Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.
2017-06-01
Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.
Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi
2015-06-01
This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.
Quantum molecular dynamics simulation of structural and thermodynamic properties of NiAl
NASA Astrophysics Data System (ADS)
Karchevskaya, E. S.; Minakov, D. V.; Levashov, P. R.
2018-01-01
In this work, structural and thermodynamic properties of a solid and liquid Ni-Al compound are studied using an ab initio method of quantum molecular dynamics (QMD). Simulations were carried out in 700-3000 K temperature range at atmospheric pressure. Radial distribution functions are analyzed to determine the presence of Ni-Al chemical bonds. Diffusion coefficients for individual components are also calculated. Another goal of this work is the investigation of the reaction propagation in thermally-initiated Ni-Al foils. For this purpose, we performed QMD simulations of Ni-Al layers in the microcanonical ensemble. An exothermic reaction between the solid Ni-Al layers is observed in our simulations at temperature less than the melting temperatures of the components.
Effects of two-temperature model on cascade evolution in Ni and NiFe
Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; ...
2016-07-05
We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic effects are more profound in the higher-energy cascades, and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than in Ni.
NASA Astrophysics Data System (ADS)
Meraj, Md.; Deng, Chuang; Pal, Snehanshu
2018-01-01
In this study, the feasibility of stress induced solid-state amorphization (SSA) of nanocrystalline (NC) Ni and NiZr alloys having ˜10 nm grain size has been investigated under constant tensile load (uniaxial and triaxial) via molecular dynamics simulations. In order to track the structural evaluation in both NC Ni and NiZr alloys during the SSA process, various types of analysis have been used, including simulated X-ray diffraction, centro-symmetry parameter, Voronoi cluster, common neighbor analysis, and radial distribution function. It is found that SSA in both NC Ni and NiZr alloys can only be achieved under triaxial loading conditions, and the hydrostatic tensile stress required for SSA is significantly lower when at. % Zr is increased in the NC NiZr alloy. Specifically, SSA in NC Ni and Ni-5 at. % Zr alloy was observed only when the temperature and hydrostatic tensile stress reached 800 K and 6 GPa, while SSA could occur in NC Ni-10 at. % Zr alloy under just 2 GPa of hydrostatic tensile stress at 300 K.
GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments
Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh; ...
2018-03-31
Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less
GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh
Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less
Ramazanzadeh, Barat Ali; Ahrari, Farzaneh; Sabzevari, Berahman; Habibi, Samaneh
2014-01-01
Background and aims. This study aimed to investigate release of nickel ion from three types of nickel-titanium-based wires in the as-received state and after immersion in a simulated oral environment. Materials and methods. Forty specimens from each of the single-strand NiTi (Rematitan "Lite"), multi-strand NiTi (SPEED Supercable) and Copper NiTi (Damon Copper NiTi) were selected. Twenty specimens from each type were used in the as-received state and the others were kept in deflected state at 37ºC for 2 months followed by autoclave sterilization. The as-received and recycled wire specimens were immersed in glass bottles containing 1.8 mL of artificial saliva for 28 days and the amount of nickel ion released into the electrolyte was determined using atomic absorption spectrophotometry. Results. The single-strand NiTi released the highest quantity of nickel ion in the as-received state and the multi-strand NiTi showed the highest ion release after oral simulation. The quantity of nickelion released from Damon Copper NiTi was the lowest in both conditions. Oral simulation followed by sterilization did not have a significant influence on nickel ion release from multi-strand NiTi and Damon Copper NiTi wires, but single-strand NiTi released statistically lower quantities of nickel ion after oral simulation. Conclusion. The multi-strand nature of Supercable did not enhance the potential of corrosion after immersion in the simulated oral environment. In vitro use of nickel-titanium-based archwires followed by sterilization did not significantly increase the amount of nickel ion released from these wires. PMID:25093049
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram
2008-08-01
Oxidation kinetics of Ni-Al (100) alloy surface is investigated at low temperatures (300-600 K) and at different gas pressures using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. Monte Carlo simulations employing the bond order simulation model are used to generate the surface segregated minimum energy initial alloy configurations for use in the MD simulations. In the simulated temperature-pressure-composition regime for Ni-Al alloys, we find that the oxide growth curves follow a logarithmic law beyond an initial transient regime. The oxidation rates for Ni-Al alloys were found to decrease with increasing Ni composition. Structure and dynamical correlations in the metal/oxide/gas environments are used to gain insights into the evolution and morphology of the growing oxide film. Oxidation of Ni-Al alloys is characterized by the absence of Ni-O bond formation. Oxide films formed on the various simulated metal surfaces are amorphous in nature and have a limiting thickness ranging from ˜1.7nm for pure Al to 1.1 nm for 15% Ni-Al surfaces. Oxide scale analysis indicates significant charge transfer as well as variation in the morphology and structure of the oxide film formed on pure Al and 5% Ni-Al alloy. For oxide scales thicker than 1 nm, the oxide structure in case of pure Al exhibits a mixed tetrahedral (AlO4˜37%) and octahedral (AlO6˜19%) environment, whereas the oxide scale on Ni-Al alloy surface is almost entirely composed of tetrahedral environment (AlO4˜60%) with very little AlO6 (<1%) . The oxide growth kinetic curves are fitted to Arrhenius-type plots to get an estimate of the activation energy barriers for metal oxidation. The activation energy barrier for oxidation on pure Al was found to be 0.3 eV lower than that on 5% Ni-Al surface. Atomistic observations as well as calculated dynamical correlation functions indicate a layer by layer growth on pure Al, whereas a transition from an initial island growth mode (<75ps) to a layer by layer mode (>100ps) occurs in case of 5% Ni-Al alloy. The oxide growth on both pure Al and Ni-Al alloy surfaces occurs by inward anion and outward cation diffusions. The cation diffusion in both the cases is similar, whereas the anion diffusion in case of 5% Ni-Al is 25% lower than pure Al, thereby resulting in reduced self-limiting thickness of oxide scale on the alloy surface. The simulation findings agree well with previously reported experimental observations of oxidation on Ni-Al alloy surface.
NASA Astrophysics Data System (ADS)
Singh, Sumitra; Mahala, Pramila; Pal, Suchandan
2018-01-01
This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.
Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite
NASA Astrophysics Data System (ADS)
Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi
2017-01-01
Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.
Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation
NASA Astrophysics Data System (ADS)
Rajkumar, V. B.; Chen, Sinn-wen
2017-04-01
Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.
NASA Astrophysics Data System (ADS)
Li, J.-L. F.; Suhas, E.; Richardson, Mark; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Lee, Tong; Fetzer, Eric; Stephens, Graeme; Shen, Min-Hua
2018-02-01
Most of the global climate models (GCMs) in the Coupled Model Intercomparison Project, phase 5 do not include precipitating ice (aka falling snow) in their radiation calculations. We examine the importance of the radiative effects of precipitating ice on simulated surface wind stress and sea surface temperatures (SSTs) in terms of seasonal variation and in the evolution of central Pacific El Niño (CP-El Niño) events. Using controlled simulations with the CESM1 model, we show that the exclusion of precipitating ice radiative effects generates a persistent excessive upper-level radiative cooling and an increasingly unstable atmosphere over convective regions such as the western Pacific and tropical convergence zones. The invigorated convection leads to persistent anomalous low-level outflows which weaken the easterly trade winds, reducing upper-ocean mixing and leading to a positive SST bias in the model mean state. In CP-El Niño events, this means that outflow from the modeled convection in the central Pacific reduces winds to the east, allowing unrealistic eastward propagation of warm SST anomalies following the peak in CP-El Niño activity. Including the radiative effects of precipitating ice reduces these model biases and improves the simulated life cycle of the CP-El Niño. Improved simulations of present-day tropical seasonal variations and CP-El Niño events would increase the confidence in simulating their future behavior.
Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys
Zhang, S.; Nordlund, K.; Djurabekova, F.; ...
2017-04-12
We develop a new method using binary collision approximation simulating the Rutherford backscattering spectrometry in channeling conditions (RBS/C) from molecular dynamics atom coordinates of irradiated cells. The approach allows comparing experimental and simulated RBS/C signals as a function of depth without fitting parameters. The simulated RBS/C spectra of irradiated Ni and concentrated solid solution alloys (CSAs, NiFe and NiCoCr) show a good agreement with the experimental results. The good agreement indicates the damage evolution under damage overlap conditions in Ni and CSAs at room temperature is dominated by defect recombination and migration induced by irradiation rather than activated thermally.
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hua; Tao, Ling-Jiang; Gao, Chuan
2017-09-01
Large uncertainties exist in real-time predictions of the 2015 El Niño event, which have systematic intensity biases that are strongly model-dependent. It is critically important to characterize those model biases so they can be reduced appropriately. In this study, the conditional nonlinear optimal perturbation (CNOP)-based approach was applied to an intermediate coupled model (ICM) equipped with a four-dimensional variational data assimilation technique. The CNOP-based approach was used to quantify prediction errors that can be attributed to initial conditions (ICs) and model parameters (MPs). Two key MPs were considered in the ICM: one represents the intensity of the thermocline effect, and the other represents the relative coupling intensity between the ocean and atmosphere. Two experiments were performed to illustrate the effects of error corrections, one with a standard simulation and another with an optimized simulation in which errors in the ICs and MPs derived from the CNOP-based approach were optimally corrected. The results indicate that simulations of the 2015 El Niño event can be effectively improved by using CNOP-derived error correcting. In particular, the El Niño intensity in late 2015 was adequately captured when simulations were started from early 2015. Quantitatively, the Niño3.4 SST index simulated in Dec. 2015 increased to 2.8 °C in the optimized simulation, compared with only 1.5 °C in the standard simulation. The feasibility and effectiveness of using the CNOP-based technique to improve ENSO simulations are demonstrated in the context of the 2015 El Niño event. The limitations and further applications are also discussed.
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-08-08
Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less
Molecular dynamics study of the melting curve of NiTi alloy under pressure
NASA Astrophysics Data System (ADS)
Zeng, Zhao-Yi; Hu, Cui-E.; Cai, Ling-Cang; Chen, Xiang-Rong; Jing, Fu-Qian
2011-02-01
The melting curve of NiTi alloy was predicted by using molecular dynamics simulations combining with the embedded atom model potential. The calculated thermal equation of state consists well with our previous results obtained from quasiharmonic Debye approximation. Fitting the well-known Simon form to our Tm data yields the melting curves for NiTi: 1850(1 + P/21.938)0.328 (for one-phase method) and 1575(1 + P/7.476)0.305 (for two-phase method). The two-phase simulations can effectively eliminate the superheating in one-phase simulations. At 1 bar, the melting temperature of NiTi is 1575 ± 25 K and the corresponding melting slope is 64 K/GPa.
Dai, X D; Li, J H; Liu, B X
2005-03-17
With the aid of ab initio calculations, an n-body potential of the Ni-Nb system is constructed under the Finnis-Sinclair formalism and the constructed potential is capable of not only reproducing some static physical properties but also revealing the atomistic mechanism of crystal-to-amorphous transition and associated kinetics. With application of the constructed potential, molecular dynamics simulations using the solid solution models reveal that the physical origin of crystal-to-amorphous transition is the crystalline lattice collapsing while the solute atoms are exceeding the critical solid solubilities, which are determined to be 19 atom % Ni and 13 atom % Nb for the Nb- and Ni-based solid solutions, respectively. It follows that an intrinsic glass-forming ability of the Ni-Nb system is within 19-87 atom % Ni, which matches well with that observed in ion beam mixing/solid-state reaction experiments. Simulations using the Nb/Ni/Nb (Ni/Nb/Ni) sandwich models indicate that the amorphous layer at the interfaces grows in a layer-by-layer mode and that, upon dissolving solute atoms, the Ni lattice approaches and exceeds its critical solid solubility faster than the Nb lattice, revealing an asymmetric behavior in growth kinetics. Moreover, an energy diagram is obtained by computing the energetic sequence of the Ni(x)Nb(100)(-)(x) alloy in fcc, bcc, and amorphous structures, respectively, over the entire composition range, and the diagram could serve as a guide for predicting the metastable alloy formation in the Ni-Nb system.
NASA Astrophysics Data System (ADS)
Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao
2016-04-01
Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.
Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa.
Khodri, Myriam; Izumo, Takeshi; Vialard, Jérôme; Janicot, Serge; Cassou, Christophe; Lengaigne, Matthieu; Mignot, Juliette; Gastineau, Guillaume; Guilyardi, Eric; Lebas, Nicolas; Robock, Alan; McPhaden, Michael J
2017-10-03
Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism. Here we show that an El Niño tends to peak during the year following large eruptions in simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). Targeted climate model simulations further emphasize that Pinatubo-like eruptions tend to shorten La Niñas, lengthen El Niños and induce anomalous warming when occurring during neutral states. Volcanically induced cooling in tropical Africa weakens the West African monsoon, and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over the western Pacific. This wind anomaly is further amplified by air-sea interactions in the Pacific, favouring an El Niño-like response.El Niño tends to follow 2 years after volcanic eruptions, but the physical mechanism behind this phenomenon is unclear. Here the authors use model simulations to show that a Pinatubo-like eruption cools tropical Africa and drives westerly wind anomalies in the Pacific favouring an El Niño response.
A metric for quantifying El Niño pattern diversity with implications for ENSO-mean state interaction
NASA Astrophysics Data System (ADS)
Lemmon, Danielle E.; Karnauskas, Kristopher B.
2018-04-01
Recent research on the El Niño-Southern Oscillation (ENSO) phenomenon increasingly reveals the highly complex and diverse nature of ENSO variability. A method of quantifying ENSO spatial pattern uniqueness and diversity is presented, which enables (1) formally distinguishing between unique and "canonical" El Niño events, (2) testing whether historical model simulations aptly capture ENSO diversity by comparing with instrumental observations, (3) projecting future ENSO diversity using future model simulations, (4) understanding the dynamics that give rise to ENSO diversity, and (5) analyzing the associated diversity of ENSO-related atmospheric teleconnection patterns. Here we develop a framework for measuring El Niño spatial SST pattern uniqueness and diversity for a given set of El Niño events using two indices, the El Niño Pattern Uniqueness (EPU) index and El Niño Pattern Diversity (EPD) index, respectively. By applying this framework to instrumental records, we independently confirm a recent regime shift in El Niño pattern diversity with an increase in unique El Niño event sea surface temperature patterns. However, the same regime shift is not observed in historical CMIP5 model simulations; moreover, a comparison between historical and future CMIP5 model scenarios shows no robust change in future ENSO diversity. Finally, we support recent work that asserts a link between the background cooling of the eastern tropical Pacific and changes in ENSO diversity. This robust link between an eastern Pacific cooling mode and ENSO diversity is observed not only in instrumental reconstructions and reanalysis, but also in historical and future CMIP5 model simulations.
NASA Astrophysics Data System (ADS)
Liu, X. M.; Wu, S. L.; Chu, Paul K.; Chung, C. Y.; Chu, C. L.; Yeung, K. W. K.; Lu, W. W.; Cheung, K. M. C.; Luk, K. D. K.
2007-01-01
Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2O-PIII NiTi samples in simulated body fluids (SBF) at 37 °C as well as the mechanism. The H 2O-PIII NiTi sample showed a higher breakdown potential ( Eb) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2O-PIII is primarily responsible for the improvement in the surface corrosion resistance.
BFS Simulation and Experimental Analysis of the Effect of Ti Additions on the Structure of NiAl
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante,John; Garg, Anita; Honecy, Frank S.; Amador, Carlos
1999-01-01
The Bozzolo-Ferrante-Smith (BFS) method for alloy energetics is applied to the study of ternary additions to NiAl. A description of the method and its application to alloy design is given. Two different approaches are used in the analysis of the effect of Ti additions to NiAl. First, a thorough analytical study is performed, where the energy of formation, lattice parameter and bulk modulus are calculated for a large number of possible atomic distributions of Ni, Al and Ti. Substitutional site preference schemes and formation of precipitates are thus predicted and analyzed. The second approach used consists of the determination of temperature effects on the final results, as obtained by performing a number of large scale numerical simulations using the Monte Carlo-Metropolis procedure and BFS for the calculation of the energy at every step in the simulation. The results indicate a sharp preference of Ti for Al sites in Ni-rich NiAl alloys and the formation of ternary Heusler precipitates beyond the predicted solubility limit of 5 at. % Ti. Experimental analysis of three Ni-Al-Ti alloys confirms the theoretical predictions.
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita; Amador, Carlos
1997-01-01
The Bozzolo-Ferrante-Smith (BFS) semiempirical method for alloy energetics is applied to the study of ternary additions to NiAl alloys. A detailed description of the method and its application to alloy design is given. Two different approaches are used in the analysis of the effect of Ti additions to NiAl. First, a thorough analytical study is performed, where the energy of formation, lattice parameter and bulk modulus are calculated for hundreds of possible atomic distributions of Ni, Al and Ti. Substitutional site preference schemes and formation of precipitates are thus predicted and analyzed. The second approach used consists of the determination of temperature effects on the final results, as obtained by performing a number of large scale numerical simulations using the Monte Carlo - Metropolis procedure and BFS for the calculation of the energy at every step in the simulation. The results indicate a sharp preference of Ti for Al sites in Ni-rich NiAl alloys and the formation of ternary Heusler precipitates beyond the predicted solubility limit of 5 at. % Ti. Experimental analysis of three NiAl+Ti alloys confirms the theoretical predictions.
Baltazar, Carla S A; Teixeira, Vitor H; Soares, Cláudio M
2012-04-01
Hydrogenases are metalloenzymes that catalyze the reversible reaction H(2)<->2H(+) + 2e(-), being potentially useful in H(2) production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O(2) inhibition and produce more H(2) than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H(2) diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H(2) and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H(2) diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035-2045, 2006). The comparison showed that H(2) density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H(2) to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010-1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H(2) and proton pathways. © SBIC 2012
Ab initio simulations of molten Ni alloys
NASA Astrophysics Data System (ADS)
Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano
2010-06-01
Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.
Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K
Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang; ...
2018-04-10
Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less
Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang
Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less
Three-dimensional microstructure simulation of Ni-based superalloy investment castings
NASA Astrophysics Data System (ADS)
Pan, Dong; Xu, Qingyan; Liu, Baicheng
2011-05-01
An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.
Modulation of ENSO evolution by strong tropical volcanic eruptions
NASA Astrophysics Data System (ADS)
Wang, Tao; Guo, Dong; Gao, Yongqi; Wang, Huijun; Zheng, Fei; Zhu, Yali; Miao, Jiapeng; Hu, Yongyun
2017-11-01
The simulated responses of the El Niño-Southern Oscillation (ENSO) to volcanic forcings are controversial, and some mechanisms of these responses are not clear. We investigate the impacts of volcanic forcing on the ENSO using a long-term simulation covering 1400-1999 as simulated by the Bergen Climate Model (BCM) and a group of simulations performed with the Community Atmosphere Model version 4.0 (CAM4) and the BCM's ocean component Miami Isopycanic Coordinated Ocean Model (MICOM). The analysis of the long-term BCM simulation indicates that ENSO has a negative-positive-negative response to strong tropical volcanic eruptions (SVEs), which corresponds to the different stages of volcanic forcing. In the initial forcing stage, a brief and weak La Niña-like response is caused by the cooling along the west coast of the South American continent and associated enhancement of the trade winds. In the peak forcing stage, westerly wind anomalies are excited by both reduced east-west sea level pressure gradients and weakened and equatorward shifted tropical convergence zones. These westerly wind anomalies extend to the equatorial eastern Pacific, leading to an El Niño-like response. At the same time, easterly wind anomalies west of 120°E and strong cooling effects can promote a discharged thermocline state and excite an upwelling Kelvin wave in the western Pacific. In the declining forcing stage, forced by the recovered trade winds, the upwelling Kelvin wave propagates eastward and reaches the equatorial eastern Pacific. Through the Bjerknes feedback, a strong and temporally extended La Niña-like response forms. Additional CAM4 simulations suggest a more important role of the surface cooling over the Maritime Continent and surrounding ocean in shaping the westerly wind anomalies over the equatorial central-eastern Pacific and the easterly wind anomalies west of 120° E, which are key to causing the El Niño-like responses and subsequent La Niña-like responses, respectively. The MICOM sensitivity simulations confirm that SVE-induced tropical atmospheric circulation anomalies play a dominant role in regulating post-eruption ENSO evolution in the observation, while the influences of anomalous buoyance forcing (heat and freshwater fluxes) are secondary. Therefore, SVEs play an important role in modulating the ENSO evolution. Compared with proxy data, the simulated El Niño-like responses and subsequent La Niña-like responses are consistent with the reconstructed ENSO responses to SVEs. However, the simulated initial brief La Niña-like response, which is reproduced by most models, is seen in only one proxy dataset and is absent in most of the reconstructed ENSOs and those observed. The reason for this model-data mismatch will require further investigation.
NASA Technical Reports Server (NTRS)
Han, Rongqing; Wang, Hui; Hu, Zeng-Zhen; Kumar, Arun; Li, Weijing; Long, Lindsey N.; Schemm, Jae-Kyung E.; Peng, Peitao; Wang, Wanqiu; Si, Dong;
2016-01-01
An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Niño-Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation. Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Niño-namely, eastern Pacific (EP) and central Pacific (CP) El Niño-and weaker activity during La Niña. However, none of the models capture the differences in TC activity between EP and CP El Niño as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Niño events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Niño.
Interfacial exchange interactions and magnetism of Ni2MnAl /Fe bilayers
NASA Astrophysics Data System (ADS)
Yanes, R.; Simon, E.; Keller, S.; Nagyfalusi, B.; Khmelevsky, S.; Szunyogh, L.; Nowak, U.
2017-08-01
Based on multiscale calculations combining ab initio methods with spin dynamics simulations, we perform a detailed study of the magnetic behavior of Ni2MnAl /Fe bilayers. Our simulations show that such a bilayer exhibits a small exchange bias effect when the Ni2MnAl Heusler alloy is in a disordered B2 phase. Additionally, we present an effective way to control the magnetic structure of the Ni2MnAl antiferromagnet, in the pseudo-ordered B2-I as well as the disordered B2 phases, via a spin-flop coupling to the Fe layer.
Study on the structural transition of CoNi nanoclusters using molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Xia, J. H.; Gao, Xue-Mei
2018-04-01
In this work, the segregation and structural transitions of CoNi clusters, between 1500 and 300 K, have been investigated using molecular dynamics simulations with the embedded atom method potential. The radial distribution function was used to analyze the segregation during the cooling processes. It is found that Co atoms segregate to the inside and Ni atoms preferably to the surface during the cooling processes, the Co147Ni414 cluster becomes a core-shell structure. We discuss the structural transition according to the pair-correction function and pair-analysis technique, and finally the liquid Co147Ni414 crystallizes into the coexistence of hcp and fcc structure at 300 K. At the same time, it is found that the frozen structure of CoNi cluster is strongly related to the Co concentration.
NASA Astrophysics Data System (ADS)
Izvekov, Sergei; Rice, Betsy M.
2012-09-01
We present new numerical pair-additive Al, Ni, and Al-Ni potentials by force-matching (FM) ionic force and virial data from single (bulk liquid) phase ab initio molecular dynamics (MD) simulations using the Born-Oppenheimer method. The potentials are represented by piece-wise functions (splines) and, therefore, are not constrained to a particular choice of analytical functional form. The FM method with virial constraint naturally yields a potential which maps out the ionic free-energy surface of the reference ensemble. To further improve the free energetics of the FM ensemble, the FM procedure is modified to bias the potentials to reproduce the experimental melting temperatures of the reference (FCC-Al, FCC-Ni, B2-NiAl) phases, the only macroscopic data included in the fitting set. The performance of the resultant potentials in simulating bulk metallic phases is then evaluated. The new model is applied to perform MD simulations of self-propagating exothermic reaction in Ni-Al bilayers at P = 0-5 GPa initiated at T = 1300 K. Consistent with experimental observations, the new model describes realistically a sequence of peritectic phase transformations throughout the reaction and at a realistic rate. The reaction proceeds through interlayer diffusion of Al and Ni atoms at the interface with formation of B2-NiAl in the Al melt. Such material responses have, in the past, been proven to be difficult to observe with then-existing potentials.
Temporal Evolution of Nanostructures in a Model Nickel-Base Superalloy: Experiments and Simulations
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Yoon, Kevin E.; Mao, Zugang; Noebe, Ronald D.; Isheim, Dieter; Seidman, David N.
2003-01-01
The temporal evolution of the nanostructure of a model Ni-base superalloy (Ni-5.2 at.% Al-14.2 at.% Cr) is studied experimentally employing three-dimensional atom-probe (3DAP) microscopy in conjunction with kinetic Monte Carlo (KMC) simulations at 600 C. It is demonstrated that not only can the mean compositions of individual gamma' (Ni3Al with the Li2 structure) precipitates be measured but the Ni, Al, and Cr concentration profiles within the precipitates can also be determined for precipitates with a mean radius (
Barabash, R. I.; Agarwal, V.; Koric, S.; ...
2016-01-01
Tmore » he depth-dependent strain partitioning across the interfaces in the growth direction of the NiAl/Cr(Mo) nanocomposite between the Cr and NiAl lamellae was directly measured experimentally and simulated using a finite element method (FEM). Depth-resolved X-ray microdiffraction demonstrated that in the as-grown state both Cr and NiAl lamellae grow along the 111 direction with the formation of as-grown distinct residual ~0.16% compressive strains for Cr lamellae and ~0.05% tensile strains for NiAl lamellae. hree-dimensional simulations were carried out using an implicit FEM. First simulation was designed to study residual strains in the composite due to cooling resulting in formation of crystals. Strains in the growth direction were computed and compared to those obtained from the microdiffraction experiments. Second simulation was conducted to understand the combined strains resulting from cooling and mechanical indentation of the composite. Numerical results in the growth direction of crystal were compared to experimental results confirming the experimentally observed trends.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bangquan; Wang, Hailong; Xing, Guozhong
We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs.more » The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.« less
An Update on Improvements to NiCE Support for RELAP-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alex; Wojtowicz, Anna; Deyton, Jordan H.
The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a framework that facilitates the development of applications that rely on finite-element analysis to solve a coupled, nonlinear system of partial differential equations. RELAP-7 represents an update to the venerable RELAP-5 simulator that is built upon this framework and attempts to model the balance-of-plant concerns in a full nuclear plant. This report details the continued support and integration of RELAP-7 and the NEAMS Integrated Computational Environment (NiCE). RELAP-7 is fully supported by the NiCE due to on-going work to tightly integrate NiCE with the MOOSE framework, and subsequently the applications built upon it.more » NiCE development throughout the first quarter of FY15 has focused on improvements, bug fixes, and feature additions to existing MOOSE-based application support. Specifically, this report will focus on improvements to the NiCE MOOSE Model Builder, the MOOSE application job launcher, and the 3D Nuclear Plant Viewer. This report also includes a comprehensive tutorial that guides RELAP-7 users through the basic NiCE workflow: from input generation and 3D Plant modeling, to massively parallel job launch and post-simulation data visualization.« less
NASA Astrophysics Data System (ADS)
Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo
2017-12-01
Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.
Atomistic Modeling of Diffusion and Phase Transformations in Metals and Alloys
NASA Astrophysics Data System (ADS)
Purja Pun, Ganga Prasad
Dissertation consists of multiple works. The first part is devoted to self-diffusion along dislocation cores in aluminum followed by the development of embedded atom method potentials for Co, NiAl, CoAl and CoNi systems. The last part focuses on martensitic phase transformation (MPT) in Ni xAl1--x and Al xCoyNi1-- x--y alloys. New calculation methods were developed to predict diffusion coefficients in metal as functions of temperature. Self-diffusion along screw and edge dislocations in aluminum was studied by molecular dynamic (MD) simulations. Three types of simulations were performed with and without (intrinsic) pre-existing vacancies and interstitials in the dislocation core. We found that the diffusion along the screw dislocation was dominated by the intrinsic mechanism, whereas the diffusion along the edge dislocation was dominated by the vacancy mechanism. The diffusion along the screw dislocation was found to be significantly faster than the diffusion along the edge dislocation, and the both diffusivities were in reasonable agreement with experimental data. The intrinsic diffusion mechanism can be associated with the formation of dynamic Frenkel pairs, possibly activated by thermal jogs and/or kinks. The simulations show that at high temperatures the dislocation core becomes an effective source/sink of point defects and the effect of pre-existing defects on the core diffusivity diminishes. First and the foremost ingredient needed in all atomistic computer simulations is the description of interaction between atoms. Interatomic potentials for Co, NiAl, CoAl and CoNi systems were developed within the Embedded Atom Method (EAM) formalism. The binary potentials were based on previously developed accurate potentials for pure Ni and pure Al and pure Co developed in this work. The binaries constitute a version of EAM potential of AlCoNi ternary system. The NiAl potential accurately reproduces a variety of physical properties of the B2-NiAl and L12--Ni3Al phases. The potential is expected to be especially suitable for simulations of hetero-phase interfaces and mechanical behavior of NiAl alloys. Apart from properties of the HCP Co, the new Co potential is accurate enough to reproduce several properties of the FCC Co which were not included in the potential fit. It shows good transferability property. The CoAl potential was fitted to the properties of B2-CoAl phase as in the NiAl fitting where as the NiCo potential was fitted to the ab initio formation energies of some imaginary phases and structures. Effect of chemical composition and uniaxial mechanical stresses was studied on the martensitic phase transformation in B2 type Ni-rich NiAl and AlCoNi alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The twinned martensites were always formed under the uniaxial compression where as the single variant martensites were the results of the uniaxial tension. The transformation was reversible and characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress.
Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys
Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...
2016-03-05
We investigate Irradiation-induced damage accumulation in Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
Li, Boyan; Zhang, Lei; Li, Chengliang; ...
2018-04-18
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
NASA Astrophysics Data System (ADS)
Garcia-Fresnillo, L.; Shemet, V.; Chyrkin, A.; de Haart, L. G. J.; Quadakkers, W. J.
2014-12-01
In the present study the long-term behaviour of two ferritic steels, Crofer 22 APU and Crofer 22H, in contact with a Ni-mesh during exposure in simulated anode gas, Ar-4%H2-2%H2O, at 700 and 800 °C for exposure times up to 3000 h was investigated. Ni diffusion from the Ni-mesh into the steel resulted in the formation of an austenitic zone whereas diffusion of iron and chromium from the steel into the Ni-mesh resulted in the formation of chromia base oxides in the Ni-mesh. Depending on the chemical composition of the steel, the temperature and the exposure time, interdiffusion processes between ferritic steel and Ni-mesh also resulted in σ-phase formation at the austenite-ferrite interface and in Laves-phase dissolution in the austenitic zone. The extent and morphology of the σ-phase formation are discussed on the basis of thermodynamic considerations, including reaction paths in the ternary alloy system Fe-Ni-Cr.
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Boyan; Zhang, Lei; Li, Chengliang
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
NASA Astrophysics Data System (ADS)
Das, Subir K.; Horbach, Jürgen; Voigtmann, Thomas
2008-08-01
Molecular dynamics computer simulations are performed to study structure and structural relaxation in the glassforming metallic alloy Al80Ni20 . The interactions between the particles are modeled by an effective potential of the embedded atom type. Our model of Al80Ni20 exhibits chemical short-range order (CSRO) that is reflected in a broad prepeak around a wave number of 1.8Å-1 in the partial static structure factor for the Ni-Ni correlations. The CSRO is due to the preference of Ni atoms to have Al rather than Ni atoms as nearest neighbors. By analyzing incoherent and coherent intermediate scattering functions as well as self-diffusion constants and shear viscosity, we discuss how the chemical ordering is reflected in the dynamics of the deeply undercooled melt. The q dependence of the α relaxation time as well as the Debye-Waller factor for the Al-Al correlations show oscillations at the location of the prepeak in the partial static structure factor for the Ni-Ni correlations. The latter feature of the Debye-Waller factor is well reproduced by a calculation in the framework of the mode coupling theory (MCT) of the glass transition, using the partial static structure factors from the simulation as input. We also check the validity of the Stokes-Einstein-Sutherland formula that relates the self-diffusion coefficients with the shear viscosity. We show that it breaks down already far above the mode coupling critical temperature Tc . The failure of the Stokes-Einstein-Sutherland relation is not related to the specific chemical ordering in Al80Ni20 .
Thermally Induced Interdiffusion and Precipitation in a Ni/Ni 3 Al System
Sun, C.; Martinez, E.; Aguiar, J. A.; ...
2015-05-20
Ordered Ni 3Al intermetallic precipitates constitute the main hardening sources of Ni-based superalloys. Here, we report the interdiffusion and precipitation behavior in a Ni/Ni3Al model system. The deposition of Ni3Al on a pure Ni layer at 500°C generated L12-structured γ' (Ni3Al) precipitates, preferentially at the interface. After annealing at 800°C for 1 h, interdiffusion between Ni and Ni3Al layers occurred, and the γ' precipitates that grew near the parent Ni/Ni 3Al interface are ~2.8 times larger in size than those formed in the matrix. In conclusion, Monte Carlo simulations indicate that vacancies preferentially diffuse along the Ni/Ni 3Al interface, increasingmore » the probability of precipitation.« less
Surface Segregation in Ternary Alloys
NASA Technical Reports Server (NTRS)
Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.
2000-01-01
Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.
Influence of Westerly Wind Events stochasticity on El Niño amplitude: the case of 2014 vs. 2015
NASA Astrophysics Data System (ADS)
Puy, Martin; Vialard, Jérôme; Lengaigne, Matthieu; Guilyardi, Eric; DiNezio, Pedro N.; Voldoire, Aurore; Balmaseda, Magdalena; Madec, Gurvan; Menkes, Christophe; Mcphaden, Michael J.
2017-10-01
The weak El Niño of 2014 was preceded by anomalously high equatorial Pacific Warm Water Volume (WWV) and strong Westerly Wind Events (WWEs), which typically lead to record breaking El Nino, like in 1997 and 2015. Here, we use the CNRM-CM5 coupled model to investigate the causes for the stalled El Niño in 2014 and the necessary conditions for extreme El Niños. This model is ideally suited to study this problem because it simulates all the processes thought to be critical for the onset and development of El Niño. It captures El Niño preconditioning by WWV, the WWEs characteristics and their deterministic behaviour in response to warm pool displacements. Our main finding is, that despite their deterministic control, WWEs display a sufficiently strong stochastic component to explain the distinct evolutions of El Niño in 2014 and 2015. A 100-member ensemble simulation initialized with early-spring equatorial conditions analogous to those observed in 2014 and 2015 demonstrates that early-year elevated WWV and strong WWEs preclude the occurrence of a La Niña but lead to El Niños that span the weak (with few WWEs) to extreme (with many WWEs) range. Sensitivity experiments confirm that numerous/strong WWEs shift the El Niño distribution toward larger amplitudes, with a particular emphasis on summer/fall WWEs occurrence which result in a five-fold increase of the odds for an extreme El Niño. A long simulation further demonstrates that sustained WWEs throughout the year and anomalously high WWV are necessary conditions for extreme El Niño to develop. In contrast, we find no systematic influence of easterly wind events (EWEs) on the El Niño amplitude in our model. Our results demonstrate that the weak amplitude of El Niño in 2014 can be explained by WWEs stochastic variations without invoking EWEs or remote influences from outside the tropical Pacific and therefore its peak amplitude was inherently unpredictable at long lead-time.
Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang
2013-01-01
An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.
2014-02-01
Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.
NASA Astrophysics Data System (ADS)
Shin, Soon-Gi
2000-06-01
The grain growth behaviors of TiC and WC particles in TiC-Ni, TiC-Mo2C-Ni, WC-Co and WC-VC-Co alloys during liquid phase sintering were investigated for different Ni or Co contents and compared with the results of Monte Carlo simulations. In the experimental study, TiC-Ni and WC-Co alloys had a maximum grain size at a certain liquid volume fraction, while the grain size in TiC-Mo2C-Ni and WC-VC-Co alloys increased monotonically with an increasing liquid volume fraction. These results mean that the grain growth of these alloys cannot be explained by the conventional mechanisms for Ostwald ripening, namely diffusion or reaction controlled processes. Monte Carlo simulations with different energy relationships between solidliquid interfaces predicted the effect of the liquid volume fraction on grain size similar to the experimental results. The contiguous boundaries between solid (carbide) particles appear to influence the grain growth behavior in TiC- and WC-based alloys during liquid phase sintering.
NASA Astrophysics Data System (ADS)
Feng, Juan; Chen, Wen; Gong, Hainan; Ying, Jun; Jiang, Wenping
2018-06-01
The delayed impacts of the central Pacific (CP) El Niño on the East Asian summer monsoon (EASM) are evaluated by comparing historical runs from Coupled Model Intercomparison Project Phase 5 models against reanalysis data. In observations, an anomalous western North Pacific anticyclone (WNPAC), linking CP El Niño to the EASM, forms due to the transition of sea surface temperature (SST) warming into SST cooling over the CP, which generates a WNPAC through a Gill-Matsuno response. In comparison with the observational result, only one-third of the models (i.e., the type-I models) capture a weaker and smaller WNPAC, whereas the other two-thirds (i.e., the type-II models) fail to reproduce a WNPAC. The simulation biases in both of type-I models and type-II models mainly arise from an unrealistic, long-lasting CP El Niño warming, which causes a north Indian Ocean SST warming bias in models through air-sea interaction process. This north Indian Ocean SST warming generates the WNPAC through capacitor effects, which is different from the WNPAC formation mechanism in observations. This discrepancy leads to simulation biases in type-I models. In type-II models, the unrealistic CP El Niño warming persists into summer, which produces an anomalous cyclone over the central-western Pacific. The opposite effect of the CP and north Indian Ocean SST warming on the WNP atmospheric circulation leads to disappearance of the WNPAC. Hence, large simulation biases are produced in type-II models. Further analysis demonstrates the slow decay of CP El Niño is caused by the unrealistically simulated climatological SST, which creates strong warm meridional oceanic advection and results in a sustained CP El Niño warming.
NASA Astrophysics Data System (ADS)
Meraj, Md.; Nayak, Shradha; Krishanjeet, Kumar; Pal, Snehanshu
2018-03-01
In this paper, we present a lucid understanding about the deformation behaviour of nanocrystalline (NC) Ni with and without defects subjected to tensile followed by compressive loading using molecular dynamic (MD) simulations. The embedded atom method (EAM) potential have been incorporated in the simulation for three kinds of samples-i.e. for NC Ni (without any defect), porous NC Ni and NC Ni containing a centrally located void. All the three samples, which have been prepared by implementing the Voronoi method and using Atom Eye software, consist of 16 uniform grains. The total number of atoms present in NC Ni, porous NC Ni and NC Ni containing a void are 107021, 105968 and 107012 respectively. The stress-strain response of NC Ni under tensile followed by compressive loading are simulated at a high strain rate of 107 s-1 and at a constant temperature of 300K. The stress-strain curves for the NC Ni with and without defects have been plotted for three different types of loading: (a) tensile loading (b) compressive loading (c) forward tensile loading followed by reverse compressive loading. Prominent change in yield strength of the NC Ni is observed due to the introduction of defects. For tensile followed by compressive loading (during forward loading), the yield point for NC Ni with void is lesser than the yield point of NC Ni and porous NC Ni. The saw tooth shape or serration portion of the stress-strain curve is mainly due to three characteristic phenomena, dislocation generation and its movement, dislocation pile-up at the junctions, and dislocation annihilation. Both twins and stacking faults are observed due to plastic deformation as the deformation mechanism progresses. The dislocation density, number of clusters and number of vacancy of the NC sample with and without defects are plotted against the strain developed in the sample. It is seen that introduction of defects brings about change in mechanical properties of the NC Ni. The crystalline nature of NC Ni is found to decrease with introduction of defects. The findings of this work can thus be extended in bringing a whole new insight related to the deformation behaviour and properties of Nano- materials during cyclic deformation at various temperatures.
Simulation of water solutions of Ni 2+ at infinite dilution
NASA Astrophysics Data System (ADS)
Natália, M.; Cordeiro, D. S.; Ignaczak, Anna; Gomes, José A. N. F.
1993-10-01
A new ab initio pair potential is developed to describe the nickel—water interactions in Ni(II) aqueous solutions. Results of Monte Carlo simulations for the Ni(II)(H 2O) 200 system are presented for this pair potential with and without three-body classical polarization terms (the water—water interaction is described by the ab initio MCY potential). The structure of the solution around Ni(II) is discussed in terms of radial distribution functions, coordination numbers and thermal ellipsoids. The results show that the three-body terms have a non-negligible effect on the simulated solution. In fact, the experimental coordination number of six is reproduced with the full potential while a higher value is predicted when the simple pairwise-additive potential is used. The equilibrium NiO distance for the first hydration shell is also dependent on the use of the three-body terms. Comparison of our distribution functions with those obtained by neutron-diffraction experiments shows a reasonable quantitative agreement. Statistical pattern recognition analysis has also been applied to our simulations in order to better understand the local thermal motion of the water molecules around the metal ion. In this way, thermal ellipsoids have been computed (and graphically displayed) for each atom of the water molecules belonging to the Ni(II) first hydration shell. This analysis revealed that the twisting and bending motions are greater than the radial motion, and that the hydrogens have a higher mobility than the oxygens. In addition, a thermodynamic perturbation method has been incorporated in our Monte Carlo procedure in order to compute the free energy of hydration for the Ni(II) ion. Agreement between these results and the experimental ones is also sufficiently reasonable to demonstrate the feasibility of this new potential for the nickel—water interactions.
Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G
2017-02-01
In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.
Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources.
Gui, Gui; Zhang, Kan; Blanchard, James P; Ma, Zhenqiang
2016-01-01
We have investigated the performance of 4H-SiC betavoltaic microbatteries under exposure to the practical Ni-63 sources using the Monte Carlo method and Synopsys® Medici device simulator. A typical planar p-n junction betavoltaic device with the Ni-63 source of 20% purity on top is modeled in the simulation. The p-n junction structure includes a p+ layer, a p- layer, an n+ layer, and an n- layer. In order to obtain an accurate and valid predication, our simulations consider several practical factors, including isotope impurities, self-absorption, and full beta energy spectra. By simulating the effects of both the p-n junction configuration and the isotope source thickness on the battery output performance, we have achieved the optimal design of the device and maximum energy conversion efficiency. Our simulation results show that the energy conversion efficiency increases as the doping concentration and thickness of the p- layer increase, whereas it is independent of the total depth of the p-n junction. Furthermore, the energy conversion efficiency decreases as the thickness of the practical Ni-63 source increases, because of self-absorption in the isotope source. Therefore, we propose that a p-n junction betavoltaic cell with a thicker and heavily doped p- layer under exposure to a practical Ni-63 source with an appreciable thickness could produce the optimal energy conversion efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Povoden-Karadeniz, A.; Cirstea, D. C.; Kozeschnik, E.
2016-04-01
Ti-50Ni to Ti-55Ni (at.%) can be termed as the pioneer of shape memory alloys (SMA). Intermetallic precipitates play an important role for strengthening. Their influence on the start temperature of the martensitic transformation is a crucial property for the shape memory effect. Efforts for increasing the martensite start temperature include replacement of a part of Ni atoms by Cu. The influence of Cu-addition to Ti-Ni SMA on T0- temperatures and the character of the austenite-martensite transformation is evaluated using a new thermodynamic database for the Ti-Ni-system extended by Cu. Trends of precipitation of intermetallic phases are simulated by combining the assessed thermodynamics of the Ti-Ni-Cu system with assessed diffusion mobility data and kinetic models, as implemented in the solid-state transformation software MatCalc and are presented in the form of time-temperature-precipitation diagrams. Thermodynamic equilibrium considerations, complemented by predictive thermo-kinetic precipitation simulation, facilitates SMA alloy design and definition of optimized aging conditions.
Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr
Béland, Laurent Karim; Tamm, Artur; Mu, Sai; ...
2017-05-10
The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed.more » The pairwise terms and the embedding terms of the potential are modi ed in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni 50Fe 50, Ni 80Cr 20 and Ni 33Fe 33Cr 33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.« less
NASA Astrophysics Data System (ADS)
Wu, C.; Liu, X.; Zhang, K.; Diao, M.; Gettelman, A.
2016-12-01
Cirrus clouds in the upper troposphere play a key role in the Earth radiation budget, and their radiative forcing depends strongly on number concentration and size distribution of ice particles. In this study we evaluate the cloud microphysical properties simulated by the Community Atmosphere Model version 5.4 (CAM5) against the Small Particles in Cirrus (SPartICus) observations over the ARM South Great Plain (SGP) site between January and June 2010. Model simulation is performed using specific dynamics to preserve prognostic meteorology (U, V, and T) close to GEOS-5 analysis. Model results collocated with SPartICus flight tracks spatially and temporally are directly compared with the observations. We compare CAM5 simulated ice crystal number concentration (Ni), ice particle size distribution, ice water content (IWC), and Ni co-variances with temperature and vertical velocity with the statistics from SPartICus observations. All analyses are restricted to T ≤ -40°C and in a 6°×6° area centered at SGP. Model sensitivity tests are performed with different ice nucleation mechanisms and with the effects of pre-existing ice crystals to reflect the uncertainties in cirrus parameterizations. In addition, different threshold size for autoconversion of cloud ice to snow (Dcs) is also tested. We find that (1) a distinctly high Ni (100-1000 L-1) often occurred in the observations but is significantly underestimated in the model, which may be due to the smaller relative humidity with respect to ice (RHi) in the simulation that could suppress the homogeneous nucleation, (2) a positive correlation exists between Ni and vertical velocity variance (σw) at horizontal scales up to 50 km in the observation, and the model can reproduce this relationship but tends to underestimate Ni when σw is relatively small, (3) simulated Ni differs greatly among the sensitive experiments, and simulated IWC is also sensitive to the cirrus parameterizations but to a lesser extent. Moreover, the model produces much better ice particle sizes in terms of number-mean diameter (Dnm) but significantly underestimate Ni and IWC for all the designed sensitive experiments. Our results suggest that better representation of environmental conditions (e.g., RHi and water vapor) is needed to improve the formation and evolution of ice clouds in the model.
NASA Astrophysics Data System (ADS)
Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.
2014-04-01
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.
Cyclic Fatigue Life of Two Single File Engine-Driven Systems in Simulated Curved Canals.
Nabavizadeh, Mohammad Reza; Sedigh-Shams, Mahdi; Abdolrasoulnia, Sara
2018-01-01
This study aimed to evaluate the cyclic fatigue resistance of two single file engine-driven instruments, Reciproc and NeoNiTi, in simulated root canals. Two groups of 15 NiTi endodontic instruments with an identical tip size of 0.25 mm were tested: Reciproc R25 (group A) and NeoNiTi A1 (group B). Cyclic fatigue testing was performed in a stainless steel artificial canal. The simulated canals had a 60 ° angle and 5-mm radius curvature. The Reciproc instruments were operated using the preset program on torque control electric motor specific for the Reciproc instruments, while the NeoNiTi instruments were operated using the manufacturer recommendation. All instruments were rotated until fracture occurred, and the number of cycles to fracture (NCF) and the length of the fractured tip were recorded and registered. Means and standard deviations of NCF and fragment length were calculated for each system and data were subjected to Student's t test ( P <0.05). A statistically significant difference ( P <0.05) was noted between Reciproc and NeoNiTi instruments. NeoNiTi A1 instruments were associated with a significantly higher mean NCF as compared to Reciproc R25 instruments (833±176 vs. 318±87 NCF). There was no significant difference ( P >0.05) in the mean length of the fractured fragments between the instruments. NeoNiTi instruments were associated with a significantly higher cyclic fatigue resistance than Reciproc instruments.
Evolution of irradiation-induced strain in an equiatomic NiFe alloy
Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...
2017-07-10
Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less
Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass
Wen, Tongqi; Sun, Yang; Ye, Beilin; ...
