinction retention and GR levels in the hippocampus and prefrontal cortex (PFC). PFC GRs were assayed, because regions of the PFC are critical for maintaining extinction. We predicted that only exposure to full SPS would result in extinction retention deficits and enhance hippocampal and PFC GR levels. Only exposure to full SPS induced extinction retention deficits. Hippocampal and PFC GR expression was enhanced by SPS and most p-SPSs, however hippocampal GR expression was significantly larger following the full SPS exposure than all other conditions. Our findings suggest that the combined stressful effect of serial exposure to r, fs, and eth results in extinction retention deficits. The results also suggest that simple enhancements in GR expression in the hippocampus and PFC are insufficient to result in extinction retention deficits, but raise the possibility that a threshold-enhancement in hippocampal GR expression contributes to SPS-induced extinction retention deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Kariithi, Henry M.; Cousserans, François; Parker, Nicolas J.; İnce, İkbal Agah; Scully, Erin D.; Boeren, Sjef; Geib, Scott M.; Mekonnen, Solomon; Vlak, Just M.; Parker, Andrew G.; Vreysen, Marc J. B.; Bergoin, Max
2016-01-01
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies. PMID:26801744
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Aüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schöder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cáardenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.
2011-06-01
The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 × 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.
NASA Astrophysics Data System (ADS)
Kleinn, J.; Frei, C.; Gurtz, J.; Vidale, P. L.; Schär, C.
2003-04-01
The consequences of extreme runoff and extreme water levels are within the most important weather induced natural hazards. The question about the impact of a global climate change on the runoff regime, especially on the frequency of floods, is of utmost importance. In winter-time, two possible climate effects could influence the runoff statistis of large Central European rivers: the shift from snowfall to rain as a consequence of higher temperatures and the increase of heavy precipitation events due to an intensification of the hydrological cycle. The combined effect on the runoff statistics is examined in this study for the river Rhine. To this end, sensitivity experiments with a model chain including a regional climate model and a distributed runoff model are presented. The experiments are based on an idealized surrogate climate change scenario which stipulates a uniform increase in temperature by 2 Kelvin and an increase in atmospheric specific humidity by 15% (resulting from unchanged relative humidity) in the forcing fields for the regional climate model. The regional climate model CHRM is based on the mesoscale weather prediction model HRM of the German Weather Service (DWD) and has been adapted for climate simulations. The model is being used in a nested mode with horizontal resolutions of 56 km and 14 km. The boundary conditions are taken from the original ECMWF reanalysis and from a modified version representing the surrogate scenario. The distributed runoff model (WaSiM) is used at a horizontal resolution of 1 km for the whole Rhine basin down to Cologne. The coupling of the models is provided by a downscaling of the climate model fields (precipitaion, temperature, radiation, humidity, and wind) to the resolution of the distributed runoff model. The simulations cover the period of September 1987 to January 1994 with a special emphasis on the five winter seasons 1989/90 until 1993/94, each from November until January. A detailed validation of the control simulation shows a good correspondence of the precipitation fields from the regional climate model with measured fields regarding the distribution of precipitation at the scale of the Rhine basin. Systematic errors are visible at the scale of single subcatchements, in the altitudinal distribution and in the frequency distribution of precipitation. These errors only marginally affect the runoff simulations, which show good correspondence with runoff observations. The presentation includes results from the scenario simulations for the whole basin as well as for Alpine and lowland subcatchements. The change in the runoff statistics is being analyzed with respect to the changes in snowfall and to the fequency distribution of precipitation.
Climatic change impacts on water balance of the Upper Jordan River
NASA Astrophysics Data System (ADS)
Heckl, A.; Kunstmann, H.
2009-04-01
The Eastern Mediterranean and Near East (EM/NE) is an extremely water scarce environment. It is expected that problems will increase due to climate change and population growth. The impact of climate change on water availability in EM/NE and in particular the Jordan River catchment is investigated in this study. Focus is set on the Upper Jordan River catchment (UJC) as it provides 1/3rd of freshwater resources in Israel and Palestine. It is a hydro-geologically extremely complex region with karstic groundwater flow and an orography with steep gradients. The methods used are high resolution coupled regional climate - hydrology simulations. Two IPCC scenarios (A2 and B2) of the global climate model ECHAM4 have been dynamically downscaled using the non-hydrostatic meteorological model MM5 in two nesting steps with resolutions of 54x54 km2 and 18x18 km2 for the period 1961-2099, whereby the time slice 1961-1989 represents the current climate. The meteorological fields are used to drive the physically based hydrological model WaSiM applied to the UJC. The hydrological model computes in detail the surface and subsurface water flow and water balance in a horizontal resolution of 450 x 450 m2 and dynamically couples to a 2-dim numerical groundwater model. Parameters like surface runoff, groundwater recharge, soil moisture and evapotranspiration can be extracted. Results show in both scenarios increasing yearly mean temperatures up to 4-5 K until 2099 and decreasing yearly precipitation amounts up to 25% (scenario A2). The effect on the water balance of the UJC are reduced discharge and groundwater recharge, increased evaporation and reduction of snow cover in the mountains which usually serves as an important freshwater reservoir for the summer discharge.
NASA Astrophysics Data System (ADS)
Texier, Christophe; Mitscherling, Johannes
2018-02-01
We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and
Castro Agudelo, Brian; Cárdenas, Juan C; Macías, Mario A; Ochoa-Puentes, Cristian; Sierra, Cesar A
2017-09-01
In the title compound, C 10 H 9 NO 2 S, all the non-H atoms, except for the ethyl fragment, lie nearly in the same plane. Despite the mol-ecular planarity, the ethyl fragment presents more than one conformation, giving rise to a discrete disorder, which was modelled with two different crystallographic sites for the eth-oxy O and eth-oxy α-C atoms, with occupancy values of 0.5. In the crystal, the three-dimensional array is mainly directed by C-H⋯(O,N) inter-actions, giving rise to inversion dimers with R 2 2 (10) and R 2 2 (14) motifs and infinite chains running along the [100] direction.
de Welzen, Lynne; Eldholm, Vegard; Maharaj, Kashmeel; Manson, Abigail L.; Earl, Ashlee M.
2017-01-01
ABSTRACT Genetics-based drug susceptibility testing has improved the diagnosis of drug-resistant tuberculosis but is limited by our lack of knowledge of all resistance mechanisms. Next-generation sequencing has assisted in identifying the principal genetic mechanisms of resistance for many drugs, but a significant proportion of phenotypic drug resistance is unexplained genetically. Few studies have formally compared the transcriptomes of susceptible and resistant Mycobacterium tuberculosis strains. We carried out comparative whole-genome transcriptomics of extensively drug-resistant (XDR) clinical isolates using RNA sequencing (RNA-seq) to find novel transcription-mediated mechanisms of resistance. We identified a promoter mutation (t to c) at position −11 (t−11c) relative to the start codon of ethA that reduces the expression of a monooxygenase (EthA) that activates ethionamide. (In this article, nucleotide changes are lowercase and amino acid substitutions are uppercase.) Using a flow cytometry-based reporter assay, we show that the reduced transcription of ethA is not due to transcriptional repression by ethR. Clinical strains harboring this mutation were resistant to ethionamide. Other ethA promoter mutations were identified in a global genomic survey of resistant M. tuberculosis strains. These results demonstrate a new mechanism of ethionamide resistance that can cause high-level resistance when it is combined with other ethionamide resistance-conferring mutations. Our study revealed many other genes which were highly up- or downregulated in XDR strains, including a toxin-antitoxin module (mazF5 mazE5) and tRNAs (leuX and thrU). This suggests that global transcriptional modifications could contribute to resistance or the maintenance of bacterial fitness have also occurred in XDR strains. PMID:28993337
Challenges and opportunities for Moringa growers in southern Ethiopia and Kenya.
Kumssa, Diriba B; Joy, Edward J M; Young, Scott D; Odee, David W; Ander, E Louise; Magare, Charles; Gitu, James; Broadley, Martin R
2017-01-01
Moringa oleifera (MO) and M. stenopetala (MS) are two commonly cultivated species of the Moringaceae family. Some households in southern Ethiopia (S. ETH) and Kenya (KEN) plant MS and MO, respectively. The edible parts of these species are rich in amino acids, vitamins and minerals, especially selenium. Despite their nutritional value, Moringa is sometimes considered as a "famine food". The aim of this study was to determine the extent of dietary utilization of these plants by Moringa Growing Households (MGHs). Moringa growing households were surveyed in 2015. Twenty-four and 56 heads of MGHs from S. ETH and KEN, respectively, were interviewed using semi-structured questionnaires. Subsistence agriculture was the main source of livelihood for all MGHs in S. ETH and 71% of those in KEN. All MGHs in S. ETH cultivated MS while those in KEN cultivated MO. Of the MGH heads in S. ETH, 71% had grown MS as long as they remember; the median cultivation period of MO in KEN was 15 years. All MGHs in S. ETH and 79% in KEN used Moringa leaves as a source of food. Forms of consumption of leaves were boiled fresh leaves, and leaf powder used in tea or mixed with other dishes. Other uses of Moringa include as medicine, fodder, shade, agroforestry, and as a source of income. Although MO and MS have multiple uses, MGHs face several challenges, including a lack of reliable information on nutritional and medicinal values, inadequate access to markets for their products, and pest and disease stresses to their plants. Research and development to address these challenges and to promote the use of these species in the fight against hidden hunger are necessary.
Challenges and opportunities for Moringa growers in southern Ethiopia and Kenya
Kumssa, Diriba B.; Joy, Edward J. M.; Young, Scott D.; Odee, David W.; Ander, E. Louise; Magare, Charles; Gitu, James
2017-01-01
Moringa oleifera (MO) and M. stenopetala (MS) are two commonly cultivated species of the Moringaceae family. Some households in southern Ethiopia (S. ETH) and Kenya (KEN) plant MS and MO, respectively. The edible parts of these species are rich in amino acids, vitamins and minerals, especially selenium. Despite their nutritional value, Moringa is sometimes considered as a “famine food”. The aim of this study was to determine the extent of dietary utilization of these plants by Moringa Growing Households (MGHs). Moringa growing households were surveyed in 2015. Twenty-four and 56 heads of MGHs from S. ETH and KEN, respectively, were interviewed using semi-structured questionnaires. Subsistence agriculture was the main source of livelihood for all MGHs in S. ETH and 71% of those in KEN. All MGHs in S. ETH cultivated MS while those in KEN cultivated MO. Of the MGH heads in S. ETH, 71% had grown MS as long as they remember; the median cultivation period of MO in KEN was 15 years. All MGHs in S. ETH and 79% in KEN used Moringa leaves as a source of food. Forms of consumption of leaves were boiled fresh leaves, and leaf powder used in tea or mixed with other dishes. Other uses of Moringa include as medicine, fodder, shade, agroforestry, and as a source of income. Although MO and MS have multiple uses, MGHs face several challenges, including a lack of reliable information on nutritional and medicinal values, inadequate access to markets for their products, and pest and disease stresses to their plants. Research and development to address these challenges and to promote the use of these species in the fight against hidden hunger are necessary. PMID:29121079
NASA Astrophysics Data System (ADS)
Hussein, Lobna A.; Magdy, N.; Abbas, Mahmoud M.
2015-03-01
Five simple, specific, accurate and precise UV-spectrophotometric methods are adopted for the simultaneous determination of Amprolium hydrochloride (AMP) and Ethopabate (ETH), a binary mixture with overlapping spectra, without preliminary separation. The first method is first derivative of the ratio spectra (1DD) for determination of AMP and ETH at 234.7 nm and 306.8 nm respectively with mean percentage recoveries 99.76 ± 0.907 and 100.29 ± 0.842 respectively. The second method is the mean centering of the ratio spectra for determination of AMP and ETH at 238.8 nm and 313 nm respectively with mean percentage recoveries 100.26 ± 1.018 and 99.94 ± 1.286 respectively. The third method is based on dual wavelength selection for determination of AMP and ETH at 235.3 nm & 308 nm and 244 nm & 268.4 nm respectively with mean percentage recoveries 99.30 ± 1.097 and 100.03 ± 1.065 respectively. The fourth method is ratio difference method for determination of AMP and ETH at 239 nm & 310 nm and 239 nm & 313 nm respectively with mean percentage recoveries 99.27 ± 0.892 and 100.40 ± 1.814 respectively. The fifth one is area under the curve (AUC) method where the areas between 235.6-243 nm and 268.3-275 nm are selected for determination of AMP and ETH with mean percentage recoveries 100.35 ± 1.031 and 100.39 ± 0.956 respectively. These methods are tested by analyzing synthetic mixtures of the two drugs and they are applied to their pharmaceutical veterinary preparation. Methods are validated according to the ICH guidelines and accuracy, precision and repeatability are found to be within the acceptable limit.
The effects of ethosuximide on aversive instrumental learning in adult rats.
Orczyk, John J; Garraghty, Preston E
2018-05-03
Antiepileptic medications are the frontline treatment for seizure conditions but are not without cognitive side effects. Previously, our laboratory reported learning deficits in phenytoin-, carbamazepine-, valproic acid-, and felbamate-treated rats. In this experiment, the effects found in ethosuximide (ETH)-treated rats have been compared with those in water-treated controls (controls) using the same instrumental training tasks. Rats treated with ETH did not display any performance deficits in any of the conditions tested relative to controls. These animals showed more rapid acquisition of the avoidance response than the control animals but only when they had prior experience in the appetitive condition. Of the drugs tested to date with these learning paradigms, ETH is the only one that did not impair performance relative to controls in any condition tested. Moreover, in comparison with rats treated with valproic acid, the only other available compound commonly recommended for the treatment of absence seizures, ETH-treated rats show substantially higher performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq.
Shen, Yan Hong; Lu, Bing Guo; Feng, Li; Yang, Fei Ying; Geng, Jiao Jiao; Ming, Ray; Chen, Xiao Jing
2017-08-31
Since papaya is a typical climacteric fruit, exogenous ethylene (ETH) applications can induce premature and quicker ripening, while 1-methylcyclopropene (1-MCP) slows down the ripening processes. Differential gene expression in ETH or 1-MCP-treated papaya fruits accounts for the ripening processes. To isolate the key ripening-related genes and better understand fruit ripening mechanisms, transcriptomes of ETH or 1-MCP-treated, and non-treated (Control Group, CG) papaya fruits were sequenced using Illumina Hiseq2500. A total of 18,648 (1-MCP), 19,093 (CG), and 15,321 (ETH) genes were detected, with the genes detected in the ETH-treatment being the least. This suggests that ETH may inhibit the expression of some genes. Based on the differential gene expression (DGE) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, 53 fruit ripening-related genes were selected: 20 cell wall-related genes, 18 chlorophyll and carotenoid metabolism-related genes, four proteinases and their inhibitors, six plant hormone signal transduction pathway genes, four transcription factors, and one senescence-associated gene. Reverse transcription quantitative PCR (RT-qPCR) analyses confirmed the results of RNA-seq and verified that the expression pattern of six genes is consistent with the fruit senescence process. Based on the expression profiling of genes in carbohydrate metabolic process, chlorophyll metabolism pathway, and carotenoid metabolism pathway, the mechanism of pulp softening and coloration of papaya was deduced and discussed. We illustrate that papaya fruit softening is a complex process with significant cell wall hydrolases, such as pectinases, cellulases, and hemicellulases involved in the process. Exogenous ethylene accelerates the coloration of papaya changing from green to yellow. This is likely due to the inhibition of chlorophyll biosynthesis and the α-branch of carotenoid metabolism. Chy-b may play an important role in the yellow color of papaya fruit. Comparing the differential gene expression in ETH/1-MCP-treated papaya using RNA-seq is a sound approach to isolate ripening-related genes. The results of this study can improve our understanding of papaya fruit ripening molecular mechanism and reveal candidate fruit ripening-related genes for further research.
Suryanti, S; Partadiredja, G; Atthobari, J
2015-01-01
The present study is aimed at investigating the possible protective effects of H. sabdariffa on ethanol-elicited deficits of motor coordination and estimated total number of the Purkinje cells of the cerebellums of adolescent male Wistar rats. Forty male Wistar rats aged 21 days were divided into five groups. Na/wtr group was given water orally and injected with normal saline intra peritoneally (ip). Eth/wtr group was given water orally and ethanol (ip). Another three experimental groups (Eth/Hsab) were given different dosages of H. sabdariffa and ethanol (ip). All groups were treated intermittently for the total period of treatment of two weeks. The motor coordination of rats was tested prior and subsequent to the treatments. The rats were euthanized, and their cerebellums were examined. The total number of Purkinje cells was estimated using physical fractionator method. Upon revolving drum test, the number of falls of rats increased following ethanol treatment. There was no significant difference between the total number of falls prior and subsequent to treatment in all Eth/Hsab groups. The estimated total number of Purkinje cells in Eth/Hsab groups was higher than in Eth/wtr group. H. sabdariffa may prevent the ethanol-induced deficits of motor coordination and estimated total number of Purkinje cells of the cerebellums in adolescent rats (Tab. 3, Fig. 1, Ref. 42).
QuakeML: Status of the XML-based Seismological Data Exchange Format
NASA Astrophysics Data System (ADS)
Euchner, Fabian; Schorlemmer, Danijel; Kästli, Philipp; Quakeml Working Group
2010-05-01
QuakeML is an XML-based data exchange standard for seismology that is in its fourth year of active community-driven development. The current release (version 1.2) is based on a public Request for Comments process that included contributions from ETH, GFZ, USC, SCEC, USGS, IRIS DMC, EMSC, ORFEUS, GNS, ZAMG, BRGM, Nanometrics, and ISTI. QuakeML has mainly been funded through the EC FP6 infrastructure project NERIES, in which it was endorsed as the preferred data exchange format. Currently, QuakeML services are being installed at several institutions around the globe, including EMSC, ORFEUS, ETH, Geoazur (Europe), NEIC, ANSS, SCEC/SCSN (USA), and GNS Science (New Zealand). Some of these institutions already provide QuakeML earthquake catalog web services. Several implementations of the QuakeML data model have been made. QuakePy, an open-source Python-based seismicity analysis toolkit using the QuakeML data model, is being developed at ETH. QuakePy is part of the software stack used in the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center installations, developed by SCEC. Furthermore, the QuakeML data model is part of the SeisComP3 package from GFZ Potsdam. QuakeML is designed as an umbrella schema under which several sub-packages are collected. The present scope of QuakeML 1.2 covers a basic description of seismic events including picks, arrivals, amplitudes, magnitudes, origins, focal mechanisms, and moment tensors. Work on additional packages (macroseismic information, seismic inventory, and resource metadata) has been started, but is at an early stage. Contributions from the community that help to widen the thematic coverage of QuakeML are highly welcome. Online resources: http://www.quakeml.org, http://www.quakepy.org
NASA Astrophysics Data System (ADS)
Yira, Yacouba; Diekkrüger, Bernd; Steup, Gero; Yaovi Bossa, Aymar
2017-04-01
This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)-global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project. After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs-GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components. The mean hydrological and climate variables for two periods (1971-2000 and 2021-2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM-GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021-2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM-GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.
Subsystem eigenstate thermalization hypothesis
NASA Astrophysics Data System (ADS)
Dymarsky, Anatoly; Lashkari, Nima; Liu, Hong
2018-01-01
Motivated by the qualitative picture of canonical typicality, we propose a refined formulation of the eigenstate thermalization hypothesis (ETH) for chaotic quantum systems. This formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of subsystems. This strong form of ETH outlines the set of observables defined within the subsystem for which it guarantees eigenstate thermalization. We discuss the limits when the size of the subsystem is small or comparable to its complement. In the latter case we outline the way to calculate the leading volume-proportional contribution to the von Neumann and Renyi entanglment entropies. Finally, we provide numerical evidence for the proposal in the case of a one-dimensional Ising spin chain.
Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge.
Li, Xiaopeng; Ganeshan, Sriram; Pixley, J H; Das Sarma, S
2015-10-30
We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability (or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the transition separating area and volume law scaling of the EE does not coincide with the nonthermal to thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We also establish that the model possesses an infinite temperature many-body localization transition despite the existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic optical lattice experiments which can directly probe the effects of the mobility edge.
Mori, Giorgia; Chiarelli, Laurent R.; Esposito, Marta; Makarov, Vadim; Bellinzoni, Marco; Hartkoorn, Ruben C.; Degiacomi, Giulia; Boldrin, Francesca; Ekins, Sean; de Jesus Lopes Ribeiro, Ana Luisa; Marino, Leonardo B.; Centárová, Ivana; Svetlíková, Zuzana; Blaško, Jaroslav; Kazakova, Elena; Lepioshkin, Alexander; Barilone, Nathalie; Zanoni, Giuseppe; Porta, Alessio; Fondi, Marco; Fani, Renato; Baulard, Alain R.; Mikušová, Katarína; Alzari, Pedro M.; Manganelli, Riccardo; de Carvalho, Luiz Pedro S.; Riccardi, Giovanna; Cole, Stewart T.; Pasca, Maria Rosalia
2015-01-01
Summary To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target. PMID:26097035
MedEthEx Online: A Computer-based Learning Program in Medical Ethics and Communication Skills.
ERIC Educational Resources Information Center
Fleetwood, Janet; Vaught, Wayne; Feldman, Debra; Gracely, Edward; Kassutto, Zach; Novack, Dennis
2000-01-01
Assessed MedEthEx Online, a computer-based learning program, in improving communication skills as part of a required bioethics course for medical students. Exam scores of users were comparable with non-users, although computerized-learning students scored higher in specific exam areas, felt somewhat more clinically prepared, and rated the course…
Code of Federal Regulations, 2011 CFR
2011-07-01
... new uses subject to reporting. (1) The chemical substance 2-oxepanone, polymer with 4,4′(1-meth-yl-eth-yli-dene)bi-sphen-ol and 2,2-[(1-meth-yl-eth-yli-dene) bis(4,1-phen-yl-ene-oxy-meth-ylene)]bi-soxi...
Code of Federal Regulations, 2013 CFR
2013-07-01
... new uses subject to reporting. (1) The chemical substance 2-oxepanone, polymer with 4,4′(1-meth-yl-eth-yli-dene)bi-sphen-ol and 2,2-[(1-meth-yl-eth-yli-dene) bis(4,1-phen-yl-ene-oxy-meth-ylene)]bi-soxi...
Code of Federal Regulations, 2014 CFR
2014-07-01
... new uses subject to reporting. (1) The chemical substance 2-oxepanone, polymer with 4,4′(1-meth-yl-eth-yli-dene)bi-sphen-ol and 2,2-[(1-meth-yl-eth-yli-dene) bis(4,1-phen-yl-ene-oxy-meth-ylene)]bi-soxi...
Code of Federal Regulations, 2012 CFR
2012-07-01
... new uses subject to reporting. (1) The chemical substance 2-oxepanone, polymer with 4,4′(1-meth-yl-eth-yli-dene)bi-sphen-ol and 2,2-[(1-meth-yl-eth-yli-dene) bis(4,1-phen-yl-ene-oxy-meth-ylene)]bi-soxi...
Perceptions of the Concerned Reader: An Analysis of the Subscribers of E/The Environmental Magazine.
ERIC Educational Resources Information Center
Labbe, Colleen P.; Fortner, Rosanne W.
2001-01-01
Describes a study aimed at determining if 'E/The Environmental Magazine' has met two goals: (1) its subscribers' need for environmental information and (2) its publishers' goal of inspiring environmentally responsible behavior. Results indicate that the level of the magazine's influence varied according to the reader's behavior category.…
Eigenstate Thermalization for Degenerate Observables
NASA Astrophysics Data System (ADS)
Anza, Fabio; Gogolin, Christian; Huber, Marcus
2018-04-01
Under unitary time evolution, expectation values of physically reasonable observables often evolve towards the predictions of equilibrium statistical mechanics. The eigenstate thermalization hypothesis (ETH) states that this is also true already for individual energy eigenstates. Here we aim at elucidating the emergence of the ETH for observables that can realistically be measured due to their high degeneracy, such as local, extensive, or macroscopic observables. We bisect this problem into two parts, a condition on the relative overlaps and one on the relative phases between the eigenbases of the observable and Hamiltonian. We show that the relative overlaps are unbiased for highly degenerate observables and demonstrate that unless relative phases conspire to cumulative effects, this makes such observables verify the ETH. Through this we elucidate potential pathways towards proofs of thermalization.
Gamma-ray spectrometry of granitic suites of the Paranaguá Terrane, Southern Brazil
NASA Astrophysics Data System (ADS)
Weihermann, Jessica Derkacz; Ferreira, Francisco José Fonseca; Cury, Leonardo Fadel; da Silveira, Claudinei Taborda
2016-09-01
The Paranaguá Terrane, located in the coastal portion of the states of Santa Catarina, Paraná and São Paulo in Southern Brazil is a crustal segment constituted mainly by an igneous complex, with a variety of granitic rocks inserted into the Serra do Mar ridge. The average altitude is approximately 1200 m above sea level, with peaks of up to 1800 m. Due to the difficulty of accessing the area, a shortage of outcrops and the thick weathering mantle, this terrane is understudied. This research aims to evaluate the gamma-ray spectrometry data of the granitic suites of the Paranaguá Terrane, in correspondence with the geological, petrographical, lithogeochemical, relief and mass movement information available in the literature. Aerogeophysical data were acquired along north-south lines spaced at 500 m, with a mean terrain clearance of 100 m. These data cover potassium (K, %), equivalent in thorium (eTh, ppm) and equivalent in uranium (eU, ppm). After performing a critical analysis of the data, basic (K, eU, eTh) and ternary (R-K/G-eTh/B-eU) maps were generated and then superimposed on the digital elevation model (DEM). The investigation of the radionuclide mobility across the relief and weathering mantle consisted of an analysis of the schematic profiles of elevation related with each radionuclide; a comparison of the K, eU and eTh maps with their 3D correspondents; and the study of mass movements registered in the region. A statistical comparison of lithogeochemical (K, U, Th) and geophysical (K, eU, eTh) data showed consistency in all the granitic suites studied (Morro Inglês, Rio do Poço and Canavieiras-Estrela). Through gamma-ray spectrometry, it was possible to establish relationships between scars (from mass movements) and the gamma-ray responses as well as the radionuclide mobility and the relief and to map the granitic bodies.
2016 Microbial Stress Response GRC/GRS
2016-09-13
Holyoke College South Hadley, MA Chairs: Eduardo A. Groisman & Dianne K. Newman Vice Chairs: Petra A. Levin & William W. Navarre Contributors...by Discussion Leader 9:10 am - 9:35 am Martin Ackermann (ETH Zurich, Switzerland) "History-Dependence in Bacterial Stress Response – Scaling up from...Government. Microbial Stress Response GRC – Registration List Ackermann, Martin ETH Zurich Speaker Registered Andersson, Dan I Uppsala
Performance analysis and simulation of vertical gallium nitride nanowire transistors
NASA Astrophysics Data System (ADS)
Witzigmann, Bernd; Yu, Feng; Frank, Kristian; Strempel, Klaas; Fatahilah, Muhammad Fahlesa; Schumacher, Hans Werner; Wasisto, Hutomo Suryo; Römer, Friedhard; Waag, Andreas
2018-06-01
Gallium nitride (GaN) nanowire transistors are analyzed using hydrodynamic simulation. Both p-body and n-body devices are compared in terms of threshold voltage, saturation behavior and transconductance. The calculations are calibrated using experimental data. The threshold voltage can be tuned from enhancement to depletion mode with wire doping. Surface states cause a shift of threshold voltage and saturation current. The saturation current depends on the gate design, with a composite gate acting as field plate in the p-body device. He joined Bell Laboratories, Murray Hill, NJ, as a Technical Staff Member. In October 2001, he joined the Optical Access and Transport Division, Agere Systems, Alhambra, CA. In 2004, he was appointed an Assistant Professor at ETH Zurich,. Since 2008, at the University of Kassel, Kassel, Germany, and he has been a Professor the Head of the Computational Electronics and Photonics Group, and co-director of CINSaT since 2010. His research interests include computational optoelectronics, process and device design of semiconductor photonic devices, microwave components, and electromagnetics modeling for nanophotonics. Dr. Witzigmann is a senior member of the SPIE and IEEE.
4-{2-[2-(4-Formyl-phen-oxy)eth-oxy]eth-oxy}benzaldehyde.
Ma, Zhen; Cao, Yiqun
2011-06-01
The title compound, C(18)H(18)O(5), was obtained by the reaction of 4-hy-droxy-benzaldehyde with bis-(2,2-dichloro-eth-yl) ether in dimethyl-formamide. In the crystal, the mol-ecule lies on a twofold rotation axis that passes through the central O atom of the aliphatic chain, thus leading to one half-mol-ecule being present per asymmetric unit. The carbonyl, aryl and O-CH(2)-CH(2) groups are almost coplanar, with an r.m.s. deviation of 0.030 Å. The aromatic rings are approximately perpendicular to each other, forming a dihedral angle of 78.31 sh;H⋯O hydrogen bonds and C-H⋯π inter-actions help to consolidate the three-dimensional network.
An appreciation of Alfred Bauder
NASA Astrophysics Data System (ADS)
Merkt, Frédéric; Quack, Martin
2001-12-01
Alfred Bauder (or Fredi as his friends and family call him) was born on 10 May 1934 in Zurich, where he went to school. After obtaining his high school diploma in 1953, he studied chemistry and physics at the ETH Zurich department of natural sciences, which encouraged such interdisciplinary studies. He received his diploma in natural sciences with the highest distinction in 1957. Under the tutelage of Professor Hans H. Günthard at the laboratory of Physical Chemistry at ETH Zürich, he obtained his doctoral degree in 1961 with a thesis on the microwave spectrum, dipole moment and structure of cyclobutanone. This work was to set the tone for his future scientific career. After his habilitation in the field of microwave spectroscopy at ETH in 1966, he obtained the venia legendi as Private Docent for Physical Chemistry.
Does a Single Eigenstate Encode the Full Hamiltonian?
NASA Astrophysics Data System (ADS)
Garrison, James R.; Grover, Tarun
2018-04-01
The eigenstate thermalization hypothesis (ETH) posits that the reduced density matrix for a subsystem corresponding to an excited eigenstate is "thermal." Here we expound on this hypothesis by asking: For which class of operators, local or nonlocal, is ETH satisfied? We show that this question is directly related to a seemingly unrelated question: Is the Hamiltonian of a system encoded within a single eigenstate? We formulate a strong form of ETH where, in the thermodynamic limit, the reduced density matrix of a subsystem corresponding to a pure, finite energy density eigenstate asymptotically becomes equal to the thermal reduced density matrix, as long as the subsystem size is much less than the total system size, irrespective of how large the subsystem is compared to any intrinsic length scale of the system. This allows one to access the properties of the underlying Hamiltonian at arbitrary energy densities (or temperatures) using just a single eigenstate. We provide support for our conjecture by performing an exact diagonalization study of a nonintegrable 1D quantum lattice model with only energy conservation. In addition, we examine the case in which the subsystem size is a finite fraction of the total system size, and we find that, even in this case, many operators continue to match their canonical expectation values, at least approximately. In particular, the von Neumann entanglement entropy equals the thermal entropy as long as the subsystem is less than half the total system. Our results are consistent with the possibility that a single eigenstate correctly predicts the expectation values of all operators with support on less than half the total system, as long as one uses a microcanonical ensemble with vanishing energy width for comparison. We also study, both analytically and numerically, a particle-number conserving model at infinite temperature that substantiates our conjectures.
Land Treatment Research and Development Program, Synthesis of Research Results,
1983-08-01
at Pack Forest, Washington .......... 22 8. Infiltration test and the relationship between cumulative water uptake and tim e...the chemistry of phos- phorus in land treatment ..................................... 37 18. Schematic diagram of the compartmental water flow model...39 19. Comparison between predicted and measured water content in slow rate soils .................................................. 39 20
Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects.
Brandam, Cédric; Castro-Martínez, Claudia; Délia, Marie-Line; Ramón-Portugal, Felipe; Strehaiano, Pierre
2008-01-01
The effect of temperatures ranging from 15 to 35 degrees C on a culture of Brettanomyces bruxellensis was investigated in regards to thermodynamics, metabolism, and kinetics. In this temperature range, we observed an increase in growth and production rates. The growth behavior was well represented using the Arrhenius model, and an apparent activation energy of 16.61 kcal/mol was estimated. A stuck fermentation was observed at 35 degrees C as represented by high cell death. The carbon balance established that temperature had no effect on repartition of the glucose consumption between biomass and products. Hence, the same biomass concentration was obtained for all temperatures, except at 35 degrees C. Moreover, using logistic and Luedeking-Piret models, we demonstrated that production rates of ethanol and acetic acid were partially growth associated. Parameters associated with growth (alpha eth and alpha aa) remained constant with changing temperature, whereas, parameters associated with the population (beta eth and beta aa) varied. Optimal values were obtained at 32 degrees C for ethanol and at 25 degrees C for acetic acid.
Fundamental Investigations of the Tribological Properties of Biological Interfaces
2007-11-28
D Spencer 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ETH Zurich Wolfgang - Pauli -Strasse 10 Zürich CH-8093...Chiara Perrino, Seunghwan Lee and Nicholas D. Spencer Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Wolfgang ... Pauli -Strasse 10, CH-8093, Switzerland Abstract: Comb-like graft copolymers with carbohydrate side chains have been developed as aqueous
tert-Butyl 6-amino-5-cyano-2-(2-methoxyethyl)nicotinate
Chen, Yi-Ning; Zhao, Xing-Dong; Deng, Jie; Li, Qin-Geng
2012-01-01
The title compound, C14H19N3O3, was synthesized by the reaction of 3-methoxypropionitrile, tert-butyl bromoacetate and ethoxymethylenemalononitrile. In the crystal, N—H⋯O hydrogen bonds link the molecules into chains propagating along the b axis. PMID:22737103
Vickstrom, Kyle E; Azizian, Mohammad F; Semprini, Lewis
2017-09-01
Carbon tetrachloride (CT) and chloroform (CF) were transformed in batch reactor experiments conducted with anaerobic dechlorinating cultures and supernatant (ADC + S) harvested from continuous flow reactors. The Evanite (EV) and Victoria/Stanford (VS) cultures, capable of respiring trichloroethene (TCE), 1,2-cis-dichloroethene (cDCE), and vinyl chloride (VC) to ethene (ETH), were grown in continuous flow reactors receiving an influent feed of saturated TCE (10 mM; 60 mEq) and formate (45 mM; 90 mEq) but no CT or CF. Cells and supernatant were harvested from the chemostats and inoculated into batch reactors at the onset of each experiment. CT transformation was complete following first order kinetics with CF, DCM and CS 2 as the measurable transformation products, representing 20-40% of the original mass of CT, with CO 2 likely the unknown transformation product. CF was transformed to DCM and likely CO 2 at an order of magnitude rate lower than CT, while DCM was not further transformed. An analytical first order model including multiple key reactions effectively simulated CT transformation, product formation and transformation, and provided reasonable estimates of transformation rate coefficients. Biotic and abiotic treatments indicated that CT was mainly transformed via abiotic processes. However, the presence of live cells was associated with the transformation of CF to DCM. In biotic tests both TCE and CT were simultaneously transformed, with TCE transformed to ETH and approximately 15-53% less CF formed via CT transformation. A 14-day exposure to CF (CF max = 1.4 μM) reduced all rates of chlorinated ethene respiration by a factor of 10 or greater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; O'Connor, Sean J; Yoder, Karmen K; Kareken, David A
2015-03-01
Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Here, we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Right-handed male heavy drinkers (n = 26) received three positron emission tomography (PET) scans with the D2/D3 radioligand [(11)C]raclopride (RAC) and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL intravenous (IV) administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal), Gatorade flavor + ethanol (Gat&Eth), and beer flavor + ethanol (Beer&Eth). Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS + US producing a bilateral NAcc response.
Numerical Large Deviation Analysis of the Eigenstate Thermalization Hypothesis
NASA Astrophysics Data System (ADS)
Yoshizawa, Toru; Iyoda, Eiki; Sagawa, Takahiro
2018-05-01
A plausible mechanism of thermalization in isolated quantum systems is based on the strong version of the eigenstate thermalization hypothesis (ETH), which states that all the energy eigenstates in the microcanonical energy shell have thermal properties. We numerically investigate the ETH by focusing on the large deviation property, which directly evaluates the ratio of athermal energy eigenstates in the energy shell. As a consequence, we have systematically confirmed that the strong ETH is indeed true even for near-integrable systems. Furthermore, we found that the finite-size scaling of the ratio of athermal eigenstates is a double exponential for nonintegrable systems. Our result illuminates the universal behavior of quantum chaos, and suggests that a large deviation analysis would serve as a powerful method to investigate thermalization in the presence of the large finite-size effect.
NASA Astrophysics Data System (ADS)
Ludwig, R.
2017-12-01
There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change.
Diao, Feici; Mena, Wilson; Shi, Jonathan; Park, Dongkook; Diao, Fengqiu; Taghert, Paul; Ewer, John; White, Benjamin H.
2016-01-01
To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone’s neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced “Trojan exon” technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks. PMID:26534952
Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
Tucker, Michael R; Shirota, Camila; Lambercy, Olivier; Sulzer, James S; Gassert, Roger
2017-10-01
An improved understanding of mechanical impedance modulation in human joints would provide insights about the neuromechanics underlying functional movements. Experimental estimation of impedance requires specialized tools with highly reproducible perturbation dynamics and reliable measurement capabilities. This paper presents the design and mechanical characterization of the ETH Knee Perturbator: an actuated exoskeleton for perturbing the knee during gait. A novel wearable perturbation device was developed based on specific experimental objectives. Bench-top tests validated the device's torque limiting capability and characterized the time delays of the on-board clutch. Further tests demonstrated the device's ability to perform system identification on passive loads with static initial conditions. Finally, the ability of the device to consistently perturb human gait was evaluated through a pilot study on three unimpaired subjects. The ETH Knee Perturbator is capable of identifying mass-spring systems within 15% accuracy, accounting for over 95% of the variance in the observed torque in 10 out of 16 cases. Five-degree extension and flexion perturbations were executed on human subjects with an onset timing precision of 2.52% of swing phase duration and a rise time of 36.5 ms. The ETH Knee Perturbator can deliver safe, precisely timed, and controlled perturbations, which is a prerequisite for the estimation of knee joint impedance during gait. Tools such as this can enhance models of neuromuscular control, which may improve rehabilitative outcomes following impairments affecting gait and advance the design and control of assistive devices.
Bee venom inhibits hepatic fibrosis through suppression of pro-fibrogenic cytokine expression.
Kim, Soo-Jung; Park, Ji-Hyun; Kim, Kyung-Hyun; Lee, Woo-Ram; Chang, Young-Chae; Park, Kwan-Kyu; Lee, Kwang-Gill; Han, Sang-Mi; Yeo, Joo-Hong; Pak, Sok Cheon
2010-01-01
Bee venom (BV) has a long tradition of use for the control of pain and inflammation in various chronic diseases. Carbon tetrachloride (CCl4) is known to induce hepatotoxicity after being metabolized to the highly reactive trichloromethyl free radical and its peroxy radical. The purpose of the current study was to examine whether BV regulates the pro-inflammation and fibrosis related genes against a mouse model of hepatic fibrosis induced by CCl4 and ethanol-treated hepatocytes (ETH). Test mice were administered with CCl4 (2 ml/mg) and hepatocytes were treated with 25 mM ethanol. BV was added to the final concentration of 0.05-0.5 mg/kg and 1-100 ng/ml for in vivo and in vitro testing, respectively. Fibrotic livers and ETH were used for the measurement of hepatocyte necrosis, pro-inflammatory cytokines and fibrogenic genes. BV suppressed CCl4-induced hepatocyte necrosis markers of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). It also inhibited the secretion of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha. Moreover, BV inhibited CCl4-induced expression of transforming growth factor (TGF)-beta1, alpha-smooth muscle actin (SMA) and fibronectin. Similarly, ETH exhibited significant suppression of IL-1beta, TNF-alpha, TGF-beta1 and fibronectin when cultured with BV. These results suggest that BV possesses anti-fibrogenic properties that are mediated by the suppression of pro-inflammatory cytokines and fibrogenic gene expression. BV has substantial therapeutic potential for the treatment of fibrotic diseases.
The Antemortem Detection and Conformational Switches of Prion Proteins
2005-07-01
temperature. After washing 4 times, the signal was detected with the Super Signal West Pico ECL kit (Pierce) and x-ray film (Hyperfilm ECL, GE Healthcare ...object lens and a digital color imaging system (Spot Insight, Diagnostic Instruments, Inc. MI). The needle-like crystals on the surface of the cells...Bordeaux 2, 33077 Bordeaux Cedex, France. 3ETH Zurich, Physical Chemistry, ETH Honggerberg, 8093 Zurich, Switzerland . *These authors contributed
40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...
40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...
40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...
40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...
40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...
Chen, Nannan; Guo, Wenjing; Lin, Zhixiang; Wei, Qiaohua; Chen, Guonan
2018-08-01
A specific and label-free "on-off-on" luminescence biosensor based on a novel heterometallic cluster [Ag 6 Au 6 (ethisterone) 12 ]-estrogen receptor α (Ag 6 Au 6 Eth-ERα) aggregation utilizing graphene oxide (GO) as a quencher to lead a small background signal was firstly constructed to detect immunoglobulin G (IgG) with a simple process and high selectivity. The efficient photoluminescent (PL) Ag 6 Au 6 Eth-ERα aggregation is strongly quenched by GO. In the presence of IgG, the PL of this system will be restored, and perceivable by human eyes under UV lamp excitation (365 nm). The quenching mechanism of GO on Ag 6 Au 6 Eth-ERα and enhancement mechanism of IgG on Ag 6 Au 6 Eth-ERα-GO were investigated in detail. Under the optimum conditions, the biosensor for high sensitive IgG detection expressed a wider linear range of 0.0078-10 ng/mL and a lower detection limit of 0.65 pg/mL with good stability and repeatability, which provided a new approach for label-free IgG detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil
NASA Astrophysics Data System (ADS)
Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.
2011-12-01
Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.
Earthquake Engineering Support
1999-11-01
recovered from eql 3c 7 525 49% loose 79% dense 2 5/5/98 1 3 Nevada sand, ESB #2 3d 11 525 54% loose 80% dense 2 3/9/98 2.5 4 Nevada sand, ESB #2 3e...The pore pressure transducers used in the experiments were manufactured by Druck , and are widely used in centrifuge modelling. Typical
Externally-Driven Onset of Localized Magnetic Reconnection in a Magnetotail Configuration
NASA Astrophysics Data System (ADS)
Pritchett, P. L.; Lu, S.
2017-12-01
In observations of the nightside auroral arcs and ionospheric currents, the onset or breakup phase of a substorm is sharply defined in time and is highly localized in space. Attempts to understand this localization in terms of the onset of localized magnetic reconnection have generally been unsuccessful. Thus, a y-localized driving convection electric field Ey applied at the lobe boundaries spreads out before it reaches the equatorial plane and results only in 2-D reconnection. In this work, the response of a magnetotail equilibrium containing a dipole magnetic field and plasma sheet regions to the imposition of a longitudinally-limited, high-latitude driving electric field is investigated using 3-D particle-in-cell simulations. The initial response involves a reduction in the equatorial Bz field that is then followed by the development of a dawn-dusk asymmetric current sheet relative to the meridian plane of the driving field. The key feature is the presence of a dusk-side Hall electric field Ez that drives magnetic flux dawnward and thus further reduces the Bz field on the duskward side. The net result is that Bz is driven through zero in a localized region on the duskward side, leading to the onset of localized reconnection and the emergence of magnetic flux ropes. The cross-tail extent of the reconnection expands but remains limited to ˜30di, where di is the ion inertia length. The dissipation E' \\cdot J is peaked along the finite X line, with a load region (negative E' \\cdot J) forming tailward of this region. The particle energy spectra in the downtail region show shoulders for the ions in the energy range ˜3-8Eth (Eth is the initial thermal energy) and extended tails for the electrons in the range ˜10-20Eth. These results demonstrate the ability of a high-latitude disturbance that may be connected to dayside flow channels [Nishimura et al., 2014] to initiate localized magnetic reconnection in the magnetotail.
Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises
NASA Astrophysics Data System (ADS)
Winter, F.; Disse, M.
2012-04-01
Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (< 1 km2) the model was extended by a kinematic wave approach for the surface runoff concentration. This allows the simulation of small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.
Initial-state-independent equilibration at the breakdown of the eigenstate thermalization hypothesis
NASA Astrophysics Data System (ADS)
Khodja, Abdellah; Schmidtke, Daniel; Gemmer, Jochen
2016-04-01
This work aims at understanding the interplay between the eigenstate thermalization hypothesis (ETH), initial state independent equilibration, and quantum chaos in systems that do not have a direct classical counterpart. It is based on numerical investigations of asymmetric Heisenberg spin ladders with varied interaction strengths between the legs, i.e., along the rungs. The relaxation of the energy difference between the legs is investigated. Two different parameters, both intended to quantify the degree of accordance with the ETH, are computed. Both indicate violation of the ETH at large interaction strengths but at different thresholds. Indeed, the energy difference is found not to relax independently of its initial value above some critical interaction strength, which coincides with one of the thresholds. At the same point the level statistics shift from Poisson-type to Wigner-type. Hence, the system may be considered to become integrable again in the strong interaction limit.
4-{2-[2-(4-Formylphenoxy)ethoxy]ethoxy}benzaldehyde
Ma, Zhen; Cao, Yiqun
2011-01-01
The title compound, C18H18O5, was obtained by the reaction of 4-hydroxybenzaldehyde with bis(2,2-dichloroethyl) ether in dimethylformamide. In the crystal, the molecule lies on a twofold rotation axis that passes through the central O atom of the aliphatic chain, thus leading to one half-molecule being present per asymmetric unit. The carbonyl, aryl and O—CH2—CH2 groups are almost coplanar, with an r.m.s. deviation of 0.030 Å. The aromatic rings are approximately perpendicular to each other, forming a dihedral angle of 78.31 sh;H⋯O hydrogen bonds and C—H⋯π interactions help to consolidate the three-dimensional network. PMID:21754870
Application of commercial microwave link (CML) derived precipitation data in a hydrology model
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard; Chwala, Christian; Kunstmann, Harald
2017-04-01
In 2016 very local and extremely intensive convective events caused severe flooding in the Alpine space. Despite the large number of monitoring stations most of the rainfall events were not captured accurately by the existing rain gauge network. As the number of traditional precipitation monitoring sites is in general decreasing, novel rain monitoring techniques are gaining attention. One of the new techniques is the rainfall estimation from signal attenuation in commercial microwave link (CML) networks operated by cellular phone companies. In this contribution, we use CML-derived rainfall information to improve the streamflow forecast of the distributed hydrology model WaSiM-ETH in hindcasting and nowcasting modes. Our model domain covers the complex terrain of the Ammer catchment located in the German Alps. The hydrology model is operated with a spatial resolution of 100m and with an hourly time step. We present two alternative methods of rainfall estimation from CMLs and compare the results to data from rain gauges and a weather radar. Finally, we show the impact of the rainfall data sets on the hydrology model initialization and in discharge simulations of the Ammer River for selected episodes in 2015 and 2016. We found that the densification of the observation network by the CML observations leads to a significant improvement of the model performance.
Biswas, Biswajit; Mondal, Saptarsi; Singh, Prashant Chandra
2017-02-16
The presence of the fluorocarbon group in fluorinated alcohols makes them an important class of molecules that have diverse applications in the field of separation techniques, synthetic chemistry, polymer industry, and biology. In this paper, we have performed the density function theory calculation along with atom in molecule analysis, molecular dynamics simulation, and IR measurements of bulk monofluoroethanol (MFE) and compared them with the data for bulk ethanol (ETH) to understand the effect of the fluorocarbon group in the structure and the hydrogen bond network of bulk MFE. It has been found that the intramolecular O-H···F hydrogen bond is almost absent in bulk MFE. Molecular dynamics simulation and density function theory calculation along with atom in molecule analysis clearly depict that in the case of bulk MFE, a significant amount of intermolecular O-H···F and C-H···F hydrogen bonds are present along with the intermolecular O-H···O hydrogen bond. The presence of intermolecular O-H···F and C-H···F hydrogen bonds causes the difference in the IR spectrum of bulk MFE as compared to bulk ETH. This study clearly depicts that the organic fluorine (fluorocarbon) of MFE acts as a hydrogen bond acceptor and plays a significant role in the structure and hydrogen bond network of bulk MFE through the formation of weak O-H···F as well C-H···F hydrogen bonds, which may be one of the important reasons behind the unique behavior of the fluoroethanols.
Liver transplant in ethylmalonic encephalopathy: a new treatment for an otherwise fatal disease.
Dionisi-Vici, Carlo; Diodato, Daria; Torre, Giuliano; Picca, Stefano; Pariante, Rosanna; Giuseppe Picardo, Sergio; Di Meo, Ivano; Rizzo, Cristiano; Tiranti, Valeria; Zeviani, Massimo; De Ville De Goyet, Jean
2016-04-01
Ethylmalonic encephalopathy is a fatal, rapidly progressive mitochondrial disorder caused by ETHE1 mutations, whose peculiar clinical and biochemical features are due to the toxic accumulation of hydrogen sulphide and of its metabolites, including thiosulphate. In mice with ethylmalonic encephalopathy, liver-targeted adeno-associated virus-mediated ETHE1 gene transfer dramatically improved both clinical course and metabolic abnormalities. Reasoning that the same achievement could be accomplished by liver transplantation, we performed living donor-liver transplantation in an infant with ethylmalonic encephalopathy. Unlike the invariably progressive deterioration of the disease, 8 months after liver transplantation, we observed striking neurological improvement with remarkable achievements in psychomotor development, along with dramatic reversion of biochemical abnormalities. These results clearly indicate that liver transplantation is a viable therapeutic option for ETHE1 disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mena, Wilson; Diegelmann, Sören; Wegener, Christian; Ewer, John
2016-01-01
Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors. DOI: http://dx.doi.org/10.7554/eLife.19686.001 PMID:27976997
Numerical time evolution of ETH spin chains by means of matrix product density operators
NASA Astrophysics Data System (ADS)
White, Christopher; Zaletel, Michael; Mong, Roger; Refael, Gil
We introduce a method for approximating density operators of 1D systems that, when combined with a standard framework for time evolution (TEBD), makes possible simulation of the dynamics of strongly thermalizing systems to arbitrary times. We demonstrate that the method works on both near-equilibrium initial states (Gibbs states with spatially varying temperatures) and far-from-equilibrium initial states, including quenches across phase transitions and pure states. This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE \\x901144469 and by the Caltech IQIM, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore.
1-(2-Hy-droxy-eth-yl)-3-[(2-hy-droxy-eth-yl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione.
Xie, Zhi-Xiong; Zhao, Sheng-Yin
2011-04-01
There are four molecules in the asymmetric unit of the title compound, C(16)H(17)N(3)O(4), in which the dihedral angles between the indole ring system and maleimide ring are 4.5 (3), 8.3 (3), 8.4 (2) and 10.4 (2)°. In the crystal, mol-ecules are linked by numerous N-H⋯O and O-H⋯O hydrogen bonds, generating a three-dimensional network.
