Sample records for simulation platform developed

  1. Architecture of a platform for hardware-in-the-loop simulation of flying vehicle control systems

    NASA Astrophysics Data System (ADS)

    Belokon', S. A.; Zolotukhin, Yu. N.; Filippov, M. N.

    2017-07-01

    A hardware-software platform is presented, which is designed for the development and hardware-in-the-loop simulation of flying vehicle control systems. This platform ensures the construction of the mathematical model of the plant, development of algorithms and software for onboard radioelectronic equipment and ground control station, and visualization of the three-dimensional model of the vehicle and external environment of the cockpit in the simulator training mode.

  2. Reusable Component Model Development Approach for Parallel and Distributed Simulation

    PubMed Central

    Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng

    2014-01-01

    Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751

  3. SU-F-T-149: Development of the Monte Carlo Simulation Platform Using Geant4 for Designing Heavy Ion Therapy Beam Nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jae-ik; Yoo, SeungHoon; Cho, Sungho

    Purpose: The significant issue of particle therapy such as proton and carbon ion was a accurate dose delivery from beam line to patient. For designing the complex delivery system, Monte Carlo simulation can be used for the simulation of various physical interaction in scatters and filters. In this report, we present the development of Monte Carlo simulation platform to help design the prototype of particle therapy nozzle and performed the Monte Carlo simulation using Geant4. Also we show the prototype design of particle therapy beam nozzle for Korea Heavy Ion Medical Accelerator (KHIMA) project in Korea Institute of Radiological andmore » Medical Science(KIRAMS) at Republic of Korea. Methods: We developed a simulation platform for particle therapy beam nozzle using Geant4. In this platform, the prototype nozzle design of Scanning system for carbon was simply designed. For comparison with theoretic beam optics, the beam profile on lateral distribution at isocenter is compared with Mont Carlo simulation result. From the result of this analysis, we can expected the beam spot property of KHIMA system and implement the spot size optimization for our spot scanning system. Results: For characteristics study of scanning system, various combination of the spot size from accerlator with ridge filter and beam monitor was tested as simple design for KHIMA dose delivery system. Conclusion: In this report, we presented the part of simulation platform and the characteristics study. This study is now on-going in order to develop the simulation platform including the beam nozzle and the dose verification tool with treatment planning system. This will be presented as soon as it is become available.« less

  4. Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software

    NASA Technical Reports Server (NTRS)

    Hunter, George; Boisvert, Benjamin

    2013-01-01

    This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.

  5. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segre, Daniel

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  6. Durham extremely large telescope adaptive optics simulation platform.

    PubMed

    Basden, Alastair; Butterley, Timothy; Myers, Richard; Wilson, Richard

    2007-03-01

    Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.

  7. Development of a Turbofan Engine Simulation in a Graphical Simulation Environment

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Heui

    2003-01-01

    This paper presents the development of a generic component level model of a turbofan engine simulation with a digital controller, in an advanced graphical simulation environment. The goal of this effort is to develop and demonstrate a flexible simulation platform for future research in propulsion system control and diagnostic technology. A previously validated FORTRAN-based model of a modern, high-performance, military-type turbofan engine is being used to validate the platform development. The implementation process required the development of various innovative procedures, which are discussed in the paper. Open-loop and closed-loop comparisons are made between the two simulations. Future enhancements that are to be made to the modular engine simulation are summarized.

  8. Semi-physical Simulation Platform of a Parafoil Nonlinear Dynamic System

    NASA Astrophysics Data System (ADS)

    Gao, Hai-Tao; Yang, Sheng-Bo; Zhu, Er-Lin; Sun, Qing-Lin; Chen, Zeng-Qiang; Kang, Xiao-Feng

    2013-11-01

    Focusing on the problems in the process of simulation and experiment on a parafoil nonlinear dynamic system, such as limited methods, high cost and low efficiency we present a semi-physical simulation platform. It is designed by connecting parts of physical objects to a computer, and remedies the defect that a computer simulation is divorced from a real environment absolutely. The main components of the platform and its functions, as well as simulation flows, are introduced. The feasibility and validity are verified through a simulation experiment. The experimental results show that the platform has significance for improving the quality of the parafoil fixed-point airdrop system, shortening the development cycle and saving cost.

  9. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  10. A tutorial platform suitable for surgical simulator training (SimMentor).

    PubMed

    Røtnes, Jan Sigurd; Kaasa, Johannes; Westgaard, Geir; Eriksen, Eivind Myrold; Hvidsten, Per Oyvind; Strøm, Kyrre; Sørhus, Vidar; Halbwachs, Yvon; Haug, Einar; Grimnes, Morten; Fontenelle, Hugues; Ekeberg, Tom; Thomassen, Jan B; Elle, Ole Jakob; Fosse, Erik

    2002-01-01

    The introduction of simulators in surgical training entails the need to develop pedagogic platforms adapted to the potentials and limitations provided by the information technology. As a solution to the technical challenges in treating all possible interaction events and to obtain a suitable pedagogic approach, we have developed a pedagogic platform for surgical training, SimMentor. In SimMentor the procedure to be practiced is divided into a number of natural phases. The trainee will practice on one phase at a time, however he can select the sequence of phases arbitrarily. A phase is taught by letting the trainee alternate freely between 2 modes: 1: A 3-dimensional animated guidance designed for learning the objectives and challenges in a procedure. 2: An interactive training session through the instrument manipulator device designed for training motoric responses based on visual and tactile responses produced by the simulator. The two modes are interfaced with the same virtual reality platform, thus SimMentor allows a seamless transition between the modes. We have developed a prototype simulator for robotic assisted endoscopic CABG (Coronary Artery Bypass Grafting) procedure by first focusing on the anastomosis part of the operation. Tissue, suture and instrument models have been developed and integrated with a simulated model of a beating heart comprises the elements in the simulator engine that is used in construction a training platform for learning different methods for performing a coronary anastomosis procedure. The platform is designed for integrating the following features: 1) practical approach to handle interactivity events with flexible-objects 3D simulators, 2) methods for quantitative evaluations of performance, 3) didactic presentations, 4) effective ways of producing diversity of clinical and pathological training scenarios.

  11. Helicopter flight simulation motion platform requirements

    NASA Astrophysics Data System (ADS)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  12. Establishing a Virtual Community of Practice in Simulation: The Value of Social Media.

    PubMed

    Thoma, Brent; Brazil, Victoria; Spurr, Jesse; Palaganas, Janice; Eppich, Walter; Grant, Vincent; Cheng, Adam

    2018-04-01

    Professional development opportunities are not readily accessible for most simulation educators, who may only connect with simulation experts at periodic and costly conferences. Virtual communities of practice consist of individuals with a shared passion who communicate via virtual media to advance their own learning and that of others. A nascent virtual community of practice is developing online for healthcare simulation on social media platforms. Simulation educators should consider engaging on these platforms for their own benefit and to help develop healthcare simulation educators around the world. Herein, we describe this developing virtual community of practice and offer guidance to assist educators to engage, learn, and contribute to the growth of the community.

  13. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  14. Grace: A cross-platform micromagnetic simulator on graphics processing units

    NASA Astrophysics Data System (ADS)

    Zhu, Ru

    2015-12-01

    A micromagnetic simulator running on graphics processing units (GPUs) is presented. Different from GPU implementations of other research groups which are predominantly running on NVidia's CUDA platform, this simulator is developed with C++ Accelerated Massive Parallelism (C++ AMP) and is hardware platform independent. It runs on GPUs from venders including NVidia, AMD and Intel, and achieves significant performance boost as compared to previous central processing unit (CPU) simulators, up to two orders of magnitude. The simulator paved the way for running large size micromagnetic simulations on both high-end workstations with dedicated graphics cards and low-end personal computers with integrated graphics cards, and is freely available to download.

  15. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model

    PubMed Central

    Saul, Katherine R.; Hu, Xiao; Goehler, Craig M.; Vidt, Meghan E.; Daly, Melissa; Velisar, Anca; Murray, Wendy M.

    2014-01-01

    Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms. PMID:24995410

  16. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.

    PubMed

    Saul, Katherine R; Hu, Xiao; Goehler, Craig M; Vidt, Meghan E; Daly, Melissa; Velisar, Anca; Murray, Wendy M

    2015-01-01

    Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms.

  17. Simulation of cooperating robot manipulators on a mobile platform

    NASA Technical Reports Server (NTRS)

    Murphy, Steve H.; Wen, John T.; Saridis, George N.

    1990-01-01

    The dynamic equations of motion for two manipulators holding a common object on a freely moving mobile platform are developed. The full dynamic interactions from arms to platform and arm-tip to arm-tip are included in the formulation. The development of the closed chain dynamics allows for the use of any solution for the open topological tree of base and manipulator links. In particular, because the system has 18 degrees of freedom, recursive solutions for the dynamic simulation become more promising for efficient calculations of the motion. Simulation of the system is accomplished through a MATLAB program, and the response is visualized graphically using the SILMA Cimstation.

  18. Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Reprint of: Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-11-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Use of Parallel Micro-Platform for the Simulation the Space Exploration

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Velasco Herrera, Graciela; Rosano, Felipe Lara; Rodriguez Lozano, Salvador; Lucero Roldan Serrato, Karen

    The purpose of this work is to create a parallel micro-platform, that simulates the virtual movements of a space exploration in 3D. One of the innovations presented in this design consists of the application of a lever mechanism for the transmission of the movement. The development of such a robot is a challenging task very different of the industrial manipulators due to a totally different target system of requirements. This work presents the study and simulation, aided by computer, of the movement of this parallel manipulator. The development of this model has been developed using the platform of computer aided design Unigraphics, in which it was done the geometric modeled of each one of the components and end assembly (CAD), the generation of files for the computer aided manufacture (CAM) of each one of the pieces and the kinematics simulation of the system evaluating different driving schemes. We used the toolbox (MATLAB) of aerospace and create an adaptive control module to simulate the system.

  1. CISP: Simulation Platform for Collective Instabilities in the BRing of HIAF project

    NASA Astrophysics Data System (ADS)

    Liu, J.; Yang, J. C.; Xia, J. W.; Yin, D. Y.; Shen, G. D.; Li, P.; Zhao, H.; Ruan, S.; Wu, B.

    2018-02-01

    To simulate collective instabilities during the complicated beam manipulation in the BRing (Booster Ring) of HIAF (High Intensity heavy-ion Accelerator Facility) or other high intensity accelerators, a code, named CISP (Simulation Platform for Collective Instabilities), is designed and constructed in China's IMP (Institute of Modern Physics). The CISP is a scalable multi-macroparticle simulation platform that can perform longitudinal and transverse tracking when chromaticity, space charge effect, nonlinear magnets and wakes are included. And due to its well object-oriented design, the CISP is also a basic platform used to develop many other applications (like feedback). Several simulations, completed by the CISP in this paper, agree with analytical results very well, which shows that the CISP is fully functional now and it is a powerful platform for the further collective instability research in the BRing or other accelerators. In the future, the CISP can also be extended easily into a physics control system for HIAF or other facilities.

  2. Real-time Simulation of Turboprop Engine Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  3. Open Marketplace for Simulation Software on the Basis of a Web Platform

    NASA Astrophysics Data System (ADS)

    Kryukov, A. P.; Demichev, A. P.

    2016-02-01

    The focus in development of a new generation of middleware shifts from the global grid systems to building convenient and efficient web platforms for remote access to individual computing resources. Further line of their development, suggested in this work, is related not only with the quantitative increase in their number and with the expansion of scientific, engineering, and manufacturing areas in which they are used, but also with improved technology for remote deployment of application software on the resources interacting with the web platforms. Currently, the services for providers of application software in the context of scientific-oriented web platforms is not developed enough. The proposed in this work new web platforms of application software market should have all the features of the existing web platforms for submissions of jobs to remote resources plus the provision of specific web services for interaction on market principles between the providers and consumers of application packages. The suggested approach will be approved on the example of simulation applications in the field of nonlinear optics.

  4. Study on photon transport problem based on the platform of molecular optical simulation environment.

    PubMed

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  5. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    PubMed Central

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737

  6. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  7. A holistic approach to SIM platform and its application to early-warning satellite system

    NASA Astrophysics Data System (ADS)

    Sun, Fuyu; Zhou, Jianping; Xu, Zheyao

    2018-01-01

    This study proposes a new simulation platform named Simulation Integrated Management (SIM) for the analysis of parallel and distributed systems. The platform eases the process of designing and testing both applications and architectures. The main characteristics of SIM are flexibility, scalability, and expandability. To improve the efficiency of project development, new models of early-warning satellite system were designed based on the SIM platform. Finally, through a series of experiments, the correctness of SIM platform and the aforementioned early-warning satellite models was validated, and the systematical analyses for the orbital determination precision of the ballistic missile during its entire flight process were presented, as well as the deviation of the launch/landing point. Furthermore, the causes of deviation and prevention methods will be fully explained. The simulation platform and the models will lay the foundations for further validations of autonomy technology in space attack-defense architecture research.

  8. A Hardware-in-the-Loop Simulation Platform for the Verification and Validation of Safety Control Systems

    NASA Astrophysics Data System (ADS)

    Rankin, Drew J.; Jiang, Jin

    2011-04-01

    Verification and validation (V&V) of safety control system quality and performance is required prior to installing control system hardware within nuclear power plants (NPPs). Thus, the objective of the hardware-in-the-loop (HIL) platform introduced in this paper is to verify the functionality of these safety control systems. The developed platform provides a flexible simulated testing environment which enables synchronized coupling between the real and simulated world. Within the platform, National Instruments (NI) data acquisition (DAQ) hardware provides an interface between a programmable electronic system under test (SUT) and a simulation computer. Further, NI LabVIEW resides on this remote DAQ workstation for signal conversion and routing between Ethernet and standard industrial signals as well as for user interface. The platform is applied to the testing of a simplified implementation of Canadian Deuterium Uranium (CANDU) shutdown system no. 1 (SDS1) which monitors only the steam generator level of the simulated NPP. CANDU NPP simulation is performed on a Darlington NPP desktop training simulator provided by Ontario Power Generation (OPG). Simplified SDS1 logic is implemented on an Invensys Tricon v9 programmable logic controller (PLC) to test the performance of both the safety controller and the implemented logic. Prior to HIL simulation, platform availability of over 95% is achieved for the configuration used during the V&V of the PLC. Comparison of HIL simulation results to benchmark simulations shows good operational performance of the PLC following a postulated initiating event (PIE).

  9. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-06-08

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less

  10. A novel medical image data-based multi-physics simulation platform for computational life sciences.

    PubMed

    Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels

    2013-04-06

    Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.

  11. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  12. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  13. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  14. Platform for real-time simulation of dynamic systems and hardware-in-the-loop for control algorithms.

    PubMed

    de Souza, Isaac D T; Silva, Sergio N; Teles, Rafael M; Fernandes, Marcelo A C

    2014-10-15

    The development of new embedded algorithms for automation and control of industrial equipment usually requires the use of real-time testing. However, the equipment required is often expensive, which means that such tests are often not viable. The objective of this work was therefore to develop an embedded platform for the distributed real-time simulation of dynamic systems. This platform, called the Real-Time Simulator for Dynamic Systems (RTSDS), could be applied in both industrial and academic environments. In industrial applications, the RTSDS could be used to optimize embedded control algorithms. In the academic sphere, it could be used to support research into new embedded solutions for automation and control and could also be used as a tool to assist in undergraduate and postgraduate teaching related to the development of projects concerning on-board control systems.

  15. Platform for Real-Time Simulation of Dynamic Systems and Hardware-in-the-Loop for Control Algorithms

    PubMed Central

    de Souza, Isaac D. T.; Silva, Sergio N.; Teles, Rafael M.; Fernandes, Marcelo A. C.

    2014-01-01

    The development of new embedded algorithms for automation and control of industrial equipment usually requires the use of real-time testing. However, the equipment required is often expensive, which means that such tests are often not viable. The objective of this work was therefore to develop an embedded platform for the distributed real-time simulation of dynamic systems. This platform, called the Real-Time Simulator for Dynamic Systems (RTSDS), could be applied in both industrial and academic environments. In industrial applications, the RTSDS could be used to optimize embedded control algorithms. In the academic sphere, it could be used to support research into new embedded solutions for automation and control and could also be used as a tool to assist in undergraduate and postgraduate teaching related to the development of projects concerning on-board control systems. PMID:25320906

  16. Development of a computer model to predict platform station keeping requirements in the Gulf of Mexico using remote sensing data

    NASA Technical Reports Server (NTRS)

    Barber, Bryan; Kahn, Laura; Wong, David

    1990-01-01

    Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.

  17. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.

    2013-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband Platform facilitates the addition of new scientific methods, which are written by earth scientists in a number of languages such as C, C++, Fortran, and Python. The Broadband Platform's modular design also supports the reuse of existing software modules as building blocks to create new scientific methods. Additionally, the Platform implements a wrapper around each scientific module, converting input and output files to and from the specific formats required (or produced) by individual scientific codes. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes the addition of 3 new simulation methods and several new data products, such as map and distance-based goodness of fit plots. Finally, as the number and complexity of scenarios simulated using the Broadband Platform increase, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  18. A novel approach for simulating the optical misalignment caused by satellite platform vibration in the ground test of satellite optical communication systems.

    PubMed

    Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun

    2012-01-16

    Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.

  19. Real-time visual simulation of APT system based on RTW and Vega

    NASA Astrophysics Data System (ADS)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  20. Modeling and Simulation for a Surf Zone Robot

    DTIC Science & Technology

    2012-12-14

    of-freedom surf zone robot is developed and tested with a physical test platform and with a simulated robot in Robot Operating System . Derived from...terrain. The application of the model to future platforms is analyzed and a broad examination of the current state of surf zone robotic systems is...public release; distribution is unlimited MODELING AND SIMULATION FOR A SURF ZONE ROBOT Eric Shuey Lieutenant, United States Navy B.S., Systems

  1. Dr.LiTHO: a development and research lithography simulator

    NASA Astrophysics Data System (ADS)

    Fühner, Tim; Schnattinger, Thomas; Ardelean, Gheorghe; Erdmann, Andreas

    2007-03-01

    This paper introduces Dr.LiTHO, a research and development oriented lithography simulation environment developed at Fraunhofer IISB to flexibly integrate our simulation models into one coherent platform. We propose a light-weight approach to a lithography simulation environment: The use of a scripting (batch) language as an integration platform. Out of the great variety of different scripting languages, Python proved superior in many ways: It exhibits a good-natured learning-curve, it is efficient, available on virtually any platform, and provides sophisticated integration mechanisms for existing programs. In this paper, we will describe the steps, required to provide Python bindings for existing programs and to finally generate an integrated simulation environment. In addition, we will give a short introduction into selected software design demands associated with the development of such a framework. We will especially focus on testing and (both technical and user-oriented) documentation issues. Dr.LiTHO Python files contain not only all simulation parameter settings but also the simulation flow, providing maximum flexibility. In addition to relatively simple batch jobs, repetitive tasks can be pooled in libraries. And as Python is a full-blown programming language, users can add virtually any functionality, which is especially useful in the scope of simulation studies or optimization tasks, that often require masses of evaluations. Furthermore, we will give a short overview of the numerous existing Python packages. Several examples demonstrate the feasibility and productiveness of integrating Python packages into custom Dr.LiTHO scripts.

  2. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  3. Basic Simulation Environment for Highly Customized Connected and Autonomous Vehicle Kinematic Scenarios.

    PubMed

    Chai, Linguo; Cai, Baigen; ShangGuan, Wei; Wang, Jian; Wang, Huashen

    2017-08-23

    To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification.