2018-01-31
In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less
Atomistic simulations of shock-induced alloying reactions in Ni /Al nanolaminates
NASA Astrophysics Data System (ADS)
Zhao, Shijin; Germann, Timothy C.; Strachan, Alejandro
2006-10-01
We employ molecular dynamics simulations with a first principles-based many body potential to characterize the exothermic alloying reactions of nanostructured Ni /Al multilayers induced by shock loading. We introduce a novel technique that captures both the initial shock transit as well as the subsequent longer-time-scale Ni3Al alloy formation. Initially, the softer Al layers are shock heated to a higher temperature than the harder Ni layers as a result of a series of shock reflections from the impedance-mismatched interfaces. Once initiated, the highly exothermic alloying reactions can propagate in a self-sustained manner by mass and thermal diffusion. We also characterize the role of voids on the initiation of alloying. The interaction of the shock wave with the voids leads not only to significant local heating (hot spots) but also directly aids the intermixing between Al and Ni; both of these phenomena contribute to a significant acceleration of the alloying reactions.
Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Tongqi; Sun, Yang; Ye, Beilin
In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less
Cooling rate dependence of structural order in Ni62Nb38 metallic glass
NASA Astrophysics Data System (ADS)
Wen, Tongqi; Sun, Yang; Ye, Beilin; Tang, Ling; Yang, Zejin; Ho, Kai-Ming; Wang, Cai-Zhuang; Wang, Nan
2018-01-01
Molecular dynamics (MD) simulations are performed to study the structure of Ni62Nb38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni62Nb38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfect icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.
Ab-Initio Molecular Dynamics Simulations of Molten Ni-Based Superalloys (Preprint)
2011-10-01
in liquid–metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni -based alloys ...temperature across the solidification zone. Here, fundamental properties of molten Ni -based alloys , required for modeling these instabilities, are...temperature is assessed in model Ni -Al-W and RENE-N4 alloys . Calculations are performed using a recently implemented constant pressure methodology (NPT) which
First-charge instabilities of layered-layered lithium-ion-battery materials.
Croy, Jason R; Iddir, Hakim; Gallagher, Kevin; Johnson, Christopher S; Benedek, Roy; Balasubramanian, Mahalingam
2015-10-07
Li- and Mn-rich layered oxides with composition xLi2MnO3·(1 -x)LiMO2 enable high capacity and energy density Li-ion batteries, but suffer from degradation with cycling. Evidence of atomic instabilities during the first charge are addressed in this work with X-ray absorption spectroscopy, first principles simulation at the GGA+U level, and existing literature. The pristine material of composition xLi2MnO3·(1 -x)LiMn0.5Ni0.5O2 is assumed in the simulations to have the form of LiMn2 stripes, alternating with NiMn stripes, in the metal layers. The charged state is simulated by removing Li from the Li layer, relaxing the resultant system by steepest descents, then allowing the structure to evolve by molecular dynamics at 1000 K, and finally relaxing the evolved system by steepest descents. The simulations show that about ¼ of the oxygen ions in the Li2MnO3 domains are displaced from their original lattice sites, and form oxygen-oxygen bonds, which significantly lowers the energy, relative to that of the starting structure in which the oxygen sublattice is intact. An important consequence of the displacement of the oxygen is that it enables about ⅓ of the (Li2MnO3 domain) Mn ions to migrate to the delithiated Li layers. The decrease in the coordination of the Mn ions is about twice that of the Ni ions. The approximate agreement of simulated coordination number deficits for Mn and Ni following the first charge with analysis of EXAFS measurements on 0.3Li2MnO3·0.7LiMn0.5Ni0.5O2 suggests that the simulation captures significant features of the real material.
NASA Astrophysics Data System (ADS)
Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.
2017-10-01
The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.
Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE)
NASA Astrophysics Data System (ADS)
Gao, Yun; Takahashi, Minoru; Cavallotti, Carlo; Raos, Guido
2018-04-01
Corrosion of stainless steels by lead-bismuth eutectic (LBE) is an important problem which depends, amongst other things, on the diffusion of the steel components inside this liquid alloy. Here we present the results of classical molecular dynamics simulations of the diffusion of Fe and Ni within LBE. The simulations complement experimental studies of impurity diffusion by our group and provide an atomic-level understanding of the relevant diffusion phenomena. They are based on the embedded atom method (EAM) to represent many-body interactions among atoms. The EAM potentials employed in our simulations have been validated against ab initio density functional calculations. We show that the experimental and simulation results for the temperature-dependent viscosity of LBE and the impurity diffusion coefficients can be reconciled by assuming that the Ni and Fe diffuse mainly as nanoscopic clusters below 1300 K. The average Fe and Ni cluster sizes decrease with increasing the temperature and there is essentially single-atom diffusion at higher temperatures.
Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo
2017-01-01
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925
Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo
2017-10-13
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozas, R. E.; Department of Physics, University of Bío-Bío, Av. Collao 1202, P.O. Box 5C, Concepción; Demiraǧ, A. D.
Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss themore » validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.« less
Wang, Wendong; Song, Shan; Zhang, Xiaoni; Mitchell Spear, J; Wang, Xiaochang; Wang, Wen; Ding, Zhenzhen; Qiao, Zixia
2014-07-01
Observations of aluminum containing sediments/scales formed within the distribution pipes have been reported for several decades. In this study, the effect of Ni(2+) on the formation and transformation processes of aluminum hydroxide sediment in a simulated drinking water distribution system were investigated using X-ray diffraction spectrum (XRD), Fourier transform infrared spectrum (FT-IR), scanning electron microscope (SEM), and thermodynamic calculation methods. It was determined that the existence of Ni(2+) had notable effects on the formation of bayerite. In the system without Ni(2+) addition, there was no X-ray diffraction signal observed after 400 d of aging. The presence of Ni(2+), however, even when present in small amounts (Ni/Al=1:100) the formation of bayerite would occur in as little as 3d at pH 8.5. As the molar ratio of Ni/Al increase from 1:100 to 1:10, the amount of bayerite formed on the pipeline increased further; meanwhile, the specific area of the pipe scale decreased from 160 to 122 m(2)g(-1). In the system with Ni/Al molar ratio at 1:3, the diffraction spectrum strength of bayerite became weaker, and disappeared when Ni/Al molar ratios increased above 1:1. At these highs Ni/Al molar ratios, Ni5Al4O11⋅18H2O was determined to be the major component of the pipe scale. Further study indicated that the presence of Ni(2+) promoted the formation of bayerite and Ni5Al4O11⋅18H2O under basic conditions. At lower pH (6.5) however, the existence of Ni(2+) had little effect on the formation of bayerite and Ni5Al4O11⋅18H2O, rather the adsorption of amorphous Al(OH)3 for Ni(2+) promoted the formation of crystal Ni(OH)2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Atomistic Modeling of Pd Site Preference in NiTi
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.
2004-01-01
An analysis of the site subsitution behavior of Pd in NiTi was performed using the BFS method for alloys. Through a combination of Monte Carlo simulations and detailed atom-by-atom energetic analyses of various computational cells, representing compositions of NiTi with up to 10 at% Pd, a detailed understanding of site occupancy of Pd in NiTi was revealed. Pd subsituted at the expense of Ni in a NiTi alloy will prefer the Ni-sites. Pd subsituted at the expense of Ti shows a very weak preference for Ti-sites that diminishes as the amount of Pd in the alloy increases and as the temperature increases.
Diastereoselective DNA Cleavage Recognition by Ni(II)•Gly-Gly-His Derived Metallopeptides
Fang, Ya-Yin; Claussen, Craig A.; Lipkowitz, Kenny B.; Long, Eric C.
2008-01-01
Site-selective DNA cleavage by diastereoisomers of Ni(II)•Gly-Gly-His-derived metallopeptides was investigated through high-resolution gel analyses and molecular dynamics simulations. Ni(II)•L-Arg-Gly-His and Ni(II)•D-Arg-Gly-His (and their respective Lys analogues) targeted A/T-rich regions; however, the L-isomers consistently modified a sub-set of available nucleotides within a given minor groove site while the D-isomers differed in both their sites of preference and ability to target individual nucleotides within some sites. In comparison, Ni(II)•L-Pro-Gly-His and Ni(II)•D-Pro-Gly-His were unable to exhibit a similar diastereoselectivity. Simulations of the above systems, along with Ni(II)•Gly-Gly-His, indicated that the stereochemistry of the amino-terminal amino acid produces either an isohelical metallopeptide that associates stably at individual DNA sites (L-Arg or L-Lys) or, with D-Arg and D-Lys, a non-complementary metallopeptide structure that cannot fully employ its side chain nor amino-terminal amine as a positional stabilizing moiety. In contrast, amino-terminal Pro-containing metallopeptides of either stereochemistry, lacking an extended side chain directed toward the minor groove, did not exhibit a similar diastereoselectivity. While the identity and stereochemistry of amino acids located in the amino-terminal peptide position influenced DNA cleavage, metallopeptide diastereoisomers containing L- and D-Arg (or Lys) within the second peptide position did not exhibit diastereoselective DNA cleavage patterns; simulations indicated that a positively-charged amino acid in this location alters the interaction of the metallopeptide equatorial plane and the minor groove leading to an interaction similar to Ni(II)•Gly-Gly-His. PMID:16522100
Lu, Chenyang; Jin, Ke; Béland, Laurent K; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M; Stoller, Roger E; Wang, Lumin
2016-02-01
Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.
Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin
2016-01-01
Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. PMID:26829570
NASA Astrophysics Data System (ADS)
Thirumalai, K.; Di Nezio, P. N.; Okumura, Y.; Deser, C.
2016-12-01
In April 2016, Mainland Southeast Asia (MSA) experienced monthly mean surface air temperatures (SATs) that surpassed national records, caused widespread discomfort, and greatly exacerbated energy consumption. First, we reveal a robust relationship between the El Niño Southern Oscillation (ENSO) and April SATs in the region, demonstrating that virtually all extreme, hot Aprils occur during El Niño years. Next, we show that MSA has experienced continuous warming since the early 20th century. To quantify the relative contributions of this long-term warming trend and the 2015 El Niño to the extreme April 2016 SATs, we use observations and a large ensemble of global warming simulations, performed with a model that realistically simulates this El-Niño-MSA link. We find robust evidence that the "post-Niño" hot Aprils are being exacerbated by global warming, with this effect being pronounced for the 2016 event, where we estimate 24% was caused by warming and 49% by El Niño. Despite an increased likelihood of hot Aprils during El Niño years in the future, our findings suggest that these extremes can potentially be anticipated a few months in advance.
Biopsy applications of Ti50Ni41Cu9 shape memory films for wireless capsule endoscope
NASA Astrophysics Data System (ADS)
Du, Hejun; Fu, Yongqing; Zhang, S.; Luo, Jack K.; Flewitt, Andrew J.; Milne, William I.
2004-02-01
Wireless capsule endoscopy (WCE) is a new technology to evaluate the patient with obscure gastrointestinal bleeding. However, there is still some deficiency existing in the current WCE, for example, lack of ability to biopsy and precisely locate the pathology. This study aimed to prepare and characterize TiNiCu shape memory alloy thin films for developing microgripper for biopsy (tissue sampling and tagging) applications. Ti50Ni41Cu9 thin films were prepared by co-sputtering of TiNi and Cu targets, and their transformation temperatures were slightly above that of human body. Results from differential scanning calorimetry, in-situ X-ray diffraction, curvature and electrical resistance measurement revealed clearly martensitic transformation of the deposited TiNiCu films upon heating and cooling. The biocompatibility of the TiNiCu films in the simulated gastric and intestinal solutions was also studied. Results showed the release of Ni and Cu ions is much less than the toxic level and the film did not lose shape memory effect even after 10-day immersion in the simulated solutions. TiNiCu/Si micro-cantilevers with and without electrodes were fabricated using the conventional micromachining methods and apparent shape memory effect upon heating and cooling was demonstrated.
NASA Astrophysics Data System (ADS)
Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.
2017-07-01
Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.
Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Gur, Sourav
Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process (transformation temperature, phase fraction evolution kinetics due to temperature) are also demonstrated herein. Next, to couple and transfer the statistical information of length scale dependent phase transformation process, multiscale/ multiphysics methods are used. Here, the computational difficulty from the fact that the representative governing equations (i.e. different sub-methods such as molecular dynamics simulations, phase field simulations and continuum level constitutive/ material models) are only valid or can be implemented over a range of spatiotemporal scales. Therefore, in the present study, a wavelet based multiscale coupling method is used, where simulation results (phase fraction evolution kinetics) from different sub-methods are linked via concurrent multiscale coupling fashion. Finally, these multiscale/ multiphysics simulation results are used to develop/ modify the macro/ continuum scale thermo-mechanical constitutive relations for NiTi SMA. Finally, the improved material model is used to model new devices, such as thermal diodes and smart dampers.
Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan
2016-03-01
In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation. Copyright © 2015 Elsevier B.V. All rights reserved.
Simulated Impacts of El Nino/Southern Oscillation on United States Water Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Brown, Robert A.; Rosenberg, Norman J.
The El Nino/Southern Oscillation alters global weather patterns with consequences for fresh water quality and supply. ENSO events impact regions and natural resource sectors around the globe. For example, in 1997-98, a strong El Ni?o brought warm ocean temperatures, flooding and record snowfall to the west coast of the US. Research on ENSO events and their impacts has improved long range weather predictions, potentially reducing the damage and economic cost of these anomalous weather patterns. Here, we simulate the impacts of four types of ENSO states on water resources in the conterminous United States. We distinguish between Neutral, El Ni?o,more » La Ni?a and strong El Ni?o years over the period of 1960-1989. Using climate statistics that characterize these ENSO states to drive the HUMUS water resources model, we examine the effects of 'pure' ENSO events, without complications from transition periods. Strong El Ni?o is not simply an amplification of El Ni?o; it leads to strikingly different consequences for climate and water resources.« less
Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.; Killpatrick, D. H.
1975-01-01
The design, fabrication, and testing of a full-size, full-scale TD Ni-20Cr heat shield test array in simulated mission environments is described along with the design and fabrication of two additional full-size, full-scale test arrays to be tested in flowing gas test facilities at the NASA Langley Research Center. Cost and reusability evaluations of TD Ni-20Cr heat shield systems are presented, and weight estimates of a TD Ni-20Cr heat shield system for use on a shuttle orbiter vehicle are made. Safe-line expectancy of a TD Ni-20Cr heat shield system is assessed. Non-destructive test techniques are evaluated to determine their effectiveness in quality assurance checks of TD Ni-20Cr components such as heat shields, heat shield supports, close-out panels, formed cover strips, and edge seals. Results of tests on a braze reinforced full-scale, subsize panel are included. Results show only minor structural degradation in the main TD Ni-20Cr heat shields of the test array during simulated mission test cycles.
Bonessio, N; Pereira, E S J; Lomiento, G; Arias, A; Bahia, M G A; Buono, V T L; Peters, O A
2015-05-01
To validate torsional analysis, based on finite elements, of WaveOne instruments against in vitro tests and to model the effects of different nickel-titanium (NiTi) materials. WaveOne reciprocating instruments (Small, Primary and Large, n = 8 each, M-Wire) were tested under torsion according to standard ISO 3630-1. Torsional profiles including torque and angle at fracture were determined. Test conditions were reproduced through Finite Element Analysis (FEA) simulations based on micro-CT scans at 10-μm resolution; results were compared to experimental data using analysis of variance and two-sided one sample t-tests. The same simulation was performed on virtual instruments with identical geometry and load condition, based on M-Wire or conventional NiTi alloy. Torsional profiles from FEA simulations were in significant agreement with the in vitro results. Therefore, the models developed in this study were accurate and able to provide reliable simulation of the torsional performance. Stock NiTi files under torsional tests had up to 44.9%, 44.9% and 44.1% less flexibility than virtual M-Wire files at small deflections for Small, Primary and Large instruments, respectively. As deflection levels increased, the differences in flexibility between the two sets of simulated instruments decreased until fracture. Stock NiTi instruments had a torsional fracture resistance up to 10.3%, 8.0% and 7.4% lower than the M-Wire instruments, for the Small, Primary and Large file, respectively. M-Wire instruments benefitted primarily through higher material flexibility while still at low deflection levels, compared with conventional NiTi alloy. At fracture, the instruments did not take complete advantage of the enhanced fractural resistance of the M-Wire material, which determines only limited improvements of the torsional performance. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
QM/MD studies on graphene growth from small islands on the Ni(111) surface
NASA Astrophysics Data System (ADS)
Jiao, Menggai; Song, Wei; Qian, Hu-Jun; Wang, Ying; Wu, Zhijian; Irle, Stephan; Morokuma, Keiji
2016-01-01
Quantum chemical molecular dynamics simulations of graphene growth from small island precursors in different carbon nucleation densities on the Ni(111) surface at high temperatures have been conducted. The results indicate that small islands are not static, i.e. lateral diffusion and vertical fluctuation are frequently observed. In the case of low carbon nucleation density, carbon atoms or small carbon patches diffuse and attach to the edge of the nuclei to expand the size of the growing carbon network. The growth of graphene precursors is accompanied by the corresponding changes in the bonding of nickel atoms with the precipitation of subsurface carbon atoms. This is because the carbon-carbon interaction is stronger than the nickel-carbon interaction. In the case of high carbon nucleation densities, the dominant ripening mechanism depends on different growth stages. In the initial stage, the coalescence of carbon islands takes place via the Smoluchowski ripening mechanism. In the later stage the Smoluchowski ripening process is damped owing to the higher diffusion barrier of larger clusters and the restriction of movement by self-assembled nickel step edges. The cross-linking mechanism eventually takes over by the coalescence of extended polyyne chains between graphene islands. In either case, the Ostwald ripening process is not found in our molecular dynamics simulations due to the stability of carbon-carbon bonds within the islands. These investigations should be instructive to the control of graphene growth in experiments.Quantum chemical molecular dynamics simulations of graphene growth from small island precursors in different carbon nucleation densities on the Ni(111) surface at high temperatures have been conducted. The results indicate that small islands are not static, i.e. lateral diffusion and vertical fluctuation are frequently observed. In the case of low carbon nucleation density, carbon atoms or small carbon patches diffuse and attach to the edge of the nuclei to expand the size of the growing carbon network. The growth of graphene precursors is accompanied by the corresponding changes in the bonding of nickel atoms with the precipitation of subsurface carbon atoms. This is because the carbon-carbon interaction is stronger than the nickel-carbon interaction. In the case of high carbon nucleation densities, the dominant ripening mechanism depends on different growth stages. In the initial stage, the coalescence of carbon islands takes place via the Smoluchowski ripening mechanism. In the later stage the Smoluchowski ripening process is damped owing to the higher diffusion barrier of larger clusters and the restriction of movement by self-assembled nickel step edges. The cross-linking mechanism eventually takes over by the coalescence of extended polyyne chains between graphene islands. In either case, the Ostwald ripening process is not found in our molecular dynamics simulations due to the stability of carbon-carbon bonds within the islands. These investigations should be instructive to the control of graphene growth in experiments. Electronic supplementary information (ESI) available: There are two movies showing the simulation process and they are provided in separate files. Movie S1 is the evolution of QM/MD simulations of the growth of graphene from one C13 on the Ni(111) surface for trajectory D@C13. Movie S2 is the evolution of QM/MD simulations of the growth of graphene from two C13 species on the Ni(111) surface for trajectory C@2C13. Fig. S1 shows the optimized geometries of C13-G and C13-H on the Ni(111) surface. Fig. S2 is the final structures of trajectories A-J@C13 following 400 ps QM/MD simulation for the Ni(111) + C13 system. Fig. S3 is the final structures of trajectories A-J@2C13 following 350 ps QM/MD simulation for the Ni(111) + 2C13 system. Fig. S4 shows average polygonal carbon ring populations formed during graphene growth from the Ni(111) + C13 and Ni(111) + 2C13 systems. Fig. S5 shows the averaged δ value of the C13 clusters and the nickel catalyst in the Ni(111) + C13 and Ni(111) + 2C13 systems. Fig. S6 depicts the total Mermin free energy as a function of simulation time in the Ni(111) + 2C13 system. See DOI: 10.1039/c5nr07680c
Weyhermüller, Thomas; Wagner, Rita; Khanra, Sumit; Chaudhuri, Phalguni
2005-08-07
Three trinuclear complexes, NiII MnIII NiII, NiII CrIII NiII and Ni(II)3 based on (pyridine-2-aldoximato)nickel(II) units are described. Two of them, and , contain metal-centers in linear arrangement, as is revealed by X-ray diffraction. Complex is a homonuclear complex in which the three nickel(II) centers are disposed in a triangular fashion. The compounds were characterized by various physical methods including cyclic voltammetric and variable-temperature (2-290 K) susceptibility measurements. Complexes and display antiferromagnetic exchange coupling of the neighbouring metal centers, while weak ferromagnetic spin exchange between the adjacent Ni II and Cr III ions in is observed. The experimental magnetic data were simulated by using appropriate models.
Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump
NASA Astrophysics Data System (ADS)
Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.
2017-09-01
This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.
Experimental validation of thermodynamic mixture rules at extreme pressures and densities
NASA Astrophysics Data System (ADS)
Bradley, P. A.; Loomis, E. N.; Merritt, E. C.; Guzik, J. A.; Denne, P. H.; Clark, T. T.
2018-01-01
Accurate modeling of a mixed material Equation of State (EOS) at high pressures (˜1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. This paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ˜3 TPa (˜30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamics code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. The comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.
Experimental validation of thermodynamic mixture rules at extreme pressures and densities
Bradley, Paul Andrew; Loomis, Eric Nicholas; Merritt, Elizabeth Catherine; ...
2018-01-19
Accurate modeling of a mixed material Equation of State (EOS) at high pressures (~1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. Here, this paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ~3 TPa (~30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamicsmore » code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. In conclusion, the comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Paul Andrew; Loomis, Eric Nicholas; Merritt, Elizabeth Catherine
Accurate modeling of a mixed material Equation of State (EOS) at high pressures (~1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. Here, this paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ~3 TPa (~30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamicsmore » code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. In conclusion, the comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.« less
DMS role in ENSO cycle in the tropics: DMS Role in ENSO Cycle in Tropics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Li; Cameron-Smith, Philip; Russell, Lynn M.
We examined the multiyear mean and variability of dimethyl sulfide (DMS) and its relationship to sulfate aerosols, as well as cloud microphysical and radiative properties. We conducted a 150 year simulation using preindustrial conditions produced by the Community Earth System Model embedded with a dynamic DMS module. The model simulated the mean spatial distribution of DMS emissions and burden, as well as sulfur budgets associated with DMS, SO2, H2SO4, and sulfate that were generally similar to available observations and inventories for a variety of regions. Changes in simulated sea-to-air DMS emissions and associated atmospheric abundance, along with associated aerosols andmore » cloud and radiative properties, were consistently dominated by El Niño–Southern Oscillation (ENSO) cycle in the tropical Pacific region. Simulated DMS, aerosols, and clouds showed a weak positive feedback on sea surface temperature. This feedback suggests a link among DMS, aerosols, clouds, and climate on interannual timescales. The variability of DMS emissions associated with ENSO was primarily caused by a higher variation in wind speed during La Niña events. The simulation results also suggest that variations in DMS emissions increase the frequency of La Niña events but do not alter ENSO variability in terms of the standard deviation of the Niño 3 sea surface temperature anomalies.« less
An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni-MH cells
NASA Astrophysics Data System (ADS)
Pan, Y. H.; Srinivasan, V.; Wang, C. Y.
In this study, a previously developed nickel-metal hydride (Ni-MH) battery model is applied in conjunction with experimental characterization. Important geometric parameters, including the active surface area and micro-diffusion length for both electrodes, are measured and incorporated in the model. The kinetic parameters of the oxygen evolution reaction are also characterized using constant potential experiments. Two separate equilibrium equations for the Ni electrode, one for charge and the other for discharge, are determined to provide a better description of the electrode hysteresis effect, and their use results in better agreement of simulation results with experimental data on both charge and discharge. The Ni electrode kinetic parameters are re-calibrated for the battery studied. The Ni-MH cell model coupled with the updated electrochemical properties is then used to simulate a wide range of experimental discharge and charge curves with satisfactory agreement. The experimentally validated model is used to predict and compare various charge algorithms so as to provide guidelines for application-specific optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang
Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less
Numerical tool for SMA material simulation: application to composite structure design
NASA Astrophysics Data System (ADS)
Chemisky, Yves; Duval, Arnaud; Piotrowski, Boris; Ben Zineb, Tarak; Tahiri, Vanessa; Patoor, Etienne
2009-10-01
Composite materials based on shape memory alloys (SMA) have received growing attention over these last few years. In this paper, two particular morphologies of composites are studied. The first one is an SMA/elastomer composite in which a snake-like wire NiTi SMA is embedded into an elastomer ribbon. The second one is a commercial Ni47Ti44Nb9 which presents elastic-plastic inclusions in an NiTi SMA matrix. In both cases, the design of such composites required the development of an SMA design tool, based on a macroscopic 3D constitutive law for NiTi alloys. Two different strategies are then applied to compute these composite behaviors. For the SMA/elastomer composite, the macroscopic behavior law is implemented in commercial FEM software, and for the Ni47Ti44Nb9 a scale transition approach based on the Mori-Tanaka scheme is developed. In both cases, simulations are compared to experimental data.
ENSO effects on MLT diurnal tides: A 21 year reanalysis data-driven GAIA model simulation
NASA Astrophysics Data System (ADS)
Liu, Huixin; Sun, Yang-Yi; Miyoshi, Yasunobu; Jin, Hidekatsu
2017-05-01
Tidal responses to El Niño-Southern Oscillation (ENSO) in the mesosphere and lower thermosphere (MLT) are investigated for the first time using reanalysis data-driven simulations covering 21 years. The simulation is carried out with the Ground-to-topside Atmosphere-Ionosphere model for Aeronomy (GAIA) during 1996-2016, which covers nine ENSO events. ENSO impacts on diurnal tides at 100 km altitude are analyzed and cross-compared among temperature (T), zonal wind (U), and meridional wind (V), which reveals the following salient features: (1) Tidal response can differ significantly among T, U, and V in terms of magnitude and latitudinal structure, making detection of ENSO effects sensitive to the parameter used and the location of a ground station; (2) the nonmigrating DE3 tide in T and U shows a prominent hemisphere asymmetric response to La Niña, with an increase between 0° and 30°N and a decrease between 30° and 0°S. In contrast, DE3 in V exhibits no significant response; (3) the migrating DW1 enhances during El Niño in equatorial regions for T and U but in off-equatorial regions for V. As the first ENSO study based on reanalysis-driven simulations, GAIA's full set of tidal responses in T, U, and V provides us with a necessary global context to better understand and cross-compare observations during ENSO events. Comparisons with observations during the 1997-98 El Niño and 2010-11 La Niña reveal good agreement in both magnitude and timing. Comparisons with "free-run" WACCM simulations (T) show consistent results in nonmigrating tides DE2 and DE3 but differences in the migrating DW1 tide.
Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji
2017-09-20
Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun
2017-08-01
This study analyzes a reduction in the asymmetry of El Niño Southern-Oscillation (ENSO) amplitude due to global warming in Coupled Model Intercomparison Project Phase 5 models. The multimodel-averaged Niño3 skewness during December-February season decreased approximately 40% in the RCP4.5 scenario compared to that in the historical simulation. The change in the nonlinear relationship between sea surface temperature (SST) and precipitation is a key factor for understanding the reduction in ENSO asymmetry due to global warming. In the historical simulations, the background SST leading to the greatest precipitation sensitivity (SST for Maximum Precipitation Sensitivity, SST_MPS) occurs when the positive SST anomaly is located over the equatorial central Pacific. Therefore, an increase in climatological SST due to global warming weakens the atmospheric response during El Niño over the central Pacific. However, the climatological SST over this region in the historical simulation is still lower than the SST_MPS for the negative SST anomaly; therefore, a background SST increase due to global warming can further increase precipitation sensitivity. The atmospheric feedbacks during La Niña are enhanced and increase the La Niña amplitude due to global warming.
AF Ni-Cd cell qualification program
NASA Technical Reports Server (NTRS)
Hall, Steve; Brown, Harry; Collins, G.; Hwang, Warren
1994-01-01
The present status of the USAF NiCd cell qualification program, which is underway at the Naval Surface Warfare Center-Crane Division, is summarized. The following topics are discussed: overview; background; purpose; stress tests; results for super Ni-Cd; results for SAFT cells; GPS stress test; GPS simulated orbit; and results for gates cells. The discussion is presented in viewgraph format.
Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation
Tang, L.; Wen, T. Q.; Wang, N.; ...
2018-03-06
The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less
Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, L.; Wen, T. Q.; Wang, N.
The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less
NASA Astrophysics Data System (ADS)
Li, Dong-liang; Fu, Gui-qin; Zhu, Miao-yong; Li, Qing; Yin, Cheng-xiang
2018-03-01
The corrosion resistance of weathering bridge steels containing conventional contents of Ni (0.20wt%, 0.42wt%, 1.50wt%) and a higher content of Ni (3.55wt%) in a simulated hot and humid coastal-industrial atmosphere was investigated by corrosion depth loss, scanning electron microscopy-energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. The results showed that, with increasing Ni content, the mechanical properties of the bridge steel were markedly improved, the welding parameters were satisfactory at room temperature, and the corrosion resistance was enhanced. When the Ni content was low (≤0.42wt%), the crystallization process of the corrosion products was substantially promoted, enhancing the stability of the rust layer. When the Ni content was higher ( 3.55wt%), the corrosion reaction of the steel quickly reached a balance, because the initial rapid corrosion induced the formation of a protective rust layer in the early stage. Simultaneously, NiO and NiFe2O2 were generated in large quantities; they not only formed a stable, compact, and continuous oxide protective layer, but also strongly inhibited the transformation process of the corrosion products. This inhibition reduced the structural changes in the rust layer, thereby enhancing the protection. However, when the Ni content ranged from 0.42wt% to 1.50wt%, the corrosion resistance of the bridge steel increased only slightly.
NASA Astrophysics Data System (ADS)
Wang, Xin; Chen, Mengyan; Wang, Chunzai; Yeh, Sang-Wook; Tan, Wei
2018-04-01
Previous observational studies have documented that the occurrence frequency of El Niño Modoki is closely linked to the North Pacific Oscillation (NPO). The present paper evaluates the relationships between the frequency of El Niño Modoki and the NPO in the historical runs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and examines the related physical processes. It is found that six of 25 CMIP5 models can reproduce both the spatial patterns of the NPO and El Niño Modoki. Four of these six models exhibit good performance in simulating the positive correlation between the NPO index and the frequency of El Niño Modoki. The analyses further show that the key physical processes determining the relationships between the NPO and the frequency of El Niño Modoki are the intensity of wind-evaporation-SST (WES) feedback in the subtropical northeastern North Pacific. This study enhances the understanding of the connections between the North Pacific mid-latitude climate system and El Niño Modoki, and has an important implication for the change of El Niño Modoki under global warming. If global warming favors to produce an oceanic and atmospheric pattern similar to the positive phase of the NPO in the North Pacific, more El Niño Modoki events will occur in the tropical Pacific with the assistance of the WES feedback processes.
Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dayle MA; Xiong, Yijia; Straatsma, TP
2012-05-09
Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexiblemore » in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.« less
Understanding the double peaked El Niño in coupled GCMs
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.
2017-03-01
Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.
Yahia, L H; Lombardi, S; Piron, D; Klemberg-Sapieha, J E; Wertheimer, M R
NiTi alloy specimens were plasma cleaned and then coated with a thin film of plasma-polymerized tetrafluoroethylene (TFE) in a Radio-Frequency reactor. The corrosion protection provided by these films was studied by potentiodynamic tests performed in Hank's physiological solution. Surface properties which determine biocompatibility were characterized by X-ray photoelectron spectroscopy (XPS). The results showed that the surface of untreated NiTi was mostly composed by oxygen, carbon, titanium oxide (TiO2) with traces of nickel oxides (NiO and Ni2O3) and metallic Ni. The passivity of untreated NiTi was found to be unstable in the simulated human body media. After plasma treatment, the NiTi surface contained only carbon and fluor. The plasma-polymerized thin film was found to stabilize the NiTi passivity and to increase its pitting potential. This treatment provides a good protection against dissolution of nickel from NiTi alloys.
Formation of β-NiAl Phase During Casting of a Ni-Based Superalloy
NASA Astrophysics Data System (ADS)
Detrois, Martin; Jablonski, Paul D.
2018-04-01
A high-refractory Ni-based superalloy prototype was melted on a research scale while simulating industry practices. Ingots were vacuum induction melted and subjected to a computationally optimized homogenization heat treatment prior to fabrication which consisted of forging and hot rolling. Failure of one of the ingots at the early stage of the forging process was attributed to the precipitation of the β-NiAl phase during melting which stabilized the eutectic constituent.
Lu, Chenyang; Jin, Ke; Béland, Laurent K.; ...
2016-02-01
We report that energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters farmore » exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.« less
Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys
Ullah, Mohammad W.; Xue, Haizhou; Velisa, Gihan; ...
2017-06-23
Single-phase concentrated solid-solution alloys (SP-CSAs) have recently gained unprecedented attention due to their promising properties. To understand effects of alloying elements on irradiation-induced defect production, recombination and evolution, an integrated study of ion irradiation, ion beam analysis and atomistic simulations are carried out on a unique set of model crystals with increasing chemical complexity, from pure Ni to Ni 80Fe 20, Ni 50Fe 50, and Ni 80Cr 20 binaries, and to a more complex Ni 40Fe 40Cr 20 alloy. Both experimental and simulation results suggest that the binary and ternary alloys exhibit higher radiation resistance than elemental Ni. The modelingmore » work predicts that Ni 40Fe 40Cr 20 has the best radiation tolerance, with the number of surviving Frenkel pairs being factors of 2.0 and 1.4 lower than pure Ni and the 80:20 binary alloys, respectively. While the reduced defect mobility in SP-CSAs is identified as a general mechanism leading to slower growth of large defect clusters, the effect of specific alloying elements on suppression of damage accumulation is clearly demonstrated. This work suggests that concentrated solid-solution provides an effective way to enhance radiation tolerance by creating elemental alternation at the atomic level. The demonstrated chemical effects on defect dynamics may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
Observations and modeling of San Diego beaches during El Niño
NASA Astrophysics Data System (ADS)
Doria, André; Guza, R. T.; O'Reilly, William C.; Yates, M. L.
2016-08-01
Subaerial sand levels were observed at five southern California beaches for 16 years, including notable El Niños in 1997-98 and 2009-10. An existing, empirical shoreline equilibrium model, driven with wave conditions estimated using a regional buoy network, simulates well the seasonal changes in subaerial beach width (e.g. the cross-shore location of the MSL contour) during non-El Niño years, similar to previous results with a 5-year time series lacking an El Niño winter. The existing model correctly identifies the 1997-98 El Niño winter conditions as more erosive than 2009-10, but overestimates shoreline erosion during both El Niños. The good skill of the existing equilibrium model in typical conditions does not necessarily extrapolate to extreme erosion on these beaches where a few meters thick sand layer often overlies more resistant layers. The modest over-prediction of the 2009-10 El Niño is reduced by gradually decreasing the model mobility of highly eroded shorelines (simulating cobbles, kelp wrack, shell hash, or other stabilizing layers). Over prediction during the more severe 1997-98 El Niño is corrected by stopping model erosion when resilient surfaces (identified with aerial imagery) are reached. The trained model provides a computationally simple (e.g. nonlinear first order differential equation) representation of the observed relationship between incident waves and shoreline change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunnus, K.; Josefsson, I.; Schreck, S.
We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni 2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L 3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. Here, we propose that 2p3d RIXS at the Ni L 3-edge can be utilized to quantify covalency in Ni complexes without the use of externalmore » references or simulations.« less
Kunnus, K.; Josefsson, I.; Schreck, S.; ...
2016-12-23
We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni 2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L 3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. Here, we propose that 2p3d RIXS at the Ni L 3-edge can be utilized to quantify covalency in Ni complexes without the use of externalmore » references or simulations.« less
Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium
NASA Astrophysics Data System (ADS)
Liu, Fei; Li, Jinbao; Wang, Bin; Liu, Jian; Li, Tim; Huang, Gang; Wang, Zhiyuan
2017-08-01
Detection and attribution of El Niño-Southern Oscillation (ENSO) responses to radiative forcing perturbation are critical for predicting the future change of ENSO under global warming. One of such forcing perturbation is the volcanic eruption. Our understanding of the responses of ENSO system to explosive tropical volcanic eruptions remains controversial, and we know little about the responses to high-latitude eruptions. Here, we synthesize proxy-based ENSO reconstructions, to show that there exist an El Niño-like response to the Northern Hemisphere (NH) and tropical eruptions and a La Niña-like response to the Southern Hemisphere (SH) eruptions over the past millennium. Our climate model simulation results show good agreement with the proxy records. The simulation reveals that due to different meridional thermal contrasts, the westerly wind anomalies can be excited over the tropical Pacific to the south of, at, or to the north of the equator in the first boreal winter after the NH, tropical, or SH eruptions, respectively. Thus, the eastern-Pacific El Niño can develop and peak in the second winter after the NH and tropical eruptions via the Bjerknes feedback. The model simulation only shows a central-Pacific El Niño-like response to the SH eruptions. The reason is that the anticyclonic wind anomaly associated with the SH eruption-induced southeast Pacific cooling will excite westward current anomalies and prevent the development of eastern-Pacific El Niño-like anomaly. These divergent responses to eruptions at different latitudes and in different hemispheres underline the sensitivity of the ENSO system to the spatial structure of radiative disturbances in the atmosphere.
XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy.
Chu, C L; Wang, R M; Hu, T; Yin, L H; Pu, Y P; Lin, P H; Dong, Y S; Guo, C; Chung, C Y; Yeung, K W K; Chu, Paul K
2009-01-01
A dense titania film is fabricated in situ on NiTi shape memory alloy (SMA) by anodic oxidation in a Na(2)SO(4) electrolyte. The microstructure of the titania film and its influence on the biocompatibility of NiTi SMA are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), hemolysis analysis, and platelet adhesion test. The results indicate that the titania film has a Ni-free zone near the surface and can effectively block the release of harmful Ni ions from the NiTi substrate in simulated body fluids. Moreover, the wettability, hemolysis resistance, and thromboresistance of the NiTi sample are improved by this anodic oxidation method.
How Climate Change Affected US Impacts of the 2015-16 El Niño
NASA Astrophysics Data System (ADS)
Hoerling, M. P.; Quan, X. W.
2016-12-01
The unusually dry America Southwest winter of 2015-16 is examined in the context of El Niño driving, global ocean forcing, and human-induced climate change. The El Niño event was among the strongest of the last century, as measured by NINO3.4 sea surface temperatures (SSTs). Seasonal forecasts, guided partly by historical effects of the strong 1982-83 and 1997-98 El Niños, called for abundant rains in southern California and the America Southwest. These were seen as likely, though not certain. Yet, November-April 2016 precipitation over southern California, Arizona, and western New Mexico ranked in the lower tercile of historical data, and the prevailing multiyear drought instead intensified. We present a causal storyline for winter precipitation over the America Southwest. We first diagnose if the particular "face" of the 2015-16 El Niño caused the unexpected dryness over the America Southwest. While NINO3.4 anomalies were similar among the three El Niños, the 2015-16 event had stronger warmth over the central equatorial Pacific and less warmth in the far east Pacific. However, atmospheric models forced by central to east tropical Pacific SSTs alone reveal that such distinctions among the three strongest El Niños were of little consequence for America Southwest rainfall, each driving very wet conditions. We next diagnose impacts of global SSTs on America Southwest precipitation. Whereas little difference is found for either the 1982-83 or 1997-98 simulated impacts compared to their east Pacific forcing experiments, a much weaker wet signal occurs in 2015-16 simulations. The latter was immersed in the warmest global ocean in the instrumental record, and the unusually high SSTs of the tropical warm pools were especially important in weakening El Niño's impact on the America Southwest. To isolate effects of El Niño co-acting with climate change, historical coupled model simulations are used to construct analogues for strong El Niños at various time slices of the past century. These reveal transformation of the El Niño teleconnection and a diminished wet signal in the American Southwest in the current climate versus earlier decades. This change is different from a superposition of an El Niño teleconnection and trend, but instead results from an interplay of climate change and El Niño forcing itself.
Atomistic Modeling of RuAl and (RuNi) Al Alloys
NASA Technical Reports Server (NTRS)
Gargano, Pablo; Mosca, Hugo; Bozzolo, Guillermo; Noebe, Ronald D.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Atomistic modeling of RuAl and RuAlNi alloys, using the BFS (Bozzolo-Ferrante-Smith) method for alloys is performed. The lattice parameter and energy of formation of B2 RuAl as a function of stoichiometry and the lattice parameter of (Ru(sub 50-x)Ni(sub x)Al(sub 50)) alloys as a function of Ni concentration are computed. BFS based Monte Carlo simulations indicate that compositions close to Ru25Ni25Al50 are single phase with no obvious evidence of a miscibility gap and separation of the individual B2 phases.
May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?
NASA Astrophysics Data System (ADS)
Luo, Jing-Jia; Wang, Gang; Dommenget, Dietmar
2018-02-01
Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of "perfect" models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models' ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain 50% of the total variance of the discrepancies between the observation and individual models' ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.
NASA Astrophysics Data System (ADS)
Lee, Ray Wai-Ki; Tam, Chi-Yung; Sohn, Soo-Jin; Ahn, Joong-Bae
2017-12-01
The predictability of the two El Niño types and their different impacts on the East Asian climate from boreal spring to summer have been studied, based on coupled general circulation models (CGCM) simulations from the APEC Climate Center (APCC) multi-model ensemble (MME) hindcast experiments. It was found that both the spatial pattern and temporal persistence of canonical (eastern Pacific type) El Niño sea surface temperature (SST) are much better simulated than those for El Niño Modoki (central Pacific type). In particular, most models tend to have El Niño Modoki events that decay too quickly, in comparison to those observed. The ability of these models in distinguishing between the two types of ENSO has also been assessed. Based on the MME average, the two ENSO types become less and less differentiated in the model environment as the forecast leadtime increases. Regarding the climate impact of ENSO, in spring during canonical El Niño, coupled models can reasonably capture the anomalous low-level anticyclone over the western north Pacific (WNP)/Philippine Sea area, as well as rainfall over coastal East Asia. However, most models have difficulties in predicting the springtime dry signal over Indochina to South China Sea (SCS) when El Niño Modoki occurs. This is related to the location of the simulated anomalous anticyclone in this region, which is displaced eastward over SCS relative to the observed. In boreal summer, coupled models still exhibit some skills in predicting the East Asian rainfall during canonical El Nino, but not for El Niño Modoki. Overall, models' performance in spring to summer precipitation forecasts is dictated by their ability in capturing the low-level anticyclonic feature over the WNP/SCS area. The latter in turn is likely to be affected by the realism of the time mean monsoon circulation in models.
A fitting empirical potential for NiTi alloy and its application
NASA Astrophysics Data System (ADS)
Ren, Guowu; Tang, Tiegang; Sehitoglu, Huseyin
Due to its superelastic behavior, NiTi shape memory alloy receives considerable attentions over a wide range of industrial and commercial applications. Limited to its complex structural transformation and multiple variants, semiempirical potentials for performing large-scale molecular dynamics simulations to investigate the atomistic mechanical process, are very few. In this work, we construct a new interatomic potential for the NiTi alloy by fitting to experimental or ab initio data. The fitting potential correctly predicts the lattice parameter, structural stability, equation of state for cubic B2(austenite) and monoclinic B19'(martensite) phases. In particular the elastic properties(three elastic constants for B2 and thirteen ones for B19') are in satisfactory agreement with the experiments or ab initio calculations. Furthermore, we apply this potential to conduct the molecular dynamics simulations of the mechanical behavior for NiTi alloy and the results capture its reversible transformation.
Computer simulations of disordering kinetics in irradiated intermetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaczer, M.; Caro, A.; Victoria, M.
1994-11-01
Molecular-dynamics computer simulations of collision cascades in intermetallic Cu[sub 3]Au, Ni[sub 3]Al, and NiAl have been performed to study the nature of the disordering processes in the collision cascade. The choice of these systems was suggested by the quite accurate description of the thermodynamic properties obtained using embedded-atom-type potentials. Since melting occurs in the core of the cascades, interesting effects appear as a result of the superposition of the loss (and subsequent recovery) of the crystalline order and the evolution of the chemical order, both processes being developed on different time scales. In our previous simulations on Ni[sub 3]Al andmore » Cu[sub 3]Au [T. Diaz de la Rubia, A. Caro, and M. Spaczer, Phys. Rev. B 47, 11 483 (1993)] we found a significant difference between the time evolution of the chemical short-range order (SRO) and the crystalline order in the cascade core for both alloys, namely the complete loss of the crystalline structure but only partial chemical disordering. Recent computer simulations in NiAl show the same phenomena. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the atomic mobility, the relaxation time, and the saturation value of the chemical short-range order. An analytic model for the time evolution of the SRO is given.« less
Molecular nanomagnets with switchable coupling for quantum simulation
Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...
2014-12-11
Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less
Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. M.; Maksimova, E. V.
2018-05-01
The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.
Ni2C surface carbide to catalyze low-temperature graphene growth
NASA Astrophysics Data System (ADS)
Martinez-Gordillo, Rafael; Varvenne, Céline; Amara, Hakim; Bichara, Christophe
2018-05-01
The possibility to grow a graphene layer using the chemical-vapor-deposition technique over a Ni2C /Ni (111 ) substrate has been identified experimentally, with the advantage of having a lower processing temperature (T <500 ∘C ), compared to standard growth over a Ni (111 ) surface. To understand the role of the metal carbide/metal catalyst, we first perform a static study of the Ni2C /Ni (111 ) structure and of the binding and removal of a carbon atom at the surface, using both a tight-binding (TB) energetic model and ab initio calculations. Grand-canonical Monte Carlo TB simulations then allow us (i) to determine the thermodynamic conditions to grow graphene and (ii) to separate key reaction steps in the growth mechanism explaining how the Ni2C /Ni (111 ) substrate catalyzes graphene formation at low temperature.
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites
2013-01-01
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction. PMID:23601907
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites
NASA Astrophysics Data System (ADS)
Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F.; Zhou, Y. Norman
2013-04-01
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites.
Wen, John Z; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F; Zhou, Y Norman
2013-04-20
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.
NASA Astrophysics Data System (ADS)
Mochalskyy, Serhiy; Fantz, Ursel; Wünderlich, Dirk; Minea, Tiberiu
2016-10-01
The development of negative ion (NI) sources for the ITER neutral beam injector is strongly accompanied by modelling activities. The ONIX (Orsay Negative Ion eXtraction) code simulates the formation and extraction of negative hydrogen ions and co-extracted electrons produced in caesiated sources. In this paper the 3D geometry of the BATMAN extraction system, and the source characteristics such as the extraction and bias potential, and the 3D magnetic field were integrated in the model. Calculations were performed using plasma parameters experimentally obtained on BATMAN. The comparison of the ONIX calculated extracted NI density with the experimental results suggests that predictive calculations of the extraction of NIs are possible. The results show that for an ideal status of the Cs conditioning the extracted hydrogen NI current density could reach ~30 mA cm-2 at 10 kV and ~20 mA cm-2 at 5 kV extraction potential, with an electron/NI current density ratio of about 1, as measured in the experiments under the same plasma and source conditions. The dependency of the extracted NI current on the NI density in the bulk plasma region from both the modeling and the experiment was investigated. The separate distributions composing the NI beam originating from the plasma bulk region and the PG surface are presented for different NI plasma volume densities and NI emission rates from the plasma grid (PG) wall, respectively. The extracted current from the NIs produced at the Cs covered PG surface, initially moving towards the bulk plasma and then being bent towards the extraction surfaces, is lower compared to the extracted NI current from directly extracted surface produced ions.
Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy
Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh
2016-01-01
Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807
Atomistic clustering-ordering and high-strain deformation of an Al 0.1CrCoFeNi high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Aayush; Singh, Prashant; Johnson, Duane D.
2016-08-08
Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study Al xCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al 0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al 0.1CrCoFeNi.« less
Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; ...
2015-03-05
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at lowmore » temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.« less
Cluster expansion modeling and Monte Carlo simulation of alnico 5-7 permanent magnets
NASA Astrophysics Data System (ADS)
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming
2015-03-01
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5-7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5-7 at atomistic and nano scales. The alnico 5-7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (˜2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. A small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5-7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. The results from our Monte Carlo simulations are consistent with available experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, D. G.; Rustan, G. E.; Wilson, S. R.
2015-02-04
High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni 50Zr 50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2–B33 transformation is proposed and investigated through further MD simulations.