Atypicality of Most Few-Body Observables
NASA Astrophysics Data System (ADS)
Hamazaki, Ryusuke; Ueda, Masahito
2018-02-01
The eigenstate thermalization hypothesis (ETH), which dictates that all diagonal matrix elements within a small energy shell be almost equal, is a major candidate to explain thermalization in isolated quantum systems. According to the typicality argument, the maximum variations of such matrix elements should decrease exponentially with increasing the size of the system, which implies the ETH. We show, however, that the typicality argument does not apply to most few-body observables for few-body Hamiltonians when the width of the energy shell decreases at most polynomially with increasing the size of the system.
Selective dye-labeling of newly synthesized proteins in bacterial cells.
Beatty, Kimberly E; Xie, Fang; Wang, Qian; Tirrell, David A
2005-10-19
We describe fluorescence labeling of newly synthesized proteins in Escherichia coli cells by means of Cu(I)-catalyzed cycloaddition between alkynyl amino acid side chains and the fluorogenic dye 3-azido-7-hydroxycoumarin. The method involves co-translational labeling of proteins by the non-natural amino acids homopropargylglycine (Hpg) or ethynylphenylalanine (Eth) followed by treatment with the dye. As a demonstration, the model protein barstar was expressed and treated overnight with Cu(I) and 3-azido-7-hydroxycoumarin. Examination of treated cells by confocal microscopy revealed that strong fluorescence enhancement was observed only for alkynyl-barstar treated with Cu(I) and the reactive dye. The cellular fluorescence was punctate, and gel electrophoresis confirmed that labeled barstar was localized in inclusion bodies. Other proteins showed little fluorescence. Examination of treated cells by fluorimetry demonstrated that cultures supplemented with Eth or Hpg showed an 8- to 14-fold enhancement in fluorescence intensity after labeling. Addition of a protein synthesis inhibitor reduced the emission intensity to levels slightly above background, confirming selective labeling of newly synthesized proteins in the bacterial cell.
Beker van Woudenberg, Anna; Snel, Cor; Rijkmans, Eke; de Groot, Didima; Bouma, Marga; Hermsen, Sanne; Piersma, Aldert; Menke, Aswin; Wolterbeek, André
2014-11-01
To improve the predictability of the zebrafish embryotoxicity test (ZET) for developmental (neuro)toxicity screening, we used a multiple-endpoints strategy, including morphology, motor activity (MA), histopathology and kinetics. The model compounds used were antiepileptic drugs (AEDs): valproic acid (VPA), carbamazepine (CBZ), ethosuximide (ETH) and levetiracetam (LEV). For VPA, histopathology was the most sensitive parameter, showing effects already at 60μM. For CBZ, morphology and MA were the most sensitive parameters, showing effects at 180μM. For ETH, all endpoints showed similar sensitivity (6.6mM), whereas MA was the most sensitive parameter for LEV (40mM). Inclusion of kinetics did not alter the absolute ranking of the compounds, but the relative potency was changed considerably. Taking all together, this demo-case study showed that inclusion of multiple-endpoints in ZET may increase the sensitivity of the assay, contribute to the elucidation of the mode of toxic action and to a better definition of the applicability domain of ZET. Copyright © 2014 Elsevier Inc. All rights reserved.
2016-05-01
Certification Program ETH Ethene GC Gas Chromatography GC-IRMS Gas Chromatography Isotope Ratio Mass Spectroscopy H Hydrogen IRMS Isotope...tool for attenuation of chlorinated solvents. The Demonstration Site was Operable Unit 10 at Hill AFB, Utah , a site where groundwater is impacted...techniques. The method involves extraction of the target compounds from environmental sample matrix, followed by separation of the compounds using gas
Two forms of Vibrio cholerae O1 El Tor hemolysin derived from identical precursor protein.
Ikigai, H; Ono, T; Nakae, T; Otsuru, H; Shimamura, T
1999-01-08
Vibrio cholerae O1 grown in heart infusion broth produces two forms of El Tor hemolysin (ETH) monomers of 65 and 50 kDa. These monomers form several different sizes of mixed oligomers ranging from 180 to 280 kDa in the liposomal membranes. We found that the N-terminal amino acid sequences, NH2-Trp-Pro-Ala-Pro-Ala-Asn-Ser-Glu, of both the 65- and 50-kDa toxins were identical. We assumed, therefore, that the 65- and 50-kDa toxins were derivatives of the identical precursor protein and the 50-kDa protein was a truncated derivative of 65-kDa ETH. To substantiate this assumption, we treated the 260-kDa oligomer with trypsin and obtained a 190-kDa oligomer. This 190-kDa oligomer consisted of only the 50-kDa subunits. Both 260- and 190-kDa oligomers formed ion channels indistinguishable from each other in planar lipid bilayers. These results suggest that the essential part of the ETH in forming the membrane-damaging aggregate is a 50-kDa protein.
Comparative analysis of model behaviour for flood prediction purposes using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Herbst, M.; Casper, M. C.; Grundmann, J.; Buchholz, O.
2009-03-01
Distributed watershed models constitute a key component in flood forecasting systems. It is widely recognized that models because of their structural differences have varying capabilities of capturing different aspects of the system behaviour equally well. Of course, this also applies to the reproduction of peak discharges by a simulation model which is of particular interest regarding the flood forecasting problem. In our study we use a Self-Organizing Map (SOM) in combination with index measures which are derived from the flow duration curve in order to examine the conditions under which three different distributed watershed models are capable of reproducing flood events present in the calibration data. These indices are specifically conceptualized to extract data on the peak discharge characteristics of model output time series which are obtained from Monte-Carlo simulations with the distributed watershed models NASIM, LARSIM and WaSIM-ETH. The SOM helps to analyze this data by producing a discretized mapping of their distribution in the index space onto a two dimensional plane such that their pattern and consequently the patterns of model behaviour can be conveyed in a comprehensive manner. It is demonstrated how the SOM provides useful information about details of model behaviour and also helps identifying the model parameters that are relevant for the reproduction of peak discharges and thus for flood prediction problems. It is further shown how the SOM can be used to identify those parameter sets from among the Monte-Carlo data that most closely approximate the peak discharges of a measured time series. The results represent the characteristics of the observed time series with partially superior accuracy than the reference simulation obtained by implementing a simple calibration strategy using the global optimization algorithm SCE-UA. The most prominent advantage of using SOM in the context of model analysis is that it allows to comparatively evaluating the data from two or more models. Our results highlight the individuality of the model realizations in terms of the index measures and shed a critical light on the use and implementation of simple and yet too rigorous calibration strategies.
Manipulation of nitrogen leaching from tea field soil using a Trichoderma viride biofertilizer.
Xu, Shengjun; Zhou, Sining; Ma, Shuanglong; Jiang, Cancan; Wu, Shanghua; Bai, Zhihui; Zhuang, Guoqiang; Zhuang, Xuliang
2017-12-01
With the increasing use of chemical fertilizers, negative environmental impacts have greatly increased as a result from agricultural fields. The fungus Trichoderma viride used as a biofertilizer can efficiently reduce nitrous oxide (N 2 O) emissions from subtropical tea fields in southern China. In this paper, it was further found that T. viride biofertilizer could alleviate nitrogen (N) leaching in tea fields. Gross N leaching was 1.51 kg ha -1 year -1 with no external fertilizer input, but when 225 kg N ha -1 year -1 was applied, it increased to 12.38 kg ha -1 year -1 using T. viride biofertilizer but 53.46 kg ha -1 year -1 using urea. Stepwise linear regression analysis identified the factors responsible for N leaching to be soil nitrate concentration and soil interflow, simulated here using the water balance simulation model (WaSiM-ETH). Finally, mass-scale production of T. viride biofertilizer from waste reutilization using sweet potato starch wastewater and rice straw was found to be cost-effective and feasible. These procedures could be considered a best management practice to reduce N leaching from tea fields in subtropical areas of central China and to reduce pollution from other agricultural waste products.
NASA Astrophysics Data System (ADS)
Schulthess, Thomas C.
2013-03-01
The continued thousand-fold improvement in sustained application performance per decade on modern supercomputers keeps opening new opportunities for scientific simulations. But supercomputers have become very complex machines, built with thousands or tens of thousands of complex nodes consisting of multiple CPU cores or, most recently, a combination of CPU and GPU processors. Efficient simulations on such high-end computing systems require tailored algorithms that optimally map numerical methods to particular architectures. These intricacies will be illustrated with simulations of strongly correlated electron systems, where the development of quantum cluster methods, Monte Carlo techniques, as well as their optimal implementation by means of algorithms with improved data locality and high arithmetic density have gone hand in hand with evolving computer architectures. The present work would not have been possible without continued access to computing resources at the National Center for Computational Science of Oak Ridge National Laboratory, which is funded by the Facilities Division of the Office of Advanced Scientific Computing Research, and the Swiss National Supercomputing Center (CSCS) that is funded by ETH Zurich.
1989-03-15
essence of the idea ycessible mtho forunrtandig eth- Tis tand thP ra) rm guh ide propet oaes nd d of e aessie meh bsd fooesadng asymptoti- isthe for s...network? This of Such empirical parametric model fitting is of course depends heavily on the class of net- course the essence of much of applied...smaller problems is the essence of graphical modeling. A model hy- attributes. Let e be the discrete joint outcome space for those N pergraph, g
1-(2-Hydroxyethyl)-3-[(2-hydroxyethyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione
Xie, Zhi-Xiong; Zhao, Sheng-Yin
2011-01-01
There are four molecules in the asymmetric unit of the title compound, C16H17N3O4, in which the dihedral angles between the indole ring system and maleimide ring are 4.5 (3), 8.3 (3), 8.4 (2) and 10.4 (2)°. In the crystal, molecules are linked by numerous N—H⋯O and O—H⋯O hydrogen bonds, generating a three-dimensional network. PMID:21754135
N-[4-Cyano-3-(trifluoromethyl)phenyl]-2-ethoxybenzamide
Naveen, S.; Basappa; Manjunath, H. R.; Sridhar, M. A.; Shashidhara Prasad, J.; Rangappa, K. S.
2010-01-01
In the title compound, C17H13F3N2O2, the two aromatic rings are essentially coplanar, forming a dihedral angle of 2.78 (12)°. The non-H atoms of the ethoxy group are coplanar with the attached ring [maximum deviation = 0.271 (3) Å]. An intramolecular N—H⋯O hydrogen bond occurs. In the crystal structure, molecules are linked by intermolecular C—H⋯N and C—H⋯F hydrogen bonds. PMID:21587782
Excess Claims and Data Trimming in the Context of Credibility Rating Procedures,
1981-11-01
Triining in the Context of Credibility Rating Procedures by Hans BShlmann, Alois Gisler, William S. Jewell* 1. Motivation In Ratemaking and in Experience...work on the ETH computer. __.1: " Zen * ’ ’ II / -2- 2. The Basic Model Throughout the paper we work with the most simple model in the credibility...additional structure are summed up by stating that the density -3- f 8 (x) has the following form 1) fe(x) -(1-r)po (x/e) + rape(x) 3. The Basic Problem As
Yuan, T.; Vogel, H. J.
1999-01-01
Calmodulin (CaM) is a 148-residue regulatory calcium-binding protein that activates a wide range of target proteins and enzymes. Calcium-saturated CaM has a bilobal structure, and each domain has an exposed hydrophobic surface region where target proteins are bound. These two "active sites" of calmodulin are remarkably rich in Met residues. Here we have biosynthetically substituted (up to 90% incorporation) the unnatural amino acids ethionine (Eth) and norleucine (Nle) for the nine Met residues of CaM. The substituted proteins bind in a calcium-dependent manner to hydrophobic matrices and a synthetic peptide, encompassing the CaM-binding domain of myosin light-chain kinase (MLCK). Infrared and circular dichroism spectroscopy show that there are essentially no changes in the secondary structure of these proteins compared to wild-type CaM (WT-CaM). One- and two-dimensional NMR studies of the Eth-CaM and Nle-CaM proteins reveal that, while the core of the proteins is relatively unaffected by the substitutions, the two hydrophobic interaction surfaces adjust to accommodate the Eth and Nle residues. Enzyme activation studies with MLCK show that Eth-CaM and Nle-CaM activate the enzyme to 90% of its maximal activity, with little changes in dissociation constant. For calcineurin only 50% activation was obtained, and the K(D) for Nle-CaM also increased 3.5-fold compared with WT-CaM. These data show that the "active site" Met residues of CaM play a distinct role in the activation of different target enzymes, in agreement with site-directed mutagenesis studies of the Met residues of CaM. PMID:10210190
Impacts of climate change on water quantity and quality in Rhineland-Palatinate/Germany
NASA Astrophysics Data System (ADS)
Casper, M. C.; Grigoryan, G. V.
2009-04-01
The Ministry of the Environment of Rhineland-Palatinate, Germany, launched an interdisciplinary research project dealing with "climate and land use change in Rhineland-Palatinate" (KlimLandRP). The aim of KlimLandRP is to specify adaptation strategies and to find current research gaps. The University of Trier/Germany undertakes the task of quantifying the impact of climate change on hydrological cycle and on water quality. In the first phase of the project (2008/2009) the models STOFFBILANZ and WaSiM-ETH are applied. WETTREG projections (2050/2100) and newly high resolution CCLM (2015-2024) projections for Rhineland-Palatinate are used to indicate the spectrum of climate change. Possible land use scenarios for agricultural regions are furthermore adopted. Using STOFFBILANZ it is possible to get approximate spatial information about present and future distribution of water, nitrate and phosphor balance in Rhineland-Palatinate and to identify sensitive regions. Based on achieved results, regions which are vulnerable to water economy are identified and adaptations proposed. With the application of WaSiM-ETH the impact of climate change on water balance of forest sites is quantified. The relation between climate parameters and tree growth indices is applied in forest management planning, particularly for forest site mapping. In the future, also the rainfall-runoff model LARSIM will be applied to quantify the impacts of climate change on the hydrological cycle of mesoscale catchment basins.
Zhou, Cui-Ji; Xiang, Hai-Ying; Zhuo, Tao; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui
2012-07-01
We determined the genome sequence of a new polerovirus that infects field pea and faba bean in China. Its entire nucleotide sequence (6021 nt) was most closely related (83.3% identity) to that of an Ethiopian isolate of chickpea chlorotic stunt virus (CpCSV-Eth). With the exception of the coat protein (encoded by ORF3), amino acid sequence identities of all gene products of this virus to those of CpCSV-Eth and other poleroviruses were <90%. This suggests that it is a new member of the genus Polerovirus, and the name pea mild chlorosis virus is proposed.
Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M
2016-07-01
Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. © 2016 Scandinavian Plant Physiology Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamo, S.; Nakashima-Tanaka, E.; Megumi, T.
1985-02-25
Accumulating evidence suggests that the extent of acute damage by ionizing irradiation is closely related to the state of membrane orderliness. Decreased orderliness apparently protects organisms from ionizing irradiation. Because anesthetics decrease membrane orderliness, anesthesia is expected to affect damages caused by ionizing irradiation. The present study compared the effects of /sup 60/Co irradiation on Drosophila melanogaster between an anesthetic-resistant spontaneous mutant and an anesthetic-sensitive strain. An anesthetic-resistant mutant strain, Eth-29, of Drosophila melanogaster has previously been established. Eth-29 is resistant to diethyl-ether, chloroform and halothane. The anesthetic-resistant strain was found to be radiosensitive when evaluated by survival at themore » eighth day after irradiation or by dyskinesia (knock-down) at the second day. The results indicate that anesthetic resistance may be related to an increase in orderliness. The findings in reciprocal crosses between Eth-29 and the control strain indicate that the mechanism of survival is different from that of knock-down. Presumably, knock-down is the direct sequela of irradiation, and the present result suggests that membrane damage may be involved in inducing knock-down. 18 references, 3 figures.« less
Cherest, H.; Surdin-Kerjan, Y.; De Robichon-Szulmajster, H.
1971-01-01
Detailed study of methionine-mediated repression of enzymes involved in methionine biosynthesis in Saccharomyces cerevisiae led to classification of these enzymes into two distinct regulatory groups. Group I comprises four enzymes specifically involved in different parts of methionine biosynthesis, namely, homoserine-O-transacetylase, homocysteine synthetase, adenosine triphosphate sulfurylase, and sulfite reductase. Repressibility of these enzymes is greatly decreased in strains carrying a genetically impaired methionyl-transfer ribonucleic acid (tRNA) synthetase (mutation ts− 296). Conditions leading to absence of repression in the mutant strain have been correlated with a sharp decrease in bulk tRNAmet charging, whereas conditions which restore repressibility of group I enzymes also restore tRNAmet charging. These findings implicate methionyl-tRNA in the regulatory process. However, the absence of a correlation in the wild type between methionyl-tRNA charging and the levels of methionine group I enzymes suggests that only a minor iso accepting species of tRNAmet may be devoted with a regulatory function. Repressibility of the same four enzymes (group I) was also decreased in strains carrying the regulatory mutation eth2r. Although structural genes coding for two of these enzymes, as well as mutations ts− 296 and eth2r segregate independently to each other, synthesis of group I enzymes is coordinated. The pleiotropic regulatory system involved seems then to comprise beside a “regulatory methionyl tRNAmet,” another element, product of gene eth2, which might correspond either to an aporepressor protein or to the “regulatory tRNAmet” itself. Regulation of group II enzymes is defined by response to exogenous methionine, absence of response to either mutations ts− 296 and eth2r, and absence of coordinacy with group I enzymes. However, the two enzymes which belong to this group and are both involved in threonine and methionine biosynthesis undergo distinct regulatory patterns. One, aspartokinase, is subject to a bivalent repression exerted by threonine and methionine, and the other, homoserine dehydrogenase, is subject only to methionine-mediated repression. Participation of at least another aporepressor and another corepressor, different from the ones involved in regulation of group I enzymes, is discussed. PMID:5557593
Classification of quench-dynamical behaviors in spinor condensates
NASA Astrophysics Data System (ADS)
Daǧ, Ceren B.; Wang, Sheng-Tao; Duan, L.-M.
2018-02-01
Thermalization of isolated quantum systems is a long-standing fundamental problem where different mechanisms are proposed over time. We contribute to this discussion by classifying the diverse quench-dynamical behaviors of spin-1 Bose-Einstein condensates, which includes well-defined quantum collapse and revivals, thermalization, and certain special cases. These special cases are either nonthermal equilibration with no revival but a collapse even though the system has finite degrees of freedom or no equilibration with no collapse and revival. Given that some integrable systems are already shown to demonstrate the weak form of eigenstate thermalization hypothesis (ETH), we determine the regions where ETH holds and fails in this integrable isolated quantum system. The reason behind both thermalizing and nonthermalizing behaviors in the same model under different initial conditions is linked to the discussion of "rare" nonthermal states existing in the spectrum. We also propose a method to predict the collapse and revival time scales and find how they scale with the number of particles in the condensate. We use a sudden quench to drive the system to nonequilibrium and hence the theoretical predictions given in this paper can be probed in experiments.
Coupled lagged ensemble weather- and river runoff prediction in complex Alpine terrain
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard; Kunstmann, Harald; Werhahn, Johannes
2013-04-01
It is still a challenge to predict fast reacting streamflow precipitation response in Alpine terrain. Civil protection measures require flood prediction in 24 - 48 lead time. This holds particularly true for the Ammer River region which was affected by century floods in 1999, 2003 and 2005. Since 2005 a coupled NWP/Hydrology model system is operated in simulating and predicting the Ammer River discharges. The Ammer River catchment is located in the Bavarian Ammergau Alps and alpine forelands, Germany. With elevations reaching 2185 m and annual mean precipitation between 1100 and 2000 mm it represents very demanding test ground for a river runoff prediction system. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. The major components of the system are the MM5 NWP model run at 3.5 km resolution and initialized twice a day, the hydrology model WaSiM-ETH run at 100 m resolution and Perl object environment (POE) implementing the networking and the system operation. Results obtained in the years 2005-2012 reveal that river runoff simulations depict already high correlation (NSC in range 0.53 and 0.95) with observed runoff in retrospective runs with monitored meteorology data, but suffer from errors in quantitative precipitation forecast (QPF) from the employed numerical weather prediction model. We evaluate the NWP model accuracy, especially the precipitation intensity, frequency and location and put a focus on the performance gain of bias adjustment procedures. We show how this enhanced QFP data help to reduce the uncertainty in the discharge prediction. In addition to the HND (Hochwassernachrichtendienst, Bayern) observations TERENO Longterm Observatory hydrometeorological observation data are available since 2011. They are used to evaluate the NWP performance and setup of a bias correction procedure based on ensemble postprocessing applying Bayesian (BMA) model averaging. We first present briefly the technical setup of the operational coupled lagged NWP/Hydrology model system and then focus on the evaluation of the NWP model, the BMA enhanced QPF and its application within the Ammer simulation system in the period 2011 - 2012
NASA Astrophysics Data System (ADS)
Mamounata, K.
2015-12-01
In response to the increasing demand for food linked to the substantial growth of population in Burkina Faso, irrigation has been widely used by the farming community to support agricultural production. Thus a promising option for water resources development in such a context is to increase the number of small dams. It is assumed that the great number of small dams may have effect on sub-basins' hydrological dynamic. This study aims to assess the seasonal and the intra-seasonal change in river basins hydrology with the case study of the Faga River sub-basin located in Burkina-Faso, West Africa, using Water Simulation Model (WaSiM). For this watershed the number of small dams is slightly very important (More than 60) and their impact on the watershed runoff has been estimated simultaneously with the change in climate pattern. The coefficient of variation for rainfall in this sub-basin from 1982 to 2010 is 0.097 and the stream flow presents a seasonal average of 25.58Km3 per month for the same period. The intra-seasonal climate variation for the same period is estimated at 0.087 in the scenario where any dam has not been considered. Results based on simulation including the five important dams over the sub-basin show that the overall effect of small dams is on average a 20.76% in runoff. Projections using the Representative Concentration Pathways (RCP) 4.5 and 8.5 climate scenarios with increase of 25% of dams' number show a probable decrease of about 29.54% and 35.25% of the average during the next fifty years runoff. The study findings show that small dams reduce significantly the runoff from their watershed and the uncertainties related to the sustainability of the resource seems to be increasing during the same period. Therefore, despite the very large number of water storage infrastructures, reservoirs operating strategies have to be achieved for water sustainability within the Faga sub-basin.
NASA Astrophysics Data System (ADS)
Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.
2017-12-01
Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological regime and the Lake Turkana level variability.
2018-04-21
rules provided opportunities for women to serve in a broad range of military occupations not previously available (Pellerin, 2015). Full integration ...Behavior Model Disease I ._I _____ _ _ 1_L_L_N_e_s_s_e_x_P_E_R_1e_N_c_ e ______ _, ETH NO-CULTURAL CONTEXT External Influences Internal Integration ...disease. Distress refers to the " sum total of psychological factors and somatic sensations, and as such, it was intricately interwoven with meaning
N-(3-Chloro-4-eth-oxy-1-methyl-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Saadi, Mohamed; El Ammari, Lahcen
2014-06-01
The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-eth-oxy group, respectively. In the crystal, mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into inversion dimers, which are further linked by π-π inter-actions between the diazole rings [inter-centroid distance = 3.4946 (11) Å], forming chains parallel to [101].
NASA Astrophysics Data System (ADS)
Ludwig, Ralf; Baese, Frank; Braun, Marco; Brietzke, Gilbert; Brissette, Francois; Frigon, Anne; Giguère, Michel; Komischke, Holger; Kranzlmueller, Dieter; Leduc, Martin; Martel, Jean-Luc; Ricard, Simon; Schmid, Josef; von Trentini, Fabian; Turcotte, Richard; Weismueller, Jens; Willkofer, Florian; Wood, Raul
2017-04-01
The recent accumulation of extreme hydrological events in Bavaria and Québec has stimulated scientific and also societal interest. In addition to the challenges of an improved prediction of such situations and the implications for the associated risk management, there is, as yet, no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for 'virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change. [The authors acknowledge funding for the project from the Bavarian State Ministry for the Environment and Consumer Protection].
Hydrological response in catchments whit debris covered glaciers in the semi-arid Andes, Chile
NASA Astrophysics Data System (ADS)
Caro, A.; McPhee, J.; MacDonell, S.; Pellicciotti, F.; Ayala, A.
2016-12-01
Glaciers in the semi-arid Andes Cordillera in Chile have shrank rapidly during the 20th century. Negative mass balance contributes to increase the surface area of debris-covered glaciers. Recent research in Chile suggests that contributions from glaciers to summer season river flow in dry years is very important, however hydrological processes determining the glacier contribution are still poorly understood in the region. This work seeks to determine appropriate parameters for the simulation of melt volume in two watersheds dominated by debris-covered glaciers, in order to understand its variability in time and space, in the area with the largest population in Chile. The hydrological simulation is performed for the Tapado (30°S) and Pirámide (33ºS) glaciers, which can be defined as cold and temperate respectively. To simulate the hydrological behaviour we adopt the physically-based TOPographic Kinematic wave APproximation model (TOPKAPI-ETH). The hydrometeorological records necessary model runs have been collected through fieldwork from 2013 to 2015. Regarding the calibration of the model parameters melting ETI, its observed that the value for TF in Pirámide is a third of the value for Tapado glacier, while SRF is half in Tapado regarding to Pirámide. The runoff in the glaciers, the constant snow and ice storage are higher in Tapado regarding Pirámide. Results show a contribution of glacial outflow to runoff during 2015 of 55% in Tapado and 77% in Pirámide, with maximum contributions between January and March in Tapado and Pirámide between November and March, presenting the relevance of the permanence of snow cover during spring and shelter that provides debris-covered in reducing the melting glacier. The results have allowed to know the relevance of the glacier contribution to mountain streams, allowing to know the calibration parameters most relevant in the hydrology balance of glacier basins in the Andes.
2-[(E)-2-(4-Eth-oxy-phen-yl)ethen-yl]-1-methyl-quinolinium 4-fluoro-benzene-sulfonate.
Fun, Hoong-Kun; Kobkeatthawin, Thawanrat; Ruanwas, Pumsak; Quah, Ching Kheng; Chantrapromma, Suchada
2014-01-01
In the structure of the title salt, C20H20NO(+)·C6H4FO3S(-), the 4-(eth-oxy-phen-yl)ethenyl unit is disordered over two positions with a refined site-occupancy ratio of 0.610 (6):0.390 (6). The cation is nearly planar, the dihedral angle between the quinolinium and benzene rings being 6.7 (4) and 1.7 (7)° for the major and minor components, respectively. The eth-oxy group is essentially coplanar with the benzene ring [C-O-C-Cmethy = 177.1 (8) and 177.8 (12)° for the major and minor components, respectively]. In the crystal, cations and anions are linked into chains along the b-axis direction by C-H⋯Osulfon-yl weak inter-actions. These chains are further connected into sheets parallel to (001) by C-H⋯Osulfon-yl weak inter-actions. The chains are also stacked along the a axis through π-π inter-actions involving the quinolinium and benzene rings [centroid-centroid distances = 3.636 (5) Å for the major component and 3.800 (9) Å for the minor component]. C-H⋯π inter-actions are also present.
Quantifying the uncertainty of regional and national estimates of soil carbon stocks
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2013-04-01
At regional and national scales, carbon (C) stocks are frequently estimated by means of regression models. Such statistical models link measurements of carbons stocks, recorded for a set of soil profiles or soil cores, to covariates that characterize soil formation conditions and land management. A prerequisite is that these covariates are available for any location within a region of interest G because they are used along with the fitted regression coefficients to predict the carbon stocks at the nodes of a fine-meshed grid that is laid over G. The mean C stock in G is then estimated by the arithmetic mean of the stock predictions for the grid nodes. Apart from the mean stock, the precision of the estimate is often also of interest, for example to judge whether the mean C stock has changed significantly between two inventories. The standard error of the estimated mean stock in G can be computed from the regression results as well. Two issues are thereby important: (i) How large is the area of G relative to the support of the measurements? (ii) Are the residuals of the regression model spatially auto-correlated or is the assumption of statistical independence tenable? Both issues are correctly handled if one adopts a geostatistical block kriging approach for estimating the mean C stock within a region and its standard error. In the presentation I shall summarize the main ideas of external drift block kriging. To compute the standard error of the mean stock, one has in principle to sum the elements a potentially very large covariance matrix of point prediction errors, but I shall show that the required term can be approximated very well by Monte Carlo techniques. I shall further illustrated with a few examples how the standard error of the mean stock estimate changes with the size of G and with the strenght of the auto-correlation of the regression residuals. As an application a robust variant of block kriging is used to quantify the mean carbon stock stored in the soils of Swiss forests (Nussbaum et al., 2012). Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L. (2012). Organic carbon stocks of swiss forest soils. Final report, Institute of Terrestrial Ecosystems, ETH Zürich and Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), pp. 51, http://e-collection.library.ethz.ch/eserv/eth:6027/eth-6027-01.pdf
Dynamical Typicality Approach to Eigenstate Thermalization
NASA Astrophysics Data System (ADS)
Reimann, Peter
2018-06-01
We consider the set of all initial states within a microcanonical energy shell of an isolated many-body quantum system, which exhibit an arbitrary but fixed nonequilibrium expectation value for some given observable A . On the condition that this set is not too small, it is shown by means of a dynamical typicality approach that most such initial states exhibit thermalization if and only if A satisfies the so-called weak eigenstate thermalization hypothesis (wETH). Here, thermalization means that the expectation value of A spends most of its time close to the microcanonical value after initial transients have died out. The wETH means that, within the energy shell, most eigenstates of the pertinent system Hamiltonian exhibit very similar expectation values of A .
N-(3-Chloro-4-ethoxy-1-methyl-1H-indazol-5-yl)-4-methoxybenzenesulfonamide
Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Saadi, Mohamed; El Ammari, Lahcen
2014-01-01
The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-ethoxy group, respectively. In the crystal, molecules are connected by pairs of N—H⋯O hydrogen bonds into inversion dimers, which are further linked by π–π interactions between the diazole rings [intercentroid distance = 3.4946 (11) Å], forming chains parallel to [101]. PMID:24940259
Crystal structure of N-(1-allyl-3-chloro-4-eth-oxy-1H-indazol-5-yl)-4-meth-oxybenzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2014-09-01
In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å) by 65.07 (8)°. The allyl and eth-oxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N-N-C-C = 111.6 (2) and C-C-O-C = -88.1 (2)°]. In the crystal, mol-ecules are connected by N-H⋯N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C-H⋯O hydrogen bonds, forming a three-dimensional network.
Modellierung des Einflusses der Landnutzung auf die Hochwasserentstehung in der Mesoskala
NASA Astrophysics Data System (ADS)
Niehoff, Daniel
2001-10-01
Seit 1990 waren mehrere der großen Flussgebiete Mitteleuropas wiederholt von extremen Hochwassern betroffen. Da sowohl die Landoberfläche als auch die Flusssysteme weiter Teile Mitteleuropas in der Vergangenheit weitreichenden Eingriffen ausgesetzt gewesen sind, wird bei der Suche nach den Ursachen für diese Häufung von Extremereignissen auch die Frage nach der Verantwortung des Menschen hierfür diskutiert. Gewässerausbau, Flächenversiegelung, intensive landwirtschaftliche Bodenbearbeitung, Flurbereinigung und Waldschäden sind nur einige Beispiele und Folgen der anthropogenen Eingriffe in die Landschaft. Aufgrund der Vielfalt der beteiligten Prozesse und deren Wechselwirkungen gibt es allerdings bislang nur Schätzungen darüber, wie sehr sich die Hochwassersituation hierdurch verändert hat. Vorrangiges Ziel dieser Arbeit ist es, mit Hilfe eines hydrologischen Modells systematisch darzustellen, in welcher Weise, in welcher Größenordnung und unter welchen Umständen die Art der Landnutzung auf die Hochwasserentstehung Einfluss nimmt. Dies wird anhand exemplarischer Modellanwendungen in der hydrologischen Mesoskala untersucht. Zu diesem Zweck wurde das deterministische und flächendifferenzierte hydrologische Modell wasim-eth ausgewählt, das sich durch eine ausgewogene Mischung aus physikalisch begründeten und konzeptionellen Ansätzen auszeichnet. Das Modell wurde im Rahmen dieser Arbeit um verschiedene Aspekte erweitert, die für die Charakterisierung des Einflusses der Landnutzung auf die Hochwasserentstehung wichtig sind: (1) Bevorzugtes Fließen in Makroporen wird durch eine Zweiteilung des Bodens in Makroporen und Bodenmatrix dargestellt, die schnelle Infiltration und Perkolation jenseits der hydraulischen Leitfähigkeit der Bodenmatrix ermöglicht. (2) Verschlämmung äußert sich im Modell abhängig von Niederschlagsintensität und Vegetationsbedeckungsgrad als Verschlechterung der Infiltrationsbedingungen an der Bodenoberfläche. (3) Das heterogene Erscheinungsbild bebauter Flächen mit einer Mischung aus versiegelten Bereichen und Freiflächen wird berücksichtigt, indem jede Teilfläche je nach Versiegelungsgrad in einen unversiegelten Bereich und einen versiegelten Bereich mit Anschluss an die Kanalisation aufgeteilt wird. (4) Dezentraler Rückhalt von Niederschlagswasser kann sowohl für natürliche Mulden als auch für gezielt angelegte Versickerungsmulden mit definierten Infiltrationsbedingungen simuliert werden. Das erweiterte Modell wird exemplarisch auf drei mesoskalige Teileinzugsgebiete des Rheins angewandt. Diese drei Gebiete mit einer Fläche von zwischen 100 und 500 km² wurden im Hinblick darauf ausgewählt, dass jeweils eine der drei Hauptlandnutzungskategorien Bebauung, landwirtschaftliche Nutzung oder Wald dominiert. Für die drei Untersuchungsgebiete sind räumlich explizite Landnutzungs- und Landbedeckungsszenarien entworfen worden, deren Einfluss auf die Hochwasserentstehung mit Hilfe des erweiterten hydrologischen Modells simuliert wird. Im Einzelnen werden die Auswirkungen von Verstädterung, Maßnahmen zur Niederschlagsversickerung in Siedlungsgebieten, Stilllegung agrarisch genutzter Flächen, veränderter landwirtschaftlicher Bodenbearbeitung, Aufforstung sowie von Sturmschäden in Wäldern untersucht. Diese Eingriffe beeinflussen die Interzeption von Niederschlag, dessen Infiltration, die oberflächennahen unterirdischen Fließprozesse sowie, zum Beispiel im Fall der Kanalisation, auch die Abflusskonzentration. Die hydrologischen Simulationen demonstrieren, dass die Versiegelung einer Fläche den massivsten Eingriff in die natürlichen Verhältnisse darstellt und deshalb die stärksten (negativen) Veränderungen der Hochwassersituation hervorbringt. Außerdem wird deutlich, dass eine bloße Änderung des Interzeptionsvermögens zu keinen wesentlichen Veränderungen führt, da die Speicherkapazität der Pflanzenoberflächen im Verhältnis zum Volumen hochwasserauslösender Niederschläge eher klein ist. Stärkere Veränderungen ergeben sich hingegen aus einer Änderung der Infiltrationsbedingungen. Die Grenzen der entwickelten Methodik zeigen sich am deutlichsten bei der Simulation veränderter landwirtschaftlicher Bewirtschaftungsmethoden, deren mathematische Beschreibung und zahlenmäßige Charakterisierung aufgrund der Komplexität der beteiligten Prozesse mit großen Unsicherheiten behaftet ist. Die Modellierungsergebnisse belegen darüber hinaus, dass pauschale Aussagen zum Einfluss der Landnutzung auf die Hochwasserentstehung aufgrund der entscheidenden Bedeutung der klimatischen und physiographischen Randbedingungen unzulässig sind. Zu den klimatischen Randbedingungen zählen sowohl Niederschlagsintensität und -dauer als auch die Feuchtebedingungen vor einem hochwasserauslösenden Niederschlag. Die physiographischen Randbedingungen sind von der geomorphologischen und geologischen Ausstattung des Gebiets vorgegeben. Weiterhin muss der räumliche und zeitliche Maßstab, über den Aussagen getroffen werden, klar definiert sein, da sich mit steigender Einzugsgebietsgröße die relative Bedeutung sowohl der verschiedenen Niederschlagstypen als auch der physiographischen Eigenschaften verschiebt. Dies wird in der vorliegenden Arbeit im Gegensatz zu vielen anderen Untersuchungen konsequent berücksichtigt. In Abhängigkeit von Randbedingungen und räumlichen Maßstab sind aufgrund der gewonnen Erkenntnisse folgende Aussagen zum Einfluss von Landnutzungsänderungen auf die Hochwasserentstehung möglich: (1) Für intensive konvektive Niederschlagsereignisse mit tendenziell geringer Vorfeuchte ist der Einfluss der Landnutzung größer als für langanhaltende advektive Niederschläge geringer Intensität, da im ersten Fall veränderte Infiltrationsbedingungen stärker zum Tragen kommen als bei kleinen Niederschlagsintensitäten. (2) In kleinen Einzugsgebieten, wo kleinräumige Konvektivzellen zu Hochwassern führen können, ist der Einfluss der Landnutzung dementsprechend größer als in großen Flussgebieten wie dem Rheingebiet, wo vor allem langanhaltende advektive Ereignisse (unter Umständen verbunden mit Schneeschmelze) relevant sind. (3) In Gebieten mit guten Speichereigenschaften wie mächtigen, gut durchlässigen Böden und gut durchlässigem Gesteinsuntergrund ist der Einfluss der Landnutzung größer als in Gebieten mit geringmächtigen Böden und geringdurchlässigem Festgestein. Dies ist darin begründet, dass in Gebieten mit guten Speichereigenschaften bei einer Verschlechterung der Infiltrationsbedingungen mehr Speicherraum für Niederschlag verloren geht als in anderen Gebieten. Since 1990, several of the large European river basins were affected repeatedly by extreme floods. As both the landscape and the river systems in large parts of Central Europe have undergone major changes in the past, during the search for the causes of this accumulation of extreme events also the impact of human activities on flooding has been discussed. River training, surface sealing, intensive agricultural land-use, consolidation of farmland, and damages to forests are only some examples and consequences of the anthropogenic interferences with the landscape. But due to the diversity of the processes and factors involved, by now it can only be estimated how far the flood situation has changed by these interferences. Therefore, the main target of this thesis is to describe systematically in which way, to what extent and under which circumstances the land-use exerts an influence on storm-runoff generation and subsequently the discharge of rivers. This is investigated by means of exemplary model applications at the hydrological meso-scale. For this task, the deterministic and distributed hydrological model wasim-eth was chosen due to its well-balanced mixture of physically-based and conceptual approaches. In the framework of this thesis, the model has been extended in order to cope with several phenomena which are important when aiming at a characterization of the influence of land-use on flood generation: (1) Preferential flow in macropores is treated by a division of the soil into macropores and a soil matrix. This so-called double-porosity approach allows for fast infiltration and percolation beyond the hydraulic conductivity of the soil matrix. (2) Siltation expresses itself within the model as a deterioration of infiltration conditions at the soil surface, depending on precipitation intensity and the degree of vegetation covering. (3) The heterogeneous appearance of built-up areas, consisting of both sealed areas and pervious areas, is taken into account by dividing each partial area into an unsealed part and a sealed part which is connected to the sewer system. (4) Decentralized storage can be simulated for natural depressions as well as for specific infiltration measures with defined infiltration conditions. The extended model is exemplarily applied to three meso-scale tributaries of the Rhine river. These three catchments with an area of between 100 and 500 km² were chosen with regard to their prevailing land-use, one of them being heavily urbanized, one dominated by agricultural use, and one being mainly forested. For these three catchments, spatially explicit land-use and land-cover scenarios were developed. The impact of these scenarios on storm-runoff generation is being simulated using the extended hydrological model. In this context, namely urbanization, infiltration measures in settlement areas, conversion of farmland to set-aside areas, altered agricultural management practices, affor estation and storm damages in forests are taken into account. These changes influence the interception of rainfall, its infiltration into the soil, the subsurface flow processes next to the soil surface as well as, for example in the case of sewer systems, also runoff concentration. The hydrological simulations demonstrate that sealing of the soil surface is the most intensive intervention in the natural conditions among the ones which are mentioned above. Therefore it results in the strongest (negative) changes of the flooding situation in a catchment. In addition to that, the simulations show that a simple alteration in the interception capacity does not yield significant changes in catchment response, because the storage capacity of vegetation surfaces is rather low compared to the volume of storm events which normally lead to significant floods. More pronounced changes arise from modifications in the infiltration conditions. The limits of the methodology which was chosen for this thesis become obvious when simulating altered agricultural management practices. Due the complexity of the processes involved, mathematical description and parameterization is difficult and therefore afflicted with high uncertainty. In addition to that, the modelling results prove that global statements on the influence of land-use on flood generation are illegitimate because of the paramount importance of the climatic and physiographic boundary conditions. Climatic boundary conditions are precipitation intensity and duration as well as the moisture conditions before a storm event. The physiographic boundary counditions are given by the geomorphological and geological catchment properties. Furthermore, with increasing scale there is a shift in the relative importance of the different types of rainfall as well as the different geophysical catchment properties. Therefore, the spatial and temporal scale for which the results are valid have to be clearly defined. This is taken into account consequently within this thesis - in contrast to many other studies on this topic. Depending on boundary conditions and spatial scale, the findings allow the following statements regarding the influence of land-use changes on storm-runoff generation: (1) For intensive convective storm events with generally low antecedent soil moisture, the influence of land-use is greater than for long-lasting advective storm events with low rainfall intensities, because in the first case changes in the infiltration conditions are more important than during times of low precipitation intensities. (2) In small catchments, where small-scale convective cells can lead to a flood, the influence of land-use is accordingly greater than in large river basins like the Rhine basin, where long-lasting advective rainfalls (possibly in combination with snowmelt) are relevant. (3) In areas with good storage conditions like thick, permeable soils and pervious rock underneath, the influence of land-use is greater than in areas with thin soils and only slightly permeable bedrock. This is due to the fact that in case of deteriorating infiltration conditions, more storage space for precipitation is lost in areas with good storage conditions than in other areas. siehe auch: http://opus.kobv.de/ubp/volltexte/2005/398/
NASA Astrophysics Data System (ADS)
Hoeller, Judith; Issler, Mena; Imamoglu, Atac
Levy flights haven been extensively used in the past three decades to describe non-Brownian motion of particles. In this presentation I give an overview on how Levy flights have been used across several disciplines, ranging from biology to finance to physics. In our publication we describe how a single electron spin 'flies' when captured in quantum dot using the central spin model. At last I motivate the use of Levy flights for the description of anomalous diffusion in modern experiments, concretely to describe the lifetimes of quasi-particles in Josephson junctions. Finished PhD at ETH in Spring 2015.
NASA Astrophysics Data System (ADS)
Jobst, Andreas M.; Kingston, Daniel G.; Cullen, Nicolas J.; Schmid, Josef
2018-06-01
As climate change is projected to alter both temperature and precipitation, snow-controlled mid-latitude catchments are expected to experience substantial shifts in their seasonal regime, which will have direct implications for water management. In order to provide authoritative projections of climate change impacts, the uncertainty inherent to all components of the modelling chain needs to be accounted for. This study assesses the uncertainty in potential impacts of climate change on the hydro-climate of a headwater sub-catchment of New Zealand's largest catchment (the Clutha River) using a fully distributed hydrological model (WaSiM) and unique ensemble encompassing different uncertainty sources: general circulation model (GCM), emission scenario, bias correction and snow model. The inclusion of snow models is particularly important, given that (1) they are a rarely considered aspect of uncertainty in hydrological modelling studies, and (2) snow has a considerable influence on seasonal patterns of river flow in alpine catchments such as the Clutha. Projected changes in river flow for the 2050s and 2090s encompass substantial increases in streamflow from May to October, and a decline between December and March. The dominant drivers are changes in the seasonal distribution of precipitation (for the 2090s +29 to +84 % in winter) and substantial decreases in the seasonal snow storage due to temperature increase. A quantitative comparison of uncertainty identified GCM structure as the dominant contributor in the seasonal streamflow signal (44-57 %) followed by emission scenario (16-49 %), bias correction (4-22 %) and snow model (3-10 %). While these findings suggest that the role of the snow model is comparatively small, its contribution to the overall uncertainty was still found to be noticeable for winter and summer.
Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis
NASA Astrophysics Data System (ADS)
He, Song; Lin, Feng-Li; Zhang, Jia-ju
2017-12-01
We calculate various quantities that characterize the dissimilarity of reduced density matrices for a short interval of length ℓ in a two-dimensional (2D) large central charge conformal field theory (CFT). These quantities include the Rényi entropy, entanglement entropy, relative entropy, Jensen-Shannon divergence, as well as the Schatten 2-norm and 4-norm. We adopt the method of operator product expansion of twist operators, and calculate the short interval expansion of these quantities up to order of ℓ9 for the contributions from the vacuum conformal family. The formal forms of these dissimilarity measures and the derived Fisher information metric from contributions of general operators are also given. As an application of the results, we use these dissimilarity measures to compare the excited and thermal states, and examine the eigenstate thermalization hypothesis (ETH) by showing how they behave in high temperature limit. This would help to understand how ETH in 2D CFT can be defined more precisely. We discuss the possibility that all the dissimilarity measures considered here vanish when comparing the reduced density matrices of an excited state and a generalized Gibbs ensemble thermal state. We also discuss ETH for a microcanonical ensemble thermal state in a 2D large central charge CFT, and find that it is approximately satisfied for a small subsystem and violated for a large subsystem.
The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling
Liu, Yang; Gu, Dandan; Wu, Wei; Wen, Xiaoxia; Liao, Yuncheng
2013-01-01
The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat. PMID:24205154
PREFACE: Workshop Photograph and Program
NASA Astrophysics Data System (ADS)
2011-07-01
Workshop photograph Workshop Program Sunday 28 March 201019:00-21:00 Reception at Okura Frontier Hotel Tsukuba(Buffet style dinner with drink) Monday 29 March 2010Introduction (Chair: André Rubbia (ETH Zurich))09:00 Welcome address (05') Atsuto Suzuki (KEK)09:05 Message from CERN on neutrino physics (10') Sergio Bertolucci (CERN)09:15 Message from FNAL on neutrino physics (10') Young Kee Kim (FNAL)09:25 Message from KEK on neutrino physics (10') Koichiro Nishikawa (KEK)09:35 Introductory remark on GLA2010 (10') Takuya Hasegawa (KEK) Special session (Chair: Koichiro Nishikawa (KEK))09:45 The ICARUS Liquid Argon TPC (45') Carlo Rubbia (CERN)10:30-11:00 Coffee break Main goals of Giant Liquid Argon Charge Imaging Experiments I (Chair: Takashi Kobayashi (KEK))11:00 Results from massive underground detectors (non accelerator) (30') Takaaki Kajita (ICRR, U. of Tokyo)11:30 Present long baseline neutrino experiments (30') Chang Kee Jung (SUNY Stony Brook)12:00-12:10 Workshop picture12:10-14:00 Lunch break Main goals of Giant Liquid Argon Charge Imaging Experiments II (Chair: Takashi Kobayashi (KEK))14:00 Physics goals of the next generation massive underground experiments (30') David Wark (Imperial College London)14:30 Near detectors for long baseline neutrino experiments (20') Tsuyoshi Nakaya (Kyoto U.) Lessons on Liquid Argon Charge Imaging technology from ongoing developments (Chair: Chang Kee Jung (SUNY Stony Brook))14:50 WARP (30') Claudio Montanari (U. of Pavia)15:20 ArDM (30') Alberto Marchionni (ETH Zurich)15:50 From ArgoNeuT to MicroBooNE (30') Bonnie Fleming (Yale U.)16:20 250L (30') Takasumi Maruyama (KEK)16:50 The DEAP/CLEAN project (20') Mark Boulay (Queen's U.)17:10-17:40 Coffee break Lessons from Xe based Liquids Imaging detectors (Chair: Flavio Cavanna (U. of L'Aquilla))17:30 MEG (20') Satoshi Mihara (KEK)17:50 The XENON project (20') Elena Aprile (Columbia U.)18:10 XMASS (20') Hiroyuki Sekiya (ICRR, U. of Tokyo) Studies on physics performance (Chair: Bonnie Fleming (Yale U.))18:30 Supernovae neutrino detection (20') Ines Gil-Botella (CIEMAT)18:50 Neutrino cross-section in Liquid Argon in the GeV range (15') Flavio Cavanna (U. of L'Aquila)19:05 Analysis of the ArgoNeuT neutrino data (15') Carl Bromberg (Michigan State U.)19:20 Neutrino event reconstruction (15') Gary Barker (U. of Warwick) Tuesday 30 March 2010Ways to improve the Liquid Argon Charge Imaging technology I (Chair: Christos Touramanis (U. of Liverpool))09:00 Liquid Argon LEM TPC (30') Filippo Resnati (ETH Zurich)09:30 Micromegas for charge readout of double phase liquid Argon large TPCs (20') Alain Delbart (Saclay)09:50 Development of Thick-GEMs for GEM-TPC Tracker (20') Fuminori Sakuma (RIKEN)10:10 Optical readout of the ionization (20') Neil Spooner (U. of Sheffield)10:30 Scintillation light readout (20') Kostas Mavrokoridis (U. of Liverpool)10:50-11:10 Coffee break Ways to improve the Liquid Argon Charge Imaging technology II (Chair: Alberto Marchionni (ETH Zurich))11:10 Development of cold electronics (30') Veljko Radeka (BNL)11:40 Development of a frontend ASIC and DAQ system Dario Autiero (IPN Lyon)12:00 CAEN digitizers (20') Carlo Tintori (CAEN)12:20 Recent results from Liquid Argon R&D activity (20') Masashi Tanaka (KEK)12:40 Results from the materials test stand and status of LAPD (20') Brian Rebel (FNAL)13:00 Purging and purification: 6 m3 @CERN (20') Alessandro Curioni (ETH Zurich)13:20-14:30 Lunch break14:30-20:00 Trip to J-PARC to visit T2K Beam Facility and Near Detector20:00-22:00 Workshop dinner at Okura Frontier Hotel Tsukuba Wednesday 31 March 2010Ways to improve the Liquid Argon Charge Imaging technology III (Chair: Takasumi Maruyama (KEK))09:00 ArgonTube and UV laser ionization (25') Biagio Rossi (U. of Bern)09:25 Detector magnetization (15') Andreas Badertscher (ETH Zurich)09:40 HV system (25') Sosuke Horikawa (ETH Zurich) Localization studies (Chair: Takuya Hasegawa (KEK))10:05 Okinoshima site study (20') Masakazu Yoshioka (KEK)10:25 LAGUNA sites study (30') Guido Nuijten (Rockplan)10:55 FNAL/DUSEL project (20') Regina Rameika (FNAL)11:15-11:35 Coffee break Future steps towards the realization of Giant Liquid Argon Charge Imaging detectors (Chair: Takuya Hasegawa (KEK))11:35 LBNE Liquid Argon option (30') Bruce Baller (FNAL)12:05 Towards a 100 kton Liquid Argon experiment (30') André Rubbia (ETH Zurich)12:35 Discussion (30')13:05 Final remark (05') Takuya Hasegawa (KEK)
Crystal structure of N-(1-allyl-3-chloro-4-ethoxy-1H-indazol-5-yl)-4-methoxybenzenesulfonamide
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2014-01-01
In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å) by 65.07 (8)°. The allyl and ethoxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N—N—C—C = 111.6 (2) and C—C—O—C = −88.1 (2)°]. In the crystal, molecules are connected by N—H⋯N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:25309208
Shah, Anjana K.; Bern, Carleton R.; Van Gosen, Bradley S.; Daniels, David L.; Benzel, William M.; Budahn, James R.; Ellefsen, Karl J.; Karst, Adam; Davis, Richard
2017-01-01
We combined geophysical, geochemical, mineralogical, and geological data to evaluate the regional presence of rare earth element (REE)−bearing minerals in heavy mineral sand deposits of the southeastern U.S. Coastal Plain. We also analyzed regional differences in these data to determine probable sedimentary provenance. Analyses of heavy mineral separates covering the region show strong correlations between thorium, monazite, and xenotime, suggesting that radiometric equivalent thorium (eTh) can be used as a geophysical proxy for those REE-bearing minerals. Airborne radiometric data collected during the National Uranium Resource Evaluation (NURE) program cover the southeastern United States with line spacing varying from ∼2 to 10 km. These data show eTh highs over Cretaceous and Tertiary Coastal Plain sediments from the Cape Fear arch in North Carolina to eastern Alabama; these highs decrease with distance from the Piedmont. Quaternary sediments along the modern coasts show weaker eTh anomalies, except near coast-parallel ridges from South Carolina to northern Florida. Prominent eTh anomalies are also observed over large riverbeds and their floodplains, even north of the Cape Fear arch where surrounding areas are relatively low. These variations were verified using ground geophysical measurements and sample analyses, indicating that radiometric methods are a useful exploration tool at varying scales. Further analyses of heavy mineral separates showed regional differences, not only in concentrations of monazite, but also of rutile and staurolite, and in magnetic susceptibility. The combined properties suggest the presence of subregions where heavy mineral sediments are primarily sourced from high-grade metamorphic, low-grade metamorphic, or igneous terrains, or where they represent a mixing of these sources. Comparisons between interpreted sources of heavy mineral sands near the Fall Line and igneous and metamorphic Piedmont and Blue Ridge units showed a strong correspondence with rocks closest to the Fall Line and poor correspondence with rocks farther inland. This strongly suggests that the primary source of those heavy minerals, especially monazite, is the rocks that formed the rocky coast that was present during opening of the Atlantic Ocean, which in turn indicates the importance of coastal processes in forming heavy mineral sand concentrations. Furthermore, narrow radiometric eTh and K anomalies are associated with major rivers, indicating limited spatial influence of fluvial processes. Later coastal plain sediment deposition appears to have involved reworking of sediments, providing an “inheritance” of the rocky coast composition that persists for some distance from the Fall Line. However, this inheritance is reduced with distance, and sediments within ∼100 km of the coast in Georgia and Florida exhibit properties indicative of mixing from multiple sources.