  4. Basic Simulation Environment for Highly Customized Connected and Autonomous Vehicle Kinematic Scenarios

    PubMed Central

    Chai, Linguo; Cai, Baigen; ShangGuan, Wei; Wang, Jian; Wang, Huashen

    2017-01-01

    To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification. PMID:28832518

  5. A methodological, task-based approach to Procedure-Specific Simulations training.

    PubMed

    Setty, Yaki; Salzman, Oren

    2016-12-01

    Procedure-Specific Simulations (PSS) are 3D realistic simulations that provide a platform to practice complete surgical procedures in a virtual-reality environment. While PSS have the potential to improve surgeons' proficiency, there are no existing standards or guidelines for PSS development in a structured manner. We employ a unique platform inspired by game design to develop virtual reality simulations in three dimensions of urethrovesical anastomosis during radical prostatectomy. 3D visualization is supported by a stereo vision, providing a fully realistic view of the simulation. The software can be executed for any robotic surgery platform. Specifically, we tested the simulation under windows environment on the RobotiX Mentor. Using urethrovesical anastomosis during radical prostatectomy simulation as a representative example, we present a task-based methodological approach to PSS training. The methodology provides tasks in increasing levels of difficulty from a novice level of basic anatomy identification, to an expert level that permits testing new surgical approaches. The modular methodology presented here can be easily extended to support more complex tasks. We foresee this methodology as a tool used to integrate PSS as a complementary training process for surgical procedures.

  6. Xyce parallel electronic simulator : users' guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less

  7. ADMS Evaluation Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2018-01-23

    Deploying an ADMS or looking to optimize its value? NREL offers a low-cost, low-risk evaluation platform for assessing ADMS performance. The National Renewable Energy Laboratory (NREL) has developed a vendor-neutral advanced distribution management system (ADMS) evaluation platform and is expanding its capabilities. The platform uses actual grid-scale hardware, large-scale distribution system models, and advanced visualization to simulate realworld conditions for the most accurate ADMS evaluation and experimentation.

  8. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    NASA Technical Reports Server (NTRS)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  9. A study of the comparative effects of various means of motion cueing during a simulated compensatory tracking task

    NASA Technical Reports Server (NTRS)

    Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.

    1980-01-01

    NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.

  10. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms

    NASA Astrophysics Data System (ADS)

    Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian

    2018-01-01

    We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.

  11. Development and evaluation of a trauma decision-making simulator in Oculus virtual reality.

    PubMed

    Harrington, Cuan M; Kavanagh, Dara O; Quinlan, John F; Ryan, Donncha; Dicker, Patrick; O'Keeffe, Dara; Traynor, Oscar; Tierney, Sean

    2018-01-01

    Consumer-available virtual-reality technology was launched in 2016 with strong foundations in the entertainment-industry. We developed an innovative medical-training simulator on the Oculus™ Gear-VR platform. This novel application was developed utilising internationally recognised Advanced Trauma Life Support (ATLS) principles, requiring decision-making skills for critically-injured virtual-patients. Participants were recruited in June, 2016 at a single-centre trauma-course (ATLS, Leinster, Ireland) and trialled the platform. Simulator performances were correlated with individual expertise and course-performance measures. A post-intervention questionnaire relating to validity-aspects was completed. Eighteen(81.8%) eligible-candidates and eleven(84.6%) course-instructors voluntarily participated. The survey-responders mean-age was 38.9(±11.0) years with 80.8% male predominance. The instructor-group caused significantly less fatal-errors (p < 0.050) and proportions of incorrect-decisions (p < 0.050). The VR-hardware and trauma-application's mean ratings were 5.09 and 5.04 out of 7 respectively. Participants reported it was an enjoyable method of learning (median-6.0), the learning platform of choice (median-5.0) and a cost-effective training tool (median-5.0). Our research has demonstrated evidence of validity-criteria for a concept application on virtual-reality headsets. We believe that virtual-reality technology is a viable platform for medical-simulation into the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Around Marshall

    NASA Image and Video Library

    1995-03-23

    A diver tests a secondary camera and maneuvering platform in Marshall's Neutral Buoyancy Simulator (NBS).The secondary camera will be beneficial for recording repairs and other extra vehicular activities (EVA) the astronuats will perform while making repairs on the Hubble Space Telescope (HST). The maneuvering platform was developed to give the astronauts something to stand on while performing maintenance tasks. These platforms were developed to be mobile so that the astronauts could move them to accommadate different sites.

  13. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform

    PubMed Central

    Falotico, Egidio; Vannucci, Lorenzo; Ambrosano, Alessandro; Albanese, Ugo; Ulbrich, Stefan; Vasquez Tieck, Juan Camilo; Hinkel, Georg; Kaiser, Jacques; Peric, Igor; Denninger, Oliver; Cauli, Nino; Kirtay, Murat; Roennau, Arne; Klinker, Gudrun; Von Arnim, Axel; Guyot, Luc; Peppicelli, Daniel; Martínez-Cañada, Pablo; Ros, Eduardo; Maier, Patrick; Weber, Sandro; Huber, Manuel; Plecher, David; Röhrbein, Florian; Deser, Stefan; Roitberg, Alina; van der Smagt, Patrick; Dillman, Rüdiger; Levi, Paul; Laschi, Cecilia; Knoll, Alois C.; Gewaltig, Marc-Oliver

    2017-01-01

    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments. PMID:28179882

  14. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.

    PubMed

    Falotico, Egidio; Vannucci, Lorenzo; Ambrosano, Alessandro; Albanese, Ugo; Ulbrich, Stefan; Vasquez Tieck, Juan Camilo; Hinkel, Georg; Kaiser, Jacques; Peric, Igor; Denninger, Oliver; Cauli, Nino; Kirtay, Murat; Roennau, Arne; Klinker, Gudrun; Von Arnim, Axel; Guyot, Luc; Peppicelli, Daniel; Martínez-Cañada, Pablo; Ros, Eduardo; Maier, Patrick; Weber, Sandro; Huber, Manuel; Plecher, David; Röhrbein, Florian; Deser, Stefan; Roitberg, Alina; van der Smagt, Patrick; Dillman, Rüdiger; Levi, Paul; Laschi, Cecilia; Knoll, Alois C; Gewaltig, Marc-Oliver

    2017-01-01

    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain-body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 "Neurorobotics" of the Human Brain Project (HBP). At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.

  15. A multilevel control approach for a modular structured space platform

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.; Borelli, M. T.

    1981-01-01

    A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.

  16. Integration of the virtual model of a Stewart platform with the avatar of a vehicle in a virtual reality

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2016-08-01

    The development of methods of computer aided design and engineering allows conducting virtual tests, among others concerning motion simulation of technical means. The paper presents a method of integrating an object in the form of a virtual model of a Stewart platform with an avatar of a vehicle moving in a virtual environment. The area of the problem includes issues related to the problem of fidelity of mapping the work of the analyzed technical mean. The main object of investigations is a 3D model of a Stewart platform, which is a subsystem of the simulator designated for driving learning for disabled persons. The analyzed model of the platform, prepared for motion simulation, was created in the “Motion Simulation” module of a CAD/CAE class system Siemens PLM NX. Whereas the virtual environment, in which the moves the avatar of the passenger car, was elaborated in a VR class system EON Studio. The element integrating both of the mentioned software environments is a developed application that reads information from the virtual reality (VR) concerning the current position of the car avatar. Then, basing on the accepted algorithm, it sends control signals to respective joints of the model of the Stewart platform (CAD).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitarka, A.

    In this project we developed GEN_SRF4 a computer program for generating kinematic rupture models, compatible with the SRF format, using Irikura and Miyake (2011) asperity-­based earthquake rupture model (IM2011, hereafter). IM2011, also known as Irkura’s recipe, has been widely used to model and simulate ground motion from earthquakes in Japan. An essential part of the method is its kinematic rupture generation technique, which is based on a deterministic rupture asperity modeling approach. The source model simplicity and efficiency of IM2011 at reproducing ground motion from earthquakes recorded in Japan makes it attractive to developers and users of the Southern Californiamore » Earthquake Center Broadband Platform (SCEC BB platform). Besides writing the code the objective of our study was to test the transportability of IM2011 to broadband simulation methods used by the SCEC BB platform. Here we test it using the Graves and Pitarka (2010) method, implemented in the platform. We performed broadband (0.1- -10 Hz) ground motion simulations for a M6.7 scenario earthquake using rupture models produced with both GEN_SRF4 and rupture generator of Graves and Pitarka (2016), (GP2016 hereafter). In the simulations we used the same Green’s functions, and same high frequency approach for calculating the low-­frequency and high-­frequency parts of ground motion, respectively.« less

  18. Open source hardware and software platform for robotics and artificial intelligence applications

    NASA Astrophysics Data System (ADS)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  19. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.

    PubMed

    Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T

    2007-07-01

    Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.

  20. Progress in Development of the ITER Plasma Control System Simulation Platform

    NASA Astrophysics Data System (ADS)

    Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel

    2017-10-01

    We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  1. LIMAO: Cross-platform software for simulating laser-induced alignment and orientation dynamics of linear-, symmetric- and asymmetric tops

    NASA Astrophysics Data System (ADS)

    Szidarovszky, Tamás; Jono, Maho; Yamanouchi, Kaoru

    2018-07-01

    A user-friendly and cross-platform software called Laser-Induced Molecular Alignment and Orientation simulator (LIMAO) has been developed. The program can be used to simulate within the rigid rotor approximation the rotational dynamics of gas phase molecules induced by linearly polarized intense laser fields at a given temperature. The software is implemented in the Java and Mathematica programming languages. The primary aim of LIMAO is to aid experimental scientists in predicting and analyzing experimental data representing laser-induced spatial alignment and orientation of molecules.

  2. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  3. iCrowd: agent-based behavior modeling and crowd simulator

    NASA Astrophysics Data System (ADS)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  4. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models.

    PubMed

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients.

  5. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models

    PubMed Central

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A.

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients. PMID:25374542

  6. Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography

    PubMed Central

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-01-01

    Ultrasound-based elastography including strain elastography (SE), acoustic radiation force Impulse (ARFI) imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. “ground truth”) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity – one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments. PMID:28075330

  7. Building an open-source simulation platform of acoustic radiation force-based breast elastography

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-01

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of researchmore » reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)« less

  9. Application of the Environmental Sensation Learning Vehicle Simulation Platform in Virtual Reality

    ERIC Educational Resources Information Center

    Hsu, Kuei-Shu; Jiang, Jinn-Feng; Wei, Hung-Yuan; Lee, Tsung-Han

    2016-01-01

    The use of simulation technologies in learning has received considerable attention in recent years, but few studies to date have focused on vehicle driving simulation systems. In this study, a vehicle driving simulation system was developed to support novice drivers in practicing their skills. Specifically, the vehicle driving simulation system…

  10. A review of simulation platforms in surgery of the temporal bone.

    PubMed

    Bhutta, M F

    2016-10-01

    Surgery of the temporal bone is a high-risk activity in an anatomically complex area. Simulation enables rehearsal of such surgery. The traditional simulation platform is the cadaveric temporal bone, but in recent years other simulation platforms have been created, including plastic and virtual reality platforms. To undertake a review of simulation platforms for temporal bone surgery, specifically assessing their educational value in terms of validity and in enabling transition to surgery. Systematic qualitative review. Search of the Pubmed, CINAHL, BEI and ERIC databases. Assessment of reported outcomes in terms of educational value. A total of 49 articles were included, covering cadaveric, animal, plastic and virtual simulation platforms. Cadaveric simulation is highly rated as an educational tool, but there may be a ceiling effect on educational outcomes after drilling 8-10 temporal bones. Animal models show significant anatomical variation from man. Plastic temporal bone models offer much potential, but at present lack sufficient anatomical or haptic validity. Similarly, virtual reality platforms lack sufficient anatomical or haptic validity, but with technological improvements they are advancing rapidly. At present, cadaveric simulation remains the best platform for training in temporal bone surgery. Technological advances enabling improved materials or modelling mean that in the future plastic or virtual platforms may become comparable to cadaveric platforms, and also offer additional functionality including patient-specific simulation from CT data. © 2015 John Wiley & Sons Ltd.

  11. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Denvil, Sebastien; Raciazek, Jerome; Carenton, Nicolas; Levavasseur, Guillame

    2014-05-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output (data and meta-data) are just some of the complexities that CONVERGENCE aims to resolve. The Institut Pierre Simon Laplace (IPSL) is responsible for running climate simulations upon a set of heterogenous HPC environments within France. With heterogeneity comes added complexity in terms of simulation instrumentation and control. Obtaining a global perspective upon the state of all simulations running upon all HPC environments has hitherto been problematic. In this presentation we detail how, within the context of CONVERGENCE, the implementation of the Prodiguer messaging platform resolves complexity and permits the development of real-time applications such as: 1. a simulation monitoring dashboard; 2. a simulation metrics visualizer; 3. an automated simulation runtime notifier; 4. an automated output data & meta-data publishing pipeline; The Prodiguer messaging platform leverages a widely used open source message broker software called RabbitMQ. RabbitMQ itself implements the Advanced Message Queue Protocol (AMPQ). Hence it will be demonstrated that the Prodiguer messaging platform is built upon both open source and open standards.

  12. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov Websites

    . Through modeling, simulation, and experimental validation, researchers examine what happens to fuel inside combustion and engine research activities include: Developing experimental and simulation research platforms develop and refine accurate, efficient kinetic mechanisms for fuel ignition Investigating low-speed pre

  13. Evaluation and demonstration of commercialization potential of CCSI tools within gPROMS advanced simulation platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawal, Adekola; Schmal, Pieter; Ramos, Alfredo

    PSE, in the first phase of the CCSI commercialization project, set out to identify market opportunities for the CCSI tools combined with existing gPROMS platform capabilities and develop a clear technical plan for the proposed commercialization activities.

  14. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    ERIC Educational Resources Information Center

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  15. Simulation analysis of space remote sensing image quality degradation induced by satellite platform vibration

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Zhang, Xiaofang; Huang, Yu; Hao, Weiwei; Guo, Baiwei

    2012-11-01

    Satellite platform vibration causes the image quality to be degraded, it is necessary to study its influence on image quality. The forms of Satellite platform vibration consist of linear vibration, sinusoidal vibration and random vibration. Based on Matlab & Zemax, the simulation system has been developed for simulating impact caused by satellite platform vibration on image quality. Dynamic Data Exchange is used for the communication between Matlab and Zemax. The data of sinusoidal vibration are produced by sinusoidal curve with specific amplitude and frequency. The data of random vibration are obtained by combining sinusoidal signals with 10Hz, 100Hz and 200Hz's frequency, 100, 12, 1.9's amplitude and white noise with zero mean value. Satellite platform vibration data which produced by Matlab are added to the optical system, and its point spread function can be obtained by Zemax. Blurred image can be gained by making the convolution of PSF and the original image. The definition of the original image and the blurred image are evaluated by using average gradient values of image gray. The impact caused by the sine and random vibration of six DOFs on the image quality are respectively simulated. The simulation result reveal that the decenter of X-, Y-, Z- direction and the tilt of Z-direction have a little effect on image quality, while the tilt of X-, Y- direction make image quality seriously degraded. Thus, it can be concluded that correcting the error of satellite platform vibration by FSM is a viable and effective way.

  16. Gryphon: A Hybrid Agent-Based Modeling and Simulation Platform for Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Wang, Jijun; McGowan, Michael; Vaidyanathan, Ganesh; Younger, Kristofer

    In this paper we present Gryphon, a hybrid agent-based stochastic modeling and simulation platform developed for characterizing the geographic spread of infectious diseases and the effects of interventions. We study both local and non-local transmission dynamics of stochastic simulations based on the published parameters and data for SARS. The results suggest that the expected numbers of infections and the timeline of control strategies predicted by our stochastic model are in reasonably good agreement with previous studies. These preliminary results indicate that Gryphon is able to characterize other future infectious diseases and identify endangered regions in advance.

  17. Combating Terrorism Technical Support Office. 2008 Review

    DTIC Science & Technology

    2009-01-15

    threat object displayed at the operator control unit of the robotic platform. Remote Utility Conversion Kit The Remote Utility Conversion Kit (RUCK) is a...three- dimensional and isometric simulations and games. Develop crowd models, adversarial behavior models, network-based simulations, mini-simulations...Craft-Littoral The modular unmanned surface craft-littoral ( MUSCL ) is a spin- off of EOD/LIC’s Unmanned Reconnaissance Observation Craft, developed

  18. Software platform for simulation of a prototype proton CT scanner.

    PubMed

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  19. Solar wind interaction with Venus and Mars in a parallel hybrid code

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku; Sandroos, Arto

    2013-04-01

    We discuss the development and applications of a new parallel hybrid simulation, where ions are treated as particles and electrons as a charge-neutralizing fluid, for the interaction between the solar wind and Venus and Mars. The new simulation code under construction is based on the algorithm of the sequential global planetary hybrid model developed at the Finnish Meteorological Institute (FMI) and on the Corsair parallel simulation platform also developed at the FMI. The FMI's sequential hybrid model has been used for studies of plasma interactions of several unmagnetized and weakly magnetized celestial bodies for more than a decade. Especially, the model has been used to interpret in situ particle and magnetic field observations from plasma environments of Mars, Venus and Titan. Further, Corsair is an open source MPI (Message Passing Interface) particle and mesh simulation platform, mainly aimed for simulations of diffusive shock acceleration in solar corona and interplanetary space, but which is now also being extended for global planetary hybrid simulations. In this presentation we discuss challenges and strategies of parallelizing a legacy simulation code as well as possible applications and prospects of a scalable parallel hybrid model for the solar wind interactions of Venus and Mars.

  20. Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic

    2015-11-01

    The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.

  1. Power in the loop real time simulation platform for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  2. A pilot study of surgical training using a virtual robotic surgery simulator.

    PubMed

    Tergas, Ana I; Sheth, Sangini B; Green, Isabel C; Giuntoli, Robert L; Winder, Abigail D; Fader, Amanda N

    2013-01-01

    Our objectives were to compare the utility of learning a suturing task on the virtual reality da Vinci Skills Simulator versus the da Vinci Surgical System dry laboratory platform and to assess user satisfaction among novice robotic surgeons. Medical trainees were enrolled prospectively; one group trained on the virtual reality simulator, and the other group trained on the da Vinci dry laboratory platform. Trainees received pretesting and post-testing on the dry laboratory platform. Participants then completed an anonymous online user experience and satisfaction survey. We enrolled 20 participants. Mean pretest completion times did not significantly differ between the 2 groups. Training with either platform was associated with a similar decrease in mean time to completion (simulator platform group, 64.9 seconds [P = .04]; dry laboratory platform group, 63.9 seconds [P < .01]). Most participants (58%) preferred the virtual reality platform. The majority found the training "definitely useful" in improving robotic surgical skills (mean, 4.6) and would attend future training sessions (mean, 4.5). Training on the virtual reality robotic simulator or the dry laboratory robotic surgery platform resulted in significant improvements in time to completion and economy of motion for novice robotic surgeons. Although there was a perception that both simulators improved performance, there was a preference for the virtual reality simulator. Benefits unique to the simulator platform include autonomy of use, computerized performance feedback, and ease of setup. These features may facilitate more efficient and sophisticated simulation training above that of the conventional dry laboratory platform, without loss of efficacy.

  3. Development of jacket platform tsunami risk rating system in waters offshore North Borneo

    NASA Astrophysics Data System (ADS)

    Lee, H. E.; Liew, M. S.; Mardi, N. H.; Na, K. L.; Toloue, Iraj; Wong, S. K.