Simulations for Making On-farm Decisions in Relation to ENSO in Semi-arid Areas, South Africa
NASA Astrophysics Data System (ADS)
Tesfuhuney, W. A.; Crespo, O. O.; Walker, S. S.; Steyn, S. A.
2017-12-01
The study was employed to investigate and improve on-farm decision making on planting dates and fertilization by relating simulated yield and seasonal outlook information. The Agricultural Production Systems SIMulator model (APSIM) was used to explore ENSO/SOI effects for small-scale farmers to represent weather conditions and soil forms of semi-arid areas of Bothaville, Bethlehem and Bloemfontein regions in South Africa. The relationships of rainfall and SOI anomalies indicate a positive correlation, signifies ENSO/SOI as seasonal outlooks for study areas. Model evaluation results showed higher degree of bias (RMSEs/RMSE value of 0.88-0.98). The D-index of agreement in the range 0.61-0.71 indicate the ability of the APSIM-Maize model is an adequate tool in evaluating relative changes in maize yield in relation to various management practices and seasonal variations. During rainy, La Niño years (SOI > +5), highest simulated yields were found for Bethlehem in November with addition of 100 - 150 kg ha-1 N fertilization and up to 50 kg ha-1 for both Bothaville and Bloemfontein. With respect to various levels of fertilization, the dry El Niño years (SOI < -5) had a range of 0.90-1.31, 3.03-3.54 and 1.11-1.26 t ha-1 yields and showed to increase during La Niña years with a range of 2.50-2.66, 3.36-4.79 and 2.24-2.38 t ha-1 at Bothaville, Bethlehem and Bloemfontein for November planting. During El Niño episodes planting earlier and using 50 kg ha-1 fertilizer with improved short maturing cultivar are effective adaptation measures to counteract poor soils and erratic rainfall of semi-arid environment, Under optimal soil conditions and/or when probability of La Niño episodes, optimal yields are obtained by maximizing fertilization. Effective rainfall and tactical on-farm management decisions in associate with seasonal rainfall out looks information is a useful mechanism in reducing risk for dryland farming in semi-arid regions. Key word: Semi-arid; APSIM; SOI; El Niño / La Niña; On-farm Decisions
Atomic and electronic structure of Pd40Ni40P20 bulk metallic glass from ab initio simulations
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Fujita, T.; Konno, K.; Matsuura, M.; Chen, M. W.; Inoue, A.; Kawazoe, Y.
2011-10-01
The atomic structure of Pd40Ni40P20 bulk metallic glass has been simulated using an ab initio molecular dynamics method with projector-augmented wave pseudopotentials for electron-ion interaction and generalized gradient approximation for exchange-correlation energy. The calculated extended x-ray absorption fine structure (EXAFS) spectra of Pd-K and Ni-K edges, the mass density, and the electronic structure agree remarkably well with the available experimental data and the EXAFS spectra measured at the SPring-8 synchrotron radiation facility. Our results show that the atomic structure can be described in terms of P-centered polyhedra. There are no two P atoms that are nearest neighbors at this composition, and this could be a reason for the observed optimal P concentration of about 20 at.%. The neighboring polyhedra share metal (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of Pd-Pd and Ni-Ni atoms.
Thermostructural behaviour of Ni-Cr materials: modelling of bulk and nanoparticle systems.
Ortiz-Roldan, Jose M; Rabdel Ruiz-Salvador, A; Calero, Sofía; Montero-Chacón, Francisco; García-Pérez, Elena; Segurado, Javier; Martin-Bragado, Ignacio; Hamad, Said
2015-06-28
The thermostructural properties of Ni-Cr materials, as bulk and nanoparticle (NP) systems, have been predicted with a newly developed interatomic potential, for Ni/Cr ratios from 100/0 to 60/40. The potential, which has been fitted using experimental data and further validated using Density Functional Theory (DFT), describes correctly the variation with temperature of lattice parameters and the coefficient of thermal expansion, from 100 K to 1000 K. Using this potential, we have performed Molecular Dynamics (MD) simulations on bulk Ni-Cr alloys of various compositions, for which no experimental data are available. Similarly, NPs with diameters of 3, 5, 7, and 10 nm were studied. We found a very rapid convergence of NP properties with the size of the systems, showing already the 5 nm NPs with a thermostructural behaviour similar to the bulk. MD simulations of two 5 nm NPs show very little sintering and thermally induced damage, for temperatures between 300 K and 1000 K, suggesting that materials formed by agglomeration of Ni-Cr NPs meet the thermostructural stability requirements for catalysis applications.
Electrochemical de-alloying in two dimensions: role of the local atomic environment
NASA Astrophysics Data System (ADS)
Damian, A.; Maroun, F.; Allongue, P.
2016-07-01
We investigate by in situ scanning tunnelling microscopy (STM) the potential dependence of the electrochemical dealloying of NiPd monoatomic layers electrodeposited on Au(111). The dealloying process is achieved by Ni selective dissolution and was studied as a function of NiPd composition: for an alloy with a Ni content >=70%, quasi-complete Ni dissolution is achieved at a potential of -0.9 VMSE whereas for a Ni content <70%, Ni dissolution at the same potential drastically slows down after the removal of small amounts of Ni. The alloy morphology at this ``passivation state'' is characterized by the presence of holes in the alloy monolayer with evidence for the Pd enrichment at the hole edges. These findings are confirmed by Monte Carlo simulations. Further Ni dissolution at passivation was achieved by applying more positive potentials which depend on the alloy composition. These results allowed us to determine the correlation between the Ni dissolution onset potential and the local Pd content.
Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations
NASA Astrophysics Data System (ADS)
Joshi, Sneh; Kar, Sarat C.
2018-02-01
Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.
A two-way architectural actuator using NiTi SE wire and SME spring
NASA Astrophysics Data System (ADS)
Nematollahi, Mohammadreza; Mehrabi, Reza; Callejas, Miguel A.; Elahinia, Hedyeh; Elahinia, Mohammad
2018-03-01
This paper presents a bio-inspired continuously adapting architectural element, to enable a smart canopy that provides shade to buildings that need protection from sunlight. The smart actuator consists of two elements: one NiTi shape memory (SME) spring and one NiTi superelastic (SE) wire. The SE wire is deformed to a `U' shape and then the SME spring is attached to it. Due to the force of SE wire exerted on SME spring, the smart canopy is in its open position. When the environment's temperature increases, the actuator activates and shrinks the SME spring and hence it closes the canopy. In continues, when the temperature decreases at evening, the actuator inactive and SE wire will open the smart fabric. This unique activation provides different advantages like silent actuation, maintenance free, eco-friendly, and no or low energy consumption. Here, the conceptual design of the smart canopy actuator will be discussed. Then, a simulation study, using finite element method, is used to investigate components' behavior. The extracted material parameters are implemented in the subroutine, to simulate the behavior of the shape memory alloy elements. Simulation's results predict superelastic behavior for the SE wire and shape memory effect for the NiTi spring. For further studies, a prototype will be fabricated to confirm simulation's results, as well as performing some experimental tests.
Signals of El Niño Modoki in the tropical tropopause layer and stratosphere
NASA Astrophysics Data System (ADS)
Xie, F.; Li, J.; Tian, W.; Feng, J.; Huo, Y.
2012-06-01
The effects of El Niño Modoki events on the tropical tropopause layer (TTL) and on the stratosphere were investigated using European Center for Medium Range Weather Forecasting (ECMWF) reanalysis data, oceanic El Niño indices, and general climate model outputs. El Niño Modoki events tend to depress convective activities in the western and eastern Pacific but enhance convective activities in the central and northern Pacific. Consequently, during El Niño Modoki events, negative water vapor anomalies occur in the western and eastern Pacific upper troposphere, whereas there are positive anomalies in the central and northern Pacific upper troposphere. The spatial patterns of the outgoing longwave radiation (OLR) and upper tropospheric water vapor anomalies exhibit a tripolar form. The empirical orthogonal function (EOF) analysis of the OLR and upper tropospheric water vapor anomalies reveals that canonical El Niño events are associated with the leading mode of the EOF, while El Niño Modoki events correspond to the second mode. The composite analysis based on ERA-interim data indicate that El Niño Modoki events have a reverse effect on middle-high latitudes stratosphere, as compared with the effect of typical El Niño events, i.e., the northern polar vortex is stronger and colder but the southern polar vortex is weaker and warmer during El Niño Modoki events. According to the simulation' results, we found that the reverse effect on the middle-high latitudes stratosphere is resulted from a complicated interaction between quasi-biennial oscillation (QBO) signal of east phase and El Niño Modoki signal. This interaction is not a simply linear overlay of QBO signal and El Niño Modoki signal in the stratosphere, it is El Niño Modoki that leads to different tropospheric zonal wind anomalies with QBO forcing from that caused by typical El Niño, thus, the planetary wave propagation from troposphere to the stratosphere during El Niño Modoki events is different from that during canonical El Niño events. However, when QBO is in its west phase, El Niño Modoki events have the same effect on middle-high latitudes stratosphere as the typical El Niño events. Our simulations also suggest that canonical El Niño and El Niño Modoki activities actually have the same influence on the middle-high latitudes stratosphere when in the absence of QBO forcing.
Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.; Killpatrick, D. H.
1973-01-01
The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.
NASA Astrophysics Data System (ADS)
Limbu, Dil; Biswas, Parthapratim
We present a simple and efficient Monte-Carlo (MC) simulation of Iron (Fe) and Nickel (Ni) clusters with N =5-100 and amorphous Silicon (a-Si) starting from a random configuration. Using Sutton-Chen and Finnis-Sinclair potentials for Ni (in fcc lattice) and Fe (in bcc lattice), and Stillinger-Weber potential for a-Si, respectively, the total energy of the system is optimized by employing MC moves that include both the stochastic nature of MC simulations and the gradient of the potential function. For both iron and nickel clusters, the energy of the configurations is found to be very close to the values listed in the Cambridge Cluster Database, whereas the maximum force on each cluster is found to be much lower than the corresponding value obtained from the optimized structural configurations reported in the database. An extension of the method to model the amorphous state of Si is presented and the results are compared with experimental data and those obtained from other simulation methods. The work is partially supported by the NSF under Grant Number DMR 1507166.
Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions
NASA Astrophysics Data System (ADS)
Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei
2016-07-01
In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.
Keller, Trevor; Lindwall, Greta; Ghosh, Supriyo; Ma, Li; Lane, Brandon M; Zhang, Fan; Kattner, Ursula R; Lass, Eric A; Heigel, Jarred C; Idell, Yaakov; Williams, Maureen E; Allen, Andrew J; Guyer, Jonathan E; Levine, Lyle E
2017-10-15
Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).
Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study
Alfonso, Dominic R.; Tafen, De Nyago
2015-04-28
The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out formore » the purpose of understanding the predicted trends.« less
Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys
NASA Astrophysics Data System (ADS)
Maisel, S. B.; Ko, W.-S.; Zhang, J.-L.; Grabowski, B.; Neugebauer, J.
2017-08-01
We study the properties of NiTi shape-memory nanoparticles coherently embedded in TiV matrices using three-dimensional atomistic simulations based on the modified embedded-atom method. To this end, we develop and present a suitable NiTiV potential for our simulations. Employing this potential, we identify the conditions under which the martensitic phase transformation of such a nanoparticle is triggered—specifically, how these conditions can be tuned by modifying the size of the particle, the composition of the surrounding matrix, or the temperature and strain state of the system. Using these insights, we establish how the transformation temperature of such particles can be influenced and discuss the practical implications in the context of shape-memory strengthened alloys.
Localized corrosion behaviour in simulated human body fluids of commercial Ni-Ti orthodontic wires.
Rondelli, G; Vicentini, B
1999-04-01
The corrosion performances in simulated human body fluids of commercial equiatomic Ni-Ti orthodontic wires having various shape and size and produced by different manufacturers were evaluated; for comparison purposes wires made of stainless steel and of cobalt-based alloy were also examined. Potentiodynamic tests in artificial saliva at 40 degrees C indicated a sufficient pitting resistance for the Ni-Ti wires, similar to that of cobalt-based alloy wire; the stainless steel wire, instead, exhibited low pitting potential. Potentiodynamic tests at 40 degrees C in isotonic saline solution (0.9% NaCl) showed, for Ni-Ti and stainless steel wires, pitting potential values in the range approximately 200-400 mV and approximately 350 mV versus SCE, respectively: consequently, according to literature data (Hoar TP, Mears DC. Proc Roy Soc A 1996;294:486-510), these materials should be considered potentially susceptible to pitting; only the cobalt-based alloy should be immune from pitting. The localized corrosion potentials determined in the same environment by the ASTM F746 test (approximately 0-200 mV and 130 mV versus SCE for Ni-Ti and stainless steel, respectively) pointed out that for these materials an even higher risk of localized corrosion. Slight differences in localized corrosion behaviour among the various Ni-Ti wires were detected.
Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops
NASA Astrophysics Data System (ADS)
Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.
2018-01-01
The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Semanti; Barman, Saswati, E-mail: saswati@bose.res.in; Barman, Anjan, E-mail: abarman@bose.res.in
2014-05-07
We have investigated optically induced ultrafast magnetization dynamics of a series of Fe{sub 55}Pt{sub 45}/Ni{sub 80}Fe{sub 20} exchange spring bi-layers with varying Ni{sub 80}Fe{sub 20} thickness. Rich spin-wave spectra are observed; whose frequency shows a strong dependence on the Ni{sub 80}Fe{sub 20} layer thickness. Micromagnetic simulations based on a simplified magnetic microstructure were able to reproduce the experimental data qualitatively. The spin twist structure introduced in the Ni{sub 80}Fe{sub 20} layer gives rise to new modes in the composite system as opposed to the bare Ni{sub 80}Fe{sub 20} films.
Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo
Liu, Bin; Yuan, Fenglin; Jin, Ke; ...
2015-10-06
Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less
NASA Astrophysics Data System (ADS)
Gong, Hengfeng; Wang, Chengbin; Zhang, Wei; Huai, Ping; Lu, Wei; Zhu, Zhiyuan
2016-12-01
He atoms tend to cluster and precipitate into bubbles that prefer to grow in the grain boundaries, resulting in high temperature He embrittlement with significantly degraded material properties. This is a major bottleneck in employing Ni-based alloys for applications such as molten salt reactors (MSRs). This paper focuses on understanding how the local grain boundary structure interacts with He atoms and how the local atomistic environment in the grain boundary influences the binding energy of He defects. Using molecular dynamics simulations, we have investigated the trapping capability of the Ni {\\sum}3≤ft(1 \\bar{1} 2\\right)≤ft[1 1 0\\right] grain boundary to He defects (He N ) and to He-vacancy defects (He N V M ). The two defects in the Ni grain boundary exhibit geometries with high symmetry. The binding energy of an interstitial He atom to He N V M defects is found to be generally larger in pure Ni than that in the grain boundary. We compared the binding energy of He N defects to the Ni vacancy and to the Ni grain boundary, finding that the Ni vacancy possesses a higher trapping strength to He N . We also found that the binding strength of He N to the grain boundary is stronger than that of He N V M to the grain boundary. The He-vacancy ratio in He N V M defects does not significantly affect the binding energy in the grain boundary plane. The current work will provide insight in understanding the experimentally observed He bubble formation in Ni-based alloys and bridge atomic scale events and damage with macroscopic failure.
Theoretical study of high temperature behavior of Pb and Pb-base alloy surfaces
NASA Astrophysics Data System (ADS)
Landa, Alexander Ilyich
1998-11-01
A recent study of a Pb-Bi-Ni alloy reported a strong co-segregation of Bi and Ni at the alloy surface. The nature of this surface phenomenon has been studied by means of modern ab initio and classical simulation techniques. It was useful to begin by a study of the underlying binaries. We have performed ab initio calculations of the segregation profiles at the (111), (100) and (110) surfaces of random Pbsb{95}Bisb{05} alloys by means of the coherent potential approximation within the context of a tight-binding linear muffin-tin-orbitals method. We have found the segregation profiles to be oscillatory (this effect is most pronounced for the (111) surface) with a strong preference for Bi to segregate to the first atom layer. We have performed Monte Carlo simulations, employing Finnis-Sinclair-type empirical many-body potentials and computed the solubility limits of Pb-Bi and Pb-Ni alloys, as well as the segregation profiles at the (111) surfaces of Pbsb{95}Bisb{05} and Pb-Ni alloys. For Pb-Bi alloys, the concentration profiles have also been found to be oscillatory. Calculations on Pb-Ni showed that within the solubility limit of Ni in Pb, Ni did not segregate to the Pb(111) outermost surface layer. In the ternary Pbsb{95}Bisb{05}{+}Ni alloy ab initio calculations detected a tendency for Ni to segregate to the subsurface from layer due its strong interaction with Bi. Calculations on Pb-Bi-Ni showed strong segregation of Ni to the subsurface atom layer, accompanied by co-segregation of Bi to several of the outermost atom layers. We have also focused our attention on the high temperature behavior of the pure Pb(110) metal surface. Molecular dynamics simulations incorporating a many-body potential have been used to investigate the atomic structure and dynamics of the Pb(110) surface in the range from room temperature up to the bulk melting point. The surface starts to disorder approximately at 360 K via the generation of vacancies and the formation of an adlayer. At about 520 K, the onset of a quasiliquid region at the surface has been observed. The disordering of the surface beyond 520 K was described as premelting with a gradually developing liquid-like film, the thickness of which increased proportionally to 1n(1-T/Tsb{M}) as the bulk melting temperature (Tsb{M}) was approached. The dynamics of the equilibrium crystal-melt interface at the bulk melting point has been also studied: the interface exhibits fluctuating atomic-scale (111) facets, and, the two outermost quasiliquid layers retain a considerable degree of short range order (surface layering). The roughening transition on the Pb(110) surface has been studied using a combination of lattice-gas Monte Carlo and molecular-dynamics methods in conjunction with the same many-body glue potential. Lattice-gas Monte Carlo simulations yield a roughening transition temperature or approximately Tsbsp{R}{LGMC}≈ 1100 K. Molecular-dynamics simulations. which account for surface relaxation and lattice vibrations, detected the roughening transition at Tsbsp{R}{MD}≈ 545 K, above the high-resolution low-energy diffraction measurements of Tsbsp{R}{EXP} ≈ 415 K. The anisotropic body-centered solid-on-solid model has been used in the interpretation of these results. The time scale of local roughening was estimated approximately {˜}0.6 ns at the calculated roughening transition temperature. (Abstract shortened by UMI.)
Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys
Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...
2017-01-19
Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less
Emittance of TD-NiCr after simulated reentry
NASA Technical Reports Server (NTRS)
Clark, R. K.; Dicus, D. L.; Lisagor, W. B.
1978-01-01
The effects of simulated reentry heating on the emittance of TD-NiCr were investigated. Groups of specimens with three different preconditioning treatments were exposed to 6, 24, and 30 half-hour simulated reentry exposure cycles in a supersonic arc tunnel at each of three conditions intended to produce surface temperatures of 1255, 1365, and 1475 K. Emittance was determined at 1300 K on specimens which were preconditioned only and specimens after completion of reentry simulation exposure. Oxide morphology and chemistry were studied by scanning electron microscopy and X-ray diffraction analysis. A consistent relationship was established between oxide morphology and total normal emittance. Specimens with coarser textured oxides tended to have lower emittances than specimens with finer textured oxides.
Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Persaud, Suraj
Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.
Aral, Gurcan; Islam, Md Mahbubul; van Duin, Adri C T
2017-12-20
Highly reactive metallic nickel (Ni) is readily oxidized by oxygen (O 2 ) molecules even at low temperatures. The presence of the naturally resulting pre-oxide shell layer on metallic Ni nano materials such as Ni nanowires (NW) is responsible for degrading the deformation mechanisms and related mechanical properties. However, the role of the pre-oxide shell layer on the metallic Ni NW coupled with the complicated mechanical deformation mechanism and related properties have not yet been fully and independently understood. For this reason, the ReaxFF reactive force field for Ni/O interactions was used to investigate the effect of surface oxide layers and the size-dependent mechanical properties of Ni NWs under precisely controlled tensile loading conditions. To directly quantify the size dependent surface oxidation effect on the tensile mechanical deformation behaviour and related properties for Ni NWs, first, ReaxFF-molecular dynamics (MD) simulations were carried out to study the oxidation kinetics on the free surface of Ni NWs in a molecular O 2 environment as a function of various diameters (D = 5.0, 6.5, and 8.0 nm) of the NWs, but at the same length. Single crystalline, pure metallic Ni NWs were also studied as a reference. The results of the oxidation simulations indicate that a surface oxide shell layer with limiting thickness of ∼1.0 nm was formed on the free surface of the bare Ni NW, typically via dissociation of the O-O bonds and the subsequent formation of Ni-O bonds. Furthermore, we investigated the evolution of the size-dependent intrinsic mechanical elastic properties of the core-oxide shell (Ni/Ni x O y ) NWs by comparing them with their un-oxidized counterparts under constant uniaxial tensile loading. We found that the oxide shell layer significantly decreases the mechanical properties of metallic Ni NW as well as facilitates the initiation of plastic deformation as a function of decreasing diameter. The disordered oxide shell layer on the Ni NW's surface remarkably reduces the yield stress and Young's modulus, due to the increased softening effects with the decreasing NW diameter, compared to un-oxidized counterparts. Moreover, the onset of plastic deformation occurs at a relatively low yielding strain and stress level for the smaller diameter of oxide-coated Ni NWs in comparison to their pure counterparts. Furthermore, for pure Ni NWs, Young's modulus, the yielding stress and strain slightly decrease with the decrease in the diameter size of Ni NWs.
Super NiCd Open-Circuit Storage and Low Earth Orbit (LEO) Life Test Evaluation
NASA Technical Reports Server (NTRS)
Baer, Jean Marie; Hwang, Warren C.; Ang, Valerie J.; Hayden, Jeff; Rao, Gopalakrishna; Day, John H. (Technical Monitor)
2002-01-01
This presentation discusses Air Force tests performed on super NiCd cells to measure their performance under conditions simulating Low Earth Orbit (LEO) conditions. Super NiCd cells offer potential advantages over existing NiCd cell designs including advanced cell design with improved separator material and electrode making processes, but handling and storage requires active charging. These tests conclude that the super NiCd cells support generic Air Force qualifications for conventional LEO missions (up to five years duration) and that handling and storage may not actually require active charging as previously assumed. Topics covered include: Test Plan, Initial Characterization Tests, Open-Circuit Storage Tests, and post storage capacities.
Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study
NASA Astrophysics Data System (ADS)
Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.
2016-01-01
Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.
Terasawa, Naohiro; Asaka, Kinji
2014-12-02
The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable not only to EDLC-based actuator systems but also to the fabricated EDLC/FC system.
Molecular Dynamics Simulation of the Kinetic Reaction between Ni and Al Nanoparticles
2009-01-01
reaction time and temperature for separate nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the...separate nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the form of Ni-coated Al nanoparticles...nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the form of Ni-coated Al nanoparticles
Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model
NASA Astrophysics Data System (ADS)
Fang, Xianghui; Zheng, Fei
2018-06-01
Severe biases exist in state-of-the-art general circulation models (GCMs) in capturing realistic central-Pacific (CP) El Niño structures. At the same time, many observational analyses have emphasized that thermocline (TH) feedback and zonal advective (ZA) feedback play dominant roles in the development of eastern-Pacific (EP) and CP El Niño-Southern Oscillation (ENSO), respectively. In this work, a simple linear air-sea coupled model, which can accurately depict the strength distribution of the TH and ZA feedbacks in the equatorial Pacific, is used to investigate these two types of El Niño. The results indicate that the model can reproduce the main characteristics of CP ENSO if the TH feedback is switched off and the ZA feedback is retained as the only positive feedback, confirming the dominant role played by ZA feedback in the development of CP ENSO. Further experiments indicate that, through a simple nonlinear control approach, many ENSO characteristics, including the existence of both CP and EP El Niño and the asymmetries between El Niño and La Niña, can be successfully captured using the simple linear air-sea coupled model. These analyses indicate that an accurate depiction of the climatological sea surface temperature distribution and the related ZA feedback, which are the subject of severe biases in GCMs, is very important in simulating a realistic CP El Niño.
Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr
2015-10-15
The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia atmore » high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.« less
Crystal growth velocity in deeply undercooled Ni-Si alloys
NASA Astrophysics Data System (ADS)
Lü, Y. J.
2012-02-01
The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L ≈ 1505 and 1387 K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni-Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10 at.% Si, resulting in the remarkable decrease of growth velocity.
Edge cracks in nickel and aluminium single crystals: A molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Sagar, E-mail: sagarc@barc.gov.in; Chavan, V. M.; Patel, R. J.
A molecular dynamics study of edge cracks in Ni and Al single crystals under mode-I loading conditions is presented. Simulations are performed using embedded-atom method potentials for Ni and Al at a temperature of 0.5 K. The results reveal that Ni and Al show different fracture mechanisms. Overall failure behavior of Ni is brittle, while fracture in Al proceeds through void nucleation and coalescence with a zig-zag pattern of crack growth. The qualitative nature of results is discussed in the context of vacancy-formation energies and surface energies of the two FCC metals.
A discrete twin-boundary approach for simulating the magneto-mechanical response of Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Faran, Eilon; Shilo, Doron
2016-09-01
The design and optimization of ferromagnetic shape memory alloys (FSMA)-based devices require quantitative understanding of the dynamics of twin boundaries within these materials. Here, we present a discrete twin boundary modeling approach for simulating the behavior of an FSMA Ni-Mn-Ga crystal under combined magneto-mechanical loading conditions. The model is based on experimentally measured kinetic relations that describe the motion of individual twin boundaries over a wide range of velocities. The resulting calculations capture the dynamic response of Ni-Mn-Ga and reveal the relations between fundamental material parameters and actuation performance at different frequencies of the magnetic field. In particular, we show that at high field rates, the magnitude of the lattice barrier that resists twin boundary motion is the important property that determines the level of actuation strain, while the contribution of twinning stress property is minor. Consequently, type II twin boundaries, whose lattice barrier is smaller compared to type I, are expected to show better actuation performance at high rates, irrespective of the differences in the twinning stress property between the two boundary types. In addition, the simulation enables optimization of the actuation strain of a Ni-Mn-Ga crystal by adjusting the magnitude of the bias mechanical stress, thus providing direct guidelines for the design of actuating devices. Finally, we show that the use of a linear kinetic law for simulating the twinning-based response is inadequate and results in incorrect predictions.
The molecular dynamics simulation on the mechanical properties of Ni glass with external pressure
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Hui; Wang, Ying; Sun, Dong-Bai
2017-08-01
In this paper, rapid quenching of Ni from crystal to metallic glass (MG) at different external pressures is simulated by molecular dynamics. The pair distribution functions (PDFs), mean-square displacement, glass transition temperature (Tg) and elastic property are calculated and compared with each other. The split of the second PDF peak means the liquid’s transition to glass state starts as previously reported for other MGs. And the Ri/R1 ratio rule is found to hold very well in Ni MG and reveals the SPO structural feature in the configurations. Moreover, with high external pressure, Tg values are more approximated by density-temperature and enthalpy-temperature curves. At last, the elastic modulus and mechanics modulus of quenching models produced a monotonous effect with increasing external pressure and temperature.
Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages
NASA Astrophysics Data System (ADS)
Luo, J. K.; He, J. H.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.
2005-08-01
Normally closed microcages based on highly compressively stressed diamond-like carbon (DLC) and electroplated Ni bimorph structures have been simulated, fabricated and characterized. Finite-element and analytical models were used to simulate the device performance. It was found that the radius of curvature of the bimorph layer can be adjusted by varying the DLC film stress, the total layer thickness and the thickness ratio of the DLC to Ni layers. The angular deflection of the bimorph structures can also be adjusted by varying the finger length. The radius of curvature of the microcage was in the range of 18-50 µm, suitable for capturing and confining micro-objects with sizes of 20-100 µm. The operation of this type of device is very efficient due to the large difference in thermal expansion coefficients of the DLC and the Ni layers. Electrical tests have shown that these microcages can be opened by ~90° utilizing a power smaller than 20 mW. The operating temperatures of the devices under various pulsed currents were extracted through the change in electrical resistance of the devices. The results showed that an average temperature in the range of 400-450 °C is needed to open this type of microcage by ~90°, consistent with the results from analytical simulation and finite-element modelling.
NASA Astrophysics Data System (ADS)
Adnan Abid, Mohammad; Almazroui, Mansour; Kucharski, Fred
2017-04-01
Summer seasonal rainfall falls mainly over the south and southwestern parts of the Arabian Peninsula (AP). The relationship between this mean summer seasonal rainfall pattern and El Niño Southern Oscillation (ENSO) is analyzed with the aid of a 15-member ensemble of simulations using the King Abdulaziz University (KAU) Atmospheric Global Climate Model (AGCM). Each simulation is forced with Hadley Sea Surface Temperature (SST) for the period 1980-2015. The southwestern peninsula rainfall is linked towith the SST anomalies in the central-eastern pacific region. This relation is established through an atmospheric teleconnection which shows an upper-level convergence (divergence) anomalies over the southern Arabian Peninsula compensating the central-eastern Pacific region upper-level divergence (convergence) anomalies for the warm (cold) El Niño Southern Oscillaton (ENSO) phase. The upper-level convergence (divergence) over the southern Arabian Peninsula leads to sinking (rising) motion, low-level divergence (convergence) and consequently to reduced (enhanced) rainfall. The correlation coefficient between the observed area-averged Niño3.4 index and athe South Arabian Rainfall Index (SARI) is -0.54. This indicates that AP receives less rainfall during the warm (El Niño) phase, while the opposite happens in the cold (La Niña) El Niño Southern Oscillaton (ENSO) phase. The lower tropospheric cyclonic circulation anomalies strongly modulate the ENSO-related rainfall in the region. Overall, the model shows a 43% potential predictability (PP) for the Southern Arabian Peninsula Rainfall Index (SARI). Further, the predictability during the warm ENSO (El Niño) events is higher than during cold ENSO (La Niña) events. This is not only because of a stronger signal, but also noise reduction contributes to the increase of the regional PP in El Niño compared to that of La Niña years.
Corrosion Behavior of an Abradable Seal Coating System
NASA Astrophysics Data System (ADS)
Zhang, Feng; Xu, Cunguan; Lan, Hao; Huang, Chuanbing; Zhou, Yang; Du, Lingzhong; Zhang, Weigang
2014-08-01
A novel NiTi/BN composite abradable coating and two traditional Ni/C and Ni/BN coatings were manufactured with NiAl as the bond layer using thermal spray technology and their corrosion behaviors were investigated. In salt spray corrosion testing of the Ni/BN coating, defective sites of the metal matrix were corroded preferentially. Simulated occlusion experiments and electrochemical tests indicated that migration of ions resulted in pH decrease and Cl- enrichment in defects, and a more aggressive electrolyte led to a decrease of the corrosion potential of the metal inside defects but an increase of the corrosion current density, representing an autocatalytic corrosion process. Moreover, galvanic corrosion between the top and bond coatings of the abradable system was studied via the electrochemical technique. The results showed that, for the NiTi/BN, Ni/BN, and Ni/graphite coatings with a NiAl bond coating, current flow was generated between the anode and cathode. The NiTi/BN coating acted as the cathode due to its passivation, while the Ni/BN and Ni/graphite coatings acted as the anode because of their lower corrosion potential compared with the NiAl coating. The anode suffered serious corrosion damage due to galvanic corrosion, while the cathode corroded only slightly.
NASA Astrophysics Data System (ADS)
Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng
2013-07-01
To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.
Saito, Akihiro; Saito, Misa; Ichikawa, Yusuke; Yoshiba, Masaaki; Tadano, Toshiaki; Miwa, Eitaro; Higuchi, Kyoko
2010-02-01
To evaluate Ni dynamics at the subcellular level, the distribution and speciation of Ni were determined in wild-type (WT) and Ni-tolerant (NIT) tobacco BY-2 cell lines. When exposed to low but toxic levels of Ni, NIT cells were found to contain 2.5-fold more Ni (14% of whole-cell Ni values) in their cell walls than WT cells (6% of whole-cell Ni values). In addition to higher levels of Ni in the apoplast, a higher proportion (94%) of symplastic Ni was localized in the vacuoles of NIT cells than in the vacuoles of WT cells (81%). The concentration of cytosolic Ni in the NIT cells was significantly lower (18 nmol g(-1) FW) than that in the WT cells (85 nmol g(-1) FW). In silico simulation showed that 95% of vacuolar Ni was in the form of Ni-citrate complexes, and that free Ni(2+) was virtually absent in the NIT cells. On the other hand, the amount of free metal ions was markedly increased in WT cells because free citrate was depleted by chelation of Ni. A protoplast viability assay using BCECF-AM further demonstrated that the main mechanism that confers strong Ni tolerance was present in the symplast as opposed to the cell wall.
Santos, Leandro de Arruda; Resende, Pedro Damas; Bahia, Maria Guiomar de Azevedo; Buono, Vicente Tadeu Lopes
2016-01-01
The effects of the presence of the R-phase in a near-equiatomic NiTi alloy on the mechanical responses of an endodontic instrument were studied by using finite element analysis. The input data for the constitutive model in the simulation were obtained by tensile testing of three NiTi wires: superelastic austenite NiTi, austenite + R-phase NiTi, and fully R-phased NiTi. The wires were also characterized by X-ray diffraction and differential scanning calorimetry. A commercially available endodontic instrument was scanned using microcomputed tomography, and the resulting images were used to build the geometrical model. The numerical analyses were performed in ABAQUS using load and boundary conditions based on the ISO 3630-1 specification for the bending and torsion of endodontic instruments. The modeled instrument containing only R-phase demanded the lowest moment to be bent, followed by the one with mixed austenite + R-phase. The superelastic instrument, containing essentially austenite, required the highest bending moment. During bending, the fully R-phased instrument reached the lowest stress values; however, it also experienced the highest angular deflection when subjected to torsion. In summary, this simulation showed that NiTi endodontic instruments containing only R-phase in their microstructure would show higher flexibility without compromising their performance under torsion. PMID:27314059
Li, W J; Wang, C J; Zhang, X M; Irfan, M; Khan, U; Liu, Y W; Han, X F
2018-06-15
Multiphase CoCr 2 O 4 /Ni core-shell nanowires (NWs) have been synthesized within anodic aluminum oxide membranes by the combination of the sol-gel method with electrodeposition techniques. X-ray diffraction and x-ray photoemission spectroscopy results confirmed the formation of a cubic spinel structure of CoCr 2 O 4 shell with space group Fd-3m (227). The morphology and composition of the as-grown NWs were studied by field emission scanning electron microscopy, as well as transmission electron microscopy. The magnetic properties of the CoCr 2 O 4 NT shell and hybrid CoCr 2 O 4 /Ni NWs were measured at low temperature using a physical property measurement system. The temperature dependence of the magnetization curves showed that CoCr 2 O 4 NTs undergo a transition from a paramagnetic state to a ferrimagnetic state at about 90 K and a spiral ordering transition temperature near 22 K. An enhanced coercivity and saturation field were observed for the CoCr 2 O 4 /Ni core-shell NWs compared to the single-phase Ni NWs. Micromagnetic simulation results indicated that there is a strong coupling between the shell and core layers during the magnetization reversal process. The combination of hard CoCr 2 O 4 and soft Ni in a single NW structure may have potential applications in future multifunctional devices.
Experimental investigation and micromagnetic simulations of hybrid CoCr2O4/Ni coaxial nanostructures
NASA Astrophysics Data System (ADS)
Li, W. J.; Wang, C. J.; Zhang, X. M.; Irfan, M.; Khan, U.; Liu, Y. W.; Han, X. F.
2018-06-01
Multiphase CoCr2O4/Ni core–shell nanowires (NWs) have been synthesized within anodic aluminum oxide membranes by the combination of the sol–gel method with electrodeposition techniques. X-ray diffraction and x-ray photoemission spectroscopy results confirmed the formation of a cubic spinel structure of CoCr2O4 shell with space group Fd-3m (227). The morphology and composition of the as-grown NWs were studied by field emission scanning electron microscopy, as well as transmission electron microscopy. The magnetic properties of the CoCr2O4 NT shell and hybrid CoCr2O4/Ni NWs were measured at low temperature using a physical property measurement system. The temperature dependence of the magnetization curves showed that CoCr2O4 NTs undergo a transition from a paramagnetic state to a ferrimagnetic state at about 90 K and a spiral ordering transition temperature near 22 K. An enhanced coercivity and saturation field were observed for the CoCr2O4/Ni core–shell NWs compared to the single-phase Ni NWs. Micromagnetic simulation results indicated that there is a strong coupling between the shell and core layers during the magnetization reversal process. The combination of hard CoCr2O4 and soft Ni in a single NW structure may have potential applications in future multifunctional devices.
NASA Astrophysics Data System (ADS)
Sarveswaran, C.; Salleh, Emee Marina; Jalar, A.; Samsudin, Z.; Ali, M. Yusuf Tura; Ani, F. Che; Othman, N. K.
2017-05-01
The electrochemical migration (ECM) behaviour of SAC 305, SAC 0307 and SAC 0307-0.03 P-0.005 Ni has been investigated by using simulated body fluid (SBF) solution. Water drop test (WDT) was performed to compute the mean-time-to-failure (MTTF) of each sample while its electrical behaviour was examined using four-point probe test station. The microstructure of each solder paste alloy was observed using field emission scanning electron microscope (FESEM) with energy dispersive X-ray spectroscopy (EDX) to analyse the elemental composition of the solder alloy. The MTTF result shows that SAC 305 has the fastest time-to-failure (TTF) due to short circuit. The corrosion susceptibility of SAC 305 was higher compared with SAC 0307-0.03P-0.005Ni. This was because of the influence of dopant phosphorus and nickel incorporation in the SAC 0307-0.03 P-0.005 Ni. The four point-probe test station reveals that SAC 305 is a good electric conductor whilst SAC 0307-0.03 P-0.005 Ni is a poor electric conductor. The rate of dendritic growth was influenced by the alloying element of the solder. Therefore, SAC 0307-0.03 P-0.005 Ni have a good corrosion resistance in SBF medium.
Thermodynamic interpretation of reactive processes in Ni-Al nanolayers from atomistic simulations
NASA Astrophysics Data System (ADS)
Sandoval, Luis; Campbell, Geoffrey H.; Marian, Jaime
2014-03-01
Metals that can form intermetallic compounds by exothermic reactions constitute a class of reactive materials with multiple applications. Ni-Al laminates of thin alternating layers are being considered as model nanometric metallic multilayers for studying various reaction processes. However, the reaction kinetics at short timescales after mixing are not entirely understood. In this work, we calculate the free energies of Ni-Al alloys as a function of composition and temperature for different solid phases using thermodynamic integration based on state-of-the-art interatomic potentials. We use this information to interpret molecular dynamics (MD) simulations of bilayer systems at 800 K and zero pressure, both in isothermal and isenthalpic conditions. We find that a disordered phase always forms upon mixing as a precursor to a more stable nano crystalline B2 phase. We construe the reactions observed in terms of thermodynamic trajectories governed by the state variables computed. Simulated times of up to 30 ns were achieved, which provides a window to phenomena not previously observed in MD simulations. Our results provide insight into the early experimental reaction timescales and suggest that the path (segregated reactants) → (disordered phase) → (B2 structure) is always realized irrespective of the imposed boundary conditions.
Oxidation kinetics of some Ni-Cr alloys.
Baran, G
1983-01-01
Oxidation kinetics of four Ni-Cr alloys and a high-purity nickel standard was determined under isothermal conditions in an air atmosphere. In addition, weight gains of the alloys were measured during a simulated pre-oxidation treatment. The alloys' behavior suggests that mechanisms of oxidation vary with temperature and alloy composition.
Surface Segregation in Cu-Ni Alloys
NASA Technical Reports Server (NTRS)
Good, Brian; Bozzolo, Guillermo; Ferrante, John
1993-01-01
Monte Carlo simulation is used to calculate the composition profiles of surface segregation of Cu-Ni alloys. The method of Bozzolo, Ferrante, and Smith is used to compute the energetics of these systems as a function of temperature, crystal face, and bulk concentration. The predictions are compared with other theoretical and experimental results.
Local structure of NiPd solid solution alloys and its response to ion irradiation
Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun; ...
2018-04-27
The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less
Local structure of NiPd solid solution alloys and its response to ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun
The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less
Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-12-29
Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.
Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke
Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.
Shock compression response of cold-rolled Ni/Al multilayer composites
Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.
2017-01-06
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. Finally, these simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.
The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña
NASA Astrophysics Data System (ADS)
Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.
2018-02-01
The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.
NASA Astrophysics Data System (ADS)
Mozafari, Elham; Alling, Björn; Belov, Maxim P.; Abrikosov, Igor A.
2018-01-01
Using the disordered local moments approach in combination with the ab initio molecular dynamics method, we simulate the behavior of a paramagnetic phase of NiO at finite temperatures to investigate the effect of magnetic disorder, thermal expansion, and lattice vibrations on its electronic structure. In addition, we study its lattice dynamics. We verify the reliability of our theoretical scheme via comparison of our results with available experiment and earlier theoretical studies carried out within static approximations. We present the phonon dispersion relations for the paramagnetic rock-salt (B1) phase of NiO and demonstrate that it is dynamically stable. We observe that including the magnetic disorder to simulate the paramagnetic phase has a small yet visible effect on the band gap. The amplitude of the local magnetic moment of Ni ions from our calculations for both antiferromagnetic and paramagnetic phases agree well with other theoretical and experimental values. We demonstrate that the increase of temperature up to 1000 K does not affect the electronic structure strongly. Taking into account the lattice vibrations and thermal expansion at higher temperatures have a major impact on the electronic structure, reducing the band gap from ˜3.5 eV at 600 K to ˜2.5 eV at 2000 K. We conclude that static lattice approximations can be safely employed in simulations of the paramagnetic state of NiO up to relatively high temperatures (˜1000 K), but as we get closer to the melting temperature vibrational effects become quite large and therefore should be included in the calculations.
Combined effect of Pt and W alloying elements on Ni-silicide formation
NASA Astrophysics Data System (ADS)
Luo, T.; Mangelinck, D.; Descoins, M.; Bertoglio, M.; Mouaici, N.; Hallén, A.; Girardeaux, C.
2018-03-01
A combinatorial study of the combined effect of Pt and W on Ni silicide formation is performed. Ni(Pt, W) films with thickness and composition gradients were prepared by a co-deposition composition spread technique using sputtering deposition from Pt, W, and Ni targets. The deposited Ni(Pt,W) films were characterized by X-ray diffraction, X-ray reflectivity, Rutherford backscattering, and atom probe tomography. The maximum content of alloying elements is close to 27 at. %. Simulations of the thickness and composition were carried out and compared with experimental results. In situ X-ray diffraction and atom probe tomography were used to study the phase formation. Both additive alloying elements (Pt + W) slow down the Ni consumption and the effect of W is more pronounced than the one of Pt. Regarding the effect of alloying elements on Ni silicides formation, three regions could be distinguished in the Ni(Pt,W)/Si wafer. For the region close to the Ni target, the low contents of alloying elements (Pt + W) have little impact on the phase sequence (δ-Ni2Si is the first silicide and NiSi forms when Ni is entirely consumed) but the kinetics of silicide formation slows down. The region close to the Pt target has high contents of (Pt + W) and is rich in Pt and a simultaneous phase formation of δ-Ni2Si and NiSi is observed. For the high (Pt + W) contents and W-rich region, NiSi forms unexpectedly before δ-Ni2Si and the subsequent growth of δ-Ni2Si is accompanied by the NiSi consumption. When Ni is entirely consumed, NiSi regrows at the expense of δ-Ni2Si.
Designing shape-memory Heusler alloys from first-principles
NASA Astrophysics Data System (ADS)
Siewert, M.; Gruner, M. E.; Dannenberg, A.; Chakrabarti, A.; Herper, H. C.; Wuttig, M.; Barman, S. R.; Singh, S.; Al-Zubi, A.; Hickel, T.; Neugebauer, J.; Gillessen, M.; Dronskowski, R.; Entel, P.
2011-11-01
The phase diagrams of magnetic shape-memory Heusler alloys, in particular, ternary Ni-Mn-Z and quarternary (Pt, Ni)-Mn-Z alloys with Z = Ga, Sn, have been addressed by density functional theory and Monte Carlo simulations. Finite temperature free energy calculations show that the phonon contribution stabilizes the high-temperature austenite structure while at low temperatures magnetism and the band Jahn-Teller effect favor the modulated monoclinic 14M or the nonmodulated tetragonal structure. The substitution of Ni by Pt leads to a series of magnetic shape-memory alloys with very similar properties to Ni-Mn-Ga but with a maximal eigenstrain of 14%.
Guda, Sergey A; Guda, Alexander A; Soldatov, Mikhail A; Lomachenko, Kirill A; Bugaev, Aram L; Lamberti, Carlo; Gawelda, Wojciech; Bressler, Christian; Smolentsev, Grigory; Soldatov, Alexander V; Joly, Yves
2015-09-08
Accurate modeling of the X-ray absorption near-edge spectra (XANES) is required to unravel the local structure of metal sites in complex systems and their structural changes upon chemical or light stimuli. Two relevant examples are reported here concerning the following: (i) the effect of molecular adsorption on 3d metals hosted inside metal-organic frameworks and (ii) light induced dynamics of spin crossover in metal-organic complexes. In both cases, the amount of structural models for simulation can reach a hundred, depending on the number of structural parameters. Thus, the choice of an accurate but computationally demanding finite difference method for the ab initio X-ray absorption simulations severely restricts the range of molecular systems that can be analyzed by personal computers. Employing the FDMNES code [Phys. Rev. B, 2001, 63, 125120] we show that this problem can be handled if a proper diagonalization scheme is applied. Due to the use of dedicated solvers for sparse matrices, the calculation time was reduced by more than 1 order of magnitude compared to the standard Gaussian method, while the amount of required RAM was halved. Ni K-edge XANES simulations performed by the accelerated version of the code allowed analyzing the coordination geometry of CO and NO on the Ni active sites in CPO-27-Ni MOF. The Ni-CO configuration was found to be linear, while Ni-NO was bent by almost 90°. Modeling of the Fe K-edge XANES of photoexcited aqueous [Fe(bpy)3](2+) with a 100 ps delay we identified the Fe-N distance elongation and bipyridine rotation upon transition from the initial low-spin to the final high-spin state. Subsequently, the X-ray absorption spectrum for the intermediate triplet state with expected 100 fs lifetime was theoretically predicted.
NASA Astrophysics Data System (ADS)
Zaiss, J.; Stott, L. D.; Buenning, N. H.
2017-12-01
The 2015/16 El Niño was one of the strongest on record and was expected to bring relief to the prolonged drought that had affected California for the previous four years. Virtually all seasonal forecast models predicted a wet winter over California, similar to the 1997/98 El Niño winter season. However, as the El Niño event came and went, the drought persisted through 2015/16. We are investigating why the 2015/16 El Niño winter was anomalous dry by conducting ensemble simulations using the atmospheric Global Spectral Model (GSM) forced with observed sea surface temperatures and sea ice concentration. Our results indicate increased variance in precipitation amounts compared to the 1997/98 El Niño, possibly suggesting an increase in atmospheric internal variability. Recent work has shown a possible role of declining Arctic sea ice in mid-latitude weather extremes through variations of the jet stream that could account for the increased precipitation variance. When Arctic sea ice concentrations are low, the jet stream tends to be wavier, slowing meanders that propagate storm systems towards the southwestern US. To investigate the role that sea ice decline played in prolonging the California drought and the observed change in precipitation variance, statistical analyses of metrological data together with ensemble simulations with GSM are used to evaluate differences between the 1997/98 and 2015/2016 El Niño events. We force GSM with 1997/98 SST anomalies but use the 2015/16 sea ice concentration. By doing so we quantify the effect of decreased sea ice concentration on the 2015/16 El Niño event wet season. These results not only elucidate how declining sea ice affected mid-latitude weather systems during the 2015/16 El Niño winter, they also contribute to the ongoing discussion about how declining sea ice may influence weather events and their predictability in the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yang; Song, Huajing; Zhang, Feng
The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a “persistent embryo” method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleationmore » of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. In conclusion, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.« less
Sun, Yang; Song, Huajing; Zhang, Feng; ...