NASA Astrophysics Data System (ADS)
Gädeke, Anne; Koch, Hagen; Pohle, Ina; Grünewald, Uwe
2014-05-01
In anthropogenically heavily impacted river catchments, such as the Lusatian river catchments of Spree and Schwarze Elster (Germany), the robust assessment of possible impacts of climate change on the regional water resources is of high relevance for the development and implementation of suitable climate change adaptation strategies. Large uncertainties inherent in future climate projections may, however, reduce the willingness of regional stakeholder to develop and implement suitable adaptation strategies to climate change. This study provides an overview of different possibilities to consider uncertainties in climate change impact assessments by means of (1) an ensemble based modelling approach and (2) the incorporation of measured and simulated meteorological trends. The ensemble based modelling approach consists of the meteorological output of four climate downscaling approaches (DAs) (two dynamical and two statistical DAs (113 realisations in total)), which drive different model configurations of two conceptually different hydrological models (HBV-light and WaSiM-ETH). As study area serve three near natural subcatchments of the Spree and Schwarze Elster river catchments. The objective of incorporating measured meteorological trends into the analysis was twofold: measured trends can (i) serve as a mean to validate the results of the DAs and (ii) be regarded as harbinger for the future direction of change. Moreover, regional stakeholders seem to have more trust in measurements than in modelling results. In order to evaluate the nature of the trends, both gradual (Mann-Kendall test) and step changes (Pettitt test) are considered as well as both temporal and spatial correlations in the data. The results of the ensemble based modelling chain show that depending on the type (dynamical or statistical) of DA used, opposing trends in precipitation, actual evapotranspiration and discharge are simulated in the scenario period (2031-2060). While the statistical DAs simulate a strong decrease in future long term annual precipitation, the dynamical DAs simulate a tendency towards increasing precipitation. The trend analysis suggests that precipitation has not changed significantly during the period 1961-2006. Therefore, the decrease simulated by the statistical DAs should be interpreted as a rather dry future projection. Concerning air temperature, measured and simulated trends agree on a positive trend. Also the uncertainty related to the hydrological model within the climate change modelling chain is comparably low when long-term averages are considered but increases significantly during extreme events. This proposed framework of combining an ensemble based modelling approach with measured trend analysis is a promising approach for regional stakeholders to gain more confidence into the final results of climate change impact assessments. However, climate change impact assessments will remain highly uncertain. Thus, flexible adaptation strategies need to be developed which should not only consider climate but also other aspects of global change.
Abraham, A D; Menzel, W; Varrelmann, M; Vetten, H Josef
2009-01-01
Chickpea chlorotic stunt virus (CpCSV), a proposed new member of the genus Polerovirus (family Luteoviridae), has been reported only from Ethiopia. In attempts to determine the geographical distribution and variability of CpCSV, a pair of degenerate primers derived from conserved domains of the luteovirus coat protein (CP) gene was used for RT-PCR analysis of various legume samples originating from five countries and containing unidentified luteoviruses. Sequencing of the amplicons provided evidence for the occurrence of CpCSV also in Egypt, Morocco, Sudan, and Syria. Phylogenetic analysis of the CP nucleotide sequences of 18 samples from the five countries revealed the existence of two geographic groups of CpCSV isolates differing in CP sequences by 8-10%. Group I included isolates from Ethiopia and Sudan, while group II comprised those from Egypt, Morocco and Syria. For distinguishing these two groups, a simple RFLP test using HindIII and/or PvuII for cleavage of CP-gene-derived PCR products was developed. In ELISA and immunoelectron microscopy, however, isolates from these two groups could not be distinguished with rabbit antisera raised against a group-I isolate from Ethiopia (CpCSV-Eth) and a group-II isolate from Syria (CpCSV-Sy). Since none of the ten monoclonal antibodies (MAbs) that had been produced earlier against CpCSV-Eth reacted with group-II isolates, further MAbs were produced. Of the seven MAbs raised against CpCSV-Sy, two reacted only with CpCSV-Sy and two others with both CpCSV-Sy and -Eth. This indicated that there are group I- and II-specific and common (species-specific) epitopes on the CpCSV CP and that the corresponding MAbs are suitable for specific detection and discrimination of CpCSV isolates. Moreover, CpCSV-Sy (group II) caused more severe stunting and yellowing in faba bean than CpCSV-Eth (group I). In conclusion, our data indicate the existence of a geographically associated variation in the molecular, serological and presumably biological properties of CpCSV.
Investigating the nature of the GPR antenna orientation effect on temperate glaciers
NASA Astrophysics Data System (ADS)
Langhammer, Lisbeth; Rabenstein, Lasse; Bauder, Andreas; Lathion, Patrick; Maurer, Hansruedi
2015-04-01
In the recent years the bedrock topography of the Swiss Alpine Glaciers has been mapped by ground-based and helicopter-borne GPR (Ground Penetrating Radar) as part of an ongoing comprehensive inventory initiated by the ETH Zürich, the Swiss Competence Center for Energy Research (SCCER) and the Swiss Geophysical Commission (SGPK). Our recorded GPR data of glacier bedrock topography highlights the need of a better understanding of the interaction between GPR systems and the glacierized subsurface in high mountain terrain. The Otemma glacier in the Pennine Alps, Valais, has been subject to repeated profiling with commercial GPR ground units (pulseEKKO and GSSI) operating at frequencies ranging from 15-67 MHz deployed at the surface and mounted on a helicopter. Our data shows significant quality differences between similar GPR profiles, which could not be explained by system failure or technical discrepancies. To investigate the issue, we conducted antenna rotation experiments at several locations on the glacier surface. The results indicate a strong relationship between the orientation of the bistatic antennas and the flow direction of the glacier. Possible explanation for our observations range from anisotropy effects in glacier ice, the influence of directional characteristics of the GPR antennas or distinctive features of the bedrock topography. To explain our results, we perform 3D GPR modeling of the glacier body with the FDTD electromagnetic simulator gprMax. A basic homogenous three-dimensional model of the glacier will be replaced by varying bedrock topography along a transect. Internal structures such as water layers and inclusion will be imbedded in the simulations. Currently ground based GPR surveys produce higher quality data with respect to the visibility of glacier bed reflections. We intent to enhance our operating system and antenna installation on the helicopter based on the results of the simulations to achieve similar quality standards. The objective is to successfully map the bedrock topography of the Swiss glaciers in the next three years.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Behrens, Sebastian; Sabalowsky, Andrew; Dolan, Mark E.; Spormann, Alfred M.; Semprini, Lewis
2008-08-01
A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from ˜ 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.
NASA Astrophysics Data System (ADS)
Flett, Verity; Kirkbride, Martin; Black, Andrew; Everest, Jez; MacDonald, Alan
2016-04-01
Virkisjökull, an outlet glacier of the Oræfajökull icecap in SE Iceland, currently has 60% glacier cover, though this is reducing due to glacier retreat. Intensive monitoring over the last 4 years includes measurement of measuring ice ablation, proglacial discharge, dye-tracing of flow pathways, and deployment of three automatic weather stations at altitudes up to 880 m. These data calibrate a distributed hydrological model (WaSIM) to project potential river regime during stages of glacier retreat. Results show: (1) glacier hypsometry sensitises the catchment to a disproportionately rapid increase in runoff as the snowline rises onto a gentle ice cap resulting in in a potential annual increase in river discharge of up to 37% (2) a dominantly channelized glacial drainage system in all seasons with a rapid runoff response to melt: englacial flow of 0.58 m s-1 is comparable to the proglacial river velocity; and (3) longer-term, reduced glacier cover and snow storage will lead to a discharge regime dominated by short-term precipitation events in all seasons, and a reduced influence of the seasonal meltwater discharge peak. The study demonstrates the importance of glacier hypsometry above the present ELA as an influence on catchment hydrological response to potential climate warming.
The Expensive-Tissue Hypothesis in Vertebrates: Gut Microbiota Effect, a Review.
Huang, Chun Hua; Yu, Xin; Liao, Wen Bo
2018-06-17
The gut microbiota is integral to an organism’s digestive structure and has been shown to play an important role in producing substrates for gluconeogenesis and energy production, vasodilator, and gut motility. Numerous studies have demonstrated that variation in diet types is associated with the abundance and diversity of the gut microbiota, a relationship that plays a significant role in nutrient absorption and affects gut size. The Expensive-Tissue Hypothesis states (ETH) that the metabolic requirement of relatively large brains is offset by a corresponding reduction of the other tissues, such as gut size. However, how the trade-off between gut size and brain size in vertebrates is associated with the gut microbiota through metabolic requirements still remains unexplored. Here, we review research relating to and discuss the potential influence of gut microbiota on the ETH.
(E)-1-(2,4-Di-nitro-phen-yl)-2-(3-eth-oxy-4-hy-droxy-benzyl-idene)hydrazine.
Fun, Hoong-Kun; Chantrapromma, Suchada; Ruanwas, Pumsak; Kobkeatthawin, Thawanrat; Chidan Kumar, C S
2014-01-01
The mol-ecule of the title hydrazine derivative, C15H14N4O6, is essentially planar, the dihedral angle between the substituted benzene rings being 2.25 (9)°. The eth-oxy and hy-droxy groups are almost coplanar with their bound benzene ring [r.m.s. deviation = 0.0153 (2) Å for the ten non-H atoms]. Intra-molecular N-H⋯O and O-H⋯Oeth-oxy hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, mol-ecules are linked by O-H⋯Onitro hydrogen bonds into chains propagating in [010]. Weak aromatic π-π inter-actions, with centroid-centroid distances of 3.8192 (19) and 4.0491 (19) Å, are also observed.
Tris(1,10-phenanthroline-κ2 N,N′)iron(II) bis(1,1-dicyano-2-ethoxy-2-oxoethanide)
Cai, Zhan-Mao; Zhan, Shu-Zhong
2012-01-01
The title compound, [Fe(C12H8N2)3](C6H5N2O2)2, consists of one [Fe(phen)3]2+ cation (phen = 1,10-phenanthroline) and two 1,1-dicyano-2-ethoxy-2-oxoethanide anions. Five atoms of the anion are disordered over two positions [site occupancy = 0.521 (13) for the major component]. In the complex cation, the FeII atom is coordinated by six N atoms from three phen ligands in a distorted octahedral geometry. Two intramolecular C—H⋯N hydrogen bonds occur in the complex cation. The crystal structure is mainly stabilized by Coulombic interactions. Weak intermolecular C—H⋯N interactions are also observed. PMID:22807778
Qualification of the family caregiver to the application of the Educational Technology in Health.
Santos, Paula Dayanna Sousa Dos; Santos, Zélia Maria de Sousa Araújo; Diógenes, Léa Maria Moura Barroso; Caldas, José Manuel Peixoto de; Rodrigues, Kátia Alves Ferreira; Carneiro, Rithianne Frota
2018-05-01
To evaluate the changes in the participation of the family caregiver in the treatment of the hypertensive person with the application of the Educational Technology in Health (ETH). Participant research carried out in a Primary Health Care Unit with 11 family caregivers (FC). The ETH was elaborated based on health education and applied in ten meetings between June and August 2016. We organized the results into categories. FCs experienced learning experiences through the exchange of information, socialization of experiences, and linkage establishments. The FCs were encouraged to share their doubts and experiences, so that, supported by listening to the professional, they felt welcomed and determined to fulfill their role with hypertensive relatives. Final considerations: The changes that have taken place have been highlighted in the learning of FCs and their commitment to family and self-care, as well as to the conviction that the family environment is indicated to make these changes effective.
(E)-1-(2,4-Dinitrophenyl)-2-(3-ethoxy-4-hydroxybenzylidene)hydrazine
Fun, Hoong-Kun; Chantrapromma, Suchada; Ruanwas, Pumsak; Kobkeatthawin, Thawanrat; Chidan Kumar, C. S.
2014-01-01
The molecule of the title hydrazine derivative, C15H14N4O6, is essentially planar, the dihedral angle between the substituted benzene rings being 2.25 (9)°. The ethoxy and hydroxy groups are almost coplanar with their bound benzene ring [r.m.s. deviation = 0.0153 (2) Å for the ten non-H atoms]. Intramolecular N—H⋯O and O—H⋯Oethoxy hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, molecules are linked by O—H⋯Onitro hydrogen bonds into chains propagating in [010]. Weak aromatic π–π interactions, with centroid–centroid distances of 3.8192 (19) and 4.0491 (19) Å, are also observed. PMID:24527018
NASA Astrophysics Data System (ADS)
Shahgedanova, Maria; Afzal, Muhammad; Usmanova, Zamira; Kapitsa, Vasilii; Mayr, Elisabeth; Hagg, Wilfried; Severskiy, Igor; Zhumabayev, Dauren
2017-04-01
The study presents results of investigation of the observed and projected changes in discharge of seven snow- and glacier-nourished rivers of the northern Tien Shan (south-eastern Kazakhstan). The observed trends were assessed using the long-term (40-60 years) homogeneous daily records of discharge from the gauging stations located in the mountains and unaffected by human activities including water abstraction. Positive trends in discharge were registered at most sites between the 1950s and 2010s with the strongest increase in summer and autumn particularly in 2000-2010s in line with the positive temperature trends. The observed increase was most prominent in the catchments with a higher proportion of glacierized area. At the Ulken Almatinka and Kishi Almatinka rivers, where 16% and 12% of the catchment areas are glacierized, positive trends in summer and autumn discharge exceeded 1% per year. The strongest increase was observed in September indicating that melting period extends in the early autumn. In September-November, the number of days with extreme discharge values, defined as daily values exceeding 95th percentile (calculated for each meteorological season), increased at all rivers. Future changes in discharge were modelled using HBV-ETH hydrological model and four climate change scenarios derived using regional climate model PRECIS with 25 km spatial resolution driven by HadGEM GCM for RCP 2.6 and RCP 8.5 scenarios and HadCM3Q0 and ECHAM5 GCM for A1B scenario. A range of glacier change scenarios was considered. All climate experiments project increase in temperature with the strongest warming projected by the HadGEM-driven simulation for RCP 8.5 scenario and HadCM3Q0-driven simulation for A1B scenario. The projected changes in precipitation varied between models and seasons, however, most experiments did not show significant trends in precipitation within the studied catchments. The exception is a simulation driven by HadGEM GCM for 8.5 RCP scenario which projects summer drying. All simulations project that in the 2020s, discharge will remain close to its baseline (1990-2005) values suggesting that peak flow has been reached in the northern Tien Shan. Significant decrease in discharge is projected for the post 2030s period for June-September. The strongest changes are expected in July and August when discharge values are projected to decrease by 25-38% in 2030-2060 and decline further to up 50% of the baseline values in 2060-2099.
Crystal structure of azilsartan methyl ester ethyl acetate hemisolvate.
Li, Zhengyi; Liu, Rong; Zhu, Meilan; Chen, Liang; Sun, Xiaoqiang
2015-02-01
The title compound, C26H22N4O5 (systematic name: methyl 2-eth-oxy-1-{4-[2-(5-oxo-4,5-di-hydro-1,2,4-oxa-diazol-3-yl)phenyl]benz-yl}-1H-1,3-benzo-diazole-7-carboxyl-ate ethyl acetate hemisolvate), was obtained via cyclization of methyl (Z)-2-eth-oxy-1-{(2'-(N'-hy-droxy-carbamimido-yl)-[1,1'-biphen-yl]-4-yl)meth-yl}-1H-benzo[d]imidazole-7-carboxyl-ate with diphen-yl carbonate. There are two independent mol-ecules (A and B) with different conformations and an ethyl acetate solvent mol-ecule in the asymmetric unit. In mol-ecule A, the dihedral angle between the benzene ring and its attached oxa-diazole ring is 59.36 (17); the dihedral angle between the benzene rings is 43.89 (15) and that between the benzene ring and its attached imidazole ring system is 80.06 (11)°. The corres-ponding dihedral angles in mol-ecule B are 58.45 (18), 50.73 (16) and 85.37 (10)°, respectively. The C-O-C-Cm (m = meth-yl) torsion angles for the eth-oxy side chains attached to the imidazole rings in mol-ecules A and B are 93.9 (3) and -174.6 (3)°, respectively. In the crystal, the components are linked by N-H⋯N and C-H⋯O hydrogen bonds, generating a three-dimensional network. Aromatic π-π stacking inter-actions [shortest centroid-centroid separation = 3.536 (3)Å] are also observed.
NASA Astrophysics Data System (ADS)
Rössler, Ole; Hänggi, Pascal; Köplin, Nina; Meyer, Rapahel; Schädler, Bruno; Weingartner, Rolf
2013-04-01
The potential effect of climate change on hydrology is the acceleration of the hydrological cycle that in turn will likely cause changes in the discharge regime. As a result, socio-economic systems (e.g., tourism, hydropower industry) may be drastically affected. In this study, we comprehensively analyzed the effect of climate change on different hydrological components like mean and low-flow levels, and drought stress in mesoscale catchments of Switzerland. In terms of mean flows approx. 200 catchments in Switzerland were simulated for the reference period 1984-2005 using the hydrological model PREVAH and projection for near (2025-2046) and far future (2074-2095) are based on delta-change values of 10 ENSEMBLES regional climate models assuming A1B emission scenario (CH2011 climate scenario data sets). We found seven distinct response types of catchments, each exhibiting a characteristic annual cycle of hydrologic change. A general pattern observed for all catchments, is the clearly decreasing summer runoff. Hence, within a second analysis of future discharge a special focus was set on summer low flow in a selection of 29 catchments in the Swiss Midlands. Low flows are critical as they have great implications on water usage and biodiversity. We re-calibrated the hydrological model PREVAH with a focus on base-flow and gauged discharge and used the aforementioned climate data sets and simulation time periods. We found low flow situations to be very likely to increase in both, magnitude and duration, especially in central and western Switzerland plateau. At third, the drought stress potential was analyzed by simulating the soil moisture level under climate change conditions in a high mountain catchment. We used the distributed hydrological model WaSiM-ETH for this aspect as soil characteristics are much better represented in this model. Soil moisture in forests below 2000 m a.s.l. were found to be affected at most, which might have implication to their function as avalanche protection forests. However, we found high uncertainties related to the downscaling method applied. Finally, we analyzed the effect of changed discharge characteristics on the hydropower production by coupling the hydrological model BERNHYDRO with a hydropower management model. For the near future (until 2050), the results indicate that losses in the hydropower production during the summer can be compensated by benefit during winter. These different aspects of climate change impacts on the hydrosphere reveal a differentiated picture involving potentially threatened and widely unaffected catchments, hydrologic parameters and hydrologic constraints to the society.
Sequential Double lonization: The Timing of Release
NASA Astrophysics Data System (ADS)
Pfeiffer, A.
2011-05-01
The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.
Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H
2011-02-01
Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.
Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.
2011-01-01
Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686
Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements
NASA Astrophysics Data System (ADS)
Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.
2016-12-01
Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05
Banerjee, Saikat; Ghosh, Rikhia; Bagchi, Biman
2012-03-29
Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.
Entropy as a collective variable
NASA Astrophysics Data System (ADS)
Parrinello, Michele
Sampling complex free energy surfaces that exhibit long lived metastable states separated by kinetic bottlenecks is one of the most pressing issues in the atomistic simulations of matter. Not surprisingly many solutions to this problem have been suggested. Many of them are based on the identification of appropriate collective variables that span the manifold of the slow varying modes of the system. While much effort has been put in devising and even constructing on the fly appropriate collective variables there is still a cogent need of introducing simple, generic, physically transparent, and yet effective collective variables. Motivated by the physical observation that in many case transitions between one metastable state and another result from a trade off between enthalpy and entropy we introduce appropriate collective variables that are able to represent in a simple way these two physical properties. We use these variables in the context of the recently introduced variationally enhanced sampling and apply it them with success to the simulation of crystallization from the liquid and to conformational transitions in protein. Department of Chemistry and Applied Biosciences, ETH Zurich, and Facolta' di Informatica, Istituto di Scienze Computazionali, Universita' della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland.
Numerical modelling of new rockfall interception nets
NASA Astrophysics Data System (ADS)
von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna
2010-05-01
The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the simulation of protection barriers used for natural hazards such as rockfalls or even landslides. The contribution explains the mechanical behaviour of the chain mesh, the calibration procedures and their application in flexible rockfall protection systems. The investigated meshes are built using three or four millimeter wire with a minimum yield strength of 1770 N-mm2: The maximal load in longitudinal mesh direction ranges about 130 - 380 kN-m and transversal 50 - 170 kN-m. The mesh size varies from 83 × 143 mm to 292 × 500 mm. References Cazzani, A., Mongiovi, L. and Frenez, T. (2002) Dynamic Finite Element Analysis of Interceptive Devices for Falling Rocks, International Journal of Rock Mechanics & Mining Sciences. 39,303-321. Volkwein, A. (2004) Numerische Simulation von flexiblen Steinschlagschutzsystemen. Diss. ETH Nr. 15641. Nicot, F. (1999) Etude du comportement méchanique des ouvrages souples de protection contre les éboulements rocheux. Diss. Ecole Centrale de Lyon.
Guyon, François; Gaillard, Laetitia; Salagoïty, Marie-Hélène; Médina, Bernard
2011-09-01
High-performance liquid chromatography linked to isotope ratio mass spectrometry (HPLC-co-IRMS) via a Liquiface© interface has been used to simultaneously determine (13)C isotope ratios of glucose (G), fructose (F), glycerol (Gly) and ethanol (Eth) in sweet and semi-sweet wines. The data has been used the study of wine authenticity. For this purpose, 20 authentic wines from various French production areas and various vintages have been analyzed after dilution in pure water from 20 to 200 times according to sugar content. If the (13)C isotope ratios vary according to the production area and the vintage, it appears that internal ratios of (13)C isotope ratios (R((13)C)) of the four compounds studied can be considered as a constant. Thus, ratios of isotope ratios are found to be 1.00 ± 0.04 and 1.02 ± 0.08 for R((13)C(G/F)) and R((13)C(Gly/Eth)), respectively. Moreover, R((13)C(Eth/Sugar)) is found to be 1.15 ± 0.10 and 1.16 ± 0.08 for R((13)C(Gly/Sugar)). Additions of glucose, fructose and glycerol to a reference wine show a variation of the R((13)C) value for a single product addition as low as 2.5 g/L(-1). Eighteen commercial wines and 17 concentrated musts have been analyzed. Three wine samples are suspicious as the R((13)C) values are out of range indicating a sweetening treatment. Moreover, concentrated must analysis shows that (13)C isotope ratio can be also used directly to determine the authenticity of the matrix.
Li, Xingyi; Wang, Lihong; Wang, Shengman; Yang, Qing; Zhou, Qing; Huang, Xiaohua
2018-04-15
Bisphenol A (BPA) is ubiquitous in the environment worldwide, affecting plant growth and development. Endogenous plant hormones serve as switches that regulate plant growth and development. However, plants have different physiological requirements and environmental adaptive capacities during the different growth stages. Here, we investigated the effects of BPA on soybean (Glycine max L.) root growth at the three growth stages and analyzed the mechanisms underlying the effects of BPA on the root growth by assessing changes in endogenous hormone. The results showed that low concentration of BPA (1.5mgL -1 ) improved root growth (except at the seed-filling stage), increased indole-3-acetic acid (IAA) content at the first two growth stages, and increased zeatin (ZT) content and decreased gibberellic acid (GA 3 ) content at the seedling stage. But low concentration of BPA caused decreased ethylene (ETH) contents and constant abscisic acid (ABA) content at all three stages. However, BPA at moderate and high concentrations (6.0 and 12.0mgL -1 ) inhibited root growth, causing the decreased IAA, GA 3 and ETH contents and increased ABA content at all three growth stages. The change degrees of above indices were weakened with prolonging the growth stages. After BPA withdrawal, both the root growth and the hormone contents recovered (with the exception of ZT and ETH), and the recovery degrees had negative correlation with the BPA exposure concentration and had positive correlation with the growth stage. Changes in residual BPA content in the roots were also observed at different BPA concentrations and different growth stages. Our results demonstrated the effects of BPA on root growth were related to BPA-induced changes in hormone, which performed differently at various growth stages. Copyright © 2017 Elsevier Inc. All rights reserved.
Aulenta, Federico; Potalivo, Monica; Majone, Mauro; Papini, Marco Petrangeli; Tandoi, Valter
2006-06-01
This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.
Effect of surface treatments on the bond strength of CAD/CAM fiberglass posts.
Garcia, Paula-Pontes; da Costa, Rogério-Goulart; Garcia, André-Vivan; Gonzaga, Carla-Castiglia; da Cunha, Leonardo-Fernandes; Rezende, Carlos-Eduardo-Edwards; Correr, Gisele-Maria
2018-06-01
There is no ideal protocol for the surface treatment of fiber posts, especially when using a computer-aided design/computer-aided manufacturing (CAD/CAM) experimental fiberglass block. The purpose of this study was to evaluate the bond strength of a CAD/CAM customized glass fiber post and core after applying different surface treatment techniques. Forty premolars were prepared to receive a customized CAD/CAM glass-fiber post and core obtained from an experimental block of glass fiber and epoxy resin. The specimens were randomly distributed in 4 groups (n=10) according to the post and core surface treatment: ETH - 70% ethanol; HP - 24% hydrogen peroxide for 1 minute; ETH/S - 70% ethanol + silane; HP/S - 24% hydrogen peroxide + silane. The universal adhesive containing silane was applied on the posts and prepared post spaces in all groups. The posts were cemented using dual cure resin cement. The specimens were stored in distilled water at 37°C for 24 h, cut (two slices of 1 mm for each root third - coronal, middle, and apical) and subjected to push-out test (0.5 mm/min). Data was subjected to two-way ANOVA (surface treatment and root third) and Tukey's test (α=0,05). There was no significant difference of bond strength values among groups, regardless the surface treatment ( p >0.05). There was significant difference on bond strength values for the different root thirds ( p <0.05) (coronal>middle=apical). The different surface treatment and application of additional silane in the CAD/CAM customized glass-fiber post and core does not interfere on bond strength values. The root dentin third interfered on the bond strength, with higher values for the coronal third. Key words: Post and core technique, cad/cam, shear strength, hydrogen peroxide.
Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor
NASA Astrophysics Data System (ADS)
Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.
2010-12-01
A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.
Sobkowiak, Alicja; Jończyk, Maciej; Jarochowska, Emilia; Biecek, Przemysław; Trzcinska-Danielewicz, Joanna; Leipner, Jörg; Fronk, Jan; Sowiński, Paweł
2014-06-01
Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for cold-performance of photosynthesis. This allowed direct comparison of present transcriptomic data with the earlier QTL mapping results. Cold-treated (14 h at 8/6 °C) maize seedlings of cold-tolerant ETH-DH7 and cold-sensitive ETH-DL3 lines at V3 stage showed strong, consistent response of the third leaf transcriptome: several thousand probes showed similar, statistically significant change in both lines, while only tens responded differently in the two lines. The most striking difference between the responses of the two lines to cold was the induction of expression of ca. twenty genes encoding membrane/cell wall proteins exclusively in the cold-tolerant ETH-DH7 line. The common response comprised mainly repression of numerous genes related to photosynthesis and induction of genes related to basic biological activity: transcription, regulation of gene expression, protein phosphorylation, cell wall organization. Among the genes showing differential response, several were close to the QTL regions identified in earlier studies with the same inbred lines and associated with biometrical, physiological or biochemical parameters. These transcripts, including two apparently non-protein-coding ones, are particularly attractive candidates for future studies on mechanisms determining divergent cold-tolerance of inbred maize lines.
Many-Body Localization and Thermalization in Quantum Statistical Mechanics
NASA Astrophysics Data System (ADS)
Nandkishore, Rahul; Huse, David A.
2015-03-01
We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality, where equilibrium ordering is forbidden.
Ramanathan, Madhumati; Wang, Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.
2012-01-01
In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of Type G Chemical Warfare Agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride-ion-selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethylporphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous co-extraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 µM DFP. PMID:20441875
NASA Astrophysics Data System (ADS)
Olsen, Kenneth H.; Ansorge, Joerg
Stephan Mueller, professor emeritus at the Institute of Geophysics at the Swiss Federal Institute of Technology (ETH) in Zurich and highly respected leader of international geoscience, died February 17, 1997. His untimely death, due to pneumonia following intestinal surgery, came just 18 months after his retirement from the ETH Chair of Geophysics and Directorship of the Swiss Seismological Service. He is survived by his wife, Doris, two sons, and six grandchildren. Mueller received a diploma in physics at the University of Stuttgart in 1957 and an M.S. in electrical engineering from Columbia University in New York in 1959. As an undergraduate at Stuttgart, he was influenced by seismologist Wilhelm Hillerand geophysics quickly became his major academic and career objective. After receiving a 1954-1955 German Academic Interchange Scholarship at Columbia, Mueller sought out Maurice Ewing and his group at Lamont Geological Observatory, where Mueller's enthusiasm for geophysics was strongly encouraged. While at Lamont, he participated in the first U.S. deep-sea geophysical expedition in the Mediterranean Sea during the summer of 1956 aboard the RV Vema.
NASA Astrophysics Data System (ADS)
Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj
2010-05-01
A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the Pitzer-EUNIQUAC benchmark applied to relevant aqueous solutions at elevated temperature, pressure and ionic strength will be presented.
Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport
NASA Astrophysics Data System (ADS)
Annewandter, Robert
2014-05-01
The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately by operator-splitting. The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing, Germany. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. This study examines barometric pumping-driven subsurface transport of Xe-135, Xe-133m, Xe-133, Xe-131m including I-131, I-133 and I-135 on arrival times and isotopic activity ratios. This work was funded by the CTBTO Research Award for Young Scientist and Engineers (2013).
USDA-ARS?s Scientific Manuscript database
Gully expansion in the Ethiopian highlands dissects vital agricultural lands with the eroded materials adversely impacting downstream resources, for example as they accumulate in reservoirs. While gully expansion and rehabilitation have been more extensively researched in the semi-arid region of Eth...
USDA-ARS?s Scientific Manuscript database
Invasive ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) cause significant damage to ornamental nursery tree crops throughout the Eastern U. S. Depending on surrounding habitat, some nurseries can undergo large influxes of ambrosia beetles from the forest to susceptible nursery stock. Eth...
USDA-ARS?s Scientific Manuscript database
Exotic ambrosia beetles are among the most damaging pests of trees grown in nurseries. The primary pests Xylosandrus crassiusculus Motschulsky and Xylosandrus germanus Blandford use ethanol to locate vulnerable trees. Research, primarily with X. germanus, has shown that flood-stressed trees emit eth...
Cellular model for induction of drip loss in meat.
Lambert, I H; Nielsen, J H; Andersen, H J; Ørtenblad, N
2001-10-01
Drip loss from porcine muscle (M. longissimus dorsi) contained high concentrations of K(+) ( approximately 135 mM) and organic osmolytes, for example, taurine ( approximately 15 mM), as well as significant amounts of protein ( approximately 125 mg.mL(-1)). Thus, the drip reflects release of intramuscular components. To simulate events taking place at the time of slaughter and leading to release of osmolytes and subsequent formation of drip loss, C2C12 myotubes were exposed to anoxia and reduction in pH (from 7.4 to 6.0). Anoxia and acidification increased the cellular Ca(2+) concentration ([Ca(2+)](i)) at a rate of 22-32 nM.min(-)(1). The anoxia-induced increase in [Ca(2+)](i) was mainly due to influx via sarcolemmal Na(+) channels. As mammalian cells swell and release lysophospholipids during anoxia, C2C12 cells and primary porcine muscle cells were exposed to either hypotonic shock or lysophosphatidylcholine (LPC) and the release of taurine was followed. The swelling-induced taurine efflux was blocked in the presence of the anion channel blocker (DIDS), the 5-lipooxygenase inhibitors (ETH 615-139 and NDGA) but unaffected by the presence of vitamin E. In contrast, the LPC-induced taurine release was unaffected by DIDS but abolished by antioxidants (butylated hydroxytoluene and vitamin E). Thus, stress-induced taurine release from muscles may precede by two different mechanisms, one being 5-lipooxygenase dependent and the other involving generation of reactive oxygen species. A model for the cellular events, preceding formation of drip in meat, is presented.
Optimization of Evaporative Demand Models for Seasonal Drought Forecasting
NASA Astrophysics Data System (ADS)
McEvoy, D.; Huntington, J. L.; Hobbins, M.
2015-12-01
Providing reliable seasonal drought forecasts continues to pose a major challenge for scientists, end-users, and the water resources and agricultural communities. Precipitation (Prcp) forecasts beyond weather time scales are largely unreliable, so exploring new avenues to improve seasonal drought prediction is necessary to move towards applications and decision-making based on seasonal forecasts. A recent study has shown that evaporative demand (E0) anomaly forecasts from the Climate Forecast System Version 2 (CFSv2) are consistently more skillful than Prcp anomaly forecasts during drought events over CONUS, and E0 drought forecasts may be particularly useful during the growing season in the farming belts of the central and Midwestern CONUS. For this recent study, we used CFSv2 reforecasts to assess the skill of E0 and of its individual drivers (temperature, humidity, wind speed, and solar radiation), using the American Society for Civil Engineers Standardized Reference Evapotranspiration (ET0) Equation. Moderate skill was found in ET0, temperature, and humidity, with lesser skill in solar radiation, and no skill in wind. Therefore, forecasts of E0 based on models with no wind or solar radiation inputs may prove to be more skillful than the ASCE ET0. For this presentation we evaluate CFSv2 E0 reforecasts (1982-2009) from three different E0 models: (1) ASCE ET0; (2) Hargreaves and Samani (ET-HS), which is estimated from maximum and minimum temperature alone; and (3) Valiantzas (ET-V), which is a modified version of the Penman method for use when wind speed data are not available (or of poor quality) and is driven only by temperature, humidity, and solar radiation. The University of Idaho's gridded meteorological data (METDATA) were used as observations to evaluate CFSv2 and also to determine if ET0, ET-HS, and ET-V identify similar historical drought periods. We focus specifically on CFSv2 lead times of one, two, and three months, and season one forecasts; which are time scales with moderate skill and are more likely to be used in hydro-climatic applications and decision-making.
The BUSTin' and Bitchin' Ethe of Third-Wave Zines
ERIC Educational Resources Information Center
Helmbrecht, Brenda M.; Love, Meredith A.
2009-01-01
Our article seeks to integrate alternative voices into traditional rhetorical study by turning to "Bitch" and "BUST," two mainstream zines that serve as dynamic examples of young women's rhetoric in action. We believe these zines are shaping the present and future of women's rhetoric. Their most significant contribution to the understanding of…
USDA-ARS?s Scientific Manuscript database
The plant hormone ethylene is known to affect various developmental processes including dormancy and growth. Yet, little information is available about ethylene’s role during paradormancy break in adventitious buds of leafy spurge. In this study, we examined changes in ethylene evolution and the eth...
NASA Astrophysics Data System (ADS)
Inoue, Munetomo; Matsushima, Toshinori; Adachi, Chihaya
2016-03-01
We demonstrate that ter(9,9'-spirobifluorene) (TSBF) doped in a host matrix layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) shows a low amplified spontaneous emission (ASE) threshold (Eth = 1.0 μJ cm-2) and suppressed electroluminescence efficiency roll-off at high current densities (no roll-off up to 100 mA cm-2). One origin of the low ASE threshold is that the TSBF-doped CBP layer possesses a very large radiative decay constant (kr = 1.1 × 109 s-1). Singlet-triplet annihilation is almost suppressed in the TSBF-doped CBP layer, which can be ascribed to the small overlap between the emission and triplet absorption of TSBF. Also, the small energy level difference between TSBF and CBP minimizes carrier trapping in TSBF, leading to the suppression of singlet-polaron annihilation. TSBF showed one of the lowest Eth and the most suppressed efficiency roll-off among organic laser dyes investigated in this study and, therefore, is believed to be a promising candidate to realize electrically pumped organic semiconductor laser diodes in the future.
The Swiss Seismological Service in Greenland: Network Building and Research Initiatives
NASA Astrophysics Data System (ADS)
Husen, S.; Clinton, J. F.; Olivieri, M.; Giardini, D.
2010-12-01
In recent years the Swiss Seismological Service (SED) at the ETH Zürich has begun active work in NW Greenland. As part of the GreenLand Ice Sheet monitoring Network (GLISN), a new international, broadband seismic capability for Greenland, the SED has installed 3 observation quality stations, recording in realtime, with data freely open to the community. Each site is located at a village - two are within 60km of productive calving glacier fronts (Rink and Jakobshavn); the other station is 30km from inland ice calving directly into the ocean. This paper presents the stations and discusses the data quality. The capability of broadband seismic sensors at local distances to record a wide spectrum of ground motion induced by large calving events is becoming clear. Associated with a major calving event, we observe energy at 1. high frequencies (1-5Hz) due to ice fracture; 2. at mid periods (40-60s - visible at teleseismic distances) likely due to large, rapid displacement of the calved ice across the fjord floor; and 3. at longer periods (100-1000s) measuring fjord seiche generated by the calved iceberg. We are developing an automated detector for events using the GLISN dataset, with focus on the Swiss stations. Additionally, the SED, with the ETH Glaciology unit, intend to operate a broadband / short period seismic network on the ice near SwissCamp in summer 2011. The goal is to improve understanding of how sub-glacial water affects glacial bed coupling. We aim to generate an icequake catalogue with characterized sources, and to model transient changes in ice structure than may be indicative of water flow. We present a summary of the proposed work and installation plans.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Semprini, Lewis
2016-07-01
Tetrachloroethene (PCE) and carbon tetrachloride (CT) were simultaneously transformed in a packed column that was bioaugmented with the Evanite culture (EV). The data presented here have been obtained over a period of 1930 days. Initially the column was continuously fed synthetic groundwater with PCE (0.1 mM), sulfate (SO42 -) (0.2 mM) and formate (2.1 mM) or lactate (1.1 mM), but not CT. In these early stages of the study the effluent H2 concentrations ranged from 7 to 19 nM, and PCE was transformed to ethene (ETH) (81 to 85%) and vinyl chloride (VC) (11 to 17%), and SO42 - was completely reduced when using either lactate or formate as electron donors. SO42 - reduction occurred concurrently with cis-DCE and VC dehalogenation. Formate was a more effective substrate for promoting dehalogenation based on electron donor utilization efficiency. Simultaneous PCE and CT tests found CT (0.015 mM) was completely transformed with 20% observed as chloroform (CF) and trace amounts of chloromethane (CM) and dichloromethane (DCM), but no methane (CH4) or carbon disulfide (CS2). PCE transformation to ETH improved with CT addition in response to increases in H2 concentrations to 160 nM that resulted from acetate formation being inhibited by either CT or CF. Lactate fermentation was negatively impacted after CT transformation tests, with propionate accumulating, and H2 concentrations being reduced to below 1 nM. Under these conditions both SO42 - reduction and dehalogenation were negatively impacted, with sulfate reduction not occurring and PCE being transformed to cis-dichloroethene (c-DCE) (52%) and VC (41%). Upon switching to formate, H2 concentrations increased to 40 nM, and complete SO42 - reduction was achieved, while PCE was transformed to ETH (98%) and VC (1%), with no acetate detected. Throughout the study PCE dehalogenation to ethene was positively correlated with the effluent H2 concentrations.
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Ricci, Tullio; Finizola, Anthony; Delcher, Eric; Alparone, Salvatore; Barde-Cabusson, Stéphanie; Brothelande, Elodie; Di Gangi, Fabio; Gambino, Salvatore; Inguaggiato, Salvatore; Milluzzo, Vincenzo; Peltier, Aline; Vita, Fabio
2017-09-01
Although it is relatively easy to set-up, the monitoring of soil temperature in sub-fumarolic areas is quite rarely used to monitor the evolution of hydrothermal systems. Indeed, measurements are highly sensitive to environmental conditions, in particular daily and seasonal variations of atmospheric temperatures and rainfalls, which can be only partially filtered by the established statistical analysis. In this paper, we develop two innovative processing methods, both based on the computation of the heat flux in the soil. The upward heat flux method (UHF), designed for dry environments, consists in computing both the conductive and convective components of the heat flux between two thermocouples placed vertically. In the cases of wet environments, the excess of total heat method (ETH) allows the integration of rain gauges data in order to correct the heat balance from the superficial cooling effect of the precipitations. The performances of both processing techniques are faced to established methods (temperature gradient and coefficient of determination) on soil temperature time series from two test volcanoes. At La Fossa di Vulcano (Italy), the UHF method undoubtedly detects three thermal crises between 2009 and 2012, enabling to quantify not only the intensity but also the precise timing of the heat flux increase with respect to corresponding geochemical and seismic crises. At La Soufrière de Guadeloupe (French Lesser Antilles), despite large rainfalls dramatically influencing the thermal behavior of the soil, a constant geothermal heat flux is retrieved by the ETH method, confirming the absence of fumarolic crisis during the observation period (February-August 2010). Being quantitative, robust, and usable in almost any context of sub-fumarolic zones, our two heat flux-based methods increase the potential of soil temperature for the monitoring, but also the general interpretation of fumarolic crises together with geochemical and seismological observations. A spreadsheet allowing direct computation of UHF and ETH is provided as supplemental material.
Effect of surface treatments on the bond strength of CAD/CAM fiberglass posts
Garcia, Paula-Pontes; da Costa, Rogério-Goulart; Garcia, André-Vivan; Gonzaga, Carla-Castiglia; da Cunha, Leonardo-Fernandes; Rezende, Carlos-Eduardo-Edwards
2018-01-01
Background There is no ideal protocol for the surface treatment of fiber posts, especially when using a computer-aided design/computer-aided manufacturing (CAD/CAM) experimental fiberglass block. The purpose of this study was to evaluate the bond strength of a CAD/CAM customized glass fiber post and core after applying different surface treatment techniques. Material and Methods Forty premolars were prepared to receive a customized CAD/CAM glass-fiber post and core obtained from an experimental block of glass fiber and epoxy resin. The specimens were randomly distributed in 4 groups (n=10) according to the post and core surface treatment: ETH - 70% ethanol; HP - 24% hydrogen peroxide for 1 minute; ETH/S - 70% ethanol + silane; HP/S - 24% hydrogen peroxide + silane. The universal adhesive containing silane was applied on the posts and prepared post spaces in all groups. The posts were cemented using dual cure resin cement. The specimens were stored in distilled water at 37°C for 24 h, cut (two slices of 1 mm for each root third - coronal, middle, and apical) and subjected to push-out test (0.5 mm/min). Data was subjected to two-way ANOVA (surface treatment and root third) and Tukey’s test (α=0,05). Results There was no significant difference of bond strength values among groups, regardless the surface treatment (p >0.05). There was significant difference on bond strength values for the different root thirds (p<0.05) (coronal>middle=apical). Conclusions The different surface treatment and application of additional silane in the CAD/CAM customized glass-fiber post and core does not interfere on bond strength values. The root dentin third interfered on the bond strength, with higher values for the coronal third. Key words:Post and core technique, cad/cam, shear strength, hydrogen peroxide. PMID:29930778
NASA Astrophysics Data System (ADS)
Rössler, O.; Froidevaux, P.; Börst, U.; Rickli, R.; Martius, O.; Weingartner, R.
2014-06-01
A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lötschen Valley (160 km2) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day-1) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur.
RHydro - Hydrological models and tools to represent and analyze hydrological data in R
NASA Astrophysics Data System (ADS)
Reusser, Dominik; Buytaert, Wouter
2010-05-01
In hydrology, basic equations and procedures keep being implemented from scratch by scientist, with the potential for errors and inefficiency. The use of libraries can overcome these problems. Other scientific disciplines such as mathematics and physics have benefited significantly from such an approach with freely available implementations for many routines. As an example, hydrological libraries could contain: Major representations of hydrological processes such as infiltration, sub-surface runoff and routing algorithms. Scaling functions, for instance to combine remote sensing precipitation fields with rain gauge data Data consistency checks Performance measures. Here we present a beginning for such a library implemented in the high level data programming language R. Currently, Top-model, data import routines for WaSiM-ETH as well basic visualization and evaluation tools are implemented. The design is such, that a definition of import scripts for additional models is sufficient to have access to the full set of evaluation and visualization tools.
Attacking the Achievement Gap in a Diverse Urban-Suburban Community: A Curricular Case Study
ERIC Educational Resources Information Center
Alson, Allan
2006-01-01
The persistent and significant achievement gap between black and Latino students and their white and Asian counterparts at Evanston (Illinois) Township High School (ETHS) has existed for as long as anyone can remember. Stories real and apocryphal abound about the institutional barriers that have denied fairness and opportunity for minority…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, William Wyatt; Hollowell, Benjamin Charles; Martinez, Todd P.
A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.
1993-06-01
lr __________ r onM eth S()4 Greg Caruth _________________ William J. Perry, Typography and Design DEPSECDEF 43 Paula Croisetlere 3 Program Manager...the DSMC Press to be such a link to the govern- for publication consideration in either the brand ment and private sector defense acquisition com- new
ERIC Educational Resources Information Center
Grundbacher, R.; Hoetzel, J. E.; Hierold, C.
2009-01-01
A microelectro-mechanical systems (MEMS) laboratory course (MEMSlab) in the Mechanical and Process Engineering Department at the Swiss Federal Institute of Technology (ETH Zurich), is presented. The course has been taught for four years and has been attended primarily by Master's students from mechanical and electrical engineering; since fall…
ERIC Educational Resources Information Center
Scholz, Roland W.; Lang, Daniel J.; Wiek, Arnim; Walter, Alexander I.; Stauffacher, Michael
2006-01-01
Purpose: This paper aims at presenting the theoretical concepts of the transdisciplinary case study approach (TCS), which is a research and teaching approach developed and elaborated at the Swiss Federal Institute of Technology (ETH), as a means of transition support. Design/methodology/approach: The paper reveals the historical roots of case…
Through the Glass Darkly. The Unlikely Demise of Great-Power War
2007-01-01
Biddle ...Cold War,” International Security 15, no. 3 (Winter 1990/91): 54; and Barry R. Posen, “The Security Dilemma and Eth- nic Conflict,” Survival 35, no...2000). for a pessimistic account, see Biddle , Military Power. 20. John Orme, “The Utility of force in a World of Scarcity,” International
1982-07-15
structural information contained in deuterated sp ies is readily obtainable. Eth 1 ions ty stdied tnc) Vde (CH3CHOH?’., [CH CHOHJ. (CH2COH]r-% [CH 2COF...high and low energy systems involves electronic 18 and vibrational 19 excitation respectively, the amount of energy thus deposited must be approximately
Using a System Model for Irrigation Management
NASA Astrophysics Data System (ADS)
de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba
2014-05-01
When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.
Kirigami-based PVDF thin-film as stretchable strain sensor
NASA Astrophysics Data System (ADS)
Hu, Nan; Chen, Dajing; Hao, Nanjing; Huang, Shicheng; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi
Kirigami, as the sister of the origami, involves cutting of 2D sheets to form complex 3D geometries with out-of-plane patterns. Motivated by the development of the high-stretchable biomedical devices, we explore the stretchability of the kirigami-based PVDF thin film under tension. Our structural prototypes include a set of 2D geometry with kirigami-based pattern cutting on PVDF thin films. We first used paper models to generate a wide range of cutting patterns to study the deformation under compression tests, the results of which are compared with finite element simulations. We then proceeded to test different kirigami-based designs to identify geometric parameters that can tune the post-buckling response and strain distribution. Next, we fabricated and tested the PVDF thin film with kirigami pattern. Experiments showed that the PVDF film in the absence of cutting can be stretched to a limited extent and will break upon further stretching. In contrast, the kirigami-based films can be stretched up to 100% without failure. Our designs demonstrate the ability to significantly improve the strain range of the structure and sensing ability of a sensor. We envision a promising future to use this class of structural elements to develop highly stretchable materials, structures, and devices. Z.C. acknowledges the Society in Science-Branco Weiss fellowship, administered by ETH Zürich. J.X.J.Z. acknowledges the NIH Director's Transformative Research Award (1R01 OD022910-01).
NASA Astrophysics Data System (ADS)
Smiatek, G.; Kunstmann, H.; Werhahn, J.