    2016-09-01

    This work details the simulation of tsunami waves generated by seaquakes in the Manila Trench and their effect on fixed oil and gas jacket platforms in waters offshore North Borneo. For this study, a four-leg living quarter jacket platform located in a water depth of 63m is modelled in SACS v5.3. Malaysia has traditionally been perceived to be safe from the hazards of earthquakes and tsunamis. Local design practices tend to neglect tsunami waves and include no such provisions. In 2004, a 9.3 M w seaquake occurred off the northwest coast of Aceh, which generated tsunami waves that caused destruction in Malaysia totalling US 25 million and 68 deaths. This event prompted an awareness of the need to study the reliability of fixed offshore platforms scattered throughout Malaysian waters. In this paper, we present a review of research on the seismicity of the Manila Trench, which is perceived to be high risk for Southeast Asia. From the tsunami numerical model TUNA-M2, we extract computer-simulated tsunami waves at prescribed grid points in the vicinity of the platforms in the region. Using wave heights as input, we simulate the tsunami using SACS v5.3 structural analysis software of offshore platforms, which is widely accepted by the industry. We employ the nonlinear solitary wave theory in our tsunami loading calculations for the platforms, and formulate a platform-specific risk quantification system. We then perform an intensive structural sensitivity analysis and derive a corresponding platform-specific risk rating model.

  4. Atomdroid: a computational chemistry tool for mobile platforms.

    PubMed

    Feldt, Jonas; Mata, Ricardo A; Dieterich, Johannes M

    2012-04-23

    We present the implementation of a new molecular mechanics program designed for use in mobile platforms, the first specifically built for these devices. The software is designed to run on Android operating systems and is compatible with several modern tablet-PCs and smartphones available in the market. It includes molecular viewer/builder capabilities with integrated routines for geometry optimizations and Monte Carlo simulations. These functionalities allow it to work as a stand-alone tool. We discuss some particular development aspects, as well as the overall feasibility of using computational chemistry software packages in mobile platforms. Benchmark calculations show that through efficient implementation techniques even hand-held devices can be used to simulate midsized systems using force fields.

  5. Integrated Display and Simulation for Automatic Dependent Surveillance-Broadcast and Traffic Collision Avoidance System Data Fusion.

    PubMed

    Wang, Yanran; Xiao, Gang; Dai, Zhouyun

    2017-11-13

    Automatic Dependent Surveillance-Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications.

  6. Power in the bucket and angle of arrival modelling in the presence of an airborne platform-induced turbulence

    NASA Astrophysics Data System (ADS)

    Velluet, Marie-Thérèse

    2017-10-01

    In the framework of a European collaborative research project called ALWS (Airborne platform effects on lasers and Warning Sensors), the effects of platform-related turbulence on MAWS (missile approach warning systems) and DIRCM (directed infrared countermeasures) performance are investigated. Field trials have been conducted to study the turbulence effects around a hovering helicopter and behind a turboprop aircraft on the ground, with engines running. The time dependence of the power in the bucket and the amplitude of the angle of arrival have been characterized during the trial. Temporal spectra of these two parameters present an asymptotic behavior typical of optical beams propagating through developed turbulence (Kolmogorov). Based on the formalism developed in the case of propagation through atmospheric turbulence, we have first estimated turbulence strength and wind velocity inside plume for different flight conditions. We have then proposed an approach to simulate times series of these two quantities in the same conditions. These simulated time series have been compared with the recorded data to assess their validity domain. This model will be integrated in a simulator to estimate the impact of the turbulence induced by the platform and calculate the system performance. In this model dedicated to plume and downwash effects, aero-optical effects are not taken into account.

  7. ART-ML - a novel XML format for the biological procedures modeling and the representation of blood flow simulation.

    PubMed

    Karvounis, E C; Tsakanikas, V D; Fotiou, E; Fotiadis, D I

    2010-01-01

    The paper proposes a novel Extensible Markup Language (XML) based format called ART-ML that aims at supporting the interoperability and the reuse of models of blood flow, mass transport and plaque formation, exported by ARTool. ARTool is a platform for the automatic processing of various image modalities of coronary and carotid arteries. The images and their content are fused to develop morphological models of the arteries in easy to handle 3D representations. The platform incorporates efficient algorithms which are able to perform blood flow simulation. In addition atherosclerotic plaque development is estimated taking into account morphological, flow and genetic factors. ART-ML provides a XML format that enables the representation and management of embedded models within the ARTool platform and the storage and interchange of well-defined information. This approach influences in the model creation, model exchange, model reuse and result evaluation.

  8. a Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation and Visualization

    NASA Astrophysics Data System (ADS)

    Li, M.; Liu, H.; Yang, C.

    2015-07-01

    The development of high-sulfur gas fields, also known as sour gas field, is faced with a series of safety control and emergency management problems. The GIS-based emergency response system is placed high expectations under the consideration of high pressure, high content, complex terrain and highly density population in Sichuan Basin, southwest China. The most researches on high hydrogen sulphide gas dispersion simulation and evaluation are used for environmental impact assessment (EIA) or emergency preparedness planning. This paper introduces a real-time GIS platform for high-sulfur gas emergency response. Combining with real-time data from the leak detection systems and the meteorological monitoring stations, GIS platform provides the functions of simulating, evaluating and displaying of the different spatial-temporal toxic gas distribution patterns and evaluation results. This paper firstly proposes the architecture of Emergency Response/Management System, secondly explains EPA's Gaussian dispersion model CALPUFF simulation workflow under high complex terrain and real-time data, thirdly explains the emergency workflow and spatial analysis functions of computing the accident influencing areas, population and the optimal evacuation routes. Finally, a well blow scenarios is used for verify the system. The study shows that GIS platform which integrates the real-time data and CALPUFF models will be one of the essential operational platforms for high-sulfur gas fields emergency management.

  9. Smoothed Particle Hydrodynamic Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-10-05

    This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.

  10. Simulation-To-Flight (STF-1): A Mission to Enable CubeSat Software-Based Validation and Verification

    NASA Technical Reports Server (NTRS)

    Morris, Justin; Zemerick, Scott; Grubb, Matt; Lucas, John; Jaridi, Majid; Gross, Jason N.; Ohi, Nicholas; Christian, John A.; Vassiliadis, Dimitris; Kadiyala, Anand; hide

    2016-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  11. NASA Operational Simulator for Small Satellites (NOS3)

    NASA Technical Reports Server (NTRS)

    Zemerick, Scott

    2015-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  12. [The advantages of implementing an e-learning platform for laparoscopic liver surgery].

    PubMed

    Furcea, L; Graur, F; Scurtu, L; Plitea, N; Pîslă, D; Vaida, C; Deteşan, O; Szilaghy, A; Neagoş, H; Mureşan, A; Vlad, L

    2011-01-01

    The rapid expansion of laparoscopic surgery has led to the development of training methods for acquiring technical skills. The importance and complexity of laparoscopic liver surgery are arguments for developing a new integrated system of teaching, learning and evaluation, based on modern educational principles, on flexibility allowing wide accessibility among surgeons. This paper presents the development of e-learning platform designed for training in laparoscopic liver surgery and pre-planning of the operation in a virtual environment. E-learning platform makes it possible to simulate laparoscopic liver surgery remotely via internet connection. The addressability of this e-learning platform is large, being represented by young surgeons who are mainly preoccupied by laparoscopic liver surgery, as well as experienced surgeons interested in obtaining a competence in the hepatic minimally invasive surgery.

  13. Earth observing system instrument pointing control modeling for polar orbiting platforms

    NASA Technical Reports Server (NTRS)

    Briggs, H. C.; Kia, T.; Mccabe, S. A.; Bell, C. E.

    1987-01-01

    An approach to instrument pointing control performance assessment for large multi-instrument platforms is described. First, instrument pointing requirements and reference platform control systems for the Eos Polar Platforms are reviewed. Performance modeling tools including NASTRAN models of two large platforms, a modal selection procedure utilizing a balanced realization method, and reduced order platform models with core and instrument pointing control loops added are then described. Time history simulations of instrument pointing and stability performance in response to commanded slewing of adjacent instruments demonstrates the limits of tolerable slew activity. Simplified models of rigid body responses are also developed for comparison. Instrument pointing control methods required in addition to the core platform control system to meet instrument pointing requirements are considered.

  14. Environmental Detectives--The Development of an Augmented Reality Platform for Environmental Simulations

    ERIC Educational Resources Information Center

    Klopfer, Eric; Squire, Kurt

    2008-01-01

    The form factors of handheld computers make them increasingly popular among K-12 educators. Although some compelling examples of educational software for handhelds exist, we believe that the potential of this platform are just being discovered. This paper reviews innovative applications for mobile computing for both education and entertainment…

  15. Multi-agent-based bio-network for systems biology: protein-protein interaction network as an example.

    PubMed

    Ren, Li-Hong; Ding, Yong-Sheng; Shen, Yi-Zhen; Zhang, Xiang-Feng

    2008-10-01

    Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.

  16. A software platform for phase contrast x-ray breast imaging research.

    PubMed

    Bliznakova, K; Russo, P; Mettivier, G; Requardt, H; Popov, P; Bravin, A; Buliev, I

    2015-06-01

    To present and validate a computer-based simulation platform dedicated for phase contrast x-ray breast imaging research. The software platform, developed at the Technical University of Varna on the basis of a previously validated x-ray imaging software simulator, comprises modules for object creation and for x-ray image formation. These modules were updated to take into account the refractive index for phase contrast imaging as well as implementation of the Fresnel-Kirchhoff diffraction theory of the propagating x-ray waves. Projection images are generated in an in-line acquisition geometry. To test and validate the platform, several phantoms differing in their complexity were constructed and imaged at 25 keV and 60 keV at the beamline ID17 of the European Synchrotron Radiation Facility. The software platform was used to design computational phantoms that mimic those used in the experimental study and to generate x-ray images in absorption and phase contrast modes. The visual and quantitative results of the validation process showed an overall good correlation between simulated and experimental images and show the potential of this platform for research in phase contrast x-ray imaging of the breast. The application of the platform is demonstrated in a feasibility study for phase contrast images of complex inhomogeneous and anthropomorphic breast phantoms, compared to x-ray images generated in absorption mode. The improved visibility of mammographic structures suggests further investigation and optimisation of phase contrast x-ray breast imaging, especially when abnormalities are present. The software platform can be exploited also for educational purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  18. Multiphysics Object-Oriented Simulation Environment (MOOSE)

    ScienceCinema

    None

    2017-12-09

    Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.

  19. Development of an E-Prime Based Computer Simulation of an Interactive Human Rights Violation Negotiation Script (Developpement d’un Programme de Simulation par Ordinateur Fonde sur le Logiciel E Prime pour la Negociation Interactive en cas de Violation des Droits de la Personne)

    DTIC Science & Technology

    2010-12-01

    Base ( CFB ) Kingston. The computer simulation developed in this project is intended to be used for future research and as a possible training platform...DRDC Toronto No. CR 2010-055 Development of an E-Prime based computer simulation of an interactive Human Rights Violation negotiation script...Abstract This report describes the method of developing an E-Prime computer simulation of an interactive Human Rights Violation (HRV) negotiation. An

  20. Real-time modeling and simulation of distribution feeder and distributed resources

    NASA Astrophysics Data System (ADS)

    Singh, Pawan

    The analysis of the electrical system dates back to the days when analog network analyzers were used. With the advent of digital computers, many programs were written for power-flow and short circuit analysis for the improvement of the electrical system. Real-time computer simulations can answer many what-if scenarios in the existing or the proposed power system. In this thesis, the standard IEEE 13-Node distribution feeder is developed and validated on a real-time platform OPAL-RT. The concept and the challenges of the real-time simulation are studied and addressed. Distributed energy resources include some of the commonly used distributed generation and storage devices like diesel engine, solar photovoltaic array, and battery storage system are modeled and simulated on a real-time platform. A microgrid encompasses a portion of an electric power distribution which is located downstream of the distribution substation. Normally, the microgrid operates in paralleled mode with the grid; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. The microgrid can operate in grid connected and islanded mode, both the operating modes are studied in the last chapter. Towards the end, a simple microgrid controller modeled and simulated on the real-time platform is developed for energy management and protection for the microgrid.

  1. Xyce Parallel Electronic Simulator Users' Guide Version 6.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  2. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, B.; Shirazi, M.; Coddington, M.

    2013-02-01

    This poster describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1TM. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less

  3. Initial Study of an Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    NASA Technical Reports Server (NTRS)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  4. Initial Study of An Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    NASA Technical Reports Server (NTRS)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  5. Simulation platform of LEO satellite communication system based on OPNET

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Yong; Li, Xiaozhuo; Wang, Chuqiao; Li, Haihao

    2018-02-01

    For the purpose of verifying communication protocol in the low earth orbit (LEO) satellite communication system, an Optimized Network Engineering Tool (OPNET) based simulation platform is built. Using the three-layer modeling mechanism, the network model, the node model and the process model of the satellite communication system are built respectively from top to bottom, and the protocol will be implemented by finite state machine and Proto-C language. According to satellite orbit parameters, orbit files are generated via Satellite Tool Kit (STK) and imported into OPNET, and the satellite nodes move along their orbits. The simulation platform adopts time-slot-driven mode, divides simulation time into continuous time slots, and allocates slot number for each time slot. A resource allocation strategy is simulated on this platform, and the simulation results such as resource utilization rate, system throughput and packet delay are analyzed, which indicate that this simulation platform has outstanding versatility.

  6. A Framework for the Design of Computer-Assisted Simulation Training for Complex Police Situations

    ERIC Educational Resources Information Center

    Söderström, Tor; Åström, Jan; Anderson, Greg; Bowles, Ron

    2014-01-01

    Purpose: The purpose of this paper is to report progress concerning the design of a computer-assisted simulation training (CAST) platform for developing decision-making skills in police students. The overarching aim is to outline a theoretical framework for the design of CAST to facilitate police students' development of search techniques in…

  7. A software platform for continuum modeling of ion channels based on unstructured mesh

    NASA Astrophysics Data System (ADS)

    Tu, B.; Bai, S. Y.; Chen, M. X.; Xie, Y.; Zhang, L. B.; Lu, B. Z.

    2014-01-01

    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson-Nernst-Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels.

  8. Computing the apparent centroid of radar targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.E.

    1996-12-31

    A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based onmore » a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.« less

  9. Virtual reality simulation training in Otolaryngology.

    PubMed

    Arora, Asit; Lau, Loretta Y M; Awad, Zaid; Darzi, Ara; Singh, Arvind; Tolley, Neil

    2014-01-01

    To conduct a systematic review of the validity data for the virtual reality surgical simulator platforms available in Otolaryngology. Ovid and Embase databases searched July 13, 2013. Four hundred and nine abstracts were independently reviewed by 2 authors. Thirty-six articles which fulfilled the search criteria were retrieved and viewed in full text. These articles were assessed for quantitative data on at least one aspect of face, content, construct or predictive validity. Papers were stratified by simulator, sub-specialty and further classified by the validation method used. There were 21 articles reporting applications for temporal bone surgery (n = 12), endoscopic sinus surgery (n = 6) and myringotomy (n = 3). Four different simulator platforms were validated for temporal bone surgery and two for each of the other surgical applications. Face/content validation represented the most frequent study type (9/21). Construct validation studies performed on temporal bone and endoscopic sinus surgery simulators showed that performance measures reliably discriminated between different experience levels. Simulation training improved cadaver temporal bone dissection skills and operating room performance in sinus surgery. Several simulator platforms particularly in temporal bone surgery and endoscopic sinus surgery are worthy of incorporation into training programmes. Standardised metrics are necessary to guide curriculum development in Otolaryngology. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  10. INTEGRATING MESO-AND MICRO-SIMULATION MODELS TO EVALUATE TRAFFIC MANAGEMENT STRATEGIES, YEAR 2

    DOT National Transportation Integrated Search

    2017-07-04

    In the Year 1 Report, the Arizona State University (ASU) Project Team described the development of a hierarchical multi-resolution simulation platform to test proactive traffic management strategies. The scope was to integrate an easily available mic...

  11. Next Stop: OpenSim!

    ERIC Educational Resources Information Center

    Korolov, Maria

    2011-01-01

    Unhappy with conditions in Second Life, educators are migrating to a developing virtual world that offers them greater autonomy and a safer platform for their students at far less a cost. OpenSimulator is an open source virtual world platform that schools can run for free on their own servers or can get cheaply and quickly--the space can be up and…

  12. Numerical Propulsion System Simulation (NPSS) 1999 Industry Review

    NASA Technical Reports Server (NTRS)

    Lytle, John; Follen, Greg; Naiman, Cynthia; Evans, Austin

    2000-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. In addition, the paper contains a summary of the feedback received from industry partners in the development effort and the actions taken over the past year to respond to that feedback. The NPSS development was supported in FY99 by the High Performance Computing and Communications Program.

  13. Design of a dynamic test platform for autonomous robot vision systems

    NASA Technical Reports Server (NTRS)

    Rich, G. C.

    1980-01-01

    The concept and design of a dynamic test platform for development and evluation of a robot vision system is discussed. The platform is to serve as a diagnostic and developmental tool for future work with the RPI Mars Rover's multi laser/multi detector vision system. The platform allows testing of the vision system while its attitude is varied, statically or periodically. The vision system is mounted on the test platform. It can then be subjected to a wide variety of simulated can thus be examined in a controlled, quantitative fashion. Defining and modeling Rover motions and designing the platform to emulate these motions are also discussed. Individual aspects of the design process are treated separately, as structural, driving linkages, and motors and transmissions.

  14. A knowledge platform to inform on the effects of trawling on benthic communities

    NASA Astrophysics Data System (ADS)

    Muntadas, Alba; Lample, Michel; Demestre, Montserrat; Ballé-Béganton, Johanna; de Juan, Silvia; Maynou, Francesc; Bailly, Denis

    2018-02-01

    For a successful implementation of an Ecosystem Approach to Fisheries (EAF) management, it is necessary that all stakeholders involved in fisheries management are aware of the implications of fishing impacts on ecosystems and agree with the adopted measures to mitigate these impacts. In this context, there is a need for tools to share knowledge on the ecosystem effects of fisheries among these stakeholders. When managing bottom trawl fisheries under an EAF framework, one of the main concerns is the direct and indirect consequences of trawling impacts on benthic ecosystems. We developed a platform using the ExtendSim® software with a user-friendly interface that combines a simulation model based on existing knowledge, data collection and representation of predicted trawling impacts on the seabed. The platform aims to be a deliberation support tool for fisheries' stakeholders and, simultaneously, raise public awareness of the need for good benthic community knowledge to appropriately inform EAF management plans. The simulation procedure assumes that trawling affects benthic communities with an intensity that depends on the level of fishing effort exerted on benthic communities and on the habitat characteristics (i.e. sediment grain size). Data to build the simulation comes from epifaunal samples from 18 study sites located in Mediterranean continental shelves subjected to different levels of fishing effort. In this work, we present the simulation outputs of a 50% fishing effort increase (and decrease) in four of the study sites which cover different habitats and different levels of fishing effort. We discuss the platform strengths and weaknesses and potential future developments.

  15. Implementation of Motion Simulation Software and Visual-Auditory Electronics for Use in a Low Gravity Robotic Testbed

    NASA Technical Reports Server (NTRS)

    Martin, William Campbell

    2011-01-01

    The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) to assist in manned space missions. One of the proposed targets for this robotic vehicle is a near-Earth asteroid (NEA), which typically exhibit a surface gravity of only a few micro-g. In order to properly test ATHLETE in such an environment, the development team has constructed an inverted Stewart platform testbed that acts as a robotic motion simulator. This project focused on creating physical simulation software that is able to predict how ATHLETE will function on and around a NEA. The corresponding platform configurations are calculated and then passed to the testbed to control ATHLETE's motion. In addition, imitation attitude, imitation attitude control thrusters were designed and fabricated for use on ATHLETE. These utilize a combination of high power LEDs and audio amplifiers to provide visual and auditory cues that correspond to the physics simulation.