2018-02-23
The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a “persistent embryo” method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleationmore » of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. In conclusion, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.« less
NASA Astrophysics Data System (ADS)
Sun, Yang; Song, Huajing; Zhang, Feng; Yang, Lin; Ye, Zhuo; Mendelev, Mikhail I.; Wang, Cai-Zhuang; Ho, Kai-Ming
2018-02-01
The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a "persistent embryo" method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleation of the B 2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. Thus, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.
Sun, Yang; Song, Huajing; Zhang, Feng; Yang, Lin; Ye, Zhuo; Mendelev, Mikhail I; Wang, Cai-Zhuang; Ho, Kai-Ming
2018-02-23
The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a "persistent embryo" method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleation of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. Thus, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.
NASA Astrophysics Data System (ADS)
Lemang, M.; Rodriguez, Ph.; Nemouchi, F.; Juhel, M.; Grégoire, M.; Mangelinck, D.
2018-02-01
Phosphorus diffusion and its distribution during the solid-state reactions between Ni0.9Pt0.1 and implanted Si substrates are studied. Silicidation is achieved through a first rapid thermal annealing followed by a selective etching and a direct surface annealing. The redistribution of phosphorus in silicide layers is investigated after the first annealing for different temperatures and after the second annealing. Phosphorus concentration profiles obtained thanks to time of flight secondary ion mass spectrometry and atom probe tomography characterizations for partial and total reactions of the deposited 7 nm thick Ni0.9Pt0.1 film are presented. Phosphorus segregation is observed at the Ni0.9Pt0.1 surface and at Ni2Si interfaces during Ni2Si formation and at the NiSi surface and the NiSi/Si interface after NiSi formation. The phosphorus is evidenced in low concentrations in the Ni2Si and NiSi layers. Once NiSi is formed, a bump in the phosphorus concentration is highlighted in the NiSi layer before the NiSi/Si interface. Based on these profiles, a model for the phosphorus redistribution is proposed to match this bump to the former Ni2Si/Si interface. It also aims to bind the phosphorus segregation and its low concentration in different silicides to a low solubility of phosphorus in Ni2Si and in NiSi and a fast diffusion of phosphorus at their grain boundaries. This model is also substantiated by a simulation using a finite difference method in one dimension.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels.
Alvarez, Kelly; Hyun, Soong-Keun; Fujimoto, Shinji; Nakajima, Hideo
2008-11-01
The corrosion behavior of three kinds of austenitic high nitrogen Lotus-type porous Ni-free stainless steels was examined in acellular simulated body fluid solutions and compared with type AISI 316L stainless steel. The corrosion resistance was evaluated by electrochemical techniques, the analysis of released metal ions was performed by inductively coupled plasma mass spectrometry (ICP-MS) and the cytotoxicity was investigated in a culture of murine osteoblasts cells. Total immunity to localized corrosion in simulated body fluid (SBF) solutions was exhibited by Lotus-type porous Ni-free stainless steels, while Lotus-type porous AISI 316L showed very low pitting corrosion resistance evidenced by pitting corrosion at a very low breakdown potential. Additionally, Lotus-type porous Ni-free stainless steels showed a quite low metal ion release in SBF solutions. Furthermore, cell culture studies showed that the fabricated materials were non-cytotoxic to mouse osteoblasts cell line. On the basis of these results, it can be concluded that the investigated alloys are biocompatible and corrosion resistant and a promising material for biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, W.B.; Wang, C.Y.; Liaw, B.Y.
1998-10-01
The micro-macroscopic coupled model developed in a companion paper is applied to predict the discharge and charge behaviors of nickel-cadmium (Ni-Cd) and nickel-metal hydride (Ni-MH) cells. The model integrates important microscopic phenomena such as proton or hydrogen diffusion and conduction of electrons in active materials into the macroscopic calculations of species and charge transfer. Simulation results for a full Ni-Cd cell and single MH electrode are presented and validated against the pseudo two-dimensional numerical model in the literature. In good agreement with the previous results, the present family of models is computationally more efficient and is particularly suitable for simulationsmore » of complex test conditions, such as the dynamic stress test and pulse charging for electric vehicles. In addition, a mathematical model for full Ni-MH cells is presented and sample simulations are performed for discharge and recharge with oxygen generation and recombination taken into account. These gas reactions represent an important mechanism for battery overcharge in the electric vehicle application.« less
NASA Astrophysics Data System (ADS)
Kim, Yongseon
2015-11-01
The structural features related to the defects of LiMO2 (M = Ni, Co, Mn) cathode materials for lithium secondary batteries were investigated by a simulation of phase diagrams based on first-principle calculations. Crystal models with various types of point defects were designed and dealt with as independent phases, which enabled an examination of the thermodynamic stability of the defects. A perfect phase without defects appeared to be the most stable for LiCoO2, whereas the formation of Li vacancies, O vacancies, and antisites between Li and Ni was thermodynamically unavoidable for LiNiO2. The introduction of both Co and Mn in LiNiO2 was effective in reducing the formation of point defects, but increasing the relative amount of Mn was undesirable because the antisite defect remained stable with Mn doping. The simulation showed good agreement with the experimental data and previous reports. Therefore, the method and the results of this study are expected to be useful for examining the synthesis, structure and related properties of layer-structured cathode materials.
An Update on Improvements to NiCE Support for PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay
2015-09-01
The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less
Effect of load deflection on corrosion behavior of NiTi wire.
Liu, I H; Lee, T M; Chang, C Y; Liu, C K
2007-06-01
For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.
Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico
NASA Astrophysics Data System (ADS)
Tamura, Takashi; Tsunekawa, Naoki; Nemoto, Michiko; Inagaki, Kenji; Hirano, Toshiyuki; Sato, Fumitoshi
2016-01-01
Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni-Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions.
Fabrication and RF characterization of a single nickel silicide nanowire for an interconnect.
Lee, Dongjin; Kang, Myunggil; Hong, Suheon; Hwang, Donghoon; Heo, Keun; Joo, Won-Jae; Kim, Sangsig; Whang, Dongmok; Hwang, Sung Woo
2013-09-01
We fabricated a nickel silicide nanowire (NiSi NW) device with a low thermal budget and characterized it by measuring the S-parameters in the radio-frequency (RF) regime. A single silicon nanowire (Si NW) was assembled on a substrate with a two-port coplanar waveguide structure using the dielectrophoresis method. Then, the Si NW on the device was perfectly transformed into a NiSi NW. The NiSi NW device was characterized by performing measurements in the DC and RF regimes. The transformation into the NiSi NW resulted in reducing about three-order more the resistance than before the transformation. Hence, the transmission of the NiSi NW device was 25 dB higher than that of the Si NW device up to gigahertz. We also discussed extracting the intrinsic properties of the NiSi NW by using de-embedding, circuit modeling, and simulation.
NASA Astrophysics Data System (ADS)
Garcia, M. H.
2016-12-01
Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos, (2011), Lagrangian model of bed-load transport in turbulent junction flows, Journal of Fluid Mechanics, 666,36-76. Niño and García, (1994), Gravel saltation: 2. Modeling, Water Resources Research, 30(6),1915-1924. Niño et al., (1994), Gravel saltation: 1. Experiments, Water Resources Research, 30(6), 1907-1914.
Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.
2008-01-01
Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.
Toker, S M; Canadinc, D
2014-07-01
Effects of intraoral environment on the surface degradation of nickel-titanium (NiTi) shape memory alloy orthodontic wires was simulated through ex situ static immersion experiments in artificial saliva. The tested wires were compared to companion wires retrieved from patients in terms of chemical changes and formation of new structures on the surface. Results of the ex situ experiments revealed that the acidic erosion effective at the earlier stages of immersion led to the formation of new structures as the immersion period approached 30 days. Moreover, comparison of these results with the analysis of wires utilized in clinical treatment evidenced that ex situ experiments are reliable in terms predicting C-rich structure formation on the wire surfaces. However, the formation of C pileups at the contact sites of arch wires and brackets could not be simulated with the aid of static immersion experiments, warranting the simulation of the intraoral environment in terms of both chemical and physical conditions, including mechanical loading, when evaluating the biocompatibility of NiTi orthodontic arch wires. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, M. H.; Li, J. H.; Liu, B. X.
2016-01-01
Based on the newly constructed n-body potential of Ni-Ti-Mo system, Molecular Dynamics and Monte Carlo simulations predict an energetically favored glass formation region and an optimal composition sub-region with the highest glass-forming ability. In order to compare the producing techniques between liquid melt quenching (LMQ) and solid-state amorphization (SSA), inherent hierarchical structure and its effect on mechanical property were clarified via atomistic simulations. It is revealed that both producing techniques exhibit no pronounced differences in the local atomic structure and mechanical behavior, while the LMQ method makes a relatively more ordered structure and a higher intrinsic strength. Meanwhile, it is found that the dominant short-order clusters of Ni-Ti-Mo metallic glasses obtained by LMQ and SSA are similar. By analyzing the structural evolution upon uniaxial tensile deformation, it is concluded that the gradual collapse of the spatial structure network is intimately correlated to the mechanical response of metallic glasses and acts as a structural signature of the initiation and propagation of shear bands. PMID:27418115
NASA Astrophysics Data System (ADS)
Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai
2018-05-01
The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.
Magnetic properties of intermetallic compounds La(Ni,Co,Cu)3
NASA Astrophysics Data System (ADS)
Tazuke, Y.; Tanikawa, H.; Okano, A.; Miyaji, T.
2006-09-01
LaNi3 exhibited a metallic antiferromagnetic property with T N = 30 K. La(Ni1-x Cox )3 with x = 0.01, 0.03 and 0.05 exhibited ferromagnetic properties, T C increasing linearly with increasing x . La(Ni1-2z Coz Cuz )3 with z = 0.015 exhibited a ferromagnetic property with a small T C. A La(Ni1-y Cuy )3 sample with y = 0.01 exhibited a Pauli-paramagnetic property; those with y = 0.02, 0.03 and 0.04 exhibited gradual metamagnetic behavior and that with y = 0.05 exhibited a ferromagnetic property. The gradual metamagnetic M -H variations are numerically simulated by using Landau-type free energies. The results suggest that the gradual metamagnetic behavior occurs from an antiferromagnetic state to a ferromagnetic one.
NASA Astrophysics Data System (ADS)
Irfan, Muhammad; Yahya, Noorhana; Shafie, Afza; Soleimani, Hassan; Alqasem, Bilal; Rehman, Zia Ur; Qureshi, Saima
2016-11-01
It is generally understood that magnetic energy is much smaller than thermal energy which dominates the chemical equilibrium. Magnetic nanoparticles (NiO) as catalyst were synthesized by chemical reduction routes following micro emulsion method having an average size of 239 nm and 207.2 nm followed by FESEM and TEM analysis respectively. EDX analysis of nanoparticles (NPs) with 90.80 weight% Ni, 9.20 weight % O2 and 72.90 atomic% Ni, 27.10 atomic% O2 falls it into the category of formation of nickel and oxide NPs. TEM for parallel Ni EELs vs intensity is 840.0 eV to 860.0 eV and 70 to 80 respectively. TEM diffraction and fringe spacing analysis of NPs reveals the details about diffraction planes as (200), (311), (400) and lattice parameter 4.136 nm respectively. Both RAMAN spectroscopy and FTIR spectroscopy analysis of NPs elaborate the consistency between peak intensity and RAMAN shift (cm-1) as 318.74 cm-1, 522.78 cm-1, 620.28 cm-1 and 450 cm-1, 515.84 cm-1and 720.08 cm-1 respectively. The saturation magnetization (Ms) of NiO NPs was measured to be 32.524 emu/g by VSM for a specific mass of 14.1x10-3 g. Simulation study based on DFT in term of catalytic effect related to sorbents and sorbates atomistic, thermodynamic and quantum mechanical interactions including adsorption is illustrated in this article using first principal DFT simulation study. The average total energy, average total adsorption energy, average adsorption energy of H2, and N2 over NiO (111) surface are reported as 4.414 kcal/mol, 4.4145 kcal/mol, -1.671 kcal/mol, and 0.869 kcal/mol respectively. Whereas, isosteric heats of adsorption energies for H2, N2 over NiO (111) cleaved surface were calculated to 1.617kcal/mol, and -0.881 kcal/mol respectively. Ammonia synthesis carried out by MIM and peaks were detected by FTIR and yield was quantified by Kjeldahl method in few thousands μmole gcat-1 h-1.
Tensile strength of Fe-Ni and Mg-Al nanocomposites: Molecular dynamic simulations
NASA Astrophysics Data System (ADS)
Pogorelko, V. V.; Mayer, A. E.
2018-01-01
In this work, molecular dynamic simulations of the tensile strength of Fe-Ni and Mg-Al nanocomposites in the conditions of high-rate uniaxial tension were carried out. Two different mechanisms of fracture were identified. In the case of nickel inclusion in iron matrix, the fracture begins on the interface between the inclusion and the matrix, a formed void penetrates both into the inclusion and into the matrix; presence of inclusion reduces the tensile strength. In the case of aluminum inclusion in magnesium matrix, fracture takes place into magnesium matrix and does not touch the inclusion; presence of inclusion has practically no effect on the tensile strength. Molecular dynamic simulations were carried out in a wide range of strain rates and temperatures.
Modularized Parallel Neutron Instrument Simulation on the TeraGrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Meili; Cobb, John W; Hagen, Mark E
2007-01-01
In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serialmore » instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evalua-tion, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of the new design, and the improved software structure. Further, it describes the realized new fea-tures seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented.« less
Della-Longa, S; Chen, L X; Frank, P; Hayakawa, K; Hatada, K; Benfatto, M
2009-05-04
Full multiple scattering (FMS) Minuit XANES (MXAN) has been combined with laser pump-probe K-edge X-ray absorption spectroscopy (XAS) to determine the structure of photoexcited Ni(II)tetramesitylporphyrin, Ni(II)TMP, in dilute toluene solution. It is shown that an excellent simulation of the XANES spectrum is obtained, excluding the lowest-energy bound-state transitions. In ground-state Ni(II)TMP, the first-shell and second-shell distances are, respectively, d(Ni-N) = (1.93 +/- 0.02) A and d(Ni-C) = (2.94 +/- 0.03) A, in agreement with a previous EXAFS result. The time-resolved XANES difference spectrum was obtained (1) from the spectra of Ni(II)TMP in its photoexcited T(1) state and its ground state, S(0). The XANES difference spectrum has been analyzed to obtain both the structure and the fraction of the T(1) state. If the T(1) fraction is kept fixed at the value (0.37 +/- 0.10) determined by optical transient spectroscopy, a 0.07 A elongation of the Ni-N and Ni-C distances [d(Ni-N) and d(Ni-C)] is found, in agreement with the EXAFS result. However, an evaluation of both the distance elongation and the T(1) fraction can also be obtained using XANES data only. According to experimental evidence, and MXAN simulations, the T(1) fraction is (0.60 +/- 0.15) with d(Ni-N) = (1.98 +/- 0.03) A (0.05 A elongation). The overall uncertainty of these results depends on the statistical correlation between the distances and T(1) fraction, and the chemical shift of the ionization energy because of subtle changes of metal charge between the T(1) and S(0) states. The T(1) excited-state structure results, independently obtained without the excited-state fraction from optical transient spectroscopy, are still in agreement with previous EXAFS investigations. Thus, full multiple scattering theory applied through the MXAN formalism can be used to provide structural information, not only on the ground-state molecules but also on very short-lived excited states through differential analysis applied to transient photoexcited species from time-resolved experiments.
Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles.
Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Wang, Na; Rong, Yangchun; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran
2017-12-13
An atomic insight into the local chemical ordering and lattice strain is particular interesting to recent emerging bimetallic nanocatalysts such as PtNi alloys. Here, we reported the atomic distribution, chemical environment, and lattice thermal evolution in full-scale structural description of PtNi alloy nanoparticles (NPs). The different segregation of elements in the well-faceted PtNi nanoparticles is convinced by extended X-ray absorption fine structure (EXAFS). Atomic pair distribution function (PDF) study evidences the coexistence of the face-centered cubic and tetragonal ordering parts in the local environment of PtNi nanoparticles. Further reverse Monte Carlo (RMC) simulation with PDF data obviously exposed the segregation as Ni and Pt in the centers of {111} and {001} facets, respectively. Layer-by-layer statistical analysis up to 6 nm for the local atomic pairs revealed the distribution of local tetragonal ordering on the surface. This local coordination environment facilitates the distribution of heteroatomic Pt-Ni pairs, which plays an important role in the negative thermal expansion of Pt 41 Ni 59 NPs. The present study on PtNi alloy NPs from local short-range coordination to long-range average lattice provides a new perspective on tailoring physical properties in nanomaterials.
Shock compression response of cold-rolled Ni/Al multilayer composites
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.
2017-01-01
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations [Specht et al., J. Appl. Phys. 111, 073527 (2012)]. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. These simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.
Raghu, G; Balaji, V; Venkateswaran, G; Rodrigue, A; Maruthi Mohan, P
2008-12-01
Removal of radioactive cobalt at trace levels (approximately nM) in the presence of large excess (10(6)-fold) of corrosion product ions of complexed Fe, Cr, and Ni in spent chemical decontamination formulations (simulated effluent) of nuclear reactors is currently done by using synthetic organic ion exchangers. A large volume of solid waste is generated due to the nonspecific nature of ion sorption. Our earlier work using various fungi and bacteria, with the aim of nuclear waste volume reduction, realized up to 30% of Co removal with specific capacities calculated up to 1 microg/g in 6-24 h. In the present study using engineered Escherichia coli expressing NiCoT genes from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), we report a significant increase in the specific capacity for Co removal (12 microg/g) in 1-h exposure to simulated effluent. About 85% of Co removal was achieved in a two-cycle treatment with the cloned bacteria. Expression of NiCoT genes in the E. coli knockout mutant of NiCoT efflux gene (rcnA) was more efficient as compared to expression in wild-type E. coli MC4100, JM109 and BL21 (DE3) hosts. The viability of the E. coli strains in the formulation as well as at different doses of gamma rays exposure and the effect of gamma dose on their cobalt removal capacity are determined. The potential application scheme of the above process of bioremediation of cobalt from nuclear power reactor chemical decontamination effluents is discussed.
NASA Astrophysics Data System (ADS)
Liu, C. L.; Chu, Paul K.; Yang, D. Z.
2007-04-01
Diamond-like carbon (DLC) coatings were produced with a Si/SiCx interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiCx interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiCx interlayer have high potential as protective coatings for biomedical NiTi materials.
NASA Astrophysics Data System (ADS)
Dai, Yiling; Cai, Long; White, Ralph E.
2014-02-01
Stress generation due to Li ion insertion into/extraction from LiMn2O4 particles is studied with a mathematical model for a lithium ion battery with pure LiMn2O4 or mixed LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathode. The simulated stress profile in a pure LiMn2O4 electrode shows nonuniformity across the positive electrode. The cathode blended model predicts that the stress generated in the LiMn2O4 particles is reduced at the end of discharge due to adding LiNi0.8Co0.15Al0.05O2 to the cathode. The effect of the variation in the blend ratio on the stress generation is also investigated.
Shape transitions in strained islands: kinetics versus energetics
NASA Astrophysics Data System (ADS)
Shim, Yunsic; Kryukov, Yevgen; Amar, Jacques
2011-03-01
Recently, it has been argued that the shape transition from compact to ramified islands observed experimentally in submonolayer Cu/Ni(100) growth is not due to kinetics but can be understood in terms of energetic arguments. In order to determine the responsible mechanisms we have carried out temperature-accelerated dynamics (TAD) simulations as well as energetics calculations. Surprisingly, our results indicate that the strain-energy contribution to the dependence of island-energy on shape is relatively weak. In contrast, our TAD simulations indicate that unexpected concerted motions occurring at step edges may be responsible. The energy barriers for these concerted motions are significantly lower than for Cu/Cu(100) and Ni/Ni(100), decrease with increasing island size, and appear to saturate for islands larger than 300 - 400 atoms. These results suggest that the shape transition is of kinetic origin but is strongly mediated by strain. Supported by NSF-DMR 0907399.
NASA Astrophysics Data System (ADS)
Lu, Gui; Lin, Lin; Hui, Sheng; Wang, Shuo-Lin; Wang, Xiao-Dong; Lee, Duu-Jong
2017-11-01
Dewetting kinetics of Al and NiAl metallic liquid films on NiAl (1 0 0) substrates was studied using molecular dynamics simulations. A new dewetting-spreading transitional behavior was observed for high temperature dewetting. The dewetting-spreading transition comes from the competition between unbalanced Young's force and dissolutive reaction. Without dissolutive reaction, liquid films keep dewetting, but immediately turn into spreading when the dissolutive reaction involved. The dissolutive reaction depends on the initial Ni atom contents rather than the contact areas of dewetting films. The far-away-from saturated Ni content is the main mechanism which accelerates the wetting and reverses the dewetting process at high temperatures.
NASA Astrophysics Data System (ADS)
Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke
2018-05-01
For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.
NASA Astrophysics Data System (ADS)
Preuss, E.
1981-10-01
A formula for the He + ion survival probability against neutralization is presented, which was derived from the fit of the azimuthal angular dependence of the Ni peak heights on clean and O covered Ni(001) surfaces observed in LEISS experiments and computer simulations. The formula contains a collision- and two Auger-type neutralization terms for the ion trajectories prolonged by multiple collisions above the "neutralization surface plane", which was assumed to be corrugated and shaped like muffin-tins.
NASA Astrophysics Data System (ADS)
Zhou, B. H.; Jung, H.; Mangelinck-Noël, N.; Nguyen-Thi, H.; Billia, B.; Liu, Q. S.; Lan, C. W.
We present numerical simulations of thermosolutal convection for directional solidification of Al 3.5 wt% Ni and Al 7 wt% Si. Numerical results predict that fragmentation of dendrite arms resulting from dissolution could be favored in Al 7 wt% Si, but not in Al 3.5 wt% Ni. Corresponding experiments are in qualitative agreement with the numerical predictions. Distinguishing the two fragmentation mechanisms, namely dissolution and remelting, is critical during experiments on earth, when fluid flow is dominant.
Thermodynamics of nickel-cadmium and nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Macdonald, Digby D.; Challingsworth, Mark L.
1993-01-01
Thermodynamic parameters for Nickel-Cadmium (NiCad) and Nickel-Hydrogen (NiH2) batteries are calculated for temperatures ranging from 273.15K (0 C) to 373.15K (100 C). For both systems, we list equilibrium and thermoneutral voltages for the cells, and in the case of the NiH2 battery, these data are provide for hydrogen fugacities ranging from 0.01 to 100 (atm) to simulate the full discharged and charged states. The quality of the input thermodynamic data are assessed and the effect of assuming different cell reactions is analyzed.
Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-01-03
In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. In this paper, we perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects aremore » ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Finally, our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.« less
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures.
Zhang, S; Nordlund, K; Djurabekova, F; Zhang, Y; Velisa, G; Wang, T S
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
NASA Astrophysics Data System (ADS)
Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
NASA Astrophysics Data System (ADS)
Pan, F.; Huang, X.; Chen, X.
2015-12-01
Radiative kernel method has been validated and widely used in the study of climate feedbacks. This study uses spectrally resolved longwave radiative kernels to examine the short-term water vapor feedbacks associated with the ENSO cycles. Using a 500-year GFDL CM3 and a 100-year NCAR CCSM4 pre-industry control simulation, we have constructed two sets of longwave spectral radiative kernels. We then composite El Niño, La Niña and ENSO-neutral states and estimate the water vapor feedbacks associated with the El Niño and La Niña phases of ENSO cycles in both simulations. Similar analysis is also applied to 35-year (1979-2014) ECMWF ERA-interim reanalysis data, which is deemed as observational results here. When modeled and observed broadband feedbacks are compared to each other, they show similar geographic patterns but with noticeable discrepancies in the contrast between the tropics and extra-tropics. Especially, in El Niño phase, the feedback estimated from reanalysis is much greater than those from the model simulations. Considering the observational data span, we carry out a sensitivity test to explore the variability of feedback-deriving using 35-year data. To do so, we calculate the water vapor feedback within every 35-year segment of the GFDL CM3 control run by two methods: one is to composite El Nino or La Nina phases as mentioned above and the other is to regressing the TOA flux perturbation caused by water vapor change (δR_H2O) against the global-mean surface temperature anomaly. We find that the short-term feedback strengths derived from composite method can change considerably from one segment to another segment, while the feedbacks by regression method are less sensitive to the choice of segment and their strengths are also much smaller than those from composite analysis. This study suggests that caution is warranted in order to infer long-term feedbacks from a few decades of observations. When spectral details of the global-mean feedbacks are examined, more inconsistencies can be revealed in many spectral bands, especially H2O continuum absorption bands and window regions. These discrepancies can be attributed back to differences in observed and modeled water vapor profiles in responses to tropical SST.
NASA Astrophysics Data System (ADS)
Rendón, A.; Posada, J. A.; Salazar, J. F.; Mejia, J.; Villegas, J.
2016-12-01
Precipitation in the complex terrain of the tropical Andes of South America can be strongly reduced during El Niño events, with impacts on numerous societally-relevant services, including hydropower generation, the main electricity source in Colombia. Simulating rainfall patterns and behavior in such areas of complex terrain has remained a challenge for regional climate models. Current data products such as ERA-Interim and other reanalysis and modelling products generally fail to correctly represent processes at scales that are relevant for these processes. Here we assess the added value to ERA-Interim by dynamical downscaling using the WRF regional climate model, including a comparison of different cumulus parameterization schemes. We found that WRF improves the representation of precipitation during the dry season of El Niño (DJF) events using a 1996-2014 observation period. Further, we use these improved capability to simulate an extreme deforestation scenario under El Niño conditions for an area in the central Andes of Colombia, where a big proportion of the country's hydropower is generated. Our results suggest that forests dampen the effects of El Niño on precipitation. In synthesis, our results illustrate the utility of regional modelling to improve data sources, as well as their potential for predicting the local-to-regional effects of global-change-type processes in regions with limited data availability.
NASA Astrophysics Data System (ADS)
Wei, Wei; Wu, Xin-qiang; Ke, Wei; Xu, Song; Feng, Bing; Hu, Bo-tao
2017-09-01
Electrochemical corrosion behavior of a thermal-sprayed Ni-Al-coated Q235 steel was investigated in the simulated soil solutions at different pH values using measurements of potentiodynamic polarization curves and electrochemical impedance spectroscopy as well as surface analyses including x-ray diffraction analysis, scanning electron microscope equipped with an energy-dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The results showed that the corrosion resistance of the Ni-Al-coated Q235 steel was dependent on the pH of the test solution. From pH = 3.53 to pH = 4.79, the corrosion resistance of the coated steel increased rapidly. In the pH range from 4.79 to 12.26, the corrosion resistance exhibited no significant change. At pH 13.25, the corrosion resistance of the sample was found to decrease. The calculated corrosion rate of Ni-Al-coated Q235 steel was lower than that of the uncoated Q235 steel and galvanized steel in all the test solutions. Over a wide range of pH values, the Ni-Al-coated Q235 steel exhibited extremely good corrosion resistance. The experimental data together with the potential-pH diagrams provided a basis for a detailed discussion of the related corrosion mechanisms of the coated steel.
NASA Astrophysics Data System (ADS)
Li, Le; Wang, Li-yong
2018-04-01
The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.
Characterization and corrosion study of NiTi laser surface alloyed with Nb or Co
NASA Astrophysics Data System (ADS)
Ng, K. W.; Man, H. C.; Yue, T. M.
2011-02-01
The interest in NiTi alloys for medical applications has been steadily growing in recent years because of its biocompatibility, superelasticity and shape memory characteristics. However, the high Ni content in NiTi alloys is still a concern for its long-term applications in the human body. The release of Ni ion into the human body might cause serious problems, as Ni is capable of eliciting toxic and allergic responses. In view of this, surface modification to reduce the surface content of Ni and to improve the corrosion resistance, both of which would reduce Ni release, is an important step in the development of NiTi implants. In the present study, NiTi was surface alloyed with Nb or Co by laser processing. The fine dendritic structure characteristic of laser processing has been described in terms of rapid solidification. The amount of surface elemental Ni was reduced to 10% and 35% for the Nb-alloyed and Co-alloyed layer, respectively. The corrosion resistance in Hanks' solution (a simulated body fluid) was increased as evidenced by a reduced passive current density and a higher pitting potential for both the Nb- and Co-alloyed specimens. The composition and hardness profiles along the depth of the modified layer were correlated with the distribution of the dendrites. The microhardness of the alloyed layers was around 700-800 Hv, which was about four times that of the untreated NiTi specimens.
Underlying mechanisms leading to El Niño-to-La Niña transition are unchanged under global warming
NASA Astrophysics Data System (ADS)
Yun, Kyung-Sook; Yeh, Sang-Wook; Ha, Kyung-Ja
2018-05-01
El Niño's transitions play critical roles in modulating severe weather and climate events. Therefore, understanding the dynamic factors leading to El Niño's transitions and its future projection is a great challenge in predicting the diverse socioeconomic influences of El Niño over the globe. This study focuses on two dynamic factors controlling the El Niño-to-La Niña transition from the present climate and to future climate, using the observation, the historical and the RCP8.5 simulations of Coupled Model Intercomparison phase 5 climate models. The first is the inter-basin coupling between the Indian Ocean and the western North Pacific through the subtropical high variability. The second is the enhanced sensitivity between sea surface temperature and a deep tropical convection in the central tropical Pacific during the El Niño's developing phase. We show that the dynamic factors leading to El Niño-to-La Niña transition in the present climate are unchanged in spite of the increase of greenhouse gas concentrations. We argue that the two dynamic factors are strongly constrained by the climatological precipitation distribution over the central tropical Pacific and western North Pacific as little changed from the present climate to future climate. This implies that two dynamical processes leading to El Niño-to-La Niña transitions in the present climate will also play a robust role in global warming.
Dong, Geng; Ryde, Ulf
2016-06-01
The [NiFe] hydrogenases catalyse the reversible conversion of H2 to protons and electrons. The active site consists of a Fe ion with one carbon monoxide, two cyanide, and two cysteine (Cys) ligands. The latter two bridge to a Ni ion, which has two additional terminal Cys ligands. It has been suggested that one of the Cys residues is protonated during the reaction mechanism. We have used combined quantum mechanical and molecular mechanics (QM/MM) geometry optimisations, large QM calculations with 817 atoms, and QM/MM free energy simulations, using the TPSS and B3LYP methods with basis sets extrapolated to the quadruple zeta level to determine which of the four Cys residues is more favourable to protonate for four putative states in the reaction mechanism, Ni-SIa, Ni-R, Ni-C, and Ni-L. The calculations show that for all states, the terminal Cys-546 residue is most easily protonated by 14-51 kJ/mol, owing to a more favourable hydrogen-bond pattern around this residue in the protein.
NASA Astrophysics Data System (ADS)
Yin, Jie; Wang, Yuqiao; Meng, Wenfei; Zhou, Tianyue; Li, Baosong; Wei, Tao; Sun, Yueming
2017-08-01
Honeycomb-like nickel cobalt sulfide (NiCo2S4) nanosheets were directly deposited on fluorine-doped tin oxide substrate by a rapid voltammetric deposition method. The method was also controllable and feasible for preparing NiCo2S4 on flexible Ti foil without any heating processes. Compared with Pt, CoS and NiS, NiCo2S4 exhibited low charge-transfer resistances and excellent electrocatalytic activity for {{{{I}}}3}- reduction, acting as a counter electrode for a dye-sensitized solar cell. The NiCo2S4-based solar cell showed higher power conversion efficiency (7.44%) than that of Pt-based solar cell (7.09%) under simulated illumination (AM 1.5 G, 100 mW cm-2). The device based on the flexible NiCo2S4/Ti foil achieved a power conversion efficiency of 5.28% under the above illumination conditions. This work can be extended to flexible and wearable technologies due to its facile technique.
NASA Astrophysics Data System (ADS)
Frantziskonis, George N.; Gur, Sourav
2017-06-01
Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.
Local thermal expansions and lattice strains in Elinvar and stainless steel alloys
NASA Astrophysics Data System (ADS)
Yokoyama, Toshihiko; Koide, Akihiro; Uemura, Yohei
2018-02-01
Local thermal expansions and lattice strains in the Elinvar alloy Fe49.66Ni42.38Cr5.49Ti2.47 (Ni Span C) and the stainless steel SUS304 Fe71.98Ni9.07Cr18.09Mn0.86 (AISI304) were investigated by the temperature-dependent Cr, Fe, and Ni K -edge extended x-ray absorption fine-structure (EXAFS) measurements, combined with the path-integral effective classical potential Monte Carlo (PIECP MC) theoretical simulations. From the EXAFS analysis of the Elinvar alloy, the local thermal expansion around Fe is found to be considerably smaller than the ones around Ni and Cr. This observation can be understood simply because Fe in the Elinvar alloy exhibit an incomplete Invar-like effect. Moreover, in both the Elinvar and SUS304 alloys, the local thermal expansions and the lattice strains around Cr are found to be larger than those around Fe and Ni. From the PIECP MC simulations of both the alloys, the first-nearest neighbor Cr-Fe pair shows extraordinarily large thermal expansion, while the Cr-Cr pair exhibits quite small or even negative thermal expansion. These findings consequently indicate that the lattice strains in both the Elinvar and SUS304 alloys are concentrated predominantly on the Cr atoms. Although the role of Cr in stainless steel has been known to inhibit corrosion by the formation of surface chromium oxide, the present investigation may interestingly suggest that the Cr atoms in the bulk play a hidden new role of absorbing inevitable lattice strains in the alloys.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Zheng; Zhang, Mingyi; Lai, Qingbo; Lu, Yanli; Wang, Yongxin
2009-08-01
Microscopic phase field simulation is performed to study antisite defect type and temporal evolution characteristic of D022-Ni3V structure in Ni75Al x V25- x ternary system. The result demonstrates that two types of antisite defect VNi and NiV coexist in D022 structure; however, the amount of NiV is far greater than VNi; when precipitates transform from D022 singe phase to two phases mixture of D022 and L12 with enhanced Al:V ratio, the amount of VNi has no evident response to the secondary L12 phase, while NiV exhibits a definitely contrary variation tendency: NiV rises without L12 structure precipitating from matrix but declines with it; temporal evolution characteristic and temperature dependent antisite defect VNi, NiV are also studied in this paper: The concentrations of the both defects decline from high antistructure state to equilibrium level with elapsed time but rise with elevated temperature; the ternary alloying element aluminium atom occupies both α and β sublattices of D022 structure with a strong site preference of substituting α site.
DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets
NASA Astrophysics Data System (ADS)
Zhou, Xuan; Chu, Wei; Zhou, Yanan; Sun, Wenjing; Xue, Ying
2018-05-01
Nickel doped defective h-BN nanosheets and their potential application on hydrogen storage were explored by density functional theory (DFT) calculation. Three types of defective h-BN (SW defect, VB and VN substrates) were modeled. In comparison with the SW defect, the B or N vacancy can improve the interaction between Ni atom and h-BN nanosheet strikingly. Furthermore, the Ni-doped SW defect sheet shows chemisorption on H2 molecules, and the Hsbnd H bond is partially dissociated. While on the VB sheet, Ni adatom interacts with H2 in the range of physisorption. However, the Ni-functionalized VN sheet exhibits a desirable adsorption on H2, and the corresponding energy varies from -0.40 to -0.51 eV, which is favorable for H2 adsorption and release at ambient conditions. As a result, the VN substrate is expected to a desirable support for H2 storage. Our work provides an insight into H2 storage on Ni-functionalized defective h-BN monolayer.
Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming
NASA Astrophysics Data System (ADS)
Thirumalai, Kaustubh; Dinezio, Pedro N.; Okumura, Yuko; Deser, Clara
2017-06-01
In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.
Impact of a permanent El Niño (El Padre) and Indian Ocean Dipole in warm Pliocene climates
Shukla, Sonali P.; Chandler, Mark A.; Jonas, Jeff; Sohl, Linda E.; Mankoff, Ken; Dowsett, Harry J.
2009-01-01
Pliocene sea surface temperature data, as well as terrestrial precipitation and temperature proxies, indicate warmer than modern conditions in the eastern equatorial Pacific and imply permanent El Niño–like conditions with impacts similar to those of the 1997/1998 El Niño event. Here we use a general circulation model to examine the global-scale effects that result from imposing warm tropical sea surface temperature (SST) anomalies in both modern and Pliocene simulations. Observed SSTs from the 1997/1998 El Niño event were used for the anomalies and incorporate Pacific warming as well as a prominent Indian Ocean Dipole event. Both the permanent El Niño (also called El Padre) and Indian Ocean Dipole (IOD) conditions are necessary to reproduce temperature and precipitation patterns consistent with the global distribution of Pliocene proxy data. These patterns may result from the poleward propagation of planetary waves from the strong convection centers associated with the El Niño and IOD.
Ab initio simulations of iron-nickel alloys at Earth's core conditions
NASA Astrophysics Data System (ADS)
Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.
2012-09-01
We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.
Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites
NASA Astrophysics Data System (ADS)
He, Zuming; Xia, Yongmei; Tang, Bin; Su, Jiangbin
2017-09-01
Magnetically separable NiFe2O4/Cu2O composites were successfully synthesized by a two-step method. The samples were characterized by XRD, XPS, SEM and VSM as well as their PL spectra and UV-vis adsorption spectra. The results showed that the NiFe2O4/Cu2O composites were composed of cubic-structured Cu2O and spinel-structured NiFe2O4, were able to absorb a large amount of visible light, exhibited excellent photocatalytic activity under simulated solar light irradiation and could be easily separated by an external magnetic field. The NiFe2O4/Cu2O composites exhibited higher photocatalytic performance than that of a single semiconductor. It was found that the prominently enhanced photocatalytic performance of NiFe2O4/Cu2O composites was ascribed to the effective separation of photo-generated electron-hole pairs and the effective generation of the hydroxyl radical •OH.
Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming.
Thirumalai, Kaustubh; DiNezio, Pedro N; Okumura, Yuko; Deser, Clara
2017-06-06
In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.
Study of negative ion transport phenomena in a plasma source
NASA Astrophysics Data System (ADS)
Riz, D.; Paméla, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.
Integrated modeling and heat treatment simulation of austempered ductile iron
NASA Astrophysics Data System (ADS)
Hepp, E.; Hurevich, V.; Schäfer, W.
2012-07-01
The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.
NASA Astrophysics Data System (ADS)
Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei
2015-05-01
The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.
Battery testing at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.Y.; Chen, L.Q.
Mechanical properties of Ni-based superalloys are strongly affected by the morphology, distribution, and size of {gamma}{prime} precipitates in the {gamma} matrix. The main purpose of this paper is to propose a continuum field approach for modeling the morphology and rafting kinetics of coherent precipitates under applied stresses. This approach can be used to simulate the temporal evolution of arbitrary morphologies and microstructures without any a priori assumption. Recently, the authors applied this approach to the selected variant growth in Ni-Ti alloys under applied stresses using an inhomogeneous modulus approximation. For the {gamma}{prime} precipitates in Ni-based superalloys, the eigenstrain is dilatational,more » and hence the {gamma}{prime} morphological evolution can be affected by applied stresses only when the elastic modulus is inhomogeneous. In the present work, the elastic inhomogeneity was taken into account by reformulating a sharp-interface elasticity theory developed recently by Khachaturyan et al. in terms of diffuse interfaces. Although the present work is for a {gamma}{prime} {minus} {gamma} system, this model is general in a sense that it can be applied to other alloy systems containing coherent ordered intermetallic precipitates with elastic inhomogeneity.« less
Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.
A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less
Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys
Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; ...
2016-02-25
Alloying of Ni with Fe or Co reduces primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3 {111} Burgers vector, and glissile interstitial loops with a 1/2 {110} Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which leadmore » to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.« less
Zhao, Shijun; Zhang, Yanwen; Weber, William J.
2017-10-17
Using first-principles calculations based on density-functional theory, the energetics of different vacancy-type defects, including voids, stacking fault tetrahedra (SFT) and vacancy loops, in Ni are investigated. It is found that voids are more stable than SFT at 0 K, which is also the case after taking into account the volumetric strains. By carrying out ab initio molecular dynamics simulations at temperatures up to 1000 K, direct transformations from vacancy loops and voids into SFT are observed. Our results suggest the importance of temperature effects in determining thermodynamic stability of vacancy clusters in face-centered cubic metals.
NASA Technical Reports Server (NTRS)
Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter
2008-01-01
In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.
NiMnGa/Si Shape Memory Bimorph Nanoactuation
NASA Astrophysics Data System (ADS)
Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred
2016-12-01
The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.
A simple theoretical model for ⁶³Ni betavoltaic battery.
Zuo, Guoping; Zhou, Jianliang; Ke, Guotu
2013-12-01
A numerical simulation of the energy deposition distribution in semiconductors is performed for ⁶³Ni beta particles. Results show that the energy deposition distribution exhibits an approximate exponential decay law. A simple theoretical model is developed for ⁶³Ni betavoltaic battery based on the distribution characteristics. The correctness of the model is validated by two literature experiments. Results show that the theoretical short-circuit current agrees well with the experimental results, and the open-circuit voltage deviates from the experimental results in terms of the influence of the PN junction defects and the simplification of the source. The theoretical model can be applied to ⁶³Ni and ¹⁴⁷Pm betavoltaic batteries. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaddy, Benjamin E.; Kingon, Angus I.; Irving, Douglas L.
2013-05-01
Ohmic RF-MEMS switches hold much promise for low power wireless communication, but long-term degradation currently plagues their reliable use. Failure in these devices occurs at the contact and is complicated by the fact that the same asperities that bear the mechanical load are also important to the flow of electrical current needed for signal processing. Materials selection holds the key to overcoming the barriers that prevent widespread use. Current efforts in materials selection have been based on the material's (or alloy's) ability to resist oxidation as well as its room-temperature properties, such as hardness and electrical conductivity. No ideal solution has yet been found via this route. This may be due, in part, to the fact that the in-use changes to the local environment of the asperity are not included in the selection criteria. For example, Joule heating would be expected to raise the local temperature of the asperity and impose a non-equilibrium thermal gradient in the same region expected to respond to mechanical actuation. We propose that these conditions should be considered in the selection process, as they would be expected to alter mechanical, electrical, and chemical mechanisms in the vicinity of the surface. To this end, we simulate the actuation of an Ohmic radio frequency micro electro mechanical systems switch by using a multi-scale method to model a current-carrying asperity in contact with a polycrystalline substrate. Our method couples continuum solutions of electrical and thermal transport equations to an underlying molecular dynamics simulation. We present simulations of gold-nickel asperities and substrates in order to evaluate the influence of alloying and local order on the early stages of contact actuation. The room temperature response of these materials is compared to the response of the material when a voltage is applied. Au-Ni interactions are accounted for through modification of the existing Zhou embedded atom method potential. The modified potential more accurately captures trends in high-temperature properties, including the enthalpy of mixing and melting temperatures. We simulate the loading of a contacting asperity to several substrates with varying Ni alloying concentrations and compare solid solution strengthening to a phase-separated system. Our simulations show that Ni concentration and configuration have an important effect on contact area, constriction resistance, thermal profiles, and material transfer. These differences suggest that a substrate with 15 at. % Ni featuring phase segregation has fewer early markers that experimentally have indicated long-term failure.
Corrosion resistance tests on NiTi shape memory alloy.
Rondelli, G
1996-10-01
The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.
Growth of Ni nanoclusters on irradiated graphene: a molecular dynamics study.
Valencia, F J; Hernandez-Vazquez, E E; Bringa, E M; Moran-Lopez, J L; Rogan, J; Gonzalez, R I; Munoz, F
2018-04-23
We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.
Impact of medium-range order on the glass transition in liquid Ni-Si alloys
NASA Astrophysics Data System (ADS)
Lü, Y. J.; Entel, P.
2011-09-01
We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.
Mehrabi, Reza; Dorri, Milad; Elahinia, Mohammad
2017-03-12
In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person's daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties. Since this NiTi umbrella-shaped implant is simultaneously under several loadings, a 3-D model of shape memory alloy is utilized to investigate the behavior of the implant under different conditions. Shape memory and pseudo-elasticity behavior of NiTi is analyzed using a numerical model. The simulation is performed within different temperatures and in an isothermal condition with varied and complex loadings. The objective of this study is to evaluate the performance of the device under thermal and multi-axial forces via numerically study. Under tensile loading, the most critical points are on the top part of the implant. It is also shown that changes in temperature have a minor effect on the Von Mises stress. Applied forces and torques have significant influence on the femoral head. Simulations results indicate that the top portion of the umbrella is under the most stress when embedded in the body. Consequently, the middle, curved portion of the umbrella is under the least amount of stress.
Mehrabi, Reza; Dorri, Milad; Elahinia, Mohammad
2017-01-01
In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person’s daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties. Since this NiTi umbrella-shaped implant is simultaneously under several loadings, a 3-D model of shape memory alloy is utilized to investigate the behavior of the implant under different conditions. Shape memory and pseudo-elasticity behavior of NiTi is analyzed using a numerical model. The simulation is performed within different temperatures and in an isothermal condition with varied and complex loadings. The objective of this study is to evaluate the performance of the device under thermal and multi-axial forces via numerically study. Under tensile loading, the most critical points are on the top part of the implant. It is also shown that changes in temperature have a minor effect on the Von Mises stress. Applied forces and torques have significant influence on the femoral head. Simulations results indicate that the top portion of the umbrella is under the most stress when embedded in the body. Consequently, the middle, curved portion of the umbrella is under the least amount of stress. PMID:28952502
The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Domekeli, U.; Sengul, S.; Celtek, M.; Canan, C.
2018-02-01
The melting mechanism for Pd0.25Ni0.75 alloy nanoparticles (NPs) was investigated using molecular dynamics (MD) simulations with quantum Sutton-Chen many-body potentials. NPs of six different sizes ranging from 682 to 22,242 atoms were studied to observe the effect of size on the melting point. The melting temperatures of the NPs were estimated by following the changes in both the thermodynamic and structural quantities such as the total energy, heat capacity and Lindemann index. We also used a thermodynamics model to better estimate the melting point and to check the accuracy of MD simulations. We observed that the melting points of the NPs decreased as their sizes decreased. Although the MD simulations for the bulk system yielded higher melting temperatures because of the lack of a seed for the liquid phase, the melting temperatures determined for both the bulk material and the NPs are in good agreement with those predicted from the thermodynamics model. The melting mechanism proceeds in two steps: firstly, a liquid-like shell is formed in the outer regions of the NP with increasing temperature. The thickness of the liquid-like shell increases with increasing temperature until the shell reaches a critical thickness. Then, the entire Pd-Ni NP including core-related solid-like regions melts at once.
NASA Astrophysics Data System (ADS)
Danailov, Daniel M.
2007-11-01
Previous simulations of glancing incidence ion-surface interaction have demonstrated that classical dynamics using the row-model have successfully reproduced multimodal azimuthal and polar spectra. These studies have also shown considerable sensitivity to the form of the interatomic potential thus making it a strong test of the validity of such potentials and even allow deduction of the ion-surface potentials. In these simulations the individual pairwise interactions between the projectile and the target atoms have been replaced by cylindrical potentials. Comparison to numerous experimental studies have confirmed the existence of rainbow scattering phenomena and successfully tested the validity of the cylindrical potential used in these simulations. The use of cylindrical potentials avoids stochastic effects due to thermal displacements and allows faster computer simulations leading to reliable angular distributions. In the present work we extend the row-model to consider scattering from binary alloys. Using He+ scattered at glancing incidence from NiAl surfaces, Al or Ni terminated, a faster method has been developed to easily and accurately quantize not only the maximum deflection azimuthal angle but all the singular points in the angular distribution. It has been shown that the influence of the surface termination on the rainbow angle and the inelastic losses is small.
ENSO Diversity Changes Due To Global Warming In CESM-LE
NASA Astrophysics Data System (ADS)
Carreric, A.; Dewitte, B.; Guemas, V.