2012-04-01
The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.
USDA-ARS?s Scientific Manuscript database
The Portuguese durum landraces, Aus26582 and Aus26579, showed resistance against two very different durum-specific Puccinia triticina (Pt) races CA 1.2 and ETH 12.5-2 collected from California and Ethiopia, respectively. Aus26582 and Aus26579 were crossed with a susceptible landrace Bansi to develop...
"Sending Messages to a Machine": Articulating Ethe-Real Selves in Blended Teaching (and Learning)
ERIC Educational Resources Information Center
McShane, Kim
2006-01-01
Teaching and learning online is one of several risky practices in higher education today that threaten to disfigure academics' work and identity. For many academics, accustomed to the tempo and practices of face-to-face teaching, it threatens disorientation. In this article the author examines the teaching beliefs of a computer science lecturer,…
European Conference on Visual Perception (6th).
1983-11-30
Institut fuer Verhaltenswissenschaft, ETH- Zentrum, 8092 Zuerich - Switzerland W. GERBINO: Istituto di Psicologia , Universitk di Padova, Piazza Capitaniato...fuer medizinische Psychologie, Schillerstrasse 42 - 8000 Muenchen 2, West Germany L. JANEZ ESCALADA: Psicologia Matem&tica, Facultad de Psicologla...Norway P. MANCINI: Istituto di Fisiologia clinica del C.N.R., Via Bonanno Pisano - 56100 Pisa, Italy C.A. MARZI: Istituto di Psicologia . Universit
Countering the Chinese Threat to Low Earth Orbit Satellites: Building a Defensive Space Strategy
2009-01-01
into, range of its direct~: . ascent capability. Co-orbital weapons can also be launched fromahostspacecraft,l~etheB~- r on Shenzhou-7. The United States...channel= awst &id=news/awO122 07p2.xml (accessed December 21,2008). DeBlois, Bruce M., ed. Beyond the Paths ofHeaven: The Emergence ofSpace Power Thought
ERIC Educational Resources Information Center
Santoro, Marina; Mazzotti, Marco
2006-01-01
Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…
Al-Hilal, Mohamed; Aissa, Mosa
2015-02-01
The concentrations of equivalent eU, eTh, and K% were determined together with soil gas radon values and carborne gamma-ray survey in order to define the natural radioactivity levels throughout main geological units of Sabkhat al Jabboul region. Forty five soil and rock samples were collected from various lithofacies in each geological unit, and analyzed by γ-ray spectrometric technique for determining the concentration values of major radioelements. Such radiometric data could be used to differentiate between various lithologies of the investigated rocks. Although no distinct radioactive anomalies were found in the area, the radiometric profiles showed some minor variations with slightly higher values than the normal level. Despite the low radioactivity and the lack of rocks diversity in the surveyed area, it was possible to classify some certain rock types based on their radiometric response. The relationships between eU, eTh and their ratios were discussed for the Quaternary, Neogene and Paleogene formations, in order to evaluate the degree of uranium distribution and remobilization. The overall results of this radiometric survey were generally low, and lying within the range of the normal background levels in Syrian. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dietary quality and encephalization in platyrrhine primates.
Allen, Kari L; Kay, Richard F
2012-02-22
The high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.
A Design Method for Topologically Insulating Metamaterials
NASA Astrophysics Data System (ADS)
Matlack, Kathryn; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian; Daraio, Chiara
Topological insulators are a unique class of electronic materials that exhibit protected edge states that are insulating in the bulk, and immune to back-scattering and defects. Discrete models, such as mass-spring systems, provide a means to translate these properties, based on the quantum hall spin effect, to the mechanical domain. This talk will present how to engineer a 2D mechanical metamaterial that supports topologically-protected and defect-immune edge states, directly from the mass-spring model of a topological insulator. The design method uses combinatorial searches plus gradient-based optimizations to determine the configuration of the metamaterials building blocks that leads to the global behavior specified by the target mass-spring model. We use metamaterials with weakly coupled unit cells to isolate the dynamics within our frequency range of interest and to enable a systematic design process. This approach can generally be applied to implement behaviors of a discrete model directly in mechanical, acoustic, or photonic metamaterials within the weak-coupling regime. This work was partially supported by the ETH Postdoctoral Fellowship, and by the Swiss National Science Foundation.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1995-01-01
This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.
Unsupervised Feature Learning With Winner-Takes-All Based STDP
Ferré, Paul; Mamalet, Franck; Thorpe, Simon J.
2018-01-01
We present a novel strategy for unsupervised feature learning in image applications inspired by the Spike-Timing-Dependent-Plasticity (STDP) biological learning rule. We show equivalence between rank order coding Leaky-Integrate-and-Fire neurons and ReLU artificial neurons when applied to non-temporal data. We apply this to images using rank-order coding, which allows us to perform a full network simulation with a single feed-forward pass using GPU hardware. Next we introduce a binary STDP learning rule compatible with training on batches of images. Two mechanisms to stabilize the training are also presented : a Winner-Takes-All (WTA) framework which selects the most relevant patches to learn from along the spatial dimensions, and a simple feature-wise normalization as homeostatic process. This learning process allows us to train multi-layer architectures of convolutional sparse features. We apply our method to extract features from the MNIST, ETH80, CIFAR-10, and STL-10 datasets and show that these features are relevant for classification. We finally compare these results with several other state of the art unsupervised learning methods. PMID:29674961
Exploiting the Multi-Service Domain Protecting Interface
2012-10-17
Linux OpenVPN and IPSec VLAN services subsystems. Essentially, MSDPI becomes the transport mechanism for these subsystems. For the RIB, LSP, and...includes those necessary files to build a complete LiveCD system For example, adding various configuration files: ifcfg-eth?, ifcfg-ib?, openvpn ...aka IP address), openvpn files, specific files in the etc/sysconfig directory. %prep %build %install rm -rf $RPM_BUILD_ROOT mkdir -p
Antiproton-Induced Microfission
1994-02-21
than chemical propulsion, other systems may prove even more efficient. Matter -antimatter reactions release enormous amounts of energy, mostly in the form...and matter -antimatter annihilation, to that of H2+0 2 combustion. Table 1.1 Theorectical specific energies of various reactions. System eth J/kg...For the case of hydrogen plasma, protons represent the ions. It would seem that two fluids interacting 25 would greatly complicate matters ; however
1990-02-21
LIDS-P-1953 Multiscale System Theory Albert Benveniste IRISA-INRIA, Campus de Beaulieu 35042 RENNES CEDEX, FRANCE Ramine Nikoukhah INRIA...TITLE AND SUBTITLE Multiscale System Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...the development of a corresponding system theory and a theory of stochastic processes and their estimation. The research presented in this and several
1991-01-01
test at Arosa A,,t rphys- ical Observatory of the ETH Zdrich. Two beam splitters are positioned behind the mcdulat(r parkac’e if three CCD array sensors...data obtained with the Horizontal Telescope of the Arosa Astrophysical Observatory (HAT). The latter consist of simultaneous recordings of the Stokes
Joint Force Quarterly. Number 18, Spring 1998
1998-06-01
instructions, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection of information...from a variety of cultural, eth- nic, and religious back- grounds. This diversity is a source of strength that must be nurtured and sup- ported. It is...all source analy- sis and human intelligence collection. The late 1940s brought fiscal austerity, and military intelligence atrophied along with other
Psychological and Organizational Climate: Dimensions and Relationships
1977-03-07
SPSYCHOLOGICAL AND ON IZATIONAL CUMATE: DIESINSAND RELATINSI’ K0 A. P. INES L . R. JAMES REPWIINO 77-12 N(AVAL HEALTH RESEARCH CENTER SAN DIEGO...CALIFORNIA 92152 a NAVAL MEDICAL RESEARCH AND DEVELOPMENT COMMAND BhEThESDA1 MARYLAND Psychological and Organizational Climate: Dimensions and...Relationships Allan P. Jones Naval Health Research Center San Diego, California 92152 and Lawrence R. James Institute of Behavioral Research Texas Christian
2014-05-09
Interfaces Configuration – Wired Network Connections before Editing Move the cursor to the end of the line that ends with “eth0 inet dhcp ” and type...X”. This will delete text one character back from the cursor. Delete the word “ dhcp ”. Once this is done, type “a” to begin inserting text and add
Shen, Jiangchuan; Keithly, Mary E.; Armstrong, Richard N.; Higgins, Khadine A.; Edmonds, Katherine A.; Giedroc, David P.
2016-01-01
Hydrogen sulfide (H2S) is both a lethal gas and an emerging gasotransmitter in humans, suggesting that cellular H2S level must be tightly regulated. CstB is encoded by the cst operon of the major human pathogen Staphylococcus aureus (S. aureus) and is under the transcriptional control of the persulfide sensor CstR and H2S. Here we show that CstB is a multifunctional Fe(II)-containing persulfide dioxygenase (PDO), analogous to the vertebrate protein ETHE1 (Ethylmalonic Encephalopathy Protein 1). Chromosomal deletion of ethe1 is fatal in vertebrates. In the presence of molecular oxygen (O2), hETHE1 oxidizes glutathione persulfide (GSSH) to generate sulfite and reduced glutathione. In contrast, CstB oxidizes major cellular low molecular weight (LMW) persulfide substrates from S. aureus, coenzyme A persulfide (CoASSH) and bacillithiol persulfide (BSSH), directly to generate thiosulfate (TS) and reduced thiols, thereby avoiding the cellular toxicity of sulfite. Both Cys201 in the N-terminal PDO domain (CstBPDO) and Cys408 in the C-terminal rhodanese domain (CstBRhod) strongly enhance the TS generating activity of CstB. CstB also possesses persulfide transferase (PT; reverse rhodanese) activity which generates TS when provided with LMW persulfides and sulfite, as well as conventional thiosulfate transferase (TST; rhodanese) activity; both activities require Cys408. CstB protects S. aureus against H2S toxicity with C201S and C408S cstB genes unable to rescue a NaHS-induced ΔcstB growth phenotype. Induction of the cst operon by NaHS reveals that functional CstB impacts the cellular TS concentrations. These data collectively suggest that CstB may have evolved to facilitate the clearance of LMW persulfides that occur upon the elevation of the level of cellular H2S and hence may have an impact on bacterial viability under H2S stress, in concert with the other enzymes encoded by the cst operon. PMID:26177047
Yang, Huijuan; Liu, Junling; Dang, Meile; Zhang, Bo; Li, Hongguang; Meng, Rui; Qu, Dong; Yang, Yazhou; Zhao, Zhengyang
2018-01-01
β-galactosidase (β-Gal), one of the cell wall modifying enzymes, plays an important role in fruit ripening and softening. However, its role in apple fruit texture remains unclear. In this study, the role of β-Gal was analyzed in two apple cultivars, ‘Fuji’ and ‘Qinguan,’ which are characterized by different fruit texture types, during fruit development and ripening. The firmness and pectin content of the fruits rapidly decreased and were much lower in ‘Fuji’ than in ‘Qinguan’ from 105 days after full bloom (DAFB). Transmission electron microscopy showed that the pectin-rich middle lamella was substantially degraded from 105 to 180 DAFB in the two apple cultivars. However, the degradation was more severe in ‘Fuji’ than in ‘Qinguan.’ Subcellular localization analysis showed that the Mdβ-Gal1, Mdβ-Gal2, and Mdβ-Gal5 proteins were located in the cell wall. β-Gal activity continuously increased during all fruit developmental stages and was much higher in the mature fruits of ‘Fuji’ than in those of ‘Qinguan,’ indicating that pectin was degraded by β-Gal. Consistent with the enzyme activities, expression levels of β-Gal genes (Mdβ-Gal1, Mdβ-Gal2, and Mdβ-Gal5) showed only slight changes from 60 to 105 DAFB but then dramatically increased until fruit ripening, with higher values in ‘Fuji’ than in ‘Qinguan.’ Furthermore, we found that activities of deletion derivatives in the Mdβ-Gal2 promoter and transcript level of Mdβ-Gal2 were induced by the treatment with methyl jasmonate (MeJA) and ethylene (ETH) hormones. Two ETH and one MeJA hormone-responsive elements were identified by analyzing the promoter sequence. These results suggest that β-Gals, induced by ETH and MeJA, are involved in different fruit texture types of apple cultivars by influencing the degradation of pectin during the mature fruit stage. PMID:29740469
NASA Astrophysics Data System (ADS)
Dul'kin, E.; Mihailova, B.; Gospodinov, M.; Roth, M.
2012-09-01
The structural transitions in Pb1-xLaxSc(1+x)/2Ta(1-x)/2O3, x = 0.08 (PLST) relaxor crystals were studied by means of acoustic emission (AE) under an external electric field (E) and compared with those observed in pure PbSc0.5Ta0.5O3 (PST) and Pb0.78Ba0.22Sc0.5Ta0.5O3 (PBST) [E. Dul'kin et al., EPL 94, 57002 (2011)]. Similar to both the PST and PBST compounds, in zero field PLST exhibits AE corresponding to a para-to-antiferroelectric incommensurate phase transition at Tn = 276 K, lying in the vicinity of dielectric temperature maximum (Tm). This AE signal exhibits a nontrivial behavior when applying E resembling the electric-field-dependence of Tn previously observed for both the PST and PBST, namely, Tn initially decreases with the increase of E, attains a minimum at a threshold field Eth = 0.5 kV/cm, accompanied by a pronounced maximum of the AE count rate Ṅ = 12 s-1, and then starts increasing as E enhances. The similarities and difference between PST, PLST, and PBST with respect to Tn, Eth, and Ṅ are discussed from the viewpoint of three mechanisms: (i) chemically induced random local electric field due to the extra charge on the A-site ion, (ii) disturbance of the system of stereochemically active lone-pair electrons of Pb2+ by the isotropic outermost electron shell of substituting ion, and (iii) change in the tolerance factor and elastic field to the larger ionic radius of the substituting A-site ion due to the different radius of the substituting ion. The first two mechanisms influence the actual values of Tn and Eth, whereas the latter is shown to affect the normalized Ṅ, indicating the fractions undergoing a field-induced crossover from a modulated antiferroelectric to a ferroelectric state. Creation of secondary random electric field, caused by doping-induced A-site-O ionic chemical bonding, is discussed.
Linking Tribofilm Nanomechanics to the Origin of Low Friction and Wear
2013-08-08
34Improving Wind Turbine Gearbox Reliability," National Renewable Energy Laboratory, Boulder, CO USA. [3] De Groh, K. K., Banks, B. A., McCarthy, C. E...the development of advanced lubrication strategies for improved friction and wear management. For example, increased size and power output of wind ... turbines reduce specific costs, but also contribute to stresses and temperatures that exceed the capabilities of existing gearbox lubrication
Auger, Cyril; Rouanet, Jean-Max; Vanderlinde, Regina; Bornet, Aurélie; Décordé, Kelly; Lequeux, Nadine; Cristol, Jean-Paul; Teissedre, Pierre-Louis
2005-12-14
The effects of a white wine enriched with polyphenols (PEWW) from Chardonnay grapes and of a sparkling red wine (SRW) from Pinot Noir and Chardonnay grapes were studied for the first time on early atherosclerosis in hamsters. Animals were fed an atherogenic diet for 12 weeks. They received by force-feeding PEWW, SRW, ethanol 12% (ETH), or water as control (mimicking a moderate consumption of approximately 2 red wine glasses per meal for a 70 kg human). Plasma cholesterol concentrations were lower in groups that consumed PEWW and SRW accompanied by an increase in the ratio apo A-1/apo B. Liver-specific activities of superoxide dismutase and catalase were significantly increased by PEWW (38 and 16%, respectively) and by SRW (48 and 15%, respectively). PEWW and ETH significantly increased plasma antioxidant capacity and vitamin A concentrations. Aortic fatty streak area (AFSA) was significantly strongly reduced in the groups receiving PEWW (85%) and SRW (89%) in comparison with the control. AFSA was reduced by ethanol to a lesser extent (58%). These data suggest that tannins from the phenolics-enriched white wine induce a protective effect against early atherosclerosis comparable to that produced by sparkling red wine containing tanins and anthocyanins and dissociated from the antioxidant action of these compounds.
Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation
NASA Astrophysics Data System (ADS)
Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri
2018-05-01
We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.
Flavonoid Accumulation Plays an Important Role in the Rust Resistance of Malus Plant Leaves.
Lu, Yanfen; Chen, Qi; Bu, Yufen; Luo, Rui; Hao, Suxiao; Zhang, Jie; Tian, Ji; Yao, Yuncong
2017-01-01
Cedar-apple rust ( Gymnosporangium yamadai Miyabe) is a fungal disease that causes substantial injury to apple trees and results in fruit with reduced size and quality and a lower commercial value. The molecular mechanisms underlying the primary and secondary metabolic effects of rust spots on the leaves of Malus apple cultivars are poorly understood. Using HPLC, we found that the contents of flavonoid compounds, especially anthocyanin and catechin, were significantly increased in rust-infected symptomatic tissue (RIT). The expression levels of structural genes and MYB transcription factors related to flavonoid biosynthesis were one- to seven-fold higher in the RIT. Among these genes, CHS, DFR, ANS, FLS and MYB10 showed more than a 10-fold increase, suggesting that these genes were expressed at significantly higher levels in the RIT. Hormone concentration assays showed that the levels of abscisic acid (ABA), ethylene (ETH), jasmonate (JA) and salicylic acid (SA) were higher in the RIT and were consistent with the expression levels of McNCED, McACS, McLOX and McNPR1 , respectively. Our study explored the complicated crosstalk of the signal transduction pathways of ABA, ETH, JA and SA; the primary metabolism of glucose, sucrose, fructose and sorbitol; and the secondary metabolism of flavonoids involved in the rust resistance of Malus crabapple leaves.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2-Oxepanone, polymer with 4,4â²-(1... Substances § 721.7160 2-Oxepanone, polymer with 4,4′-(1-methylethylidene)bisphenol and 2,2-[(1... new uses subject to reporting. (1) The chemical substance 2-oxepanone, polymer with 4,4′(1-meth-yl-eth...
International Aviation (Selected Articles).
1982-04-12
and advanced quality control. ,onclusions 10 ____ -c ’~-, nznu i’’ hrm ,~ :~~r i f aviation rcli~cts and ral-eLn -ecr 7conomld ethe’ :’orlnnzs and...have basically attained or approached .he level of foreign countries. The successful development of directional conden- sation technique means that...attenuation, softness , and light weight in addition to an advantage that no metal reflection lining is required. Once such materials are developed, radar
NASA Astrophysics Data System (ADS)
Felder, Guido; Zischg, Andreas; Weingartner, Rolf
2015-04-01
Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.
ELBARA II, an L-band radiometer system for soil moisture research.
Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs
2010-01-01
L-band (1-2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user.
A tensor network approach to many-body localization
NASA Astrophysics Data System (ADS)
Yu, Xiongjie; Pekker, David; Clark, Bryan
Understanding the many-body localized phase requires access to eigenstates in the middle of the many-body spectrum. While exact-diagonalization is able to access these eigenstates, it is restricted to systems sizes of about 22 spins. To overcome this limitation, we develop tensor network algorithms which increase the accessible system size by an order of magnitude. We describe both our new algorithms as well as the additional physics about MBL we can extract from them. For example, we demonstrate the power of these methods by verifying the breakdown of the Eigenstate Thermalization Hypothesis (ETH) in the many-body localized phase of the random field Heisenberg model, and show the saturation of entanglement in the MBL phase and generate eigenstates that differ by local excitations. Work was supported by AFOSR FA9550-10-1-0524 and FA9550-12-1-0057, the Kaufmann foundation, and SciDAC FG02-12ER46875.
ELBARA II, an L-Band Radiometer System for Soil Moisture Research
Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs
2010-01-01
L-band (1–2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user. PMID:22315556
NASA Astrophysics Data System (ADS)
Seitz, Lydia; Haun, Stefan; Wieprecht, Silke
2017-04-01
The river Iller origins at Oberstdorf in the Allgäu Alps and drains after 147 km into the river Danube. During the past decades the river Iller was considerable modified due to hydropower development and due to the construction of weirs and ramps to avoid ongoing river bed deepening. As consequence between km 52.9 - 39.3 almost equilibrium conditions of the river bed were reached. The aim of this study is to investigate with a 1D - 2D coupled numerical sediment transport model the long term effects (50 years) of different measures, which will be implemented to improve structural variability of the river Iller and to improve the passability for fishes. In a first step long term morphological trends will be investigated for replacing weirs by ramps. This will enable and improve the passability for fishes and sediments. In a second step the remobilization of already deposited sediments is investigated. Therefore the weir downstream of a gravel bar will be lowered stepwise (between 1.0 and 2.5 m) to see under which conditions the sediments can be remobilized. In a third step artificial sediment feeding will be simulated to find adequate spots for the sediment supply and to investigate the amount of sediments which have to be added to the river to improve structural variability of the river Iller. The numerical model framework BASEMENT, developed at the ETH Zürich, is used for the investigations. In the model fractional sediment transport is implemented with 9 grain sizes between 0.5 mm and 128 mm. Two layers are implemented to simulate the armouring of the river bed. Due to absence of very fine sediments and the fact that bed load transport is the governing sediment transport mode the Meyer-Peter and Müller bed load transport formula, with an extension by Hunziker for multiple grain classes, is used for the simulations. The critical Shields parameter, used to obtain the critical shear stress in BASEMENT, is evaluated as a function of the dimensionless grain diameter accordingly to van Rijn. The results show that the passability can be increased by replacing weirs by ramps (three in total) without negative morphological effects on this section. Furthermore, the simulated results show that the deposited sediments can be remobilized by lowering the weir, resulting in ongoing dynamic morphological bed changes and so a structural variability of the river. However, it can be seen that this dynamic processes fade away over time due to the large number of hydraulic structures along the river. The results of the artificial sediment supply (one time supply with an amount between 5,000 to 12,500 m3) shows a similar trend as the lowering of the weir over time, where right at the beginning morphological bed changes can be seen, these processes decrease and even stop within a couple of years.
Kovaleva, Mariya V; Sukhanova, Evgeniya I; Trendeleva, Tatyana A; Zyl'kova, Marina V; Ural'skaya, Ludmila A; Popova, Kristina M; Saris, Nils-Erik L; Zvyagilskaya, Renata A
2009-06-01
In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca(2+) uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca(2+) transport system (Bazhenova et al. J Biol Chem 273:4372-4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96-100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352-1356, 2000; Deryabina et al. J Biol Chem 276:47801-47806, 2001) were very resistant to Ca(2+) overload. However, exposure of yeast mitochondria to 50-100 microM Ca(2+) in the presence of the Ca(2+) ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca(2+)/nH(+)-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca(2+)- ETH129-induced activation of the Ca(2+)/H(+)-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca(2+) overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319-331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37-51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca(2+) uptake and is differently regulated compared to the mPTP of animal mitochondria.
User-Friendly Tools for Random Matrices: An Introduction
2012-12-03
T 2011 , Oliveira 2010, Mackey et al . 2012, ... Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 47 To learn more... E...the matrix product Y = AΩ 3. Construct an orthonormal basis Q for the range of Y [Ref] Halko –Martinsson–T, SIAM Rev. 2011 . Joel A. Tropp, User-Friendly...concentration inequalities...” with L. Mackey et al .. Submitted 2012. § “User-Friendly Tools for Random Matrices: An Introduction.” 2012. See also
2010-11-26
A Russian Search and Rescue hellicopter is seen in eth back ground as the Soyuz TMA-19 spacecraft descends with Expedition 25 Commander Doug Wheelock and Flight Engineers Shannon Walker and Fyodor Yurchikhin near the town of Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2007-01-01
the terrorist threat, and the government has not been successful at communicating a message to counter extremist ideologies . Many new immigrants are...However, unlike in other European countries, violence among these Diaspora communities is not necessarily ideological in nature. Gangs control...groups that enter the country to carry out a specific attack) cannot be dismissed. The influx of conservative ideologies , the marginalization of Muslims
Army Support of Military Cyberspace Operations: Joint Contexts and Global Escalation Implications
2015-01-01
Contexts and Global Escalation Implications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...the command under the leadership of Lieu- tenant General Rhett Hernandez as well as its current operations led by Lieutenant General Edward Cardon ...operations led by Lieutenant General Edward Cardon . This includes a brief review of recent efforts to establish Fort Gordon, Georgia as the center of
2009-08-20
Nomenclature As = QCM sensor area E = ion energy E* = characteristic energy describing the differential sputter yield profile shape Eth...We report differential and total sputter yields for several grades of BN at ion energies down to 60 eV, obtained with a QCM deposition sensor 3-7,9...personal computer with LabView is used for data logging. Detailed discussion of the QCM sensor is provided in subsection IIF. B. Definition of Angles
Modern Perspectives in Applied Mathematics: Theory and Numerics of PDEs
2015-04-13
Stokes-Fokker- Planck systems 09:45 – 10:25 Helena Lopes (Universidade Federal do Rio de Janeiro ) Boundary correctors and energy estimates for...Duke%University x Helena Lopes Universidade%Federal%do% Rio % de % Janeiro x x Andrew Majda New%York%University x Siddhartha Mishra ETH%Zurich x Stanley...09:00 – 09:40 Chair: Doron Levy (University of Maryland) Pierre-Louis Lions (Collège de France) 09:45 – 10:25 Andrew Majda (New York University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Adam K.; Mahanthappa, Mahesh K.
Using a combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), we document the composition-dependent morphologies of 39 new poly(lactide-block-1,4-butadiene-block-lactide) (LBL) block polymers, comprising a broad dispersity B segment (Mn = 4.5–17.7 kg/mol;more » $$\\def\\eth{{\\specialfont\\char238}}$$ = Mw/Mn = 1.72–1.88) and narrow dispersity L end blocks (Mn = 0.6–15.3 kg/mol; $$\\def\\eth{{\\specialfont\\char238}}$$ = 1.10–1.21) with volume fractions 0.26 ≤ fB ≤ 0.95. A subset of these samples undergo melt self-assembly into cylindrical, lamellar, and apparently bicontinuous morphologies. By assessing the states of order and disorder in these triblock polymer melts using temperature-dependent SAXS, we find that broad B segment dispersity increases the minimum segregation strength χN ≳ 27 required for LBL triblock self-assembly relative to the self-consistent mean-field theory prediction χN ≥ 17.9 for narrow dispersity analogues. While B segment dispersity has previously been shown to thermodynamically stabilize the self-assembled morphologies of low χ/high N ABA triblocks, the present study indicates that broad B block dispersity in related high χ/low N systems destabilizes the microphase-separated melt. These observations are rationalized in terms of recent theories that suggest that broad segmental dispersity substantially enhances fluctuation effects at low N, thus disfavoring melt segregation.« less
Kamoun, Zeineb; Kamoun, Alya Sellami; Bougatef, Ali; Kharrat, Rim Marrakchi; Youssfi, Houssem; Boudawara, Tahia; Chakroun, Mouna; Nasri, Moncef; Zeghal, Najiba
2017-01-01
Ethanol consumption-induced oxidative stress that is a major etiological factor has been proven to play important roles in organs' injury. In the present study, we investigated the protective effect of fish protein hydrolysate prepared from the heads and viscera of sardinelle (Sardinella aurita) (SPH) against the toxicity of ethanol on the liver and kidney of adult male rats. Animals were divided into four groups of six animals each: group C served as control, group Eth received 30 % ethanol solution at the dose of 3 g/kg body weight, group SPH received only 7.27 mg of SPH/kg body weight, and group Eth-SPH received ethanol and SPH simultaneously at the doses of 30 % and 7.27 mg/kg body weight, respectively. All groups were treated by gavage way for 15 days. Ethanol treatment decreased the defense enzymatic system including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), which increased after the co-administration of SPH. Malondialdehyde (MDA) and toxicity biomarker levels such as aspartate transaminase (AST) and alanine transaminase (ALT) and alcaline phosphatase (ALP) and gamma-glutamyl transaminase (GGT) activities were enhanced after chronic ethanol treatment and reduced by co-treatment with SPH. The histological examination of the liver and kidney confirmed biochemical changes in ethanol-treated rats and demonstrated the protective role of SPH.
Examination of Scanning Electron Microscope and Computed Tomography Images of PICA
NASA Technical Reports Server (NTRS)
Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery
2010-01-01
Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).
NASA Astrophysics Data System (ADS)
Grosheintz, Luc; Mendonça, João; Käppeli, Roger; Lukas Grimm, Simon; Mishra, Siddhartha; Heng, Kevin
2015-12-01
In this talk, I will present THOR, the first fully conservative, GPU-accelerated exo-GCM (general circulation model) on a nearly uniform, global grid that treats shocks and is non-hydrostatic. THOR will be freely available to the community as a standard tool.Unlike most GCMs THOR solves the full, non-hydrostatic Euler equations instead of the primitive equations. The equations are solved on a global three-dimensional icosahedral grid by a second order Finite Volume Method (FVM). Icosahedral grids are nearly uniform refinements of an icosahedron. We've implemented three different versions of this grid. FVM conserves the prognostic variables (density, momentum and energy) exactly and doesn't require a diffusion term (artificial viscosity) in the Euler equations to stabilize our solver. Historically FVM was designed to treat discontinuities correctly. Hence it excels at resolving shocks, including those present in hot exoplanetary atmospheres.Atmospheres are generally in near hydrostatic equilibrium. We therefore implement a well-balancing technique recently developed at the ETH Zurich. This well-balancing ensures that our FVM maintains hydrostatic equilibrium to machine precision. Better yet, it is able to resolve pressure perturbations from this equilibrium as small as one part in 100'000. It is important to realize that these perturbations are significantly smaller than the truncation error of the same scheme without well-balancing. If during the course of the simulation (due to forcing) the atmosphere becomes non-hydrostatic, our solver continues to function correctly.THOR just passed an important mile stone. We've implemented the explicit part of the solver. The explicit solver is useful to study instabilities or local problems on relatively short time scales. I'll show some nice properties of the explicit THOR. An explicit solver is not appropriate for climate study because the time step is limited by the sound speed. Therefore, we are working on the first fully implicit GCM. By ESS3, I hope to present results for the advection equation.THOR is part of the Exoclimes Simulation Platform (ESP), a set of open-source community codes for simulating and understanding the atmospheres of exoplanets. The ESP also includes tools for radiative transfer and retrieval (HELIOS), an opacity calculator (HELIOS-K), and a chemical kinetics solver (VULCAN). We expect to publicly release an initial version of THOR in 2016 on www.exoclime.org.
3,6-Dimethyl-N 1,N 4-bis(1-phenylethyl)-1,4-dihydro-1,2,4,5-tetrazine-1,4-dicarboxamide
Rao, Guo-Wu; Li, Qi; Lu, Xiao-Jing
2012-01-01
In the title molecule, C22H26N6O2, the central tetrazine ring exhibits a boat conformation, and the two phenyl rings form a dihedral angle of 88.39 (6)°. In the crystal, weak N—H⋯O and C—H⋯O hydrogen bonds link molecules into layers parallel to the ab plane. PMID:22347041
Joint Air-to-Surface Standoff Missile (JASSM)
2015-12-01
6.1.3) All Ops All Ops Joint Critical Ops All Ops All Ops Missile Reliability (KSA) (CPD para 6.2.8) 4th Lot .91 4th Lot .91 IOT &E .80 4th Lot .85 IOT &E...the ORD 303-95-III dated January 20, 2004 Change Explanations None Acronyms and Abbreviations IOT &E - Initial Operational Test and Evaluation KSA... Actuator Control Card, Lots 12 and 4 Systems Engineering Program Support/Program Tooling and Test Equipment, and JASSM-ER Standard Data Protocol (DS
Feasibility Study on Determining the Effect of Testing on Harpoon Missile System Reliability.
1985-06-01
or subassem- blies) failed and the date. Correlation between test date and calendar age is achieved by inservice date. Failure events are keyed to...acceptance test of the guidance section is used as the inservice event. ETH time recorded for each test is a cumulative time except for re-zeroing in...and testing environ- ments. The inservice date would correspond to the beginning of the retrieved test history at the final acceptance test of the
Diethyl [2,2,2-trifluoro-1-phenylsulfonylamino-1-(trifluoromethyl)ethyl]phosphonate
Wijeyesakere, Sanjeeva J.; Nasser, Faik A.; Kampf, Jeff W.; Aksinenko, Alexey Y.; Sokolov, Vladimir B.; Malygin, Vladimir V.; Makhaeva, Galina F.; Richardson, Rudy J.
2008-01-01
The title compound, C13H16F6NO5PS, is of interest with respect to inhibition of serine hydrolases. Its structure contains a 1.8797 (13) Å P—C bond and two intermolecular N—H⋯O=P hydrogen bonds, resulting in centrosymmetric dimers. An intramolecular N—H⋯O=P hydrogen bond is also present. PMID:19079747
2017-05-04
Wallraff *Correspondence: philipp.kurpiers@phys.ethz.ch Department of Physics, ETH Zürich, Zürich, CH-8093, Switzerland Abstract Low- loss waveguides...and single photon levels. More specifically, we characterize the frequency-dependent loss of a range of coaxial and rectangular microwave waveguides...down to 0.005 dB/m using a resonant-cavity technique. We study the loss tangent and relative permittivity of commonly used dielectric waveguide materials
2009-04-01
BaCO3 N2 koeler Ba(OH)2 opl. ventiel Figure 2. Manifold for preparation of [14C] 3-PBA. Preparation of the Grignard reagent To flask E...The entire system was kept under nitrogen. The preparation of the Grignard reagent was initiated by applying heat using a heat gun. When the reaction...all reagents were present in the manifold prior to the beginning of the experiment. 24 A B E D C drukmetervacuumH2SO4
Providing Greater Protection for Environmental Audits: A Proposal for a Self-Evaluative Privilege
1993-04-01
make the government more accountable to the people. It also intended to encourage governmental responsibility. FOIA provides, in part, that any person ...document is exempt.84 Pre- decisional documents lose their exempt status if the documents are incorporated by reference in the agency’s final decision .85 E...the employee making the communication, of whatever rank he may be, is in a position to control or even to take a substantial part in a decision about
Military Review: The Professional Journal of the U.S. Army, May-June 2008
2008-06-01
materialize. Soldiers, USAID personnel, and local Iraqis walk through a market during a mission in Taji, Iraq, 8 February 2008. U .S . a ir Fo rc e...the armed Forces and a paper nominating James Forrestal to be the first Secretary of Defense. an hour later, en route to missouri, Truman learned that...substitute. Eberstadt argued that military unification “looks good on paper ,” but “has never been put to the acid test of modern war.” The idea
Aviation Trainer Technology Test Plan. Volume II. Software Development
1991-11-25
feild values in new node *Ieg>X=x newg->X = Y newg->Len =len; newg->Help =help; newg->Ignore = ignore; newg->Format = format; newg->Validation - NULL;I... vector : North long varVFE; /* F-16A velocity vector : East long varVFU; /* F-16A velocity vector : Up */ long varH; /* plane heading */ long varC; /* plane...31\\\\ETH523.sys" parmsdr.args=getds(); parmsdr.non7=OxOO; /*save interrupt vector for future restoration */ cSavvecso; rc=getdso; rc=cInitParameters
Adapting America’s Security Paradigm and Security Agenda
2010-01-01
from religious strife, others are eth- nic or territorial in nature . What they have in com- mon is a disregard for the value of human life; a breach...Acknowledgements The primary authors of this report are Dr. Roy Godson and Dr. Richard Shultz. Dr. God - son is Professor Emeritus of Government, Georgetown...ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National
NASA Technical Reports Server (NTRS)
Colgan, William Terence; Rajaram, Harihar; Anderson, Robert S.; Steffen, Konrad; Zwally, H. Jay; Phillips, Thomas; Abdalati, Waleed
2012-01-01
Ice velocities observed in 2005/06 at three GPS stations along the Sermeq Avannarleq flowline, West Greenland, are used to characterize an observed annual velocity cycle. We attempt to reproduce this annual ice velocity cycle using a 1-D ice-flow model with longitudinal stresses coupled to a 1-D hydrology model that governs an empirical basal sliding rule. Seasonal basal sliding velocity is parameterized as a perturbation of prescribed winter sliding velocity that is proportional to the rate of change of glacier water storage. The coupled model reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speed-up event followed by a fall slowdown event. We also evaluate the hypothesis that the observed annual velocity cycle is due to the annual calving cycle at the terminus. We demonstrate that the ice acceleration due to a catastrophic calving event takes an order of magnitude longer to reach CU/ETH ('Swiss') Camp (46km upstream of the terminus) than is observed. The seasonal acceleration observed at Swiss Camp is therefore unlikely to be the result of velocity perturbations propagated upstream via longitudinal coupling. Instead we interpret this velocity cycle to reflect the local history of glacier water balance.
Becerril-Montes, Pola; Said-Fernández, Salvador; Luna-Herrera, Julieta; Caballero-Olín, Guillermo; Enciso-Moreno, José Antonio; Martínez-Rodríguez, Herminia Guadalupe; Padilla-Rivas, Gerardo; Nancy-Garza-Treviño, Elsa; Molina-Salinas, Gloria María
2013-04-01
The resistance of 139 Mycobacterium tuberculosis (MTB) isolates from the city of Monterrey, Northeast Mexico, to first and second-line anti-TB drugs was analysed. A total of 73 isolates were susceptible and 66 were resistant to anti-TB drugs. Monoresistance to streptomycin, isoniazid (INH) and ethambutol was observed in 29 cases. Resistance to INH was found in 52 cases and in 29 cases INH resistance was combined with resistance to two or three drugs. A total of 24 isolates were multidrug-resistant (MDR) resistant to at least INH and rifampicin and 11 MDR cases were resistant to five drugs. The proportion of MDR-TB among new TB cases in our target population was 0.72% (1/139 cases). The proportion of MDR-TB among previously treated cases was 25.18% (35/139 cases). The 13 polyresistant and 24 MDR isolates were assayed against the following seven second-line drugs: amikacin (AMK), kanamycin (KAN), capreomycin (CAP), clofazimine (CLF), ethionamide (ETH), ofloxacin (OFL) and cycloserine (CLS). Resistance to CLF, OFL or CLS was not observed. Resistance was detected to ETH (10.80%) and to AMK (2.70%), KAN (2.70%) and CAP (2.70%). One isolate of MDR with primary resistance was also resistant to three second-line drugs. Monterrey has a high prevalence of MDR-TB among previously treated cases and extensively drug-resistant-MTB strains may soon appear.
Becerril-Montes, Pola; Said-Fernández, Salvador; Luna-Herrera, Julieta; Caballero-Olín, Guillermo; Enciso-Moreno, José Antonio; Martínez-Rodríguez, Herminia Guadalupe; Padilla-Rivas, Gerardo; Nancy-Garza-Treviño, Elsa; Molina-Salinas, Gloria María
2013-01-01
The resistance of 139 Mycobacterium tuberculosis (MTB) isolates from the city of Monterrey, Northeast Mexico, to first and second-line anti-TB drugs was analysed. A total of 73 isolates were susceptible and 66 were resistant to anti-TB drugs. Monoresistance to streptomycin, isoniazid (INH) and ethambutol was observed in 29 cases. Resistance to INH was found in 52 cases and in 29 cases INH resistance was combined with resistance to two or three drugs. A total of 24 isolates were multidrug-resistant (MDR) resistant to at least INH and rifampicin and 11 MDR cases were resistant to five drugs. The proportion of MDR-TB among new TB cases in our target population was 0.72% (1/139 cases). The proportion of MDR-TB among previously treated cases was 25.18% (35/139 cases). The 13 polyresistant and 24 MDR isolates were assayed against the following seven second-line drugs: amikacin (AMK), kanamycin (KAN), capreomycin (CAP), clofazimine (CLF), ethionamide (ETH), ofloxacin (OFL) and cycloserine (CLS). Resistance to CLF, OFL or CLS was not observed. Resistance was detected to ETH (10.80%) and to AMK (2.70%), KAN (2.70%) and CAP (2.70%). One isolate of MDR with primary resistance was also resistant to three second-line drugs. Monterrey has a high prevalence of MDR-TB among previously treated cases and extensively drug-resistant-MTB strains may soon appear. PMID:23579794
Bollela, V R; Namburete, E I; Feliciano, C S; Macheque, D; Harrison, L H; Caminero, J A
2016-08-01
Depending on the presence of mutations that determine isoniazid (INH) susceptibility (katG and inhA), Mycobacterium tuberculosis may be susceptible to high doses of INH or ethionamide (ETH). To describe the INH resistance profile and association of katG mutation with previous INH treatment and level of drug resistance based on rapid molecular drug susceptibility testing (DST) in southern Brazil and central Mozambique. Descriptive study of 311 isolates from Ribeirão Preto, São Paulo, Brazil (2011-2014) and 155 isolates from Beira, Mozambique (2014-2015). Drug resistance patterns and specific gene mutations were determined using GenoType(®) MTBDRplus. katG gene mutations were detected in 12/22 (54.5%) Brazilian and 32/38 (84.2%) Mozambican isolates. inhA mutations were observed in 9/22 (40.9%) isolates in Brazil and in 4/38 (10.5%) in Mozambique. Both katG and inhA mutations were detected in respectively 1/22 (5%) and 2/38 (5.2%). The difference in the frequency of katG mutations in Brazil and Mozambique was statistically significant (P = 0.04). katG mutations were present in 68.8% (33/48) of patients previously treated with INH and 31.2% (15/48) of patients without previous INH. This difference was not statistically significant (P = 0.223). INH mutations varied geographically; molecular DST can be used to guide and accelerate decision making in the use of ETH or high doses of INH.
Kamalakar, Kotte; Sai Manoj, Gorantla N V T; Prasad, Rachapudi B N; Karuna, Mallampalli S L
2014-12-10
Sal fat, a nontraditional seed oil, was chemically modified to obtain base stocks with a wide range of specifications that can replace mineral oil base stocks. Sal fatty acids were enriched to 72.6% unsaturation using urea adduct method and reacted with branched mono alcohol, 2-ethylhexanol (2-EtH), and polyols namely neopentyl glycol (NPG) and trimethylolpropane (TMP) to obtain corresponding esters. The esters were hydroxylated and then acylated using propionic, butyric, and hexanoic anhydrides to obtain corresponding acylated derivatives. The acylated TMP esters exhibited very high viscosities (427.35-471.93 cSt at 40 °C) similar to those of BS 150 mineral oil base stock range, ISO VG 460, while the acylated NPG esters (268.81-318.84 cSt at 40 °C) and 2-EtH esters viscosities (20.94-24.44 cSt at 40 °C) exhibited viscosities in the range of ISO VG 320 and 22 respectively with good viscosity indices. Acylated NPG esters were found suitable for high temperature and acylated 2-ethylhexyl esters for low viscosity grade industrial applications. It was observed that the thermo-oxidative stabilities of all acylated products were found better compared to other vegetable oil based base stocks. Overall, all the sal fat based lubricant base stocks are promising candidates with a wide range of properties, which can replace most of the mineral oil base stocks with appropriate formulations.
Namburete, Evangelina
2017-01-01
Abstract Background Both Mozambique and Brazil are countries with a high burden of tuberculosis. Isoniazid (INH) is one of the cornerstones of tuberculosis treatment and, depending on the mutated gene (katG or inhA), the organism may be susceptible to high doses of INH (inhA mutation) or to ethionamide (-Eth-KatG mutation). Methods To analyze isoniazid genotypic resistance profile in Mycobacterium tuberculosis to guide decision making about management of resistant tuberculosis. Descriptive study of 311 M. tuberculosis isolated from Ribeirão Preto, Brazil (2011–2014) and 155 isolates from Beira, Mozambique (2014–2015). Drug resistance patterns and the specific genes mutations were determined using Genotype MTBDRplus (Hain Lifescience GmbH, Germany). Results Mutations in katG gene were detected in 13/22 (59%) of Brazilian and in 32/38 (84.2%) of Mozambican isolates. Unique inhA mutations were observed in 8/22 (36%) isolates in Brazil and 4/38 (10.5%) in Mozambique. Both katG and inhA mutations where detected in 1/22 (5%) and 2/38(5.2%), respectively. katG mutations were more frequent among INH previously treated patients. Conclusion There is a geographical variation of INH mutations and the new molecular tests can be used to guide and accelerate decision making towards the use of ETH or high doses of INH based on detected mutations. Disclosures All authors: No reported disclosures.
Mohamad, Rapidah; Awang, Normah; Kamaludin, Nurul Farahana; Jotani, Mukesh M; Tiekink, Edward R T
2018-03-01
The crystal and mol-ecular structures of the two title organotin di-thio-carbamate compounds, [Sn(C 4 H 9 ) 2 (C 7 H 14 NO 2 S 2 ) 2 ], (I), and [Sn(C 6 H 5 ) 3 (C 5 H 10 NOS 2 )], (II), are described. Both structures feature asymmetrically bound di-thio-carbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I) and a distorted tetra-hedral geometry in (II). The complete mol-ecule of (I) is generated by a crystallographic twofold axis (Sn site symmetry 2). In the crystal of (I), mol-ecules self-assemble into a supra-molecular array parallel to (10-1) via methyl-ene-C-H⋯O(meth-oxy) inter-actions. In the crystal of (II), supra-molecular dimers are formed via pairs of weak phenyl-C-H⋯π(phen-yl) contacts. In each of (I) and (II), the specified assemblies connect into a three-dimensional architecture without directional inter-actions between them. Hirshfeld surface analyses confirm the importance of H⋯H contacts in the mol-ecular packing of each of (I) and (II), and in the case of (I), highlight the importance of short meth-oxy-H⋯H(but-yl) contacts between layers.
Xia, Hui; Zheng, Yang; Zhao, Bing; van den Hof, Susan; Cobelens, Frank; Zhao, YanLin
2017-01-01
To evaluate the performance of the Sensitire MYCOTB MIC Plate (MYCOTB) which could measure the twelve anti-tuberculosis drugs susceptibility on one 96-wells plate. A total of 140 MDR-TB strains and 60 non-MDR strains were sub-cultured and 193 strains were finally tested for drug resistance using MYCOTB and agar proportion method (APM) and another 7 strains failed of subculture. The drugs included ofloxacin (Ofx), moxifloxacin (Mfx), rifampin (RFP), amikacin (Am), rifabutin (Rfb), para-aminosalicylic acid (PAS), ethionamide (Eth), isoniazid (INH), kanamycin (Km), ethambutol (EMB), streptomycin (Sm), and cycloserine(Cs). The categorical agreement, conditional agreement, sensitivity and specificity of MYCOTB were assessed in comparison with APM. For strains with inconsistent results between MYCOTB and APM, the drug resistance related gene fragments were amplified and sequenced: gyrA for Ofx and Mfx; rpoB for RFP and Rfb; embB for EMB; rpsl for Sm; katG and the promoter region of inhA for INH, ethA and the promoter region of inhA for Eth. The sequence results were compared with results of MYCOTB and APM to analyze the consistency between sequence results and MYCOTB or APM. The categorical agreement between two methods for each drug ranged from 88.6% to 100%. It was the lowest for INH (88.6%). The sensitivity and specificity of MYCOTB ranged from 71.4% to 100% and 84.3% to 100%, respectively. The sensitivity was lowest for Cs(71.4%), EMB at 10μg/ml (80.0%) and INH at 10.0μg/ml (84.6%). The specificity was lowest for Rfb (84.3%). Overall discordance between the two phenotypic methods was observed for 96 strains, of which 63 (65.6%) were found susceptible with APM and resistant with MYCOTB and the remaining 33(34.4%) strains were resistant by APM and susceptible with MYCOTB. 34/52 (65.4%) sequenced APM susceptible and MYCOTB resistant(APM-S/MYCOTB-R) strains had mutations or insertions in the amplified regions. 20/30 (66.7%) sequenced APM resistant and MYCOTB susceptible strains had mutations in the sequenced genes. MICs of twenty-nine of these thirty isolates were equal to or within 1 doubling dilution of the critical concentration. MYCOTB had good performance for most of tested drugs and could be used as an alternative to the more labor demanding and longer turnaround time solid culture based DST method for detection of drug susceptibility in China.
NASA Astrophysics Data System (ADS)
Kollerud, R.; Blaasaas, K.; Ganerød, G.; Daviknes, H. K.; Aune, E.; Claussen, B.
2014-04-01
Radon exposures were assigned to each residential address in the Oslo region using a geographic information system (GIS) that included indoor radon measurements. The results will be used in an epidemiologic study regarding leukemia and brain cancer. The model is based on 6% of measured residential buildings. High density of indoor radon measurements allowed us to develop a buffer model where indoor radon measurements found around each dwelling were used to assign a radon value for homes lacking radon measurement. Intraclass correlation coefficients (ICCs) were used to study the agreement between radon values from the buffer method, from indoor radon values of measured houses, and from a regression model constructed with radiometric data (eTh, eU) and bedrock geology. We obtained good agreement for both comparisons with ICC values between 0.54 and 0.68. GIS offers a useful variety of tools to study the indoor-radon exposure assessment. By using the buffer method it is more likely that geological conditions are similar within the buffer and this may take more into account the variation of radon over short distances. It is also probable that short-distance-scale correlation patterns express similarities in building styles and living habits. Although the method has certain limitations, we regard it as acceptable for use in epidemiological studies.
Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.
Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E
2001-09-01
Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.
Small Arms - Hand and Shoulder Weapons and Machine Guns
2016-06-24
temperature with a wind speed less than 8 kilometers per hour (km/hr) (5 miles per hour (mph)) with no sunlight on the barrel or receiver. e...the aiming of the mount/weapon system. d. Meteorological Conditions. (1) Ensure that the velocity of the transverse wind is no greater than 8...km/hr (5 mph) or varies by more than 4 km/hr (2.5 mph); wind parallel to the LOF should not exceed 16 km/hr (10 mph) or vary by more than 8 km/hr (5
Diethyl 4,4'-(3,6-dioxaoctane-1,8-diyl-dioxy)dibenzoate.
Ma, Zhen; Qin, Haisha; Lai, Gang; Fan, Jingjie
2012-03-01
The title compound, C(24)H(30)O(8), was obtained by reaction of ethyl 4-hy-droxy-benzoate with 1,2-dichloro-ethane. The mol-ecule occupies a crystallographic inversion center, with its central ethyl-ene bridge in an anti conformation. The other ethyl-ene bridge has a gauche conformation, with the corresponding O-C-C-O torsion angle being 74.2 (1)°. The benzene rings are almost coplanar with the adjacent eth-oxy-carbonyl groups, with an r.m.s. deviation of 0.078 Å.
1-[(6-Chloro-3-pyridyl)methyl]-5-ethoxy-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine
Tian, Zhongzhen; Li, Dongmei; Li, Zhong
2009-01-01
In the title compound, C15H19ClN4O3, an active agrochemical possessing insecticidal activity, the dihedral angle between the mean planes passing through the pyridine ring and the five-membered ring is 87.3 (2)°. The fused pyridine ring adopts a twisted sofa conformation. The molecular structure features close intramolecular C—H⋯N and C—H⋯O hydrogen bonding. PMID:21577964
Albert Einstein and Mościcki's Patent Application
NASA Astrophysics Data System (ADS)
Gołab-Meyer, Zofia
2006-04-01
Much was said and written during the 2005 World Year of Physics about Einstein's work in the Bern, Switzerland, Patent Office (Fig. 1). He took the post (Technical Expert 3rd Class) there after completing his studies at the Zurich Polytechnic (later called ETH) in 1900 and being unsuccessful in his attempts to obtain a university position. However, little seems to be known of the patent applications he examined during his five years at the office in Bern. This paper discusses one of those applications—one that was submitted by a rather remarkable individual.