  16. Integrated Display and Simulation for Automatic Dependent Surveillance–Broadcast and Traffic Collision Avoidance System Data Fusion

    PubMed Central

    Wang, Yanran; Xiao, Gang; Dai, Zhouyun

    2017-01-01

    Automatic Dependent Surveillance–Broadcast (ADS-B) is the direction of airspace surveillance development. Research analyzing the benefits of Traffic Collision Avoidance System (TCAS) and ADS-B data fusion is almost absent. The paper proposes an ADS-B minimum system from ADS-B In and ADS-B Out. In ADS-B In, a fusion model with a variable sampling Variational Bayesian-Interacting Multiple Model (VSVB-IMM) algorithm is proposed for integrated display and an airspace traffic situation display is developed by using ADS-B information. ADS-B Out includes ADS-B Out transmission based on a simulator platform and an Unmanned Aerial Vehicle (UAV) platform. This paper describes the overall implementation of ADS-B minimum system, including theoretical model design, experimental simulation verification, engineering implementation, results analysis, etc. Simulation and implementation results show that the fused system has better performance than each independent subsystem and it can work well in engineering applications. PMID:29137194

  17. Development of a Crosslink Channel Simulator for Simulation of Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Hart, Roger; Hunt, Chris; Burns, Rich D.

    2003-01-01

    Multi-vehicle missions are an integral part of NASA s and other space agencies current and future business. These multi-vehicle missions generally involve collectively utilizing the array of instrumentation dispersed throughout the system of space vehicles, and communicating via crosslinks to achieve mission goals such as formation flying, autonomous operation, and collective data gathering. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide hardware-in- the-loop simulation of these crosslink-based systems. The goal of the FFTB is to reduce mission risk, assist in mission planning and analysis, and provide a technology development platform that allows algorithms to be developed for mission hctions such as precision formation flying, synchronization, and inter-vehicle data synthesis. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be plugged in for development and test. An integral part of the FFTB is the Crosslink Channel Simulator (CCS),which is placed into the communications channel between the crosslinks under test, and is used to simulate on-orbit effects to the communications channel due to relative vehicle motion or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems which provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters.

  18. Flexible workflow sharing and execution services for e-scientists

    NASA Astrophysics Data System (ADS)

    Kacsuk, Péter; Terstyanszky, Gábor; Kiss, Tamas; Sipos, Gergely

    2013-04-01

    The sequence of computational and data manipulation steps required to perform a specific scientific analysis is called a workflow. Workflows that orchestrate data and/or compute intensive applications on Distributed Computing Infrastructures (DCIs) recently became standard tools in e-science. At the same time the broad and fragmented landscape of workflows and DCIs slows down the uptake of workflow-based work. The development, sharing, integration and execution of workflows is still a challenge for many scientists. The FP7 "Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs" (SHIWA) project significantly improved the situation, with a simulation platform that connects different workflow systems, different workflow languages, different DCIs and workflows into a single, interoperable unit. The SHIWA Simulation Platform is a service package, already used by various scientific communities, and used as a tool by the recently started ER-flow FP7 project to expand the use of workflows among European scientists. The presentation will introduce the SHIWA Simulation Platform and the services that ER-flow provides based on the platform to space and earth science researchers. The SHIWA Simulation Platform includes: 1. SHIWA Repository: A database where workflows and meta-data about workflows can be stored. The database is a central repository to discover and share workflows within and among communities . 2. SHIWA Portal: A web portal that is integrated with the SHIWA Repository and includes a workflow executor engine that can orchestrate various types of workflows on various grid and cloud platforms. 3. SHIWA Desktop: A desktop environment that provides similar access capabilities than the SHIWA Portal, however it runs on the users' desktops/laptops instead of a portal server. 4. Workflow engines: the ASKALON, Galaxy, GWES, Kepler, LONI Pipeline, MOTEUR, Pegasus, P-GRADE, ProActive, Triana, Taverna and WS-PGRADE workflow engines are already integrated with the execution engine of the SHIWA Portal. Other engines can be added when required. Through the SHIWA Portal one can define and run simulations on the SHIWA Virtual Organisation, an e-infrastructure that gathers computing and data resources from various DCIs, including the European Grid Infrastructure. The Portal via third party workflow engines provides support for the most widely used academic workflow engines and it can be extended with other engines on demand. Such extensions translate between workflow languages and facilitate the nesting of workflows into larger workflows even when those are written in different languages and require different interpreters for execution. Through the workflow repository and the portal lonely scientists and scientific collaborations can share and offer workflows for reuse and execution. Given the integrated nature of the SHIWA Simulation Platform the shared workflows can be executed online, without installing any special client environment and downloading workflows. The FP7 "Building a European Research Community through Interoperable Workflows and Data" (ER-flow) project disseminates the achievements of the SHIWA project and use these achievements to build workflow user communities across Europe. ER-flow provides application supports to research communities within and beyond the project consortium to develop, share and run workflows with the SHIWA Simulation Platform.

  19. Parameters Identification for Motorcycle Simulator's Platform Characterization

    NASA Astrophysics Data System (ADS)

    Nehaoua, L.; Arioui, H.

    2008-06-01

    This paper presents the dynamics modeling and parameters identification of a motorcycle simulator's platform. This model begins with some suppositions which consider that the leg dynamics can be neglected with respect to the mobile platform one. The objectif is to synthesis a simplified control scheme, adapted to driving simulation application, minimising dealys and without loss of tracking performance. Electronic system of platform actuation is described. It's based on a CAN BUS communication which offers a large transmission robustness and error handling. Despite some disadvanteges, we adapted a control solution which overcome these inconvenients and preserve the quality of tracking trajectory. A bref description of the simulator's platform is given and results are shown and justified according to our specifications.

  20. Ultra-Scale Computing for Emergency Evacuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaduri, Budhendra L; Nutaro, James J; Liu, Cheng

    2010-01-01

    Emergency evacuations are carried out in anticipation of a disaster such as hurricane landfall or flooding, and in response to a disaster that strikes without a warning. Existing emergency evacuation modeling and simulation tools are primarily designed for evacuation planning and are of limited value in operational support for real time evacuation management. In order to align with desktop computing, these models reduce the data and computational complexities through simple approximations and representations of real network conditions and traffic behaviors, which rarely represent real-world scenarios. With the emergence of high resolution physiographic, demographic, and socioeconomic data and supercomputing platforms, itmore » is possible to develop micro-simulation based emergency evacuation models that can foster development of novel algorithms for human behavior and traffic assignments, and can simulate evacuation of millions of people over a large geographic area. However, such advances in evacuation modeling and simulations demand computational capacity beyond the desktop scales and can be supported by high performance computing platforms. This paper explores the motivation and feasibility of ultra-scale computing for increasing the speed of high resolution emergency evacuation simulations.« less

  1. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, B.; Shirazi, M.; Coddington, M.

    2013-01-01

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to testmore » the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less

  2. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, B.; Shirazi, M.; Coddington, M.

    2013-01-01

    This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less

  3. Application of GIS to modified models of vehicle emission dispersion

    NASA Astrophysics Data System (ADS)

    Jin, Taosheng; Fu, Lixin

    This paper reports on a preliminary study of the forecast and evaluation of transport-related air pollution dispersion in urban areas. Some modifications of the traditional Gauss dispersion models are provided, and especially a crossroad model is built, which considers the great variation of vehicle emission attributed to different driving patterns at the crossroad. The above models are combined with a self-developed geographic information system (GIS) platform, and a simulative system with graphical interfaces is built. The system aims at visually describing the influences on the urban environment by urban traffic characteristics and therefore gives a reference to the improvement of urban air quality. Due to the introduction of a self-developed GIS platform and a creative crossroad model, the system is more effective, flexible and accurate. Finally, a comparison of the simulated (predicted) and observed hourly concentration is given, which indicates a good simulation.

  4. Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations

    DTIC Science & Technology

    2017-05-08

    NUMBER (Include area code) 08 May 2017 Briefing Charts 05 April 2017 - 08 May 2017 Using Kokkos for Performant Cross-Platform Acceleration of Liquid ...ERC Incorporated RQRC AFRL-West Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations 2DISTRIBUTION A: Approved for... Liquid Rocket Combustion Simulation SPACE simulation of rotating detonation engine (courtesy of Dr. Christopher Lietz) 3DISTRIBUTION A: Approved

  5. SU-E-T-36: A GPU-Accelerated Monte-Carlo Dose Calculation Platform and Its Application Toward Validating a ViewRay Beam Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y; Mazur, T; Green, O

    Purpose: To build a fast, accurate and easily-deployable research platform for Monte-Carlo dose calculations. We port the dose calculation engine PENELOPE to C++, and accelerate calculations using GPU acceleration. Simulations of a Co-60 beam model provided by ViewRay demonstrate the capabilities of the platform. Methods: We built software that incorporates a beam model interface, CT-phantom model, GPU-accelerated PENELOPE engine, and GUI front-end. We rewrote the PENELOPE kernel in C++ (from Fortran) and accelerated the code on a GPU. We seamlessly integrated a Co-60 beam model (obtained from ViewRay) into our platform. Simulations of various field sizes and SSDs using amore » homogeneous water phantom generated PDDs, dose profiles, and output factors that were compared to experiment data. Results: With GPU acceleration using a dated graphics card (Nvidia Tesla C2050), a highly accurate simulation – including 100*100*100 grid, 3×3×3 mm3 voxels, <1% uncertainty, and 4.2×4.2 cm2 field size – runs 24 times faster (20 minutes versus 8 hours) than when parallelizing on 8 threads across a new CPU (Intel i7-4770). Simulated PDDs, profiles and output ratios for the commercial system agree well with experiment data measured using radiographic film or ionization chamber. Based on our analysis, this beam model is precise enough for general applications. Conclusions: Using a beam model for a Co-60 system provided by ViewRay, we evaluate a dose calculation platform that we developed. Comparison to measurements demonstrates the promise of our software for use as a research platform for dose calculations, with applications including quality assurance and treatment plan verification.« less

  6. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.

  7. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Astrophysics Data System (ADS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.

  8. DoctorEye: A clinically driven multifunctional platform, for accurate processing of tumors in medical images.

    PubMed

    Skounakis, Emmanouil; Farmaki, Christina; Sakkalis, Vangelis; Roniotis, Alexandros; Banitsas, Konstantinos; Graf, Norbert; Marias, Konstantinos

    2010-01-01

    This paper presents a novel, open access interactive platform for 3D medical image analysis, simulation and visualization, focusing in oncology images. The platform was developed through constant interaction and feedback from expert clinicians integrating a thorough analysis of their requirements while having an ultimate goal of assisting in accurately delineating tumors. It allows clinicians not only to work with a large number of 3D tomographic datasets but also to efficiently annotate multiple regions of interest in the same session. Manual and semi-automatic segmentation techniques combined with integrated correction tools assist in the quick and refined delineation of tumors while different users can add different components related to oncology such as tumor growth and simulation algorithms for improving therapy planning. The platform has been tested by different users and over large number of heterogeneous tomographic datasets to ensure stability, usability, extensibility and robustness with promising results. the platform, a manual and tutorial videos are available at: http://biomodeling.ics.forth.gr. it is free to use under the GNU General Public License.

  9. Xyce Parallel Electronic Simulator : users' guide, version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert John; Waters, Lon J.; Rankin, Eric Lamont

    2004-06-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for allmore » numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.« less

  10. Analysis of Macro-micro Simulation Models for Service-Oriented Public Platform: Coordination of Networked Services and Measurement of Public Values

    NASA Astrophysics Data System (ADS)

    Kinoshita, Yumiko

    When service sectors are a major driver for the growth of the world economy, we are challenged to implement service-oriented infrastructure as e-Gov platform to achieve further growth and innovation for both developed and developing countries. According to recent trends in service industry, it is clarified that main factors for the growth of service sectors are investment into knowledge, trade, and the enhanced capacity of micro, small, and medium-sized enterprises (MSMEs). In addition, the design and deployment of public service platform require appropriate evaluation methodology. Reflecting these observations, this paper proposes macro-micro simulation approach to assess public values (PV) focusing on MSMEs. Linkage aggregate variables (LAVs) are defined to show connection between macro and micro impacts of public services. As a result, the relationship of demography, business environment, macro economy, and socio-economic impact are clarified and their values are quantified from the behavioral perspectives of citizens and firms.

  11. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system,more » GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.« less

  12. MDWiZ: a platform for the automated translation of molecular dynamics simulations.

    PubMed

    Rusu, Victor H; Horta, Vitor A C; Horta, Bruno A C; Lins, Roberto D; Baron, Riccardo

    2014-03-01

    A variety of popular molecular dynamics (MD) simulation packages were independently developed in the last decades to reach diverse scientific goals. However, such non-coordinated development of software, force fields, and analysis tools for molecular simulations gave rise to an array of software formats and arbitrary conventions for routine preparation and analysis of simulation input and output data. Different formats and/or parameter definitions are used at each stage of the modeling process despite largely contain redundant information between alternative software tools. Such Babel of languages that cannot be easily and univocally translated one into another poses one of the major technical obstacles to the preparation, translation, and comparison of molecular simulation data that users face on a daily basis. Here, we present the MDWiZ platform, a freely accessed online portal designed to aid the fast and reliable preparation and conversion of file formats that allows researchers to reproduce or generate data from MD simulations using different setups, including force fields and models with different underlying potential forms. The general structure of MDWiZ is presented, the features of version 1.0 are detailed, and an extensive validation based on GROMACS to LAMMPS conversion is presented. We believe that MDWiZ will be largely useful to the molecular dynamics community. Such fast format and force field exchange for a given system allows tailoring the chosen system to a given computer platform and/or taking advantage of a specific capabilities offered by different software engines. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Cyber-Physical Test Platform for Microgrids: Combining Hardware, Hardware-in-the-Loop, and Network-Simulator-in-the-Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Chakraborty, Sudipta; Wang, Dexin

    This paper presents a cyber-physical testbed, developed to investigate the complex interactions between emerging microgrid technologies such as grid-interactive power sources, control systems, and a wide variety of communication platforms and bandwidths. The cyber-physical testbed consists of three major components for testing and validation: real time models of a distribution feeder model with microgrid assets that are integrated into the National Renewable Energy Laboratory's (NREL) power hardware-in-the-loop (PHIL) platform; real-time capable network-simulator-in-the-loop (NSIL) models; and physical hardware including inverters and a simple system controller. Several load profiles and microgrid configurations were tested to examine the effect on system performance withmore » increasing channel delays and router processing delays in the network simulator. Testing demonstrated that the controller's ability to maintain a target grid import power band was severely diminished with increasing network delays and laid the foundation for future testing of more complex cyber-physical systems.« less

  14. Discrete event simulation modelling of patient service management with Arena

    NASA Astrophysics Data System (ADS)

    Guseva, Elena; Varfolomeyeva, Tatyana; Efimova, Irina; Movchan, Irina

    2018-05-01

    This paper describes the simulation modeling methodology aimed to aid in solving the practical problems of the research and analysing the complex systems. The paper gives the review of a simulation platform sand example of simulation model development with Arena 15.0 (Rockwell Automation).The provided example of the simulation model for the patient service management helps to evaluate the workload of the clinic doctors, determine the number of the general practitioners, surgeons, traumatologists and other specialized doctors required for the patient service and develop recommendations to ensure timely delivery of medical care and improve the efficiency of the clinic operation.

  15. Berthing simulator for space station and orbiter

    NASA Technical Reports Server (NTRS)

    Veerasamy, Sam

    1991-01-01

    The development of a real-time man-in-the-loop berthing simulator is in progress at NASA Lyndon B. Johnson Space Center (JSC) to conduct a parametric study and to measure forces during contact conditions of the actual docking mechanisms for the Space Station Freedom and the orbiter. In berthing, the docking ports of the Space Station and the orbiter are brought together using the orbiter robotic arm to control the relative motion of the vehicles. The berthing simulator consists of a dynamics docking test system (DDTS), computer system, simulator software, and workstations. In the DDTS, the Space Station, and the orbiter docking mechanisms are mounted on a six-degree-of-freedom (6 DOF) table and a fixed platform above the table. Six load cells are used on the fixed platform to measure forces during contact conditions of the docking mechanisms. Two Encore Concept 32/9780 computers are used to simulate the orbiter robotic arm and to operate the berthing simulator. A systematic procedure for a real-time dynamic initialization is being developed to synchronize the Space Station docking port trajectory with the 6 DOF table movement. The berthing test can be conducted manually or automatically and can be extended for any two orbiting vehicles using a simulated robotic arm. The real-time operation of the berthing simulator is briefly described.

  16. Flying Lessons for Clinicians: Developing System 2 Practice.

    PubMed

    Gregoire, Jerome N; Alfes, Celeste M; Reimer, Andrew P; Terhaar, Mary F

    There is a long history of adopting lessons learned from aviation to improve health care practice. Two of the major practices that have successfully transferred include using a checklist and simulation. Training and simulation technology is currently underdeveloped for nurses and health care providers entering critical care transport. This article describes a pedagogical approach adopted from aviation to develop a new simulation platform and program of research to develop the science of critical care transport nursing education. Copyright © 2017 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  17. Development and Validation of a Novel Robotic Procedure Specific Simulation Platform: Partial Nephrectomy.

    PubMed

    Hung, Andrew J; Shah, Swar H; Dalag, Leonard; Shin, Daniel; Gill, Inderbir S

    2015-08-01

    We developed a novel procedure specific simulation platform for robotic partial nephrectomy. In this study we prospectively evaluate its face, content, construct and concurrent validity. This hybrid platform features augmented reality and virtual reality. Augmented reality involves 3-dimensional robotic partial nephrectomy surgical videos overlaid with virtual instruments to teach surgical anatomy, technical skills and operative steps. Advanced technical skills are assessed with an embedded full virtual reality renorrhaphy task. Participants were classified as novice (no surgical training, 15), intermediate (less than 100 robotic cases, 13) or expert (100 or more robotic cases, 14) and prospectively assessed. Cohort performance was compared with the Kruskal-Wallis test (construct validity). Post-study questionnaire was used to assess the realism of simulation (face validity) and usefulness for training (content validity). Concurrent validity evaluated correlation between virtual reality renorrhaphy task and a live porcine robotic partial nephrectomy performance (Spearman's analysis). Experts rated the augmented reality content as realistic (median 8/10) and helpful for resident/fellow training (8.0-8.2/10). Experts rated the platform highly for teaching anatomy (9/10) and operative steps (8.5/10) but moderately for technical skills (7.5/10). Experts and intermediates outperformed novices (construct validity) in efficiency (p=0.0002) and accuracy (p=0.002). For virtual reality renorrhaphy, experts outperformed intermediates on GEARS metrics (p=0.002). Virtual reality renorrhaphy and in vivo porcine robotic partial nephrectomy performance correlated significantly (r=0.8, p <0.0001) (concurrent validity). This augmented reality simulation platform displayed face, content and construct validity. Performance in the procedure specific virtual reality task correlated highly with a porcine model (concurrent validity). Future efforts will integrate procedure specific virtual reality tasks and their global assessment. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  19. ENVIRONMENT: a computational platform to stochastically simulate reacting and self-reproducing lipid compartments

    NASA Astrophysics Data System (ADS)

    Mavelli, Fabio; Ruiz-Mirazo, Kepa

    2010-09-01

    'ENVIRONMENT' is a computational platform that has been developed in the last few years with the aim to simulate stochastically the dynamics and stability of chemically reacting protocellular systems. Here we present and describe some of its main features, showing how the stochastic kinetics approach can be applied to study the time evolution of reaction networks in heterogeneous conditions, particularly when supramolecular lipid structures (micelles, vesicles, etc) coexist with aqueous domains. These conditions are of special relevance to understand the origins of cellular, self-reproducing compartments, in the context of prebiotic chemistry and evolution. We contrast our simulation results with real lab experiments, with the aim to bring together theoretical and experimental research on protocell and minimal artificial cell systems.