2017-12-01
The El Niño Southern Oscillation (ENSO) is predicted to be modified due to global warming based on the CMIP3 and CMIP5 data bases. In particular the frequency of occurrence of extreme Eastern Pacific El Niño events is to double in the future in response to the increase in green-house gazes. Such forecast relies however on state-of-the-art models that still present mean state biases and do not simulate realistically key features of El Niño events such as its diversity which is related to the existence of at least two types of El Niño events, the Eastern Pacific (EP) El Nino and the Central Pacific (CP) El Niño events. Here we take advantage of the Community Earth System Model (CESM) Large Ensemble (LE) that provides 35 realizations of the climate of the 1920-2100 period with a combination of both natural and anthropogenic climate forcing factors, to explore on the one hand methods to detect changes in ENSO statistics and on the other hand to investigate changes in thermodynamical processes associated to the increase oceanic stratification owed to global warming. The CESM simulates realistically many aspects of the ENSO diversity, in particular the non-linear evolution of the phase space of the first two EOF modes of Sea Surface Temperature (SST) anomalies in the tropical Pacific. Based on indices accounting for the two ENSO regimes used in the literature, we show that, although there is no statistically significant (i.e. confidence level > 95%) changes in the occurrence of El Niño types from the present to the future climate, the estimate of the changes is sensitive to the definition of ENSO indices that is used. CESM simulates in particular an increase occurrence of extreme El Niño events that can vary by 28% from one method to the other. It is shown that the seasonal evolution of EP El Niño events is modified from the present to the future climate, with in particular a larger occurrence of events taking place in Austral summer in the warmer climate compared to events peaking in Austral winter. The ENSO non-linearity is also showed to increase, which is interpreted as resulting from the increased stratification based on the analysis of the control experiment and an estimate of the oceanic mixed-layer heat budget. Implications for understanding processes associated to change in ENSO in a warmer climate are discussed.
An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.
1998-01-01
We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.
Hubble Space Telescope NiH2 six battery test
NASA Technical Reports Server (NTRS)
Whitt, Thomas H.; Lanier, J. Roy
1991-01-01
The primary objectives of the test are: (1) to get a better understanding of the operating characteristics of the NiH2 batteries in the Hubble Space Telescope (HST) Electric Power Subsystem (EPS) by simulating every aspect of the expected operating environment; (2) to determine the optimum charge level and charge scheme for the NiH2 batteries in the HST EPS; (3) to predict the performance of the actual HST EPS; (4) to observe the aging characteristics of the batteries; and (5) to test different EPS anomalies before experiencing the anomalies on the actual HST.
Effects of the electron-phonon coupling activation in collision cascades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
Using the two-temperature (2T-MD) model in molecular dynamics simulations, here we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage.
Effects of the electron-phonon coupling activation in collision cascades
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-04-20
Using the two-temperature (2T-MD) model in molecular dynamics simulations, here we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage.
NASA Astrophysics Data System (ADS)
Choi, Eun-Young; Lee, Jeong
2017-11-01
In this study, we investigated the feasibility of nickel (Ni) as a material to contain molten Li2O-LiCl salt containing lithium (Li) metal at 650 °C as an electrolyte during the electrolytic reduction process of pyroprocessing (also known as oxide reduction, OR). First, the behaviors of Ni in four different LiCl salts (0.1 wt% Li-LiCl, 1 and 8 wt% Li2O-LiCl, and 8 wt% Li2O-0.1 wt% Li-LiCl) in an argon atmosphere were examined through immersion tests. Then, Ni was used as a vessel material for five consecutive OR runs of simulated oxide fuel using 1.0 wt% Li2O-LiCl salt. The tested Ni was analyzed by microbalance, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Concentrations of Ni in the salt were measured using inductively coupled plasma atomic emission spectroscopy. No corrosion product of Ni, except Cr2Ni3, was observed on the Ni used for both the salt-immersion tests and the OR runs because the Ni was not exposed to oxygen gas. However, leaching of Ni in the OR salt containing excessive Li metal was observed. Therefore, Ni can be used as the salt containment material in the OR process when excessive Li metal and oxygen gas in the salt are maintained at low levels.
Lü, Yongjun; Cheng, Hao; Chen, Min
2012-06-07
The self-diffusion coefficients D and the viscosities η of elemental Ni, Cu, and Ni-Si alloys have been calculated over a wide temperature range by molecular dynamics simulations. For elemental Ni and Cu, Arrhenius-law variations of D and η with temperature dominate. The temperature dependence of Dη can be approximated by a linear relation, whereas the Stokes-Einstein relation is violated. The calculations of D and η are extended to the regions close to the crystallization of Ni(95)Si(5), Ni(90)Si(10), and the glass transitions of Ni(80)Si(20) and Ni(75)Si(25). The results show that both D and η strongly deviate from the Arrhenius law in the vicinity of phase transitions, exhibiting a power-law divergence. We find a decoupling of diffusion and viscous flow just above the crystallization of Ni(95)Si(5) and Ni(90)Si(10). For the two glass-forming alloys, Ni(80)Si(20) and Ni(75)Si(25), the relation Dη = const is obeyed as the glass transition is approached, indicating a dynamic coupling as predicted by the mode-coupling theory. This coupling is enhanced with increasing Si composition and at 25%, Si spans a wide temperature range through the melting point. The decoupling is found to be related to the distribution of local ordered structure in the melts. The power-law governing the growth of solid-like clusters prior to crystallization creates a dynamic heterogeneity responsible for decoupling.
NASA Astrophysics Data System (ADS)
Lü, Yongjun; Cheng, Hao; Chen, Min
2012-06-01
The self-diffusion coefficients D and the viscosities η of elemental Ni, Cu, and Ni-Si alloys have been calculated over a wide temperature range by molecular dynamics simulations. For elemental Ni and Cu, Arrhenius-law variations of D and η with temperature dominate. The temperature dependence of Dη can be approximated by a linear relation, whereas the Stokes-Einstein relation is violated. The calculations of D and η are extended to the regions close to the crystallization of Ni95Si5, Ni90Si10, and the glass transitions of Ni80Si20 and Ni75Si25. The results show that both D and η strongly deviate from the Arrhenius law in the vicinity of phase transitions, exhibiting a power-law divergence. We find a decoupling of diffusion and viscous flow just above the crystallization of Ni95Si5 and Ni90Si10. For the two glass-forming alloys, Ni80Si20 and Ni75Si25, the relation Dη = const is obeyed as the glass transition is approached, indicating a dynamic coupling as predicted by the mode-coupling theory. This coupling is enhanced with increasing Si composition and at 25%, Si spans a wide temperature range through the melting point. The decoupling is found to be related to the distribution of local ordered structure in the melts. The power-law governing the growth of solid-like clusters prior to crystallization creates a dynamic heterogeneity responsible for decoupling.
2012-01-01
enforce a minimum separation distance (25% of the simulation cell length) between grain nucleation sites, giving more equiaxed grains and a tighter...de d by [ M as sa ch us et ts I ns tit ut e of T ec hn ol og y] a t 1 5: 36 1 2 Fe br ua ry 2 01 2 electrodeposited nanocrystalline Ni with
El Niño-like teleconnection increases California precipitation in response to warming
Allen, Robert J.; Luptowitz, Rainer
2017-01-01
Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large internal climate variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use a multitude of models to show CA may receive more precipitation in the future under a business-as-usual scenario. The boreal winter season-when most of the CA precipitation increase occurs-is associated with robust changes in the mean circulation reminiscent of an El Niño teleconnection. Using idealized simulations with two different models, we further show that warming of tropical Pacific sea surface temperatures accounts for these changes. Models that better simulate the observed El Niño-CA precipitation teleconnection yield larger, and more consistent increases in CA precipitation through the twenty-first century. PMID:28681837
Inertia-Controlled Twinning in Ni-Mn-Ga Actuators: A Discrete Twin-Boundary Dynamics Study
NASA Astrophysics Data System (ADS)
Faran, Eilon; Riccardi, Leonardo; Shilo, Doron
2017-09-01
A discrete twin-boundary modeling approach is applied for simulating the dynamic magnetomechanical response of a Ni-Mn-Ga actuator over a wide frequency range. The model is based on experimentally measured kinetic relation of individual twin boundaries and takes into account inertial forces due to acceleration of the actuator's mass. The calculated results show good agreement with experimental measurements performed on a specially designed Ni-Mn-Ga linear spring-mass actuator. In addition, the simulation reveals several new effects that have not been considered before and can be applied to the design of improved actuators. It is identified that the demagnetization effect plays a role of an "effective spring" and results in a resonance-type response. The effects of the actuator's mass and the twin-boundary density on the resonance response and the actuator performance are explored numerically. In particular, it is shown that mass-inertia poses an inherent upper limit over the actuator's bandwidth, which is approximately constant and equals to about 200 Hz.
El Niño-like teleconnection increases California precipitation in response to warming
NASA Astrophysics Data System (ADS)
Allen, Robert J.; Luptowitz, Rainer
2017-07-01
Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large internal climate variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use a multitude of models to show CA may receive more precipitation in the future under a business-as-usual scenario. The boreal winter season-when most of the CA precipitation increase occurs-is associated with robust changes in the mean circulation reminiscent of an El Niño teleconnection. Using idealized simulations with two different models, we further show that warming of tropical Pacific sea surface temperatures accounts for these changes. Models that better simulate the observed El Niño-CA precipitation teleconnection yield larger, and more consistent increases in CA precipitation through the twenty-first century.
Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures
NASA Astrophysics Data System (ADS)
Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar
2018-06-01
In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.
Nucleation of stoichiometric compounds from liquid: Role of the kinetic factor
Song, H.; Sun, Y.; Zhang, F.; ...
2018-02-02
The nucleation rate depends on the free-energy barrier and the kinetic factor. While the role of the free energy barrier is a text-book subject, the importance of the kinetic factor is frequently underestimated. Here in this study, we applied the mean first-passage time method, to obtain the free-energy landscape and kinetic factor directly from the molecular dynamics (MD) simulations of the nucleation of the face-centered cubic (fcc) phase in the pure Ni and the B2 phases in the Ni 50Al 50 and Cu 50Zr 50 alloys. The obtained data show that while the free-energy barrier for nucleation is higher inmore » pure Ni the nucleation rate is considerably lower in the Ni 50Al 50 alloy. This result can be explained by the slow attachment kinetics in the N i 50 A l 50 alloy, which was related to the ordered nature of the B2 phase. Even smaller fraction of the antisite defects in the C u 50 Z r 50 alloy leads to such a slow attachment kinetics that the nucleation is never observed for this alloy in the course of the MD simulation. Finally, this is consistent with the experimental facts that the Cu 50Zr 50 alloy is a good glass forming alloy and the Ni 50Al 50 alloy is not. Thus the present study demonstrates that the atom attachment rate can be the critical factor that controls the nucleation process under certain conditions.« less
Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.
Shih, Kaimin; White, Tim; Leckie, James O
2006-09-01
Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.
Nucleation of stoichiometric compounds from liquid: Role of the kinetic factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, H.; Sun, Y.; Zhang, F.
The nucleation rate depends on the free-energy barrier and the kinetic factor. While the role of the free energy barrier is a text-book subject, the importance of the kinetic factor is frequently underestimated. Here in this study, we applied the mean first-passage time method, to obtain the free-energy landscape and kinetic factor directly from the molecular dynamics (MD) simulations of the nucleation of the face-centered cubic (fcc) phase in the pure Ni and the B2 phases in the Ni 50Al 50 and Cu 50Zr 50 alloys. The obtained data show that while the free-energy barrier for nucleation is higher inmore » pure Ni the nucleation rate is considerably lower in the Ni 50Al 50 alloy. This result can be explained by the slow attachment kinetics in the N i 50 A l 50 alloy, which was related to the ordered nature of the B2 phase. Even smaller fraction of the antisite defects in the C u 50 Z r 50 alloy leads to such a slow attachment kinetics that the nucleation is never observed for this alloy in the course of the MD simulation. Finally, this is consistent with the experimental facts that the Cu 50Zr 50 alloy is a good glass forming alloy and the Ni 50Al 50 alloy is not. Thus the present study demonstrates that the atom attachment rate can be the critical factor that controls the nucleation process under certain conditions.« less
NASA Astrophysics Data System (ADS)
de Camargo, Eliene Nogueira; Oliveira Lobo, Anderson; Silva, Maria Margareth Da; Ueda, Mario; Garcia, Edivaldo Egea; Pichon, Luc; Reuther, Helfried; Otubo, Jorge
2011-07-01
NiTi SMA is a promising material in the biomedical area due to its mechanical properties and biocompatibility. However, the nickel in the alloy may cause allergic and toxic reactions and thus limiting its applications. It was evaluated the influence of surface modification in NiTi SMA by nitrogen plasma immersion ion implantation (varying temperatures, and exposure time as follows: <250 °C/2 h, 290 °C/2 h, and 560 °C/1 h) in the amount of nickel released using immersion test in simulated body fluid. The depth of the nitrogen implanted layer increased as the implantation temperature increased resulting in the decrease of nickel release. The sample implanted in high implantation temperature presented 35% of nickel release reduction compared to reference sample.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.
2002-01-01
Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Ashcraft, R.; Mendelev, M. I.
The state-of-the-art experimental and atomistic simulation techniques were utilized to study the structure of the liquid and amorphous Ni62Nb38 alloy. First, the ab initio molecular dynamics (AIMD) simulation was performed at rather high temperature where the time limitations of the AIMD do not prevent to reach the equilibrium liquid structure. A semi-empirical potential of the Finnis-Sinclair (FS) type was developed to almost exactly reproduce the AIMD partial pair correlation functions (PPCFs) in a classical molecular dynamics simulation. This simulation also showed that the FS potential well reproduces the bond angle distributions. The FS potential was then employed to elongate themore » AIMD PPCFs and determine the total structure factor (TSF) which was found to be in excellent agreement with X-ray TSF obtained within the present study demonstrating the reliability of the AIMD for the simulation of the structure of the liquid Ni–Nb alloys as well as the reliability of the developed FS potential. The glass structure obtained with the developed potential was also found to be in excellent agreement with the X-ray data. The analysis of the structure revealed that a network of the icosahedra clusters centered on Ni atoms is forming during cooling the liquid alloy down to T g and the Nb Z14, Z15, and Z16 clusters are attached to this network. This network is the main feature of the Ni 62Nb 38 alloy and further investigations of the properties of this alloy should be based on study of the behavior of this network.« less
Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential
NASA Astrophysics Data System (ADS)
Racek, Jan; Stora, Marc; Šittner, Petr; Heller, Luděk; Kopeček, Jaromir; Petrenec, Martin
2015-06-01
Fatigue of superelastic NiTi wires was investigated by cyclic tension in simulated biofluid. The state of the surface of the fatigued NiTi wire was monitored by following the evolution of the electrochemical open circuit potential (OCP) together with macroscopic stresses and strains. The ceramic TiO2 oxide layer on the NiTi wire surface cannot withstand the large transformation strain and fractures in the first cycle. Based on the analysis of the results of in situ OCP experiments and SEM observation of cracks, it is claimed that the cycled wire surface develops mechanochemical reactions at the NiTi/liquid interface leading to cumulative generation of hydrogen, uptake of the hydrogen by the NiTi matrix, local loss of the matrix strength, crack transfer into the NiTi matrix, accelerated crack growth, and ultimately to the brittle fracture of the wire. Fatigue degradation is thus claimed to originate from the mechanochemical processes occurring at the excessively deforming surface not from the accumulation of defects due to energy dissipative bulk deformation processes. Ironically, combination of the two exciting properties of NiTi—superelasticity due to martensitic transformation and biocompatibility due to the protective TiO2 surface oxide layer—leads to excessive fatigue damage during cyclic mechanical loading in biofluids.
Finite element simulation of texture evolution and Swift effect in NiAl under torsion
NASA Astrophysics Data System (ADS)
Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht
2007-09-01
The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.
Li, Ziguang; Lin, Xiaopei; Cai, Wenju
2017-07-10
El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) tend to exert an offsetting impact on Indian summer monsoon rainfall (ISMR), with an El Niño event tending to lower, whereas a positive IOD tending to increase ISMR. Simulation of these relationships in Phase Five of the Coupled Model Intercomparison Project has not been fully assessed, nor is their impact on the response of ISMR to greenhouse warming. Here we show that the majority of models simulate an unrealistic present-day IOD-ISMR correlation due to an overly strong control by ENSO. As such, a positive IOD is associated with an ISMR reduction in the simulated present-day climate. This unrealistic present-day correlation is relevant to future ISMR projection, inducing an underestimation in the projected ISMR increase. Thus uncertainties in ISMR projection can be in part induced by present-day simulation of ENSO, the IOD, their relationship and their rainfall correlations.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...
2016-10-25
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less
A Virtual Reality-Based Simulation of Abdominal Surgery
1994-06-30
415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and
Yin, Xuesong; Tang, Chunhua; Zhang, Liuyang; Yu, Zhi Gen; Gong, Hao
2016-01-01
Nanostructured core/shell electrodes have been experimentally demonstrated promising for high-performance electrochemical energy storage devices. However, chemical insights into the significant roles of nanowire cores on the growth of shells and their supercapacitor behaviors still remain as a research shortfall. In this work, by substituting 1/3 cobalt in the Co3O4 nanowire core with nickel, a 61% enhancement of the specific mass-loading of the Ni(OH)2 shell, a tremendous 93% increase of the volumetric capacitance and a superior cyclability were achieved in a novel NiCo2O4/Ni(OH)2 core/shell electrode in contrast to a Co3O4/Ni(OH)2 one. A comparative study suggested that not only the growth of Ni(OH)2 shells but also the contribution of cores were attributed to the overall performances. Importantly, their chemical origins were revealed through a theoretical simulation of the core/shell interfacial energy changes. Besides, asymmetric supercapacitor devices and applications were also explored. The scientific clues and practical potentials obtained in this work are helpful for the design and analysis of alternative core/shell electrode materials. PMID:26857606
Yin, Xuesong; Tang, Chunhua; Zhang, Liuyang; Yu, Zhi Gen; Gong, Hao
2016-02-09
Nanostructured core/shell electrodes have been experimentally demonstrated promising for high-performance electrochemical energy storage devices. However, chemical insights into the significant roles of nanowire cores on the growth of shells and their supercapacitor behaviors still remain as a research shortfall. In this work, by substituting 1/3 cobalt in the Co3O4 nanowire core with nickel, a 61% enhancement of the specific mass-loading of the Ni(OH)2 shell, a tremendous 93% increase of the volumetric capacitance and a superior cyclability were achieved in a novel NiCo2O4/Ni(OH)2 core/shell electrode in contrast to a Co3O4/Ni(OH)2 one. A comparative study suggested that not only the growth of Ni(OH)2 shells but also the contribution of cores were attributed to the overall performances. Importantly, their chemical origins were revealed through a theoretical simulation of the core/shell interfacial energy changes. Besides, asymmetric supercapacitor devices and applications were also explored. The scientific clues and practical potentials obtained in this work are helpful for the design and analysis of alternative core/shell electrode materials.
Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E
2014-12-01
The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.
Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Fantz, U.; Franzen, P.; Minea, T.
2015-03-01
The development of negative ion (NI) sources for ITER is strongly accompanied by modelling activities. The ONIX code addresses the physics of formation and extraction of negative hydrogen ions at caesiated sources as well as the amount of co-extracted electrons. In order to be closer to the experimental conditions the code has been improved. It includes now the bias potential applied to first grid (plasma grid) of the extraction system, and the presence of Cs+ ions in the plasma. The simulation results show that such aspects play an important role for the formation of an ion-ion plasma in the boundary region by reducing the depth of the negative potential well in vicinity to the plasma grid that limits the extraction of the NIs produced at the Cs covered plasma grid surface. The influence of the initial temperature of the surface produced NI and its emission rate on the NI density in the bulk plasma that in turn affects the beam formation region was analysed. The formation of the plasma meniscus, the boundary between the plasma and the beam, was investigated for the extraction potentials of 5 and 10 kV. At the smaller extraction potential the meniscus moves closer to the plasma grid but as in the case of 10 kV the deepest meniscus bend point is still outside of the aperture. Finally, a plasma containing the same amount of NI and electrons (nH- =ne =1017 m-3) , representing good source conditioning, was simulated. It is shown that at such conditions the extracted NI current can reach values of ˜32 mA cm-2 using ITER-relevant extraction potential of 10 kV and ˜19 mA cm-2 at 5 kV. These results are in good agreement with experimental measurements performed at the small scale ITER prototype source at the test facility BATMAN.
The effects of the Indo-Pacific warm pool on the stratosphere
NASA Astrophysics Data System (ADS)
Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang
2017-03-01
Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.
Liang, Zhenxing; Ahn, Hyun S; Bard, Allen J
2017-04-05
The hydrogen evolution reaction (HER) on Ni in alkaline media was investigated by scanning electrochemical microscopy under two operating modes. First, the substrate generation/tip collection mode was employed to extract the "true" cathodic current associated with the HER from the total current in the polarization curve. Compared to metallic Ni, the electrocatalytic activity of the HER is improved in the presence of the low-valence-state oxide of Ni. This result is in agreement with a previous claim that the dissociative adsorption of water can be enhanced at the Ni/Ni oxide interface. Second, the surface-interrogation scanning electrochemical microscopy (SI-SECM) mode was used to directly measure the coverage of the adsorbed hydrogen on Ni at given potentials. Simulation indicates that the hydrogen coverage follows a Frumkin isotherm with respect to the applied potential. On the basis of the combined analysis of the Tafel slope and surface hydrogen coverage, the rate-determining step is suggested to be the adsorption of hydrogen (Volmer step) in the investigated potential window.
Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming
Thirumalai, Kaustubh; DiNezio, Pedro N.; Okumura, Yuko; Deser, Clara
2017-01-01
In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015–16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes. PMID:28585927
Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta
NASA Astrophysics Data System (ADS)
Utrobin, V. P.; Chugai, N. N.
2017-12-01
We explore the well-observed Type IIP supernova 2013ej with peculiar luminosity evolution. It is found that the hydrodynamic model cannot reproduce in detail the bolometric luminosity at both the plateau and the radioactive tail. Yet the ejecta mass of 23-26 M⊙ and the kinetic energy of (1.2-1.4) × 1051 erg are determined rather confidently. We suggest that the controversy revealed in hydrodynamic simulations stems from the strong asphericity of the 56Ni ejecta. An analysis of the asymmetric nebular H α line and of the peculiar radioactive tail made it possible to recover parameters of the asymmetric bipolar 56Ni ejecta with the heavier jet residing in the rear hemisphere. The inferred 56Ni mass is 0.039 M⊙, twice as large compared to a straightforward estimate from the bolometric luminosity at the early radioactive tail. The bulk of ejected 56Ni has velocities in the range of 4000-6500 km s-1. The linear polarization predicted by the model with the asymmetric ionization produced by bipolar 56Ni ejecta is consistent with the observational value.
Ganesh, Ibram; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G.
2012-01-01
Different amounts of Ni-doped TiO2 (Ni = 0.1 to 10%) powders and thin films were prepared by following a conventional coprecipitation and sol-gel dip coating techniques, respectively, at 400 to 800°C, and were thoroughly characterized by means of XRD, FT-IR, FT-Raman, DRS, UV-visible, BET surface area, zeta potential, flat band potential, and photocurrent measurement techniques. Photocatalytic abilities of Ni-doped TiO2 powders were evaluated by means of methylene blue (MB) degradation reaction under simulated solar light. Characterization results suggest that as a dopant, Ni stabilizes TiO2 in the form of anatase phase, reduces its bandgap energy, and adjusts its flat band potentials such that this material can be employed for photoelectrochemical (PEC) oxidation of water reaction. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of Ni in TiO2. The kinetic studies revealed that the MB degradation reaction follows the Langmuir-Hinshelwood first-order reaction relationship. PMID:22619580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanan, P.; Defence Metallurgical Research Laboratory, Hyderabad 500058; Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw
2014-06-28
Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysismore » on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.« less
Results of advanced battery technology evaluations for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
1992-10-01
Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.
Molecular dynamics simulations of the melting curve of NiAl alloy under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli, E-mail: zhongliliu@yeah.net
2014-05-15
The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach).more » The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.« less
Oteri, Francesco; Baaden, Marc; Lojou, Elisabeth; Sacquin-Mora, Sophie
2014-12-04
[NiFe]-hydrogenases catalyze the cleavage of molecular hydrogen into protons and electrons and represent promising tools for H2-based technologies such as biofuel cells. However, many aspects of these enzymes remain to be understood, in particular how the catalytic center can be protected from irreversible inactivation by O2. In this work, we combined homology modeling, all-atom molecular dynamics, and coarse-grain Brownian dynamics simulations to investigate and compare the dynamic and mechanical properties of two [NiFe]-hydrogenases: the soluble O2-sensitive enzyme from Desulfovibrio fructosovorans, and the O2-tolerant membrane-bound hydrogenase from Aquifex aeolicus. We investigated the diffusion pathways of H2 from the enzyme surface to the central [NiFe] active site, and the possible proton pathways that are used to evacuate hydrogen after the oxidation reaction. Our results highlight common features of the two enzymes, such as a Val/Leu/Arg triad of key residues that controls ligand migration and substrate access in the vicinity of the active site, or the key role played by a Glu residue for proton transfer after hydrogen oxidation. We show specificities of each hydrogenase regarding the enzymes internal tunnel network or the proton transport pathways.
NASA Astrophysics Data System (ADS)
Qi, Yue
This thesis focused on the phase transformation and deformation behaviors in face center cubic (FCC) metals and alloys. These studies used the new quantum modified Sutton-Chen (QMSC) many-body potentials for Cu, Ni, Ag, and Au and for their alloys through simple combination rules. Various systems and processes are simulated by standard equilibrium molecular dynamics (MD), quasi-static equilibrium MD and non-equilibrium MD (NEMD), cooperated with different periodic boundary conditions. The main topics include: (1) Melting, glass formation, and crystallization processes in bulk alloys. In our simulation CuNi and pure Cu always form an FCC crystal, while Cu4Ag6 always forms glass (with Tg decreasing as the quench rate increases) due to the large atomic size difference. (2) Size effects in melting and crystallization in Ni nano clusters. There is a transition from cluster or molecular regime (where the icosahedral is the stable structure) below ˜500 atoms to a mesoscale regime (with well-defined bulk and surface properties and surface melting processes, which leads to Tm,N = Tm,B - alpha N-1/3) above ˜750 atoms. (3) The deformation behavior of metallic nanowires of pure Ni, NiCu and NiAu alloys, under high rates of uniaxial tensile strain, ranging from 5*108/s to 5*1010/s. We find that deformation proceeds through twinning and coherent slipping at low strain rate and amorphization at high strain rate. This research provides a new method, fast straining, to induce amorphization except fast cooling and disordering. (4) The calculation of the ½ <110> screw dislocation in nickel (Ni). We calculated the core energy of screw dislocation after dissociation is 0.5 eV/b, the annihilation process of opposite signed dislocations depends dramatically on the configurations of dissociation planes and the cross-slip energy barrier is 0.1eV/b. (5) Friction anisotropy on clean Ni(100)/(100) interface. We found that static friction coefficient on flat and incommensurate interface is close to zero (as analytical theory predicted), however, the calculation show the same anisotropic behavior as experiments on rough surface, thus explained the difference between theory and experiments.
NASA Astrophysics Data System (ADS)
Divi, Srikanth; Agrahari, Gargi; Ranjan Kadulkar, Sanket; Kumar, Sanjeet; Chatterjee, Abhijit
2017-12-01
Capturing segregation behavior in metal alloy nanoparticles accurately using computer simulations is contingent upon the availability of high-fidelity interatomic potentials. The embedded atom method (EAM) potential is a widely trusted interatomic potential form used with pure metals and their alloys. When limited experimental data is available, the A-B EAM cross-interaction potential for metal alloys AxB 1-x are often constructed from pure metal A and B potentials by employing a pre-defined ‘mixing rule’ without any adjustable parameters. While this approach is convenient, we show that for AuPt, NiPt, AgAu, AgPd, AuNi, NiPd, PtPd and AuPd such mixing rules may not even yield the correct alloy properties, e.g., heats of mixing, that are closely related to the segregation behavior. A general theoretical formulation based on scaling invariance arguments is introduced that addresses this issue by tuning the mixing rule to better describe alloy properties. Starting with an existing pure metal EAM potential that is used extensively in literature, we find that the mixing rule fitted to heats of mixing for metal solutions usually provides good estimates of segregation energies, lattice parameters and cohesive energy, as well as equilibrium distribution of metals within a nanoparticle using Monte Carlo simulations. While the tunable mixing rule generally performs better than non-adjustable mixing rules, the use of the tunable mixing rule may still require some caution. For e.g., in Pt-Ni system we find that the segregation behavior can deviate from the experimentally observed one at Ni-rich compositions. Despite this the overall results suggest that the same approach may be useful for developing improved cross-potentials with other existing pure metal EAM potentials as well. As a further test of our approach, mixing rule estimated from binary data is used to calculate heat of mixing in AuPdPt, AuNiPd, AuPtNi, AgAuPd and NiPtPd. Excellent agreement with experiments is observed for AuPdPt.
NASA Astrophysics Data System (ADS)
Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko
2015-10-01
Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.
NASA Astrophysics Data System (ADS)
Rahmani, Faezeh; Khosravinia, Hossein
2016-08-01
Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm-2 of Nickle-63 (63Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure.
Modeling degradation and failure of Ni-Cr-Al overlay coatings
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.; Heckel, R. W.
1984-01-01
Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.
NASA Technical Reports Server (NTRS)
Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy
2008-01-01
In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.
Patterns of tropical Pacific convection anomalies and associated extratropical wave trains in AMIP5
NASA Astrophysics Data System (ADS)
Ding, Shuoyi; Chen, Wen; Graf, Hans-F.; Guo, Yuanyuan
2018-05-01
In this paper, the performance of 18 Coupled Model Intercomparison Project Phase 5 (CMIP5) models forced by observational SSTs in simulating the tropical Pacific convective variation and the atmospheric responses in the extratropics are assessed. The multi-model ensemble mean results of 18 CMIP5 models show that five major patterns of tropical Pacific convection anomaly in winter can indeed be well reproduced, however, the simulation of the corresponding extratropical responses for each pattern exists some deficiency except for the La Niña pattern compared with observations. We defined an optimized subset of well performing models (ACCESS1.0, CanAM4, CCSM4, CMCC-CM, HadGEM2-A, MPI-ESM-MR) in tropical Pacific deep convection according to the ranking of model skill score. These models exhibit approximately identical convection anomaly patterns in both amplitude and spatial structure to the observation, which potentially might improve the representation of extratropical teleconnections with the tropical Pacific, especially for the CP El Niño (CPEN), EP El Niño (EPEN) and western CP (W-CP) patterns. Both evident atmospheric anomalies of CPEN and EPEN patterns over the NA/E sector and the northeastward propagating wave trains of W-CP pattern can be quite well simulated in the high-skilled models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Ungár, Tamás; Toth, Laszlo S.
The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less
Precambrian Secular Evolution of Oceanic Nickel Concentrations: An Update
NASA Astrophysics Data System (ADS)
Konhauser, K.; Pecoits, E.; Peacock, C.; Robbins, L. J.; Kappler, A.; Lalonde, S.
2014-12-01
Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to address nutrient limitations on early biological productivity. In 2009 we reported that secular trends in IF Ni/Fe ratios record a reduced flux of Ni to the oceans ca. 2.7 billion years ago, which we attribute to decreased eruption of Ni-rich ultramafic rocks1. We determined that dissolved Ni concentrations may have reached ~400 nM throughout much of the Archean, but dropped below ~200 nM by 2.5 Ga and to modern day values (~9 nM) by ~550 Ma. As Ni is a key metal cofactor in several enzymes of methanogens, its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. Here we provide an updated compilation of Ni concentrations and Ni/Fe ratios in Precambrian iron formations based on a greatly expanded (>3 fold) dataset. We frame our rock record compilation in the context of new experiments examining the partitioning and mobility of Ni during simulated diagenesis of Ni-doped iron formation mineral precursors, as well as a fresh look at Ni-Fe scaling relationships in IF vs. modern Fe-rich chemical sediments. While its potential effects on atmospheric oxygenation remains to be fully resolved2, our new results reaffirm the Paleoproterozoic Ni famine, whereby the enzymatic reliance of methanogens on a diminishing supply of volcanic Ni links mantle cooling to the trajectory of Earth surface biogeochemical evolution. Konhauser KO, et al. (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458: 750-753. Kasting JE (2013) What caused the rise of atmospheric O2? Chemical Geology 362: 13-25.
Cheng, Jian -Yih; Chan, Maria K. Y.; Lilley, Carmen M.
2016-09-26
Silicene on metal silicides poses promise for direct integration of silicene into electronic devices. The details of the metal silicide-silicene interface, however, may have significant effects on the electronic properties. In this work, the electronic properties of silicene on NiSi 2(111) and hydrogenated NiSi 2(111) (H:NiSi 2) substrates, as well as hydrogenated silicene (H:silicene) on a NiSi 2(111) substrate, were simulated using first principles methods. The preferred Si surface termination of NiSi 2 was determined through surface energy calculations, and the band structure and density of states (DOS) were calculated for the two-dimensional silicene and H:silicene layers. Hydrogenating NiSi 2more » lowered the binding energy between silicene and the substrate and resulting in partial decoupling of the electronic properties. Relaxed silicene on H:NiSi 2 showed a small band gap opening of 0.14 eV. Silicene on H:NiSi 2 also had a calculated electron effective mass of 0.08m 0 and Fermi velocity of 0.39×10 6 m/s, which are similar to the values for freestanding silicene. H:silicene on NiSi 2 retained its band structure and DOS compared to freestanding H:silicene. The band gap of H:silciene on NiSi 2 was 1.97 eV and is similar to freestanding H:silicene band gap of 2 eV. As a result, this research showed that hydrogenation may be a viable method for decoupling a silicene layer from a NiSi 2(111) substrate to tune its electronic properties.« less
NASA Astrophysics Data System (ADS)
Xu, Qingchuan
The purpose of this thesis is to show the technique of predicting thermodynamic and kinetic properties from first-principles using density functional theory (DFT) calculations, cluster expansion methods and Monte Carlo simulations instead of experiments. Two material systems are selected as examples: one is an interstitial system (Ti-H system) and another is a substitutional compound (B2-NiAl alloy). For Ti-H system, this thesis investigated hydride stability, exploring the role of configurational degrees of freedom, zero-point vibrational energy and coherency strains. The tetragonal gamma-TiH phase was predicted to be unstable relative to hcp alpha-Ti and fcc based delta-TiH2. Zero point vibrational energy makes the gamma phase even less stable. The coherency strains between hydride precipitates and alpha-Ti matrix stabilize gamma-TiH relative to alpha-Ti and delta-TiH2. We also found that hydrogen prefers octahedral sites at low hydrogen concentration and tetrahedral sites at high concentration. For B2-NiAl, this thesis investigated the point defects and various diffusion mechanisms. A low barrier collective hop was discovered that could mediate Al diffusion through the anti-structural-bridge (ASB) mechanism. We also found an alternative hop sequence for the migration of a triple defect and a six-jump-cycle than that proposed previously. Going beyond the mean field approximation, we found that the inclusion of interactions among point defects is crucial to predict the concentration of defect complexes. Accounting for interactions among defects and incorporating all diffusion mechanisms proposed for B2-NiAl in Monte Carlo simulation, we calculated tracer diffusion coefficients. For the first time, the relative importance of various diffusion mechanisms is revealed. The ASB hop is the dominant mechanism for Ni in Ni-rich alloy and for Al diffusion in Al-rich alloys. Other mechanisms also play a role to various extents. We also calculated the self and interdiffusion coefficients for B2-NiAl. We found in Al-rich alloys that the thermodynamic factor of Al is much greater than that of Ni while in Ni-rich alloys they are very similar. This difference in thermodynamic factors results in a much higher self-diffusion coefficient of Al compared to that of Ni in Al-rich alloys and also causes two different interdiffusion coefficients.
Corrosion resistance of NiTi in fluoride and acid environments.
Benyahia, Hicham; Ebntouhami, Mohamed; Forsal, Issam; Zaoui, Fatima; Aalloula, Elhoussine
2009-12-01
The aim of our study was to assess in the laboratory the electrochemical behavior of nickel-titanium alloy (NiTi) by simulating the aggressive conditions found in the mouth (notably fluoride and acidity) in order to determine its biocompatibility. The impact of fluoride and pH acid on the corrosion resistance of orthodontic NiTi was studied using classic electrochemical measurement techniques including follow-up over time of the corrosion potential, polarization measurements and impedance spectroscopy. In addition, scanning electron microscopy was used to evaluate the status of the alloy surface before and after immersion in the different media. The results demonstrated the particularly low corrosion resistance of NiTi alloy in the presence of fluorides. In an acidic environment, the alloy showed greater resistance thanks to the passivation phenomenon. The synergistic action of fluoride and ph Acid on NiTi corrosion was not clearly demonstrated. Copyright 2009 Collège Européen d'Orthodontie. Published by Elsevier Masson SAS.. All rights reserved.
Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...
2014-10-08
Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less
Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.
2014-01-01
The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534
Melting and glass transition for Ni clusters.
Teng, Yuyong; Zeng, Xianghua; Zhang, Haiyan; Sun, Deyan
2007-03-08
The melting of NiN clusters (N = 29, 50-150) has been investigated by using molecular dynamics (MD) simulations with a quantum corrected Sutton-Chen (Q-SC) many-body potential. Surface melting for Ni147, direct melting for Ni79, and the glass transition for Ni29 have been found, and those melting points are equal to 540, 680, and 940 K, respectively. It shows that the melting temperatures are not only size-dependent but also a symmetrical structure effect; in the neighborhood of the clusters, the cluster with higher symmetry has a higher melting point. From the reciprocal slopes of the caloric curves, the specific heats are obtained as 4.1 kB per atom for the liquid and 3.1 kB per atom for the solid; these values are not influenced by the cluster size apart in the transition region. The calculated results also show that latent heat of fusion is the dominant effect on the melting temperatures (Tm), and the relationship between S and L is given.
The millennium water vapour drop in chemistry-climate model simulations
NASA Astrophysics Data System (ADS)
Brinkop, Sabine; Dameris, Martin; Jöckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele
2016-07-01
This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop") and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM) EMAC (ECHAM/MESSy Atmospheric Chemistry Model). The model simulations differ with respect to the prescribed sea surface temperatures (SSTs) and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer-Dobson circulation (BDC). We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST) changes due to a coincidence with a preceding strong El Niño-Southern Oscillation event (1997/1998) followed by a strong La Niña event (1999/2000) and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO) in 2000. Correct (observed) SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution) is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics. Our free-running simulations do not capture the drop as observed, because a) the cold point temperature has a low bias and thus the water vapour variability is reduced and b) because they do not simulate the appropriate dynamical state. Large negative water vapour declines are also found in other years and seem to be a feature which can be found after strong combined El Niño/La Niña events if the QBO west phase during La Niña changes to the east phase.
Theoretical studies of aluminum and aluminide alloys using CALPHAD and first-principles approach
NASA Astrophysics Data System (ADS)
Jiang, Chao
Heat-treatable aluminum alloys have been widely used in the automobile and aerospace industries as structural materials due to their light weight and high strength. To study the age-hardening process in heat-treatable aluminum alloys, the Gibbs energies of the strengthening metastable phases, e.g. theta ' and theta″, are critical. However, those data are not included in the existing thermodynamic databases for aluminum alloys due to the semi-empirical nature of the CALPHAD approach. In the present study, the thermodynamics of the Al-Cu system, the pivotal age-hardening system, is remodeled using a combined CALPHAD and first-principles approach. The formation enthalpies and vibrational formation entropies of the stable and metastable phases in the Al-Cu system are provided by first-principles calculations. Special Quasirandom Structures (SQS's) are applied to model the substitutionally random fee and bee alloys. SQS's for binary bee alloys are developed and tested in the present study. Finally, a self-consistent thermodynamic description of the Al-Cu system including the two metastable theta″ and theta' phases is obtained. During welding of heat-treatable aluminum alloys, a detrimental phenomenon called constitutional liquation, i.e. the local eutectic melting of second-phase particles in a matrix at temperatures above the eutectic temperature but below the solidus of the alloy, may occur in the heat-affected zone (HAZ). In the present study, diffusion code DICTRA coupled with realistic thermodynamic and kinetic databases is used to simulate the constitutional liquation in the model Al-Cu system. The simulated results are in quantitative agreement with experiments. The critical heating rate to avoid constitutional liquation is also determined through computer simulations. Besides the heat-treatable aluminum alloys, intermetallic compounds based on transition metal aluminides, e.g. NiAl and FeAl, are also promising candidates for the next-generation of high-temperature structural materials for aerospace applications due to their high melting temperature and good oxidation resistance. Many important properties of B2 aluminides are governed by the existences of point defects. In the present study, Special Quasirandom Structures (SQS's) are developed to model non-stoichiometric B2 compounds containing large concentrations of constitutional point defects. The SQS's are then applied to study B2 NiAl. The first-principles SQS results provide formation enthalpies, equilibrium lattice parameters and elastic constants of B2 NiAl which agree satisfactorily with the existing experimental data in the literature. It is unambiguously shown that, at T = 0K and zero pressure, Ni vacancies and antisite Ni atoms are the energetically favorable point defects in Al-rich and Ni-rich B2 NiAl, respectively. Remarkably, it is predicted that high defect concentrations can lead to structural instability of B2 NiAl, which explains well the martensitic transformation observed in this compound at high Ni concentrations.
Nucleation of intragranular ferrite in Fe-Ni-P alloys
NASA Astrophysics Data System (ADS)
Narayan, C.; Goldstein, J. I.
1984-05-01
The nucleation of intragranular ferrite from austenite in Fe-Ni-P alloys was investigated in order to understand the development of the Widmanstätten pattern in iron meteorites. Alloys containing 5 to 10 wt pct Ni and 0 to 1 wt pct P were used to simulate iron meteorite compositions. In the isothermal and controlled cooling experiments the reaction path γ → α + γ serves only to nucleate ferrite along austenite grain boundaries. It is necessary for (FeNi)3P to be present within y grains in order to nucleate intragranular ferrite. The reaction path γ → γ + phosphide → α + γ + phosphide yields rod shaped ferrite nuclei that bear a near Kurdjumov-Sachs orientation relationship with the surrounding matrix. The precipitation of ferrite, both along grain boundaries and within the austenite grains, is suppressed in the absence of P.
NASA Astrophysics Data System (ADS)
Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika
2009-04-01
Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of trioctahedral Mg-clay minerals. Alternative models assuming other elements (Ni, Al, Fe) in addition to Mg in the second shell could not be fitted successfully. Aqueous concentration data were used to calculate the speciation of the leaching solutions. Saturation index (SI) calculations indicate undersaturation with respect to NiCO 3 and NiSO 4·7H 2O, but oversaturation with respect to β-Ni(OH) 2. The latter result is probably due to the omission of Ni borate and Ni silicate complexes in the speciation calculations, for which formation constants are not available. With the help of estimation techniques, we could infer that such complexes would dominate the Ni speciation and consequently reduce the SI below the saturation of β-Ni(OH) 2. The μ-XRF maps show that Cs is uniformly distributed in the MW glass, since no region with high Cs concentration could be detected. The Cs L III-edge μ-XAS spectra were all very similar independently of the degree of alteration, indicating similar coordination environments of Cs in the core regions of the glass as well as in the secondary clays. These spectra largely differ from that measured for pollucite (a potential secondary Cs-phase in altered glasses) implying that the coordination environments of Cs in the MW glass and in pollucite are fundamentally different. The present study shows that μ-XRF and μ-XAS are essential tools in determining the fate and the retention mechanisms of radionuclides released from nuclear waste during aqueous alteration. Our spectroscopic analyses allowed us to exclude formation of specific Ni and Cs secondary solids (e.g. nepouite, β-Ni(OH) 2, pollucite) during the aqueous alteration. Ni and Cs are instead distributed as trace elements in the alteration phases formed by major elements during the leaching process. Our results imply that solid solution and/or adsorption equilibria, rather than pure phase solubility equilibria, are the adequate chemical models to determine Ni and Cs aqueous concentrations in performance assessments for radioactive waste repositories.
Ab-initio Simulations of Molten Ni Alloys
2010-04-01
yielding trajectories that sample an equilibrium distribution corresponding to an ensemble with fixed particle number, volume and temperature (i.e... levitation and optical dilatometry they find a coefficient of thermal expansion of 1.2 × 10−4K−1 for Ni-25Al (at.%). Variations in molar volume with...results are in much better agreement with the results of non-contact den- sity experiments, such as gamma ray attenuation and electromagnetic levitation
Modeling Ni-Cd performance. Planned alterations to the Goddard battery model
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1986-01-01
The Goddard Space Flight Center (GSFC) currently has a preliminary computer model to simulate a Nickel Cadmium (Ni-Cd) performance. The basic methodology of the model was described in the paper entitled Fundamental Algorithms of the Goddard Battery Model. At present, the model is undergoing alterations to increase its efficiency, accuracy, and generality. A review of the present battery model is given, and the planned charges of the model are described.
Watanabe, Seiichi; Hoshino, Misaki; Koike, Takuto; Suda, Takanori; Ohnuki, Soumei; Takahashi, Heishichirou; Lam, Nighi Q
2003-01-01
We performed a dynamical-atomistic study of radiation-induced amorphization in the NiTi intermetallic compound using in situ high-resolution high-voltage electron microscopy and molecular dynamics simulations in connection with image simulation. Spatio-temporal fluctuations as non-equilibrium fluctuations in an energy-dissipative system, due to transient atom-cluster formation during amorphization, were revealed by the present spatial autocorrelation analysis.
NASA Astrophysics Data System (ADS)
Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Ruan, Liqun; Valiev, R. Z.
2011-04-01
NiTi alloy has a unique combination of mechanical properties, shape memory effects and superelastic behavior that makes it attractive for several biomedical applications. In recent years, concerns about its biocompatibility have been aroused due to the toxic or side effect of released nickel ions, which restricts its application as an implant material. Bulk ultrafine-grained Ni50.8Ti49.2 alloy (UFG NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study. A homogeneous and smooth SrO-SiO2-TiO2 sol-gel coating without cracks was fabricated on its surface by dip-coating method with the aim of increasing its corrosion resistance and cytocompatibility. Electrochemical tests in simulated body fluid (SBF) showed that the pitting corrosion potential of UFG NiTi was increased from 393 mV(SCE) to 1800 mV(SCE) after coated with SrO-SiO2-TiO2 film and the corrosion current density decreased from 3.41 μA/cm2 to 0.629 μA/cm2. Meanwhile, the sol-gel coating significantly decreased the release of nickel ions of UFG NiTi when soaked in SBF. UFG NiTi with SrO-SiO2-TiO2 sol-gel coating exhibited enhanced osteoblast-like cells attachment, spreading and proliferation compared with UFG NiTi without coating and CG NiTi.
Modeling, Simulation, Additive Manufacturing, and Experimental Evaluation of Solid and Porous NiTi
NASA Astrophysics Data System (ADS)
Taheri Andani, Mohsen
In recent years, shape memory alloys (SMAs) have entered a wide range of engineering applications in fields such as aerospace and medical applications. Nickel-titanium (NiTi) is the most commonly used SMAs due to its excellent functional characteristics (shape memory effect and superelasticity behavior). These properties are based on a solid-solid phase transformation between martensite and austenite. Beside these two characteristics, low stiffness, biocompatibility and corrosion properties of NiTi make it an attractive candidate for biomedical applications (e.g., bone plates, bone screws, and vascular stents). It is well know that manufacturing and processing of NiTi is very challenging. The functional properties of NiTi are significantly affected by the impurity level and due to the high titanium content, NiTi are highly reactive. Therefore, high temperature processed parts through methods such as melting and casting which result in increased impurity levels have inadequate structural and functional properties. Furthermore, high ductility and elasticity of NiTi, adhesion, work hardening and spring back effects make machining quite challenging. These unfavorable effects for machining cause significant tool wear along with decreasing the quality of work piece. Recently, additive manufacturing (AM) has gained significant attention for manufacturing NiTi. Since AM can create a part directly from CAD data, it is predicted that AM can overcome most of the manufacturing difficulties. This technique provides the possibility of fabricating highly complex parts, which cannot be processed by any other methods. Curved holes, designed porosity, and lattice like structures are some examples of mentioned complex parts. This work investigates manufacturing superelastic NiTi by selective laser melting (SLM) technique (using PXM by Phenix/3D Systems). An extended experimental study is conducted on the effect of subsequent heat treatments with different aging conditions on phase transformation temperatures of the manufactured parts. To this end both phase transformation and mechanical behavior of the AM parts are studied. Moreover, the application of additive manufacturing to develop NiTi components with desired stiffness by introducing engineered porosity is studied. To this end, a unit cell made of two interconnecting struts is used to generate the CAD files for a series of porous structures with six different levels of porosity in the range of 20% to 82%. Finite element analyses are conducted to examine the stress-strain behavior of the fabricated structures under loading. To validate the simulations, uniaxial compression tests are performed on three NiTi samples with three different levels of porosity (32%, 45%, and 58%). The experimental data closely match with the analytical results. The findings of this study indicate that introducing porosity to a NiTi structure results in a significant drop in the stiffness of the component. These results pave the way for designing porous NiTi structures with the desired level of stiffness.