N-(1-Allyl-3-chloro-4-eth-oxy-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2014-06-01
In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8).
N-(2-Allyl-4-eth-oxy-2H-indazol-5-yl)-4-methyl-benzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen
2014-05-01
The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into dimers, which are further linked by C-H⋯O hydrogen bonds, forming columns parallel to the b axis.
National Service: A Responsibility, A Solution
1991-04-12
Il tws ~ 00" tic ethe audhoe pa~-~t c re a~ t (M i.W Of~’. NATOCNAL SERVICE: A RESPONSIBILITY , A’SOLUTION BY COLONE1L JULES W. h&’MP’ON United States...NUMBERS PROGRAM PROJECT I TASK WORK UNIT ELEMENT NO NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) NATIONAL SERVICE: A RESPONSIBILITY , A...0l DTIC USERS Unclassified 22a, NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 122c OFFICE SYMBOL D n~D F r 1473. JU 8 PreSv:;, e
1984-07-31
lead to nuclear war), and conducting international terrorism against innocent (Third World) populations. During July 1984, the editors of Krasnayz Zvezda...military buildup, based on the need to fight international terrorism . Reagan claims that the U.S.S.R. is behind and supports international terrorism . e...The U.S. supports racist governments and dictatorships that are guilty of terrorism . U.S. military actions in Vietnam and in the Middle East prove
Fabrication of high quality cDNA microarray using a small amount of cDNA.
Park, Chan Hee; Jeong, Ha Jin; Jung, Jae Jun; Lee, Gui Yeon; Kim, Sang-Chul; Kim, Tae Soo; Yang, Sang Hwa; Chung, Hyun Cheol; Rha, Sun Young
2004-05-01
DNA microarray technology has become an essential part of biological research. It enables the genome-scale analysis of gene expression in various types of model systems. Manufacturing high quality cDNA microarrays of microdeposition type depends on some key factors including a printing device, spotting pins, glass slides, spotting solution, and humidity during spotting. UsingEthe Microgrid II TAS model printing device, this study defined the optimal conditions for producing high density, high quality cDNA microarrays with the least amount of cDNA product. It was observed that aminosilane-modified slides were superior to other types of surface modified-slides. A humidity of 30+/-3% in a closed environment and the overnight drying of the spotted slides gave the best conditions for arraying. In addition, the cDNA dissolved in 30% DMSO gave the optimal conditions for spotting compared to the 1X ArrayIt, 3X SSC and 50% DMSO. Lastly, cDNA in the concentration range of 100-300 ng/ micro l was determined to be best for arraying and post-processing. Currently, the printing system in this study yields reproducible 9000 spots with a spot size 150 mm diameter, and a 200 nm spot spacing.
Beer bottle whistling: a stochastic Hopf bifurcation
NASA Astrophysics Data System (ADS)
Boujo, Edouard; Bourquard, Claire; Xiong, Yuan; Noiray, Nicolas
2017-11-01
Blowing in a bottle to produce sound is a popular and yet intriguing entertainment. We reproduce experimentally the common observation that the bottle ``whistles'', i.e. produces a distinct tone, for large enough blowing velocity and over a finite interval of blowing angle. For a given set of parameters, the whistling frequency stays constant over time while the acoustic pressure amplitude fluctuates. Transverse oscillations of the shear layer in the bottle's neck are clearly identified with time-resolved particle image velocimetry (PIV) and proper orthogonal decomposition (POD). To account for these observations, we develop an analytical model of linear acoustic oscillator (the air in the bottle) subject to nonlinear stochastic forcing (the turbulent jet impacting the bottle's neck). We derive a stochastic differential equation and, from the associated Fokker-Planck equation and the measured acoustic pressure signals, we identify the model's parameters with an adjoint optimization technique. Results are further validated experimentally, and allow us to explain (i) the occurrence of whistling in terms of linear instability, and (ii) the amplitude of the limit cycle as a competition between linear growth rate, noise intensity, and nonlinear saturation. E. B. and N. N. acknowledge support by Repower and the ETH Zurich Foundation.
Sub-processes of motor learning revealed by a robotic manipulandum for rodents.
Lambercy, O; Schubring-Giese, M; Vigaru, B; Gassert, R; Luft, A R; Hosp, J A
2015-02-01
Rodent models are widely used to investigate neural changes in response to motor learning. Usually, the behavioral readout of motor learning tasks used for this purpose is restricted to a binary measure of performance (i.e. "successful" movement vs. "failure"). Thus, the assignability of research in rodents to concepts gained in human research - implying diverse internal models that constitute motor learning - is still limited. To solve this problem, we recently introduced a three-degree-of-freedom robotic platform designed for rats (the ETH-Pattus) that combines an accurate behavioral readout (in the form of kinematics) with the possibility to invasively assess learning related changes within the brain (e.g. by performing immunohistochemistry or electrophysiology in acute slice preparations). Here, we validate this platform as a tool to study motor learning by establishing two forelimb-reaching paradigms that differ in degree of skill. Both conditions can be precisely differentiated in terms of their temporal pattern and performance levels. Based on behavioral data, we hypothesize the presence of several sub-processes contributing to motor learning. These share close similarities with concepts gained in humans or primates. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of troposphere model from NWP and GNSS data into real-time precise positioning
NASA Astrophysics Data System (ADS)
Wilgan, Karina; Hadas, Tomasz; Kazmierski, Kamil; Rohm, Witold; Bosy, Jaroslaw
2016-04-01
The tropospheric delay empirical models are usually functions of meteorological parameters (temperature, pressure and humidity). The application of standard atmosphere parameters or global models, such as GPT (global pressure/temperature) model or UNB3 (University of New Brunswick, version 3) model, may not be sufficient, especially for positioning in non-standard weather conditions. The possible solution is to use regional troposphere models based on real-time or near-real time measurements. We implement a regional troposphere model into the PPP (Precise Point Positioning) software GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) developed at Wroclaw University of Environmental and Life Sciences. The software is capable of processing static and kinematic multi-GNSS data in real-time and post-processing mode and takes advantage of final IGS (International GNSS Service) products as well as IGS RTS (Real-Time Service) products. A shortcoming of PPP technique is the time required for the solution to converge. One of the reasons is the high correlation among the estimated parameters: troposphere delay, receiver clock offset and receiver height. To efficiently decorrelate these parameters, a significant change in satellite geometry is required. Alternative solution is to introduce the external high-quality regional troposphere delay model to constrain troposphere estimates. The proposed model consists of zenith total delays (ZTD) and mapping functions calculated from meteorological parameters from Numerical Weather Prediction model WRF (Weather Research and Forecasting) and ZTDs from ground-based GNSS stations using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zurich.
Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki
2015-11-01
The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.
Effect of docosahexaenoic acid on quality of cryopreserved boar semen in different breeds.
Kaeoket, K; Sang-urai, P; Thamniyom, A; Chanapiwat, P; Techakumphu, M
2010-06-01
During the cryopreservation process, the level of polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), in the sperm plasma membrane decreases significantly because of lipid peroxidation, which may contribute to sperm loss quality (i.e. fertility) of frozen-thawed semen. The aim of this study was to investigate the effect of supplementation of DHA (fish oil) in freezing extender II on frozen-thawed semen quality. Semen from 20 boars of proven motility and morphology, were used in this study. Boar semen was split into four groups, in which the lactose-egg yolk (LEY) extender used to resuspend the centrifuged sperm pellet was supplemented with various levels of fish oil to reach DHA level of 1X (group I, control, no added fish oil), 6X (group II), 12X (group III) and 18X (group IV). Semen solutions were frozen by using a controlled rate freezer. After cryopreservation, frozen semen was thawed and evaluated for progressive motility, viability by using SYBR-14/Ethidiumhomodimer-1 (EthD-1) staining and acrosome integrity by using FITC-PNA/EthD-1 staining. There was a significantly higher (p < 0.001) percentage of progressive motility, viability and acrosome integrity in DHA (fish oil) supplemented groups than control group. Generally, there seemed to be a dose-dependent effect of DHA, with the highest percentage of progressive motility, viability and acrosome integrity in group-III. In conclusion, supplementation of the LEY extender with DHA by adding fish oil was effective for freezing boar semen as it resulted in higher post-thaw plasma membrane integrity and progressive motility.
Bollela, V. R.; Namburete, E. I.; Feliciano, C. S.; Macheque, D.; Harrison, L. H.; Caminero, J. A.
2017-01-01
SUMMARY BACKGROUND Depending on the presence of mutations that determine isoniazid (INH) susceptibility (katG and inhA), Mycobacterium tuberculosis may be susceptible to high doses of INH or ethionamide (ETH). OBJECTIVE To describe the INH resistance profile and association of katG mutation with previous INH treatment and level of drug resistance based on rapid molecular drug susceptibility testing (DST) in southern Brazil and central Mozambique. DESIGN Descriptive study of 311 isolates from Ribeirão Preto, São Paulo, Brazil (2011–2014) and 155 isolates from Beira, Mozambique (2014–2015). Drug resistance patterns and specific gene mutations were determined using GenoType® MTBDRplus. RESULTS katG gene mutations were detected in 12/22 (54.5%) Brazilian and 32/38 (84.2%) Mozambican isolates. inhA mutations were observed in 9/22 (40.9%) isolates in Brazil and in 4/38 (10.5%) in Mozambique. Both katG and inhA mutations were detected in respectively 1/22 (5%) and 2/38 (5.2%). The difference in the frequency of katG mutations in Brazil and Mozambique was statistically significant (P = 0.04). katG mutations were present in 68.8% (33/48) of patients previously treated with INH and 31.2% (15/48) of patients without previous INH. This difference was not statistically significant (P = 0.223). CONCLUSION INH mutations varied geographically; molecular DST can be used to guide and accelerate decision making in the use of ETH or high doses of INH. PMID:27393546
Supplemental effect of varying L-cysteine concentrations on the quality of cryopreserved boar semen
Kaeoket, Kampon; Chanapiwat, Panida; Tummaruk, Padet; Techakumphu, Mongkol
2010-01-01
Cryopreservation is associated with the production of reactive oxygen species, which leads to lipid peroxidation of the sperm membrane and consequently a reduction in sperm motility and decreased fertility potential. The aim of this study was to determine the optimal concentration of L-cysteine needed for cryopreservation of boar semen. Twelve boars provided semen of proven motility and morphology for this study. The semen was divided into four portions in which the lactose-egg yolk (LEY) extender used to resuspend the centrifuged sperm pellet was supplemented with various concentrations of L-cysteine to reach 0 mmol L−1 (group I, control), 5 mmol L−1 (group II), 10 mmol L−1 (group III) and 15 mmol L−1 (group IV). Semen suspensions were loaded in straws (0.5 mL) and placed in a controlled-rate freezer. After cryopreservation, frozen semen samples were thawed and investigated for progressive motility, viability using SYBR-14/EthD-1 staining and acrosome integrity using FITC-PNA/EthD-1 staining. There was a significantly higher (P < 0.01) percentage of progressive motility, viability and acrosomal integrity in two L-cysteine-supplemented groups (group II and group III) compared with the control. There was a biphasic effect of L-cysteine, with the highest percentage of progressive motility, viability and acrosomal integrity in group III. In conclusion, 5 or 10 mmol L−1 was the optimum concentration of L-cysteine to be added to the LEY extender for improving the quality of frozen–thawed boar semen. PMID:20601963
QuakeML: XML for Seismological Data Exchange and Resource Metadata Description
NASA Astrophysics Data System (ADS)
Euchner, F.; Schorlemmer, D.; Becker, J.; Heinloo, A.; Kästli, P.; Saul, J.; Weber, B.; QuakeML Working Group
2007-12-01
QuakeML is an XML-based data exchange format for seismology that is under development. Current collaborators are from ETH, GFZ, USC, USGS, IRIS DMC, EMSC, ORFEUS, and ISTI. QuakeML development was motivated by the lack of a widely accepted and well-documented data format that is applicable to a broad range of fields in seismology. The development team brings together expertise from communities dealing with analysis and creation of earthquake catalogs, distribution of seismic bulletins, and real-time processing of seismic data. Efforts to merge QuakeML with existing XML dialects are under way. The first release of QuakeML will cover a basic description of seismic events including picks, arrivals, amplitudes, magnitudes, origins, focal mechanisms, and moment tensors. Further extensions are in progress or planned, e.g., for macroseismic information, location probability density functions, slip distributions, and ground motion information. The QuakeML language definition is supplemented by a concept to provide resource metadata and facilitate metadata exchange between distributed data providers. For that purpose, we introduce unique, location-independent identifiers of seismological resources. As an application of QuakeML, ETH Zurich currently develops a Python-based seismicity analysis toolkit as a contribution to CSEP (Collaboratory for the Study of Earthquake Predictability). We follow a collaborative and transparent development approach along the lines of the procedures of the World Wide Web Consortium (W3C). QuakeML currently is in working draft status. The standard description will be subjected to a public Request for Comments (RFC) process and eventually reach the status of a recommendation. QuakeML can be found at http://www.quakeml.org.
NASA Astrophysics Data System (ADS)
Guilyardi, E.
2003-04-01
The European Union's PRISM infrastructure project (PRogram for Integrated earth System Modelling) aims at designing a flexible environment to easily assemble and run Earth System Models (http://prism.enes.org). Europe's widely distributed modelling expertise is both a strength and a challenge. Recognizing this, the PRISM project aims at developing an efficient shared modelling software infrastructure for climate scientists, providing them with an opportunity for greater focus on scientific issues, including the necessary scientific diversity (models and approaches). The proposed PRISM system includes 1) the use - or definition - and promotion of scientific and technical standards to increase component modularity, 2) an end-to-end software environment (coupler, user interface, diagnostics) to launch, monitor and analyze complex Earth System Models built around the existing and future community models, 3) testing and quality standards to ensure HPC performance on a variety of platforms and 4) community wide inputs and requirements capture in all stages of system specifications and design through user/developers meetings, workshops and thematic schools. This science driven project, led by 22 institutes* and started December 1st 2001, benefits from a unique gathering of scientific and technical expertise. More than 30 models (both global and regional) have expressed interest to be part of the PRISM system and 6 types of components have been identified: atmosphere, atmosphere chemistry, land surface, ocean, sea ice and ocean biochemistry. Progress and overall architecture design will be presented. * MPI-Met (Coordinator), KNMI (co-coordinator), MPI-M&D, Met Office, University of Reading, IPSL, Meteo-France, CERFACS, DMI, SMHI, NERSC, ETH Zurich, INGV, MPI-BGC, PIK, ECMWF, UCL-ASTR, NEC, FECIT, SGI, SUN, CCRLE
NASA Astrophysics Data System (ADS)
Ishihara, T.
2003-12-01
The existence of magnetic anomalies along east-west trending fracture zones in the north Pacific is well known. These anomalies are particularly prominent in the Cretaceous magnetic quiet zone, where no comparable anomalies are observed other than those associated with the Hawaiian Ridge and the Musician Seamounts in a newly compiled magnetic anomaly map. Model calculation was conducted using old magnetic and bathymetric data collected in the Cretaceous magnetic quiet zone. Two-dimensional simple models along north-south lines, which cross the Mendocino, Pioneer, Murray, Molokai and Clarion Fracture Zones, were constructed in order to clarify the sources of these magnetic anomalies. In these model calculations, it was assumed that the source bodies have normal remanent magnetizations with their inclinations of about
Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport
NASA Astrophysics Data System (ADS)
Annewandter, R.
2013-12-01
The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately using the operator-splitting method (Implicit Pressure Explicit Saturation, IMPES). The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. To date, there has been no research investigating how subsurface transport impacts isotope activity ratios. The isotopic activity ratio method can be used to discriminate between civil release or nuclear explosion sources. This study examines possible fractionation of Xe-135, Xe-133m, Xe-133, Xe-131m during barometric pumping-driven subsurface migration, which can affect surface arrival times and isotopic activity ratios. Surface arrival times for the Noble gases Kr-81, Kr-85 and Ar-39 are also calculated.
2010-12-10
absorption spectra of 1,3,5,7- tetranitro-1,3,5,7-tetrazocane ( HMX ) polymorphs ,” Chem. Phys. Lett. 489(1-3), 48–53 (2010). 23. P. Main, R. E...The β polymorph is the most stable form of the four polymorphs (α,β,γ,δ) of HMX and the room temperature THz spectrum of β- HMX has been measured by...EXPRESS 27248 polymorph to be formed. The α- HMX and δ- HMX forms are described as stable above room temperature: α- HMX is stable from 377 K to 429 K [24
Methyl 4-eth-oxy-2-methyl-2H-1,2-benzothia-zine-3-carboxyl-ate 1,1-dioxide.
Zia-Ur-Rehman, Muhammad; Choudary, Jamil Anwar; Elsegood, Mark R J; Akbar, Noshin; Latif Siddiqui, Hamid
2008-07-16
In the crystal structure of the title compound, C(13)H(15)NO(5)S, the mol-ecules exhibit weak S=O⋯H-C and C=O⋯H-C inter-molecular inter-actions and arrange themselves into centrosymmetric dimers by means of π-π inter-actions (ring centroids are separated by 3.619 Å, while the closest C⋯C contacts are 3.514 Å). 1,2-Benzothia-zines of this kind have a range of biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis.
Weyl's search for a difference between 'physical' and 'mathematical' automorphisms
NASA Astrophysics Data System (ADS)
Scholz, Erhard
2018-02-01
During his whole scientific life Hermann Weyl was fascinated by the interrelation of physical and mathematical theories. From the mid 1920s onward he reflected also on the typical difference between the two epistemic fields and tried to identify it by comparing their respective automorphism structures. In a talk given at the end of the 1940s (ETH, Hs 91a:31) he gave the most detailed and coherent discussion of his thoughts on this topic. This paper presents his arguments in the talk and puts it in the context of the later development of gauge theories.
N-(2-Allyl-4-ethoxy-2H-indazol-5-yl)-4-methylbenzenesulfonamide
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen
2014-01-01
The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related molecules are connected by pairs of N—H⋯O hydrogen bonds into dimers, which are further linked by C—H⋯O hydrogen bonds, forming columns parallel to the b axis. PMID:24860413
N-(1-Allyl-3-chloro-4-ethoxy-1H-indazol-5-yl)-4-methylbenzenesulfonamide
Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen
2014-01-01
In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8). PMID:24940237
No Time to be Brief - A scientific biography of Wolfgang Pauli
NASA Astrophysics Data System (ADS)
Enz, Charles P.
2002-11-01
This book retraces the life of the physicist Wolfgang Pauli, analyses his scientific work, and describes the evolution of his thinking. Pauli spent 30 years as a professor at the Federal Institute of Technology ETH in Zurich, which occupy a central place in this biography. It would be incomplete, however, without a rendering of Pauli's sarcastic wit and, most importantly, of the world of his dreams. It is through the latter that quite a different aspect of Pauli's life comes in, namely his association with the psychology of C.G. Jung and his school.
The impact of flood variables on riparian vegetation
NASA Astrophysics Data System (ADS)
Dzubakova, Katarina; Molnar, Peter
2016-04-01
The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be the most significant variables impacting vegetation response. Generally, maximal flood attributes had more significant impacts than integrated attributes over the flood duration. Additional explanatory variables in the model should account for vegetation heterogeneity, groundwater conditions and different effects of lateral and surface erosion.
UAV based hydromorphological mapping of a river reach to improve hydrodynamic numerical models
NASA Astrophysics Data System (ADS)
Lükő, Gabriella; Baranya, Sándor; Rüther, Nils
2017-04-01
Unmanned Aerial Vehicles (UAVs) are increasingly used in the field of engineering surveys. In river engineering, or in general, water resources engineering, UAV based measurements have a huge potential. For instance, indirect measurements of the flow discharge using e.g. large-scale particle image velocimetry (LSPIV), particle tracking velocimetry (PTV), space-time image velocimetry (STIV) or radars became a real alternative for direct flow measurements. Besides flow detection, topographic surveys are also essential for river flow studies as the channel and floodplain geometry is the primary steering feature of the flow. UAVs can play an important role in this field, too. The widely used laser based topographic survey method (LIDAR) can be deployed on UAVs, moreover, the application of the Structure from Motion (SfM) method, which is based on images taken by UAVs, might be an even more cost-efficient alternative to reveal the geometry of distinct objects in the river or on the floodplain. The goal of this study is to demonstrate the utilization of photogrammetry and videogrammetry from airborne footage to provide geometry and flow data for a hydrodynamic numerical simulation of a 2 km long river reach in Albania. First, the geometry of the river is revealed from photogrammetry using the SfM method. Second, a more detailed view of the channel bed at low water level is taken. Using the fine resolution images, a Matlab based code, BASEGrain, developed by the ETH in Zürich, will be applied to determine the grain size characteristics of the river bed. This information will be essential to define the hydraulic roughness in the numerical model. Third, flow mapping is performed using UAV measurements and LSPIV method to quantitatively asses the flow field at the free surface and to estimate the discharge in the river. All data collection and analysis will be carried out using a simple, low-cost UAV, moreover, for all the data processing, open source, freely available software will be used leading to a cost-efficient methodology. The results of the UAV based measurements will be discussed and future research ideas will be outlined.
NASA Astrophysics Data System (ADS)
Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.
2017-12-01
Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10%. In addition, at 60 MPa confining pressure, experimental elastic anisotropy is greater than modelled anisotropy, which could indicate that open microfractures dramatically influence seismic wave anisotropy in the top 3 to 4 km of the crust, or be related to the different resolutions of the two methods.
Modern Workflow Full Waveform Inversion Applied to North America and the Northern Atlantic
NASA Astrophysics Data System (ADS)
Krischer, Lion; Fichtner, Andreas; Igel, Heiner
2015-04-01
We present the current state of a new seismic tomography model obtained using full waveform inversion of the crustal and upper mantle structure beneath North America and the Northern Atlantic, including the westernmost part of Europe. Parts of the eastern portion of the initial model consists of previous models by Fichtner et al. (2013) and Rickers et al. (2013). The final results of this study will contribute to the 'Comprehensive Earth Model' being developed by the Computational Seismology group at ETH Zurich. Significant challenges include the size of the domain, the uneven event and station coverage, and the strong east-west alignment of seismic ray paths across the North Atlantic. We use as much data as feasible, resulting in several thousand recordings per event depending on the receivers deployed at the earthquakes' origin times. To manage such projects in a reproducible and collaborative manner, we, as tomographers, should abandon ad-hoc scripts and one-time programs, and adopt sustainable and reusable solutions. Therefore we developed the LArge-scale Seismic Inversion Framework (LASIF - http://lasif.net), an open-source toolbox for managing seismic data in the context of non-linear iterative inversions that greatly reduces the time to research. Information on the applied processing, modelling, iterative model updating, what happened during each iteration, and so on are systematically archived. This results in a provenance record of the final model which in the end significantly enhances the reproducibility of iterative inversions. Additionally, tools for automated data download across different data centers, window selection, misfit measurements, parallel data processing, and input file generation for various forward solvers are provided.
The World Radiation Monitoring Center of the Baseline Surface Radiation Network: Status 2017
NASA Astrophysics Data System (ADS)
Driemel, Amelie; König-Langlo, Gert; Sieger, Rainer; Long, Charles N.
2017-04-01
The World Radiation Monitoring Center (WRMC) is the central archive of the Baseline Surface Radiation Network (BSRN). The BSRN was initiated by the World Climate Research Programme (WCRP) Working Group on Radiative Fluxes and began operations in 1992. One of its aims is to provide short and long-wave surface radiation fluxes of the best possible quality to support the research projects of the WCRP and other scientific projects. The high quality, uniform and consistent measurements of the BSRN network can be used to monitor the short- and long-wave radiative components and their changes with the best methods currently available, to validate and evaluate satellite-based estimates of the surface radiative fluxes, and to verify the results of global climate models. In 1992 the BSRN/WRMC started at ETH Zurich, Switzerland with 9 stations. Since 2007 the archive is hosted by the Alfred-Wegener-Institut (AWI) in Bremerhaven, Germany (http://www.bsrn.awi.de/) and comprises a network of currently 59 stations in contrasting climatic zones, covering a latitude range from 80°N to 90°S. Of the 59 stations, 23 offer the complete radiation budget (down- and upwelling short- and long-wave data). In addition to the ftp-service access instituted at ETH Zurich, the archive at AWI offers data access via PANGAEA - Data Publisher for Earth & Environmental Science (https://www.pangaea.de). PANGAEA guarantees the long-term availability of its content through a commitment of the operating institutions. Within PANGAEA, the metadata of the stations are freely available. To access the data itself an account is required. If the scientist accepts to follow the data release guidelines of the archive (http://bsrn.awi.de/data/conditions-of-data-release/) he or she can get an account from amelie.driemel@awi.de. Currently, more than 9,400 station months (>780 years) are available for interested scientists (see also https://dataportals.pangaea.de/bsrn/?q=LR0100 for an overview on available data). After long years of excellent service as the director of the WRMC, Gert-König Langlo retires in 2017. He is handing over the duties to the current WRMC data curator Amelie Driemel who will continue this important task in the years to come.
3D quantification of brain microvessels exposed to heavy particle radiation
NASA Astrophysics Data System (ADS)
Hintermüller, C.; Coats, J. S.; Obenaus, A.; Nelson, G.; Krucker, T.; Stampanoni, M.
2009-09-01
Space radiation with high energy particles and cosmic rays presents a significant hazard to spaceflight crews. Recent reviews of the health risk to astronauts from ionizing radiation concluded to establish a level of risk which may indicate the possible performance decrements and decreased latency of late dysfunction syndromes (LDS) of the brain. A hierarchical imaging approach developed at ETH Zürich and PSI, which relies on synchrotron based X-ray Tomographic Microscopy (SRXTM), was used to visualize and analyze 3D vascular structures down to the capillary level in their precise anatomical context. Various morphological parameters, such as overall vessel volume, vessel thickness and spacing, are extracted to characterize the vascular structure within a region of interest. For a first quantification of the effect of high energy particles on the vasculature we scanned a set of 6 animals, all of same age. The animals were irradiated with 1 Gy, 2 Gy and 4 Gy of 600MeV 56Fe heavy particles simulating the space radiation environment. We found that with increasing dose the diameter of vessels and the overall vessel volume are decreased whereas the vessel spacing is increased. As these parameters reflect blood flow in three-dimensional space they can be used as indicators for the degree of vascular efficiency which can have an impact on the function and development of lung tissue or tumors.
A Hyperbolic Solver for Black Hole Initial Data in Numerical Relativity
NASA Astrophysics Data System (ADS)
Babiuc, Maria
2016-03-01
Numerical relativity is essential to the efforts of detecting gravitational waves emitted at the inspiral and merger of binary black holes. The first requirement for the generation of reliable gravitational wave templates is an accurate method of constructing initial data (ID). The standard approach is to solve the constraint equations for general relativity by formulating them as an elliptic system. A shortcoming of the ID constructed this way is an initial burst of spurious unphysical radiation (junk radiation). Recently, Racz and Winicour formulated the constraints as a hyperbolic problem, requiring boundary conditions only on a large sphere surrounding the system, where the physical behavior of the gravitational field is well understood. We investigate the applicability of this new approach, by developing a new 4th order numerical code that implements the fully nonlinear constraints equations on a two dimensional stereographic foliation, and evolves them radially inward using a Runge-Kutta integrator. The tensorial quantities are written as spin-weighted fields and the angular derivatives are replaced with ``eth'' operators. We present here results for the simulation of nonlinear perturbations to Schwarzschild ID in Kerr-Schild coordinates. The code shows stability and convergence at both large and small radii. Our long-term goal is to develop this new approach into a numerical scheme for generating ID for binary black holes and to analyze its performance in eliminating the junk radiation.
Keller, Katharina; Mertens, Valerie; Qi, Mian; Nalepa, Anna I; Godt, Adelheid; Savitsky, Anton; Jeschke, Gunnar; Yulikov, Maxim
2017-07-21
Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies. As previously proposed, we account for these overtones by using a modified kernel function in Tikhonov regularization analysis. This paper analyzes the performance of such an approach on a series of model compounds with the Gd(iii)-PyMTA complex serving as paramagnetic high-spin label. We describe the calibration of the overtone coefficients for the RIDME kernel, demonstrate the accuracy of distance distributions obtained with this approach, and show that for our series of Gd-rulers RIDME technique provides more accurate distance distributions than Gd(iii)-Gd(iii) double electron-electron resonance (DEER). The analysis of RIDME data including harmonic overtones can be performed using the MATLAB-based program OvertoneAnalysis, which is available as open-source software from the web page of ETH Zurich. This approach opens a perspective for the routine use of the RIDME technique with high-spin labels in structural biology and structural studies of other soft matter.
NASA Astrophysics Data System (ADS)
Cosme, Jayson G.
2015-09-01
We numerically investigate the relaxation dynamics in an isolated quantum system of interacting bosons trapped in a double-well potential after an integrability breaking quench. Using the statistics of the spectrum, we identify the postquench Hamiltonian as nonchaotic and close to integrability over a wide range of interaction parameters. We demonstrate that the system exhibits thermalization in the context of the eigenstate thermalization hypothesis (ETH). We also explore the possibility of an initial state to delocalize with respect to the eigenstates of the postquench Hamiltonian even for energies away from the middle of the spectrum. We observe distinct regimes of equilibration process depending on the initial energy. For low energies, the system rapidly relaxes in a single step to a thermal state. As the energy increases towards the middle of the spectrum, the relaxation dynamics exhibits prethermalization and the lifetime of the metastable states grows. Time evolution of the occupation numbers and the von Neumann entropy in the mode-partitioned system underpins the analyses of the relaxation dynamics.
Direct measurements of flux tube inclinations in solar plages.
NASA Astrophysics Data System (ADS)
Bernasconi, P. N.; Keller, C. U.; Povel, H. P.; Stenflo, J. O.
1995-10-01
Observations of the full Stokes vector in three spectral lines indicate that flux tubes in solar plages have an average inclination in the photosphere of 14^o^ with respect to the local vertical. Most flux tubes are inclined in the eastwards direction, i.e., opposite to the solar rotation. We have recorded the Stokes vector of the FeI 5247.1A, FeI 5250.2A, and FeI 5250.7A lines in nine different plages with the polarization-free 20cm Zeiss coronagraph at the Arosa Astrophysical Observatory of ETH Zuerich. The telescope has been modified for solar disk observations. The chosen spectral lines are particularly sensitive to magnetic field strength and temperature. To determine the field strength and geometry of the flux tubes in the observed plages we use an inversion code that numerically solves the radiative transfer equations and derives the emergent Stokes profiles for one-dimensional model atmospheres consisting of a flux tube and its surrounding non-magnetic atmosphere. Our results confirm earlier indirect estimates of the inclination of the magnetic fields in plages.
Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis
NASA Astrophysics Data System (ADS)
Li, R.-T.; Khor, K. A.; Yu, L.-G.
2016-12-01
We investigated the research publications on thermal spray in the period of 1985-2015 using the data from Web of Science, Scopus and SciVal®. Bibliometrics analysis was employed to elucidate the country and institution distribution in various thermal spray research areas and to characterize the trends of topic change and technology progress. Results show that China, USA, Japan, Germany, India and France were the top countries in thermal spray research, and Xi'an Jiaotong University, Universite de Technologie Belfort-Montbeliard, Shanghai Institute of Ceramics, ETH Zurich, National Research Council of Canada, University of Limoges were among the top institutions that had high scholarly research output during 2005-2015. The terms of the titles, keywords and abstracts of the publications were analyzed by the Latent Dirichlet Allocation model and visually mapped using the VOSviewer software to reveal the progress of thermal spray technology. It is found that thermal barrier coating was consistently the main research area in thermal spray, and high-velocity oxy-fuel spray and cold spray developed rapidly in the last 10 years.
Assessing the Applicability of Earthquake Early Warning in Nicaragua.
NASA Astrophysics Data System (ADS)
Massin, F.; Clinton, J. F.; Behr, Y.; Strauch, W.; Cauzzi, C.; Boese, M.; Talavera, E.; Tenorio, V.; Ramirez, J.
2016-12-01
Nicaragua, like much of Central America, suffers from frequent damaging earthquakes (6 M7+ earthquakes occurred in the last 100 years). Thrust events occur at the Middle America Trench where the Cocos plate subducts by 72-81 mm/yr eastward beneath the Caribbean plate. Shallow crustal events occur on-shore, with potential extensive damage as demonstrated in 1972 by a M6.2 earthquake, 5 km beneath Managua. This seismotectonic setting is challenging for Earthquake Early Warning (EEW) because the target events derive from both the offshore seismicity, with potentially large lead times but uncertain locations, and shallow seismicity in close proximity to densely urbanized areas, where an early warning would be short if available at all. Nevertheless, EEW could reduce Nicaragua's earthquake exposure. The Swiss Development and Cooperation Fund and the Nicaraguan Government have funded a collaboration between the Swiss Seismological Service (SED) at ETH Zurich and the Nicaraguan Geosciences Institute (INETER) in Managua to investigate and build a prototype EEW system for Nicaragua and the wider region. In this contribution, we present the potential of EEW to effectively alert Nicaragua and the neighbouring regions. We model alert time delays using all available seismic stations (existing and planned) in the region, as well as communication and processing delays (observed and optimal) to estimate current and potential performances of EEW alerts. Theoretical results are verified with the output from the Virtual Seismologist in SeisComP3 (VS(SC3)). VS(SC3) is implemented in the INETER SeisComP3 system for real-time operation and as an offline instance, that simulates real-time operation, to record processing delays of playback events. We compare our results with similar studies for Europe, California and New Zealand. We further highlight current capabilities and challenges for providing EEW alerts in Nicaragua. We also discuss how combining different algorithms, like e.g. VS and FinDer, can lead to a robust approach to EEW.
The Swiss Data Science Center on a mission to empower reproducible, traceable and reusable science
NASA Astrophysics Data System (ADS)
Schymanski, Stanislaus; Bouillet, Eric; Verscheure, Olivier
2017-04-01
Our abilities to collect, store and analyse scientific data have sky-rocketed in the past decades, but at the same time, a disconnect between data scientists, domain experts and data providers has begun to emerge. Data scientists are developing more and more powerful algorithms for data mining and analysis, while data providers are making more and more data publicly available, and yet many, if not most, discoveries are based on specific data and/or algorithms that "are available from the authors upon request". In the strong belief that scientific progress would be much faster if reproduction and re-use of such data and algorithms was made easier, the Swiss Data Science Center (SDSC) has committed to provide an open framework for the handling and tracking of scientific data and algorithms, from raw data and first principle equations to final data products and visualisations, modular simulation models and benchmark evaluation algorithms. Led jointly by EPFL and ETH Zurich, the SDSC is composed of a distributed multi-disciplinary team of data scientists and experts in select domains. The center aims to federate data providers, data and computer scientists, and subject-matter experts around a cutting-edge analytics platform offering user-friendly tooling and services to help with the adoption of Open Science, fostering research productivity and excellence. In this presentation, we will discuss our vision of a high-scalable open but secure community-based platform for sharing, accessing, exploring, and analyzing scientific data in easily reproducible workflows, augmented by automated provenance and impact tracking, knowledge graphs, fine-grained access right and digital right management, and a variety of domain-specific software tools. For maximum interoperability, transparency and ease of use, we plan to utilize notebook interfaces wherever possible, such as Apache Zeppelin and Jupyter. Feedback and suggestions from the audience will be gratefully considered.
NASA Technical Reports Server (NTRS)
2003-01-01
The Hyperion sensor, onboard NASA's Earth Observing-1 (EO-1) satellite,is an imaging spectroradiometer with 220 spectral bands over the spectral range from 0.4 - 2.5 microns. Over the course of summer 2001, the instrument acquired numerous images over the Greenland ice sheet. Our main motivation is to develop an accurate and robust approach for measuring the broadband albedo of snow from satellites. Satellite-derived estimates of broadband have typically been plagued with three problems: errors resulting from inaccurate atmospheric correction, particularly in the visible wavelengths from the conversion of reflectance to albedo (accounting for snow BRDE); and errors resulting from regression-based approaches used to convert narrowband albedo to broadband albedo. A typerspectral method has been developed that substantially reduces these three main sources of error and produces highly accurate estimates of snow albedo. This technique uses hyperspectral data from 0.98 - 1.06 microns, spanning a spectral absorption feature centered at 1.03 microns. A key aspect of this work is that this spectral range is within an atmospheric transmission window and reflectances are largely unaffected by atmospheric aerosols, water vapor, or ozone. In this investigation, we make broadband albedo measurements at four sites on the Greenland ice sheet: Summit, a high altitude station in central Greenland; the ETH/CU camp, a camp on the equilibrium line in western Greenland; Crawford Point, a site located between Summit and the ETH/CU camp; and Tunu, a site located in northeastern Greenland at 2000 m. altitude. Each of these sites has an automated weather station (AWS) that continually measures broadband albedo thereby providing validation data.
The AlpArray-CASE project: temporary broadband seismic network deployment and characterization
NASA Astrophysics Data System (ADS)
Dasović, Iva; Molinari, Irene; Stipčević, Josip; Šipka, Vesna; Salimbeni, Simone; Jarić, Dejan; Prevolnik, Snježan; Kissling, Eduard; Clinton, John; Giardini, Domenico
2017-04-01
While the northern part of the Adriatic microplate will be accurately imaged within the AlpArray project, its central and southern parts deserve detailed studies to obtain a complete picture of its structure and evolution. The Adriatic microplate forms the upper plate in the Western and Central Alps whereas it forms the lower plate in the Apennines and the Dinarides. However, the tectonics of Adriatic microplate is not well constrained and remains controversial, especially with regard to its contact with the Dinarides. The primary goal of the Central Adriatic Seismic Experiment (CASE) is to provide high quality seismological data and to shed light on seismicity and 3D lithospheric structure of the central Adriatic microplate and its boundaries. The CASE project is an international AlpArray Complementary Experiment carried out by four institutions: Department of Earth Sciences and Swiss Seismological Service of ETH Zürich (CH), Department of Geophysics and Croatian Seismological Service of Faculty of Science at University of Zagreb (HR), Republic Hydrometeorological Service of Republic of Srpska (BIH) and Istituto Nazionale di Geofisica e Vulcanologia (I). It establishes a temporary seismic network, expected to be operational at least for one year, composed by existing permanent and temporary seismic stations operated by the institutions involved and newly deployed temporary seismic stations, installed in November and December 2016, provided by ETH Zürich and INGV: five in Croatia, four in Bosnia and Herzegovina and two in Italy. In this work, we present stations sites and settings and discuss their characteristics in terms of site-effects and noise level of each station. In particular, we analyse the power spectral density estimates in order to investigate major sources of noise and background noise.
Campino, Carmen; Carvajal, Cristian A; Cornejo, Javiera; San Martín, Betty; Olivieri, Oliviero; Guidi, Giancesare; Faccini, Giovanni; Pasini, Francesco; Sateler, Javiera; Baudrand, Rene; Mosso, Lorena; Owen, Gareth I; Kalergis, Alexis M; Padilla, Oslando; Fardella, Carlos E
2010-02-01
Cortisol availability is modulated by several enzymes: 11β-HSD2, which transforms cortisol (F) to cortisone (E) and 11β-HSD1 which predominantly converts inactive E to active F. Additionally, the A-ring reductases (5α- and 5β-reductase) inactivate cortisol (together with 3α-HSD) to tetrahydrometabolites: 5αTHF, 5βTHF, and THE. The aim was to assess 11β-HSD2, 11β-HSD1, and 5β-reductase activity in hypertensive patients. Free urinary F, E, THF, and THE were measured by HPLC-MS/MS in 102 essential hypertensive patients and 18 normotensive controls. 11β-HSD2 enzyme activity was estimated by the F/E ratio, the activity of 11β-HSD1 in compare to 11β-HSD2 was inferred by the (5αTHF + 5βTHF)/THE ratio and 5β-reductase activity assessed using the E/THE ratio. Activity was considered altered when respective ratios exceeded the maximum value observed in the normotensive controls. A 15.7% of patients presented high F/E ratio suggesting a deficit of 11β-HSD2 activity. Of the remaining 86 hypertensive patients, two possessed high (5αTHF + 5βTHF)/THE ratios and 12.8% had high E/THE ratios. We observed a high percentage of alterations in cortisol metabolism at pre-receptor level in hypertensive patients, previously misclassified as essential. 11β-HSD2 and 5β-reductase decreased activity and imbalance of 11β-HSDs should be considered in the future management of hypertensive patients.
Noise frame duration, masking potency and whiteness of temporal noise.
Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti
2002-09-01
Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.
NASA Astrophysics Data System (ADS)
Behr, Yannik; Clinton, John; Cua, Georgia; Cauzzi, Carlo; Heimers, Stefan; Kästli, Philipp; Becker, Jan; Heaton, Thomas
2013-04-01
The Virtual Seismologist (VS) method is a Bayesian approach to regional network-based earthquake early warning (EEW) originally formulated by Cua and Heaton (2007). Implementation of VS into real-time EEW codes has been an on-going effort of the Swiss Seismological Service at ETH Zürich since 2006, with support from ETH Zürich, various European projects, and the United States Geological Survey (USGS). VS is one of three EEW algorithms that form the basis of the California Integrated Seismic Network (CISN) ShakeAlert system, a USGS-funded prototype end-to-end EEW system that could potentially be implemented in California. In Europe, VS is currently operating as a real-time test system in Switzerland. As part of the on-going EU project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction), VS installations in southern Italy, western Greece, Istanbul, Romania, and Iceland are planned or underway. In Switzerland, VS has been running in real-time on stations monitored by the Swiss Seismological Service (including stations from Austria, France, Germany, and Italy) since 2010. While originally based on the Earthworm system it has recently been ported to the SeisComp3 system. Besides taking advantage of SeisComp3's picking and phase association capabilities it greatly simplifies the potential installation of VS at networks in particular those already running SeisComp3. We present the architecture of the new SeisComp3 based version and compare its results from off-line tests with the real-time performance of VS in Switzerland over the past two years. We further show that the empirical relationships used by VS to estimate magnitudes and ground motion, originally derived from southern California data, perform well in Switzerland.
How the Brain May Have Shaped Muscle Anatomy and Physiology: A Preliminary Study.
Muchlinski, Magdalena N; Hemingway, Holden W; Pastor, Juan; Omstead, Kailey M; Burrows, Anne M
2018-03-01
Skeletal muscle fibers are often used to evaluate functional differences in locomotion. However, because there are energetic differences among muscle fiber cells, muscle fiber composition could be used to address evolutionary questions about energetics. Skeletal muscle is composed of two main types of fibers: Type I and II. The difference between the two can be reduced to how these muscle cells use oxygen and glucose. Type I fibers convert glucose to ATP using oxygen, while Type II fibers rely primarily on anaerobic metabolic processes. The expensive tissue hypothesis (ETH) proposes that the energetic demands imposed on the body by the brain result in a reduction in other expensive tissues (e.g., gastrointestinal tract). The original ETH dismisses the energetic demands of skeletal muscle, despite skeletal muscle being (1) an expensive tissue when active and (2) in direct competition for glucose with the brain. Based on these observations we hypothesize that larger brained primates will have relatively less muscle mass and a decrease in Type I fibers. As part of a larger study to test this hypothesis, we present data from 10 species of primates. We collected body mass, muscle mass, and biopsied four muscles from each specimen for histological procedures. We collected endocranial volumes from the literature. Using immunohistochemistry, a muscle fiber composition profile was created for each species sampled. Results show that larger brained primates have less muscle and fewer Type I fibers than primates with smaller brains. Results clarify the relationship between muscle mass and brain mass and illustrate how muscle mass could be used to address energetic questions. Anat Rec, 301:528-537, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
1983-04-11
w - )u - v/T2’ -wKE (2) = -(w + 1)/T + vWE C3) aE + I aE 2_wnpv (4) az cat c where u,v,w are the Bloch components of the pseudo polarization vector , E...The initiation should not be inserted as a homogeneous tipping of all the individual polarization vectors phased to emit a plane wave in the forward...tipping angle. Effects of Fresnel number and of the radial dependence of initial polarization and atom density on ringing, delay, and intensity are
Gram-scale cryogenic calorimeters for rare-event searches
NASA Astrophysics Data System (ADS)
Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; Pröbst, F.; Schieck, J.; Schönert, S.; Seidel, W.; Stodolsky, L.
2017-07-01
The energy threshold of a cryogenic calorimeter can be lowered by reducing its size. This is of importance since the resulting increase in signal rate enables new approaches in rare-event searches, including the detection of MeV mass dark matter and coherent scattering of reactor or solar neutrinos. A scaling law for energy threshold vs detector size is given. We analyze the possibility of lowering the threshold of a gram-scale cryogenic calorimeter to the few eV regime. A prototype 0.5 g Al2 O3 device achieved an energy threshold of Eth=(19.7 ±0.9 ) eV , the lowest value reported for a macroscopic calorimeter.
Diethyl 4,4′-(3,6-dioxaoctane-1,8-diyldioxy)dibenzoate
Ma, Zhen; Qin, Haisha; Lai, Gang; Fan, Jingjie
2012-01-01
The title compound, C24H30O8, was obtained by reaction of ethyl 4-hydroxybenzoate with 1,2-dichloroethane. The molecule occupies a crystallographic inversion center, with its central ethylene bridge in an anti conformation. The other ethylene bridge has a gauche conformation, with the corresponding O—C—C—O torsion angle being 74.2 (1)°. The benzene rings are almost coplanar with the adjacent ethoxycarbonyl groups, with an r.m.s. deviation of 0.078 Å. PMID:22412598
N-(2-Chloroethyl)morpholine-4-carboxamide
Ujam, Oguejiofo T.; Asegbeloyin, Jonnie N.; Nicholson, Brian K.; Ukoha, Pius O.; Ukwueze, Nkechi N.
2014-01-01
The title compound, C7H13ClN2O2, synthesized by the reaction of 2-chloroethyl isocyanate and morpholine, crystallizes with four molecules in the asymmetric unit, which have similar conformations and comprise two pairs each related by approximate non-crystallographic inversion centres. Two of them have a modest orientational disorder of the 2-chloroethyl fragments [occupancy ratio of 0.778 (4):0.222 (4)]. In the crystal, molecules are linked by N—H⋯O=C hydrogen bonds, forming three crystallographically different kinds of infinite hydrogen-bonded chains extending along [001]. PMID:24826162
Manchado, Alejandro; Salgado, Mateo M; Vicente, Álvaro; Díez, David; Sanz, Francisca; Garrido, Narciso M
2017-04-01
The title compound, C 22 H 25 NO 5 , was prepared by CAN [cerium(IV) ammonium nitrate] oxidation of the corresponding β-lactam. The dihedral angle between the benzene rings is 13.3 (4)° and the C-N-C(=O)-C torsion angle is 176.1 (6)°. In the crystal, amide- C (4) N-H⋯O and reinforcing C-H⋯O hydrogen bonds link the mol-ecules into infinite [010] chains. Further C-H⋯O hydrogen bonds cross-link the chains in the c -axis direction.
NASA Astrophysics Data System (ADS)
Semprini, L.; Azizian, M. F.; Kim, Y.
2011-12-01
Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to about 0.003 mM, representing 20% of the CT transformed. Other transformation products have not been identified. Neither methane nor carbon monoxide have been detected as transformation products. The transformation of PCE to ethene actually improved after the addition of CT. Thus, neither CT nor CF are inhibiting the reductive dehalogenation of PCE. The improvement in PCE transformation extent coincided with an increase in the aqueous hydrogen concentration from 5 nM, prior to CT addition, to 150 nM after CT addition. This increase in hydrogen was associated with the inhibition in acetate production and the increase in formate concentrations from below detection to 1.0 mM after CT addition. The results indicate that there are likely benefits in adding formate to produce hydrogen when contaminants are present that can inhibit fermentation. The results from the column study are consistent with our observations in batch reactors using the EV culture.
EFEHR - the European Facilities for Earthquake Hazard and Risk: beyond the web-platform
NASA Astrophysics Data System (ADS)
Danciu, Laurentiu; Wiemer, Stefan; Haslinger, Florian; Kastli, Philipp; Giardini, Domenico
2017-04-01
European Facilities for Earthquake Hazard and Risk (EEFEHR) represents the sustainable community resource for seismic hazard and risk in Europe. The EFEHR web platform is the main gateway to access data, models and tools as well as provide expertise relevant for assessment of seismic hazard and risk. The main services (databases and web-platform) are hosted at ETH Zurich and operated by the Swiss Seismological Service (Schweizerischer Erdbebendienst SED). EFEHR web-portal (www.efehr.org) collects and displays (i) harmonized datasets necessary for hazard and risk modeling, e.g. seismic catalogues, fault compilations, site amplifications, vulnerabilities, inventories; (ii) extensive seismic hazard products, namely hazard curves, uniform hazard spectra and maps for national and regional assessments. (ii) standardized configuration files for re-computing the regional seismic hazard models; (iv) relevant documentation of harmonized datasets, models and web-services. Today, EFEHR distributes full output of the 2013 European Seismic Hazard Model, ESHM13, as developed within the SHARE project (http://www.share-eu.org/); the latest results of the 2014 Earthquake Model of the Middle East (EMME14), derived within the EMME Project (www.emme-gem.org); the 2001 Global Seismic Hazard Assessment Project (GSHAP) results and the 2015 updates of the Swiss Seismic Hazard. New datasets related to either seismic hazard or risk will be incorporated as they become available. We present the currents status of the EFEHR platform, with focus on the challenges, summaries of the up-to-date datasets, user experience and feedback, as well as the roadmap to future technological innovation beyond the web-platform development. We also show the new services foreseen to fully integrate with the seismological core services of European Plate Observing System (EPOS).
Impact of stress on dentists' clinical performance. A systematic review.
Plessas, A; Delgado, M B; Nasser, M; Hanoch, Y; Moles, D R
2018-03-01
Dentistry is recognised as a stressful profession and dentists perceive their profession to be more stressful than other healthcare professions. While earlier studies have shown a link between stress and well-being among dentists, whether stress negatively impacts their clinical performance is an important and open question. We do know, however, that stress is associated with reduced performance in other health (and non-health) related professions. This systematic review aimed to answer the question: how does stress impact on dentists' clinical performance? This systematic review was registered in PROSPERO (CRD42016045756). The CINHAL, Embase, Medline, PsycINFO, EThOS and OpenGrey electronic databases were searched according to PRISMA guidelines. Two reviewers independently screened the citations for relevance. The citation list of potentially eligible papers was also searched. Prospective empirical studies were considered for inclusion. The inclusion criteria were applied at the full-text stage by the two same reviewers independently. The search yielded 3535 titles and abstracts. Twelve publications were considered potentially eligible, eleven of which were excluded as they did not meet the predefined inclusion criteria. This systematic review identified a gap in the literature as it found no empirical evidence quantifying the impact of stress on dentists' clinical performance. Prospective well-designed experimental simulation studies, comparing stress with non-stress situations on clinical performance and decision making, as well studies evaluating prospectively real-life dentists' performance under stress are warranted. Copyright© 2018 Dennis Barber Ltd.