  20. The simcyp population based simulator: architecture, implementation, and quality assurance.

    PubMed

    Jamei, Masoud; Marciniak, Steve; Edwards, Duncan; Wragg, Kris; Feng, Kairui; Barnett, Adrian; Rostami-Hodjegan, Amin

    2013-01-01

    Developing a user-friendly platform that can handle a vast number of complex physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models both for conventional small molecules and larger biologic drugs is a substantial challenge. Over the last decade the Simcyp Population Based Simulator has gained popularity in major pharmaceutical companies (70% of top 40 - in term of R&D spending). Under the Simcyp Consortium guidance, it has evolved from a simple drug-drug interaction tool to a sophisticated and comprehensive Model Based Drug Development (MBDD) platform that covers a broad range of applications spanning from early drug discovery to late drug development. This article provides an update on the latest architectural and implementation developments within the Simulator. Interconnection between peripheral modules, the dynamic model building process and compound and population data handling are all described. The Simcyp Data Management (SDM) system, which contains the system and drug databases, can help with implementing quality standards by seamless integration and tracking of any changes. This also helps with internal approval procedures, validation and auto-testing of the new implemented models and algorithms, an area of high interest to regulatory bodies.

  1. Three Success Factors for Simulation Based Construction Education.

    ERIC Educational Resources Information Center

    Park, Moonseo; Chan, Swee Lean; Ingawale-Verma, Yashada

    2003-01-01

    Factors in successful implementation of simulation in construction education are as follows: (1) considering human factors and feedback effects; (2) focusing on tradeoffs between with managerial decisions and construction policies; and (3) developing a standalone tool that runs on any platform. Case studies demonstrated the effectiveness of these…

  2. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1982-01-01

    A hybrid multilevel linear quadratic regulator (ML-LQR) approach was developed and applied to the attitude control of models of the rotational dynamics of a prototype flexible spacecraft and of a typical space platform. Three axis rigid body flexible suspension models were developed for both the spacecraft and the space platform utilizing augmented body methods. Models of the spacecraft with hybrid ML-LQR attitude control and with LQR attitude control were simulated and their response with the two different types of control were compared.

  3. Simulation and experimental research of 1MWe solar tower power plant in China

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Wang, Zhifeng; Xu, Ershu

    2016-05-01

    The establishment of a reliable simulation system for a solar tower power plant can greatly increase the economic and safety performance of the whole system. In this paper, a dynamic model of the 1MWe Solar Tower Power Plant at Badaling in Beijing is developed based on the "STAR-90" simulation platform, including the heliostat field, the central receiver system (water/steam), etc. The dynamic behavior of the global CSP plant can be simulated. In order to verify the validity of simulation system, a complete experimental process was synchronously simulated by repeating the same operating steps based on the simulation platform, including the locations and number of heliostats, the mass flow of the feed water, etc. According to the simulation and experimental results, some important parameters are taken out to make a deep comparison. The results show that there is good alignment between the simulations and the experimental results and that the error range can be acceptable considering the error of the models. In the end, a comprehensive and deep analysis on the error source is carried out according to the comparative results.

  4. Concept Development of the Eindhoven Diabetes Education Simulator Project.

    PubMed

    Maas, Anne H; van der Molen, Pieta; van de Vijver, Reinier; Chen, Wei; van Pul, Carola; Cottaar, Eduardus J E; van Riel, Natal A W; Hilbers, Peter A J; Haak, Harm R

    2016-04-01

    This study was designed to define the concept of an educational diabetes game following a user-centered design approach. The concept development of the Eindhoven Diabetes Education Simulator (E-DES) project can be divided in two phases: concept generation and concept evaluation. Four concepts were designed by the multidisciplinary development team based on the outcomes of user interviews. Four other concepts resulted from the Diabetes Game Jam. Several users and experts evaluated the concepts. These user evaluations and a feasibility analysis served as input for an overall evaluation and discussion by the development team resulting in the final concept choice. The four concepts of the development team are a digital board game, a quiz platform, a lifestyle simulator, and a puzzle game. The Diabetes Game Jam resulted in another digital board game, two mobile swipe games, and a fairy tale-themed adventure game. The combined user evaluations and feasibility analysis ranked the quiz platform and the digital board game equally high. Each of these games fits one specific subgroup of users best: the quiz platform best fits an eager-to-learn, more individualistic patient, whereas the board game best fits a less-eager-to-learn, family-oriented patient. The choice for a specific concept is therefore highly dependent on the choice of our specific target audience. The user-centered design approach with multiple evaluations has enabled us to choose the most promising concept from eight different options. A digital board game is chosen for further development because the target audience for E-DES is the less-motivated, family-oriented patients.

  5. A multiple pointing-mount control strategy for space platforms

    NASA Technical Reports Server (NTRS)

    Johnson, C. D.

    1992-01-01

    A new disturbance-adaptive control strategy for multiple pointing-mount space platforms is proposed and illustrated by consideration of a simplified 3-link dynamic model of a multiple pointing-mount space platform. Simulation results demonstrate the effectiveness of the new platform control strategy. The simulation results also reveal a system 'destabilization phenomena' that can occur if the set of individual platform-mounted experiment controllers are 'too responsive.'

  6. Needs assessment for simulation training in neuroendoscopy: a Canadian national survey.

    PubMed

    Haji, Faizal A; Dubrowski, Adam; Drake, James; de Ribaupierre, Sandrine

    2013-02-01

    In recent years, dramatic changes in surgical education have increased interest in simulation-based training for complex surgical skills. This is particularly true for endoscopic third ventriculostomy (ETV), given the potential for serious intraoperative errors arising from surgical inexperience. However, prior to simulator development, a thorough assessment of training needs is essential to ensure development of educationally relevant platforms. The purpose of this study was to conduct a national needs assessment addressing specific goals of instruction, to guide development of simulation platforms, training curricula, and assessment metrics for ETV. Canadian neurosurgeons performing ETV were invited to participate in a structured online questionnaire regarding the procedural steps for ETV, the frequency and significance of intraoperative errors committed while learning the technique, and simulation training modules of greatest potential educational benefit. Descriptive data analysis was completed for both quantitative and qualitative responses. Thirty-two (55.2%) of 58 surgeons completed the survey. All believed that virtual reality simulation training for ETV would be a valuable addition to clinical training. Selection of ventriculostomy site, navigation within the ventricles, and performance of the ventriculostomy ranked as the most important steps to simulate. Technically inadequate ventriculostomy and inappropriate fenestration site selection were ranked as the most frequent/significant errors. A standard ETV module was thought to be most beneficial for resident training. To inform the development of a simulation-based training program for ETV, the authors have conducted a national needs assessment. The results provide valuable insight to inform key design elements necessary to construct an educationally relevant device and educational program.

  7. Reform and practice for photoelectric specialty experimental teaching based on virtual simulation experiment platform

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Lv, Qingsong; Wu, Maocheng; Xu, Yishen; Gu, Jihua

    2017-08-01

    In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.

  8. Model reference adaptive control for the azimuth-pointing system of a balloon-borne stabilized platform

    NASA Technical Reports Server (NTRS)

    Lubin, Philip M.; Tomizuka, Masayoshi; Chingcuanco, Alfredo O.; Meinhold, Peter R.

    1991-01-01

    A balloon-born stabilized platform has been developed for the remotely operated altitude-azimuth pointing of a millimeter wave telescope system. This paper presents a development and implementation of model reference adaptive control (MRAC) for the azimuth-pointing system of the stabilized platform. The primary goal of the controller is to achieve pointing rms better than 0.1 deg. Simulation results indicate that MRAC can achieve pointing rms better than 0.1 deg. Ground test results show pointing rms better than 0.03 deg. Data from the first flight at the National Scientific Balloon Facility (NSBF) Palestine, Texas show pointing rms better than 0.02 deg.

  9. Germany Briefing

    DTIC Science & Technology

    2011-07-27

    Ion Battery Packs Advanced Chemistry Batteries EM Armor Power Brick 8 UNCLASSIFIED Concepts Platform Simulation Component Development Vehicle...Advanced Turbocharging, Supercharging, OPOC Efficient Powertrain Technologies Electrified Accessories Energy Harvesting SiC Electronics Lithium

  10. Tele-Supervised Adaptive Ocean Sensor Fleet

    NASA Technical Reports Server (NTRS)

    Lefes, Alberto; Podnar, Gregg W.; Dolan, John M.; Hosler, Jeffrey C.; Ames, Troy J.

    2009-01-01

    The Tele-supervised Adaptive Ocean Sensor Fleet (TAOSF) is a multi-robot science exploration architecture and system that uses a group of robotic boats (the Ocean-Atmosphere Sensor Integration System, or OASIS) to enable in-situ study of ocean surface and subsurface characteristics and the dynamics of such ocean phenomena as coastal pollutants, oil spills, hurricanes, or harmful algal blooms (HABs). The OASIS boats are extended- deployment, autonomous ocean surface vehicles. The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. One feature of TAOSF is the adaptive re-planning of the activities of the OASIS vessels based on sensor input ( smart sensing) and sensorial coordination among multiple assets. The architecture also incorporates Web-based communications that permit control of the assets over long distances and the sharing of data with remote experts. Autonomous hazard and assistance detection allows the automatic identification of hazards that require human intervention to ensure the safety and integrity of the robotic vehicles, or of science data that require human interpretation and response. Also, the architecture is designed for science analysis of acquired data in order to perform an initial onboard assessment of the presence of specific science signatures of immediate interest. TAOSF integrates and extends five subsystems developed by the participating institutions: Emergent Space Tech - nol ogies, Wallops Flight Facility, NASA s Goddard Space Flight Center (GSFC), Carnegie Mellon University, and Jet Propulsion Laboratory (JPL). The OASIS Autonomous Surface Vehicle (ASV) system, which includes the vessels as well as the land-based control and communications infrastructure developed for them, controls the hardware of each platform (sensors, actuators, etc.), and also provides a low-level waypoint navigation capability. The Multi-Platform Simulation Environment from GSFC is a surrogate for the OASIS ASV system and allows for independent development and testing of higher-level software components. The Platform Communicator acts as a proxy for both actual and simulated platforms. It translates platform-independent messages from the higher control systems to the device-dependent communication protocols. This enables the higher-level control systems to interact identically with heterogeneous actual or simulated platforms.

  11. Strategic Mobility 21: Modeling, Simulation, and Analysis

    DTIC Science & Technology

    2010-04-14

    using AnyLogic , which is a Java programmed, multi-method simulation modeling tool developed by XJ Technologies. The last section examines the academic... simulation model from an Arena platform to an AnyLogic based Web Service. MATLAB is useful for small problems with few nodes, but GAMS/CPLEX is better... Transportation Modeling Studio TM . The SCASN modeling and simulation program was designed to be generic in nature to allow for use by both commercial and

  12. The Importance of Artificial Intelligence for Naval Intelligence Training Simulations

    DTIC Science & Technology

    2006-09-01

    experimental investigation described later. B. SYSTEM ARCHITECTURE The game-based simulator was created using NetBeans , which is an open source integrated...development environment (IDE) written entirely in Java using the NetBeans Platform. NetBeans is based upon the Java language which contains the...involved within the simulation are conducted in a GUI built within the NetBeans IDE. The opening display allows the user to setup the simulation

  13. Development of massive multilevel molecular dynamics simulation program, Platypus (PLATform for dYnamic Protein Unified Simulation), for the elucidation of protein functions.

    PubMed

    Takano, Yu; Nakata, Kazuto; Yonezawa, Yasushige; Nakamura, Haruki

    2016-05-05

    A massively parallel program for quantum mechanical-molecular mechanical (QM/MM) molecular dynamics simulation, called Platypus (PLATform for dYnamic Protein Unified Simulation), was developed to elucidate protein functions. The speedup and the parallelization ratio of Platypus in the QM and QM/MM calculations were assessed for a bacteriochlorophyll dimer in the photosynthetic reaction center (DIMER) on the K computer, a massively parallel computer achieving 10 PetaFLOPs with 705,024 cores. Platypus exhibited the increase in speedup up to 20,000 core processors at the HF/cc-pVDZ and B3LYP/cc-pVDZ, and up to 10,000 core processors by the CASCI(16,16)/6-31G** calculations. We also performed excited QM/MM-MD simulations on the chromophore of Sirius (SIRIUS) in water. Sirius is a pH-insensitive and photo-stable ultramarine fluorescent protein. Platypus accelerated on-the-fly excited-state QM/MM-MD simulations for SIRIUS in water, using over 4000 core processors. In addition, it also succeeded in 50-ps (200,000-step) on-the-fly excited-state QM/MM-MD simulations for the SIRIUS in water. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  14. Analyzing Cyber-Physical Threats on Robotic Platforms.

    PubMed

    Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J

    2018-05-21

    Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.

  15. Analyzing Cyber-Physical Threats on Robotic Platforms †

    PubMed Central

    2018-01-01

    Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBotTM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications. PMID:29883403

  16. A Software Framework for Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.

    2008-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center has a long history in developing simulations of experimental fixed-wing aircraft from gliders to suborbital vehicles on platforms ranging from desktop simulators to pilot-in-the-loop/aircraft-in-the-loop simulators. Regardless of the aircraft or simulator hardware, much of the software framework is common to all NASA Dryden simulators. Some of this software has withstood the test of time, but in recent years the push toward high-fidelity user-friendly simulations has resulted in some significant changes. This report presents an overview of the current NASA Dryden simulation software framework and capabilities with an emphasis on the new features that have permitted NASA to develop more capable simulations while maintaining the same staffing levels.

  17. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  18. The Virtual Brain: a simulator of primate brain network dynamics.

    PubMed

    Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.

  19. The Virtual Brain: a simulator of primate brain network dynamics

    PubMed Central

    Sanz Leon, Paula; Knock, Stuart A.; Woodman, M. Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications. PMID:23781198

  20. Flight simulator for hypersonic vehicle and a study of NASP handling qualities

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.

    1992-01-01

    The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.

  1. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  2. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  3. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  4. Development of a PDXP platform on NIF

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Schneider, Marilyn; Garbett, Warren; Pino, Jesse; Shepherd, Ronnie; Brown, Colin; Castor, John; Scott, Howard; Ellison, C. Leland; Benedict, Lorin; Sio, Hong; Lahmann, Brandon; Petrasso, Richard; Graziani, Frank

    2016-10-01

    Over the past several years, we have conducted theoretical investigations of electron-ion coupling and electronic transport in plasmas. In the regime of weakly coupled plasmas, we have identified models that we believe describe the physics well, but experimental measurements are still needed to validate the models. We are developing spectroscopic experiments to study electron-ion equilibration and electron heat transport using a polar direct drive exploding pusher (PDXP) platform at the National Ignition Facility (NIF). Initial measurements are focused on characterizing the laser-target coupling, symmetry of the PDXP implosion, and overall neutron and x-ray signals. We present images from the first set of shots and make comparisons with simulations from ARES and discuss next steps in the platform development. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697489.

  5. A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Zhang, Lin; Tao, Fei; (Luke) Zhang, Xiaolong; Luo, Yongliang; Zhang, Yabin

    2012-08-01

    Multidisciplinary design of complex products leads to an increasing demand for high performance simulation (HPS) platforms. One great challenge is how to achieve high efficient utilisation of large-scale simulation resources in distributed and heterogeneous environments. This article reports a virtualisation-based methodology to realise a HPS platform. This research is driven by the issues concerning large-scale simulation resources deployment and complex simulation environment construction, efficient and transparent utilisation of fine-grained simulation resources and high reliable simulation with fault tolerance. A framework of virtualisation-based simulation platform (VSIM) is first proposed. Then the article investigates and discusses key approaches in VSIM, including simulation resources modelling, a method to automatically deploying simulation resources for dynamic construction of system environment, and a live migration mechanism in case of faults in run-time simulation. Furthermore, the proposed methodology is applied to a multidisciplinary design system for aircraft virtual prototyping and some experiments are conducted. The experimental results show that the proposed methodology can (1) significantly improve the utilisation of fine-grained simulation resources, (2) result in a great reduction in deployment time and an increased flexibility for simulation environment construction and (3)achieve fault tolerant simulation.

  6. Development of a Crosslink Channel Simulator

    NASA Technical Reports Server (NTRS)

    Hunt, Chris; Smith, Carl; Burns, Rich

    2004-01-01

    Distributed Spacecraft missions are an integral part of current and future plans for NASA and other space agencies. Many of these multi-vehicle missions involve utilizing the array of spacecraft as a single, instrument requiring communication via crosslinks to achieve mission goals. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide a hardware-in-the-loop simulation environment to support mission concept development and system trades with a primary focus on Guidance, Navigation, and Control (GN&C) challenges associated with spacecraft flying. The goal of the FFTB is to reduce mission risk by assisting in mission planning and analysis, provide a technology development platform that allows algorithms to be developed for mission functions such as precision formation navigation and control and time synchronization. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be integrated for development and test; an integral part of the FFTB is the Crosslink Channel Simulator (CCS). The CCS is placed into the communications channel between the crosslinks under test, and is used to simulate on-mission effects to the communications channel such as vehicle maneuvers, relative vehicle motion, or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems and provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters. This paper briefly describes the Formation Flying Test Bed and its potential uses. It then provides details on the current and future development of the Crosslink Channel Simulator and its capabilities.

  7. SHIWA Services for Workflow Creation and Sharing in Hydrometeorolog

    NASA Astrophysics Data System (ADS)

    Terstyanszky, Gabor; Kiss, Tamas; Kacsuk, Peter; Sipos, Gergely

    2014-05-01

    Researchers want to run scientific experiments on Distributed Computing Infrastructures (DCI) to access large pools of resources and services. To run these experiments requires specific expertise that they may not have. Workflows can hide resources and services as a virtualisation layer providing a user interface that researchers can use. There are many scientific workflow systems but they are not interoperable. To learn a workflow system and create workflows may require significant efforts. Considering these efforts it is not reasonable to expect that researchers will learn new workflow systems if they want to run workflows developed in other workflow systems. To overcome it requires creating workflow interoperability solutions to allow workflow sharing. The FP7 'Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs' (SHIWA) project developed the Coarse-Grained Interoperability concept (CGI). It enables recycling and sharing workflows of different workflow systems and executing them on different DCIs. SHIWA developed the SHIWA Simulation Platform (SSP) to implement the CGI concept integrating three major components: the SHIWA Science Gateway, the workflow engines supported by the CGI concept and DCI resources where workflows are executed. The science gateway contains a portal, a submission service, a workflow repository and a proxy server to support the whole workflow life-cycle. The SHIWA Portal allows workflow creation, configuration, execution and monitoring through a Graphical User Interface using the WS-PGRADE workflow system as the host workflow system. The SHIWA Repository stores the formal description of workflows and workflow engines plus executables and data needed to execute them. It offers a wide-range of browse and search operations. To support non-native workflow execution the SHIWA Submission Service imports the workflow and workflow engine from the SHIWA Repository. This service either invokes locally or remotely pre-deployed workflow engines or submits workflow engines with the workflow to local or remote resources to execute workflows. The SHIWA Proxy Server manages certificates needed to execute the workflows on different DCIs. Currently SSP supports sharing of ASKALON, Galaxy, GWES, Kepler, LONI Pipeline, MOTEUR, Pegasus, P-GRADE, ProActive, Triana, Taverna and WS-PGRADE workflows. Further workflow systems can be added to the simulation platform as required by research communities. The FP7 'Building a European Research Community through Interoperable Workflows and Data' (ER-flow) project disseminates the achievements of the SHIWA project to build workflow user communities across Europe. ER-flow provides application supports to research communities within (Astrophysics, Computational Chemistry, Heliophysics and Life Sciences) and beyond (Hydrometeorology and Seismology) to develop, share and run workflows through the simulation platform. The simulation platform supports four usage scenarios: creating and publishing workflows in the repository, searching and selecting workflows in the repository, executing non-native workflows and creating and running meta-workflows. The presentation will outline the CGI concept, the SHIWA Simulation Platform, the ER-flow usage scenarios and how the Hydrometeorology research community runs simulations on SSP.