NASA Astrophysics Data System (ADS)
Asta, Mark; Morgan, Dane; Hoyt, J. J.; Sadigh, Babak; Althoff, J. D.; de Fontaine, D.; Foiles, S. M.
1999-06-01
Structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys have been studied by Monte Carlo and molecular-dynamics simulations based upon three different embedded-atom method (EAM) interatomic potentials, namely those due to Foiles and Daw (FD) [J. Mater. Res. 2, 5 (1987)], Voter and Chen (VC) [in Characterization of Defects in Materials, edited by R. W. Siegel et al. MRS Symposia Proceedings. No. 82 (Materials Research Society, Pittsburgh, 1987), p.175] and Ludwig and Gumbsch (LG) [Model. Simul. Mater. Sci. Eng. 3, 533 (1995)]. We present detailed comparisons between calculated results and experimental data for structure factors, atomic volumes, enthalpies of mixing, activities, and viscosities. Calculated partial structure factors are found to be in semiquantitative agreement with published neutron scattering measurements for Ni20Al80 alloys, indicating that short-range order in the liquid phase is qualitatively well described. Calculated thermodynamic properties of mixing are found to agree very well with experimental data for Ni compositions greater than 75 atomic %, while for alloys richer in Al the magnitudes of the enthalpies and entropies of mixing are significantly underestimated. The VC and LG potentials give atomic densities and viscosities in good agreement with experiment for Ni-rich compositions, while FD potentials consistently underestimate both properties at all concentrations. The results of this study demonstrate that VC and LG potentials provide a realistic description of the thermodynamic and atomic transport properties for NixAl1-x liquid alloys with x>=0.75, and point to the limitations of EAM potentials for alloys richer in Al.
Irradiation-induced damage evolution in concentrated Ni-based alloys
Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...
2017-06-06
Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less
Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa
2015-08-01
The aim of this work was to assess the suitability of Miscanthus × giganteus and Spartina pectinata link to Cu, Ni, and Zn phytoremediation. A 2-year microplot experiment with the tested grasses growing on metal-contaminated soil was carried out. Microplots with cement borders, measuring 1 × 1 × 1m, were filled with Haplic Luvisols soil. Simulated soil contamination with Cu, Ni, and Zn was introduced in the following doses in mg kg(-1): 0-no metals, Cu1-100, Cu2-200, Cu3-400, Ni1-60, Ni2-100, Ni3-240, Zn1-300, Zn2-600, and Zn3-1200. The phytoremediation potential of grasses was evaluated using a tolerance index (TI), bioaccumulation factor (BF), bioconcentration factor (BCF), and translocation factor (TF). S. pectinata showed a higher tolerance to soil contamination with Cu, Ni, and Zn compared to M. × giganteus. S. pectinata was found to have a high suitability for phytostabilization of Zn and lower suitability of Cu and Ni. M. × giganteus had a lower phytostabilization potential than S. pectinata. The suitability of both grasses for Zn phytoextraction depended on the age of the plants. Both grasses were not suitable for Cu and Ni phytoextraction. The research showed that one-season studies were not valuable for fully assessing the phytoremediation potential of perennial plants.
Irradiation-induced damage evolution in concentrated Ni-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou
Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less
NASA Astrophysics Data System (ADS)
Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.
2018-04-01
Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.
Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy
Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit
2011-01-01
Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641
NASA Astrophysics Data System (ADS)
Sun, Tao; Xue, Ning; Liu, Chao; Wang, Chao; He, Jin
2015-11-01
In this investigation, (Si, O, N)/(Ti, O, N)/Ti composite coating was synthesized on a NiTi shape memory alloy (SMA) substrate (50.8 at.% Ni) via plasma immersion ion implantation and deposition (PIIID) followed by magnetron sputtering, with the aim of promoting bioactivity and biocompatibility of NiTi SMAs. Nano featured (Si, O, N)/(Ti, O, N)/Ti coating was approximate 0.84 ± 0.05 μm in thickness, and energy dispersive X-ray (EDX) spectroscopy showed that Ni element was depleted from the surface of coated samples. X-ray diffraction (XRD) did not identify the phase composition of the (Si, O, N)/(Ti, O, N)/Ti coating, probably due to its thin thickness and poor crystalline resulting from low-temperature coating processes (<200 °C). X-ray photoelectron spectroscopy (XPS) analyses confirmed that a Ni-free surface was formed and Si element was incorporated into the composite coating via the magnetron sputtering process. Additionally, phase transformation behaviors of uncoated and coated NiTi SMA samples were characterized using differential scanning calorimetry (DSC). Wear and corrosion resistance of uncoated and coated NiTi SMA samples were evaluated using ball-on-disc tests and potentio-dynamic polarization curves, respectively. The (Si, O, N)/(Ti, O, N)/Ti coated NiTi SMA samples showed enhanced wear and corrosion resistance. Furthermore, the (Si, O, N)/(Ti, O, N)/Ti composite coating facilitated apatite formation in simulated body fluid (SBF) and rendered NiTi SMA bioactivity.
NASA Astrophysics Data System (ADS)
Qiao, C. Y.; Wei, H. L.; Ma, C. W.; Zhang, Y. L.; Wang, S. S.
2015-07-01
Background: The isobaric yield ratio difference (IBD) method is found to be sensitive to the density difference of neutron-rich nucleus induced reaction around the Fermi energy. Purpose: An investigation is performed to study the IBD results in the transport model. Methods: The antisymmetric molecular dynamics (AMD) model plus the sequential decay model gemini are adopted to simulate the 140 A MeV 58 ,64Ni +9Be reactions. A relative small coalescence radius Rc= 2.5 fm is used for the phase space at t = 500 fm/c to form the hot fragment. Two limitations on the impact parameter (b 1 =0 -2 fm and b 2 =0 -9 fm) are used to study the effect of central collisions in IBD. Results: The isobaric yield ratios (IYRs) for the large-A fragments are found to be suppressed in the symmetric reaction. The IBD results for fragments with neutron excess I = 0 and 1 are obtained. A small difference is found in the IBDs with the b 1 and b 2 limitations in the AMD simulated reactions. The IBD with b 1 and b 2 are quite similar in the AMD + GEMINI simulated reactions. Conclusions: The IBDs for the I =0 and 1 chains are mainly determined by the central collisions, which reflects the nuclear density in the core region of the reaction system. The increasing part of the IBD distribution is found due to the difference between the densities in the peripheral collisions of the reactions. The sequential decay process influences the IBD results. The AMD + GEMINI simulation can better reproduce the experimental IBDs than the AMD simulation.
Exploration of nucleoprotein α-MoRE and XD interactions of Nipah and Hendra viruses.
Shang, Xu; Chu, Wenting; Chu, Xiakun; Xu, Liufang; Longhi, Sonia; Wang, Jin
2018-04-24
Henipavirus, including Hendra virus (HeV) and Nipah virus (NiV), is a newly discovered human pathogen genus. The nucleoprotein of Henipavirus contains an α-helical molecular recognition element (α-MoRE) that folds upon binding to the X domain (XD) of the phosphoprotein (P). In order to explore the conformational dynamics of free α-MoREs and the underlying binding-folding mechanism with XD, atomic force field-based and hybrid structure-based MD simulations were carried out. In our empirical force field-based simulations, characteristic structures and helicities of α-MoREs reveal the co-existence of partially structured and disordered conformations, as in the case of the well characterized cognate measles virus (MeV) α-MoRE. In spite of their overall similarity, the two α-MoREs display subtle helicity differences in their C-terminal region, but much different from that of MeV. For the α-MoRE/XD complexes, the results of our hybrid structure-based simulations provide the coupled binding-folding landscapes, and unveil a wide conformational selection mechanism at early binding stages, followed by a final induce-fit mechanism selection process. However, the HeV and NiV complexes have a lower binding barrier compared to that of MeV. Moreover, the HeV α-MoRE/XD complex shows much less coupling effects between binding and folding compared to that from both NiV and MeV. Our analysis revealed that contrary to NiV and MeV, the N- and C-terminal regions of the HeV α-MoRE maintains a low helicity also in the bound form.
NASA Astrophysics Data System (ADS)
Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Valiev, R. Z.
2011-08-01
Bulk ultrafine-grained Ni 50.8Ti 49.2 alloy (UFG-NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study, and to further improve its surface biocompatibility, surface modification techniques including sandblasting, acid etching and alkali treatment were employed to produce either irregularly roughened surface or microporous surface or hierarchical porous surface with bioactivity. The effect of the above surface treatments on the surface roughness, wettability, corrosion behavior, ion release, apatite forming ability and cytocompatibility of UFG-NiTi alloy were systematically investigated with the coarse-grained NiTi alloy as control. The pitting corrosion potential ( Epit) was increased from 393 mV (SCE) to 704 mV (SCE) with sandblasting and further increased to 1539 mV (SCE) with following acid etching in HF/HNO 3 solution. All the above surface treatment increased the apatite forming ability of UFG-NiTi in varying degrees when soaked them in simulated body fluid (SBF). Meanwhile, both sandblasting and acid etching could promote the cytocompatibility for osteoblasts: sandblasting enhanced cell attachment and acid etching increased cell proliferation. The different corrosion behavior, apatite forming ability and cellular response of UFG-NiTi after different surface modifications are attributed to the topography and wettability of the resulting surface oxide layer.
Comparative study of local atomic structures in Zr2CuxNi1-x (x = 0, 0.5, 1) metallic glasses
NASA Astrophysics Data System (ADS)
Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.
2015-11-01
Extensive analysis has been performed to understand the key structural motifs accounting for the difference in glass forming ability in the Zr-Cu and Zr-Ni binary alloy systems. Here, the reliable atomic structure models of Zr2CuxNi1-x (x = 0, 0.5, 1) are constructed using the combination of X-ray diffraction experiments, ab initio molecular dynamics simulations and a constrained reverse Monte Carlo method. We observe a systematic variation of the interatomic distance of different atomic pairs with respect to the alloy composition. The ideal icosahedral content in all samples is limited, despite the high content of five-fold symmetry motifs. We also demonstrate that the population of Z-clusters in Zr2Cu glass is much higher than that in the Zr2Ni and Zr2Cu0.5Ni0.5 samples. And Z12 ⟨0, 0, 12, 0⟩ Voronoi polyhedra clusters prefer to form around Cu atoms, while Ni-centered clusters are more like Z11 ⟨0, 2, 8, 1⟩ clusters, which is less energetically stable compared to Z12 clusters. These two different structural properties may account for the higher glass forming ability of Zr2Cu alloy than that of Zr2Ni alloy.
2012-08-01
AFRL-RX-WP-TP-2012-0412 VACUUM LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS...LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS: THERMAODYNAMIC CONSIDERATIONS (PREPRINT) 5a...have examined fatigue growth of surface cracks in vacuum to simulate sub-surface growth in Ti- alloys and Ni - base superalloys. Even with the highest
NASA Astrophysics Data System (ADS)
Tanikawa, Ataru
2018-05-01
We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.
NASA Astrophysics Data System (ADS)
Rankin, Drew J.; Jiang, Jin
2011-04-01
Verification and validation (V&V) of safety control system quality and performance is required prior to installing control system hardware within nuclear power plants (NPPs). Thus, the objective of the hardware-in-the-loop (HIL) platform introduced in this paper is to verify the functionality of these safety control systems. The developed platform provides a flexible simulated testing environment which enables synchronized coupling between the real and simulated world. Within the platform, National Instruments (NI) data acquisition (DAQ) hardware provides an interface between a programmable electronic system under test (SUT) and a simulation computer. Further, NI LabVIEW resides on this remote DAQ workstation for signal conversion and routing between Ethernet and standard industrial signals as well as for user interface. The platform is applied to the testing of a simplified implementation of Canadian Deuterium Uranium (CANDU) shutdown system no. 1 (SDS1) which monitors only the steam generator level of the simulated NPP. CANDU NPP simulation is performed on a Darlington NPP desktop training simulator provided by Ontario Power Generation (OPG). Simplified SDS1 logic is implemented on an Invensys Tricon v9 programmable logic controller (PLC) to test the performance of both the safety controller and the implemented logic. Prior to HIL simulation, platform availability of over 95% is achieved for the configuration used during the V&V of the PLC. Comparison of HIL simulation results to benchmark simulations shows good operational performance of the PLC following a postulated initiating event (PIE).
Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal
NASA Astrophysics Data System (ADS)
Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong
2018-02-01
The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.
Degradation of orthodontic wires under simulated cariogenic and erosive conditions.
Jaber, Laura Cavalcante Lima; Rodrigues, José Augusto; Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso
2014-01-01
This study examined the effect of cariogenic and erosive challenges (CCs and ECs, respectively) on the degradation of copper-nickel-titanium (CuNiTi) orthodontic wires. Sixty wire segments were divided into four treatment groups and exposed to CCs, ECs, artificial saliva, or dry storage (no-treatment control). CC and EC were simulated using a demineralizing solution (pH 4.3) and a citric acid solution (pH 2.3), respectively. Following treatment, the average surface roughness (Ra) of the wires was assessed, and friction between the wires and a passive self-ligating bracket was measured. CuNiTi wires subjected to ECs exhibited significantly higher Ra values than did those that were stored in artificial saliva. In contrast, surface roughness was not affected by CCs. Finally, friction between the treated wires and brackets was not affected by ECs or CCs. Our results indicate that CuNiTi orthodontic wires may suffer degradation within the oral cavity, as ECs increased the surface roughness of these wires. However, rougher surfaces did not increase friction between the wire and the passive self-ligating bracket.
Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi
NASA Technical Reports Server (NTRS)
Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.
2011-01-01
A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.
Mesgouez, C; Rilliard, F; Matossian, L; Nassiri, K; Mandel, E
2003-03-01
The aim of this study was to determine the influence of operator experience on the time needed for canal preparation when using a rotary nickel-titanium (Ni-Ti) system. A total of 100 simulated curved canals in resin blocks were used. Four operators prepared a total of 25 canals each. The operators included practitioners with prior experience of the preparation technique, and practitioners with no experience. The working length for each instrument was precisely predetermined. All canals were instrumented with rotary Ni-Ti ProFile Variable Taper Series 29 engine-driven instruments using a high-torque handpiece (Maillefer, Ballaigues, Switzerland). The time taken to prepare each canal was recorded. Significant differences between the operators were analysed using the Student's t-test and the Kruskall-Wallis and Dunn nonparametric tests. Comparison of canal preparation times demonstrated a statistically significant difference between the four operators (P < 0.001). In the inexperienced group, a significant linear regression between canal number and preparation time occurred. Time required for canal preparation was inversely related to operator experience.
Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S
2015-03-24
Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romander, C. M.; Cagliostro, D. J.
Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-sec hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, an upper internals structure (UIS), and, in the more complex models SM 4 and SM 5, a Ni 200 thermal liner and core support structure. Water simulated the liquid sodium coolant and a low-density explosive simulated the HCDA loads.« less
Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...
2017-03-07
Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less
Onset of phase separation in the double perovskite oxide La2MnNiO6
NASA Astrophysics Data System (ADS)
Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun; Du, Yingge; Droubay, Timothy; Chambers, Scott A.
2018-04-01
Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1-5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch at the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.
Coulomb Excitation of the 64Ni Nucleus and Application of Inverse Kinematics
NASA Astrophysics Data System (ADS)
Greaves, Beau; Muecher, Dennis; Ali, Fuad A.; Drake, Tom; Bildstein, Vinzenz; Berner, Christian; Gernhaeuser, Roman; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.
2017-09-01
In this contribution, we present new data on the semi-magic 64Ni nucleus, close to the N =40 harmonic oscillator shell gap. Recent studies suggest a complicated existence of shape coexistence in 68Ni, likely caused by type-II shell evolutions. The region studied here thus might define the ``shore'' of the region of more deformed nuclei in the Island of Inversion below 68Ni. At the Maier-Leibnitz-Laboratory (MLL) in Munich, a beam of 64Ni was excited using Coulomb excitation. The high-granularity MINIBALL HPGe array and a segmented silicon strip detector were used to identify gamma decays in 64Ni. Doppler-shifted attenuation method (DSAM) analysis was applied to the experimental data acquired to resolve the low-lying excited states and acquire a lifetime measurement based on Geant4 simulations of the first excited 2 + state, clarifying the previously conflicting results. Furthermore, we show DSAM data following transfer reactions in inverse kinematics. This new method has the potential to provide insight into tests of ab-initio shell model calculations in the sd-pf shell and for the study of nuclear reaction rates. Supported under NSERC SAPIN-2016-00030.
Hardware-in-the-Loop Power Extraction Using Different Real-Time Platforms (PREPRINT)
2008-07-01
engine controller ( FADEC ). Incorporating various transient subsystem level models into a complex modeling tool can be a challenging process when each...used can also be modified or replaced as appropriate. In its current configuration, the generic turbine engine model’s FADEC runs primarily on a...simulation in real-time, two platforms were tested: dSPACE and National Instruments’ (NI) LabVIEW Real-Time. For both dSPACE and NI, the engine and FADEC
SUPL support for mobile devices
NASA Astrophysics Data System (ADS)
Narisetty, Jayanthi; Soghoyan, Arpine; Sundaramurthy, Mohanapriya; Akopian, David
2012-02-01
Conventional Global Positioning System (GPS) receivers operate well in open-sky environments. But their performance degrades in urban canyons, indoors and underground due to multipath, foliage, dissipation, etc. To overcome such situations, several enhancements have been suggested such as Assisted GPS (A-GPS). Using this approach, orbital parameters including ephemeris and almanac along with reference time and coarse location information are provided to GPS receivers to assist in acquisition of weak signals. To test A-GPS enabled receivers high-end simulators are used, which are not affordable by many academic institutions. This paper presents an economical A-GPS supplement for inexpensive simulators which operates on application layer. Particularly proposed solution is integrated with National Instruments' (NI) GPS Simulation Toolkit and implemented using NI's Labview environment. This A-GPS support works for J2ME and Android platforms. The communication between the simulator and the receiver is in accordance with the Secure User Plane Location (SUPL) protocol encapsulated with Radio Resource Location Protocol (RRLP) applies to Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) cellular networks.
Li, Yang; Li, JiaHao; Liu, BaiXin
2015-10-28
Nucleation is one of the most essential transformation paths in phase transition and exerts a significant influence on the crystallization process. Molecular dynamics simulations were performed to investigate the atomic-scale nucleation mechanisms of NiTi metallic glasses upon devitrification at various temperatures (700 K, 750 K, 800 K, and 850 K). Our simulations reveal that at 700 K and 750 K, nucleation is polynuclear with high nucleation density, while at 800 K it is mononuclear. The underlying nucleation mechanisms have been clarified, manifesting that nucleation can be induced either by the initial ordered clusters (IOCs) or by the other precursors of nuclei evolved directly from the supercooled liquid. IOCs and other precursors stem from the thermal fluctuations of bond orientational order in supercooled liquids during the quenching process and during the annealing process, respectively. The simulation results not only elucidate the underlying nucleation mechanisms varied with temperature, but also unveil the origin of nucleation. These discoveries offer new insights into the devitrification mechanism of metallic glasses.
Pecho, Omar M.; Stenzel, Ole; Iwanschitz, Boris; Gasser, Philippe; Neumann, Matthias; Schmidt, Volker; Prestat, Michel; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz
2015-01-01
This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 °C. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φeff), constriction factor (β), and tortuosity (τ). The effective conductivity (σeff) is described as the product of intrinsic conductivity (σ0) and the so-called microstructure-factor (M): σeff = σ0 × M. Two different methods are used to evaluate the M-factor: (1) by prediction using a recently established relationship, Mpred = εβ0.36/τ5.17, and (2) by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (Msim). Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers. PMID:28793523
Design and simulation of betavoltaic angle sensor Based on ⁶³Ni-Si.
Ghasemi Nejad, Gholam Reza; Rahmani, Faezeh
2016-01-01
A theoretical design and simulation of betavoltaic angle sensor (beta-AS) based on (63)Ni-Si using MCNP code is presented in this article. It can measure the full angle of 0-360° in the temperature range of 233-353 K. Beta-AS is composed of semicircular (63)Ni as the beta source, which rotates along the circular (four-quadrant) surface of Si as a semiconductor (in p-n structure), so that the change in the source angle in relation to Si surface can be measured based on the changes in V(oc) observed in each quadrant of Si. For better performance, characteristics of Si and (63)Ni have been optimized: N(D) and N(A) values of 8e19 and 4e18 cm(-3) (donor and acceptor doping concentration in Si, respectively), source thickness and activity of 1.5 µm and 18 mCi, respectively. The relation between angle and V(oc) is also investigated. The maximum difference between measured and real values of angle (the worst case, i.e., 0.18° for the angle of 45°) occurs at 233 K. It has been shown that sensitivity of the sensor decreases with an increase of angle. The results also show that the change in activity does not affect the sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ceyhanli, K T; Kamaci, A; Taner, M; Erdilek, N; Celik, D
2015-01-01
The aim of this study was to evaluate the shaping effects of two M-wire and two traditional nickel-titanium (NiTi) rotary systems in simulated S-shaped resin canals. Forty simulated S-shaped canals in resin blocks were instrumented with two traditional (ProTaper, Sendoline S5) and two M-wire (WaveOne, GT series X) NiTi systems according to the manufacturers' instructions. Ten resin blocks were used for each system. Pre- and post-instrumentation images were captured using a stereomicroscope and superimposed with an image program. Canal transportation, material removal, and aberrations were evaluated and recorded as numeric parameters. Data were analyzed using one-way ANOVA and post-hoc Tukey tests with a 95% confidence interval. There were significant differences between systems in terms of transportation and material removal (P<0.05). Coronal danger zone was the most common aberration. Within the limits of this ex vivo study, it was found that the manufacturing methods (M-wire or traditional NiTi) and kinematics (rotary or reciprocating motion) did not affect the shaping abilities of the systems. The extended file designs of highly tapered NiTi systems (ProTaper, WaveOne) resulted in greater deviations from the original root canal trace and more material removal when compared to less tapered systems (Sendoline S5, GT series X).
Root-canal shaping with manual and rotary Ni-Ti files performed by students.
Sonntag, D; Delschen, S; Stachniss, V
2003-11-01
To investigate root-canal shaping with manual and rotary Ni-Ti files performed by students. Thirty undergraduate dental students prepared 150 simulated curved root canals in resin blocks with manual Ni-Ti files with a stepback technique and 450 simulated curved canals with rotary Ni-Ti files with a crowndown technique. Incidence of fracture, preparation length, canal shape and preparation time were investigated. Questionnaires were then issued to the students for them to note their experience of the two preparation methods. Zips and elbows occurred significantly (P < 0.001) less frequently with rotary than with manual preparation. The correct preparation length was achieved significantly (P < 0.05) more often with rotary files than with manual files. Instrument fractures were recorded in only 1.3% of cases with both rotary and manual preparation. The mean time required for manual preparation was significantly (P < 0.001) longer than that required for rotary preparation. Prior experience with a hand preparation technique was not reflected in an improved quality of the subsequent rotary preparation. Approximately 83% of the students claimed to have a greater sense of security in rotary than in manual preparation. Overall 50% felt that manual and engine-driven preparation should be given equal status in undergraduate dental education. Inexperienced operators achieved better canal preparations with rotary instruments than with manual files. No difference in fracture rate was recorded between the two systems.
Tafen, De Nyago
2015-02-14
The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni 89.4Fe 10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of themore » alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less
Estimation of Transformation Temperatures in Ti-Ni-Pd Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Narayana, P. L.; Kim, Seong-Woong; Hong, Jae-Keun; Reddy, N. S.; Yeom, Jong-Taek
2018-03-01
The present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti-Ni-Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti-Ni-Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti-rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.
Battery testing at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
1993-03-01
Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.
Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.
NASA Astrophysics Data System (ADS)
Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng
2009-06-01
Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.
Progress in the Modeling of NiAl-Based Alloys Using the BFS Method
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita
1997-01-01
The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.
NASA Astrophysics Data System (ADS)
Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Thomas, Zachary; Alal, Orhan; Karaca, Haluk E.; Er, Ali O.
2017-02-01
The surfaces of Ni50Ti50 shape memory alloys (SMAs) were patterned by laser scribing. This method is more simplistic and efficient than traditional indentation techniques, and has also shown to be an effective method in patterning these materials. Different laser energy densities ranging from 5 mJ/pulse to 56 mJ/pulse were used to observe recovery on SMA surface. The temperature dependent heat profiles of the NiTi surfaces after laser scribing at 56 mJ/pulse show the partially-recovered indents, which indicate a "shape memory effect (SME)" Experimental data is in good agreement with theoretical simulation of laser induced shock wave propagation inside NiTi SMAs. Stress wave closely followed the rise time of the laser pulse to its peak values and initial decay. Further investigations are underway to improve the SME such that the indents are recovered to a greater extent.
An X-ray absorption spectroscopy study of the interactions of Ni2+ with yeast enolase.
Wang, S; Scott, R A; Lebioda, L; Zhou, Z H; Brewer, J M
1995-05-15
An x-ray absorption spectroscopy (XAS) study was carried out at pH 7.6 on solutions of Ni2+ and yeast enolase depleted of its physiological cofactor (Mg2+) in the presence or absence of substrate/product, the very strongly bound competitive inhibitor 2-phosphonoacetohydroxamate and Mg2+. Both "conformational" and "catalytic" Ni2+ are distorted octahedral in coordination, in agreement with several spectroscopic studies but in contrast to the coordination in the crystal at pH 6.0. The data are consistent with direct coordination of what must be the catalytic Ni2+ to the phosphate of the substrate, in agreement with some previous data but in disagreement with recent interpretations by other workers. The ligands around the metal ions obtained from the x-ray structure give simulated XAS spectra in good agreement with the observed spectra.
Experimental Investigation on the Mechanical Instability of Superelastic NiTi Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Xiao, Yao; Zeng, Pan; Lei, Liping
2016-09-01
In this paper, primary attention is paid to the mechanical instability of superelastic NiTi shape memory alloy (SMA) during localized forward transformation at different temperatures. By inhibiting the localized phase transformation, we can obtain the up-down-up mechanical response of NiTi SMA, which is closely related to the intrinsic material softening during localized martensitic transformation. Furthermore, the material parameters of the up-down-up stress-strain curve are extracted, in such a way that this database can be utilized for simulation and validation of the theoretical analysis. It is found that during forward transformation, the upper yield stress, lower yield stress, Maxwell stress, and nucleation stress of NiTi SMA exhibit linear dependence on temperature. The relation between nucleation stress and temperature can be explained by the famous Clausius-Clapeyron equation, while the relation between upper/lower yield stress and temperature lacks theoretical study, which needs further investigation.
NASA Astrophysics Data System (ADS)
Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng
2015-12-01
To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results.To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06016h
Chemsheet as a Simulation Platform for Pyrometallurgical Processes
NASA Astrophysics Data System (ADS)
Penttilä, Karri; Salminen, Justin; Tripathi, Nagendra; Koukkari, Pertti
ChemSheet is a thermodynamic multi-phase multi-component simulation software, which is used as an Add-in in Microsoft Excel. In ChemSheet, the unique Constrained Gibbs free energy method can be used to include dynamic constraints and reaction rates of kinetically slow reactions, yet retaining full consistency of the multiphase thermodynamic model. With appropriate data, ChemSheet models can be used to simulate reactors and processes in all fields of thermochemistry. The presentation will cover off-line modeling of Cu-flash smelters and advanced thermochemical simulation coupled with on-line process control of Cu-Ni smelting. The presentation will describe an off-line model of Cu-smelter based on critically assessed properties of the Al-Ca-Cu-Fe-O-S-Si -system (slag, matte and liquid metal) by using the quasichemical model. A four-stage reactor model (shaft, settler, uptake and bath) is used for optimizing process parameters and feed particle distribution. As a second example, an advanced thermochemical model of a Ni-Cu sulphide smelting plant will be given. The on-line model covers the operation of treating Ni-Cu-S concentrate via roasters, electric furnace and converters, producing a high grade Bessemer matte product for further refining. The model integrates the thermochemistry of the roasters and electric furnace, and predicts important process parameters such as degree of sulphur elimination in the fluid-bed roasters, matte grade, iron metallization, slag losses and the iron to silica ratio in the electric furnace slag. Both models can be used to assist process engineers and operators in calculating the addition rates of coke, flux and air for different feed scenarios.
NASA Astrophysics Data System (ADS)
Sadeghi, Meysam; Yekta, Sina; Ghaedi, Hamed
2017-04-01
In the current research, MCM-41 was successfully prepared by the sol-gel method and lead ions (Pb2+) were loaded in the synthesized MCM-41 mesoporous structure to prepare Pb-MCM-41. The ZnO-NiO nanoparticles (ZnNiO2 NPs) as a type of bimetallic oxides were then dispersed and deposited on the surface of Pb-MCM-41 through indirect method to gain the final Pb-MCM-41/ZnNiO2 nanocomposite adsorbent. The characterization study of samples carried out by SEM-EDAX, AFM, XRD and FTIR techniques. Pb-MCM-41/ZnNiO2 nanocomposite as a destructive adsorbent has been proposed for the first time for the decontamination process of chloroethyl phenyl sulfide (CEPS), a mimic of bis(chloroethyl) sulfide (i.e. sulfur mustard), and were confirmed using GC-FID, GC-MS and FTIR instruments. Besides, the effect of different experimental parameters including contact time, catalyst dose and initial concentration of CEPS on the decontamination efficiency of this agent simulant were also perused. The GC-FID analysis results verified that the maximum decontamination of CEPS was more than 90% yield. The parameters such as: contact time (240 min), adsorbent dose (0.4 g/L), and initial concentration (10 mg/L) were investigated and considered as optimized conditions for the noted reaction. Moreover, the reaction kinetic information was surveyed by employing first order model. The values of the rate constant (k) and half-life (t1/2) were determined as 0.0128 min-1 and 54.1406 min, and 0.0012 min-1 and 577.5 min for CEPS and its hydrolysis/elimination products, respectively. Data demonstrates the role of the hydrolysis and elimination products, i.e. hydroxy ethyl phenyl sulfide (HEPS) and phenyl vinyl sulfide (PVS) in the reaction of CEPS with Pb-MCM-41/ZnNiO2 nanocomposite and GC-MS analysis was exerted to identify and quantify simulant destruction products. It was clarified that Pb-MCM-41/ZnNiO2 nanocomposite gains a high capacity and potential for the effective decontamination of CEPS.
Saha, Chayan Kumar; Mahbub Hasan, Md; Saddam Hossain, Md; Asraful Jahan, Md; Azad, Abul Kalam
2017-06-01
To explore a common B- and T-cell epitope-based vaccine that can elicit an immune response against encephalitis causing genus Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV). Membrane proteins F, G and M of HeV and NiV were retrieved from the protein database and subjected to different bioinformatics tools to predict antigenic B-cell epitopes. Best B-cell epitopes were then analyzed to predict their T-cell antigenic potentiality. Antigenic B- and T-cell epitopes that shared maximum identity with HeV and NiV were selected. Stability of the selected epitopes was predicted. Finally, the selected epitopes were subjected to molecular docking simulation with HLA-DR to confirm their antigenic potentiality in silico. One epitope from G proteins, one from M proteins and none from F proteins were selected based on their antigenic potentiality. The epitope from the G proteins was stable whereas that from M was unstable. The M-epitope was made stable by adding flanking dipeptides. The 15-mer G-epitope (VDPLRVQWRNNSVIS) showed at least 66% identity with all NiV and HeV G protein sequences, while the 15-mer M-epitope (GKLEFRRNNAIAFKG) with the dipeptide flanking residues showed 73% identity with all NiV and HeV M protein sequences available in the database. Molecular docking simulation with most frequent MHC class-II (MHC II) and class-I (MHC I) molecules showed that these epitopes could bind within HLA binding grooves to elicit an immune response. Data in our present study revealed the notion that the epitopes from G and M proteins might be the target for peptide-based subunit vaccine design against HeV and NiV. However, the biochemical analysis is necessary to experimentally validate the interaction of epitopes individually with the MHC molecules through elucidation of immunity induction. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Franco, A. C.; Gruber, N.; Munnich, M.
2016-02-01
The Humboldt Current System (HCS) is one of the most productive ecosystems in the world. This high productivity is supported by a large input of nutrients from the subsurface layers to the surface due to year-round upwelling. However, upwelling also supplies waters with low pH and low aragonite saturation state potentially affecting many organisms, especially those that calcify. The influence, extent and source of upwelled water varies substantially on interannual timescales in association with the El Niño/Southern Oscillation (ENSO) phenomenon, accentuating productivity during La Niña events and dampening it during El Niño, altering the dynamics of the whole ecosystem. On top of this natural variability, the continuing acidification of the upper ocean in response to raising atmospheric CO2 may decrease pH further and increase the volume of water corrosive to aragonite in this region, leading to a progressively smaller suitable habitat for sensitive organisms. Here we use an eddy-resolving basin-scale ocean model that covers the whole Pacific Ocean with higher resolution near the coast off South America ( 6 km) to investigate the role of ENSO events on low aragonite saturation episodes and productivity variations. We compare 2 simulations: a hindcast simulation that spans the last 30 years and a future scenario that represents year 2090 (following IPCC's "business-as-usual" scenario). We found that in the region off Peru, the sole effect of increasing atmospheric CO2 to 840 matm shoals the annual average aragonite saturation depth to 30 m, creating a year round presence of aragonite undersaturated water in the euphotic zone. We then contrast the effect on primary productivity and the aragonite saturation state of at least eight El Niño and eight La Niña episodes that have been reported for the past 30 years, in an attempt to answer the question: does habitat availability under future ocean acidification will resemble a pervasive La Niña-like state?
Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.
Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit
2011-04-01
A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO
NASA Astrophysics Data System (ADS)
Garfinkel, Chaim I.; Gordon, Amit; Oman, Luke D.; Li, Feng; Davis, Sean; Pawson, Steven
2018-04-01
A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño-Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer-Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.
NASA Astrophysics Data System (ADS)
Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat
2017-10-01
Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.
Simple dynamical models capturing the key features of the Central Pacific El Niño.
Chen, Nan; Majda, Andrew J
2016-10-18
The Central Pacific El Niño (CP El Niño) has been frequently observed in recent decades. The phenomenon is characterized by an anomalous warm sea surface temperature (SST) confined to the central Pacific and has different teleconnections from the traditional El Niño. Here, simple models are developed and shown to capture the key mechanisms of the CP El Niño. The starting model involves coupled atmosphere-ocean processes that are deterministic, linear, and stable. Then, systematic strategies are developed for incorporating several major mechanisms of the CP El Niño into the coupled system. First, simple nonlinear zonal advection with no ad hoc parameterization of the background SST gradient is introduced that creates coupled nonlinear advective modes of the SST. Secondly, due to the recent multidecadal strengthening of the easterly trade wind, a stochastic parameterization of the wind bursts including a mean easterly trade wind anomaly is coupled to the simple atmosphere-ocean processes. Effective stochastic noise in the wind burst model facilitates the intermittent occurrence of the CP El Niño with realistic amplitude and duration. In addition to the anomalous warm SST in the central Pacific, other major features of the CP El Niño such as the rising branch of the anomalous Walker circulation being shifted to the central Pacific and the eastern Pacific cooling with a shallow thermocline are all captured by this simple coupled model. Importantly, the coupled model succeeds in simulating a series of CP El Niño that lasts for 5 y, which resembles the two CP El Niño episodes during 1990-1995 and 2002-2006.
Xia, Xiaoqian; Lin, Siyuan; Zhao, Jun; Zhang, Wei; Lin, Kuangfei; Lu, Qiang; Zhou, Bingsheng
2018-02-01
Nickel (Ni)-contamination impairs soil ecosystem, threatening human health. A laboratory simulation of Ni-polluted farmland soil study, in the presence or absence of earthworm, was carried out to investigate the toxic responses of soil microorganisms, including microbial biomass C (MBC), soil basal respiration (SBR), metabolic quotient (qCO 2 ), urease (UA) and dehydrogenase activities (DHA). Additionally, the variations of Ni bioavailability were also explored. Results manifested that MBC and SBR were stimulated at 50 and 100 mg·kg -1 of Ni but inhibited by further increasing Ni level, showing a Hormesis effect. Earthworm input delayed the occurrence of a maximum SBR inhibition rate under the combined double-factors of time and dose. No specific effect of Ni concentration on the qCO 2 was observed. UA was significantly suppressed at 800 mg·kg -1 Ni (P < 0.05 or 0.01), whereas DHA was more sensitive and significantly inhibited throughout all the treatments (P < 0.01), indicating a pronounced dose-response relationship. The addition of earthworm facilitated all the biomarkers above. The time-dependent of dose-effect relationship (TDR) on MBC and SBR inhibition rates suggested that the peak responsiveness of microorganisms to Ni stress were approximate on the 21st day. The bioavailable form of per unit Ni concentration declined with time expanded and concentration increased, and the changeable process of the relative amount of bioavailability was mainly controlled by a physicochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bravo, E.; Domínguez, I.; Badenes, C.; Piersanti, L.; Straniero, O.
2010-03-01
The recognition that the metallicity of Type Ia supernova (SNIa) progenitors might bias their use for cosmological applications has led to an increasing interest in its role in shaping SNIa light curves. We explore the sensitivity of the synthesized mass of 56Ni, M(56Ni), to the progenitor metallicity starting from pre-main-sequence models with masses M 0 = 2-7 M sun and metallicities Z = 10-5-0.10. The interplay between convective mixing and carbon burning during the simmering phase eventually raises the neutron excess, η, and leads to a smaller 56Ni yield, but does not change substantially the dependence of M(56Ni) on Z. Uncertain attributes of the progenitor white dwarf, like the central density, have a minor effect on M(56Ni). Our main results are: (1) a sizeable amount of 56Ni is synthesized during incomplete Si-burning, which leads to a stronger dependence of M(56Ni) on Z than obtained by assuming that 56Ni is produced in material that burns fully to nuclear statistical equilibrium; (2) in one-dimensional delayed detonation simulations a composition dependence of the deflagration-to-detonation transition (DDT) density gives a nonlinear relationship between M(56Ni) and Z and predicts a luminosity larger than previously thought at low metallicities (however, the progenitor metallicity alone cannot explain the whole observational scatter of SNIa luminosities); and (3) an accurate measurement of the slope of the Hubble residuals versus metallicity for a large enough data set of SNIa might give clues to the physics of DDT in thermonuclear explosions.
Stephen, Emma; Huang, Deguang; Shaw, Jennifer L; Blake, Alexander J; Collison, David; Davies, E Stephen; Edge, Ruth; Howard, Judith A K; McInnes, Eric J L; Wilson, Claire; Wolowska, Joanna; McMaster, Jonathan; Schröder, Martin
2011-09-05
The Ni(II) complexes [Ni([9]aneNS(2)-CH(3))(2)](2+) ([9]aneNS(2)-CH(3)=N-methyl-1-aza-4,7-dithiacyclononane), [Ni(bis[9]aneNS(2)-C(2)H(4))](2+) (bis[9]aneNS(2)-C(2)H(4)=1,2-bis-(1-aza-4,7-dithiacyclononylethane) and [Ni([9]aneS(3))(2)](2+) ([9]aneS(3)=1,4,7-trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal Ni(III) products, which have been characterized by X-ray crystallography, UV/Vis and multi-frequency EPR spectroscopy. The single-crystal X-ray structure of [Ni(III)([9]aneNS(2)-CH(3))(2)](ClO(4))(6)·(H(5)O(2))(3) reveals an octahedral co-ordination at the Ni centre, while the crystal structure of [Ni(III)(bis[9]aneNS(2)-C(2)H(4))](ClO(4))(6)·(H(3)O)(3)·3H(2)O exhibits a more distorted co-ordination. In the homoleptic analogue, [Ni(III)([9]aneS(3))(2)](ClO(4))(3), structurally characterized at 30 K, the Ni-S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn-Teller distorted octahedral stereochemistry. [Ni([9]aneNS(2)-CH(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(½)=+1.10 V versus Fc(+)/Fc assigned to a formal Ni(III)/Ni(II) couple. [Ni(bis[9]aneNS(2)-C(2)H(4))](PF(6))(2) exhibits a one-electron oxidation process at E(½)=+0.98 V and a reduction process at E(½)=-1.25 V assigned to Ni(II)/Ni(III) and Ni(II)/Ni(I) couples, respectively. The multi-frequency X-, L-, S-, K-band EPR spectra of the 3+ cations and their 86.2% (61)Ni-enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6%, 42.8% and 37.2% Ni character in [Ni([9]aneNS(2)-CH(3))(2)](3+), [Ni(bis[9]aneNS(2)-C(2)H(4))](3+) and [Ni([9]aneS(3))(2)](3+), respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S-thioether centres. EPR spectra for [(61)Ni([9]aneS(3))(2)](3+) are consistent with a dynamic Jahn-Teller distortion in this compound. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp).
Sun, Xiuquan; Wick, Collin D; Thallapally, Praveen K; McGrail, B Peter; Dang, Liem X
2011-03-31
Enhancing the efficiency of the Rankine cycle, which is utilized for multiple renewable energy sources, requires the use of a working fluid with a high latent heat of vaporization. To further enhance its latent heat, a working fluid can be placed in a metal organic heat carrier (MOHC) with a high heat of adsorption. One such material is Ni\\DOBDC, in which linear alkanes have a higher heat of adsorption than cyclic alkanes. We carried out molecular dynamics simulations to investigate the structural, diffusive, and adsorption properties of n-hexane and cyclohexane in Ni\\DOBDC. The strong binding for both n-hexane and cyclohexane with Ni\\DOBDC is attributed to the increase of the heat of adsorption observed in experiments. Our structural results indicate the organic linkers in Ni\\DOBDC are the primary binding sites for both n-hexane and cyclohexane molecules. However, at all temperatures and loadings examined in present work, n-hexane clearly showed stronger binding with Ni\\DOBDC than cyclohexane. This was found to be the result of the ability of n-hexane to reconfigure its structure to a greater degree than cyclohexane to gain more contacts between adsorbates and adsorbents. The geometry and flexibility of guest molecules were also related to their diffusivity in Ni\\DOBDC, with higher diffusion for flexible molecules. Because of the large pore sizes in Ni\\DOBDC, energetic effects were the dominant force for alkane adsorption and selectivity.
Analytical Study of 90Sr Betavoltaic Nuclear Battery Performance Based on p-n Junction Silicon
NASA Astrophysics Data System (ADS)
Rahastama, Swastya; Waris, Abdul
2016-08-01
Previously, an analytical calculation of 63Ni p-n junction betavoltaic battery has been published. As the basic approach, we reproduced the analytical simulation of 63Ni betavoltaic battery and then compared it to previous results using the same design of the battery. Furthermore, we calculated its maximum power output and radiation- electricity conversion efficiency using semiconductor analysis method.Then, the same method were applied to calculate and analyse the performance of 90Sr betavoltaic battery. The aim of this project is to compare the analytical perfomance results of 90Sr betavoltaic battery to 63Ni betavoltaic battery and the source activity influences to performance. Since it has a higher power density, 90Sr betavoltaic battery yields more power than 63Ni betavoltaic battery but less radiation-electricity conversion efficiency. However, beta particles emitted from 90Sr source could travel further inside the silicon corresponding to stopping range of beta particles, thus the 90Sr betavoltaic battery could be designed thicker than 63Ni betavoltaic battery to achieve higher conversion efficiency.
Suppression of vacancy cluster growth in concentrated solid solution alloys
Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...
2016-12-13
Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less
Theoretical study of the interactions of a graphene-on-Ni(111) composite with dopamine
NASA Astrophysics Data System (ADS)
Yang, Junwei; Yuan, Yanhong; Zhao, Hua
2016-03-01
The physics underlying the interactions between nanomaterials and biomolecules is largely unexplored. In this study, we modelled the interactions of a graphene-on-Ni(111) nanocomposite with dopamine, an important biomolecule with crucial physiological functions in the human brain and body, using density functional theory methods. Stable adsorption of the dopamine molecule was observed on the surface of the graphene-on-Ni(111) composite. The adsorption mechanism was revealed to involve both charge and π-π interactions between the dopamine and graphene when they are in close proximity. Simulated scanning tunnelling microscopy images of dopamine on the surface of the graphene-on-Ni(111) composite, as an application of this nanomaterial, could distinguish one side of the G2 conformation of dopamine from the other conformations as a result of their interactions. Therefore, the graphene-on-Ni(111) composite is expected to have potential as a nanomaterial for detecting single biomolecules. The findings of this study will provide a significant contribution to the fields of nanomaterials and biotechnology, including the development of highly accurate biodevices and biosensors.
Electronic structure and magnetic properties of the strong-rung spin-1 ladder compound Rb3Ni2(NO3)7
NASA Astrophysics Data System (ADS)
Pchelkina, Z. V.; Mazurenko, V. V.; Volkova, O. S.; Deeva, E. B.; Morozov, I. V.; Shutov, V. V.; Troyanov, S. I.; Werner, J.; Koo, C.; Klingeler, R.; Vasiliev, A. N.
2018-04-01
Rb3Ni2(NO3)7 was obtained by crystallization from anhydrous nitric acid solution of rubidium nitrate and nickel nitrate hexahydrate. The crystal structure determined on single crystals implies isolated spin-1 two-leg ladders of Ni2 + ions connected by (NO3)- groups as basic elements. Magnetic susceptibility, specific heat in magnetic fields up to 9 T, magnetization, and high-frequency electron spin resonance studies performed on powder samples show the absence of long-range magnetic order at T ≥2 K. Electronic structure calculations and the detailed analysis of the experimental data enable quantitative estimates of the relevant parameters of the S =1 ladders in Rb3Ni2(NO3)7 . The rung coupling J1=10.16 K, the leg coupling J2=1.5 K, and the Ising-type anisotropy |A |=8.6 K are obtained. The scenario of a valence-bond solidlike quantum ground state realized in the two-leg Ni2 + ladders is further corroborated by model simulations of the magnetic susceptibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imazono, Takashi, E-mail: imazono.takashi@jaea.go.jp; Koike, Masato; Nagano, Tetsuya
Efficiently detecting the B-K emission band around 6.76 nm from a trace concentration of boron in steel compounds has motivated a theoretical exploration of means of increasing the diffraction efficiency of a laminar grating with carbon overcoating. To experimentally evaluate this enhancement, a Ni grating was coated with a high-density carbon film, i.e., diamond-like carbon (DLC). The first order diffraction efficiencies of the Ni gratings coated with and without DLC were measured to be 25.8 % and 16.9 %, respectively, at a wavelength of 6.76 nm and an angle of incidence of 87.07°. The ratio of diffraction efficiency obtained experimentallymore » vs. that calculated by numerical simulation is 0.87 for the DLC-coated Ni grating. The diffraction efficiency of a Ni grating coated with a low-density carbon film, amorphous carbon (a-C), was also slightly improved to be 19.6 %. Furthermore, a distinct minimum of the zeroth order lights of the two carbon-coated Ni gratings were observed at around 6.76 nm, which is coincident with the maximum of the first order light.« less
Study of negative ion transport phenomena in a plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riz, D.; Pamela, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NImore » produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}« less
Mechanical behavior of deformed intravascular NiTi stents differing in design. Numerical simulation
NASA Astrophysics Data System (ADS)
Eremina, Galina M.; Smolin, Alexey Yu.; Krukovskii, Konstantin V.; Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryashov, Andrey N.