Triggered Snap-Through of Bistable Shells
NASA Astrophysics Data System (ADS)
Cai, Yijie; Huang, Shicheng; Trase, Ian; Hu, Nan; Chen, Zi
Elastic bistable shells are common structures in nature and engineering, such as the lobes of the Venus flytrap or the surface of a toy jumping poppers. Despite their ubiquity, the parameters that control the bistability of such structures are not well understood. In this study, we explore how the geometrical features of radially symmetric elastic shells affect the shape and potential energy of a shell's stable states, and how to tune certain parameters in order to generate a snap-through transition from a convex semi-stable state to concave stable state. We fabricated a series of elastic shells with varying geometric parameters out of silicone rubber and measured the resulting potential energy in the semi-stable state. Finite element simulations were also conducted in order to determine the deformation and stress in the shells during snap-through. It was found that the energy of the semi-stable state is controlled by only two geometric parameters and a dimensionless ratio. We also noted two distinct transitions during snap-through, one between monostability and semi-bistability (the state a popper toy is in before it snaps-through and jumps), and a second transition between semi-bistability and true bistability. This work shows that it is possible to use a set of simple parameters to tailor the energy landscape of an elastic shell in order to generate complex trigger motions for their potential use in smart applications. Z.C. acknowledge support from Society in Science-Branco Weiss Fellowship, administered by ETH Zurich.
Bredemeier, Michael; Busch, Gerald; Hartmann, Linda; Jansen, Martin; Richter, Falk; Lamersdorf, Norbert P
2015-01-01
Biomass crops are perceived as a feasible means to substitute sizeable amounts of fossil fuel in the future. A prospect of CO2 reduction (resp. CO2 neutrality) is credited to biomass fuels, and thus a potential contribution to mitigate climate change. Short rotation coppices (SRCs) with fast growing poplar and willow trees are an option for producing high yields of woody biomass, which is suitable for both energetic and material use. One negative effect that comes along with the establishment of SRC may be a decrease in groundwater recharge, because high rates of transpiration and interception are anticipated. Therefore, it is important to measure, analyze, and model the effects of SRC-planting on landscape water budgets. To analyze the effects on the water budget, a poplar SRC plot was studied by measuring hydrological parameters to be used in the hydrological model WaSim. Results reveal very low or even missing ground water recharge for SRC compared to agricultural land use or grassland, especially succeeding dry years. However, this strong effect on plot level is moderated on the larger spatial scale of catchment level, for which the modeling was also performed. In addition to water, nutrient fluxes and budgets were studied. Nitrogen is still a crucial issue in today's agriculture. Intensive fertilization or increased applications of manure from concentrated livestock breeding are often leading to high loads of nitrate leaching, or enhanced N2O emissions to the atmosphere on arable crop fields. SRC or agroforestry systems on former crop land may offer an option to decrease such N losses, while simultaneously producing woody biomass. This is mainly due to the generally smaller N requirements of woody vegetation, which usually entail no need for any fertilization. The trees supply deep and permanent rooting systems, which can be regarded as a "safety net" to prevent nutrient leaching. Thus, SRC altogether can help to diminish N eutrophication. It is important to offer viable and attractive economic perspectives to farmers and other land managers besides of the potential ecological benefits of SRCs. For this reason, an integrated tool for scenario analysis was developed within the BEST project ("BEAST - Bio-Energy Allocation and Scenario Tool"). It combines ecological assessments with calculations of economic revenue as a basis for a participative regional dialog on sustainable land use and climate protection goals. Results show a substantial capacity for providing renewable energy from economically competitive arable SRC sites while generating ecological synergies.
Bredemeier, Michael; Busch, Gerald; Hartmann, Linda; Jansen, Martin; Richter, Falk; Lamersdorf, Norbert P.
2015-01-01
Biomass crops are perceived as a feasible means to substitute sizeable amounts of fossil fuel in the future. A prospect of CO2 reduction (resp. CO2 neutrality) is credited to biomass fuels, and thus a potential contribution to mitigate climate change. Short rotation coppices (SRCs) with fast growing poplar and willow trees are an option for producing high yields of woody biomass, which is suitable for both energetic and material use. One negative effect that comes along with the establishment of SRC may be a decrease in groundwater recharge, because high rates of transpiration and interception are anticipated. Therefore, it is important to measure, analyze, and model the effects of SRC-planting on landscape water budgets. To analyze the effects on the water budget, a poplar SRC plot was studied by measuring hydrological parameters to be used in the hydrological model WaSim. Results reveal very low or even missing ground water recharge for SRC compared to agricultural land use or grassland, especially succeeding dry years. However, this strong effect on plot level is moderated on the larger spatial scale of catchment level, for which the modeling was also performed. In addition to water, nutrient fluxes and budgets were studied. Nitrogen is still a crucial issue in today’s agriculture. Intensive fertilization or increased applications of manure from concentrated livestock breeding are often leading to high loads of nitrate leaching, or enhanced N2O emissions to the atmosphere on arable crop fields. SRC or agroforestry systems on former crop land may offer an option to decrease such N losses, while simultaneously producing woody biomass. This is mainly due to the generally smaller N requirements of woody vegetation, which usually entail no need for any fertilization. The trees supply deep and permanent rooting systems, which can be regarded as a “safety net” to prevent nutrient leaching. Thus, SRC altogether can help to diminish N eutrophication. It is important to offer viable and attractive economic perspectives to farmers and other land managers besides of the potential ecological benefits of SRCs. For this reason, an integrated tool for scenario analysis was developed within the BEST project (“BEAST – Bio-Energy Allocation and Scenario Tool”). It combines ecological assessments with calculations of economic revenue as a basis for a participative regional dialog on sustainable land use and climate protection goals. Results show a substantial capacity for providing renewable energy from economically competitive arable SRC sites while generating ecological synergies. PMID:26106595
In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages.
McCanna, David Joseph; Barthod-Malat, Aurore V; Gorbet, Maud B
2015-01-01
Macrophages play an important role in the elimination of infections, the removal of debris and in tissue repair after infection and trauma. In vitro models that assess ocular biomaterials for toxicity typically focus on the effects of these materials on epithelial or fibroblast cells. This investigation evaluated known ocular toxins deposited on model materials for their effects on the viability and activation of macrophages. THP-1-derived macrophages were cultured onto silicone films (used as a base biomaterial) deposited with chemical toxins (benzalkonium chloride (BAK), zinc diethyldithiocarbamate (ZDEC) and lipopolysaccharide (LPS)). Utilizing three fluorescent dyes calcein, ethidium homodimer-1 (EthD-1) and annexin V, the viability of macrophages attached to the biomaterial was determined using confocal microscopy. Propidium iodide (PI) staining and alamarBlue® (resazurin) reduction were used to assess cell death and metabolic activity. CD14, CD16, CD33, CD45, and CD54 expression of adherent macrophages, were also evaluated to detect LPS activation of macrophages using flow cytometry. The sensitivity of this test battery was demonstrated as significant toxicity from treated surfaces with ZDEC (0.001-0.01%), and BAK (0.001%-0.1%) was detected. Also, macrophage activation could be detected by measuring CD54 expression after exposure to adsorbed LPS. These in vitro methods will be helpful in determining the toxicity potential of new ocular biomaterials.
Crystal structure of (ethoxyethylidene)dimethylazanium ethyl sulfate
Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi
2015-01-01
In the title salt, C6H14NO+·C2H5SO4 −, the C—N bond lengths in the cation are 1.2981 (14), 1.4658 (14) and 1.4707 (15) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3157 (13) Å shows double-bond character, indicating charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯O hydrogen bonds between H atoms of the cations and O atoms of neighbouring ethyl sulfate anions are present, generating a three-dimensional network. PMID:26870525
Jagadeesan, G.; Kannan, D.; Bakthadoss, M.; Aravindhan, S.
2013-01-01
In the title compound, C23H20N2O6, the fused pyrone and pyran rings each adopt a sofa conformation. The dihedral angle between the mean planes of the pyran and phenyl rings is 61.9 (1)°. In the crystal, molecules are linked by two pairs of C—H⋯O hydrogen bonds, forming dimers. These dimers are linked via a third C—H⋯O hydrogen bond, forming a two-dimensional network parallel to (10-2). PMID:23476462
Ethyl 4,4''-difluoro-5'-meth-oxy-1,1':3',1''-terphenyl-4'-carboxyl-ate.
Fun, Hoong-Kun; Chia, Tze Shyang; Samshuddin, S; Narayana, B; Sarojini, B K
2012-01-01
In the title compound, C(22)H(18)F(2)O(3), the two fluoro-substituted rings form dihedral angles of 25.89 (15) and 55.00 (12)° with the central benzene ring. The eth-oxy group in the mol-ecule is disordered over two positions with a site-occupancy ratio of 0.662 (7):0.338 (7). In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds into chains along the a axis. The crystal packing is further stabilized by C-H⋯π and π-π inter-actions, with centroid-centroid distances of 3.8605 (15) Å.
(S)-N-[1-(5-Benzyl-sulfan-yl-1,3,4-oxa-diazol-2-yl)-2-phenyl-eth-yl]-4-methyl-benzene-sulfonamide.
Syed, Tayyaba; Hameed, Shahid; Jones, Peter G
2011-11-01
The title compound, C(24)H(23)N(3)O(3)S(2), crystallizes with two independent mol-ecules in the asymmetric unit. They differ essentially in the orientation of the tolyl rings, between which there is π-π stacking (centroid-centroid distance = 3.01 Å). The absolute configuration was confirmed by the determination of the Flack parameter [x = 0.008 (9)]. In the crystal, mol-ecules are connected by two classical N-H⋯N hydrogen bonds and two weak but very short C-H⋯O(sulfon-yl) inter-actions, forming layers lying parallel to the bc plane.
Thermal Relaxation of Adsorbed Atoms in an Intense Laser Field.
1986-07-01
the position of the bond is E(t) = E Re[E exp(- iwLt )] , (2.8) and the coupled levels will be denoted by le> and Ig>. This excited state and ground...With the property P2 = P gg we can expand the exponentials as tiLtP ± iwLt e g W 1 - P + e P , (3.13)g g which allows us to write q(t) = + e P S + e...the dressed states and use the expression (3.14) for q(t), we obtain jA ikt - iWLt iw t qI(t) de k { + e PgS w e SP (4.5) kE where kf = "(4.6) is the
Methyl 4-ethoxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide
Zia-ur-Rehman, Muhammad; Choudary, Jamil Anwar; Elsegood, Mark R. J.; Akbar, Noshin; Latif Siddiqui, Hamid
2008-01-01
In the crystal structure of the title compound, C13H15NO5S, the molecules exhibit weak S=O⋯H—C and C=O⋯H—C intermolecular interactions and arrange themselves into centrosymmetric dimers by means of π–π interactions (ring centroids are separated by 3.619 Å, while the closest C⋯C contacts are 3.514 Å). 1,2-Benzothiazines of this kind have a range of biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis. PMID:21203217
Micromechanical Analyses of Sturzstroms
NASA Astrophysics Data System (ADS)
Imre, Bernd; Laue, Jan; Springman, Sarah M.
2010-05-01
Sturzstroms are very fast landslides of very large initial volume. As type features they display extreme run out, pared with intensive fragmentation of the involved blocks of rock within a collisional flow. The inherent danger to the growing communities in alpine valleys below future potential sites of sturzstroms must be examined and results of predictions of endangered zones allow to impact upon the planning processes in these areas. This calls for the ability to make Type A predictions, according to Lambe (1973), which are done before an event. But Type A predictions are only possible if sufficient understanding of the mechanisms involved in a process is available. The motivation of the doctoral thesis research project presented is therefore to reveal the mechanics of sturzstroms in more detail in order to contribute to the development of a Type A run out prediction model. It is obvious that a sturzstrom represents a highly dynamic collisional granular regime. Thus particles do not only collide but will eventually crush each other. Erismann and Abele (2001) describe this process as dynamic disintegration, where kinetic energy is the main driver for fragmenting the rock mass. In this case an approach combining the type features long run out and fragmentation within a single hypothesis is represented by the dynamic fragmentation-spreading model (Davies and McSaveney, 2009; McSaveney and Davies, 2009). Unfortunately, sturzstroms, and fragmentation within sturzstroms, can not be observed directly in a real event because of their long "reoccurrence time" and the obvious difficulties in placing measuring devices within such a rock flow. Therefore, rigorous modelling is required in particular of the transition from static to dynamic behaviour to achieve better knowledge of the mechanics of sturzstroms, and to provide empirical evidence to confirm the dynamic fragmentation-spreading model. Within this study fragmentation and their effects on the mobility of sturzstroms have been made observable and reproducible within a physical and a distinct element numerical modelling environment (DEM). As link between field evidence gained from the deposits of natural sturzstroms, the physical model within the ETH Geotechnical Drum Centrifuge (Springman et al., 2001) and the numerical model PFC-3D (Cundall and Strack, 1979; Itasca, 2005), serves a deterministic fractal analytical comminution model (Sammis et al., 1987; Steacy and Sammis, 1991). This approach allowed studying the effects of dynamic fragmentation within sturzstroms at true (macro) scale within the distinct element model, by allowing for a micro-mechanical, distinct particle based, and cyclic description of fragmentation at the same time, without losing significant computational efficiency. Theses experiments indicate rock mass and boundary conditions, which allow an alternating fragmenting and dilating dispersive regime to evolve and to be sustained long enough to replicate the spreading and run out of sturzstroms. The fragmenting spreading model supported here is able to explain the run out of a dry granular flow, beyond the travel distance predicted by a Coulomb frictional sliding model, without resorting to explanations by mechanics that can only be valid for certain, specific of the boundary conditions. The implications derived suggest that a sturzstrom, because of its strong relation to internal fractal fragmentation and other inertial effects, constitutes a landslide category of its own. Its mechanics differ significantly from all other gravity driven mass flows. This proposition does not exclude the possible appearance of frictionites, Toma hills or suspension flows etc., but it considers them as secondary features. The application of a fractal comminution model to describe natural and experimental sturzstrom deposits turned out to be a useful tool for sturzstrom research. Implemented within the DEM, it allows simulating the key features of sturzstrom successfully and consistent, based on standardised rock and rock mass properties. It also allows revealing the micro mechanical and energetically aspects of a sturzstrom, which suggests that the DEM, modified and developed in the frame of the research project is a promising tool for further research on sturzstroms. This study provides therefore good empirical evidences both to confirm the dynamic fragmentation-spreading model, and to provide a basis on which a successful Type A run out prediction model of sturzstrom may be developed. Cundall, P.A. and Strack, O.D.L., 1979. A discrete numerical model for granular assemblies. Géotechnique, 29(1): 47-65. Davies, T.R.H. and McSaveney, M.J., 2009. The role of rock fragmentation in the motion of large landslides. Engineering Geology, 109(1-2): 67-79. Erismann, T.H. and Abele, G., 2001. Dynamics of rockslides and rockfalls. Springer, Berlin, Heidelberg, Germany, 316 pp. Itasca, 2005. Particle Flow Code in 3 Dimensions. Itasca Consulting Group, Inc., Minneapolis, Minnesota. Lambe, T.W., 1973. The 13th Rankine Lecture, 1973: Predictions in soil engineering. Géotechnique, 23(2): 149-202. McSaveney, M.J. and Davies, T.R.H., 2009. Surface energy is not one of the energy losses in rock comminution. Engineering Geology, 109(1-2): 109-113. Sammis, C., King, G. and Biegel, R., 1987. The kinematics of gouge deformation. Pure and Applied Geophysics, 125(5): 777-812. Springman, S., Laue, J., Boyle, R., White, J. and Zweidler, A., 2001. The ETH Zurich Geotechnical Drum Centrifuge. International Journal of Physical Modelling in Geotechnics, 1(1): 59-70. Steacy, S.J. and Sammis, C.G., 1991. An automaton for fractal patterns of fragmentation. Nature, 353(6341): 250-252.
Cryogenic distillation facility for isotopic purification of protium and deuterium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.
Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogenmore » isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.« less
Future glaciation and river flow in the Vakhsh and Panj drainage basins, Central Asia
NASA Astrophysics Data System (ADS)
Hoelzle, Martin; Hagg, Wilfried; Wagner, Stephan
2010-05-01
Central Asia is well known as an area of substantial water problems mainly caused by climate change and careless consumption of water resources. As in other parts of the globe where high mountains are surrounded by arid and semi-arid zones, snow and glacier melt are major contributors to runoff and important resources for agriculture in the lowlands. The FAO-UNESCO has started a "Climate Impact Study on Streamflow" to estimate future discharge in the catchments of the rivers Vakhsh (39,100 km2) and Panj(114,000 km2), the two tributaries of Amu Darya river. According to the World Glacier Inventory (WGI) prepared in the mid 20th century, the Panj and Vakhsh catchments have glacier covers of 3,913 km2 and 3,675 km2, respectively. A new inventory was conducted in 2003 within the frame of the GLIMS project. We used a simple parametrization scheme based on steady state conditions to infer the ice volumes for the two different time periods in the past and to extrapolate future changes. The resulting volumes for the WGI are 170-200 km3 for the Panj catchment and 200-240 km3 for the Vakhsh catchment. From the mid of the 20th century to 2003, an area (volume) decrease of 8.2% (10.5%) for the Panj and 7.5% (4.1%) for the Vakhsh catchment was determined. A comparison of two digital elevation models (SRTM of 2001 and Aster 2008) show for the glacier areas a mean mass change of -0.61 m a-1 for the Vakhsh and -0.81 m a-1 for the Panj. Regional climate simulations project a warming of 1.8°C-2.9°C until 2050, while it remains unclear if and in what direction precipitation will change. Assuming a temperature increase of 2°C until 2050 and no change in precipitation, the ice reserves in the two catchments will decline at an accelerated rate in comparison to the past with total volume reduction of 75.5% for the Panj basin and of 53% for the Vakhsh basin. To simulate present-day and future runoff, the HBV-ETH hydrological model was set up in the two sub-basins of Abramov (56 km², 51% glaciated, Vakhsh catchment) and Kudara (1575 km², 21% glaciated, Panj catchment). The daily time step model needs semi-distributed topographic input (area by elevation and exposition classes for glaciated parts and the whole catchment) and is driven by temperature and precipitation. Calibration is performed on the basis of measured runoff and, if available, glacier mass balance. Results show that the model can reproduce observed runoff curves in the two basins quite well, which is expressed by mean model efficiencies of R²=0.84 and R²=0.91 for Abramov and Kudara, respectively. Runoff scenarios for mid-century conditions were created by modifying glaciation and the meteorological input data. Glacier cover was changed according to the findings above and a temperature rise of 2°C was assumed. To test the sensitivity of precipitation changes, additional model runs with an increase and with a decrease of 20% were performed. While annual discharge remains stable or increases up to 30%, a common feature of all runoff scenarios is a seasonal shift of water resources from August towards early summer.
Recent Achievements of the Collaboratory for the Study of Earthquake Predictability
NASA Astrophysics Data System (ADS)
Jackson, D. D.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Zechar, J. D.; Jordan, T. H.
2015-12-01
Maria Liukis, SCEC, USC; Maximilian Werner, University of Bristol; Danijel Schorlemmer, GFZ Potsdam; John Yu, SCEC, USC; Philip Maechling, SCEC, USC; Jeremy Zechar, Swiss Seismological Service, ETH; Thomas H. Jordan, SCEC, USC, and the CSEP Working Group The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 435 models under evaluation. The California testing center, operated by SCEC, has been operational since Sept 1, 2007, and currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. We have reduced testing latency, implemented prototype evaluation of M8 forecasts, and are currently developing formats and procedures to evaluate externally-hosted forecasts and predictions. These efforts are related to CSEP support of the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence has been completed, and the results indicate that some physics-based and hybrid models outperform purely statistical (e.g., ETAS) models. The experiment also demonstrates the power of the CSEP cyberinfrastructure for retrospective testing. Our current development includes evaluation strategies that increase computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model. We describe the open-source CSEP software that is available to researchers as they develop their forecast models (http://northridge.usc.edu/trac/csep/wiki/MiniCSEP). We also discuss applications of CSEP infrastructure to geodetic transient detection and how CSEP procedures are being adapted to ground motion prediction experiments.
K+-selective nanospheres: maximising response range and minimising response time.
Ruedas-Rama, Maria Jose; Hall, Elizabeth A H
2006-12-01
Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking physiological conditions.
NASA Astrophysics Data System (ADS)
Behr, Y.; Cua, G. B.; Clinton, J. F.; Racine, R.; Meier, M.; Cauzzi, C.
2013-12-01
The Virtual Seismologist (VS) method is a Bayesian approach to regional network-based earthquake early warning (EEW) originally formulated by Cua and Heaton (2007). Implementation of VS into real-time EEW codes has been an on-going effort of the Swiss Seismological Service at ETH Zürich since 2006, with support from ETH Zürich, various European projects, and the United States Geological Survey (USGS). VS is one of three EEW algorithms that form the basis of the California Integrated Seismic Network (CISN) ShakeAlert system, a USGS-funded prototype end-to-end EEW system that could potentially be implemented in California. In Europe, VS is currently operating as a real-time test system in Switzerland, western Greece and Istanbul. As part of the on-going EU project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction), VS installations in southern Italy, Romania, and Iceland are planned or underway. The possible use cases for an EEW system will be determined by the speed and reliability of earthquake source parameter estimates. A thorough understanding of both is therefore essential to evaluate the usefulness of VS. For California, we present state-wide theoretical alert times for hypothetical earthquakes by analyzing time delays introduced by the different components in the VS EEW system. Taking advantage of the fully probabilistic formulation of the VS algorithm we further present an improved way to describe the uncertainties of every magnitude estimate by evaluating the width and shape of the probability density function that describes the relationship between waveform envelope amplitudes and magnitude. We evaluate these new uncertainty values for past seismicity in California through off-line playbacks and compare them to the previously defined static definitions of uncertainty based on real-time detections. Our results indicate where VS alerts are most useful in California and also suggest where most effective improvements to the VS EEW system can be made.
Ma, Rendi; Yuan, Hali; An, Jing; Hao, Xiaoyun; Li, Hongbin
2018-01-01
GDSL lipase (GLIP) plays a pivotal role in plant cell growth as a multifunctional hydrolytic enzyme. Herein, a cotton (Gossypium hirsutum L. cv Xuzhou 142) GDSL lipase gene (GhGLIP) was obtained from developing ovules and fibers. The GhGLIP cDNA contained an open reading frame (ORF) of 1,143 base pairs (bp) and encodes a putative polypeptide of 380 amino acid residues. Sequence alignment indicated that GhGLIP includes four enzyme catalytic amino acid residue sites of Ser (S), Gly (G), Asn (N) and His (H), located in four conserved blocks. Phylogenetic tree analysis showed that GhGLIP belongs to the typical class IV lipase family with potential functions in plant secondary metabolism. Subcellular distribution analysis demonstrated that GhGLIP localized to the nucleus, cytoplasm and plasma membrane. GhGLIP was expressed predominantly at 5-15 day post anthesis (dpa) in developing ovules and elongating fibers, measured as mRNA levels and enzyme activity. Ectopic overexpression of GhGLIP in Arabidopsis plants resulted in enhanced seed development, including length and fresh weight. Meanwhile, there was increased soluble sugar and protein storage in transgenic Arabidopsis plants, coupled with the promotion of lipase activity. Moreover, the expression of cotton GhGLIP is induced by ethylene (ETH) treatment in vitro. A 1,954-bp GhGLIP promoter was isolated and expressed high activity in driving green fluorescence protein (GFP) expression in tobacco leaves. Cis-acting element analysis of the GhGLIP promoter (pGhGLIP) indicated the presence of an ethylene-responsive element (ERE), and transgenic tobacco leaves with ectopic expression of pGhGLIP::GFP-GUS showed increased GUS activity after ETH treatment. In summary, these results suggest that GhGLIP is a functional enzyme involved in ovule and fiber development and performs significant roles in seed development.
An, Jing; Hao, Xiaoyun
2018-01-01
GDSL lipase (GLIP) plays a pivotal role in plant cell growth as a multifunctional hydrolytic enzyme. Herein, a cotton (Gossypium hirsutum L. cv Xuzhou 142) GDSL lipase gene (GhGLIP) was obtained from developing ovules and fibers. The GhGLIP cDNA contained an open reading frame (ORF) of 1,143 base pairs (bp) and encodes a putative polypeptide of 380 amino acid residues. Sequence alignment indicated that GhGLIP includes four enzyme catalytic amino acid residue sites of Ser (S), Gly (G), Asn (N) and His (H), located in four conserved blocks. Phylogenetic tree analysis showed that GhGLIP belongs to the typical class IV lipase family with potential functions in plant secondary metabolism. Subcellular distribution analysis demonstrated that GhGLIP localized to the nucleus, cytoplasm and plasma membrane. GhGLIP was expressed predominantly at 5–15 day post anthesis (dpa) in developing ovules and elongating fibers, measured as mRNA levels and enzyme activity. Ectopic overexpression of GhGLIP in Arabidopsis plants resulted in enhanced seed development, including length and fresh weight. Meanwhile, there was increased soluble sugar and protein storage in transgenic Arabidopsis plants, coupled with the promotion of lipase activity. Moreover, the expression of cotton GhGLIP is induced by ethylene (ETH) treatment in vitro. A 1,954-bp GhGLIP promoter was isolated and expressed high activity in driving green fluorescence protein (GFP) expression in tobacco leaves. Cis-acting element analysis of the GhGLIP promoter (pGhGLIP) indicated the presence of an ethylene-responsive element (ERE), and transgenic tobacco leaves with ectopic expression of pGhGLIP::GFP-GUS showed increased GUS activity after ETH treatment. In summary, these results suggest that GhGLIP is a functional enzyme involved in ovule and fiber development and performs significant roles in seed development. PMID:29621331
Matyas, J R; Huang, D; Adams, M E
1999-01-01
Several approaches are commonly used to normalize variations in RNA loading on Northern blots, including: ethidium bromide (EthBr) fluorescence of 18S or 28S rRNA or autoradiograms of radioactive probes hybridized with constitutively expressed RNAs such as elongation factor-1alpha (ELF), glyceraldehyde-3-phosphate dehydrogenase (G3PDH), actin, 18S or 28S rRNA, or others. However, in osteoarthritis (OA) the amount of total RNA changes significantly and none of these RNAs has been clearly demonstrated to be expressed at a constant level, so it is unclear if any of these approaches can be used reliably for normalizing RNA extracted from osteoarthritic cartilage. Total RNA was extracted from normal and osteoarthritic cartilage and assessed by EthBr fluorescence. RNA was then transferred to a nylon membrane hybridized with radioactive probes for ELF, G3PDH, Max, actin, and an oligo-dT probe. The autoradiographic signal across the six lanes of a gel was quantified by scanning densitometry. When compared on the basis of total RNA, the coefficient of variation was lowest for 28S ethidium bromide fluorescence and oligo-dT (approximately 7%), followed by 18S ethidium bromide fluorescence and G3PDH (approximately 13%). When these values were normalized to DNA concentration, the coefficient of variation exceeded 50% for all signals. Total RNA and the signals for 18S, 28S rRNA, and oligo-dT all correlated highly. These data indicate that osteoarthritic chondrocytes express similar ratios of mRNA to rRNA and mRNA to total RNA as do normal chondrocytes. Of all the "housekeeping" probes, G3PDH correlated best with the measurements of RNA. All of these "housekeeping" probes are expressed at greater levels by osteoarthritic chondrocytes when compared with normal chondrocytes. Thus, while G3PDH is satisfactory for evaluating the amount of RNA loaded, its level of expression is not the same in normal and osteoarthritic chondrocytes.
The role of plasmalogen in the oxidative stability of neutral lipids and phospholipids.
Wang, Guang; Wang, Tong
2010-02-24
The role of ethanolamine plasmalogen extracted from bovine brain (BBEP) in maintaining oxidative stability of bulk soybean oil and liposome made with egg phospholipids (PL) was studied. In a purified soybean oil (PSO), the addition of 200 and 1000 ppm of BBEP promoted lipid oxidation at rates of 0.037 and 0.071 (all rates in ln (PV) h(-1), and PV stands for peroxide value), whereas soy lecithin (SL) added in the same amount showed a trend similar to the PSO blank, which had an oxidation rate of 0.025. The PSO with BBEP was susceptible to cupric ion catalyzed oxidation, in that the oil was oxidized much more quickly than the PSO with SL and cupric ion. In commercial soybean oil (CSO) with the presence of tocopherols, SL at 1000 ppm acted synergistically as an antioxidant with the natural tocopherols, but addition of BBEP accelerated lipid oxidation, as evidenced by the oxidative stability index (OSI) test. In the egg PL liposome, the BBEP caused a fast breakdown of the lipid hydroperoxides and consequently promoted more thiobarbituric acid reactive substance (TBARS) formation. The PL oxidation in the presence of copper in the liposome was not affected by the BBEP, which indicates that the hypothesis of ethanolamine plasmalogen (EthPm) chelating cupric ion as the antioxidation mechanism was not supported. The addition of cumene hydroperoxide to the egg PL liposome promoted lipid oxidation, as indicated by a fast development of PV and TBARS. However, the result with cumene hydroperoxide failed to differentiate the effect of BBEP and SL and their concentration on lipid oxidation. On the basis of the observations from this study, we conclude that EthPm is not an antioxidant but rather a pro-oxidant in a bulk lipid system, and it has no significant antioxidant effect for PL oxidation in the liposome.
Earthquake Early Warning Beta Users: Java, Modeling, and Mobile Apps
NASA Astrophysics Data System (ADS)
Strauss, J. A.; Vinci, M.; Steele, W. P.; Allen, R. M.; Hellweg, M.
2014-12-01
Earthquake Early Warning (EEW) is a system that can provide a few to tens of seconds warning prior to ground shaking at a user's location. The goal and purpose of such a system is to reduce, or minimize, the damage, costs, and casualties resulting from an earthquake. A demonstration earthquake early warning system (ShakeAlert) is undergoing testing in the United States by the UC Berkeley Seismological Laboratory, Caltech, ETH Zurich, University of Washington, the USGS, and beta users in California and the Pacific Northwest. The beta users receive earthquake information very rapidly in real-time and are providing feedback on their experiences of performance and potential uses within their organization. Beta user interactions allow the ShakeAlert team to discern: which alert delivery options are most effective, what changes would make the UserDisplay more useful in a pre-disaster situation, and most importantly, what actions users plan to take for various scenarios. Actions could include: personal safety approaches, such as drop cover, and hold on; automated processes and procedures, such as opening elevator or fire stations doors; or situational awareness. Users are beginning to determine which policy and technological changes may need to be enacted, and funding requirements to implement their automated controls. The use of models and mobile apps are beginning to augment the basic Java desktop applet. Modeling allows beta users to test their early warning responses against various scenarios without having to wait for a real event. Mobile apps are also changing the possible response landscape, providing other avenues for people to receive information. All of these combine to improve business continuity and resiliency.
Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument
NASA Astrophysics Data System (ADS)
Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.
2012-09-01
We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.
Diaquabis[2-(2-hydroxyethyl)pyridine-κ2 N,O]cobalt(II) dichloride
Zeghouan, Ouahida; Guenifa, Fatiha; Hadjadj, Nasreddine; Bendjeddou, Lamia; Merazig, Hocine
2013-01-01
In the title salt, [Co(C7H9NO)2(H2O)2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H⋯Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11) Å]. PMID:24109269
Unified analytic representation of physical sputtering yield
NASA Astrophysics Data System (ADS)
Janev, R. K.; Ralchenko, Yu. V.; Kenmotsu, T.; Hosaka, K.
2001-03-01
Generalized energy parameter η= η( ɛ, δ) and normalized sputtering yield Ỹ(η) , where ɛ= E/ ETF and δ= Eth/ ETF, are introduced to achieve a unified representation of all available experimental and sputtering data at normal ion incidence. The sputtering data in the new Ỹ(η) representation retain their original uncertainties. The Ỹ(η) data can be fitted to a simple three-parameter analytic expression with an rms deviation of 32%, well within the uncertainties of original data. Both η and Ỹ(η) have correct physical behavior in the threshold and high-energy regions. The available theoretical data produced by the TRIM.SP code can also be represented by the same single analytic function Ỹ(η) with a similar accuracy.
Mechanical origins of rightward torsion in early chick brain development
NASA Astrophysics Data System (ADS)
Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry
2015-03-01
During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.
NASA Astrophysics Data System (ADS)
Euchner, F.; Schorlemmer, D.; Kästli, P.; Quakeml Group, T
2008-12-01
QuakeML is an XML-based exchange format for seismological data which is being developed using a community-driven approach. It covers basic event description, including picks, arrivals, amplitudes, magnitudes, origins, focal mechanisms, and moment tensors. Contributions have been made from ETH, GFZ, USC, SCEC, USGS, IRIS DMC, EMSC, ORFEUS, GNS, ZAMG, BRGM, and ISTI. The current release (Version 1.1, Proposed Recommendation) reflects the results of a public Request for Comments process which has been documented online at http://quakeml.org/RFC_BED_1.0. QuakeML has recently been adopted as a distribution format for earthquake catalogs by GNS Science, New Zealand, and the European-Mediterranean Seismological Centre (EMSC). These institutions provide prototype QuakeML web services. Furthermore, integration of the QuakeML data model in the CSEP (Collaboratory for the Study of Earthquake Predictability, http://www.cseptesting.org) testing center software developed by SCEC is under way. QuakePy is a Python- based seismicity analysis toolkit which is based on the QuakeML data model. Recently, QuakePy has been used to implement the PMC method for calculating network recording completeness (Schorlemmer and Woessner 2008, in press). Completeness results for seismic networks in Southern California and Japan can be retrieved through the CompletenessWeb (http://completenessweb.org). Future QuakeML development will include an extension for macroseismic information. Furthermore, development on seismic inventory information, resource identifiers, and resource metadata is under way. Online resources: http://www.quakeml.org, http://www.quakepy.org
Crystal structure of (1-ethoxyethylidene)dimethylazanium tetraphenylborate
Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi
2015-01-01
In the cation of the title salt, C6H14NO+·C24H20B−, the C—N bond lengths are 1.297 (2), 1.464 (2) and 1.468 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.309 (2) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯π interactions between the iminium H atoms and the phenyl C atoms of the anion are present. The phenyl rings form aromatic pockets, in which the iminium ions are embedded. PMID:26870564
Crystal structure of diethyl 2-amino-6-[(thiophen-3-yl)ethynyl]azulene-1,3-dicarboxylate
Förster, Sebastian; Seichter, Wilhelm; Weber, Edwin
2015-01-01
The title compound, C22H19NO4S, has an almost planar geometry supported by intramolecular N—H⋯O and C—H⋯O hydrogen bonds. The thiophene ring is inclined to the azulene ring by 4.85 (16)°, while the ethoxycarbonyl groups are inclined to the azulene ring by 7.0 (2) and 5.7 (2)°. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(12) ring motif. The dimers are linked via C—H⋯π interactions, forming sheets parallel to (10-1). PMID:25844254
Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes.
Iizumi, Yoko; Yudasaka, Masako; Kim, Jaeho; Sakakita, Hajime; Takeuchi, Tsukasa; Okazaki, Toshiya
2018-04-19
Chemical modification of carbon nanotube surface can controllably modulate their optical properties. Here we report a simple and effective synthesis method of oxygen-doped single-walled carbon nanotubes (o-SWCNTs), in which a thin film of SWCNTs is just irradiated under the UV light for a few minutes in air. By using this method, the epoxide-type oxygen-adducts (ep-SWCNTs) were produced in addition to the ether-type oxygen-adducts (eth-SWCNTs). The Treated (6, 5) ep-SWCNTs show a red-shifted luminescence at ~1280 nm, which corresponds to the most transparent regions for bio-materials. Immunoassay, fluorescence vascular angiography and observation of the intestinal contractile activity of mice were demonstrated by using the produced o-SWCNTs as infrared fluorescent labels and imaging agents.
Engineering matter interactions using squeezed vacuum
NASA Astrophysics Data System (ADS)
Zeytinoglu, Sina; Imamoglu, Atac; Huber, Sebastian
Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by the quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the latter can be used to engineer the strength and the range of inter-particle interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or waveguides which modify the electromagnetic fluctuations. In this submission, we demonstrate theoretically that the enhanced fluctuations in the anti-squeezed quadrature of a squeezed vacuum state allows for engineering interactions between electric dipoles without the need for a photonic cavity or waveguide. Thus, the strength and range of the resulting dipole-dipole coupling can be engineered by dynamically changing the spatial profile of the squeezed vacuum in a travelling-wave geometry. ETH-Zurich.
Engineering matter interactions using squeezed vacuum
NASA Astrophysics Data System (ADS)
Zeytinoglu, Sina; Imamoglu, Atac; Huber, Sebastian
Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by the quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the latter can be used to engineer the strength and the range of inter-particle interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or waveguides which modify the electromagnetic fluctuations. In this talk, we demonstrate theoretically that the enhanced fluctuations in the anti-squeezed quadrature of a squeezed vacuum state allows for engineering interactions between electric dipoles without the need for a photonic cavity or waveguide. Thus, the strength and range of the resulting dipole-dipole coupling can be engineered by dynamically changing the spatial profile of the squeezed vacuum in a travelling-wave geometry. ETH Zurich.
59th Medical Wing Clinical Research Division Clinical Investigations Program Pathology Poster
2017-04-28
or ~h 711:>hs ~ ngsu~p rt H: n . 2. PrrJ: 3. relie r ~d study. Ir this Is II ~hnlclll ~b an senmt repGrtlbl1~ ,etc..) n the Prctocol n:e’ !:ox. the...hope 4. 1’r E. re block • use lin eleetrtlll1l::sl;l 7. a:tmn:four o:r.;lll~ ro ch leibe aooompll cor"cem 1=.e3setx:fImC! o 59 Il:5lIlI31 n 502 I (Eth...the esenllliloo does nat cre~ lilt)’ cause ror CoO cor. Isa 000 1)’.~ elhlcs ~o1ew Is nat requRd, 5 n ::e e DoD enuty Is tlIe10 II Is a no.n-DoDcomm
Insect growth regulatory activity of Blechnum chilense.
Hincapié, Carlos A; Monsalve, Zulma; Parada, Katherine; Lamilla, Claudio; Alarcón, Julio; Céspedes, Carlos L; Seigler, David
2011-08-01
The genus Blechnum has 13 species that are common plants, well-distributed in Chile. Here, we report a phytochemical analysis of B. chilense (Kaulf.) Mett., as well as the insecticidal effects of extracts of this plant. From the n-hexane fraction four phytoecdysones were isolated: ecdysone, ponasterone, shidasterone and 2-deoxycrustecdysone. A bioassay with Drosophila melanogaster larvae was used to evaluate insecticidal activity. The EtOAc and n-hexane fractions at 800 ppm caused 66.7 and 50.0% larval mortality, respectively. Treatments with both extracts at 800 ppm caused the greatest larval mortality, whereas treatments with 500 and 200 ppm induced premature pupation compared with the control and the highest adult mortality, probably due to interference with ecdysteroid metabolism and inhibition of ecdysis triggering hormone (ETH). The dead adult flies exhibited malformations.
NASA Astrophysics Data System (ADS)
Portner, Hanspeter; Wolf, Annett; Rühr, Nadine; Bugmann, Harald
2010-05-01
Many biogeochemical models have been applied to study the response of the carbon cycle to changes in climate, whereby the process of carbon uptake (photosynthesis) has usually gained more attention than the equally important process of carbon release by respiration. The decomposition of soil organic matter is driven by a combination of factors like soil temperature, soil moisture and litter quality. We have introduced dependence on litter substrate quality to heterotrophic soil respiration in the ecosystem model LPJ-GUESS [Smith et al.(2001)]. We were interested in differences in model projections before and after the inclusion of the dependency both in respect to short- and long-term soil carbon dynamics. The standard implementation of heterotrophic soil respiration in LPJ-GUESS is a simple carbon three-pool model whose decay rates are dependent on soil temperature and soil moisture. We have added dependence on litter quality by coupling LPJ-GUESS to the soil carbon model Yasso07 [Tuomi et al.(2008)]. The Yasso07 model is based on an extensive number of measurements of litter decomposition of forest soils. Apart from the dependence on soil temperature and soil moisture, the Yasso07 model uses carbon soil pools representing different substrate qualities: acid hydrolyzable, water soluble, ethanol soluble, lignin compounds and humus. Additionally Yasso07 differentiates between woody and non-woody litter. In contrary to the reference implementation of LPJ-GUESS, in the new model implementation, the litter now is divided according to its specific quality and added to the corresponding soil carbon pool. The litter quality thereby differs between litter source (leaves, roots, stems) and plant functional type (broadleaved, needleleaved, grass). The two contrasting model implementations were compared and validated at one specific CarboEuropeIP site (Lägern, Switzerland) and on a broader scale all over Switzerland. Our focus lay on the soil respiration for the years 2006 and 2007 [Rühr(2009)] and present soil carbon stocks [Heim et al.(2009)]. Our Results show, that for short-term soil carbon dynamics, e.g. estimates of heterotrophic soil respiration on an annual basis, the inclusion of the dependency on litter quality is not necessary, as the differences are minor only. However, when considering long-term soil carbon dynamics, e.g. simulated estimates of present soil carbon content, the dependency on litter quality shows effect, as there are correlations with specific site factors such as site location and forest type. The inclusion of the dependence on litter quality therefore may be of importance for the projection of future soil carbon dynamics, as forest types may well be altered due to climatic change. References [Heim et al.(2009)] A. Heim, L. Wehrli, W. Eugster, and M.W.I. Schmidt. Effects of sampling design on the probability to detect soil carbon stock changes at the swiss CarboEurope site Lägeren. Geoderma, 149(3-4):347-354, 2009. [Rühr(2009)] Nadine Katrin Rühr. Soil respiration in a mixed mountain forest : environmental drivers and partitioning of component fluxes. PhD thesis, ETH, 2009. [Smith et al.(2001)] Benjamin Smith, I. Colin Prentice, and Martin T. Sykes. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within european climate space. Global Ecology and Biogeography, 10(6):621-637, 2001. [Tuomi et al.(2008)] Mikko Tuomi, Pekka Vanhala, Kristiina Karhu, Hannu Fritze, and Jari Liski. Heterotrophic soil respiration-Comparison of different models describing its temperature dependence. Ecological Modelling, 211(1-2): 182-190, 2008.
Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II
NASA Astrophysics Data System (ADS)
Smith, D.; Boese, M.; Heaton, T. H.
2015-12-01
Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.
The crystal structures of six (2E)-3-aryl-1-(5-halogeno-thio-phen-2-yl)prop-2-en-1-ones.
Naik, Vasant S; Yathirajan, Hemmige S; Jasinski, Jerry P; Smolenski, Victoria A; Glidewell, Christopher
2015-09-01
The structures of six chalcones containing 5-halogeno-thio-phen-2-yl substituents are reported: (2E)-1-(5-chloro-thio-phen-2-yl)-3-(4-ethyl-phen-yl)prop-2-en-1-one, C15H13ClOS, (I), and (2E)-1-(5-bromo-thio-phen-2-yl)-3-(4-ethyl-phen-yl)prop-2-en-1-one, C15H13BrOS, (II), are isostructural in space group P-1, while (2E)-1-(5-chloro-thio-phen-2-yl)-3-(4-eth-oxy-phen-yl)prop-2-en-1-one, C15H13ClO2S, (III), and (2E)-1-(5-bromo-thio-phen-2-yl)-3-(4-eth-oxy-phen-yl)prop-2-en-1-one C15H13BrO2S, (IV), are isostructural in space group P21/c. There are no hydrogen bonds of any kind in the structures of compounds (I) and (II), but in the structures of compounds (III) and (IV), the mol-ecules are linked into C(7) chains by means of C-H⋯O hydrogen bonds. In the structure of (2E)-3-(4-bromo-phen-yl)-1-(5-chloro-thio-phen-2-yl)prop-2-en-1-one, C13H8BrClOS, (V), there are again no hydrogen bonds nor π-π stacking inter-actions but in that of (2E)-1-(5-bromo-thio-phen-2-yl)-3-(3-meth-oxy-phen-yl)prop-2-en-1-one, C14H11BrO2S, (VI), the mol-ecules are linked into C(5) chains by C-H⋯O hydrogen bonds. In each of compounds (I)-(VI), the mol-ecular skeletons are close to planarity, and there are short halogen⋯halogen contacts in the structures of compounds (II) and (V) and a short Br⋯O contact in the structure of compound (VI). Comparisons are made with the structures of some similar compounds.
McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.
2014-01-01
A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs over a radioelement-rich granite phase within the pluton that is likely not related to mineralization. Neither mineralization type displays a well-defined airborne magnetic signature.
Azizian, Mohammad F; Marshall, Ian P G; Behrens, Sebastian; Spormann, Alfred M; Semprini, Lewis
2010-04-01
A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to "Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis
2010-04-01
A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies.
NASA Astrophysics Data System (ADS)
Faccenna, C.; Funiciello, F.
2012-04-01
EC-Marie Curie Initial Training Networks (ITN) projects aim to improve the career perspectives of young generations of researchers. Institutions from both academic and industry sectors form a collaborative network to recruit research fellows and provide them with opportunities to undertake research in the context of a joint research training program. In this frame, TOPOMOD - one of the training activities of EPOS, the new-born European Research Infrastructure for Geosciences - is a funded ITN project designed to investigate and model how surface processes interact with crustal tectonics and mantle convection to originate and develop topography of the continents over a wide range of spatial and temporal scales. The multi-disciplinary approach combines geophysics, geochemistry, tectonics and structural geology with advanced geodynamic numerical/analog modelling. TOPOMOD involves 8 European research teams internationally recognized for their excellence in complementary fields of Earth Sciences (Roma TRE, Utrecht, GFZ, ETH, Cambridge, Durham, Rennes, Barcelona), to which are associated 5 research institutions (CNR-Italy, Univ. Parma, Univ. Lausanne, Univ. Montpellier, Univ. Mainz) , 3 high-technology enterprises (Malvern Instruments, TNO, G.O. Logical Consulting) and 1 large multinational oil and gas company (ENI). This unique network places emphasis in experience-based training increasing the impact and international visibility of European research in modeling. Long-term collaboration and synergy are established among the overmentioned research teams through 15 cross-disciplinary research projects that combine case studies in well-chosen target areas from the Mediterranean, the Middle and Far East, west Africa, and South America, with new developments in structural geology, geomorphology, seismology, geochemistry, InSAR, laboratory and numerical modelling of geological processes from the deep mantle to the surface. These multidisciplinary projects altogether aim to answer a key question in earth Sciences: how do deep and surface processes interact to shape and control the topographic evolution of our planet.
NASA Astrophysics Data System (ADS)
Niemand, C.; Kuhn, K.; Schwarze, R.
2010-12-01
SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for management actions. The model comparisons within reference areas showed significant differences in outcome. The values of water balance components calculated with different models partially fluctuate by a multiple of their value. The SHARP project was prepared in several previous projects that were testing suitable water balance models and is now able to assist the knowledge transfer.
Finite-Fault and Other New Capabilities of CISN ShakeAlert
NASA Astrophysics Data System (ADS)
Boese, M.; Felizardo, C.; Heaton, T. H.; Hudnut, K. W.; Hauksson, E.
2013-12-01
Over the past 6 years, scientists at Caltech, UC Berkeley, the Univ. of Southern California, the Univ. of Washington, the US Geological Survey, and ETH Zurich (Switzerland) have developed the 'ShakeAlert' earthquake early warning demonstration system for California and the Pacific Northwest. We have now started to transform this system into a stable end-to-end production system that will be integrated into the daily routine operations of the CISN and PNSN networks. To quickly determine the earthquake magnitude and location, ShakeAlert currently processes and interprets real-time data-streams from several hundred seismic stations within the California Integrated Seismic Network (CISN) and the Pacific Northwest Seismic Network (PNSN). Based on these parameters, the 'UserDisplay' software predicts and displays the arrival and intensity of shaking at a given user site. Real-time ShakeAlert feeds are currently being shared with around 160 individuals, companies, and emergency response organizations to gather feedback about the system performance, to educate potential users about EEW, and to identify needs and applications of EEW in a future operational warning system. To improve the performance during large earthquakes (M>6.5), we have started to develop, implement, and test a number of new algorithms for the ShakeAlert system: the 'FinDer' (Finite Fault Rupture Detector) algorithm provides real-time estimates of locations and extents of finite-fault ruptures from high-frequency seismic data. The 'GPSlip' algorithm estimates the fault slip along these ruptures using high-rate real-time GPS data. And, third, a new type of ground-motion prediction models derived from over 415,000 rupture simulations along active faults in southern California improves MMI intensity predictions for large earthquakes with consideration of finite-fault, rupture directivity, and basin response effects. FinDer and GPSlip are currently being real-time and offline tested in a separate internal ShakeAlert installation at Caltech. Real-time position and displacement time series from around 100 GPS sensors are obtained in JSON format from RTK/PPP(AR) solutions using the RTNet software at USGS Pasadena. However, we have also started to investigate the usage of onsite (in-receiver) processing using NetR9 with RTX and tracebuf2 output format. A number of changes to the ShakeAlert processing, xml message format, and the usage of this information in the UserDisplay software were necessary to handle the new finite-fault and slip information from the FinDer and GPSlip algorithms. In addition, we have developed a framework for end-to-end off-line testing with archived and simulated waveform data using the Earthworm tankplayer. Detailed background information about the algorithms, processing, and results from these test runs will be presented.
Ethyl 4-anilino-2,6-bis(4-chlorophenyl)-1-phenyl-1,2,5,6-tetrahydropyridine-3-carboxylate
Yu, Jianfeng; Tang, Shiming; Zeng, Jingbin; Yan, Zifeng
2013-01-01
The title compound, C32H28Cl2N2O2, was synthesized by a multicomponent reaction of 4-chlorobenzaldehyde, aniline and ethyl acetoacetate. The central 1,2,5,6-tetrahydropyridine ring exhibits a distorted boat conformation and the two chlorophenyl rings attached to the central ring at positions 2 and 6 are oriented in opposite directions. The two O atoms of the ethoxycarbonyl group are involved in intramolecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O hydrogen bonds link molecules related by translation along the b axis into chains. PMID:23795109
1984-10-31
PURPOSE UTILITIES! C. C.CT2 .t tt.t t.t, 4.t44.• 4 *• tt 4t t • t t tt* t tttt t SCONTROL check-2 SUBRO.UTINE ccat2 .sl,lenl,s2,len2,sr, lenr ,nlenr) C.4...same address as sI or s2 C-C t lenr length of sr Cin 4lenr naxiPsum length allowable for sr C.tETH0Q. C D.TS. refers to a Delimited Text String, in which...DECLARATIONS **. !9TESER !enIlen2,1!n3,!en4, lenr ,m1enr CKARACTER.25S sl, sZ, s3, s4., sr C.* ABSTRACT *.. Cl.PURPOSE -erfor..s sr sl ’’ s2 ’: s3 C.OUOIT HIS.TORY
(S)-N-{1-[5-(4-Chloro-benzyl-sulfanyl)-1,3,4-oxadiazol-2-yl]eth-yl}-4-methyl-benzene-sulfonamide.