  8. A parallel program for numerical simulation of discrete fracture network and groundwater flow

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Wei; Liou, Tai-Sheng; Kalatehjari, Roohollah

    2017-04-01

    The ability of modeling fluid flow in Discrete Fracture Network (DFN) is critical to various applications such as exploration of reserves in geothermal and petroleum reservoirs, geological sequestration of carbon dioxide and final disposal of spent nuclear fuels. Although several commerical or acdametic DFN flow simulators are already available (e.g., FracMan and DFNWORKS), challenges in terms of computational efficiency and three-dimensional visualization still remain, which therefore motivates this study for developing a new DFN and flow simulator. A new DFN and flow simulator, DFNbox, was written in C++ under a cross-platform software development framework provided by Qt. DFNBox integrates the following capabilities into a user-friendly drop-down menu interface: DFN simulation and clipping, 3D mesh generation, fracture data analysis, connectivity analysis, flow path analysis and steady-state grounwater flow simulation. All three-dimensional visualization graphics were developed using the free OpenGL API. Similar to other DFN simulators, fractures are conceptualized as random point process in space, with stochastic characteristics represented by orientation, size, transmissivity and aperture. Fracture meshing was implemented by Delaunay triangulation for visualization but not flow simulation purposes. Boundary element method was used for flow simulations such that only unknown head or flux along exterior and interection bounaries are needed for solving the flow field in the DFN. Parallel compuation concept was taken into account in developing DFNbox for calculations that such concept is possible. For example, the time-consuming seqential code for fracture clipping calculations has been completely replaced by a highly efficient parallel one. This can greatly enhance compuational efficiency especially on multi-thread platforms. Furthermore, DFNbox have been successfully tested in Windows and Linux systems with equally-well performance.

  9. A unique control system simulator for the evaluation of pulsed plasma thrusters

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1973-01-01

    Because of the low thrust characteristics of solid-propellant pulsed plasma thrusters and their operational requirement to operate in a vacuum environment, unique and sensitive test techniques are required. A technique evolved for testing and evaluating pulsed plasma thrusters in an open- or closed-loop system mode employs a unique air bearing platform as a single-axis simulator on which the thruster is mounted. The simulator described was developed to evaluate pulsed plasma thrusters in the low micropound range; however, the simulator can be extended to cover the operational range of currently developed millipound thrusters.

  10. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  11. Simulation of parafoil reconnaissance imagery

    NASA Astrophysics Data System (ADS)

    Kogler, Kent J.; Sutkus, Linas; Troast, Douglas; Kisatsky, Paul; Charles, Alain M.

    1995-08-01

    Reconnaissance from unmanned platforms is currently of interest to DoD and civil sectors concerned with drug trafficking and illegal immigration. Platforms employed vary from motorized aircraft to tethered balloons. One appraoch currently under evaluation deploys a TV camera suspended from a parafoil delivered to the area of interest by a cannon launched projectile. Imagery is then transmitted to a remote monitor for processing and interpretation. This paper presents results of imagery obtained from simulated parafoil flights in which software techniques were developed to process-in image degradation caused by atmospheric obscurants and perturbations in the normal parafoil flight trajectory induced by wind gusts. The approach to capturing continuous motion imagery from captive flight test recordings, the introduction of simulated effects, and the transfer of the processed imagery back to video tape is described.

  12. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  13. Simulator fidelity : the effect of platform motion.

    DOT National Transportation Integrated Search

    2000-07-31

    As part of the Federal Aviation Administration's (FAA) initiative towards affordable flight simulators for U.S. commuter airlines, this study empirically examined the effect of six-degree-of-freedom simulator platform motion on recurrent pilot traini...

  14. SMI Compatible Simulation Scheduler Design for Reuse of Model Complying with Smp Standard

    NASA Astrophysics Data System (ADS)

    Koo, Cheol-Hea; Lee, Hoon-Hee; Cheon, Yee-Jin

    2010-12-01

    Software reusability is one of key factors which impacts cost and schedule on a software development project. It is very crucial also in satellite simulator development since there are many commercial simulator models related to satellite and dynamics. If these models can be used in another simulator platform, great deal of confidence and cost/schedule reduction would be achieved. Simulation model portability (SMP) is maintained by European Space Agency and many models compatible with SMP/simulation model interface (SMI) are available. Korea Aerospace Research Institute (KARI) is developing hardware abstraction layer (HAL) supported satellite simulator to verify on-board software of satellite. From above reasons, KARI wants to port these SMI compatible models to the HAL supported satellite simulator. To port these SMI compatible models to the HAL supported satellite simulator, simulation scheduler is preliminary designed according to the SMI standard.

  15. The effects of simulated fog and motion on simulator sickness in a driving simulator and the duration of after-effects.

    PubMed

    Dziuda, Lukasz; Biernacki, Marcin P; Baran, Paulina M; Truszczyński, Olaf E

    2014-05-01

    In the study, we checked: 1) how the simulator test conditions affect the severity of simulator sickness symptoms; 2) how the severity of simulator sickness symptoms changes over time; and 3) whether the conditions of the simulator test affect the severity of these symptoms in different ways, depending on the time that has elapsed since the performance of the task in the simulator. We studied 12 men aged 24-33 years (M = 28.8, SD = 3.26) using a truck simulator. The SSQ questionnaire was used to assess the severity of the symptoms of simulator sickness. Each of the subjects performed three 30-minute tasks running along the same route in a driving simulator. Each of these tasks was carried out in a different simulator configuration: A) fixed base platform with poor visibility; B) fixed base platform with good visibility; and C) motion base platform with good visibility. The measurement of the severity of the simulator sickness symptoms took place in five consecutive intervals. The results of the analysis showed that the simulator test conditions affect in different ways the severity of the simulator sickness symptoms, depending on the time which has elapsed since performing the task on the simulator. The simulator sickness symptoms persisted at the highest level for the test conditions involving the motion base platform. Also, when performing the tasks on the motion base platform, the severity of the simulator sickness symptoms varied depending on the time that had elapsed since performing the task. Specifically, the addition of motion to the simulation increased the oculomotor and disorientation symptoms reported as well as the duration of the after-effects. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, N; Tian, Z; Pompos, A

    2016-06-15

    Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondarymore » electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.« less

  17. A synthetic method for atmospheric diffusion simulation and environmental impact assessment of accidental pollution in the chemical industry in a WEBGIS context.

    PubMed

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-09-05

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  18. A Synthetic Method for Atmospheric Diffusion Simulation and Environmental Impact Assessment of Accidental Pollution in the Chemical Industry in a WEBGIS Context

    PubMed Central

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-01-01

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686

  19. Design and Evolution of a Modular Tensegrity Robot Platform

    NASA Technical Reports Server (NTRS)

    Bruce, Jonathan; Caluwaerts, Ken; Iscen, Atil; Sabelhaus, Andrew P.; SunSpiral, Vytas

    2014-01-01

    NASA Ames Research Center is developing a compliant modular tensegrity robotic platform for planetary exploration. In this paper we present the design and evolution of the platform's main hardware component, an untethered, robust tensegrity strut, with rich sensor feedback and cable actuation. Each strut is a complete robot, and multiple struts can be combined together to form a wide range of complex tensegrity robots. Our current goal for the tensegrity robotic platform is the development of SUPERball, a 6-strut icosahedron underactuated tensegrity robot aimed at dynamic locomotion for planetary exploration rovers and landers, but the aim is for the modular strut to enable a wide range of tensegrity morphologies. SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also a modular, lightweight, highly compliant 6-strut tensegrity robot that was used to validate our physics based NASA Tensegrity Robot Toolkit (NTRT) simulator. Many hardware design parameters of the SUPERball were driven by locomotion results obtained in our validated simulator. These evolutionary explorations helped constrain motor torque and speed parameters, along with strut and string stress. As construction of the hardware has finalized, we have also used the same evolutionary framework to evolve controllers that respect the built hardware parameters.

  20. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies.

    PubMed

    Ahadian, Samad; Civitarese, Robert; Bannerman, Dawn; Mohammadi, Mohammad Hossein; Lu, Rick; Wang, Erika; Davenport-Huyer, Locke; Lai, Ben; Zhang, Boyang; Zhao, Yimu; Mandla, Serena; Korolj, Anastasia; Radisic, Milica

    2018-01-01

    Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Online collaboration and model sharing in volcanology via VHub.org

    NASA Astrophysics Data System (ADS)

    Valentine, G.; Patra, A. K.; Bajo, J. V.; Bursik, M. I.; Calder, E.; Carn, S. A.; Charbonnier, S. J.; Connor, C.; Connor, L.; Courtland, L. M.; Gallo, S.; Jones, M.; Palma Lizana, J. L.; Moore-Russo, D.; Renschler, C. S.; Rose, W. I.

    2013-12-01

    VHub (short for VolcanoHub, and accessible at vhub.org) is an online platform for barrier free access to high end modeling and simulation and collaboration in research and training related to volcanoes, the hazards they pose, and risk mitigation. The underlying concept is to provide a platform, building upon the successful HUBzero software infrastructure (hubzero.org), that enables workers to collaborate online and to easily share information, modeling and analysis tools, and educational materials with colleagues around the globe. Collaboration occurs around several different points: (1) modeling and simulation; (2) data sharing; (3) education and training; (4) volcano observatories; and (5) project-specific groups. VHub promotes modeling and simulation in two ways: (1) some models can be implemented on VHub for online execution. VHub can provide a central warehouse for such models that should result in broader dissemination. VHub also provides a platform that supports the more complex CFD models by enabling the sharing of code development and problem-solving knowledge, benchmarking datasets, and the development of validation exercises. VHub also provides a platform for sharing of data and datasets. The VHub development team is implementing the iRODS data sharing middleware (see irods.org). iRODS allows a researcher to access data that are located at participating data sources around the world (a cloud of data) as if the data were housed in a single virtual database. Projects associated with VHub are also going to introduce the use of data driven workflow tools to support the use of multistage analysis processes where computing and data are integrated for model validation, hazard analysis etc. Audio-video recordings of seminars, PowerPoint slide sets, and educational simulations are all items that can be placed onto VHub for use by the community or by selected collaborators. An important point is that the manager of a given educational resource (or any other resource, such as a dataset or a model) can control the privacy of that resource, ranging from private (only accessible by, and known to, specific collaborators) to completely public. VHub is a very useful platform for project-specific collaborations. With a group site on VHub collaborators share documents, datasets, maps, and have ongoing discussions using the discussion board function. VHub is funded by the U.S. National Science Foundation, and is participating in development of larger earth-science cyberinfrastructure initiatives (EarthCube), as well as supporting efforts such as the Global Volcano Model. Emerging VHub-facilitated efforts include model benchmarking, collaborative code development, and growth in online modeling tools.

  2. LOOS: an extensible platform for the structural analysis of simulations.

    PubMed

    Romo, Tod D; Grossfield, Alan

    2009-01-01

    We have developed LOOS (Lightweight Object-Oriented Structure-analysis library) as an object-oriented library designed to facilitate the rapid development of tools for the structural analysis of simulations. LOOS supports the native file formats of most common simulation packages including AMBER, CHARMM, CNS, Gromacs, NAMD, Tinker, and X-PLOR. Encapsulation and polymorphism are used to simultaneously provide a stable interface to the programmer and make LOOS easily extensible. A rich atom selection language based on the C expression syntax is included as part of the library. LOOS enables students and casual programmer-scientists to rapidly write their own analytical tools in a compact and expressive manner resembling scripting. LOOS is written in C++ and makes extensive use of the Standard Template Library and Boost, and is freely available under the GNU General Public License (version 3) LOOS has been tested on Linux and MacOS X, but is written to be portable and should work on most Unix-based platforms.

  3. Large space structures controls research and development at Marshall Space Flight Center: Status and future plans

    NASA Technical Reports Server (NTRS)

    Buchanan, H. J.

    1983-01-01

    Work performed in Large Space Structures Controls research and development program at Marshall Space Flight Center is described. Studies to develop a multilevel control approach which supports a modular or building block approach to the buildup of space platforms are discussed. A concept has been developed and tested in three-axis computer simulation utilizing a five-body model of a basic space platform module. Analytical efforts have continued to focus on extension of the basic theory and subsequent application. Consideration is also given to specifications to evaluate several algorithms for controlling the shape of Large Space Structures.

  4. A Demonstration of Delay and Constructive Modeling Effects in Distributed Interactive Simulation.

    DTIC Science & Technology

    1998-02-01

    with the Armstrong Laboratory Design Technology Branch, Veda Incorporated, and Science Applications International Corporation (SAIC). SAIC was working...The authors express special thanks to Mr. Dave O’Quinn of Veda Incorporated who provided quality simulation engineering support, and to Mr. David...platform employed in the study was the Engineering Design Simulator (EDSM) shown in Figure 3. Developed by Veda Inc., the EDSM is a single-seat

  5. Supercomputer modeling of flow past hypersonic flight vehicles

    NASA Astrophysics Data System (ADS)

    Ermakov, M. K.; Kryukov, I. A.

    2017-02-01

    A software platform for MPI-based parallel solution of the Navier-Stokes (Euler) equations for viscous heat-conductive compressible perfect gas on 3-D unstructured meshes is developed. The discretization and solution of the Navier-Stokes equations are constructed on generalized S.K. Godunov’s method and the second order approximation in space and time. Developed software platform allows to carry out effectively flow past hypersonic flight vehicles simulations for the Mach numbers 6 and higher, and numerical meshes with up to 1 billion numerical cells and with up to 128 processors.

  6. Multidisciplinary propulsion simulation using NPSS

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.

    1992-01-01

    The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.

  7. Solar Occultation Retrieval Algorithm Development

    NASA Technical Reports Server (NTRS)

    Lumpe, Jerry D.

    2004-01-01

    This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.

  8. Dynamics modeling and loads analysis of an offshore floating wind turbine

    NASA Astrophysics Data System (ADS)

    Jonkman, Jason Mark

    The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity, and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modeling the coupled dynamic response of offshore floating wind turbines, the verification of the simulation tool through model-to-model comparisons, and the application of the simulation tool to an integrated loads analysis for one of the promising system concepts. A fully coupled aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address the limitations of previous frequency- and time-domain studies and to have the features required to perform loads analyses for a variety of wind turbine, support platform, and mooring system configurations. The simulation capability was tested using model-to-model comparisons. The favorable results of all of the verification exercises provided confidence to perform more thorough analyses. The simulation tool was then applied in a preliminary loads analysis of a wind turbine supported by a barge with catenary moorings. A barge platform was chosen because of its simplicity in design, fabrication, and installation. The loads analysis aimed to characterize the dynamic response and to identify potential loads and instabilities resulting from the dynamic couplings between the turbine and the floating barge in the presence of combined wind and wave excitation. The coupling between the wind turbine response and the barge-pitch motion, in particular, produced larger extreme loads in the floating turbine than experienced by an equivalent land-based turbine. Instabilities were also found in the system. The influence of conventional wind turbine blade-pitch control actions on the pitch damping of the floating turbine was also assessed. Design modifications for reducing the platform motions, improving the turbine response, and eliminating the instabilities are suggested. These suggestions are aimed at obtaining cost-effective designs that achieve favorable performance while maintaining structural integrity.

  9. 1:50 Scale Testing of Three Floating Wind Turbines at MARIN and Numerical Model Validation Against Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagher, Habib; Viselli, Anthony; Goupee, Andrew

    The primary goal of the basin model test program discussed herein is to properly scale and accurately capture physical data of the rigid body motions, accelerations and loads for different floating wind turbine platform technologies. The intended use for this data is for performing comparisons with predictions from various aero-hydro-servo-elastic floating wind turbine simulators for calibration and validation. Of particular interest is validating the floating offshore wind turbine simulation capabilities of NREL’s FAST open-source simulation tool. Once the validation process is complete, coupled simulators such as FAST can be used with a much greater degree of confidence in design processesmore » for commercial development of floating offshore wind turbines. The test program subsequently described in this report was performed at MARIN (Maritime Research Institute Netherlands) in Wageningen, the Netherlands. The models considered consisted of the horizontal axis, NREL 5 MW Reference Wind Turbine (Jonkman et al., 2009) with a flexible tower affixed atop three distinct platforms: a tension leg platform (TLP), a spar-buoy modeled after the OC3 Hywind (Jonkman, 2010) and a semi-submersible. The three generic platform designs were intended to cover the spectrum of currently investigated concepts, each based on proven floating offshore structure technology. The models were tested under Froude scale wind and wave loads. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine which exhibits negligible swirl and low turbulence intensity in the flow field. Recorded data from the floating wind turbine models included rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions and accelerations at key locations on the nacelle, tower, and platform. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions with irregular sea states and dynamic winds.« less

  10. Development of a simulated smart pump interface.

    PubMed

    Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus

    2014-01-01

    Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.

  11. Next-generation simulation and optimization platform for forest management and analysis

    Treesearch

    Antti Makinen; Jouni Kalliovirta; Jussi Rasinmaki

    2009-01-01

    Late developments in the objectives and the data collection methods of forestry create new challenges and possibilities in forest management planning. Tools in forest management and forest planning systems must be able to make good use of novel data sources, use new models, and solve complex forest planning tasks at different scales. The SIMulation and Optimization (...

  12. Probabilities and Predictions: Modeling the Development of Scientific Problem-Solving Skills

    ERIC Educational Resources Information Center

    Stevens, Ron; Johnson, David F.; Soller, Amy

    2005-01-01

    The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative…

  13. ChemVoyage: A Web-Based, Simulated Learning Environment with Scaffolding and Linking Visualization to Conceptualization

    ERIC Educational Resources Information Center

    McRae, Christopher; Karuso, Peter; Liu, Fei

    2012-01-01

    The Web is now a standard tool for information access and dissemination in higher education. The prospect of Web-based, simulated learning platforms and technologies, however, remains underexplored. We have developed a Web-based tutorial program (ChemVoyage) for a third-year organic chemistry class on the topic of pericyclic reactions to…

  14. Flexible Simulation E-Learning Environment for Studying Digital Circuits and Possibilities for It Deployment as Semantic Web Service

    ERIC Educational Resources Information Center

    Radoyska, P.; Ivanova, T.; Spasova, N.

    2011-01-01

    In this article we present a partially realized project for building a distributed learning environment for studying digital circuits Test and Diagnostics at TU-Sofia. We describe the main requirements for this environment, substantiate the developer platform choice, and present our simulation and circuit parameter calculation tools.…

  15. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2015-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.

  16. Future directions in flight simulation: A user perspective

    NASA Technical Reports Server (NTRS)

    Jackson, Bruce

    1993-01-01

    Langley Research Center was an early leader in simulation technology, including a special emphasis in space vehicle simulations such as the rendezvous and docking simulator for the Gemini program and the lunar landing simulator used before Apollo. In more recent times, Langley operated the first synergistic six degree of freedom motion platform (the Visual Motion Simulator, or VMS) and developed the first dual-dome air combat simulator, the Differential Maneuvering Simulator (DMS). Each Langley simulator was developed more or less independently from one another with different programming support. At present time, the various simulation cockpits, while supported by the same host computer system, run dissimilar software. The majority of recent investments in Langley's simulation facilities have been hardware procurements: host processors, visual systems, and most recently, an improved motion system. Investments in software improvements, however, have not been of the same order.