2017-12-01
Self-expanding intravascular NiTi stents serve to recover the lumen of vessels suffered from atherosclerotic stenosis. During their manufacturing or functioning in blood vessels, the stents experience different strains and local stresses that may result in dangerous defects or fracture. Here, using the method of movable cellular automata, we analyze how the design of a stent influences its stress state during shaping to a desired diameter on a mandrel. We consider repeated segments of different stents under two loads: uniform diametric expansion of their crown and expansion with relative displacements. The simulation data agree well with experiments, revealing critical strain, stress, and their localization sites at the shaping stage, and provide the way toward optimum stent designs to minimize the critical stress during shaping.
Numerical simulation of coupled electrochemical and transport processes in battery systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, B.Y.; Gu, W.B.; Wang, C.Y.
1997-12-31
Advanced numerical modeling to simulate dynamic battery performance characteristics for several types of advanced batteries is being conducted using computational fluid dynamics (CFD) techniques. The CFD techniques provide efficient algorithms to solve a large set of highly nonlinear partial differential equations that represent the complex battery behavior governed by coupled electrochemical reactions and transport processes. The authors have recently successfully applied such techniques to model advanced lead-acid, Ni-Cd and Ni-MH cells. In this paper, the authors briefly discuss how the governing equations were numerically implemented, show some preliminary modeling results, and compare them with other modeling or experimental data reportedmore » in the literature. The authors describe the advantages and implications of using the CFD techniques and their capabilities in future battery applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Xiangjian; State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023; Zhang, Zhaojun, E-mail: zhangzhj@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn
2016-03-14
Understanding the role of reactant ro-vibrational degrees of freedom (DOFs) in reaction dynamics of polyatomic molecular dissociation on metal surfaces is of great importance to explore the complex chemical reaction mechanism. Here, we present an expensive quantum dynamics study of the dissociative chemisorption of CH{sub 4} on a rigid Ni(111) surface by developing an accurate nine-dimensional quantum dynamical model including the DOF of azimuth. Based on a highly accurate fifteen-dimensional potential energy surface built from first principles, our simulations elucidate that the dissociation probability of CH{sub 4} has the strong dependence on azimuth and surface impact site. Some improvements aremore » suggested to obtain the accurate dissociation probability from quantum dynamics simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.
Energy levels, radiative transition probabilities, and autoionization rates for [Ni]more » $$4{s}^{2}4{p}^{6}{nl}$$, [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$, ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–7), and [Ni]$$4s4{p}^{6}6l^{\\prime} {nl}$$ (n = 6–7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree–Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]$$4{s}^{2}4{p}^{6}$$ threshold are considered. It is found that configuration mixing among [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ and [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$ plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]$$4{s}^{2}4{p}^{6}{nl}$$ (n = 4–7) singly excited states, as well as the [Ni]$$4{s}^{2}4{p}^{5}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{5}4{fnl}$$, [Ni]$$4s4{p}^{6}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{6}4{fnl}$$, (n = 4–6), and [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} 5l$$ doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]$$4s24{p}^{6}4{fnl}$$ (n = 6–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–6), and [Ni]$$4{s}^{2}4{p}^{5}6l^{\\prime} {nl}$$ (n = 6–7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 Å. Here, these calculations provide highly accurate values for a number of W 37+ properties useful for a variety of applications including for fusion applications.« less
Choi, Seon-Young; Nguyen, Viet Tu; Lee, Jae-Chun; Kang, Ho; Pandey, B D
2014-08-15
The present paper is focused on solvent extraction of hazardous Cd(II) from acidic chloride media by Cyanex 921, a new extractant mixed with 10% (v/v) TBP in xylene. The optimum conditions for extraction and stripping of Cd(II) were investigated with an aqueous feed of 0.1 mol/L Cd(II) in 2.0 mol/L HCl. McCabe-Thiele diagram was in good agreement with the simulation studies, showing the quantitative extraction (99.9%) of Cd(II) within two counter-current stages utilizing 0.30 mol/L Cyanex 921 at O/A ratio of 3/2 in 10 min. Stoichiometry of the complexes extracted was determined and confirmed by numerical treatment and graphical method, revealing the formation of HCdCl3 · 2L and HCdCl3 · 4L for Cyanex 921(L) concentration in the range 0.03-0.1 mol/L and 0.1-1.0 mol/L, respectively. The thermodynamic parameters for the extraction of cadmium were also determined. The stripping efficiency of cadmium from the loaded organic with 0.10 mol/L HCl was 99.6% in a three-stage counter-current process at an O/A ratio of 2/3. Cyanex 921 was successfully applied for the separation of Cd(II) from Ni(II) in the simulated leach liquor of spent Ni-Cd batteries. The study demonstrates the applicability of the present hydrometallurgical approach for the treatment of hazardous waste, the spent Ni-Cd batteries. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi
2017-09-01
The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.
Structure of bicomponent particles synthesized from colliding metal clusters
NASA Astrophysics Data System (ADS)
Kryzhevich, D. S.; Zolnikov, K. P.; Korchuganov, A. V.; Psakhie, S. G.
2017-12-01
Here, based on a molecular dynamics simulation with many-body interaction potentials, we consider several scenarios of the formation of bicomponent particles from colliding clusters in an electrical explosion of Cu and Ni wires. The data suggest that the structure of bicomponent particles depends largely on the explosion time of one wire with respect to the other and on the phase state of colliding clusters. Diagrams are presented demonstrating the dynamics of bicomponent particles with block structure synthesized from crystalline Ni and molten Cu clusters.
2006-07-01
dislocation-loop expansion . The new model was used to simulate the thermally reversible flow behaviour for C-S type two-step deformation, and the results are...implemented into the finite element software ABAQUS through a User MATerial subroutine (UMAT). A tangent modulus method [48] was used for the time...locking under a dislocation loop- expansion configuration. This approach was motivated by modern understanding of dislocation mechanisms for Ni3Al
Atomistic Simulations of Intersection Cross-Slip Nucleation in Ll2 Ni3Al (Preprint)
2011-11-01
CROSS-SLIP NUCLEATION IN Ll2 Ni3Al (Preprint) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR( S ...PROJECT NUMBER 4347 5e. TASK NUMBER 20 5f. WORK UNIT NUMBER LM121100 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING...SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM( S ) Air Force Research Laboratory Materials and
Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Glória Chiarello; Ribeiro, Ricardo Faria
2008-01-01
This study compared the vertical misfit of 3-unit implant-supported nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloy and commercially pure titanium (cpTi) frameworks after casting as 1 piece, after sectioning and laser welding, and after simulated porcelain firings. The results on the tightened side showed no statistically significant differences. On the opposite side, statistically significant differences were found for Co-Cr alloy (118.64 microm [SD: 91.48] to 39.90 microm [SD: 27.13]) and cpTi (118.56 microm [51.35] to 27.87 microm [12.71]) when comparing 1-piece to laser-welded frameworks. With both sides tightened, only Co-Cr alloy showed statistically significant differences after laser welding. Ni-Cr alloy showed the lowest misfit values, though the differences were not statistically significantly different. Simulated porcelain firings revealed no significant differences.
Multiscale model of metal alloy oxidation at grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.
2015-06-07
High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides.more » The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide.« less
NASA Astrophysics Data System (ADS)
Li, Xuehong; Wu, Yun; Shen, Yuhua; Sun, Yan; Yang, Ying; Xie, Anjian
2018-01-01
Three-dimensional inverse opal photonic microarray (IOPM) structure exhibits good qualities in structural regularity and interconnectivity, such as high specific surface area, large pore volume, uniform pore size, and ordered periodic construction. Here, a novel nickel-doped titanium dioxide IOPM (Ni-TiO2 IOPM) was fabricated for the first time as a bifunctional material for the applications of surface-enhanced Raman scattering (SERS) substrate and photocatalyst. The Ni doping could change the defect concentration of the substrate to enhance the SERS effect, and could increase the light absorption of the substrate in visible region. The synergistic effect of Ni doping and the periodically ordered porous structure enhanced both SERS sensitivity and photocatalytic activity. As a SERS substrate, the Ni-TiO2 IOPM exhibited highly sensitive detection capability for 4-mercaptobenzoic acid (4-MBA) at a concentration as low as 1 × 10-11 M. Under simulated sunlight, about 95% of the methylene blue (MB) was degraded within 90 min when Ni-TiO2 IOPM was used as the photocatalytst. The Ni-TiO2 IOPM prepared in this work may be a promising bifunctional SERS substrate candidate for organic sewage detection and environment protection. In addition, the fabrication strategy can be extended to synthesize other nanomaterials with orderly and porous structure.
Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses
Wang, Q.; Li, J. H.; Liu, J. B.; Liu, B. X.
2015-01-01
For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potential of the system. Applying the Al-Ni-Y potential, series simulations not only clarify the glass formation mechanism, but also predict in the composition triangle, a hexagonal region, in which a disordered state, i.e., the glassy phase, is favored energetically. The predicted region is defined as glass formation region (GFR) for the ternary alloy system. Moreover, the approach is able to calculate an amorphization driving force (ADF) for each possible glassy alloy located within the GFR. The calculations predict an optimized sub-region nearby a stoichiometry of Al80Ni5Y15, implying that the Al-Ni-Y metallic glasses designed in the sub-region could be the most stable. Interestingly, the atomistic predictions are supported by experimental results observed in the Al-Ni-Y system. In addition, structural origin underlying the stability of the Al-Ni-Y metallic glasses is also discussed in terms of a hybrid packing mode in the medium-range scale. PMID:26592568
Jin, Ke; Guo, Wei; Lu, Chenyang; ...
2016-12-01
Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less
Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses
NASA Astrophysics Data System (ADS)
Wang, Q.; Li, J. H.; Liu, J. B.; Liu, B. X.
2015-11-01
For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potential of the system. Applying the Al-Ni-Y potential, series simulations not only clarify the glass formation mechanism, but also predict in the composition triangle, a hexagonal region, in which a disordered state, i.e., the glassy phase, is favored energetically. The predicted region is defined as glass formation region (GFR) for the ternary alloy system. Moreover, the approach is able to calculate an amorphization driving force (ADF) for each possible glassy alloy located within the GFR. The calculations predict an optimized sub-region nearby a stoichiometry of Al80Ni5Y15, implying that the Al-Ni-Y metallic glasses designed in the sub-region could be the most stable. Interestingly, the atomistic predictions are supported by experimental results observed in the Al-Ni-Y system. In addition, structural origin underlying the stability of the Al-Ni-Y metallic glasses is also discussed in terms of a hybrid packing mode in the medium-range scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Guo, Wei; Lu, Chenyang
Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less
Energetics of Single Substitutional Impurities in NiTi
NASA Technical Reports Server (NTRS)
Good, Brian S.; Noebe, Ronald
2003-01-01
Shape-memory alloys are of considerable current interest, with applications ranging from stents to Mars rover components. In this work, we present results on the energetics of single substitutional impurities in B2 NiTi. Specifically, energies of Pd, Pt, Zr and Hf impurities at both Ni and Ti sites are computed. All energies are computed using the CASTEP ab initio code, and, for comparison, using the quantum approximate energy method of Bozzolo, Ferrante and Smith. Atomistic relaxation in the vicinity of the impurities is investigated via quantum approximate Monte Carlo simulation, and in cases where the relaxation is found to be important, the resulting relaxations are applied to the ab initio calculations. We compare our results with available experimental work.
Performance evaluation of advanced battery technologies for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Tummillo, A. F.; Kulaga, J. E.; Webster, C. E.; Gillie, K. R.; Hogrefe, R. L.
1990-01-01
At the Argonne Analysis and Diagnostic Laboratory, advanced battery technology evaluations are performed under simulated electric vehicle operating conditions. During 1989 and the first quarter of 1990, single cell and multicell modules from seven developers were examined for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers with an interim measure of the progress being made in battery R&D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R&D. This paper summarizes the performance and life characterizations of two single cells and seven 3- to 960-cell modules that encompass six technologies (Na/S, Ni/Fe, Ni/Cd, Ni-metal hydride, lead-acid, and Zn/Br).
Nickel-cadium batteries for Apollo telescope mount
NASA Technical Reports Server (NTRS)
Kirsch, W. W.; Shikoh, A. E.
1974-01-01
The operational testing and evaluation program is presented which was conducted on 20-ampere-hour nickel-cadmium (Ni-Cd) batteries for use on the Apollo telescope mount (ATM). The test program was initiated in 1967 to determine if the batteries could meet ATM mission requirements and to determine operating characteristics and methods. The ATM system power and charging power for the Ni-Cd secondary batteries is provided by a solar array during the 58-minute daylight portion of the orbit; during the 36-minute night portion of the orbit, the Ni-Cd secondary batteries will supply ATM system power. The test results reflect battery operating characteristics and parameters relative to simulated ATM orbital test conditions. Maximum voltage, charge requirements, capacity, temperature, and cyclic characteristics are presented.
Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; ...
2015-03-11
Reactively sputtered nickel oxide (NiO x) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O 2(g). These NiO x coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Finally, under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiO x films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of watermore » to O 2(g).« less
Modification of ENSO and ENSO-related atmospheric characteristics due to future climate change
NASA Astrophysics Data System (ADS)
Matveeva, Tatiana; Gushchina, Daria
2017-04-01
The El Niño/Southern Oscillation (ENSO) is the strongest natural climate interannual fluctuation in Tropical Pacific, it affects regional and global climate. There are two types of this phenomenon: East Pacific (EP) El Niño characterized by maximum of SST anomalies centered over the eastern tropical Pacific and Central Pacific (CP) El Niño with SST warming in the center of the Pacific Ocean [Ashok et al., 2007; Kug et al., 2009]. The ability of CMIP5 coupled ocean-atmosphere general circulation models (CGCMs) to simulate two flavors of El Niño correctly was estimated using EOF-analysis technique of SST anomalies [Takahashi et al., 2011] in the recent studies [Matveeva and Gushchina, 2016]. It was shown that only several CGCMs were able to reproduce two types of ENSO. The ENSO-related characteristics can alter due to global climate change. However, scientific community can't be sure whether ENSO activity will be enhanced or damped under global warming. In this study, we choose the 6 "best" CGCMs (BNU-ESM, CCSM4, CNRM-CM5, FIO-ESM, INM-CM4, MIROC5) which simulated spatial and temporal features of the two types of El Niño the most realistic way. To obtain a complete result we analyzed anomalies of complex ENSO-related characteristics (SST, rainfall, vertical movement, atmospheric circulation in the upper and lower troposphere) during two types of El Niño events. We compared the spatial distribution of these anomalies depending future climate scenarios (we took two scenarios with significant differences - RCP 2.6 and RCP 8.5 [Taylor et al., 2012]). It was shown the large difference in model's estimates ENSO-related anomalies' changes for future climate. The main aspect of this study is the analysis of the ENSO characteristics' modification (frequency, amplitude, the ratio between EP and CP El Niño) under different scenarios of warming. We didn't expect any significant change of frequency for two types of El Nino. It was shown that there was no well-defined relation between the amplitude change and the "rigidity" of scenarios. Whereas at the end of XXI century the ratio between EP and CP El Niño may decrease, i.e. the number of CP El Niño in RCP 8.5 will increase. The study was supported by the Russian Foundation for Basic Research (grants No.15-05-06693 and No.16-35-00394 mol_a). References: 1. Ashok, K., Behera, S. K., Rao, S. A.,Weng, H., Yamagata, T., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007. 2. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499-1515. 3. Matveeva T., Gushchina D., 2016: The Role of Intraseasonal Atmosphere Variability in ENSO Generation in Future Climate. European Geosciences Union General Assembly 2016. Geophysical Research Abstracts, 18, EGU2016-235-2. 4. Takahashi, K., Montecinos, A., Goubanova, K., Dewitte, B., 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704. 5. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 93, 485-498.
Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...
2018-01-01
The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.
The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less
Onset of phase separation in the double perovskite oxide La 2 MnNiO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun
2018-04-01
Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1–5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch atmore » the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.« less
NASA Astrophysics Data System (ADS)
Tosca, Michael; Randerson, James; Zender, Charles; Flanner, Mark; Nelson, David; Diner, David; Rasch, Phil; Logan, Jennifer
2010-05-01
During the dry season, anthropogenic fires burn the tropical forests and peatlands of equatorial Asia and produce regionally expansive smoke clouds. We estimated the altitude of smoke from these fires, characterized the sensitivity of this smoke to regional drought and El Niño variability, and investigated its effect on climate. We used the MISR satellite product and MISR INteractive eXplorer (MINX) software to estimate the heights of 382 smoke plumes (smoke with a visible surface source and transport direction) on Borneo and 121 plumes on Sumatra for 2001-2009. In addition, we estimated the altitudes of 10 smoke clouds (opaque regions of smoke with no detectable surface source or transport direction) on Borneo for 2006. Most smoke plumes (80%) were observed during El Niño events (2002, 2004, 2006, 2009); this is consistent with higher aerosol optical depths observed during El Niño-induced drought. Annually averaged plume heights on Borneo were positively correlated to the Oceanic Niño Index (ONI), an indicator of El Niño (r2 = 0.53). The mean plume height for all El Niño years was 765.8 ± 19.7m, compared to 711.4 ± 28.7 for non-El Niño years. The median altitude of all 10 smoke clouds observed on Borneo during 2006 was 1313m, compared to a median 787m for smoke plume grid cells. The area covered by all smoke plumes from 2006 corresponded to approximately three individual smoke clouds. We investigated the climate response to these expansive smoke clouds using the Community Atmosphere Model (CAM). Climate variables from two 30 year simulations were compared: one simulation was forced with fire emissions typical of a dry (El Niño) burning year, while the other was forced with emissions typical of a low (La Niña) burning year. Fire aerosols reduced net shortwave radiation at the surface during August-October by an average of 10% in the region encompassing most of Sumatra and Borneo (90°E-120°E, 5°S-5°N). The reductions in net radiation cooled both ocean (0.5 ± 0.3°C) and land (0.4 ± 0.2°C) temperatures during these months. Tropospheric heating from black carbon (BC) absorption increased substantially (20.5 ± 9.3 W m-2), but was balanced by an overall reduction in latent heating. The combination of decreased SSTs and increased atmospheric heating reduced regional precipitation by 0.9 ± 0.6 mm d-1 (10%). This implies that the vulnerability of ecosystems to fire was increased because the reductions in precipitation exceeded those for evapotranspiration. Together, the satellite and modeling results imply a possible positive feedback loop in which anthropogenic burning in the region intensifies drought stress during El Niño.
Assessing the fate of radioactive nickel in cultivated soil cores.
Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis
2009-10-01
Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.
NASA Astrophysics Data System (ADS)
Viner, Brian J.; Arritt, Raymond W.; Westgate, Mark E.
2017-08-01
Complex terrain creates small-scale circulations which affect pollen dispersion but may be missed by meteorological observing networks and coarse-grid meteorological models. On volcanic islands, these circulations result from differing rates of surface heating between land and sea as well as rugged terrain. We simulated the transport of bentgrass, ryegrass, and maize pollen from 30 sources within the agricultural regions of the Hawaiian island Kaua'i during climatological conditions spanning season conditions and the La Niña, El Niño, and neutral phases of the El Niño-Southern Oscillation. Both pollen size and source location had major effects on predicted dispersion over and near the island. Three patterns of pollen dispersion were identified in response to prevailing wind conditions: southwest winds transported pollen inland, funneling pollen grains through valleys; east winds transported pollen over the ocean, with dispersive tails for the smallest pollen grains following the mean wind and extending as far as the island of Ni'ihau 35 km away; and northeast winds moved pollen inland counter to the prevailing flow due to a sea breeze circulation that formed over the source region. These results are the first to predict the interactions between complex island terrain and local climatology on grass pollen dispersion. They demonstrate how numerical modeling can provide guidance for field trials by illustrating the common flow regimes present in complex terrain, allowing field trials to focus on areas where successful sampling is more likely to occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, J.B.; Christensen, T.H.
1999-11-01
Complexation of cadmium (Cd), nickel (Ni), and zinc (Zn) by dissolved organic carbon (DOC) in leachate-polluted groundwater was measured using a resin equilibrium method and an aquifer material sorption technique. The first method is commonly used in complexation studies, while the second method better represents aquifer conditions. The two approaches gave similar results. Metal-DOC complexation was measured over a range of DOC concentrations using the resin equilibrium method, and the results were compared to simulations made by two speciation models containing default databases on metal-DOC complexes (WHAM and MINTEQA2). The WHAM model gave reasonable estimates of Cd and Ni complexationmore » by DOC for both leachate-polluted groundwater samples. The estimated effect of complexation differed less than 50% from the experimental values corresponding to a deviation on the activity of the free metal ion of a factor of 2.5. The effect of DOC complexation for Zn was largely overestimated by the WHAM model, and it was found that using a binding constant of 1.7 instead of the default value of 1.3 would improve the fit between the simulations and experimental data. The MINTEQA2 model gave reasonable predictions of the complexation of Cd and Zn by DOC, whereas deviations in the estimated activity of the free Ni{sup 2+} ion as compared to experimental results are up to a factor of 5.« less
Shishkin, M; Ziegler, T
2014-02-07
The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.
Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces
NASA Astrophysics Data System (ADS)
Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer
2018-01-01
Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.
Concurrent increases in wet and dry extremes projected in Texas and combined effects on groundwater
NASA Astrophysics Data System (ADS)
Yoon, Jin-Ho; Wang, S.-Y. Simon; Lo, Min-Hui; Wu, Wen-Ying
2018-05-01
The US state of Texas has experienced consecutive flooding events since spring 2015 with devastating consequences, yet these happened only a few years after the record drought of 2011. Identifying the effect of climate variability on regional water cycle extremes, such as the predicted occurrence of La Niña in winter 2017–2018 and its association with drought in Texas, remains a challenge. The present analyses use large-ensemble simulations to project the future of water cycle extremes in Texas and assess their connection with the changing El Niño–Southern Oscillation (ENSO) teleconnection under global warming. Large-ensemble simulations indicate that both intense drought and excessive precipitation are projected to increase towards the middle of the 21st century, associated with a strengthened effect from ENSO. Despite the precipitation increase projected for the southern Great Plains, groundwater storage is likely to decrease in the long run with diminishing groundwater recharge; this is due to the concurrent increases and strengthening in drought offsetting the effect of added rains. This projection provides implications to short-term climate anomaly in the face of the La Niña and to long-term water resources planning.
Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng
2012-08-30
An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA-MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel-metal hydride (Ni-MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni-MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.
Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan
2017-08-09
Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.
Monte Carlo Simulation Study of Atomic Structure of alnico Permanent Magnets
NASA Astrophysics Data System (ADS)
Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming
Lattice Monte Carlo simulation based on quinternary cluster expansion energy model is used to investigate nano-scale structure of alnico alloy, which is considered as a candidate material for rare-earth free high performance permanent magnets, especially for high or elevated temperature applications such as electric motor for vehicles. We observe phase decomposition of the master alnico alloy into FeCo-rich magnetic (α1) and NiAl-rich matrix (α2) phases. Concentrations of Fe and Co in α1 phase and Ni and Al in α2 phase are higher for lower annealing temperature. Ti is residing mostly in the α2 phase. The phase boundary between α1 and α2 phases are quite sharp with only few atomic layers. The α1 phase is in B2 ordering with Fe and Al occupying the α-site and Ni and Co occupying the β-site. The α2 phase is in L21 ordering with Al occupying the 4a-site. The phase composition profile again annealing temperature suggests that lower annealing temperature would improve the magnetism of α2 and diminish the magnetism of α2 phase, hence improve shape anisotropy of α1 phase rods and that of alnico.
The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys
NASA Astrophysics Data System (ADS)
Yu, Hao; Xu, Wei; Van Der Zwaag, Sybrand
2018-01-01
The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation. In this research, a computational model is presented to connect the rafting kinetics of Ni superalloys to their chemical composition by combining thermodynamics calculation and a modified microstructural model. To simulate the evolution of key microstructural parameters during creep, the isotropic coarsening rate and γ/ γ' misfit stress are defined as composition-related parameters, and the effect of service temperature, time, and applied stress are taken into consideration. Two commercial superalloys, for which the kinetics of the rafting process are selected as the reference alloys, and the corresponding microstructural parameters are simulated and compared with experimental observations reported in the literature. The results confirm that our physical model not requiring any fitting parameters manages to predict (semiquantitatively) the microstructural parameters for different service conditions, as well as the effects of alloying element concentrations. The model can contribute to the computational design of new Ni-based superalloys.
Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces
NASA Astrophysics Data System (ADS)
Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer
2018-03-01
Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.
Comparison of deflection forces of esthetic archwires combined with ceramic brackets*
MATIAS, Murilo; de FREITAS, Marcos Roberto; de FREITAS, Karina Maria Salvatore; JANSON, Guilherme; HIGA, Rodrigo Hitoshi; FRANCISCONI, Manoela Fávaro
2018-01-01
Abstract Coated archwires and ceramic brackets have been developed to improve facial esthetics during orthodontic treatment. However, their mechanical behavior has been shown to be different from metallic archwires and brackets. Therefore, the aim of this study was to compare the deflection forces in coated nickel-titanium (NiTi) and esthetic archwires combined with ceramic brackets. Material and Methods Non-coated NiTi (NC), rhodium coated NiTi (RC), teflon coated NiTi (TC), epoxy coated NiTi (EC), fiber-reinforced polymer (FRP), and the three different conventional brackets metal-insert polycrystalline ceramic (MI-PC), polycrystalline ceramic (PC) and monocrystalline ceramic (MC) were used. The specimens were set up on a clinical simulation device and evaluated in a Universal Testing Machine (Instron). An acrylic device, representative of the right maxillary central incisor was buccolingually activated and the unloading forces generated were recorded at 3, 2, 1 and 0.5 mm. The speed of the testing machine was 2 mm/min. ANOVA and Tukey tests were used to compare the different archwires and brackets. Results The brackets presented the following decreasing force ranking: monocrystalline, polycrystalline and polycrystalline metal-insert. The decreasing force ranking of the archwires was: rhodium coated NiTi (RC), non-coated NiTi (NC), teflon coated NiTi (TC), epoxy coated NiTi (EC) and fiber-reinforced polymer (FRP). At 3 mm of unloading the FRP archwire had a plastic deformation and produced an extremely low force in 2; 1 and 0.5 mm of unloading. Conclusion Combinations of the evaluated archwires and brackets will produce a force ranking proportional to the combination of their individual force rankings. PMID:29451650
Changes in Sea Salt Emissions Enhance ENSO Variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Russell, Lynn M.; Lou, Sijia
Two 150-year pre-industrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Niño–Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Niño events compared to those during La Niña events. These changes in AOD further increase (decrease) radiative fluxes into the atmospheremore » by +0.2 W m -2 (-0.4 W m -2) over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2–0.4 K over the tropical eastern (western) Pacific Ocean during El Niño compared to La Niña events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase, of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Niño and La Niña events, which is a result of heating anomalies. Due to variations in sea salt emissions, the convective precipitation is enhanced by 0.6–1.2 mm day -1 over the tropical central-eastern Pacific Ocean and weakened by 0.9–1.5 mm day -1 over the Maritime Continent during El Niño compared to La Niña events, enhancing the precipitation variability over the tropical Pacific.« less
Comparison of deflection forces of esthetic archwires combined with ceramic brackets.
Matias, Murilo; Freitas, Marcos Roberto de; Freitas, Karina Maria Salvatore de; Janson, Guilherme; Higa, Rodrigo Hitoshi; Francisconi, Manoela Fávaro
2018-01-01
Coated archwires and ceramic brackets have been developed to improve facial esthetics during orthodontic treatment. However, their mechanical behavior has been shown to be different from metallic archwires and brackets. Therefore, the aim of this study was to compare the deflection forces in coated nickel-titanium (NiTi) and esthetic archwires combined with ceramic brackets. Material and Methods Non-coated NiTi (NC), rhodium coated NiTi (RC), teflon coated NiTi (TC), epoxy coated NiTi (EC), fiber-reinforced polymer (FRP), and the three different conventional brackets metal-insert polycrystalline ceramic (MI-PC), polycrystalline ceramic (PC) and monocrystalline ceramic (MC) were used. The specimens were set up on a clinical simulation device and evaluated in a Universal Testing Machine (Instron). An acrylic device, representative of the right maxillary central incisor was buccolingually activated and the unloading forces generated were recorded at 3, 2, 1 and 0.5 mm. The speed of the testing machine was 2 mm/min. ANOVA and Tukey tests were used to compare the different archwires and brackets. Results The brackets presented the following decreasing force ranking: monocrystalline, polycrystalline and polycrystalline metal-insert. The decreasing force ranking of the archwires was: rhodium coated NiTi (RC), non-coated NiTi (NC), teflon coated NiTi (TC), epoxy coated NiTi (EC) and fiber-reinforced polymer (FRP). At 3 mm of unloading the FRP archwire had a plastic deformation and produced an extremely low force in 2; 1 and 0.5 mm of unloading. Conclusion Combinations of the evaluated archwires and brackets will produce a force ranking proportional to the combination of their individual force rankings.
NASA Astrophysics Data System (ADS)
Singh, Awnesh; Delcroix, Thierry
2013-12-01
One of the leading theories to explain the oscillatory nature of the El Niño Southern Oscillation is the recharge-discharge oscillator paradigm, which roots on warm waters exchanged between the equatorial and off-equatorial regions. This study tests the relevance of this theory to account for the Eastern and recently mediated Central Pacific El Niño events. The recharge-discharge of the equatorial Pacific, measured here as changes in Warm (>20 °C) Water Volume (WWV), is analysed using monthly 1993-2010 sea level anomaly (a proxy for WWV) obtained from altimetry, and a validated 1958-2007 DRAKKAR simulation. An Agglomerative Hierarchical Clustering (AHC) technique performed on the observed and modelled WWV tendency shows the existence of five distinct clusters, which characterise the Eastern Pacific (EP) and Central Pacific (CP) El Niño, La Niña, after EP El Niño and neutral conditions. The AHC results, complemented with an analysis of lagged-regression analysis, and 3-month averages of typical EP and CP El Niño events, indicate that the equatorial band WWV discharge during CP is not as pronounced as during EP El Niño. To understand the differences, we analysed the balance of horizontal mass transports accounting for changes in WWV tendency. The analysis indicates an overall poleward transport during EP El Niño, which is not the case during CP El Niño. Instead, a compensating effect with a poleward (equatorward) transport occurring in the western (eastern) Pacific is evident, in line with changes in the zonal thermocline slopes occurring in the western (eastern) half of the basin. The WWV changes are discussed with respect to the conceptual phases of the recharge-discharge oscillator paradigm.
Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen
2016-09-14
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.
Dughiero, F; Corazza, S
2005-01-01
Hyperthermia plays an important role in oncological therapies, most often being used in combination with radiotherapy, chemotherapy and immunotherapy. The success of this therapy is strongly dependent on the precision and control of thermal deposition. Hyperthermia based on induction heating, with thermally self-regulating thermoseeds inserted into the tumorous mass, is used for interstitial treatment. The technique was the subject of the numerical study presented in the paper. The analysis was carried out using coupled electromagnetic heating and thermo-fluid dynamic FEM simulations. During thermal deposition by induction heating of inserted seeds, the simulations estimated the thermal field inside and outside the tumour, as well as the sensitivity of the thermal field to variations regarding seed temperature, configuration and proximity to vessels. The method, for which accurate anatomical patient's information is essential, is suitable for providing useful qualitative and quantitative information about thermal transients and power density distribution for hyperthermic treatment. Several grid steps were analysed and compared. A 1 cm seed grid was resulted in good homogeneity and effectiveness of the thermal deposition. The cold spot effect caused by large vessels was demonstrated and quantified. Simulations of the heating of a tumorous mass in the liver showed that an indcutor generator operating at 200 kHz frequency and 500 A current, producing a pulsating magnetic field of H = 60 A cm(-1), was adequate for the treatment. The seeds that perform best among those tested (Nicu (28% Cu), PdNi (27.2% Ni), PdCo (6.15% Co) and ferrite core) were the PdNi (1 mm radius, 10 mm length), as they have a low Curie temperature (52 degrees C), which is the closest to the desired treatment temperature and thus reduces the risk of hot spots.
Ilyina, Margarita G; Khamitov, Edward M; Galiakhmetov, Rail N; Mustafin, Ildar A; Mustafin, Akhat G
2017-03-01
In the present work, a 0.4nm nickel cluster has been theoretically studied. Its equilibrium structural parameters have been calculated by the DFT method based on the PBEH1PBE hybrid functional and split-valence basis set Lanl2DZ including effective core potentials. We have systematically considered diverse spin states of this cluster and find out its ground state. The relative stability of these states depends on the HOMO-LUMO gap. The interaction of the Ni 6 with 4-propylheptane С 10 Н 22 has been studied to simulate the process of catalytic cracking of hydrocarbons. The optimization of this structure has been performed by the ωPBE/Lanl2DZ_ecp method (the TeraChem V.1.9 program package) with no symmetry restrictions; the electron shells of the metal were described by effective core pseudopotentials. For visualization and quantitative estimation of the bonding bonds between the nickel nanocluster and 4-propylheptane, the analysis of weak interactions based on RGD has been performed. To confirm the proposition about the formation of Ni-H bonds, we have scrutinized critical points of electronic density. Values of laplasian of electronic density and Bader atomic charge distribution in the global minimum of the total energy have been estimated by the AIMAll 15.05.18 program suite. Finally, we have simulated interaction of Ni 6 with 4-propylheptane in terms of the Born-Oppenheimer ab initio molecular dynamics. The results of the molecular dynamics simulation provide pair radial distribution function CH at 1500°C and a detailed picture of the processes occurring in the system. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Graichen, Adam M.; Vachet, Richard W.
2013-06-01
The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang
2017-08-01
The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).
Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure
NASA Astrophysics Data System (ADS)
Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector
2015-06-01
Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up to 380 dpa at 650°C in a Tandetron linear accelerator. The level of irradiation dose was chosen similar to the irradiation conditions of the next-generation nuclear reactors. The theoretical maximum depth of the DII (maximum depth of damage (MDD)) was calculated as 1.35 µm using the SRIM-2013 program; the laminar microstructure of the eutectic was simulated using the lattice parameters of the eutectic before irradiation. The experimental MDD was 1.47 µm, as determined through transmission electron microscope (TEM) images and the DII was characterized using µX-ray diffraction and TEM. The elimination of cubic phase of the intermetallic Ni3Si, the suppression of lamellae of the α-Ni phase, the generation of dislocation loops and lines, all of these changes generated by the irradiation are clear evidences that the DII was severe. Based on theoretical and experimental evidence, we propose that the amount of phases, alternate of lamellae with different chemical concentrations of silicon and lamellae spatial distribution have a direct relation with the severe evolution of the DII.
Signals of El Niño Modoki in the tropical tropopause layer and stratosphere
NASA Astrophysics Data System (ADS)
Xie, F.; Li, J.; Tian, W.; Feng, J.
2012-02-01
The effects of El Niño Modoki events on the tropical tropopause layer (TTL) and on the stratosphere were investigated using European Center for Medium Range Weather Forecasting (ECMWF) reanalysis data, satellite observations from the Aura satellite Microwave Limb Sounder (MLS), oceanic El Niño indices, and general climate model outputs. El Niño Modoki events tend to depress convective activities in the western and eastern Pacific but enhance convective activities in the central and northern Pacific. Consequently, during Modoki events, negative water vapor anomalies occur in the western and eastern Pacific upper troposphere, whereas there are positive anomalies in the central and northern Pacific upper troposphere. The spatial patterns of the outgoing longwave radiation (OLR) and upper tropospheric water vapor anomalies exhibit a tripolar form. The empirical orthogonal function (EOF) analysis of the OLR and upper tropospheric water vapor anomalies reveals that canonical El Niño events are associated with the leading mode of the EOF, while El Niño Modoki events correspond to the second mode. El Niño Modoki activities tend to moisten the lower and middle stratosphere, but dry the upper stratosphere. It was also found that the canonical El Niño signal can overlay linearly on the QBO signal in the stratosphere, whereas the interaction between the El Niño Modoki and QBO signals is non-linear. Because of these non-linear interactions, El Niño Modoki events have a reverse effect on high latitudes stratosphere, as compared with the effects of typical Modoki events, i.e. the northern polar vortex is stronger and colder but the southern polar vortex is weaker and warmer during El Niño Modoki events. However, simulations suggest that canonical El Niño and El Niño Modoki activities actually have the same influence on high latitudes stratosphere, in the absence of interactions between QBO and ENSO signals. The present results also reveal that canonical El Niño events have a greater impact on the high-latitude Northern Hemisphere stratosphere than on the high-latitude Southern Hemisphere stratosphere. However, El Niño Modoki events can more profoundly influence the high-latitude Southern Hemisphere stratosphere than the high-latitude Northern Hemisphere stratosphere.
Perovskite-Ni composite: a potential route for management of radioactive metallic waste.
Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K
2015-04-28
Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. Copyright © 2015 Elsevier B.V. All rights reserved.
Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun
2017-12-07
The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.
N values estimation based on photon flux simulation with Geant4 toolkit.
Sun, Z J; Danjaji, M; Kim, Y
2018-06-01
N values are routinely introduced in photon activation analysis (PAA) as the ratio of special activities of product nuclides to compare the relative intensities of different reaction channels. They determine the individual activities of each radioisotope and the total activity of the sample, which are the primary concerns of radiation safety. Traditionally, N values are calculated from the gamma spectroscopy in real measurements by normalizing the activities of individual nuclides to the reference reaction [ 58 Ni(γ, n) 57 Ni] of the nickel monitor simultaneously irradiated in photon activation. Is it possible to use photon flux simulated by Monte Carlo software to calculate N values even before the actual irradiation starts? This study has applied Geant4 toolkit, a popular platform of simulating the passage of particles through matter, to generate photon flux in the samples. Assisted with photonuclear cross section from IAEA database, it is feasible to predict N values in different experimental setups for simulated target material. We have validated of this method and its consistency with Geant4. Results also show that N values are highly correlated with the beam parameters of incoming electrons and the setup of the electron-photon converter. Copyright © 2018 Elsevier Ltd. All rights reserved.
A challenging hysteresis operator for the simulation of Goss-textured magnetic materials
NASA Astrophysics Data System (ADS)
Cardelli, Ermanno; Faba, Antonio; Laudani, Antonino; Pompei, Michele; Quondam Antonio, Simone; Fulginei, Francesco Riganti; Salvini, Alessandro
2017-06-01
A new hysteresis operator for the simulation of Goss-textured ferromagnets is here defined. The operator is derived from the classic Stoner-Wohlfarth model, where the anisotropy energy is assumed to be cubic instead of uniaxial, in order to reproduce the magnetic behavior of Goss textured ferromagnetic materials, such as grain-oriented Fe-Si alloys, Ni-Fe alloys, and Ni-Co alloys. A vector hysteresis model based on a single hysteresis operator is then implemented and used for the prediction of the rotational magnetizations that have been measured in a sample of grain-oriented electrical steel. This is especially promising for FEM based calculations, where the magnetization state in each point must be recalculated at each time step. Finally, the computed loops, as well as the magnetic losses, are compared to the measured data.
Effect of Pipe Body Alloy on Weldability of X80 Steel
NASA Astrophysics Data System (ADS)
Kong, Xianglei; Huang, Guojian; Fu, Kuijun; Liu, Fangfang; Huang, Minghao; Zhang, Yinghui
Effect of Mo, Ni, and Cr on impact property of pipe seam and heat-affected zone (HAZ) of X80 steel was investigated by thermal simulation test and butt welding test. The results showed that, there was an obvious relationship between strip's composition and the toughness of weld and HAZ, the more content of Mo, Ni and less of Cr in the strip matrix, the better of impact toughness of weld and HAZ. Metallographic microscope was used to compare microstructures of welding specimens, every welded seam microstructure was mainly acicular ferrite (AF) and a little volume of proeutectoid ferrite (PF), and with some granular precipitations on original austenite grain boundary, the difference was that there were more PF and less precipitations of the specimen with more content of Mo, Ni and less of Cr in the strip matrix. Because of the high price of Mo and Ni, alloy design must be considered comprehensively with the cost and property requirements in the production.
Moestedt, J; Nordell, E; Shakeri Yekta, S; Lundgren, J; Martí, M; Sundberg, C; Ejlertsson, J; Svensson, B H; Björn, A
2016-01-01
This study used semi-continuous laboratory scale biogas reactors to simulate the effects of trace-element addition in different combinations, while degrading the organic fraction of municipal solid waste and slaughterhouse waste. The results show that the combined addition of Fe, Co and Ni was superior to the addition of only Fe, Fe and Co or Fe and Ni. However, the addition of only Fe resulted in a more stable process than the combined addition of Fe and Co, perhaps indicating a too efficient acidogenesis and/or homoacetogenesis in relation to a Ni-deprived methanogenic population. The results were observed in terms of higher biogas production (+9%), biogas production rates (+35%) and reduced VFA concentration for combined addition compared to only Fe and Ni. The higher stability was supported by observations of differences in viscosity, intraday VFA- and biogas kinetics as well as by the 16S rRNA gene and 16S rRNA of the methanogens. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocak, Belgin, E-mail: koakbelgin@gmail.com; Ciftci, Yasemin Oztekin, E-mail: yasemin@gazi.edu.tr
2016-03-25
The structural, electronic band structure and optic properties of the Ni doped MgSiP{sub 2} chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard’s law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions ofmore » Ni doped MgSiP{sub 2}. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.« less
Magnetism as indirect tool for carbon content assessment in nickel nanoparticles
NASA Astrophysics Data System (ADS)
Oumellal, Y.; Magnin, Y.; Martínez de Yuso, A.; Aguiar Hualde, J. M.; Amara, H.; Paul-Boncour, V.; Matei Ghimbeu, C.; Malouche, A.; Bichara, C.; Pellenq, R.; Zlotea, C.
2017-12-01
We report a combined experimental and theoretical study to ascertain carbon solubility in nickel nanoparticles embedded into a carbon matrix via the one-pot method. This original approach is based on the experimental characterization of the magnetic properties of Ni at room temperature and Monte Carlo simulations used to calculate the magnetization as a function of C content in Ni nanoparticles. Other commonly used experimental methods fail to accurately determine the chemical analysis of these types of nanoparticles. Thus, we could assess the C content within Ni nanoparticles and it decreases from 8 to around 4 at. % with increasing temperature during the synthesis. This behavior could be related to the catalytic transformation of dissolved C in the Ni particles into graphite layers surrounding the particles at high temperature. The proposed approach is original and easy to implement experimentally since only magnetization measurements at room temperature are needed. Moreover, it can be extended to other types of magnetic nanoparticles dissolving carbon.
Corrosion behavior of low alloy steels in a wet-dry acid humid environment
NASA Astrophysics Data System (ADS)
Zhao, Qing-he; Liu, Wei; Yang, Jian-wei; Zhu, Yi-chun; Zhang, Bin-li; Lu, Min-xu
2016-09-01
The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet-dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet-dry acid humid environment.
NASA Astrophysics Data System (ADS)
Li, Puxi; Zhou, Tianjun; Zou, Liwei
2016-04-01
The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.
Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.
2016-11-02
Energy levels, radiative transition probabilities, and autoionization rates for [Ni]more » $$4{s}^{2}4{p}^{6}{nl}$$, [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$, ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–7), and [Ni]$$4s4{p}^{6}6l^{\\prime} {nl}$$ (n = 6–7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree–Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]$$4{s}^{2}4{p}^{6}$$ threshold are considered. It is found that configuration mixing among [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ and [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$ plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]$$4{s}^{2}4{p}^{6}{nl}$$ (n = 4–7) singly excited states, as well as the [Ni]$$4{s}^{2}4{p}^{5}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{5}4{fnl}$$, [Ni]$$4s4{p}^{6}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{6}4{fnl}$$, (n = 4–6), and [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} 5l$$ doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]$$4s24{p}^{6}4{fnl}$$ (n = 6–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–6), and [Ni]$$4{s}^{2}4{p}^{5}6l^{\\prime} {nl}$$ (n = 6–7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 Å. Here, these calculations provide highly accurate values for a number of W 37+ properties useful for a variety of applications including for fusion applications.« less
NASA Astrophysics Data System (ADS)
Gannoun, M.; Laroussi Hellara, M.; Bouby, C.; Ben Zineb, T.; Bouraoui, T.
2018-04-01
Nickel Titanium (NiTi) Superelastic (SE) Shape Memory Alloys (SMAs) are widely considered for applications that need high reversible strain or high recovery forces. In particular, the SE SMAs present a high interest for biomedical applications such as endodontic and orthodontic apparatus. They are available in a large variety of archwires exerting continuum forces to ensure the dental displacement. The purpose of this study is to report the clinical implications of NiTi SE wires for dental treatment in a given configuration. Three main constitutive models of the literature (Lagoudas and Boyd 1996 Int. J. Plast. 12 805–842, Auricchio and Petrini 2004 Int. J. Numer. Meth. Engng. 61 807–836 and Chemisky et al 2011 Mech. Mater. 68 361–376) are considered for the finite element (FE) numerical simulations of the SMA archwires response. Tensile tests had been carried out in order to identify the material parameters of these constitutive models. The FE numerical study allowed to predict the dental displacement and its corresponding orthodontic force level exerted by the wire in similar conditions to those in the oral environment. This work allows to predict the orthodontic generated load by a NiTi SE archwire with a 0.64 × 0.46 mm2 rectangular cross section under prescribed thermomechanical conditions. The effect of the temperature and the alveolar bone stiffness on the orthodontic load level and the tooth displacement degree has been investigated. The performed numerical simulations demonstrate that the orthodontic load is sensitive to the displacement magnitude, to the tooth stiffness and to the temperature variations. The obtained forces applied continuously and at a constant level are within the acceptable orthodontic force level range. Some directives are therefore provided to help orthodontists to select the optimal archwire.
A wind comparison study using an ocean general circulation model for the 1997-1998 El Niño
NASA Astrophysics Data System (ADS)
Hackert, Eric C.; Busalacchi, Antonio J.; Murtugudde, Ragu
2001-02-01
Predictions of the 1997-1998 El Niño exhibited a wide range of forecast skill that were dependent, in part, on the wind-driven initial conditions for the ocean. In this study the results of a reduced gravity, primitive equation, sigma coordinate ocean general circulation model are compared and contrasted when forced by several different wind products for the 1997-1998 El Niño/La Niña. The different wind products include atmospheric model winds, satellite wind products, and a subjective analysis of ship and in situ winds. The model results are verified against fields of observed sea level anomalies from TOPEX/Poseidon data, sea surface temperature analyses, and subsurface temperature from the Tropical Atmosphere-Ocean buoy array. Depending on which validation data type one chooses, different wind products provide the best forcing fields for simulating the observed signal. In general, the model results forced by satellite winds provide the best simulations of the spatial and temporal signal of the observed sea level. This is due to the accuracy of the meridional gradient of the zonal wind stress component that these products provide. Differences in wind forcing also affect subsurface dynamics and thermodynamics. For example, the wind products with the weakest magnitude best reproduce the sea surface temperature (SST) signal in the eastern Pacific. For these products the mixed layer is shallower, and the thermocline is closer to the surface. For such simulations the subsurface thermocline variability influences the variation in SST more than in reality. The products with the greatest wind magnitude have a strong cold bias of >1.5°C in the eastern Pacific because of increased mixing. The satellite winds along with the analysis winds correctly reproduce the depth of the thermocline and the general subsurface temperature structure.
Localized Plasmon resonance in metal nanoparticles using Mie theory
NASA Astrophysics Data System (ADS)
Duque, J. S.; Blandón, J. S.; Riascos, H.
2017-06-01
In this work, scattering light by colloidal metal nanoparticles with spherical shape was studied. Optical properties such as diffusion efficiencies of extinction and absorption Q ext and Q abs were calculated using Mie theory. We employed a MATLAB program to calculate the Mie efficiencies and the radial dependence of electric field intensities emitted for colloidal metal nanoparticles (MNPs). By UV-Vis spectroscopy we have determined the LSPR for Cu nanoparticles (CuNPs), Ni nanoparticles (NiNPs) and Co nanoparticles (CoNPs) grown by laser ablation technique. The peaks of resonances appear in 590nm, 384nm and 350nm for CuNPs, NiNPs and CoNPs respectively suspended in water. Changing the medium to acetone and ethanol we observed a shift of the resonance peaks, these values agreed with our simulations results.