Syed, Tayyaba; Hameed, Shahid; Jones, Peter G
2011-10-01
The title compound, C(18)H(18)ClN(3)O(3)S(2), adopts by folding the form of a distorted disc. Inter-planar angles are 29.51 (7) and 63.43 (7)° from the five-membered ring to the aromatic systems and 34.80 (6)° between these two latter rings. The absolute configuration was confirmed by determination of the Flack parameter. In the crystal, the mol-ecules are linked by four hydrogen bonds, one classical (N-H⋯N) and three 'weak' (C-H⋯O), forming layers parallel to the ac plane; these are in turn linked in the third dimension by Cl⋯N [3.1689 (16) Å] and Cl⋯O [3.3148 (13) Å] contacts to the heterocyclic ring.
Methyl 6-eth-oxy-3-phenyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazole-3a-car-boxylate.
Suresh, G; Srinivasan, J; Bakthadoss, M; Aravindhan, S
2013-02-01
In the title compound, C(20)H(19)NO(5), the dihedral angle between the mean plane of the pyran ring (which has a half-chair conformation) and the benzene ring of the chromeno ring system is 7.21 (7)°. The dihedral angle between the mean plane of the chromeno ring system and the isoxazole ring is 21.78 (6)°, while the isoxazole ring forms a dihedral angle of 72.60 (8)° with the attached phenyl ring. In the crystal, mol-ecules are linked via pairs of C-H⋯O hydrogen bonds, forming inversion dimers with an R(2) (2)(10) ring motif. These dimers are linked via C-H⋯N hydrogen bonds, forming chains along [001].
First light from student Pascal Keller, Eschenbach/Switzerland on 6-8 June 2014
NASA Astrophysics Data System (ADS)
Monstein, Christian
2014-05-01
Pascal Keller, a student during his exams for general qualification for university entrance, recently set up a Long Wavelength Array (LWA) antenna and a Callisto system to observe solar radio burst activity in his back yard (figure 1) in Eschenbach, Switzerland. The antenna, spectrometer and software were provided on loan by Institute for Astronomy, ETH Zurich. On the first observation day he observed his 1st light, a type II solar radio burst and some type III bursts. His aim is now to compare this LWA observation with others from the e-Callisto network, which is composed of different antenna types and different antenna sizes as well different locations worldwide. His first four observations on 6 and 8 June 2014 are presented in figures 2 to 5 and associated tables 1 to 4.
The global mean energy balance under cloud-free conditions
NASA Astrophysics Data System (ADS)
Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles
2017-04-01
A long standing problem of climate models is their overestimation of surface solar radiation not only under all-sky, but also under clear-sky conditions (Wild et al. 1995, Wild et al. 2006). This overestimation reduced over time in consecutive model generations due to the simulation of stronger atmospheric absorption. Here we analyze the clear sky fluxes of the latest climate model generation from the Coupled Model Intercomparison Project Phase 5 (CMIP5) against an expanded and updated set of direct observations from the Baseline Surface Radiation Network (BSRN). Clear sky climatologies from these sites have been composed based on the Long and Ackermann (2000) clear sky detection algorithm (Hakuba et al. 2017), and sampling issues when comparing with model simulated clear sky fluxes have been analyzed in Ott (2017). Overall, the overestimation of clear sky insolation in the CMIP5 models is now merely 1-2 Wm-2 in the multimodel mean, compared to 4 Wm-2 in CMIP3 and 6 Wm-2 in AMIPII (Wild et al. 2006). Still a considerable spread in the individual model biases is apparent, ranging from -2 Wm-2 to 10 Wm-2 when averaged over 53 globally distributed BSRN sites. This bias structure is used to infer best estimates for present day global mean clear sky insolation, following an approach developped in Wild et al. (2013, 2015, Clim. Dyn.) for all sky fluxes. Thereby the flux biases in the various models are linearly related to their respective global means. A best estimate can then be inferred from the linear regression at the intersect where the bias against the surface observations becomes zero. This way we obtain a best estimate of 247 Wm-2 for the global mean insolation at the Earth surface under cloud free conditions, and a global mean absorbed solar radiation of 214 Wm-2 in the cloud-free atmosphere, assuming a global mean surface albedo of 13.5%. Combined with a best estimate for the net influx of solar radiation at the Top of Atmosphere under cloud free conditions from CERES EBAF of 286 Wm-2, this leaves an amount of 72 Wm-2 absorbed solar radiation in the cloud free atmosphere. The 72 Wm-2 closely match our best estimate for the global mean cloud-free atmospheric absorption in Wild et al. JGR (2006) based on older models and their biases against much fewer direct observation. This indicates that the estimate of global mean solar absorption in the cloud free atmosphere slightly above 70 Wm-2 is fairly robust. In comparison, the global mean solar absorption under all sky conditions was estimated in Wild et al. (2015) at 80 Wm-2 based on the same approach. The difference between the all- and clear-sky absorption represents the cloud radiative effect on the atmospheric absorption, and is thus estimated here to be around 8 Wm-2. This is similar in magnitude to the 11 Wm-2 derived by Hakuba et al. (2017) when averaged over the atmospheric cloud effect determined at 36 BSRN station. We applied the same methodology also for the longwave fluxes. Thereby we obtained a best estimate for the global mean clear sky downward longwave flux at the Earth surface of 214 Wm-2. Together with a surface and TOA upward longwave flux of 398 Wm-2 and 266 Wm-2, respectively, this leaves an atmospheric longwave divergence under clear sky conditions of 182 Wm-2. Selected related references: Hakuba, M. Z., Folini, D., Wild, M., Long, C. N., Schaepman-Strub, G., and Stephens, G.L., 2017: Cloud Effects on Atmospheric Solar Absorption in Light of Most Recent Surface and Satellite Measurements. AIP Conf. Proc. (in press). Ott, P., 2017: Master Thesis at ETH Zurich (in prep.). Wild, M., Ohmura, A., Gilgen, H., and Roeckner, E., 1995: Validation of GCM simulated radiative fluxes using surface observations. J. Climate, 8, 1309-1324. Wild, M., Long, C.N., and Ohmura, A., 2006: Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J. Geophys. Res., 111, D01104, doi:10.1029/2005JD006118. Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.
NASA Astrophysics Data System (ADS)
2008-11-01
Mohab Abou ZeidInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Ido AdamMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Henrik AdorfLeibniz Universität Hannover Mohammad Ali-AkbariIPM, Tehran Antonio Amariti Università di Milano-Bicocca Nicola Ambrosetti Université de Neuchâtel Martin Ammon Max-Planck-Institut für Physik, München Christopher AndreyÉcole Polytechnique Fédérale de Lausanne (EPFL) Laura AndrianopoliPolitecnico di Torino David AndriotLPTHE, Université UPMC Paris VI Carlo Angelantonj Università di Torino Pantelis ApostolopoulosUniversitat de les Illes Balears, Palma Gleb ArutyunovInstitute for Theoretical Physics, Utrecht University Davide AstolfiUniversità di Perugia Spyros AvramisUniversité de Neuchâtel Mirela BabalicChalmers University, Göteborg Foday BahDigicom Ioannis Bakas University of Patras Igor BandosUniversidad de Valencia Jose L F BarbonIFTE UAM/CSIC Madrid Till BargheerMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marco Baumgartl Eidgenössische Technische Hochschule (ETH), Zürich James BedfordImperial College London Raphael BenichouLaboratoire de Physique Théorique, École Normale Supérieure, Paris Francesco Benini SISSA, Trieste Eric Bergshoeff Centre for Theoretical Physics, University of Groningen Alice BernamontiVrije Universiteit, Brussel Julia BernardLaboratoire de Physique Théorique, École Normale Supérieure, Paris Adel Bilal Laboratoire de Physique Théorique, École Normale Supérieure, Paris Marco Billo' Università di Torino Matthias Blau Université de Neuchâtel Guillaume BossardAlbert-Einstein-Institut, Golm Leonardo BriziÉcole Polytechnique Fédérale de Lausanne (EPFL) Johannes BroedelLeibniz Universität Hannover (AEI) Tom BrownQueen Mary, University of London Ilka BrunnerEidgenössische Technische Hochschule (ETH), Zürich Erling BrynjolfssonUniversity of Iceland Dmitri BykovSteklov Institute, Moscow and Trinity College, Dublin Joan CampsUniversitat de Barcelona Davide CassaniLaboratoire de Physique Théorique, École Normale Supérieure, Paris Alejandra CastroUniversity of Michigan Claudio Caviezel Max-Planck-Institut für Physik, München Alessio Celi Universitat de Barcelona Anna Ceresole Istituto Nazionale di Fisica Nucleare, Università di Torino Athanasios ChatzistavrakidisNational Technical University of Athens Wissam ChemissanyCentre for Theoretical Physics, University of Groningen Eugen-Mihaita CioroianuUniversity of Craiova Andres CollinucciTechnische Universität Wien Paul CookUniversità di Roma, Tor Vergata Lorenzo CornalbaUniversità di Milano-Bicocca Aldo CotroneKatholieke Universiteit Leuven Ben Craps Vrije Universiteit, Brussel Stefano Cremonesi SISSA, Trieste Riccardo D'AuriaPolitecnico di Torino Gianguido Dall'AgataUniversity of Padova Jose A de AzcarragaUniversidad de Valencia Jan de BoerInstituut voor Theoretische Fysica, Universiteit van Amsterdam Sophie de BuylInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Marius de LeeuwUtrecht University Frederik De RooVrije Universiteit, Brussel Jan De Rydt Katholieke Universiteit Leuven and CERN, Geneva Bernard de WitInstitute for Theoretical Physics, Utrecht University Stephane DetournayIstituto Nazionale di Fisica Nucleare, Sezione di Milano Paolo Di Vecchia Niels Bohr Institute, København Eugen DiaconuUniversity of Craiova Vladimir Dobrev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia Nick DoreyUniversity of Cambridge Hajar Ebrahim NajafabadiIPM, Tehran Federico Elmetti Università di Milano Oleg Evnin Vrije Universiteit, Brussel Francesco Fiamberti Università di Milano Davide Forcella SISSA, Trieste and CERN, Geneva Valentina Forini Humboldt-Universität zu Berlin Angelos Fotopoulos Università di Torino Denis Frank Université de Neuchâtel Marialuisa Frau Università di Torino Matthias Gaberdiel Eidgenössische Technische Hochschule (ETH), Zürich Diego Gallego SISSA/ISAS, Trieste Maria Pilar Garcia del MoralIstituto Nazionale di Fisica Nucleare, Università di Torino Valentina Giangreco Marotta PulettiUppsala University Valeria L GiliQueen Mary, University of London Luciano GirardelloUniversità di Milano-Bicocca Gian GiudiceCERN, Geneva Kevin Goldstein Institute for Theoretical Physics, Utrecht University Joaquim Gomis Universitat de Barcelona Pietro Antonio GrassiUniversità del Piemonte Orientale, Alessandria Viviane GraßLudwig-Maximilians-Universität, München Gianluca Grignani Università di Perugia Luca Griguolo Università di Parma Johannes GrosseJagiellonian University, Krakow Umut Gursoy École Polytechnique, Palaiseau Norberto Gutierrez RodriguezUniversity of Oviedo Babak HaghighatPhysikalisches Institut, Universität Bonn Troels Harmark Niels Bohr Institute, København Robert HaslhoferEidgenössische Technische Hochschule (ETH), Zürich Tae-Won HaPhysikalisches Institut, Universität Bonn Alexander HauptImperial College London and Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marc HenneauxUniversité Libre de Bruxelles Johannes HennLAPTH, Annecy-le-Vieux Shinji HiranoNiels Bohr Institute, København Stefan HoheneggerEidgenössische Technische Hochschule (ETH), Zürich Jan HomannLudwig-Maximilians-Universität, München Gabriele Honecker CERN, Geneva Joost HoogeveenInstituut voor Theoretische Fysica, Universiteit van Amsterdam Mechthild HuebscherUniversidad Autónoma de Madrid Chris HullImperial College London Carmen-Liliana IonescuUniversity of Craiova Ella JasminUniversité Libre de Bruxelles Konstantin KanishchevInstitute of Theoretical Physics, University of Warsaw Stefanos Katmadas Utrecht University Alexandros KehagiasNational Technical University of Athens Christoph Keller Eidgenössische Technische Hochschule (ETH), Zürich Patrick Kerner Max-Planck-Institut für Physik, München Rebiai KhaledLaboratoire de Physique Mathématique et Physique Subatomique, Université Mentouri, Constantine Elias Kiritsis Centre de Physique Théorique, École Polytechnique, Palaiseau and University of Crete Denis KleversPhysikalisches Institut, Universität Bonn Paul Koerber Max-Planck-Institut für Physik, München Simon Koers Max-Planck-Institut für Physik, München Karl KollerLudwig-Maximilians-Universität, München Peter Koroteev Institute for Theoretical and Experimental Physics (ITEP), Moscow and Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Alexey KoshelevVrije Universiteit, Brussel Costas KounnasÉcole Normale Supérieure, Paris Daniel KreflCERN, Geneva Charlotte KristjansenNiels Bohr Institute, København Finn LarsenCERN, Geneva and University of Michigan Arnaud Le DiffonÉcole Normale Supérieure, Lyon Michael LennekCentre de Physique Théorique, École Polytechnique, Palaiseau Alberto Lerda Università del Piemonte Orientale, Alessandria Andreas LiberisUniversity of Patras Maria A Lledo Universidad de Valencia Oscar Loaiza-Brito CINVESTAV, Mexico Florian Loebbert Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Yolanda Lozano University of Oviedo Dieter Luest Ludwig-Maximilians-Universität, München Tomasz Łukowski Jagiellonian University, Krakow Diego Mansi University of Crete Alberto Mariotti Università di Milano-Bicocca Raffaele Marotta Istituto Nazionale di Fisica Nucleare, Napoli Alessio Marrani Istituto Nazionale di Fisica Nucleare and LNF, Firenze Andrea Mauri University of Crete Liuba Mazzanti École Polytechnique, Palaiseau Sean McReynoldsUniversità di Milano-Bicocca AKM Moinul Haque Meaze Chittagong University Patrick Meessen Instituto de Física Teórica, Universidad Autónoma de Madrid Carlo MeneghelliUniversità di Parma and Albert-Einstein-Institut, Golm Lotta Mether University of Helsinki and CERN, Geneva René Meyer Max-Planck-Institut für Physik, München Georgios MichalogiorgakisCenter de Physique Théorique, École Polytechnique, Palaiseau Giuseppe Milanesi Eidgenössische Technische Hochschule (ETH), Zürich Samuel Monnier Université de Genève Wolfgang MueckUniversità di Napoli Federico II Elena Méndez Escobar University of Edinburgh Iulian Negru University of Craiova Emil NissimovInstitute for Nuclear Research and Nuclear Energy, Sofia Teake NutmaCentre for Theoretical Physics, University of Groningen Niels Obers Niels Bohr Institute, København Olof Ohlsson SaxUppsala University Rodrigo OleaIstituto Nazionale di Fisica Nucleare, Sezione di Milano Domenico OrlandoUniversité de Neuchâtel Marta Orselli Niels Bohr Institute, København Tomas OrtinInstituto de Física Teórica, Universidad Autónoma de Madrid Yaron OzTel Aviv University Enrico PajerLudwig-Maximilians-Universität, München Angel Paredes GalanUtrecht University Sara PasquettiUniversité de Neuchâtel Silvia PenatiUniversità di Milano-Bicocca Jan PerzKatholieke Universiteit Leuven Igor PesandoUniversità di Torino Tassos PetkouUniversity of Crete Marios PetropoulosCenter de Physique Théorique, École Polytechnique, Palaiseau Franco PezzellaIstituto Nazionale di Fisica Nucleare, Sezione di Napoli Moises Picon PonceUniversity of Padova Marco PirroneUniversità di Milano-Bicocca Andrea PrinslooUniversity of Cape Town Joris RaeymaekersKatholieke Universiteit Leuven Alfonso RamalloUniversidade de Santiago de Compostela Carlo Alberto RattiUniversità di Milano-Bicocca Marco RauchPhysikalisches Institut, Universität Bonn Ronald Reid-EdwardsUniversity of Hamburg Patricia RitterUniversity of Edinburgh Peter RoenneDESY, Hamburg Jan RosseelUniversità di Torino Clement RuefService de Physique Théorique, CEA Saclay Felix RustMax-Planck-Institut für Physik, München Thomas RyttovNiels Bohr Institute, København and CERN, Geneva Agustin Sabio VeraCERN, Geneva Christian SaemannTrinity College, Dublin Houman Safaai SISSA, Trieste Henning SamtlebenÉcole Normale Supérieure, Lyon Alberto SantambrogioIstituto Nazionale di Fisica Nucleare, Sezione di Milano Silviu Constantin SararuUniversity of Craiova Ricardo SchiappaCERN, Geneva Ionut Romeo SchiopuChalmers University, Göteborg Cornelius Schmidt-ColinetEidgenössische Technische Hochschule (ETH), Zürich Johannes SchmudeSwansea University Waldemar SchulginLaboratoire de Physique Théorique, École Normale Supérieure, Paris Domenico SeminaraUniversità di Firenze Alexander SevrinVrije Universiteit, Brussel Konstadinos SfetsosUniversity of Patras Igor ShenderovichSt Petersburg State University Jonathan ShockUniversidade de Santiago de Compostela Massimo SianiUniversità di Milano-Bicocca Christoph SiegUniversità Degli Studi di Milano Joan SimonUniversity of Edinburgh Paul SmythUniversity of Hamburg Luca SommovigoUniversidad de Valencia Dmitri Sorokin Istituto Nazionale di Fisica Nucleare, Padova Christos SourdisUniversity of Patras Wieland StaessensVrije Universiteit, Brussel Ivan StefanovUniversity of Patras Sigurdur StefanssonUniversity of Iceland Kellogg Stelle Imperial College London Giovanni Tagliabue Università di Milano Laura Tamassia Katholieke Universiteit Leuven Javier TarrioUniversidade de Santiago de Compostela Dimitri TerrynVrije Universiteit, Brussel Larus Thorlacius University of Iceland Mario ToninDipartimento Di Fisica, Sezione Di Padova Mario Trigiante Politecnico di Torino Efstratios TsatisUniversity of Patras Arkady TseytlinImperial College London Pantelis TziveloglouCornell University, New York and CERN, Geneva Angel Uranga CERN, Geneva Dieter Van den Bleeken Katholieke Universiteit Leuven Ernst van Eijk Università di Napoli Federico II Antoine Van Proeyen Katholieke Universiteit Leuven Maaike van ZalkUtrecht University Pierre Vanhove Service de Physique Théorique, CEA Saclay Silvia Vaula Instituto de Física Teórica, Universidad Autónoma de Madrid Cristian Vergu Service de Physique Théorique, CEA Saclay Alessandro VichiÉcole Polytechnique Fédérale de Lausanne (EPFL) Marlene WeissCERN, Geneva and Eidgenössische Technische Hochschule (ETH), Zürich Sebastian Weiss Université de Neuchâtel Alexander WijnsUniversity of Iceland Linus WulffUniversity of Padova Thomas WyderKatholieke Universiteit Leuven Ahmed YoussefAstroParticule et Cosmologie (APC), Université Paris Diderot Daniela ZanonUniversità Degli Studi di Milano Andrea ZanziPhysikalisches Institut, Universität Bonn Andrey ZayakinInstitute for Theoretical and Experimental Physics (ITEP), Moscow Tobias ZinggUniversity of Iceland Dimitrios ZoakosUniversidade de Santiago de Compostela Emanuele ZorzanUniversità di Milano Konstantinos ZoubosNiels Bohr Institute, København
Role of carotenoids in first positive phototropism of etiolated Arabidopsis thaliana seedlings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orbovic, V.; Poff, K.L.
1991-05-01
A mutant of Arabidopsis thaliana, chosen for is pale cotyledon phenotype in dark grown material, has been obtained from Klaus Apel (ETH-Zentrum, Zurich, Switzerland). Fluence response curves for this putative carotenoidless mutant and its wild-type parent have been measured. The shape of the fluence response curve for the pale mutant is similar to that of its wild-type parent. However, the amplitude of curvature by the mutant is considerably lower than curvature of the wild-type. If the amplitude of the curvature is enhanced with a red light pre-irradiation, peaks of the two photoreceptor pigments, P{sub I} and P{sub II} can bemore » seen in both the pale mutant and its wild-type parent. Based on these data, the authors conclude that neither photoreceptor pigment is altered in the pale mutant.« less
Study of the effects of 1-MCP to blueberry under cold storage
NASA Astrophysics Data System (ADS)
Tao, Shenchen; Chu, Huailiang; Chen, Xiaomin; Yuan, Huwei; Qiu, Lingling; Zhao, Liang; Yan, Daoliang; Zheng, Bingsong
2017-04-01
Blueberry is one of the thinnest exocarp fruits in the world, which is difficult to keep fresh due to the special structure of its skin. 1-Methlcyclopropene (1-MCP) is able to combine with ethylene(ETH) receptor. In this study we investigated the effect of 1-MCP on rotting rate, weight loss ratio, soluble sugar content, titratable acid content, antioxidant enzyme activities and malondialdehyde (MDA) content in blueberry (Vaccinium corymbosun ‘O Neal’ and ‘North Road’) under cold storage. 1-MCP reduced the rotting rate, weight loss ratio and MDA content, while keeping high-leveled stability in antioxidant enzyme activities, soluble sugar content and titratable acid content. These results showed the role of 1-MCP in alleviating the negative effects of blueberry and suggested that 1-MCP could be used as a preservative for keeping thin exocarp fruit in fresh.
FAPA mass spectrometry of designer drugs.
Smoluch, Marek; Gierczyk, Blazej; Reszke, Edward; Babij, Michal; Gotszalk, Teodor; Schroeder, Grzegorz; Silberring, Jerzy
2016-01-01
Application of a flowing atmospheric-pressure afterglow ion source for mass spectrometry (FAPA-MS) for the analysis of designer drugs is described. In this paper, we present application of FAPA MS for identification of exemplary psychotropic drugs: JWH-122, 4BMC, Pentedrone, 3,4-DNNC and ETH-CAT. We have utilized two approaches for introducing samples into the plasma stream; first in the form of a methanolic aerosol from the nebulizer, and the second based on a release of vapors from the electrically heated crucible by thermal desorption. The analytes were ionized by FAPA and identified in the mass analyzer. The order of release of the compounds depends on their volatility. These methods offer fast and reliable structural information, without pre-separation, and can be an alternative to the Electron Impact, GC/MS, and ESI for fast analysis of designer-, and other psychoactive drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Özek Yıldırım, Arzu; Gülsu, Murat; Albayrak Kaştaş, Çiğdem
2018-03-01
The title compound, C 16 H 16 BrNO 3 , which shows enol-imine tautomerism, crystallizes in the monoclinic P 2 1 / c space group. All non-H atoms of the mol-ecule are nearly coplanar, with a maximum deviation of 0.274 (3) Å. In the crystal, mol-ecules are held together by weak C-H⋯O, π-π and C-H⋯π inter-actions. The E / Z isomerism and enol/keto tautomerism energy barriers of the compound have been calculated by relaxed potential energy surface scan calculations with DFT methods. To observe the changes in the aromatic ring, HOMA aromaticity indexes were calculated during the scan process. Total energy and HOMA change curves were obtained to visualize results of the scan calculations.
Solar radio observations and radio interference monitoring in Roztoky
NASA Astrophysics Data System (ADS)
Monstein, C.; Baluďanský, D.
2013-10-01
This paper is part of a planned measurement campaign in which spectrum measurements were carried out at different locations worldwide within potential locations of the e-Callisto network. The results of measurements at the Callisto observing station in Roztoky, which took place at the beginning of May 2013, are presented. Measurements were made out with a special low cost broadband logarithmic periodic antenna connected to a Callisto spectrometer designed and built at ETH Zurich (Benz, 2004). This study provides the technical basis to decide whether it is possible to make solar spectroscopic measurements below 1 GHz (λ>30 cm) at the observing station. In terms of electromagnetic interference, Roztoky is not perfect for broadband spectroscopic solar radio astronomy observations due to non negligible radio interference level from the nearby FM-transmitters. Nevertheless, low frequency observations below 80 MHz, as well as observations in some small bands above 116 MHz can be done.
Exploring Disks Around Planets
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and masses on the properties of the disks. Szulgyi specifically examines a range of planetary temperatures between 10,000 K and 1,000 K for the 1 MJ planet. Since the planet cools as it radiates away its formation heat, the different temperatures represent an evolutionary sequence over time.Predicted CharacteristicsSzulgyis work produced a number of intriguing observations, including the following:For the 1 MJ planet, a spherical circumplanetary envelope forms at high temperatures, flattening into a disk as the planet cools. Higher-mass planets form disks even at high temperatures.The disk has a steep temperature profile from inside to outside, and the whole disk is too hot for water to remain frozen. This suggests that satellites couldnt form in the disk earlier than 1 Myr after the planet birth. The outskirts of the disk cool first as the planet cools, indicating that satellites may eventually form in these outer parts and then migrate inward.The planets open gaps in the circumstellar disk as they orbit. As a planet radiates away its formation heat, the gap it opens becomes deeper and wider (though this is a small effect). For high-mass planets (5 MJ), the gap eccentricity increases, which creates a hostile environment for satellite formation.Szulgyi discusses a number of features of these disks that we can plan to search for in the future with our increasing telescope power including signatures in direct imaging and observations of their kinematics. The results from these simulations will help us both to detect these circumplanetary disks and to understand our observations when we do. These future observations will then allow us to learn about late-stage giant-planet formation as well as the formation of their satellites.CitationJ. Szulgyi 2017 ApJ 842 103. doi:10.3847/1538-4357/aa7515
Dang, Fengfeng; Wang, Yuna; She, Jianju; Lei, Yufen; Liu, Zhiqin; Eulgem, Thomas; Lai, Yan; Lin, Jing; Yu, Lu; Lei, Dan; Guan, Deyi; Li, Xia; Yuan, Qian; He, Shuilin
2014-03-01
WRKY proteins are encoded by a large gene family and are linked to many biological processes across a range of plant species. The functions and underlying mechanisms of WRKY proteins have been investigated primarily in model plants such as Arabidopsis and rice. The roles of these transcription factors in non-model plants, including pepper and other Solanaceae, are poorly understood. Here, we characterize the expression and function of a subgroup IIe WRKY protein from pepper (Capsicum annuum), denoted as CaWRKY27. The protein localized to nuclei and activated the transcription of a reporter GUS gene construct driven by the 35S promoter that contained two copies of the W-box in its proximal upstream region. Inoculation of pepper cultivars with Ralstonia solanacearum induced the expression of CaWRKY27 transcript in 76a, a bacterial wilt-resistant pepper cultivar, whereas it downregulated the expression of CaWRKY27 transcript in Gui-1-3, a bacterial wilt-susceptible pepper cultivar. CaWRKY27 transcript levels were also increased by treatments with salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH). Transgenic tobacco plants overexpressing CaWRKY27 exhibited resistance to R. solanacearum infection compared to that of wild-type plants. This resistance was coupled with increased transcript levels in a number of marker genes, including hypersensitive response genes, and SA-, JA- and ET-associated genes. By contrast, virus-induced gene silencing (VIGS) of CaWRKY27 increased the susceptibility of pepper plants to R. solanacearum infection. These results suggest that CaWRKY27 acts as a positive regulator in tobacco resistance responses to R. solanacearum infection through modulation of SA-, JA- and ET-mediated signaling pathways. © 2013 Scandinavian Plant Physiology Society.
Amino Acid Insertion Frequencies Arising from Photoproducts Generated Using Aliphatic Diazirines
NASA Astrophysics Data System (ADS)
Ziemianowicz, Daniel S.; Bomgarden, Ryan; Etienne, Chris; Schriemer, David C.
2017-10-01
Mapping proteins with chemical reagents and mass spectrometry can generate a measure of accessible surface area, which in turn can be used to support the modeling and refinement of protein structures. Photolytically generated carbenes are a promising class of reagent for this purpose. Substituent effects appear to influence surface mapping properties, allowing for a useful measure of design control. However, to use carbene labeling data in a quantitative manner for modeling activities, we require a better understanding of their inherent amino acid reactivity, so that incorporation data can be normalized. The current study presents an analysis of the amino acid insertion frequency of aliphatic carbenes generated by the photolysis of three different diazirines: 3,3'-azibutyl-1-ammonium, 3,3'-azibutan-1-ol, and 4,4'-azipentan-1-oate. Leveraging an improved photolysis system for single-shot labeling of sub-microliter frozen samples, we used EThCD to localize insertion products in a large population of labeled peptides. Counting statistics were drawn from data-dependent LC-MS2 experiments and used to estimate the frequencies of insertion as a function of amino acid. We observed labeling of all 20 amino acids over a remarkably narrow range of insertion frequencies. However, the nature of the substituent could influence relative insertion frequencies, within a general preference for larger polar amino acids. We confirm a large (6-fold) increase in labeling yield when carbenes were photogenerated in the solid phase (77 K) relative to the liquid phase (293 K), and we suggest that carbene labeling should always be conducted in the frozen state to avoid information loss in surface mapping experiments. [Figure not available: see fulltext.
The crystal structures of six (2E)-3-aryl-1-(5-halogenothiophen-2-yl)prop-2-en-1-ones
Naik, Vasant S.; Yathirajan, Hemmige S.; Jasinski, Jerry P.; Smolenski, Victoria A.; Glidewell, Christopher
2015-01-01
The structures of six chalcones containing 5-halogenothiophen-2-yl substituents are reported: (2E)-1-(5-chlorothiophen-2-yl)-3-(4-ethylphenyl)prop-2-en-1-one, C15H13ClOS, (I), and (2E)-1-(5-bromothiophen-2-yl)-3-(4-ethylphenyl)prop-2-en-1-one, C15H13BrOS, (II), are isostructural in space group P-1, while (2E)-1-(5-chlorothiophen-2-yl)-3-(4-ethoxyphenyl)prop-2-en-1-one, C15H13ClO2S, (III), and (2E)-1-(5-bromothiophen-2-yl)-3-(4-ethoxyphenyl)prop-2-en-1-one C15H13BrO2S, (IV), are isostructural in space group P21/c. There are no hydrogen bonds of any kind in the structures of compounds (I) and (II), but in the structures of compounds (III) and (IV), the molecules are linked into C(7) chains by means of C—H⋯O hydrogen bonds. In the structure of (2E)-3-(4-bromophenyl)-1-(5-chlorothiophen-2-yl)prop-2-en-1-one, C13H8BrClOS, (V), there are again no hydrogen bonds nor π–π stacking interactions but in that of (2E)-1-(5-bromothiophen-2-yl)-3-(3-methoxyphenyl)prop-2-en-1-one, C14H11BrO2S, (VI), the molecules are linked into C(5) chains by C—H⋯O hydrogen bonds. In each of compounds (I)–(VI), the molecular skeletons are close to planarity, and there are short halogen⋯halogen contacts in the structures of compounds (II) and (V) and a short Br⋯O contact in the structure of compound (VI). Comparisons are made with the structures of some similar compounds. PMID:26396857
Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier; Amara, Ali
2016-01-01
Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a-dependent DENV infection relies on the direct recognition of phosphatidylethanolamine and to a lesser extent PtdSer associated with viral particles. This study provides novel insights into the mechanisms that mediate DENV entry and reinforce the concept that DENV uses an apoptotic mimicry strategy for viral entry. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Liu, Xin; Guan, Huirui; Song, Min; Fu, Yanping; Han, Xiaomin; Lei, Meng; Ren, Jingyu; Guo, Bin; He, Wei; Wei, Yahui
2018-01-01
Stellera chamaejasme Linn, an important poisonous plant of the China grassland, is toxic to humans and livestock. The rapid expansion of S. chamaejasme has greatly damaged the grassland ecology and, consequently, seriously endangered the development of animal husbandry. To draft efficient prevention and control measures, it has become more urgent to carry out research on its adaptive and expansion mechanisms in different unfavorable habitats at the genetic level. Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely used technique for studying gene expression at the transcript level; however, qRT-PCR requires reference genes (RGs) as endogenous controls for data normalization and only through appropriate RG selection and qRT-PCR can we guarantee the reliability and robustness of expression studies and RNA-seq data analysis. Unfortunately, little research on the selection of RGs for gene expression data normalization in S. chamaejasme has been reported. In this study, 10 candidate RGs namely, 18S , 60S , CYP , GAPCP1 , GAPDH2 , EF1B , MDH , SAND , TUA1 , and TUA6 , were singled out from the transcriptome database of S. chamaejasme , and their expression stability under three abiotic stresses (drought, cold, and salt) and three hormone treatments (abscisic acid, ABA; gibberellin, GA; ethephon, ETH) were estimated with the programs geNorm, NormFinder, and BestKeeper. Our results showed that GAPCP1 and EF1B were the best combination for the three abiotic stresses, whereas TUA6 and SAND , TUA1 and CYP , GAPDH2 and 60S were the best choices for ABA, GA, and ETH treatment, respectively. Moreover, GAPCP1 and 60S were assessed to be the best combination for all samples, and 18S was the least stable RG for use as an internal control in all of the experimental subsets. The expression patterns of two target genes ( P5CS2 and GI ) further verified that the RGs that we selected were suitable for gene expression normalization. This work is the first attempt to comprehensively estimate the stability of RGs in S. chamaejasme . Our results provide suitable RGs for high-precision normalization in qRT-PCR analysis, thereby making it more convenient to analyze gene expression under these experimental conditions.
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.
2002-12-01
Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl. Dynamic viscosities are currently approximated by the approach of Palliser and McKibbin [4]. The numerical solutions of the governing equations and the equation of state are embedded in our object-oriented C++ code CSP3D4.0 [6]. Comparisons of the numerical solutions carried out with CSP for solute transport with analytical solutions and classical test cases for density dependent flow (i.e., Elder problem [1]) show very good agreement. The numerical solutions carried out with CSP and the established United States Geological Survey code HYDROTHERM [3] for multi-phase flow and energy transport also yield a very good agreement. Fluid inclusion data can be used to constrain the PTX properties of the hydrothermal fluids in numerical solutions. [1] Journal of Fluid Mechanics 27, 609-623 [2] ANU Mathematical Research Report, MRR01-023 [3] USGS Water Investigations Report 94-4045 [4] Transport in Porous Media 33, 155-171 [5] AAPG Bulletin 80, 1763-1779 [6] CSP User's Guide, Dept. of Earth Sciences ETH Zurich
NASA Astrophysics Data System (ADS)
Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo
2017-02-01
The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.
NASA Astrophysics Data System (ADS)
Schaefli, Bettina; Breuer, Elke
2010-05-01
TANDEMplusIDEA was a European mentoring programme conducted by the technical universities RWTH Aachen, Imperial College London, ETH Zurich and TU Delft between 2007 and 2010 to achieve more gender equality in science. Given the continuing underrepresentation of women in science and technology and the well-known structural and systematic disadvantages in male-dominated scientific cultures, the main goal of this programme was to promote excellent female scientists through a high-level professional and personal development programme. Based on the mentoring concept of the RWTH Aachen, TANDEMplusIDEA was the first mentoring programme for female scientists realized in international cooperation. As a pilot scheme funded by the 6th Framework Programme of the European Commission, the scientific evaluation was an essential part of the programme, in particular in view of the development of a best practice model for international mentoring. The participants of this programme were female scientists at an early stage of their academic career (postdoc or assistant professor) covering a wide range of science disciplines, including geosciences. This transdisciplinarity as well as the international dimension of the programme have been identified by the participants as one of the keys of success of the programme. In particular, the peer-mentoring across discipline boarders proved to have been an invaluable component of the development programme. This presentation will highlight some of the main findings of the scientific evaluation of the programme and focus on some additional personal insights from the participants.
NASA Astrophysics Data System (ADS)
Cappa, F.; Guglielmi, Y.; Soukatchoff, V. M.; Mudry, J.; Bertrand, C.; Charmoille, A.
2003-04-01
We present an investigation method of water infiltration influence on Large Moving Rock Mass (LMRM) stability. In the case of huge unstable mountainous slopes, it has been clearly shown that the main driving of instability is gravity and that the major triggering and increasing factor is water located in interstices and fractures of rocks (Noverraz &al., 1998). More particularly, groundwater originates from a localized hydro-mechanical deformation inside fractures that can induce a generalized destabilization of large rock masses (Guglielmi, 1999). However, the understanding of groundwater mechanical effects on landslides and their neighbouring environment is rendered more complex given the large anisotropy of the rock mass as well as the difficulties to apply classic hydrogeological investigation methods in a moving environment. For these reasons, we developped an indirect investigation method based on chemical groundwater measurements coupled with a two-dimensional hydro-mechanical modelling with the Universal Distinct Element Code (UDEC) numerical program, taking the example of the La Clapière landslide (Alpes-Maritimes, France). The methodology we develop firstly establishes a hydro-mechanical conceptual scheme through the analysis of geological, hydrogeological, hydrogeochemistry and landslide velocity measurements. Then, a two-dimensional numerical modelling with UDEC was performed to test the influence of the locations and the intensities of water infiltrations on the hydro-mechanical behaviour of La Clapière’s slope. A geological and hydrogeological analysis reveals a perched saturated zone connected by large conducting-flow fractures to a basal aquifer. The correlations of spring water chemistry data and meteorological events on the slope highlight a large variability of groundwater transits in the slope in time (transit durations of 1 to 21 days) and in space. Infiltration transients correlate with landslide accelerations. Infiltration yields range between 0.4 and 0.8 l.s-1. The most intensive hydro-mechanical response of the landslide is linked to snowmelt in a stable area in the upper part of the slope located between 1800 and a 2500 m high. On the one hand modeling hydro-mechanical effects with UDEC considers a model corresponding to a slope without any unstable zone, and on the other hand, a model including a failure surface in order to simulate the current instability. In the two numerical tests, calculations show that the most unstabilizing water infiltration corresponds to water infiltrations located in the middle part of the slope for weak flow rates of 0.75 l.s-1. This is due to the water infiltration influence on the spatial distribution of strain fields. This result fits with field measurements. This methodology can easily be applied to the monitoring of landslide movements. As it gives relevant information on the spatial and temporal effects of various meteoric infiltrations, it can be applied to improve remedial protocols. This work was partly funded by the French National Program on Natural Hazards (PNRN) and Retina European Program. Guglielmi Y., 1999. Apport de la mesure des couplages hydromécaniques à la connaissance hydrogéologique des réservoirs fissurés. Habilitation à diriger des recherches, Université de Franche-Comté, E.A. 2642 Géosciences : Déformation, Écoulement, Transfert. 187 p. Noverraz F., BonnardC., Dupraz H., and Huguenin L., 1998. Grands glissements de versants et climat. Rapport final PNR 31, vdf hochschulverlag AG an der ETH Zürich, 314 p.
A Simulation of Alternatives for Wholesale Inventory Replenishment
2016-03-01
algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item
NASA Technical Reports Server (NTRS)
Pace, Dale K.
2000-01-01
A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.
Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis
NASA Technical Reports Server (NTRS)
Bradley, James R.
2012-01-01
This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.
Mosquito population dynamics from cellular automata-based simulation
NASA Astrophysics Data System (ADS)
Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning
2016-02-01
In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.
The role of Rnf in ion gradient formation in Desulfovibrio alaskensis
Wang, Luyao; Bradstock, Peter; Li, Chuang; ...
2016-04-14
Rnf is a membrane protein complex that has been shown to be important in energy conservation. Here, Desulfovibrio alaskensis G20 and Rnf mutants of G20 were grown with different electron donor and acceptor combinations to determine the importance of Rnf in energy conservation and the type of ion gradient generated. The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore ETH2120 had no effect, indicating a role for the proton gradient during growth. Mutants in rnfA and rnfD were more sensitive to the protonophore at 5 µM than the parental strain, suggesting the importance ofmore » Rnf in the generation of a proton gradient. The electrical potential (ΔΨ), ΔpH and proton motive force were lower in thernfAmutant than in the parental strain of D.alaskensis G20. In conclusion, these results provide evidence that the Rnf complex in D. alaskensis functions as a primary proton pump whose activity is important for growth.« less
Ganter, Camille
2010-01-01
In the Closing Remarks at the Symposium on 'Frontiers in Bioorganic Chemistry' (Friday, February 6, 2009, Pharmacenter, University of Basel) in honour of Daniel Bellus, his arrival in Zürich in fall 1967 and especially his postdoctoral work at the Laboratorium für Organische Chemie at the Eidgenössische Technische Hochschule (ETH) in Zürich throughout the year 1967/68 were mentioned. In his most remarkable paper (published in 1969 in Helv. Chim. Acta), the photochemistry of the alpha,beta-unsaturated cyclohexenones O-acetyl-testosterone and 10-methy-delta1,9-octalon-(2) is described in detail. Change of solvent leads to lowering or increasing of the n,pi*- and (pi,pi*)-triplet energies, resulting in a crossing of the two energy levels. Personal remarks on Daniel Bellus and warmest thanks to him, to Profs. Beat Ernst and Bernd Giese (the organizers of the symposium) and to all the speakers concluded this most special event.
Kirchner, Richard M.; Corfield, Peter W. R.; Annabi, Michelle; Regan, John; Speina, Kevin; DiProperzio, Anthony; Ciaccio, James A.; Capitani, Joseph F.
2015-01-01
The title compound, C30H28O2, was obtained during recrystallization of (±)-1,2-diphenyl-1,2-propanediol in 1-butanol, from an unexpected non-acid-catalyzed pinacol rearrangement followed by acetal formation of the newly formed aldehyde with the diol. The tri-substituted dioxolane ring has a twist conformation on the C—O bond opposite the methyl-substituted C atom. There is an intramolecular C—H⋯π interaction present involving one of the diphenylethyl rings and an H atom of the phenyl ring in position 4 of the dioxolane ring. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming chains along [001]. The chains are linked by a second C—H⋯π interaction, forming sheets parallel to the bc plane. PMID:26594491
NASA Astrophysics Data System (ADS)
Otz, M. H.; Otz, H. K.; Keller, P.
2002-05-01
Synthetic fluorescent dyes, applied below the visual detection limit (< 0.1 mg/L), have been used as tracers of ground water flow paths since the beginning of the 1950s. Since 1965, we have used spectro-fluorometers with photomultipliers to measure low concentrations of fluorescent dyes in ground water in Switzerland. In collaboration with the Engineering Geology Department of the ETH, we have separated uranine at 0.1 ng/L and Na-naphtionate at 1 ng/L from background fluorescence of spring water in the Finstersee region. These values are 10-100 times lower than postulated detection limits in the literature. The use of low dye concentrations prevents a study region from being contaminated by increased background levels due to remnant dye within the aquifer, thereby leaving the region available for future dye tracing studies. Lower detection limits also can solve particular hydraulic problems where conventional methods fail and enhance the possibility for using artificial dyes in environmentally sensitive aquifer settings.
NASA Astrophysics Data System (ADS)
El-Khadragy, A. A.; Shazly, T. F.; AlAlfy, I. M.; Ramadan, M.; El-Sawy, M. Z.
2018-06-01
An exploration method has been developed using surface and aerial gamma-ray spectral measurements in prospecting petroleum in stratigraphic and structural traps. The Gulf of Suez is an important region for studying hydrocarbon potentiality in Egypt. Thorium normalization technique was applied on the sandstone reservoirs in the region to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). This method was applied on the recorded gamma-ray spectrometric logs for Rudeis and Kareem Formations in Ras Ghara oil Field, Gulf of Suez, Egypt. The conventional well logs (gamma-ray, resistivity, neutron, density and sonic logs) were analyzed to determine the net pay zones in the study area. The agreement ratios between the thorium normalization technique and the results of the well log analyses are high, so the application of thorium normalization technique can be used as a guide for hydrocarbon accumulation in the study reservoir rocks.
Stability and instability towards delocalization in many-body localization systems
NASA Astrophysics Data System (ADS)
De Roeck, Wojciech; Huveneers, François
2017-04-01
We propose a theory that describes quantitatively the (in)stability of fully many-body localization (MBL) systems due to ergodic, i.e., delocalized, grains, that can be, for example, due to disorder fluctuations. The theory is based on the ETH hypothesis and elementary notions of perturbation theory. The main idea is that we assume as much chaoticity as is consistent with conservation laws. The theory describes correctly—even without relying on the theory of local integrals of motion (LIOM)—the MBL phase in one dimension at strong disorder. It yields an explicit and quantitative picture of the spatial boundary between localized and ergodic systems. We provide numerical evidence for this picture. When the theory is taken to its extreme logical consequences, it predicts that the MBL phase is destabilised in the long time limit whenever (1) interactions decay slower than exponentially in d =1 and (2) always in d >1 . Finer numerics is required to assess these predictions.
Alqasaimeh, Muawia Salameh; Heng, Lee Yook; Ahmad, Musa
2007-10-11
An optical urea biosensor was fabricated by stacking several layers of sol-gelfilms. The stacking of the sol-gel films allowed the immobilization of a Nile Bluechromoionophore (ETH 5294) and urease enzyme separately without the need of anychemical attachment procedure. The absorbance response of the biosensor was monitoredat 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel filmformat enabled higher enzyme loading in the biosensor to be achieved. The urea opticalbiosensor constructed from three layers of sol-gel films that contained urease demonstrateda much wider linear response range of up to 100 mM urea when compared with biosensorsthat constructed from 1-2 layers of films. Analysis of urea in urine samples with thisoptical urea biosensor yielded results similar to that determined by a spectrophotometricmethod using the reagent p-dimethylaminobenzaldehyde (R² = 0.982, n = 6). The averagerecovery of urea from urine samples using this urea biosensor is approximately 103%.
Efficient 41Ca measurements for biomedical applications
NASA Astrophysics Data System (ADS)
Vockenhuber, C.; Schulze-König, T.; Synal, H.-A.; Aeberli, I.; Zimmermann, M. B.
2015-10-01
We present the performance of 41Ca measurements using low-energy Accelerator Mass Spectrometry (AMS) at the 500 kV facility TANDY at ETH Zurich. We optimized the measurement procedure for biomedical applications where reliability and high sample throughput is required. The main challenge for AMS measurements of 41Ca is the interfering stable isobar 41K. We use a simplified sample preparation procedure to produce calcium fluoride (CaF2) and extract calcium tri-fluoride ions (CaF3-) ions to suppress the stable isobar 41K. Although 41K is not completely suppressed we reach 41Ca/40Ca background level in the 10-12 range which is adequate for biomedical studies. With helium as a stripper gas we can use charge state 2+ at high transmission (∼50%). The new measurement procedure with the approximately 10 × improved efficiency and the higher accuracy due to 41K correction allowed us to measure more than 600 samples for a large biomedical study within only a few weeks of measurement time.
Effects of different electron donor feeding patterns on TCE reductive dechlorination performance.
Panagiotakis, I; Antoniou, K; Mamais, D; Pantazidou, M
2015-03-01
This study investigates how the feeding pattern of e(-) donors might affect the efficiency of enhanced in situ bioremediation in TCE-contaminated aquifers. A series of lab-scale batch experiments were conducted using butyrate or hydrogen gas (H2) as e(-) donor and a TCE-dechlorinating microbial consortium dominated by Dehalococcoides spp. The results of these experiments demonstrate that butyrate is similarly efficient for TCE dechlorination whether it is injected once or in doses. Moreover, the present work indicates that the addition of butyrate in great excess cannot be avoided, since it most likely provide, even indirectly, significant part of the H2 required. Furthermore, methanogenesis appears to be the major ultimate e(-) accepting process in all experiments, regardless the e(-) donor used and the feeding pattern. Finally, the timing of injection of H2 seems to significantly affect dechlorination performance, since the injection during the early stages improves VC-to-ETH dechlorination and reduce methanogenic activity.
Nielsen, Anne; McKenzie, Christine J.; Bond, Andrew D.
2009-01-01
The title compound, [FeCl3(C12H18N4)]·0.5CH3OH, contains an FeIII ion in a distorted octahedral coordination environment. The neutral N,N′,N′′-tridentate ligand adopts a fac coordination mode, and chloride ligands lie trans to each of the three coordinated N atoms. In the crystal, the complexes form columns extending parallel to the approximate local threefold axes of the FeN3Cl3 octahedra, and the columns are arranged so that the uncoordinated nitrile groups align in an antiparallel manner and the pyridyl rings form offset face-to-face arrangements [interplanar separations = 2.95 (1) and 3.11 (1) Å; centroid–centroid distances = 5.31 (1) and 4.92 (1) Å]. The methanol solvent molecule is disordered about a twofold rotation axis. PMID:21578169
Alqasaimeh, Muawia Salameh; Heng, Lee Yook; Ahmad, Musa
2007-01-01
An optical urea biosensor was fabricated by stacking several layers of sol-gel films. The stacking of the sol-gel films allowed the immobilization of a Nile Blue chromoionophore (ETH 5294) and urease enzyme separately without the need of any chemical attachment procedure. The absorbance response of the biosensor was monitored at 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel film format enabled higher enzyme loading in the biosensor to be achieved. The urea optical biosensor constructed from three layers of sol-gel films that contained urease demonstrated a much wider linear response range of up to 100 mM urea when compared with biosensors that constructed from 1-2 layers of films. Analysis of urea in urine samples with this optical urea biosensor yielded results similar to that determined by a spectrophotometric method using the reagent p-dimethylaminobenzaldehyde (R2 = 0.982, n = 6). The average recovery of urea from urine samples using this urea biosensor is approximately 103%.
Gustafsson, Leif; Sternad, Mikael
2007-10-01
Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.
Using a simulation assistant in modeling manufacturing systems
NASA Technical Reports Server (NTRS)
Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.
1988-01-01
Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D. L.
1978-01-01
The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.
SMI Compatible Simulation Scheduler Design for Reuse of Model Complying with Smp Standard
NASA Astrophysics Data System (ADS)
Koo, Cheol-Hea; Lee, Hoon-Hee; Cheon, Yee-Jin
2010-12-01
Software reusability is one of key factors which impacts cost and schedule on a software development project. It is very crucial also in satellite simulator development since there are many commercial simulator models related to satellite and dynamics. If these models can be used in another simulator platform, great deal of confidence and cost/schedule reduction would be achieved. Simulation model portability (SMP) is maintained by European Space Agency and many models compatible with SMP/simulation model interface (SMI) are available. Korea Aerospace Research Institute (KARI) is developing hardware abstraction layer (HAL) supported satellite simulator to verify on-board software of satellite. From above reasons, KARI wants to port these SMI compatible models to the HAL supported satellite simulator. To port these SMI compatible models to the HAL supported satellite simulator, simulation scheduler is preliminary designed according to the SMI standard.
2016-04-01
incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching architecture...Simulation Model, Quasi -Nonlinear, Piloted Simulation, Flight-Test Implications, System Identification, Off-Nominal Loading Extrapolation, Stability...incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching
Construction of dynamic stochastic simulation models using knowledge-based techniques
NASA Technical Reports Server (NTRS)
Williams, M. Douglas; Shiva, Sajjan G.