  17. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  18. Methode de conception dirigee par les modeles pour les systemes avioniques modulaires integres basee sur une approche de cosimulation

    NASA Astrophysics Data System (ADS)

    Bao, Lin

    In the aerospace industry, with the development of avionic systems becomes more and more complex, the integrated modular avionics (IMA) architecture was proposed to replace its predecessor - the federated architecture, in order to reduce the weight, power consumption and the dimension of the avionics equipment. The research work presented in this thesis, which is considered as a part of the research project AVIO509, aims to propose to the aviation industry a set of time-effective and cost-effective solutions for the development and the functional validation of IMA systems. The proposed methodologies mainly focus on two design flows that are based on: 1) the concept of model-driven engineering design and 2) a cosimulation platform. In the first design flow, the modeling language AADL is used to describe the IMA architecture. The environment OCARINA, a code generator initially designed for POK, was modified so that it can generate avionic applications from an AADL model for the simulator SIMA (an IMA simulator compliant to the ARINC653 standards). In the second design flow, Simulink is used to simulate the external world of IMA module thanks to the availability of avionic library that can offer lots of avionics sensors and actuators, and as well as its effectiveness in creating the Simulink models. The cosimulation platform is composed of two simulators: Simulink for the simulation of peripherals and SIMA for the simulation of IMA module, the latter is considered as an ideal alternative for the super expensive commercial development environment. In order to have a good portability, a SIMA partition is reserved as the role of " adapter " to synchronize the communication between these two simulators via the TCP/IP protocol. When the avionics applications are ported to the implementation platform (such as PikeOS) after the simulation, there is only the " adapter " to be modified because the internal communication and the system configuration are the same. An avionics application was developed as a case study, in order to demonstrate the validation of the proposed design flows. The research presented in this paper is a continuation of project of the AVIO509 research team, and parallelly may be extended in the future work.

  19. Observation planning algorithm of a Japanese space-borne sensor: Hyperspectral Imager SUIte (HISUI) onboard International Space Station (ISS) as platform

    NASA Astrophysics Data System (ADS)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.

  20. Augmented Reality as a Telemedicine Platform for Remote Procedural Training.

    PubMed

    Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew

    2017-10-10

    Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor's hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers' perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform.

  1. Augmented Reality as a Telemedicine Platform for Remote Procedural Training

    PubMed Central

    Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew

    2017-01-01

    Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor’s hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers’ perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform. PMID:28994720

  2. Array Simulations Platform (ASP) predicts NASA Data Link Module (NDLM) performance

    NASA Technical Reports Server (NTRS)

    Snook, Allen David

    1993-01-01

    Through a variety of imbedded theoretical and actual antenna patterns, the array simulation platform (ASP) enhanced analysis of the array antenna pattern effects for the KTx (Ku-Band Transmit) service of the NDLM (NASA Data Link Module). The ASP utilizes internally stored models of the NDLM antennas and can develop the overall pattern of antenna arrays through common array calculation techniques. ASP expertly assisted in the diagnosing of element phase shifter errors during KTx testing and was able to accurately predict the overall array pattern from combinations of the four internally held element patterns. This paper provides an overview of the use of the ASP software in the solving of array mis-phasing problems.

  3. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.

  4. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    PubMed

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.

  5. MULTISCALE AIR QUALITY SIMULATION PLATFORM (MAQSIP): INITIAL APPLICATIONS AND PERFORMANCE FOR TROPOSPHERIC OZONE AND PARTICULATE MATTER

    EPA Science Inventory

    This manuscript provides an overview of the formulation, process considerations, and performance for simulating tropospheric ozone and particulate matter distributions of the Multiscale Air Quality Simulation Platform (MAQSIP). MAQSIP is a comprehensive atmospheric chemistry/tran...

  6. Challenges in the development of very high resolution Earth System Models for climate science

    NASA Astrophysics Data System (ADS)

    Rasch, Philip J.; Xie, Shaocheng; Ma, Po-Lun; Lin, Wuyin; Wan, Hui; Qian, Yun

    2017-04-01

    The authors represent the 20+ members of the ACME atmosphere development team. The US Department of Energy (DOE) has, like many other organizations around the world, identified the need for an Earth System Model capable of rapid completion of decade to century length simulations at very high (vertical and horizontal) resolution with good climate fidelity. Two years ago DOE initiated a multi-institution effort called ACME (Accelerated Climate Modeling for Energy) to meet this an extraordinary challenge, targeting a model eventually capable of running at 10-25km horizontal and 20-400m vertical resolution through the troposphere on exascale computational platforms at speeds sufficient to complete 5+ simulated years per day. I will outline the challenges our team has encountered in development of the atmosphere component of this model, and the strategies we have been using for tuning and debugging a model that we can barely afford to run on today's computational platforms. These strategies include: 1) evaluation at lower resolutions; 2) ensembles of short simulations to explore parameter space, and perform rough tuning and evaluation; 3) use of regionally refined versions of the model for probing high resolution model behavior at less expense; 4) use of "auto-tuning" methodologies for model tuning; and 5) brute force long climate simulations.

  7. Development of a simulation model of semi-active suspension for monorail

    NASA Astrophysics Data System (ADS)

    Hasnan, K.; Didane, D. H.; Kamarudin, M. A.; Bakhsh, Qadir; Abdulmalik, R. E.

    2016-11-01

    The new Kuala Lumpur Monorail Fleet Expansion Project (KLMFEP) uses semiactive technology in its suspension system. It is recognized that the suspension system influences the ride quality. Thus, among the way to further improve the ride quality is by fine- tuning the semi-active suspension system on the new KL Monorail. The semi-active suspension for the monorail specifically in terms of improving ride quality could be exploited further. Hence a simulation model which will act as a platform to test the design of a complete suspension system particularly to investigate the ride comfort performance is required. MSC Adams software was considered as the tool to develop the simulation platform, where all parameters and data are represented by mathematical equations; whereas the new KL Monorail being the reference model. In the simulation, the model went through step disturbance on the guideway for stability and ride comfort analysis. The model has shown positive results where the monorail is in stable condition as an outcome from stability analysis. The model also scores a Rating 1 classification in ISO 2631 Ride Comfort performance which is very comfortable as an overall outcome from ride comfort analysis. The model is also adjustable, flexibile and understandable by the engineers within the field for the purpose of further development.

  8. Development of a Search and Rescue Simulation to Study the Effects of Prolonged Isolation on Team Decision Making

    NASA Technical Reports Server (NTRS)

    Entin, Elliot E.; Kerrigan, Caroline; Serfaty, Daniel; Young, Philip

    1998-01-01

    The goals of this project were to identify and investigate aspects of team and individual decision-making and risk-taking behaviors hypothesized to be most affected by prolonged isolation. A key premise driving our research approach is that effects of stressors that impact individual and team cognitive processes in an isolated, confined, and hazardous environment will be projected onto the performance of a simulation task. To elicit and investigate these team behaviors we developed a search and rescue task concept as a scenario domain that would be relevant for isolated crews. We modified the Distributed Dynamic Decision-making (DDD) simulator, a platform that has been extensively used for empirical research in team processes and taskwork performance, to portray the features of a search and rescue scenario and present the task components incorporated into that scenario. The resulting software is called DD-Search and Rescue (Version 1.0). To support the use of the DDD-Search and Rescue simulator in isolated experiment settings, we wrote a player's manual for teaching team members to operate the simulator and play the scenario. We then developed a research design and experiment plan that would allow quantitative measures of individual and team decision making skills using the DDD-Search and Rescue simulator as the experiment platform. A description of these activities and the associated materials that were produced under this contract are contained in this report.

  9. A novel test rig to investigate under-platform damper dynamics

    NASA Astrophysics Data System (ADS)

    Botto, Daniele; Umer, Muhammad

    2018-02-01

    In the field of turbomachinery, vibration amplitude is often reduced by dissipating the kinetic energy of the blades with devices that utilize dry friction. Under-platform dampers, for example, are often placed in the underside of two consecutive turbine blades. Dampers are kept in contact with the under-platform of the respective blades by means of the centrifugal force. If the damper is well designed, vibration of blades instigate a relative motion between the under-platform and the damper. A friction force, that is a non-conservative force, arises in the contact and partly dissipates the vibration energy. Several contact models are available in the literature to simulate the contact between the damper and the under-platform. However, the actual dynamics of the blade-damper interaction have not fully understood yet. Several test rigs have been previously developed to experimentally investigate the performance of under-platform dampers. The majority of these experimental setups aim to evaluate the overall damper efficiency in terms of reduction in response amplitude of the blade for a given exciting force that simulates the aerodynamic loads. Unfortunately, the experimental data acquired on the blade dynamics do not provide enough information to understand the damper dynamics. Therefore, the uncertainty on the damper behavior remains a big issue. In this work, a novel experimental test rig has been developed to extensively investigate the damper dynamic behavior. A single replaceable blade is clamped in the rig with a specific clamping device. With this device the blade root is pressed against a groove machined in the test rig. The pushing force is controllable and measurable, to better simulate the actual centrifugal load acting on the blade. Two dampers, one on each side of the blade, are in contact with the blade under-platforms and with platforms on force measuring supports. These supports have been specifically designed to measure the contact forces on the damper. The contact forces on the blade are computed by post processing the measured forces and assuming the static equilibrium of the damper. The damper kinematics is rebuilt by using the relative displacement, measured with a differential laser, between the damper and the blade under-platform. This article describes the main concepts behind this new approach and explains the design and working of this novel test rig. Moreover, the influence of the damper contact forces on the dynamic behavior of the blade is discussed in the result section.

  10. SU-G-BRC-10: Feasibility of a Web-Based Monte Carlo Simulation Tool for Dynamic Electron Arc Radiotherapy (DEAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A; Wu, Q; Sawkey, D

    Purpose: DEAR is a radiation therapy technique utilizing synchronized motion of gantry and couch during delivery to optimize dose distribution homogeneity and penumbra for treatment of superficial disease. Dose calculation for DEAR is not yet supported by commercial TPSs. The purpose of this study is to demonstrate the feasibility of using a web-based Monte Carlo (MC) simulation tool (VirtuaLinac) to calculate dose distributions for a DEAR delivery. Methods: MC simulations were run through VirtuaLinac, which is based on the GEANT4 platform. VirtuaLinac utilizes detailed linac head geometry and material models, validated phase space files, and a voxelized phantom. The inputmore » was expanded to include an XML file for simulation of varying mechanical axes as a function of MU. A DEAR XML plan was generated and used in the MC simulation and delivered on a TrueBeam in Developer Mode. Radiographic film wrapped on a cylindrical phantom (12.5 cm radius) measured dose at a depth of 1.5 cm and compared to the simulation results. Results: A DEAR plan was simulated using an energy of 6 MeV and a 3×10 cm{sup 2} cut-out in a 15×15 cm{sup 2} applicator for a delivery of a 90° arc. The resulting data were found to provide qualitative and quantitative evidence that the simulation platform could be used as the basis for DEAR dose calculations. The resulting unwrapped 2D dose distributions agreed well in the cross-plane direction along the arc, with field sizes of 18.4 and 18.2 cm and penumbrae of 1.9 and 2.0 cm for measurements and simulations, respectively. Conclusion: Preliminary feasibility of a DEAR delivery using a web-based MC simulation platform has been demonstrated. This tool will benefit treatment planning for DEAR as a benchmark for developing other model based algorithms, allowing efficient optimization of trajectories, and quality assurance of plans without the need for extensive measurements.« less

  11. Development of a dynamic traffic assignment model to evaluate lane-reversal plans for I-65.

    DOT National Transportation Integrated Search

    2010-05-01

    This report presents the methodology and results from a project that studied contra-flow operations in support of : hurricane evacuations in the state of Alabama. As part of this effort, a simulation model was developed using the : VISTA platform for...

  12. Development of a Platform for Simulating and Optimizing Thermoelectric Energy Systems

    NASA Astrophysics Data System (ADS)

    Kreuder, John J.

    Thermoelectrics are solid state devices that can convert thermal energy directly into electrical energy. They have historically been used only in niche applications because of their relatively low efficiencies. With the advent of nanotechnology and improved manufacturing processes thermoelectric materials have become less costly and more efficient As next generation thermoelectric materials become available there is a need for industries to quickly and cost effectively seek out feasible applications for thermoelectric heat recovery platforms. Determining the technical and economic feasibility of such systems requires a model that predicts performance at the system level. Current models focus on specific system applications or neglect the rest of the system altogether, focusing on only module design and not an entire energy system. To assist in screening and optimizing entire energy systems using thermoelectrics, a novel software tool, Thermoelectric Power System Simulator (TEPSS), is developed for system level simulation and optimization of heat recovery systems. The platform is designed for use with a generic energy system so that most types of thermoelectric heat recovery applications can be modeled. TEPSS is based on object-oriented programming in MATLABRTM. A modular, shell based architecture is developed to carry out concept generation, system simulation and optimization. Systems are defined according to the components and interconnectivity specified by the user. An iterative solution process based on Newton's Method is employed to determine the system's steady state so that an objective function representing the cost of the system can be evaluated at the operating point. An optimization algorithm from MATLAB's Optimization Toolbox uses sequential quadratic programming to minimize this objective function with respect to a set of user specified design variables and constraints. During this iterative process many independent system simulations are executed and the optimal operating condition of the system is determined. A comprehensive guide to using the software platform is included. TEPSS is intended to be expandable so that users can add new types of components and implement component models with an adequate degree of complexity for a required application. Special steps are taken to ensure that the system of nonlinear algebraic equations presented in the system engineering model is square and that all equations are independent. In addition, the third party program FluidProp is leveraged to allow for simulations of systems with a range of fluids. Sequential unconstrained minimization techniques are used to prevent physical variables like pressure and temperature from trending to infinity during optimization. Two case studies are performed to verify and demonstrate the simulation and optimization routines employed by TEPSS. The first is of a simple combined cycle in which the size of the heat exchanger and fuel rate are optimized. The second case study is the optimization of geometric parameters of a thermoelectric heat recovery platform in a regenerative Brayton Cycle. A basic package of components and interconnections are verified and provided as well.

  13. The FireBGCv2 landscape fire and succession model: a research simulation platform for exploring fire and vegetation dynamics

    Treesearch

    Robert E. Keane; Rachel A. Loehman; Lisa M. Holsinger

    2011-01-01

    Fire management faces important emergent issues in the coming years such as climate change, fire exclusion impacts, and wildland-urban development, so new, innovative means are needed to address these challenges. Field studies, while preferable and reliable, will be problematic because of the large time and space scales involved. Therefore, landscape simulation...

  14. Quantum simulations and many-body physics with light.

    PubMed

    Noh, Changsuk; Angelakis, Dimitris G

    2017-01-01

    In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.

  15. Global and local waveform simulations using the VERCE platform

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Saleh, Rafiq; Spinuso, Alessandro; Gemund, Andre; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schlichtweg, Horst; Frank, Anton; Michelini, Alberto; Vilotte, Jean-Pierre; Rietbrock, Andreas

    2017-04-01

    In recent years the potential to increase resolution of seismic imaging by full waveform inversion has been demonstrated on a range of scales from basin to continental scales. These techniques rely on harnessing the computational power of large supercomputers, and running large parallel codes to simulate the seismic wave field in a three-dimensional geological setting. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. The platform supports the two widely used spectral element simulation programs SPECFEM3D Cartesian, and SPECFEM3D globe, allowing users to run a wide range of simulations. In the SPECFEM3D Cartesian implementation the user can run waveform simulations on a range of pre-loaded meshes and velocity models for specific areas, or upload their own velocity model and mesh. In the new SPECFEM3D globe implementation, the user will be able to select from a number of continent scale model regions, or perform waveform simulations for the whole earth. Earthquake focal mechanisms can be downloaded within the platform, for example from the GCMT catalogue, or users can upload their own focal mechanism catalogue through the platform. The simulations can be run on a range of European supercomputers in the PRACE network. Once a job has been submitted and run through the platform, the simulated waveforms can be manipulated or downloaded for further analysis. The misfit between the simulated and recorded waveforms can then be calculated through the platform through three interoperable workflows, for raw-data access (FDSN) and caching, pre-processing and finally misfit. The last workflow makes use of the Pyflex analysis software. In addition, the VERCE platform can be used to produce animations of waveform propagation through the velocity model, and synthetic shakemaps. All these data-products are made discoverable and re-usable thanks to the VERCE data and metadata management layer. We demonstrate the functionality of the VERCE platform with two use cases, one using the pre-loaded velocity model and mesh for the Maule area of Chile using the SPECFEM3D Cartesian workflow, and one showing the output of a global simulation using the SPECFEM3D globe workflow. It is envisioned that this tool will allow a much greater range of seismologists to access these full waveform inversion tools, and aid full waveform tomographic and source inversion, synthetic shakemap production and other full waveform applications, in a wide range of tectonic settings.

  16. Simulation tools for robotics research and assessment

    NASA Astrophysics Data System (ADS)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component-level computational models to provide the necessary simulation fidelity for accuracy. However, the Perception domain remains the most problematic for adequate simulation performance due to the often cartoon nature of computer rendering and the inability to model realistic electromagnetic radiation effects, such as multiple reflections, in real-time.

  17. Old Dog New Tricks: Use of Point-based Crop Models in Grid-based Regional Assessment of Crop Management Technologies Impact on Future Food Security

    NASA Astrophysics Data System (ADS)

    Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.

    2012-12-01

    HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published on the web with an interface that allows users to explore the simulation results in each country with user-defined baseline and what-if scenarios. The results are dynamically presented on maps, charts, and tables. This paper discusses the development of the simulation platform and its underlying data layers, a case study that assessed the role of potential crop management technology development, and the development of a web-based application that visualizes the simulation results.

  18. Designing and implementing nervous system simulations on LEGO robots.

    PubMed

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  19. Power Market Design | Grid Modernization | NREL

    Science.gov Websites

    Power Market Design Power Market Design NREL researchers are developing a modeling platform to test (a commercial electricity production simulation model) and FESTIV (the NREL-developed Flexible Energy consisting of researchers in power systems and economics Projects Grid Market Design Project The objective of

  20. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  1. A web platform for integrated surface water - groundwater modeling and data management

    NASA Astrophysics Data System (ADS)

    Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf

    2016-04-01

    Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.

  2. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    PubMed Central

    Stöckel, Andreas; Jenzen, Christoph; Thies, Michael; Rückert, Ulrich

    2017-01-01

    Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP). Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output. PMID:28878642

  3. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    PubMed Central

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  4. PLATSIM: A Simulation and Analysis Package for Large-Order Flexible Systems. Version 2.0

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Kenny, Sean P.; Giesy, Daniel P.

    1997-01-01

    The software package PLATSIM provides efficient time and frequency domain analysis of large-order generic space platforms. PLATSIM can perform open-loop analysis or closed-loop analysis with linear or nonlinear control system models. PLATSIM exploits the particular form of sparsity of the plant matrices for very efficient linear and nonlinear time domain analysis, as well as frequency domain analysis. A new, original algorithm for the efficient computation of open-loop and closed-loop frequency response functions for large-order systems has been developed and is implemented within the package. Furthermore, a novel and efficient jitter analysis routine which determines jitter and stability values from time simulations in a very efficient manner has been developed and is incorporated in the PLATSIM package. In the time domain analysis, PLATSIM simulates the response of the space platform to disturbances and calculates the jitter and stability values from the response time histories. In the frequency domain analysis, PLATSIM calculates frequency response function matrices and provides the corresponding Bode plots. The PLATSIM software package is written in MATLAB script language. A graphical user interface is developed in the package to provide convenient access to its various features.