Understanding of the Elemental Diffusion Behavior in Concentrated Solid Solution Alloys
Zhang, Chuan; Zhang, Fan; Jin, Ke; ...
2017-07-13
As one of the core effects on the high-temperature structural stability, the so-called “sluggish diffusion effect” in high-entropy alloy (HEA) has attracted much attention. Experimental investigations on the diffusion kinetics have been carried out in a few HEA systems, such as Al-Co-Cr-Fe-Ni and Co-Cr-Fe-Mn-Ni. However, the mechanisms behind this effect remain unclear. To better understand the diffusion kinetics of the HEAs, a combined computational/experimental approach is employed in the current study. In the present work, a self-consistent atomic mobility database is developed for the face-centered cubic (fcc) phase of the Co-Cr-Fe-Mn-Ni quinary system. The simulated diffusion coefficients and concentration profilesmore » using this database can well describe the experimental data both from this work and the literatures. The validated mobility database is then used to calculate the tracer diffusion coefficients of Ni in the subsystems of the Co-Cr-Fe-Mn-Ni system with equiatomic ratios. The comparisons of these calculated diffusion coefficients reveal that the diffusion of Ni is not inevitably more sluggish with increasing number of components in the subsystem even with homologous temperature. Taking advantage of computational thermodynamics, the diffusivities of alloying elements with composition and/or temperature are also calculated. Furthermore, these calculations provide us an overall picture of the diffusion kinetics within the Co-Cr-Fe-Mn-Ni system.« less
Current-induced three-dimensional domain wall propagation in cylindrical NiFe nanowires
NASA Astrophysics Data System (ADS)
Wong, D. W.; Purnama, I.; Lim, G. J.; Gan, W. L.; Murapaka, C.; Lew, W. S.
2016-04-01
We report on the magnetization configurations in single NiFe cylindrical nanowires grown by template-assisted electrodeposition. Angular anisotropic magnetoresistance measurements reveal that a three-dimensional helical domain wall is formed naturally upon relaxation from a saturated state. Micromagnetic simulations support the helical domain wall properties and its reversal process, which involves a splitting of the clockwise and anticlockwise vortices. When a pulsed current is applied to the nanowire, the helical domain wall propagation is observed with a minimum current density needed to overcome its intrinsic pinning.
Modelling Ni-mH battery using Cauer and Foster structures
NASA Astrophysics Data System (ADS)
Kuhn, E.; Forgez, C.; Lagonotte, P.; Friedrich, G.
This paper deals with dynamic models of Ni-mH battery and focuses on the development of the equivalent electric models. We propose two equivalent electric models, using Cauer and Foster structures, able to relate both dynamic and energetic behavior of the battery. These structures are well adapted to real time applications (e.g. Battery Management Systems) or system simulations. A special attention will be brought to the influence of the complexity of the equivalent electric scheme on the precision of the model. Experimental validations allow to discuss about performances of proposed models.
Modeling, design, fabrication and experimentation of a GaN-based, 63Ni betavoltaic battery
NASA Astrophysics Data System (ADS)
E Munson, C., IV; Gaimard, Q.; Merghem, K.; Sundaram, S.; Rogers, D. J.; de Sanoit, J.; Voss, P. L.; Ramdane, A.; Salvestrini, J. P.; Ougazzaden, A.
2018-01-01
GaN is a durable, radiation hard and wide-bandgap semiconductor material, making it ideal for usage with betavoltaic batteries. This paper describes the design, fabrication and experimental testing of 1 cm2 GaN-based betavoltaic batteries (that achieve an output power of 2.23 nW) along with a full model that accurately simulates the device performance which is the highest to date (to the best of our knowledge) for GaN-based devices with a 63Ni source.
NASA Astrophysics Data System (ADS)
Londero, E.; Bourgeois, E.; Nesladek, M.; Gali, A.
2018-06-01
There is a continuous search for solid state spin qubits operating at room temperature with excitation in the infrared communication bandwidth. Recently, we have introduced the photoelectric detection of magnetic resonance (PDMR) to read the electron spin state of nitrogen-vacancy (NV) centers in diamond, a technique which is promising for applications in quantum information technology. By measuring the photoionization spectra on a diamond crystal, we found two ionization thresholds of unknown origin. On the same sample we also observed absorption and photoluminescence signatures that were identified in the literature as Ni-associated defects. We performed ab initio calculations of the photoionization cross section of the nickel split-vacancy complex (NiV) and N-related defects in their relevant charge states and fitted the concentration of these defects to the measured photocurrent spectrum, which led to a surprising match between experimental and calculated spectra. This study enabled us to identify the two unknown ionization thresholds with the two acceptor levels of NiV. Because the excitation of NiV is in the infrared, the photocurrent detected from the paramagnetic NiV color centers is a promising way towards the design of electrically readout qubits.
NASA Astrophysics Data System (ADS)
Biermann, D.; Kahleyss, F.; Krebs, E.; Upmeier, T.
2011-07-01
Micro-sized applications are gaining more and more relevance for NiTi-based shape memory alloys (SMA). Different types of micro-machining offer unique possibilities for the manufacturing of NiTi components. The advantage of machining is the low thermal influence on the workpiece. This is important, because the phase transformation temperatures of NiTi SMAs can be changed and the components may need extensive post manufacturing. The article offers a simulation-based approach to optimize five-axis micro-milling processes with respect to the special material properties of NiTi SMA. Especially, the influence of the various tool inclination angles is considered for introducing an intelligent tool inclination optimization algorithm. Furthermore, aspects of micro deep-hole drilling of SMAs are discussed. Tools with diameters as small as 0.5 mm are used. The possible length-to-diameter ratio reaches up to 50. This process offers new possibilities in the manufacturing of microstents. The study concentrates on the influence of the cutting speed, the feed and the tool design on the tool wear and the quality of the drilled holes.
Role of oxygen diffusion at Ni/Cr2O3 interface in intergranular oxidation of Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Sushko, Maria; Schreiber, Daniel; Rosso, Kevin; Bruemmer, Stephen
Certain Ni-Cr alloys used in nuclear systems experience intergranular oxidation and stress corrosion cracking when exposed to high-temperature water leading to their degradation and unexpected failure. To develop a mechanistic understanding of grain boundary oxidation processes, we proposed a mesoscale metal alloy oxidation model that combines quantum Density Functional Theory (DFT) with mesoscopic Poisson-Nernst-Planck/classical DFT. This framework encompasses the chemical specificity of elementary diffusion processes and mesoscale reactive dynamics, and allows modeling oxidation processes on experimentally relevant length scales from first principles. As a proof of concept, a preliminary model was previously employed that limited oxygen diffusion pathways to those through the oxide phase and did not allow oxygen diffusion in the alloy or across oxide/alloy interfaces. In this work, we expand the model to include oxygen diffusion pathways along Ni/Cr2O3 interfaces and demonstrate the increasing importance of such pathways for intergranular oxidation of Ni-Cr alloys with high Cr content. This work is supported by the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations are performed using PNNL Institutional Computing facility.
NASA Astrophysics Data System (ADS)
Li, Penghui; Li, Limin; Wang, Wenhao; Jin, Weihong; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.
2014-04-01
To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.
Root canal shaping with manual stainless steel files and rotary Ni-Ti files performed by students.
Sonntag, D; Guntermann, A; Kim, S K; Stachniss, V
2003-04-01
To investigate root canal shaping with manual stainless steel files and rotary Ni-Ti files by students. Two hundred and ten simulated root canals with the same geometrical shape and size in acrylic resin blocks were prepared by 21 undergraduate dental students with manual stainless steel files using a stepback technique or with rotary Ni-Ti files in crown-down technique. Preparation length, canal shape, incidence of fracture and preparation time were investigated. Zips and elbows occurred significantly (P < 0.001) less frequently with rotary than with manual preparation. The correct preparation length was achieved significantly (P < 0.05) more often with rotary Ni-Ti files than with manual stainless steel files. Fractures occurred significantly (P < 0.05) less frequently with hand instrumentation. The mean time required for manual preparation was significantly (P < 0.001) longer than that required for rotary preparation. Prior experience with a hand preparation technique was not reflected in an improved quality of the subsequent engine-driven preparation. Inexperienced operators achieved better canal preparations with rotary Ni-Ti instruments than with manual stainless steel files. However, rotary preparation was associated with significantly more fractures.
NASA Astrophysics Data System (ADS)
Mudgal, Deepa; Singh, Surendra; Prakash, Satya
2015-01-01
Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.
Laycock, Christian J; Staniforth, John Z; Ormerod, R Mark
2011-05-28
Numerous investigations have been carried out into the conversion of biogas into synthesis gas (a mixture of H(2) + CO) over Ni/YSZ anode cermet catalysts. Biogas is a variable mixture of gases consisting predominantly of methane and carbon dioxide (usually in a 2 : 1 ratio, but variable with source), with other constituents including sulfur-containing gases such as hydrogen sulfide, which can cause sulfur poisoning of nickel catalysts. The effect of temperature on carbon deposition and sulfur poisoning of 90 : 10 mol% Ni/YSZ under biogas conversion conditions has been investigated by carrying out a series of catalytic reactions of methane-rich (2 : 1) CH(4)/CO(2) mixtures in the absence and presence of H(2)S over the temperature range 750-1000 °C. The effect of ceria-doping on carbon dioxide reforming, carbon deposition and sulfur tolerance has also been investigated by carrying out a similar series of reactions over ceria-doped Ni/YSZ. Ceria was doped at 5 mol% of the nickel content to give an anode catalyst composition of 85.5 : 4.5 : 10 mol% Ni/CeO(2)/YSZ. Reactions were followed using quadrupolar mass spectrometry (QMS) and the amount of carbon deposition was analysed by subjecting the reacted catalyst samples to a post-reaction temperature programmed oxidation (TPO). On undoped Ni/YSZ, carbon deposition occurred predominantly through thermal decomposition of methane. Ceria-doping significantly suppressed methane decomposition and at high temperatures simultaneously promoted the reverse Boudouard reaction, significantly lowering carbon deposition. Sulfur poisoning of Ni/YSZ occurred in two phases, the first of which caused the most activity loss and was accelerated on increasing the reaction temperature, while the second phase had greater stability and became more favourable with increasing reaction temperature. Adding H(2)S significantly inhibited methane decomposition, resulting in much less carbon deposition. Ceria-doping significantly increased the sulfur tolerance of Ni/YSZ, however, in the presence of H(2)S ceria did not promote the reverse Boudouard reaction and at high temperatures carbon deposition was greater over ceria-doped Ni/YSZ. In order to further study the effects of ceria-doping, a solid oxide fuel cell (SOFC) was constructed with a ceria-doped anode cermet and its electrical performance on simulated biogas compared to hydrogen was tested. This fuel cell was subsequently ran for 1000 h on simulated biogas with no degradation in its overall electrical performance.
Enhancement of biocompatibility of nickel-titanium by laser surface modification technology
NASA Astrophysics Data System (ADS)
Ng, Ka Wai
Nickel Titanium is a relatively new biomaterial that has attracted research interest for biomedical application. The good biocompatibility with specific functional properties of shape memory effect and superelasticity creates a smart material for medical applications. However, there are still concerns on nickel ion release of this alloy if it is going to be implanted for a long time. Nickel ion is carcinogenic and also causes allergic response and degeneration of muscle tissue. The subsequent release of Ni+ ions into the body system is fatal for the long term application of this alloy in the human body. To improve the long term biocompatibility and corrosion properties of NiTi, different surface treatment techniques have been investigated but no optimum technique has been established yet. This project will investigate the feasibility of applying laser surface alloying technique to improve the corrosion resistance and biocompatibility of NiTi in simulated body fluid condition. This thesis summarizes the result of laser surface modification of NiTi with Mo, Nb and Co using CO2 laser. The modified layer, which is free of microcracks and pores, acts as physical barrier to reduce nickel release and enhance the surface properties. The hardness values of the Mo-alloyed NiTi, Nb-alloyed NiTi and Co-alloyed NiTi surface were found to be three to four times harder than the NiTi substrate. Corrosion polarization tests also showed that the alloyed NiTi are significantly more resistant than the NiTi alloy. The release of Ni ions can be greatly reduced after laser surface alloying NiTi with Mo, Nb and Co. The improvement in wettability characteristics, the growth of the apatite on the specimen's surface and the adhesion of cell confirm the good biocompatibility after laser surface alloying. It is concluded that laser surface alloying is one of the potential technique not only to improve the corrosion resistance with low nickel release rate, but also retain the good biocompatibility of NiTi. The technique can be applied to bone fixation plates or implants with relatively large surface area. The results of this project are significant as they add new knowledge on the surface modification of NiTi for long term implant application.
Change of ENSO characteristics in response to global warming
NASA Astrophysics Data System (ADS)
Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.
2017-12-01
By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that the frequency of ENSO events greatly increases due to global warming, and many more extreme El Niño and La Niña events appear under the El Niño-like and the La Niña-like background warmings, respectively. This study reconciles the phenomena and mechanisms of different characteristics of ENSO changes in observations and models.
Multiscale model of metal alloy oxidation at grain boundaries
NASA Astrophysics Data System (ADS)
Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.
2015-06-01
High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales.
Multiscale model of metal alloy oxidation at grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sushko, Maria L., E-mail: maria.sushko@pnnl.gov; Alexandrov, Vitaly; Schreiber, Daniel K.
2015-06-07
High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate thatmore » the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales.« less
Massive quantum regions for simulations on bio-nanomaterials: synthetic ferritin nanocages.
Torras, Juan; Alemán, Carlos
2018-02-22
QM/MM molecular dynamics simulations on the 4His-ΔC* protein cage have been performed using multiple active zones (up to 86 quantum regions). The regulation and nanocage stability exerted by the divalent transition metal ions in the monomer-to-cage conversion have been understood by comparing high level quantum trajectories obtained using Cu 2+ and Ni 2+ coordination ions.
NASA Astrophysics Data System (ADS)
Karoly, David; Black, Mitchell; Grose, Michael; King, Andrew
2017-04-01
The island state of Tasmania, in southeast Australia, received record low average rainfall of 21 mm in October 2015, 17% of the 1961-90 normal. This had major impacts across the state, affecting agriculture and hydroelectric power generation and preconditioning the landscape for major bushfires the following summer. Rainfall in Tasmania is normally high throughout the year, with variations in Austral spring associated with mean sea level pressure (MSLP) and circulation variations due to El Niño, the Indian Ocean dipole (IOD), and the southern annular mode (SAM). Spring rainfall is declining and projected to decrease further in Tasmania We have investigated the roles of anthropogenic climate change, the 2015/16 El Niño, and internal atmospheric variability on this record low October rainfall using observational data, regional climate simulations driven by specified sea surface temperatures (SSTs) from the weather@home Australia and New Zealand (w@h ANZ) project, and coupled climate model simulations from the Coupled Model Intercomparison Project phase 5. Anthropogenic climate change and the strong El Niño in 2015 very likely increased the chances of breaking the previous record low rainfall in 1965. In terms of contributions to the magnitude of this rainfall deficit, internal atmospheric variability as indicated by the Pacific-South American MSLP pattern was likely the main contributor, with El Niño next and a smaller but significant contribution from anthropogenic climate change. In this case, it was the MSLP and circulation changes associated with anthropogenic climate change in the Southern Hemisphere middle and high latitudes and not the thermodynamic effects of anthropogenic climate change that contributed to this event. Karoly, D. J., M.T. Black, M.R. Grose and A. D. King (2016) The roles of climate change and El Niño in the record low rainfall in October 2015 in Tasmania, Australia [in "Explaining Extremes of 2015 from a Climate Perspective"]. Bull. Am. Met. Soc., 97, S127-S130.
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.
2014-10-01
The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions and electrons, agree rather well with the experiment.
Two-dimensional Maxwell-Bloch simulation of quasi-π-pulse amplification in a seeded XUV laser
NASA Astrophysics Data System (ADS)
Larroche, O.; Klisnick, A.
2013-09-01
The amplification of high-order-harmonics (HOH) seed pulses in a swept-gain XUV laser is investigated through numerical simulations of the full set of Bloch and two-dimensional paraxial propagation equations with our code colax. The needed atomic data are taken from a hydrodynamics and collisional-radiative simulation in the case of a Ni-like Ag plasma created from the interaction of an infrared laser with a solid target and pumped in the transient regime. We show that the interplay of strong population inversion and diffraction or refraction due to the short transverse dimensions and steep density gradient of the active plasma can lead to the amplification of an intense, ultrashort, quasi-“π” pulse triggered by the incoming seed. By properly tuning the system geometry and HOH pulse parameters, we show that an ≃10 fs, 8×1012 W/cm2 amplified pulse can be achieved in a 3-mm-long Ni-like Ag plasma, with a factor of ≳10 intensity contrast with respect to the longer-lasting wake radiation and amplified spontaneous emission.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo
2015-10-01
Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.
Toker, S M; Canadinc, D; Maier, H J; Birer, O
2014-03-01
A systematic set of ex-situ experiments were carried out on Nickel-Titanium (NiTi) shape memory alloy (SMA) in order to identify the dependence of its biocompatibility on sample geometry and body location. NiTi samples with three different geometries were immersed into three different fluids simulating different body parts. The changes observed in alloy surface and chemical content of fluids upon immersion experiments designed for four different time periods were analyzed in terms of ion release, oxide layer formation, and chemical composition of the surface layer. The results indicate that both sample geometry and immersion fluid significantly affect the alloy biocompatibility, as evidenced by the passive oxide layer formation on the alloy surface and ion release from the samples. Upon a 30 day immersion period, all three types of NiTi samples exhibited lower ion release than the critical value for clinic applications. However; a significant amount of ion release was detected in the case of gastric fluid, warranting a thorough investigation prior to utility of NiTi in gastrointestinal treatments involving long-time contact with tissue. Furthermore, certain geometries appear to be safer than the others for each fluid, providing a new set of guidelines to follow while designing implants making use of NiTi SMAs to be employed in treatments targeting specific body parts. Copyright © 2013 Elsevier B.V. All rights reserved.
Alrahabi, Mothanna
2015-01-01
We evaluated the use of NiTi rotary and stainless steel endodontic instruments for canal shaping by undergraduate students. We also assessed the quality of root canal preparation as well as the occurrence of iatrogenic events during instrumentation. In total, 30 third-year dental students attending Taibah University Dental College prepared 180 simulated canals in resin blocks with NiTi rotary instruments and stainless steel hand files. Superimposed images were prepared to measure the removal of material at different levels from apical termination using the GSA image analysis software. Preparation time, procedural accidents, and canal shape after preparation were analyzed using χ 2 and t-tests. The statistical significance level was set at P < 0.05. There were significant differences in preparation time between NiTi instruments and stainless steel files; the former was associated with shorter preparation time, less ledge formation (1.1% vs. 14.4%), and greater instrument fracture (5.56% vs. 1.1%). These results indicate that NiTi rotary instruments result in better canal geometry and cause less canal transportation. Manual instrumentation using stainless steel files is safer than rotary instrumentation for inexperienced students. Intensive preclinical training is a prerequisite for using NiTi rotary instruments. These results prompted us to reconsider theoretical and practical coursework when teaching endodontics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Amonette, James E.; Kukkadapu, Ravi K.
2014-10-31
Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals weremore » extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fe total ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.« less
Pressure-induced phase transition in titanium alloys
NASA Astrophysics Data System (ADS)
Murugeswari, R.; Rajeswarapalanichamy, R.; Benial, A. Milton Franklin
2018-05-01
The structural, elastic, magnetic and electronic properties of titanium-based ferromagnetic (FM) TiX (X = Fe, Co, Ni) alloys are investigated by the first principles calculations based on density functional theory using the Vienna ab initio simulation code. At ambient pressure, all the three alloys TiFe, TiCo and TiNi are highly stable in CsCl structure. The calculated lattice parameters and ground state properties are in good agreement with the available theoretical and experimental results. The density of states explains that these alloys possess the metallic nature at normal and high pressures. A pressure-induced structural phase transitions from CsCl to NaCl phase at 46 GPa and NaCl to ZB phase at 49 GPa in TiFe, CsCl to ZB phase in TiCo at 52 GPa, CsCl to hexagonal phase at 22 GPa and hexagonal to ZB phase at 66 GPa in TiNi are observed. The calculated Debye temperatures of TiX (X = Fe, Co, Ni) alloys are in good agreement with earlier reports. Binding energy shows that the TiCo is the most stable alloy. The magnetic property of TiX (X = Fe, Co, Ni) alloys reveals that TiFe is stable in nonmagnetic phase and the other two alloys, TiCo and TiNi, are stable in FM phase at normal pressure.
Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.
Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less
Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling
Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.
2016-04-01
Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less
Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys
Lu, Chenyang; Yang, Taini; Jin, Ke; ...
2017-01-12
A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less
Compact gain saturated plasma based X-ray lasers down to 6.9nm
NASA Astrophysics Data System (ADS)
Rocca, Jorge; Wang, Y.; Wang, S.; Rockwood, A.; Berrill, M.; Shlyaptsev, V.
2017-10-01
Plasma based soft x-ray amplifiers allow many experiments requiring bright, high energy soft x-ray laser pulses to be conducted in compact facilities. We have extended the wavelength of compact gain saturated x-ray lasers to 6.89 nm in a Ni-like Gd plasma generated by a Ti:Sa laser. Gain saturated laser operation was also obtained at 7.36 nm in Ni-like Sm. Isolectronic scaling and optimization of laser pre-pulse duration allowed us to also observe strong lasing at 6.6 nm and 6.1 nm in Ni-like Tb, and amplification at 6.4 nm and 5.89 nm in Ni-like Dy. The results were obtained by transient laser heating of solid targets with traveling wave excitation at progressively increased gracing incidence angles. We show that the optimum pump angle of incidence for collisional Ni-like lasers increases linearly with atomic number from Z =42 to Z =66, reaching 43 degrees for Ni-like Dy, in good agreement with hydrodynamic/atomic physics simulations. These results will enable single-shot nano-scale imaging and other application of sub-7 nm lasers to be performed at compact facilities. Work supported by Grant DE-FG02-4ER15592 of the Department of Energy, Office of Science, and by the National Science Foundation Grant ECCS 1509925.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Russell, Lynn M.; Xu, Li
The impacts of the El Niño–Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW) and the underlying changes in cloud fraction as well as aerosol emissions, wet scavenging and transport are quantified using three 150-year simulations in preindustrial conditions by the CESM model. Compared to recent observations from Clouds and the Earth’s Radiant Energy System (CERES), the model simulation successfully reproduced larger variations of CRESW over the tropical western and central Pacific, Indonesian regions, and the eastern Pacific Ocean, as well as large variations of CRELW located mainly within the tropics. The ENSO cycle ismore » found to dominate interannual variations of cloud radiative effects, especially over the tropics. Relative to those during La Niña events, simulated cooling (warming) effects from CRESW (CRELW) during El Niño events are stronger over the tropical western and central Pacific Ocean, with the largest difference exceeding 40 Wm–2 (30 Wm–2), with weaker effects of 10–30 Wm–2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in medium and high cloud fractions each account for about 20–50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes most interannual variations of CRESW over the mid-latitude oceans. Variations in natural aerosol concentrations considering emissions, wet scavenging and transport explained 10–30% of the interannual variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions and the tropical Indian Ocean. Changes in wet scavenging of natural aerosol modulate the variations of cloud radiative effects. Because of increased (decreased) precipitation over the tropical western Pacific Ocean in El Niño (La Niña) events, increased (decreased) wet scavenging of natural aerosols dampens more than 4–6% of variations of cloud radiative effects averaged over the tropics. In contrast, increased surface winds cause feedbacks that increase sea spray emissions that enhance the variations by 3–4% averaged over the tropics.« less
Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production
NASA Astrophysics Data System (ADS)
White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.
2005-05-01
Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years, species composition was more evenly distributed. At the longer time scale, El Niño events with accompanying increase in nutrient loads were followed by years in which productivity declined below levels predicted solely by nutrient ratios. This was due to subtle shifts in organic matter decomposition where productive years are followed by increases in refractory material which sequesters nutrients and reduces internal loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Stocks, George Malcolm; Zhang, Yanwen
2016-08-03
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Nimore » 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less
NASA Astrophysics Data System (ADS)
Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping
2018-01-01
Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 < QO-Ni = 0.220) compared to that in ZrO2/Ni, TGO Al2O3 can improve the oxidation resistance of the metal matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.
Liu, Jia-Kuang; Lee, Tzer-Min; Liu, I-Hua
2011-08-01
For orthodontic applications, equiatomic nickel-titanium (NiTi) wires are used to level and align the teeth under bending conditions in the oral environment for long periods. The aim of study was to investigate the influence of bending stress on the nickel release of commercial NiTi orthodontic wires in vitro, simulating the intraoral environment as realistically as possible. Two types of as-received orthodontic NiTi wires, free of performed internal stress, were immersed in artificial saliva. Half of the NiTi wires were exposed to continuous bending stress throughout the 14-day experimental period. The stressed NiTi wires exhibited substantial increases in the nickel release compared with the unstressed specimens during all experimental periods. The highest dissolution rate during the 0 to 1 day incubation period was observed for all stressed specimens. However, a slight increase of nickel released as a function of time was observed in the 3 groups of stressed specimens after 3 days of immersion. For the stressed specimens, it was hypothesized that the bending stress would induce buckling or cracking of the protective oxide film of the NiTi wires. In this study, the mechanism of nickel release was the underlying metal surface reacting with the surrounding environment. The results indicated that bending stress influences the nickel release of NiTi wires. The factor of loading condition with respect to corrosion behavior and passive film should be considered in view of the widespread use of NiTi wires for dental devices. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Gogada, Raghu; Singh, Surya Satyanarayana; Lunavat, Shanti Kumari; Pamarthi, Maruthi Mohan; Rodrigue, Agnes; Vadivelu, Balaji; Phanithi, Prakash-Babu; Gopala, Venkateswaran; Apte, Shree Kumar
2015-11-01
The aim of the present work was to engineer bacteria for the removal of Co in contaminated effluents. Radioactive cobalt ((60)Co) is known as a major contributor for person-sievert budgetary because of its long half-life and high γ-energy values. Some bacterial Ni/Co transporter (NiCoT) genes were described to have preferential uptake for cobalt. In this study, the NiCoT genes nxiA and nvoA from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), respectively, were cloned under the control of the groESL promoter. These genes were expressed in Deinococcus radiodurans in reason of its high resistance to radiation as compared to other bacterial strains. Using qualitative real time-PCR, we showed that the expression of NiCoT-RP and NiCoT-NA is induced by cobalt and nickel. The functional expression of these genes in bioengineered D. radiodurans R1 strains resulted in >60 % removal of (60)Co (≥5.1 nM) within 90 min from simulated spent decontamination solution containing 8.5 nM of Co, even in the presence of >10 mM of Fe, Cr, and Ni. D. radiodurans R1 (DR-RP and DR-NA) showed superior survival to recombinant E. coli (ARY023) expressing NiCoT-RP and NA and efficiency in Co remediation up to 6.4 kGy. Thus, the present study reports a remarkable reduction in biomass requirements (2 kg) compared to previous studies using wild-type bacteria (50 kg) or ion-exchanger resins (8000 kg) for treatment of ~10(5)-l spent decontamination solutions (SDS).
Xu, Qiang; Liu, Yulan; Wang, Biao; He, Jin
2008-10-01
Vascular stent is an important medical appliance for angiocardiopathy. Its key deformation process is the expandable progress of stent in the vessel. The important deformation behaviour corresponds to two mechanics targets: deformation and stress. This paper is devoted to the research and development of vascular stent with proprietary intellectual property rights. The design of NiTinol self-expandable stent is optimized by means of finite element software. ANSYS is used to build the finite element simulation model of vascular stent; the molding material is NiTinol shape memory alloy. To cope with the factors that affect the structure of stent, the shape of grid and so on, the self-expanding process of Nitinol stent is simulated through computer. By making a comparison between two kinds of stents with similar grid structure, we present a new concept of "Optimized Grid" of stent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, D. M., E-mail: d.burn@imperial.ac.uk; Atkinson, D.
2014-10-28
Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetizationmore » change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.« less
NASA Astrophysics Data System (ADS)
Weingarten, N. Scott; Mattson, William D.; Yau, Anthony D.; Weihs, Timothy P.; Rice, Betsy M.
2010-05-01
To elucidate the mechanisms of energy release in a reacting nickel/aluminum bilayer, we simulate the exothermic alloying reactions using both microcanonical and isoenthalpic-isobaric molecular dynamics simulations and an embedded-atom method type potential. The mechanism of the mixing consists of a sequence of steps in which mixing and reaction first occurs at the interface; the resulting heat generated from the mixing then melts the Al layer; subsequent mixing leads to further heat generation after which the Ni layer melts. The mixing continues until the alloying reactions are completed. The results indicate that pressure has a significant influence on the rates of atomic mixing and alloying reactions. Local pressures and temperatures within the individual layers at the time of melting are calculated, and these results are compared with the pressure-dependent melting curves determined for pure Al and pure Ni using this interaction potential.
Ajloo, Davood; Shabanpanah, Sajede; Shafaatian, Bita; Ghadamgahi, Maryam; Alipour, Yasin; Lashgarbolouki, Taghi; Saboury, Ali Akbar
2015-01-01
Interaction of 1,3-bis(2-hydroxy-benzylidene)-urea (H2L1), 1,3-bis(2-hydroxy-3-methoxy-benzylidene)-urea (H2L2) and 1,3-bis(2-hydroxy-3-methoxy-benzylidene)-urea nickel(II) (NiL2) with calf-thymus DNA were investigated by UV-vis absorption, fluorescence emission and circular dichroism (CD) spectroscopy as well as cyclic voltammetry, viscosity measurements, molecular docking and molecular dynamics simulation. Binding constants were determined using UV-vis absorption and fluorescence spectra. The results indicated that studied Schiff-bases bind to DNA in the intercalative mode in which the metal derivative is more effective than non metals. Their interaction trend is further determined by molecular dynamics (MD) simulation. MD results showed that Ni derivative reduces oligonucleotide intermolecular hydrogen bond and increases solvent accessible surface area more than other compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis (Simulation) of Ni-63 beta-voltaic cells based on silicon solar cells
NASA Astrophysics Data System (ADS)
Gorbatsevich, A. A.; Danilin, A. B.; Korneev, V. I.; Magomedbekov, E. P.; Molin, A. A.
2016-07-01
Beta-voltaic cells based on standard silicon solar cells with bilateral coating with beta-radiation sources in the form of 63Ni isotope have been studied experimentally and by numerical simulation. The optimal parameters of the cell, including its thickness, the doping level of the substrate, the depth of the p- n junction on its front side, and the p + layer on the back side, as well as the activity of the source material, have been calculated. The limiting theoretical values of the open-circuit voltage (0.26 V), short-circuiting current (2.1 μA), the output power of the cell (0.39 μW), and the efficiency of the conversion of the radioactive energy onto the electric energy (4.8%) have been determined for a beta-source activity of 40 mCi. The results of numerical analysis have been compared with the experimental data.
NASA Astrophysics Data System (ADS)
Eremina, Galina M.; Smolin, Alexey Yu.; Shilko, Evgeny V.
2017-12-01
Metal-ceramic materials are characterized by high mechanical and tribological properties. The surface treatment of the composite by an electron beam in inert gas plasma leads to a qualitative and quantitative change in its microstructure as well as to a change in mechanical properties of the components: a columnar structure forms in the modified layer. Different treatment regimes result in different concentrations of inclusions in the surface layer. In this paper, the effect of the volume concentration of inclusions on the integral mechanical properties of a dispersion-strengthened NiCr-TiC composite is studied on the basis of 3D numerical simulation. The results of computer simulation show that the change in concentration significantly affects the integral mechanical characteristics of the composite material as well as the nature of the nucleation and development of damages in it.
Increased Population Risk of AIP-Related Acromegaly and Gigantism in Ireland.
Radian, Serban; Diekmann, Yoan; Gabrovska, Plamena; Holland, Brendan; Bradley, Lisa; Wallace, Helen; Stals, Karen; Bussell, Anna-Marie; McGurren, Karen; Cuesta, Martin; Ryan, Anthony W; Herincs, Maria; Hernández-Ramírez, Laura C; Holland, Aidan; Samuels, Jade; Aflorei, Elena Daniela; Barry, Sayka; Dénes, Judit; Pernicova, Ida; Stiles, Craig E; Trivellin, Giampaolo; McCloskey, Ronan; Ajzensztejn, Michal; Abid, Noina; Akker, Scott A; Mercado, Moises; Cohen, Mark; Thakker, Rajesh V; Baldeweg, Stephanie; Barkan, Ariel; Musat, Madalina; Levy, Miles; Orme, Stephen M; Unterländer, Martina; Burger, Joachim; Kumar, Ajith V; Ellard, Sian; McPartlin, Joseph; McManus, Ross; Linden, Gerard J; Atkinson, Brew; Balding, David J; Agha, Amar; Thompson, Chris J; Hunter, Steven J; Thomas, Mark G; Morrison, Patrick J; Korbonits, Márta
2017-01-01
The aryl hydrocarbon receptor interacting protein (AIP) founder mutation R304 * (or p.R304 * ; NM_003977.3:c.910C>T, p.Arg304Ter) identified in Northern Ireland (NI) predisposes to acromegaly/gigantism; its population health impact remains unexplored. We measured R304 * carrier frequency in 936 Mid Ulster, 1,000 Greater Belfast (both in NI) and 2,094 Republic of Ireland (ROI) volunteers and in 116 NI or ROI acromegaly/gigantism patients. Carrier frequencies were 0.0064 in Mid Ulster (95%CI = 0.0027-0.013; P = 0.0005 vs. ROI), 0.001 in Greater Belfast (0.00011-0.0047) and zero in ROI (0-0.0014). R304 * prevalence was elevated in acromegaly/gigantism patients in NI (11/87, 12.6%, P < 0.05), but not in ROI (2/29, 6.8%) versus non-Irish patients (0-2.41%). Haploblock conservation supported a common ancestor for all the 18 identified Irish pedigrees (81 carriers, 30 affected). Time to most recent common ancestor (tMRCA) was 2550 (1,275-5,000) years. tMRCA-based simulations predicted 432 (90-5,175) current carriers, including 86 affected (18-1,035) for 20% penetrance. In conclusion, R304 * is frequent in Mid Ulster, resulting in numerous acromegaly/gigantism cases. tMRCA is consistent with historical/folklore accounts of Irish giants. Forward simulations predict many undetected carriers; geographically targeted population screening improves asymptomatic carrier identification, complementing clinical testing of patients/relatives. We generated disease awareness locally, necessary for early diagnosis and improved outcomes of AIP-related disease. © 2016 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam
Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less
Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam; ...
2017-11-20
Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less
Increased Population Risk of AIP‐Related Acromegaly and Gigantism in Ireland
Radian, Serban; Diekmann, Yoan; Gabrovska, Plamena; Holland, Brendan; Bradley, Lisa; Wallace, Helen; Stals, Karen; Bussell, Anna‐Marie; McGurren, Karen; Cuesta, Martin; Ryan, Anthony W.; Herincs, Maria; Hernández‐Ramírez, Laura C.; Holland, Aidan; Samuels, Jade; Aflorei, Elena Daniela; Barry, Sayka; Dénes, Judit; Pernicova, Ida; Stiles, Craig E.; Trivellin, Giampaolo; McCloskey, Ronan; Ajzensztejn, Michal; Abid, Noina; Akker, Scott A.; Mercado, Moises; Cohen, Mark; Thakker, Rajesh V.; Baldeweg, Stephanie; Barkan, Ariel; Musat, Madalina; Levy, Miles; Orme, Stephen M.; Unterländer, Martina; Burger, Joachim; Kumar, Ajith V.; Ellard, Sian; McPartlin, Joseph; McManus, Ross; Linden, Gerard J.; Atkinson, Brew; Balding, David J.; Agha, Amar; Thompson, Chris J.; Hunter, Steven J.; Thomas, Mark G.; Morrison, Patrick J.
2016-01-01
ABSTRACT The aryl hydrocarbon receptor interacting protein (AIP) founder mutation R304* (or p.R304*; NM_003977.3:c.910C>T, p.Arg304Ter) identified in Northern Ireland (NI) predisposes to acromegaly/gigantism; its population health impact remains unexplored. We measured R304* carrier frequency in 936 Mid Ulster, 1,000 Greater Belfast (both in NI) and 2,094 Republic of Ireland (ROI) volunteers and in 116 NI or ROI acromegaly/gigantism patients. Carrier frequencies were 0.0064 in Mid Ulster (95%CI = 0.0027–0.013; P = 0.0005 vs. ROI), 0.001 in Greater Belfast (0.00011–0.0047) and zero in ROI (0–0.0014). R304* prevalence was elevated in acromegaly/gigantism patients in NI (11/87, 12.6%, P < 0.05), but not in ROI (2/29, 6.8%) versus non‐Irish patients (0–2.41%). Haploblock conservation supported a common ancestor for all the 18 identified Irish pedigrees (81 carriers, 30 affected). Time to most recent common ancestor (tMRCA) was 2550 (1,275–5,000) years. tMRCA‐based simulations predicted 432 (90–5,175) current carriers, including 86 affected (18–1,035) for 20% penetrance. In conclusion, R304* is frequent in Mid Ulster, resulting in numerous acromegaly/gigantism cases. tMRCA is consistent with historical/folklore accounts of Irish giants. Forward simulations predict many undetected carriers; geographically targeted population screening improves asymptomatic carrier identification, complementing clinical testing of patients/relatives. We generated disease awareness locally, necessary for early diagnosis and improved outcomes of AIP‐related disease. PMID:27650164
NASA Astrophysics Data System (ADS)
Gong, Wenquan
2005-07-01
The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization resistances. Ni-LDC (50 v% NO was selected to be the anode for the LSGM electrolyte with a thin LDC barrier layer. Finally, the performance of complete LSGM electrolyte-supported IT-SOFCs with the selected cathode (LSCF-LSGM) and anode (Ni-LDC) materials coupled with the LDC barrier layer was evaluated at 600--800°C. The simulated cell performance of the anode-supported cell based on LSGM electrolyte was promising.
NASA Astrophysics Data System (ADS)
Liu, Guangtao; Liu, Hanyu; Feng, Xiaolei; Redfern, Simon A. T.
2018-04-01
Systematic ab initio structure simulations have been used to explore the high-pressure behavior of nitinol (NiTi) at zero temperature. Our crystal structure prediction and first-principles calculations reveal that the known B 19 phase is dynamically unstable, and an orthorhombic structure (Pbcm) and a face-centered-cubic B 32 structure (F d 3 ¯m ) become stable above ˜4 and 29 GPa, respectively. The predicted, highest-pressure, B 32 phase is composed of two interpenetrating diamond structures, with a structural topology that is quite distinct from that of the other phases of NiTi. Interestingly, the B 32 phase shows an unusual semiconducting characteristic as a result of its unique band structure and the nature of 3 d orbitals localization, whose expected synthesis pressure is accessible to current experimental techniques.
NASA Astrophysics Data System (ADS)
Zhiyong, Zhu; Jung, Peter; Klein, Horst
1993-07-01
A high purity austenitic FeCrNiMo alloy and DIN 1.4914 martensitic stainless steel were irradiated with 6.2 MeV protons. The pulsed operation of a tokamak fusion reactor was simulated by simultaneous cycling of beam, temperature and stress similar to that anticipated in the NET (Next European Torus) design. Void swelling and irradiation creep of the FeCrNiMo alloy under cyclic and stationary conditions were identical within the experimental error. The martensitic steel showed no swelling at the present low doses (~0.2 dpa). The plastic deformation under continuous and cyclic irradiation was essentially determined by thermal creep. During irradiation the electrical resistivity of FeCrNiMo slightly increased, probably due to swelling, while that of DIN 1.4914 linearly decreased, probably due to segregation effects.
Performance and life evaluation of advanced battery technologies for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.
Single line-of-sight dual energy backlighter for mix width experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, K. L., E-mail: baker7@llnl.gov; Glendinning, S. G.; Martinez, D.
2014-11-15
We present a diagnostic technique used to spatially multiplex two x-ray radiographs of an object onto a detector along a single line-of-sight. This technique uses a thin, <2 μm, cosputtered backlighter target to simultaneously produce both Ni and Zn He{sub α} emission. A Ni picket fence filter, 500 μm wide bars and troughs, is then placed in front of the detector to pass only the Ni He{sub α} emission in the bar region and both energies in the trough region thereby spatially multiplexing the two radiographs on a single image. Initial experimental results testing the backlighter spectrum are presented alongmore » with simulated images showing the calculated radiographic images though the nickel picket fence filter which are used to measure the mix width in an accelerated nickel foam.« less
Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho
2014-01-01
The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40°C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature. PMID:24574937
Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho
2014-01-01
The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40 °C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature.
NASA Astrophysics Data System (ADS)
Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger
2017-10-01
30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.
Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion.
Major, Paul W; Toogood, Roger W; Badawi, Hisham M; Carey, Jason P; Seru, Surbhi
2014-12-01
To better understand the effects of copper nickel titanium (CuNiTi) archwire size on bracket-archwire mechanics through the analysis of force/couple distributions along the maxillary arch. The hypothesis is that wire size is linearly related to the forces and moments produced along the arch. An Orthodontic Simulator was utilized to study a simplified high canine malocclusion. Force/couple distributions produced by passive and elastic ligation using two wire sizes (Damon 0.014 and 0.018 inch) measured with a sample size of 144. The distribution and variation in force/couple loading around the arch is a complicated function of wire size. The use of a thicker wire increases the force/couple magnitudes regardless of ligation method. Owing to the non-linear material behaviour of CuNiTi, this increase is less than would occur based on linear theory as would apply for stainless steel wires. The results demonstrate that an increase in wire size does not result in a proportional increase of applied force/moment. This discrepancy is explained in terms of the non-linear properties of CuNiTi wires. This non-proportional force response in relation to increased wire size warrants careful consideration when selecting wires in a clinical setting. © 2014 British Orthodontic Society.
NASA Astrophysics Data System (ADS)
Sangiovanni, D. G.; Alling, B.; Steneteg, P.; Hultman, L.; Abrikosov, I. A.
2015-02-01
We use ab initio and classical molecular dynamics (AIMD and CMD) based on the modified embedded-atom method (MEAM) potential to simulate diffusion of N vacancy and N self-interstitial point defects in B 1 TiN. TiN MEAM parameters are optimized to obtain CMD nitrogen point-defect jump rates in agreement with AIMD predictions, as well as an excellent description of Ti Nx(˜0.7
Bradley, Michael J; Chivers, Peter T; Baker, Nathan A
2008-05-16
Escherichia coli NikR is a homotetrameric Ni(2+)- and DNA-binding protein that functions as a transcriptional repressor of the NikABCDE nickel permease. The protein is composed of two distinct domains. The N-terminal 50 amino acids of each chain forms part of the dimeric ribbon-helix-helix (RHH) domains, a well-studied DNA-binding fold. The 83-residue C-terminal nickel-binding domain forms an ACT (aspartokinase, chorismate mutase, and TyrA) fold and contains the tetrameric interface. In this study, we have utilized an equilibrium molecular dynamics simulation in order to explore the conformational dynamics of the NikR tetramer and determine important residue interactions within and between the RHH and ACT domains to gain insight into the effects of Ni(2+) on DNA-binding activity. The molecular simulation data were analyzed using two different correlation measures based on fluctuations in atomic position and noncovalent contacts together with a clustering algorithm to define groups of residues with similar correlation patterns for both types of correlation measure. Based on these analyses, we have defined a series of residue interrelationships that describe an allosteric communication pathway between the Ni(2+)- and DNA-binding sites, which are separated by 40 A. Several of the residues identified by our analyses have been previously shown experimentally to be important for NikR function. An additional subset of the identified residues structurally connects the experimentally implicated residues and may help coordinate the allosteric communication between the ACT and RHH domains.
Wave climate simulation for southern region of the South China Sea
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Tangang, Fredolin; Juneng, Liew; Mustapha, Muzneena Ahmad; Husain, Mohd Lokman; Akhir, Mohd Fadzil
2013-08-01
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.
Bradley, Michael J.; Chivers, Peter T.; Baker, Nathan A.
2008-01-01
Summary E. coliNikR is a homotetrameric Ni2+- and DNA-binding protein that functions as a transcriptional repressor of the NikABCDE nickel permease. The protein is composed of 2 distinct domains. The N-terminal fifty amino acids of each chain forms part of the dimeric ribbon-helix-helix (RHH) domains, a well-studied DNA-binding fold. The eighty-three residue C-terminal nickel-binding domain forms an ACT-fold and contains the tetrameric interface. In this study, we have utilized an equilibrium molecular dynamics (MD) simulation in order to explore the conformational dynamics of the NikR tetramer and determine important residue interactions within and between the RHH and ACT domains to gain insight into the effects of Ni on DNA-binding activity. The molecular simulation data was analyzed using two different correlation measures based on fluctuations in atomic position and non-covalent contacts, together with a clustering algorithm to define groups of residues with similar correlation patterns for both types of correlation measure. Based on these analyses, we have defined a series of residue interrelationships that describe an allosteric communication pathway between the Ni2+ and DNA binding sites, which are separated by 40 Å. Several of the residues identified by our analyses have been previously shown experimentally to be important for NikR function. An additional subset of the identified residues structurally connects the experimentally implicated residues and may help coordinate the allosteric communication between the ACT and RHH domains. PMID:18433769
Meta‐analysis of test accuracy studies using imputation for partial reporting of multiple thresholds
Deeks, J.J.; Martin, E.C.; Riley, R.D.
2017-01-01
Introduction For tests reporting continuous results, primary studies usually provide test performance at multiple but often different thresholds. This creates missing data when performing a meta‐analysis at each threshold. A standard meta‐analysis (no imputation [NI]) ignores such missing data. A single imputation (SI) approach was recently proposed to recover missing threshold results. Here, we propose a new method that performs multiple imputation of the missing threshold results using discrete combinations (MIDC). Methods The new MIDC method imputes missing threshold results by randomly selecting from the set of all possible discrete combinations which lie between the results for 2 known bounding thresholds. Imputed and observed results are then synthesised at each threshold. This is repeated multiple times, and the multiple pooled results at each threshold are combined using Rubin's rules to give final estimates. We compared the NI, SI, and MIDC approaches via simulation. Results Both imputation methods outperform the NI method in simulations. There was generally little difference in the SI and MIDC methods, but the latter was noticeably better in terms of estimating the between‐study variances and generally gave better coverage, due to slightly larger standard errors of pooled estimates. Given selective reporting of thresholds, the imputation methods also reduced bias in the summary receiver operating characteristic curve. Simulations demonstrate the imputation methods rely on an equal threshold spacing assumption. A real example is presented. Conclusions The SI and, in particular, MIDC methods can be used to examine the impact of missing threshold results in meta‐analysis of test accuracy studies. PMID:29052347
Seasonal Synchronization of a Simple Stochastic Dynamical Model Capturing El Niño Diversity
NASA Astrophysics Data System (ADS)
Thual, S.; Majda, A.; Chen, N.
2017-12-01
The El Niño-Southern Oscillation (ENSO) has significant impact on global climate and seasonal prediction. Recently, a simple ENSO model was developed that automatically captures the ENSO diversity and intermittency in nature, where state-dependent stochastic wind bursts and nonlinear advection of sea surface temperature (SST) are coupled to simple ocean-atmosphere processes that are otherwise deterministic, linear and stable. In the present article, it is further shown that the model can reproduce qualitatively the ENSO synchronization (or phase-locking) to the seasonal cycle in nature. This goal is achieved by incorporating a cloud radiative feedback that is derived naturally from the model's atmosphere dynamics with no ad-hoc assumptions and accounts in simple fashion for the marked seasonal variations of convective activity and cloud cover in the eastern Pacific. In particular, the weak convective response to SSTs in boreal fall favors the eastern Pacific warming that triggers El Niño events while the increased convective activity and cloud cover during the following spring contributes to the shutdown of those events by blocking incoming shortwave solar radiations. In addition to simulating the ENSO diversity with realistic non-Gaussian statistics in different Niño regions, both the eastern Pacific moderate and super El Niño, the central Pacific El Niño as well as La Niña show a realistic chronology with a tendency to peak in boreal winter as well as decreased predictability in spring consistent with the persistence barrier in nature. The incorporation of other possible seasonal feedbacks in the model is also documented for completeness.