1990-01-01
Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).
Understanding Emergency Care Delivery Through Computer Simulation Modeling.
Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L
2018-02-01
In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, Michael R; Zhang, Yongfeng; Bai, Xianming
2014-06-01
This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO₂ fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
2011-01-01
A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.
Simulation Models for Socioeconomic Inequalities in Health: A Systematic Review
Speybroeck, Niko; Van Malderen, Carine; Harper, Sam; Müller, Birgit; Devleesschauwer, Brecht
2013-01-01
Background: The emergence and evolution of socioeconomic inequalities in health involves multiple factors interacting with each other at different levels. Simulation models are suitable for studying such complex and dynamic systems and have the ability to test the impact of policy interventions in silico. Objective: To explore how simulation models were used in the field of socioeconomic inequalities in health. Methods: An electronic search of studies assessing socioeconomic inequalities in health using a simulation model was conducted. Characteristics of the simulation models were extracted and distinct simulation approaches were identified. As an illustration, a simple agent-based model of the emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 61 studies published between 1989 and 2013. Ten different simulation approaches were identified. The agent-based model illustration showed that multilevel, reciprocal and indirect effects of social determinants on health can be modeled flexibly. Discussion and Conclusions: Based on the review, we discuss the utility of using simulation models for studying health inequalities, and refer to good modeling practices for developing such models. The review and the simulation model example suggest that the use of simulation models may enhance the understanding and debate about existing and new socioeconomic inequalities of health frameworks. PMID:24192788
Surrogate model approach for improving the performance of reactive transport simulations
NASA Astrophysics Data System (ADS)
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2016-04-01
Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
Open Geodata Initiative for Romania
NASA Astrophysics Data System (ADS)
Craciunescu, Vasile; Iosifescu, Ionut; Ilie, Codrina Maria; Gaitanaru, Dragos; Radu Gogu, Constantin; Hurni, Lorenz
2013-04-01
The concept of open data access is a very important topic nowadays. The concept assumes that all data collected or generated by public sector bodies (excepting personal data and data protected under existing privacy protection or accessibility rules) is made publicly accessible in commonly-used, machine-readable formats and can be re-used for any purpose, commercial or non-commercial. Governmental agencies are considered to be the most significant data owners and providers in modern societies. The sheer volume and wealth of this data makes apparent the potential benefits of reusing, combining, and processing governmental data. Even though metadata (information about the data) is sometimes published, administrations typically express reluctance to making their data available, for various reasons, cultural, political, legal, institutional and technical. The governmental spatial information (also called geospatial data, georeferenced data or geodata) producers in Romania are no exception -with the additional situation that even metadata is not usually available. Starting from 2013 a joint program between a Swiss partner (The Swiss Federal Institute of Technology ETH- Zurich - Institute of Cartography and Geoinformation) and a Romanian partner (Technical University of Civil Engineering - UTCB) is developed in order to establish a new approach on the open geodata topic. The main objective of the project GEOIDEA.RO (GEodata Openness Initiative for Development and Economic Advancement in ROmania) is to improve the scientific basis for open geodata model adoption in Romania. Is our believe that publishing government geodata in Romania over the Internet,under an open license and in a reusable format can strengthen citizen engagement and yield new innovative businesses, bringing substantial social and economic gains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Joel; Rabe, Karin; Nayak, Chetan
2012-05-01
Aspen Center for Physics Project Summary DOE Budget Period: 10/1/2011 to 9/30/2012 Contract # DE-SC0007479 New Paradigms for Low-Dimensional Electronic Materials The 2012 Aspen Winter Conference on Condensed Matter Physics was held at the Aspen Center for Physics from February 5 to 10, 2012. Seventy-four participants from seven countries, and several universities and national labs attended the workshop titled, New Paradigms for Low-Dimensional Electronic Materials. There were 34 formal talks, and a number of informal discussions held during the week. Talks covered a variety of topics related to DOE BES priorities, including, for example, advanced photon techniques (Hasan, Abbamonte, Orenstein,more » Shen, Ghosh) and predictive theoretical modeling of materials properties (Rappe, Pickett, Balents, Zhang, Vanderbilt); the full conference schedule is provided with this report. The week's events included a public lecture (Quantum Matters given by Chetan Nayak from Microsoft Research) and attended by 234 members of the public, and a physics caf© geared for high schoolers that is a discussion with physicists conducted by Kathryn Moler (Stanford University) and Andrew M. Rappe (University of Pennsylvania) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by Joel Moore (University of California Berkeley), Chetan Nayak (Microsoft Research), Karin Rabe (Rutgers University), and Matthias Troyer (ETH Zurich). Two organizers who did not attend the conference were Gabriel Aeppli (University College London & London Centre for Nanotechnology) and Andrea Cavalleri (Oxford University & Max Planck Hamburg).« less
Simulation Modelling in Healthcare: An Umbrella Review of Systematic Literature Reviews.
Salleh, Syed; Thokala, Praveen; Brennan, Alan; Hughes, Ruby; Booth, Andrew
2017-09-01
Numerous studies examine simulation modelling in healthcare. These studies present a bewildering array of simulation techniques and applications, making it challenging to characterise the literature. The aim of this paper is to provide an overview of the level of activity of simulation modelling in healthcare and the key themes. We performed an umbrella review of systematic literature reviews of simulation modelling in healthcare. Searches were conducted of academic databases (JSTOR, Scopus, PubMed, IEEE, SAGE, ACM, Wiley Online Library, ScienceDirect) and grey literature sources, enhanced by citation searches. The articles were included if they performed a systematic review of simulation modelling techniques in healthcare. After quality assessment of all included articles, data were extracted on numbers of studies included in each review, types of applications, techniques used for simulation modelling, data sources and simulation software. The search strategy yielded a total of 117 potential articles. Following sifting, 37 heterogeneous reviews were included. Most reviews achieved moderate quality rating on a modified AMSTAR (A Measurement Tool used to Assess systematic Reviews) checklist. All the review articles described the types of applications used for simulation modelling; 15 reviews described techniques used for simulation modelling; three reviews described data sources used for simulation modelling; and six reviews described software used for simulation modelling. The remaining reviews either did not report or did not provide enough detail for the data to be extracted. Simulation modelling techniques have been used for a wide range of applications in healthcare, with a variety of software tools and data sources. The number of reviews published in recent years suggest an increased interest in simulation modelling in healthcare.
KU-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Griffin, J. W.
1980-01-01
The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.
2007-03-01
LEARNING : MODELING & SIMULATION EDUCATION CATALOG by Jean Catalano Jarema M. Didoszak March 2007...Technical Report, 11/06 – 02/07 4. TITLE AND SUBTITLE: Workforce Modeling & Simulation Education and Training for Lifelong Learning ...Modeling and Simulation Education and Training for Lifelong Learning project. The catalog contains searchable information about 253 courses from 23 U.S
THE MARK I BUSINESS SYSTEM SIMULATION MODEL
of a large-scale business simulation model as a vehicle for doing research in management controls. The major results of the program were the...development of the Mark I business simulation model and the Simulation Package (SIMPAC). SIMPAC is a method and set of programs facilitating the construction...of large simulation models. The object of this document is to describe the Mark I Corporation model, state why parts of the business were modeled as they were, and indicate the research applications of the model. (Author)
High Speed Civil Transport Aircraft Simulation: Reference-H Cycle 1, MATLAB Implementation
NASA Technical Reports Server (NTRS)
Sotack, Robert A.; Chowdhry, Rajiv S.; Buttrill, Carey S.
1999-01-01
The mathematical model and associated code to simulate a high speed civil transport aircraft - the Boeing Reference H configuration - are described. The simulation was constructed in support of advanced control law research. In addition to providing time histories of the dynamic response, the code includes the capabilities for calculating trim solutions and for generating linear models. The simulation relies on the nonlinear, six-degree-of-freedom equations which govern the motion of a rigid aircraft in atmospheric flight. The 1962 Standard Atmosphere Tables are used along with a turbulence model to simulate the Earth atmosphere. The aircraft model has three parts - an aerodynamic model, an engine model, and a mass model. These models use the data from the Boeing Reference H cycle 1 simulation data base. Models for the actuator dynamics, landing gear, and flight control system are not included in this aircraft model. Dynamic responses generated by the nonlinear simulation are presented and compared with results generated from alternate simulations at Boeing Commercial Aircraft Company and NASA Langley Research Center. Also, dynamic responses generated using linear models are presented and compared with dynamic responses generated using the nonlinear simulation.
Event-driven simulation in SELMON: An overview of EDSE
NASA Technical Reports Server (NTRS)
Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.
1992-01-01
EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.
Testing the World with Simulations.
ERIC Educational Resources Information Center
Roberts, Nancy
1983-01-01
Discusses steps involved in model building and simulation: understanding a problem, building a model, and simulation. Includes a mathematical model (focusing on a problem dealing with influenza) written in the DYNAMO computer language, developed specifically for writing simulation models. (Author/JN)
Simulation as a vehicle for enhancing collaborative practice models.
Jeffries, Pamela R; McNelis, Angela M; Wheeler, Corinne A
2008-12-01
Clinical simulation used in a collaborative practice approach is a powerful tool to prepare health care providers for shared responsibility for patient care. Clinical simulations are being used increasingly in professional curricula to prepare providers for quality practice. Little is known, however, about how these simulations can be used to foster collaborative practice across disciplines. This article provides an overview of what simulation is, what collaborative practice models are, and how to set up a model using simulations. An example of a collaborative practice model is presented, and nursing implications of using a collaborative practice model in simulations are discussed.
An accurate behavioral model for single-photon avalanche diode statistical performance simulation
NASA Astrophysics Data System (ADS)
Xu, Yue; Zhao, Tingchen; Li, Ding
2018-01-01
An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.
Modeling of Army Research Laboratory EMP simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miletta, J.R.; Chase, R.J.; Luu, B.B.
1993-12-01
Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).
Expert systems and simulation models; Proceedings of the Seminar, Tucson, AZ, November 18, 19, 1985
NASA Technical Reports Server (NTRS)
1986-01-01
The seminar presents papers on modeling and simulation methodology, artificial intelligence and expert systems, environments for simulation/expert system development, and methodology for simulation/expert system development. Particular attention is given to simulation modeling concepts and their representation, modular hierarchical model specification, knowledge representation, and rule-based diagnostic expert system development. Other topics include the combination of symbolic and discrete event simulation, real time inferencing, and the management of large knowledge-based simulation projects.
An Example-Based Brain MRI Simulation Framework.
He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L
2015-02-21
The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.
[New simulation technologies in neurosurgery].
Byvaltsev, V A; Belykh, E G; Konovalov, N A
2016-01-01
The article presents a literature review on the current state of simulation technologies in neurosurgery, a brief description of the basic technology and the classification of simulation models, and examples of simulation models and skills simulators used in neurosurgery. Basic models for the development of physical skills, the spectrum of available computer virtual simulators, and their main characteristics are described. It would be instructive to include microneurosurgical training and a cadaver course of neurosurgical approaches in neurosurgery training programs and to extend the use of three-dimensional imaging. Technologies for producing three-dimensional anatomical models and patient-specific computer simulators as well as improvement of tactile feedback systems and display quality of virtual models are promising areas. Continued professional education necessitates further research for assessing the validity and practical use of simulators and physical models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de; Mueller, Thomas; Blasczyk, Rainer
Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application andmore » transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset MSCs in adipogenic, osteogenic and chondrogenic lineages and the suitability of collagen scaffolds as carrier material undisturbing differentiation of primate mesenchymal stem cells.« less
NASA Astrophysics Data System (ADS)
Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé
2014-05-01
Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.
NASA Astrophysics Data System (ADS)
van Walsum, P. E. V.
2011-11-01
Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a good soil or from capillary rise. With good supply of moisture, the dynamic model simulates up to 10% less actual evapotranspiration than the static one in the example. This can lead to cases where the dynamic model predicts a slight increase of the recharge in a climate scenario, where the static model predicts a decrease. The use of a dynamic model also affects the simulated demand for surface water from external sources; especially the timing is affected. The proposed modelling approach uses postulated relationships that require validation with controlled field trials. In the Netherlands there is a lack of experimental facilities for performing such validations.
Closed loop models for analyzing engineering requirements for simulators
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D.
1980-01-01
A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
PREFACE: 9th International Conference on X-Ray Microscopy
NASA Astrophysics Data System (ADS)
Quitmann, Christoph; David, Christian; Nolting, Frithjof; Pfeiffer, Franz; Stampanoni, Marco
2009-09-01
Conference logo This volume compiles the contributions to the International Conference on X-Ray Microscopy (XRM2008) held on 20-25 July 2008 in Zurich, Switzerland. The conference was the ninth in a series which started in Göttingen in 1984. Over the years the XRM conference series has served as a forum bringing together all relevant players working on the development of methods, building instrumentation, and applying x-ray microscopy to challenging issues in materials science, condensed matter research, environmental science and biology. XRM2008 was attended by about 300 participants who followed 44 oral presentations and presented 220 posters. Conference photograph Figure 1: Participants of the XRM2008 conference gathered in front of the main building of the ETH-Zurich. The conference showed that x-ray microscopy has become a mature field resting on three pillars. The first are workhorse instruments available even to non-specialist users. These exist at synchrotron sources world-wide as well as in laboratories. They allow the application of established microscopy methods to solve scientific projects in areas as diverse as soil science, the investigation of cometary dust particles, magnetic materials, and the analysis of ancient parchments. Examples of all of these projects can be found in this volume. These instruments have become so well understood that now they are also commercially available. The second pillar is the continued development of methods. Methods like stroboscopic imaging, wet cells or high and low temperature environments add versatility to the experiments. Methods like phase retrieval and ptychographic imaging allow the retrieval of information which hitero was thought to be inaccessible. The third pillar is the extension of such instruments and methods to new photon sources. With x-ray free electron lasers on the horizon the XRM community is working to transfer their know-how to these novel sources which will offer unprecedented brightness and time structure, but which at the same time require unprecedented effort to perform the experiment and to extract meaningful information from the data. Resting on these three pillars, the XRM community seems well prepared to solve the scientific questions of today and to help solve even more challenging scientific questions in the future. Many people contributed to the success of XRM2008, first and foremost were the participants with their excellent contributions and through their lively discussions. Organizing the event was made possible due to many helping hands and brains at the organizing institution, the Paul Scherrer Institut. It is our pleasure to thank all of these people. Financial support was given by the Gold Sponsor, XRADIA, by the European Round Table for Synchrotrons and Free Electron Lasers, the Center for Imaging Science and Technology at Zurich, and by the Swiss National Science Foundation. The conference was kindly hosted by ETH Zurich which provided a perfect setting for this venue. We thank all the participants of XRM2008, everybody who helped in the organization and all financial supporters and are looking forward to hearing about further progress during XRM2010 which will be organized by Argonne National Laboratory in Chicago. C Quitmann, C David, F Nolting, F Pfeiffer and M Stampanoni Proceedings Editors Conference photograph Figure 2 View over Zurich and into the alps from the terrace of the ETHZ main building during the XRM2008 reception. Conference photograph Figure 3 Flag tosser and Alphorn blowers in front of the ETH Zurich main building during the XRM2008 opening reception. Conference photograph Figure 4 Industry exhibition in the entrance hall of the ETHZ main building. Conference photograph Figure 5 Lively discussions amongst the conference participants took place during the two poster sessions. Conference photograph Figure 6 Lecture hall with the participants busily discussing between talks. Conference photograph Figure 7 Past and present winners of the Werner Meyer-Ilse Award are joined by Andrea Meyer-Ilse, the wife of the deceased x-ray microscopy pioneer Werner Meyer-Ilse. From left to right: Weilun Chao (winner 2005), Ann Sakdinawat (winner 2008), Piere Thibault (winner 2008), Andrea Meyer-Ilse and M Feser (winner 2002). Conference photograph Figure 8 Reception in the court of Schloss Rapperswil during the XRM2008 conference excursion. Conference photograph Figure 9 Conference participants walking towards the castle of Rapperswil during the conference excursion. Conference photograph Figure 10 Accompanying persons group gathered in the port of Lucerne.
Atmospheric turbulence simulation for Shuttle orbiter
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1979-01-01
An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4.
Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model
NASA Technical Reports Server (NTRS)
Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.
2002-01-01
A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.
On the deterministic and stochastic use of hydrologic models
Farmer, William H.; Vogel, Richard M.
2016-01-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
NASA Astrophysics Data System (ADS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan
2017-10-01
Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.
EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories
NASA Astrophysics Data System (ADS)
Calignano, Elisa; Rosenau, Matthias; Lange, Otto; Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; van Kan-Parker, Mirjam; Elger, Kirsten; Ulbricht, Damian; Funiciello, Francesca; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Winkler, Aldo
2017-04-01
Laboratory facilities are an integral part of Earth Science research. The diversity of methods employed in such infrastructures reflects the multi-scale nature of the Earth system and is essential for the understanding of its evolution, for the assessment of geo-hazards and for the sustainable exploitation of geo-resources. In the frame of EPOS (European Plate Observing System), the Working Package 16 represents a developing community of European Geoscience Multi-scale laboratories. The participant and collaborating institutions (Utrecht University, GFZ, RomaTre University, INGV, NERC, CSIC-ICTJA, CNRS, LMU, C4G-UBI, ETH, CNR*) embody several types of laboratory infrastructures, engaged in different fields of interest of Earth Science: from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue tectonic and geodynamic modelling and paleomagnetic laboratories. The length scales encompassed by these infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited "final form" in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting research activities into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution. Regarding the provision of physical access to laboratories the current situation is such that access to WP16's laboratories is often based on professional relations, available budgets, shared interests and other constraints. In WP16 we aim at reducing the present diversity and non-transparency of access rules and replace ad-hoc procedures for access by a streamlined mechanisms, objective rules and a transparent policy. We work on procedures and mechanisms regulating application, negotiation, evaluation, feedback, selection, admission, approval, feasibility check, setting-up, use, monitoring and dismantling. In the end laboratories should each have a single point providing clear and transparent information on the facility itself, its services, access policy, data management policy and the legal terms and conditions for use of equipment. Through its role as an intermediary and information broker, EPOS will acquire a wealth of information from Research Infrastructures and users on the establishment of efficient collaboration agreements.
Spoilt for choice - A comparison of downscaling approaches for hydrological impact studies
NASA Astrophysics Data System (ADS)
Rössler, Ole; Fischer, Andreas; Kotlarski, Sven; Keller, Denise; Liniger, Mark; Weingartner, Rolf
2017-04-01
With the increasing number of available climate downscaling approaches, users are often faced with the luxury problem of which downscaling method to apply in a climate change impact assessment study. In Switzerland, for instance, the new generation of local scale climate scenarios CH2018 will be based on quantile mapping (QM), replacing the previous delta change (DC) method. Parallel to those two methods, a multi-site weather generator (WG) was developed to meet specific user needs. The question poses which downscaling method is the most suitable for a given application. Here, we analyze the differences of the three approaches in terms of hydro-meteorological responses in the Swiss pre-Alps in terms of mean values as well as indices of extremes. The comparison of the three different approaches was carried out in the frame of a hydrological impact assessment study that focused on different runoff characteristics and their related meteorological indices in the meso-scale catchment of the river Thur ( 1700 km2), Switzerland. For this purpose, we set up the hydrological model WaSiM-ETH under present (1980-2009) and under future conditions (2070-2099), assuming the SRES A1B emission scenario. Input to the three downscaling approaches were 10 GCM-RCM simulations of the ENSEMBLES project, while eight meteorological station observations served as the reference. All station data, observed and downscaled, were interpolated to obtain meteorological fields of temperature and precipitation required by the hydrological model. For the present-day reference period we evaluated the ability of each downscaling method to reproduce today's hydro-meteorological patterns. In the scenario runs, we focused on the comparison of change signals for each hydro-meteorological parameter generated by the three downscaling techniques. The evaluation exercise reveals that QM and WG perform equally well in representing present day average conditions, but that QM outperforms WG in reproducing indices related to extreme conditions like the number of drought events or multi-day rain sums. In terms of mean monthly discharge changes, the three downscaling methods reveal notable differences: DC shows the strongest (in summer) and less pronounced (in winter) change signal. Regarding some extreme features of runoff like frequency of droughts and the low flow level, DC shows similar change signals compared to QM and WG. This was unexpected as DC is commonly reported to fail in terms of projecting extreme changes. In contrast, QM mostly shows the strongest change signals for the 10 different extreme related indices, due to its ability to pick up more features of the climate change signals from the RCM. This indicates that DC and also WG miss some aspects, especially for flood related indices. Hence, depending on the target variable of interest, DC and QM typically provide the full range of change signals, while WG mostly lies in between both method. However, it offers the great advantage of multiple realizations combined with inter-variable consistency.
A Framework for the Optimization of Discrete-Event Simulation Models
NASA Technical Reports Server (NTRS)
Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.
1996-01-01
With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.
A program code generator for multiphysics biological simulation using markup languages.
Amano, Akira; Kawabata, Masanari; Yamashita, Yoshiharu; Rusty Punzalan, Florencio; Shimayoshi, Takao; Kuwabara, Hiroaki; Kunieda, Yoshitoshi
2012-01-01
To cope with the complexity of the biological function simulation models, model representation with description language is becoming popular. However, simulation software itself becomes complex in these environment, thus, it is difficult to modify the simulation conditions, target computation resources or calculation methods. In the complex biological function simulation software, there are 1) model equations, 2) boundary conditions and 3) calculation schemes. Use of description model file is useful for first point and partly second point, however, third point is difficult to handle for various calculation schemes which is required for simulation models constructed from two or more elementary models. We introduce a simulation software generation system which use description language based description of coupling calculation scheme together with cell model description file. By using this software, we can easily generate biological simulation code with variety of coupling calculation schemes. To show the efficiency of our system, example of coupling calculation scheme with three elementary models are shown.
Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver
NASA Technical Reports Server (NTRS)
Hess, R. A.; Malsbury, T.; Atencio, A., Jr.
1992-01-01
A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1997-01-01
This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.
Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance
NASA Astrophysics Data System (ADS)
Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju
2016-10-01
This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.
Simulation of South-Asian Summer Monsoon in a GCM
NASA Astrophysics Data System (ADS)
Ajayamohan, R. S.
2007-10-01
Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Taraphdar, Sourav; Wang, Taiping
This paper presents a modeling study conducted to evaluate the uncertainty of a regional model in simulating hurricane wind and pressure fields, and the feasibility of driving coastal storm surge simulation using an ensemble of region model outputs produced by 18 combinations of three convection schemes and six microphysics parameterizations, using Hurricane Katrina as a test case. Simulated wind and pressure fields were compared to observed H*Wind data for Hurricane Katrina and simulated storm surge was compared to observed high-water marks on the northern coast of the Gulf of Mexico. The ensemble modeling analysis demonstrated that the regional model wasmore » able to reproduce the characteristics of Hurricane Katrina with reasonable accuracy and can be used to drive the coastal ocean model for simulating coastal storm surge. Results indicated that the regional model is sensitive to both convection and microphysics parameterizations that simulate moist processes closely linked to the tropical cyclone dynamics that influence hurricane development and intensification. The Zhang and McFarlane (ZM) convection scheme and the Lim and Hong (WDM6) microphysics parameterization are the most skillful in simulating Hurricane Katrina maximum wind speed and central pressure, among the three convection and the six microphysics parameterizations. Error statistics of simulated maximum water levels were calculated for a baseline simulation with H*Wind forcing and the 18 ensemble simulations driven by the regional model outputs. The storm surge model produced the overall best results in simulating the maximum water levels using wind and pressure fields generated with the ZM convection scheme and the WDM6 microphysics parameterization.« less
Reusable Component Model Development Approach for Parallel and Distributed Simulation
Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng
2014-01-01
Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751
Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Crown, William; Padula, William V; Wong, Peter K; Pasupathy, Kalyan S; Higashi, Mitchell K; Osgood, Nathaniel D
2015-03-01
In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods-system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose-type of problem and research questions being investigated, 2) the object-scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing "volume, velocity and variety" and availability of "big data" to provide empirical evidence and techniques such as machine learning for parameter estimation in dynamic simulation models. Upon reviewing this report in addition to using the SIMULATE checklist, the readers should be able to identify whether dynamic simulation modeling methods are appropriate to address the problem at hand and to recognize the differences of these methods from those of other, more traditional modeling approaches such as Markov models and decision trees. This report provides an overview of these modeling methods and examples of health care system problems in which such methods have been useful. The primary aim of the report was to aid decisions as to whether these simulation methods are appropriate to address specific health systems problems. The report directs readers to other resources for further education on these individual modeling methods for system interventions in the emerging field of health care delivery science and implementation. Copyright © 2015. Published by Elsevier Inc.
System Simulation Modeling: A Case Study Illustration of the Model Development Life Cycle
Janice K. Wiedenbeck; D. Earl Kline
1994-01-01
Systems simulation modeling techniques offer a method of representing the individual elements of a manufacturing system and their interactions. By developing and experimenting with simulation models, one can obtain a better understanding of the overall physical system. Forest products industries are beginning to understand the importance of simulation modeling to help...
Saho, Tatsunori; Onishi, Hideo
2015-07-01
In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.
Simulated Students and Classroom Use of Model-Based Intelligent Tutoring
NASA Technical Reports Server (NTRS)
Koedinger, Kenneth R.
2008-01-01
Two educational uses of models and simulations: 1) Students create models and use simulations ; and 2) Researchers create models of learners to guide development of reliably effective materials. Cognitive tutors simulate and support tutoring - data is crucial to create effective model. Pittsburgh Science of Learning Center: Resources for modeling, authoring, experimentation. Repository of data and theory. Examples of advanced modeling efforts: SimStudent learns rule-based model. Help-seeking model: Tutors metacognition. Scooter uses machine learning detectors of student engagement.
NASA Astrophysics Data System (ADS)
da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio
2018-03-01
This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2015-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit Reynolds stress model. Fortunately, the numerical error assessment at most of the axial stations used to compare with measurements clearly indicated that the scale-resolving simulations were improving (i.e. approaching the measured values) as the grid was refined. Hence, unlike a Reynolds-averaged simulation, the hybrid approach provides a mechanism to the end-user for reducing model-form errors.
NASA Astrophysics Data System (ADS)
Prasad, K.
2017-12-01
Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.
Li, Chen; Nagasaki, Masao; Koh, Chuan Hock; Miyano, Satoru
2011-05-01
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.
Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; ...
2015-07-14
Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. Our paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated bymore » the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical, and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. But, there still is considerable need for reducing observational uncertainties and providing better observations especially for relative humidity and for the size distribution and chemical composition of aerosols in the upper troposphere.« less
Collaborative modeling: the missing piece of distributed simulation
NASA Astrophysics Data System (ADS)
Sarjoughian, Hessam S.; Zeigler, Bernard P.
1999-06-01
The Department of Defense overarching goal of performing distributed simulation by overcoming geographic and time constraints has brought the problem of distributed modeling to the forefront. The High Level Architecture standard is primarily intended for simulation interoperability. However, as indicated, the existence of a distributed modeling infrastructure plays a fundamental and central role in supporting the development of distributed simulations. In this paper, we describe some fundamental distributed modeling concepts and their implications for constructing successful distributed simulations. In addition, we discuss the Collaborative DEVS Modeling environment that has been devised to enable graphically dispersed modelers to collaborate and synthesize modular and hierarchical models. We provide an actual example of the use of Collaborative DEVS Modeler in application to a project involving corporate partners developing an HLA-compliant distributed simulation exercise.
The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations
2011-12-01
modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism
Hot-bench simulation of the active flexible wing wind-tunnel model
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Houck, Jacob A.
1990-01-01
Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.
Modeling and simulating industrial land-use evolution in Shanghai, China
NASA Astrophysics Data System (ADS)
Qiu, Rongxu; Xu, Wei; Zhang, John; Staenz, Karl
2018-01-01
This study proposes a cellular automata-based Industrial and Residential Land Use Competition Model to simulate the dynamic spatial transformation of industrial land use in Shanghai, China. In the proposed model, land development activities in a city are delineated as competitions among different land-use types. The Hedonic Land Pricing Model is adopted to implement the competition framework. To improve simulation results, the Land Price Agglomeration Model was devised to simulate and adjust classic land price theory. A new evolutionary algorithm-based parameter estimation method was devised in place of traditional methods. Simulation results show that the proposed model closely resembles actual land transformation patterns and the model can not only simulate land development, but also redevelopment processes in metropolitan areas.
Coon, William F.
2011-01-01
Simulation of streamflows in small subbasins was improved by adjusting model parameter values to match base flows, storm peaks, and storm recessions more precisely than had been done with the original model. Simulated recessional and low flows were either increased or decreased as appropriate for a given stream, and simulated peak flows generally were lowered in the revised model. The use of suspended-sediment concentrations rather than concentrations of the surrogate constituent, total suspended solids, resulted in increases in the simulated low-flow sediment concentrations and, in most cases, decreases in the simulated peak-flow sediment concentrations. Simulated orthophosphate concentrations in base flows generally increased but decreased for peak flows in selected headwater subbasins in the revised model. Compared with the original model, phosphorus concentrations simulated by the revised model were comparable in forested subbasins, generally decreased in developed and wetland-dominated subbasins, and increased in agricultural subbasins. A final revision to the model was made by the addition of the simulation of chloride (salt) concentrations in the Onondaga Creek Basin to help water-resource managers better understand the relative contributions of salt from multiple sources in this particular tributary. The calibrated revised model was used to (1) compute loading rates for the various land types that were simulated in the model, (2) conduct a watershed-management analysis that estimated the portion of the total load that was likely to be transported to Onondaga Lake from each of the modeled subbasins, (3) compute and assess chloride loads to Onondaga Lake from the Onondaga Creek Basin, and (4) simulate precolonization (forested) conditions in the basin to estimate the probable minimum phosphorus loads to the lake.
Research on modeling and conduction disturbance simulation of secondary power system in a device
NASA Astrophysics Data System (ADS)
Ding, Xu; Yu, Zhi-Yong; Jin, Rui
2017-06-01
To find electromagnetic interference (EMI) and other problems in the secondary power supply system design quickly and effectively, simulations are carried out under the Saber simulation software platform. The DC/DC converter model with complete performance and electromagnetic characteristics is established by combining parametric modeling with Mast language. By using the method of macro modeling, the hall current sensor and power supply filter model are established respectively based on the function, schematic diagram of the components. Also the simulation of the component model and the whole secondary power supply system are carried out. The simulation results show that the proposed model satisfies the functional requirements of the system and has high accuracy. At the same time, due to the ripple characteristics in the DC/DC converter modeling, it can be used as a conducted interference model to simulate the power bus conducted emission CE102 project under the condition that the simulated load is full, which provides a useful reference for the electromagnetic interference suppression of the system.
Annular mode changes in the CMIP5 simulations
NASA Astrophysics Data System (ADS)
Gillett, N. P.; Fyfe, J. C.
2013-03-01
We investigate simulated changes in the annular modes in historical and RCP 4.5 scenario simulations of 37 models from the fifth Coupled Model Intercomparison Project (CMIP5), a much larger ensemble of models than has previously been used to investigate annular mode trends, with improved resolution and forcings. The CMIP5 models on average simulate increases in the Northern Annular Mode (NAM) and Southern Annular Mode (SAM) in every season by 2100, and no CMIP5 model simulates a significant decrease in either the NAM or SAM in any season. No significant increase in the NAM or North Atlantic Oscillation (NAO) is simulated in response to volcanic aerosol, and no significant NAM or NAO response to solar irradiance variations is simulated. The CMIP5 models simulate a significant negative SAM response to volcanic aerosol in MAM and JJA, and a significant positive SAM response to solar irradiance variations in MAM, JJA and DJF.
Introduction of a simulation model for choledocho- and pancreaticojejunostomy.
Narumi, Shunji; Toyoki, Yoshikazu; Ishido, Keinosuke; Kudo, Daisuke; Umehara, Minoru; Kimura, Norihisa; Miura, Takuya; Muroya, Takahiro; Hakamada, Kenichi
2012-10-01
Pancreaticoduodenectomy includes choledochojejunostomy and pancreaticojejunostomy, which require hand-sewn anastomoses. Educational simulation models for choledochojejunostomy and pancreaticojejunostomy have not been designed. We introduce a simulation model for choledochojejunostomy and pancreaticojejunostomy created with a skin closure pad and a vascular model. A wound closure pad and a vein model (4 mm diameter) were used as a stump model of the pancreas. Pancreaticojejunostomy was simulated with a stump model of the pancreas and a double layer bowel model; these models were stabilized in an end-to-side fashion on a magnetic board using magnetic clips. In addition, vein (6 or 8 mm diameter) and bowel models were used to simulate choledochojejunostomy. Pancreatic and hepatobiliary surgery are relatively rare, particularly in a community hospital although surgical residents wish to practice these procedures. Our simulator enables surgeons and surgical residents to practice choledocho- and pancreaticojejunostomy through open or laparoscopic approaches.
Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung
2015-01-01
A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.
Li, Min; Zhang, John Z H
2017-03-08
The development of polarizable water models at coarse-grained (CG) levels is of much importance to CG molecular dynamics simulations of large biomolecular systems. In this work, we combined the newly developed two-bead multipole force field (TMFF) for proteins with the two-bead polarizable water models to carry out CG molecular dynamics simulations for benchmark proteins. In our simulations, two different two-bead polarizable water models are employed, the RTPW model representing five water molecules by Riniker et al. and the LTPW model representing four water molecules. The LTPW model is developed in this study based on the Martini three-bead polarizable water model. Our simulation results showed that the combination of TMFF with the LTPW model significantly stabilizes the protein's native structure in CG simulations, while the use of the RTPW model gives better agreement with all-atom simulations in predicting the residue-level fluctuation dynamics. Overall, the TMFF coupled with the two-bead polarizable water models enables one to perform an efficient and reliable CG dynamics study of the structural and functional properties of large biomolecules.
[Low Fidelity Simulation of a Zero-Y Robot
NASA Technical Reports Server (NTRS)
Sweet, Adam
2001-01-01
The item to be cleared is a low-fidelity software simulation model of a hypothetical freeflying robot designed for use in zero gravity environments. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model computes the location and orientation of the simulated robot over time. Failures (such as a broken motor) can be injected into the simulation to produce simulated behavior corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated behavior. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.
Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.
Rast, Alexander; Galluppi, Francesco; Davies, Sergio; Plana, Luis; Patterson, Cameron; Sharp, Thomas; Lester, David; Furber, Steve
2011-11-01
Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level description and use an automated process to generate an on-chip simulation. Simulations using both LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-scale hardware modelling. SpiNNaker's asynchronous virtual architecture permits greater scope for model exploration, with scalable levels of functional and temporal abstraction, than conventional (or neuromorphic) computing platforms. The complete system illustrates a potential path to understanding the neural model of computation, by building (and breaking) neural models at various scales, connecting the blocks, then comparing them against the biology: computational cognitive neuroscience. Copyright © 2011 Elsevier Ltd. All rights reserved.
A real time Pegasus propulsion system model for VSTOL piloted simulation evaluation
NASA Technical Reports Server (NTRS)
Mihaloew, J. R.; Roth, S. P.; Creekmore, R.
1981-01-01
A real time propulsion system modeling technique suitable for use in man-in-the-loop simulator studies was developd. This technique provides the system accuracy, stability, and transient response required for integrated aircraft and propulsion control system studies. A Pegasus-Harrier propulsion system was selected as a baseline for developing mathematical modeling and simulation techniques for VSTOL. Initially, static and dynamic propulsion system characteristics were modeled in detail to form a nonlinear aerothermodynamic digital computer simulation of a Pegasus engine. From this high fidelity simulation, a real time propulsion model was formulated by applying a piece-wise linear state variable methodology. A hydromechanical and water injection control system was also simulated. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model was programmed for interfacing with a Harrier aircraft simulation. Typical propulsion system simulation results are presented.
Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.
Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus
2017-01-01
Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.
Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator
Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus
2017-01-01
Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation. PMID:28596730
Locating Anomalies in Complex Data Sets Using Visualization and Simulation
NASA Technical Reports Server (NTRS)
Panetta, Karen
2001-01-01
The research goals are to create a simulation framework that can accept any combination of models written at the gate or behavioral level. The framework provides the ability to fault simulate and create scenarios of experiments using concurrent simulation. In order to meet these goals we have had to fulfill the following requirements. The ability to accept models written in VHDL, Verilog or the C languages. The ability to propagate faults through any model type. The ability to create experiment scenarios efficiently without generating every possible combination of variables. The ability to accept adversity of fault models beyond the single stuck-at model. Major development has been done to develop a parser that can accept models written in various languages. This work has generated considerable attention from other universities and industry for its flexibility and usefulness. The parser uses LEXX and YACC to parse Verilog and C. We have also utilized our industrial partnership with Alternative System's Inc. to import vhdl into our simulator. For multilevel simulation, we needed to modify the simulator architecture to accept models that contained multiple outputs. This enabled us to accept behavioral components. The next major accomplishment was the addition of "functional fault models". Functional fault models change the behavior of a gate or model. For example, a bridging fault can make an OR gate behave like an AND gate. This has applications beyond fault simulation. This modeling flexibility will make the simulator more useful for doing verification and model comparison. For instance, two or more versions of an ALU can be comparatively simulated in a single execution. The results will show where and how the models differed so that the performance and correctness of the models may be evaluated. A considerable amount of time has been dedicated to validating the simulator performance on larger models provided by industry and other universities.
MOSES: A Matlab-based open-source stochastic epidemic simulator.
Varol, Huseyin Atakan
2016-08-01
This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.
Satellite simulators are often used to account for limitations in satellite retrievals of cloud properties in comparisons between models and satellite observations. The purpose of the simulator framework is to enable more robust evaluation of model cloud properties, so that di erences between models and observations can more con dently be attributed to model errors. However, these simulators are subject to uncertainties themselves. A fundamental uncertainty exists in connecting the spatial scales at which cloud properties are retrieved with those at which clouds are simulated in global models. In this study, we create a series of sensitivity tests using 4more » km global model output from the Multiscale Modeling Framework to evaluate the sensitivity of simulated satellite retrievals when applied to climate models whose grid spacing is many tens to hundreds of kilometers. In particular, we examine the impact of cloud and precipitation overlap and of condensate spatial variability. We find the simulated retrievals are sensitive to these assumptions. Specifically, using maximum-random overlap with homogeneous cloud and precipitation condensate, which is often used in global climate models, leads to large errors in MISR and ISCCP-simulated cloud cover and in CloudSat-simulated radar reflectivity. To correct for these errors, an improved treatment of unresolved clouds and precipitation is implemented for use with the simulator framework and is shown to substantially reduce the identified errors.« less
Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling
NASA Astrophysics Data System (ADS)
Schum, William K.; Doolittle, Christina M.; Boyarko, George A.
2006-05-01
During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.
Uses of Computer Simulation Models in Ag-Research and Everyday Life
USDA-ARS?s Scientific Manuscript database
When the news media talks about models they could be talking about role models, fashion models, conceptual models like the auto industry uses, or computer simulation models. A computer simulation model is a computer code that attempts to imitate the processes and functions of certain systems. There ...
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Stockwell, Alan E.
2005-01-01
LS-DYNA simulations were conducted to study the influence of model complexity on the response of a typical Reinforced Carbon-Carbon (RCC) panel to a foam impact at a location approximately midway between the ribs. A structural model comprised of Panels 10, 11, and TSeal 11 was chosen as the baseline model for the study. A simulation was conducted with foam striking Panel 10 at Location 4 at an alpha angle of 10 degrees, with an impact velocity of 1000 ft/sec. A second simulation was conducted after removing Panel 11 from the model, and a third simulation was conducted after removing both Panel 11 and T-Seal 11. All three simulations showed approximately the same response for Panel 10, and the simplified simulation model containing only Panel 10 was shown to be significantly less expensive to execute than the other two more complex models.
ERIC Educational Resources Information Center
Zillesen, Pieter G. van Schaick
This paper introduces a hardware and software independent model for producing educational computer simulation environments. The model, which is based on the results of 32 studies of educational computer simulations program production, implies that educational computer simulation environments are specified, constructed, tested, implemented, and…
An Interactive Teaching System for Bond Graph Modeling and Simulation in Bioengineering
ERIC Educational Resources Information Center
Roman, Monica; Popescu, Dorin; Selisteanu, Dan
2013-01-01
The objective of the present work was to implement a teaching system useful in modeling and simulation of biotechnological processes. The interactive system is based on applications developed using 20-sim modeling and simulation software environment. A procedure for the simulation of bioprocesses modeled by bond graphs is proposed and simulators…
Semantic World Modelling and Data Management in a 4d Forest Simulation and Information System
NASA Astrophysics Data System (ADS)
Roßmann, J.; Hoppen, M.; Bücken, A.
2013-08-01
Various types of 3D simulation applications benefit from realistic forest models. They range from flight simulators for entertainment to harvester simulators for training and tree growth simulations for research and planning. Our 4D forest simulation and information system integrates the necessary methods for data extraction, modelling and management. Using modern methods of semantic world modelling, tree data can efficiently be extracted from remote sensing data. The derived forest models contain position, height, crown volume, type and diameter of each tree. This data is modelled using GML-based data models to assure compatibility and exchangeability. A flexible approach for database synchronization is used to manage the data and provide caching, persistence, a central communication hub for change distribution, and a versioning mechanism. Combining various simulation techniques and data versioning, the 4D forest simulation and information system can provide applications with "both directions" of the fourth dimension. Our paper outlines the current state, new developments, and integration of tree extraction, data modelling, and data management. It also shows several applications realized with the system.
A simple analytical infiltration model for short-duration rainfall
NASA Astrophysics Data System (ADS)
Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming
2017-12-01
Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.
Agent-based modeling: Methods and techniques for simulating human systems
Bonabeau, Eric
2002-01-01
Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407
Michel, Miriam; Egender, Friedemann; Heßling, Vera; Dähnert, Ingo; Gebauer, Roman
2016-01-01
Background Postoperative junctional ectopic tachycardia (JET) occurs frequently after pediatric cardiac surgery. R-wave synchronized atrial (AVT) pacing is used to re-establish atrioventricular synchrony. AVT pacing is complex, with technical pitfalls. We sought to establish and to test a low-cost simulation model suitable for training and analysis in AVT pacing. Methods A simulation model was developed based on a JET simulator, a simulation doll, a cardiac monitor, and a pacemaker. A computer program simulated electrocardiograms. Ten experienced pediatric cardiologists tested the model. Their performance was analyzed using a testing protocol with 10 working steps. Results Four testers found the simulation model realistic; 6 found it very realistic. Nine claimed that the trial had improved their skills. All testers considered the model useful in teaching AVT pacing. The simulation test identified 5 working steps in which major mistakes in performance test may impede safe and effective AVT pacing and thus permitted specific training. The components of the model (exclusive monitor and pacemaker) cost less than $50. Assembly and training-session expenses were trivial. Conclusions A realistic, low-cost simulation model of AVT pacing is described. The model is suitable for teaching and analyzing AVT pacing technique. PMID:26943363
A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION
Finch, Craig; Clarke, Thomas; Hickman, James J.
2012-01-01
Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843
Developing Cognitive Models for Social Simulation from Survey Data
NASA Astrophysics Data System (ADS)
Alt, Jonathan K.; Lieberman, Stephen
The representation of human behavior and cognition continues to challenge the modeling and simulation community. The use of survey and polling instruments to inform belief states, issue stances and action choice models provides a compelling means of developing models and simulations with empirical data. Using these types of data to population social simulations can greatly enhance the feasibility of validation efforts, the reusability of social and behavioral modeling frameworks, and the testable reliability of simulations. We provide a case study demonstrating these effects, document the use of survey data to develop cognitive models, and suggest future paths forward for social and behavioral modeling.
A mathematical simulation model of the CH-47B helicopter, volume 2
NASA Technical Reports Server (NTRS)
Weber, J. M.; Liu, T. Y.; Chung, W.
1984-01-01
A nonlinear simulation model of the CH-47B helicopter, was adapted for use in a simulation facility. The model represents the specific configuration of the variable stability CH-47B helicopter. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatley-Bailey equations, steady state flapping dynamics and included in the model of the option for simulation of external suspension, slung load equations of motion. Validation of the model was accomplished by static and dynamic data from the original Boeing Vertol mathematical model and flight test data. The model is appropriate for use in real time piloted simulation and is implemented on the ARC Sigma IX computer where it may be operated with a digital cycle time of 0.03 sec.
An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.
2017-01-01
Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.
Modeling the long-term evolution of space debris
Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.
2017-03-07
A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.
Shi, Kuangyu; Bayer, Christine; Gaertner, Florian C; Astner, Sabrina T; Wilkens, Jan J; Nüsslin, Fridtjof; Vaupel, Peter; Ziegler, Sibylle I
2017-02-01
Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [ 18 F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [ 18 F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [ 18 F]FMISO measurements in the investigated tumors.
Application of simulation models for the optimization of business processes
NASA Astrophysics Data System (ADS)
Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří
2016-06-01
The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.
Validation of Potential Models for Li2O in Classical Molecular Dynamics Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Takuji; Oya, Yasuhisa; Tanaka, Satoru
2007-08-01
Four Buckingham-type pairwise potential models for Li2O were assessed by molecular static and dynamics simulations. In the static simulation, all models afforded acceptable agreement with experimental values and ab initio calculation results for the crystalline properties. Moreover, the superionic phase transition was realized in the dynamics simulation. However, the Li diffusivity and the lattice expansion were not adequately reproduced at the same time by any model. When using these models in future radiation simulation, these features should be taken into account, in order to reduce the model dependency of the results.
A Comparison of Three Approaches to Model Human Behavior
NASA Astrophysics Data System (ADS)
Palmius, Joel; Persson-Slumpi, Thomas
2010-11-01
One way of studying social processes is through the use of simulations. The use of simulations for this purpose has been established as its own field, social simulations, and has been used for studying a variety of phenomena. A simulation of a social setting can serve as an aid for thinking about that social setting, and for experimenting with different parameters and studying the outcomes caused by them. When using the simulation as an aid for thinking and experimenting, the chosen simulation approach will implicitly steer the simulationist towards thinking in a certain fashion in order to fit the model. To study the implications of model choice on the understanding of a setting where human anticipation comes into play, a simulation scenario of a coffee room was constructed using three different simulation approaches: Cellular Automata, Systems Dynamics and Agent-based modeling. The practical implementations of the models were done in three different simulation packages: Stella for Systems Dynamic, CaFun for Cellular automata and SesAM for Agent-based modeling. The models were evaluated both using Randers' criteria for model evaluation, and through introspection where the authors reflected upon how their understanding of the scenario was steered through the model choice. Further the software used for implementing the simulation models was evaluated, and practical considerations for the choice of software package are listed. It is concluded that the models have very different strengths. The Agent-based modeling approach offers the most intuitive support for thinking about and modeling a social setting where the behavior of the individual is in focus. The Systems Dynamics model would be preferable in situations where populations and large groups would be studied as wholes, but where individual behavior is of less concern. The Cellular Automata models would be preferable where processes need to be studied from the basis of a small set of very simple rules. It is further concluded that in most social simulation settings the Agent-based modeling approach would be the probable choice. This since the other models does not offer much in the way of supporting the modeling of the anticipatory behavior of humans acting in an organization.
Functional zinc oxide nanostructures for electronic and energy applications
NASA Astrophysics Data System (ADS)
Prasad, Abhishek
ZnO has proven to be a multifunctional material with important nanotechnological applications. ZnO nanostructures can be grown in various forms such as nanowires, nanorods, nanobelts, nanocombs etc. In this work, ZnO nanostructures are grown in a double quartz tube configuration thermal Chemical Vapor Deposition (CVD) system. We focus on functionalized ZnO Nanostructures by controlling their structures and tuning their properties for various applications. The following topics have been investigated: (1) We have fabricated various ZnO nanostructures using a thermal CVD technique. The growth parameters were optimized and studied for different nanostructures. (2) We have studied the application of ZnO nanowires (ZnONWs) for field effect transistors (FETs). Unintentional n-type conductivity was observed in our FETs based on as-grown ZnO NWs. We have then shown for the first time that controlled incorporation of hydrogen into ZnO NWs can introduce p-type characters to the nanowires. We further found that the n-type behaviors remained, leading to the ambipolar behaviors of hydrogen incorporated ZnO NWs. Importantly, the detected p- and n- type behaviors are stable for longer than two years when devices were kept in ambient conditions. All these can be explained by an ab initio model of Zn vacancy-Hydrogen complexes, which can serve as the donor, acceptors, or green photoluminescence quencher, depend on the number of hydrogen atoms involved. (3) Next ZnONWs were tested for electron field emission. We focus on reducing the threshold field (Eth) of field emission from non-aligned ZnO NWs. As encouraged by our results on enhancing the conductivity of ZnO NWs by hydrogen annealing described in Chapter 3, we have studied the effect of hydrogen annealing for improving field emission behavior of our ZnO NWs. We found that optimally annealed ZnO NWs offered much lower threshold electric field and improved emission stability. We also studied field emission from ZnO NWs at moderate vacuum levels. We found that there exists a minimum Eth as we scale the threshold field with pressure. This behavior is explained by referring to Paschen's law.(4) We have studied the application of ZnO nanostructures for solar energy harvesting. First, as-grown and (CdSe) ZnS QDs decorated ZnO NBs and ZnONWs were tested for photocurrent generation. All these nanostructures offered fast response time to solar radiation. The decoration of QDs decreases the stable current level produced by ZnONWs but increases that generated by NBs. It is possible that NBs offer more stable surfaces for the attachment of QDs. In addition, our results suggests that performance degradation of solar cells made by growing ZnO NWs on ITO is due to the increase in resistance of ITO after the high temperature growth process. Hydrogen annealing also improve the efficiency of the solar cells by decreasing the resistance of ITO. Due to the issues on ITO, we use Ni foil as the growth substrates. Performance of solar cells made by growing ZnO NWs on Ni foils degraded after Hydrogen annealing at both low (300°C) and high (600°C) temperatures since annealing passivates native defects in ZnONWs and thus reduce the absorption of visible spectra from our solar simulator. Decoration of QDs improves the efficiency of such solar cells by increasing absorption of light in the visible region. Using a better electrolyte than phosphate buffer solution (PBS) such as KI also improves the solar cell efficiency. (5) Finally, we have attempted p-type doping of ZnO NWs using various growth precursors including phosphorus pentoxide, sodium fluoride, and zinc fluoride. We have also attempted to create p-type carriers via introducing interstitial fluorine by annealing ZnO nanostructures in diluted fluorine gas. In brief, we are unable to reproduce the growth of reported p-type ZnO nanostructures. However; we have identified the window of temperature and duration of post-growth annealing of ZnO NWs in dilute fluorine gas which leads to suppression of native defects. This is the first experimental effort on post-growth annealing of ZnO NWs in dilute fluorine gas although this has been suggested by a recent theory for creating p-type semiconductors. In our experiments the defect band peak due to native defects is found to decrease by annealing at 300°C for 10 -- 30 minutes. One of the major future works will be to determine the type of charge carriers in our annealed ZnONWs.