  5. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.

  6. Training Surgical Residents With a Haptic Robotic Central Venous Catheterization Simulator.

    PubMed

    Pepley, David F; Gordon, Adam B; Yovanoff, Mary A; Mirkin, Katelin A; Miller, Scarlett R; Han, David C; Moore, Jason Z

    Ultrasound guided central venous catheterization (CVC) is a common surgical procedure with complication rates ranging from 5 to 21 percent. Training is typically performed using manikins that do not simulate anatomical variations such as obesity and abnormal vessel positioning. The goal of this study was to develop and validate the effectiveness of a new virtual reality and force haptic based simulation platform for CVC of the right internal jugular vein. A CVC simulation platform was developed using a haptic robotic arm, 3D position tracker, and computer visualization. The haptic robotic arm simulated needle insertion force that was based on cadaver experiments. The 3D position tracker was used as a mock ultrasound device with realistic visualization on a computer screen. Upon completion of a practice simulation, performance feedback is given to the user through a graphical user interface including scoring factors based on good CVC practice. The effectiveness of the system was evaluated by training 13 first year surgical residents using the virtual reality haptic based training system over a 3 month period. The participants' performance increased from 52% to 96% on the baseline training scenario, approaching the average score of an expert surgeon: 98%. This also resulted in improvement in positive CVC practices including a 61% decrease between final needle tip position and vein center, a decrease in mean insertion attempts from 1.92 to 1.23, and a 12% increase in time spent aspirating the syringe throughout the procedure. A virtual reality haptic robotic simulator for CVC was successfully developed. Surgical residents training on the simulation improved to near expert levels after three robotic training sessions. This suggests that this system could act as an effective training device for CVC. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  7. Pulseq-Graphical Programming Interface: Open source visual environment for prototyping pulse sequences and integrated magnetic resonance imaging algorithm development.

    PubMed

    Ravi, Keerthi Sravan; Potdar, Sneha; Poojar, Pavan; Reddy, Ashok Kumar; Kroboth, Stefan; Nielsen, Jon-Fredrik; Zaitsev, Maxim; Venkatesan, Ramesh; Geethanath, Sairam

    2018-03-11

    To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Wen; Jung, Ki Won; Yang, Zhaoqing

    An underwater sound model was developed to simulate sound propagation from marine and hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite difference methods were developed to solve the 3D Helmholtz equation for sound propagation in the coastal environment. A 3D sparse matrix solver with complex coefficients was formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method was applied to solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model was then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generatedmore » by human activities, such as construction of OSW turbines or tidal stream turbine operations, in a range-dependent setting. As a proof of concept, initial validation of the solver is presented for two coastal wedge problems. This sound model can be useful for evaluating impacts on marine mammals due to deployment of MHK devices and OSW energy platforms.« less

  9. Design, Fabrication, and Testing of a Hopper Spacecraft Simulator

    NASA Astrophysics Data System (ADS)

    Mucasey, Evan Phillip Krell

    A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peratt, A.L.; Mostrom, M.A.

    With the availability of 80--125 MHz microprocessors, the methodology developed for the simulation of problems in pulsed power and plasma physics on modern day supercomputers is now amenable to application on a wide range of platforms including laptops and workstations. While execution speeds with these processors do not match those of large scale computing machines, resources such as computer-aided-design (CAD) and graphical analysis codes are available to automate simulation setup and process data. This paper reports on the adaptation of IVORY, a three-dimensional, fully-electromagnetic, particle-in-cell simulation code, to this platform independent CAD environment. The primary purpose of this talk ismore » to demonstrate how rapidly a pulsed power/plasma problem can be scoped out by an experimenter on a dedicated workstation. Demonstrations include a magnetically insulated transmission line, power flow in a graded insulator stack, a relativistic klystron oscillator, and the dynamics of a coaxial thruster for space applications.« less

  11. Concurrent Flow Lanes - Phase II

    DOT National Transportation Integrated Search

    2009-04-17

    This report provides the findings from a research effort designed to ascertain whether or not a chosen simulation software platform, the VISSIM micro-simulation platform, provides a suitable environment for modeling and analyzing traffic operations, ...

  12. Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick

    2008-01-01

    To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.

  13. Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul A.; Peiffer, Antoine; Schlipf, David

    This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinearmore » aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.« less

  14. McStas 1.7 - a new version of the flexible Monte Carlo neutron scattering package

    NASA Astrophysics Data System (ADS)

    Willendrup, Peter; Farhi, Emmanuel; Lefmann, Kim

    2004-07-01

    Current neutron instrumentation is both complex and expensive, and accurate simulation has become essential both for building new instruments and for using them effectively. The McStas neutron ray-trace simulation package is a versatile tool for producing such simulations, developed in collaboration between Risø and ILL. The new version (1.7) has many improvements, among these added support for the popular Microsoft Windows platform. This presentation will demonstrate a selection of the new features through a simulation of the ILL IN6 beamline.

  15. A virtual community and cyberinfrastructure for collaboration in volcano research and risk mitigation

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.

    2012-12-01

    VHub (short for VolcanoHub, and accessible at vhub.org) is an online platform for collaboration in research and training related to volcanoes, the hazards they pose, and risk mitigation. The underlying concept is to provide a mechanism that enables workers to share information with colleagues around the globe; VHub and similar hub technologies could prove very powerful in collaborating and communicating about circum-Pacific volcanic hazards. Collaboration occurs around several different points: (1) modeling and simulation; (2) data sharing; (3) education and training; (4) volcano observatories; and (5) project-specific groups. VHub promotes modeling and simulation in two ways: (1) some models can be implemented on VHub for online execution. This eliminates the need to download and compile a code on a local computer. VHub can provide a central "warehouse" for such models that should result in broader dissemination. VHub also provides a platform that supports the more complex CFD models by enabling the sharing of code development and problem-solving knowledge, benchmarking datasets, and the development of validation exercises. VHub also provides a platform for sharing of data and datasets. The VHub development team is implementing the iRODS data sharing middleware (see irods.org). iRODS allows a researcher to access data that are located at participating data sources around the world (a "cloud" of data) as if the data were housed in a single virtual database. Education and training is another important use of the VHub platform. Audio-video recordings of seminars, PowerPoint slide sets, and educational simulations are all items that can be placed onto VHub for use by the community or by selected collaborators. An important point is that the "manager" of a given educational resource (or any other resource, such as a dataset or a model) can control the privacy of that resource, ranging from private (only accessible by, and known to, specific collaborators) to completely public. Materials for use in the classroom can be shared via VHub. VHub is a very useful platform for project-specific collaborations. With a group site on VHub where collaborators share documents, datasets, maps, and have ongoing discussions using the discussion board function. VHub is funded by the U.S. National Science Foundation, and is participating in development of larger earth-science cyberinfrastructure initiatives (EarthCube), as well as supporting efforts such as the Global Volcano Model.

  16. Dynamic Inversion based Control of a Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V.; Ippolito, Corey; Krishnakumar, Kalmanje

    2006-01-01

    The problem of position and attitude control of the Stewart platform based docking mechanism is considered motivated by its future application in space missions requiring the autonomous docking capability. The control design is initiated based on the framework of the intelligent flight control architecture being developed at NASA Ames Research Center. In this paper, the baseline position and attitude control system is designed using dynamic inversion with proportional-integral augmentation. The inverse dynamics uses a Newton-Euler formulation that includes the platform dynamics, the dynamics of the individual legs along with viscous friction in the joints. Simulation results are presented using forward dynamics simulated by a commercial physics engine that builds the system as individual elements with appropriate joints and uses constrained numerical integration,

  17. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].

    PubMed

    Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng

    2010-10-01

    The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.

  18. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  19. Xyce Parallel Electronic Simulator - Users' Guide Version 2.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Scott A; Hoekstra, Robert J.; Russo, Thomas V.

    This manual describes the use of theXyceParallel Electronic Simulator.Xycehasbeen designed as a SPICE-compatible, high-performance analog circuit simulator, andhas been written to support the simulation needs of the Sandia National Laboratorieselectrical designers. This development has focused on improving capability over thecurrent state-of-the-art in the following areas:%04Capability to solve extremely large circuit problems by supporting large-scale par-allel computing platforms (up to thousands of processors). Note that this includessupport for most popular parallel and serial computers.%04Improved performance for all numerical kernels (e.g., time integrator, nonlinearand linear solvers) through state-of-the-art algorithms and novel techniques.%04Device models which are specifically tailored to meet Sandia's needs, includingmanymore » radiation-aware devices.3 XyceTMUsers' Guide%04Object-oriented code design and implementation using modern coding practicesthat ensure that theXyceParallel Electronic Simulator will be maintainable andextensible far into the future.Xyceis a parallel code in the most general sense of the phrase - a message passingparallel implementation - which allows it to run efficiently on the widest possible numberof computing platforms. These include serial, shared-memory and distributed-memoryparallel as well as heterogeneous platforms. Careful attention has been paid to thespecific nature of circuit-simulation problems to ensure that optimal parallel efficiencyis achieved as the number of processors grows.The development ofXyceprovides a platform for computational research and de-velopment aimed specifically at the needs of the Laboratory. WithXyce, Sandia hasan %22in-house%22 capability with which both new electrical (e.g., device model develop-ment) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms)research and development can be performed. As a result,Xyceis a unique electricalsimulation capability, designed to meet the unique needs of the laboratory.4 XyceTMUsers' GuideAcknowledgementsThe authors would like to acknowledge the entire Sandia National Laboratories HPEMS(High Performance Electrical Modeling and Simulation) team, including Steve Wix, CarolynBogdan, Regina Schells, Ken Marx, Steve Brandon and Bill Ballard, for their support onthis project. We also appreciate very much the work of Jim Emery, Becky Arnold and MikeWilliamson for the help in reviewing this document.Lastly, a very special thanks to Hue Lai for typesetting this document with LATEX.TrademarksThe information herein is subject to change without notice.Copyrightc 2002-2003 Sandia Corporation. All rights reserved.XyceTMElectronic Simulator andXyceTMtrademarks of Sandia Corporation.Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence DesignSystems, Inc.Silicon Graphics, the Silicon Graphics logo and IRIX are registered trademarks of SiliconGraphics, Inc.Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.Solaris and UltraSPARC are registered trademarks of Sun Microsystems Corporation.Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation.HP and Alpha are registered trademarks of Hewlett-Packard company.Amtec and TecPlot are trademarks of Amtec Engineering, Inc.Xyce's expression library is based on that inside Spice 3F5 developed by the EECS De-partment at the University of California.All other trademarks are property of their respective owners.ContactsBug Reportshttp://tvrusso.sandia.gov/bugzillaEmailxyce-support%40sandia.govWorld Wide Webhttp://www.cs.sandia.gov/xyce5 XyceTMUsers' GuideThis page is left intentionally blank6« less

  20. 20170312 - Computer Simulation of Developmental ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  1. Computer Simulation of Developmental Processes and ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  2. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  3. Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.« less

  4. An Effective Construction Method of Modular Manipulator 3D Virtual Simulation Platform

    NASA Astrophysics Data System (ADS)

    Li, Xianhua; Lv, Lei; Sheng, Rui; Sun, Qing; Zhang, Leigang

    2018-06-01

    This work discusses about a fast and efficient method of constructing an open 3D manipulator virtual simulation platform which make it easier for teachers and students to learn about positive and inverse kinematics of a robot manipulator. The method was carried out using MATLAB. In which, the Robotics Toolbox, MATLAB GUI and 3D animation with the help of modelling using SolidWorks, were fully applied to produce a good visualization of the system. The advantages of using quickly build is its powerful function of the input and output and its ability to simulate a 3D manipulator realistically. In this article, a Schunk six DOF modular manipulator was constructed by the author's research group to be used as example. The implementation steps of this method was detailed described, and thereafter, a high-level open and realistic visualization manipulator 3D virtual simulation platform was achieved. With the graphs obtained from simulation, the test results show that the manipulator 3D virtual simulation platform can be constructed quickly with good usability and high maneuverability, and it can meet the needs of scientific research and teaching.

  5. Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response

    NASA Astrophysics Data System (ADS)

    Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei

    2018-01-01

    Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.

  6. Developing interprofessional health competencies in a virtual world

    PubMed Central

    King, Sharla; Chodos, David; Stroulia, Eleni; Carbonaro, Mike; MacKenzie, Mark; Reid, Andrew; Torres, Lisa; Greidanus, Elaine

    2012-01-01

    Background Virtual worlds provide a promising means of delivering simulations for developing interprofessional health skills. However, developing and implementing a virtual world simulation is a challenging process, in part because of the novelty of virtual worlds as a simulation platform and also because of the degree of collaboration required among technical and subject experts. Thus, it can be difficult to ensure that the simulation is both technically satisfactory and educationally appropriate. Methods To address this challenge, we propose the use of de Freitas and Oliver's four-dimensional framework as a means of guiding the development process. We give an overview of the framework and describe how its principles can be applied to the development of virtual world simulations. Results We present two virtual world simulation pilot projects that adopted this approach, and describe our development experience in these projects. We directly connect this experience to the four-dimensional framework, thus validating the framework's applicability to the projects and to the context of virtual world simulations in general. Conclusions We present a series of recommendations for developing virtual world simulations for interprofessional health education. These recommendations are based on the four-dimensional framework and are also informed by our experience with the pilot projects. PMID:23195649

  7. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    PubMed

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  8. Auto Code Generation for Simulink-Based Attitude Determination Control System

    NASA Technical Reports Server (NTRS)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  9. Numerical Propulsion System Simulation: A Common Tool for Aerospace Propulsion Being Developed

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia G.

    2001-01-01

    The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.

  10. A DVE Time Management Simulation and Verification Platform Based on Causality Consistency Middleware

    NASA Astrophysics Data System (ADS)

    Zhou, Hangjun; Zhang, Wei; Peng, Yuxing; Li, Sikun

    During the course of designing a time management algorithm for DVEs, the researchers always become inefficiency for the distraction from the realization of the trivial and fundamental details of simulation and verification. Therefore, a platform having realized theses details is desirable. However, this has not been achieved in any published work to our knowledge. In this paper, we are the first to design and realize a DVE time management simulation and verification platform providing exactly the same interfaces as those defined by the HLA Interface Specification. Moreover, our platform is based on a new designed causality consistency middleware and might offer the comparison of three kinds of time management services: CO, RO and TSO. The experimental results show that the implementation of the platform only costs small overhead, and that the efficient performance of it is highly effective for the researchers to merely focus on the improvement of designing algorithms.

  11. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    NASA Astrophysics Data System (ADS)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  12. Incorporating driver behaviors into connected and automated vehicle simulation.

    DOT National Transportation Integrated Search

    2016-05-24

    The adoption of connected vehicle (CV) technology is anticipated at various levels of development and deployment over the next decade. One primary challenge with these new technologies is the lack of platform to enable a robust and reliable evaluatio...

  13. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2016-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.

  14. QGene 4.0, an extensible Java QTL-analysis platform.

    PubMed

    Joehanes, Roby; Nelson, James C

    2008-12-01

    Of many statistical methods developed to date for quantitative trait locus (QTL) analysis, only a limited subset are available in public software allowing their exploration, comparison and practical application by researchers. We have developed QGene 4.0, a plug-in platform that allows execution and comparison of a variety of modern QTL-mapping methods and supports third-party addition of new ones. The software accommodates line-cross mating designs consisting of any arbitrary sequence of selfing, backcrossing, intercrossing and haploid-doubling steps that includes map, population, and trait simulators; and is scriptable. Software and documentation are available at http://coding.plantpath.ksu.edu/qgene. Source code is available on request.

  15. Designing and Implementing Nervous System Simulations on LEGO Robots

    PubMed Central

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-01-01

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477

  16. Simulation of cooperating robot manipulators on a mobile platform

    NASA Technical Reports Server (NTRS)

    Murphy, Stephen H.; Wen, John Ting-Yung; Saridis, George N.

    1991-01-01

    The dynamic equations of motion are presented for two or more cooperating manipulators on a freely moving mobile platform. The system of cooperating robot manipulators forms a closed kinematic chain where the force of interaction must be included in the formulation of robot and platform dynamics. The formulation includes the full dynamic interactions from arms to platform and arm tip to arm tip, and the possible translation and rotation of the platform. The equations of motion are shown to be identical in structure to the fixed-platform cooperative manipulator dynamics. The number of DOFs of the system is sufficiently large to make recursive dynamic calculation methods potentially more efficient than closed-form solutions. A complete simulation with two 6-DOF manipulators of a free-floating platform is presented along a with a multiple-arm controller to position the common load.

  17. FUX-Sim: Implementation of a fast universal simulation/reconstruction framework for X-ray systems.

    PubMed

    Abella, Monica; Serrano, Estefania; Garcia-Blas, Javier; García, Ines; de Molina, Claudia; Carretero, Jesus; Desco, Manuel

    2017-01-01

    The availability of digital X-ray detectors, together with advances in reconstruction algorithms, creates an opportunity for bringing 3D capabilities to conventional radiology systems. The downside is that reconstruction algorithms for non-standard acquisition protocols are generally based on iterative approaches that involve a high computational burden. The development of new flexible X-ray systems could benefit from computer simulations, which may enable performance to be checked before expensive real systems are implemented. The development of simulation/reconstruction algorithms in this context poses three main difficulties. First, the algorithms deal with large data volumes and are computationally expensive, thus leading to the need for hardware and software optimizations. Second, these optimizations are limited by the high flexibility required to explore new scanning geometries, including fully configurable positioning of source and detector elements. And third, the evolution of the various hardware setups increases the effort required for maintaining and adapting the implementations to current and future programming models. Previous works lack support for completely flexible geometries and/or compatibility with multiple programming models and platforms. In this paper, we present FUX-Sim, a novel X-ray simulation/reconstruction framework that was designed to be flexible and fast. Optimized implementation for different families of GPUs (CUDA and OpenCL) and multi-core CPUs was achieved thanks to a modularized approach based on a layered architecture and parallel implementation of the algorithms for both architectures. A detailed performance evaluation demonstrates that for different system configurations and hardware platforms, FUX-Sim maximizes performance with the CUDA programming model (5 times faster than other state-of-the-art implementations). Furthermore, the CPU and OpenCL programming models allow FUX-Sim to be executed over a wide range of hardware platforms.

  18. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.

  19. Commercial Building Energy Saver, API

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    2015-08-27

    The CBES API provides Application Programming Interface to a suite of functions to improve energy efficiency of buildings, including building energy benchmarking, preliminary retrofit analysis using a pre-simulation database DEEP, and detailed retrofit analysis using energy modeling with the EnergyPlus simulation engine. The CBES API is used to power the LBNL CBES Web App. It can be adopted by third party developers and vendors into their software tools and platforms.

  20. A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations

    NASA Astrophysics Data System (ADS)

    Demir, I.; Agliamzanov, R.

    2014-12-01

    Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.

  1. Design of underwater robot lines based on a hybrid automatic optimization strategy

    NASA Astrophysics Data System (ADS)

    Lyu, Wenjing; Luo, Weilin

    2014-09-01

    In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal; the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.

  2. Evolving a Neural Olfactorimotor System in Virtual and Real Olfactory Environments

    PubMed Central

    Rhodes, Paul A.; Anderson, Todd O.

    2012-01-01

    To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments. PMID:23112772

  3. Simulation-Based Valuation of Transactive Energy Systems

    DOE PAGES

    Huang, Qiuhua; McDermott, Tom; Tang, Yingying; ...

    2018-05-18

    Transactive Energy (TE) has been recognized as a promising technique for integrating responsive loads and distributed energy resources as well as advancing grid modernization. To help the industry better understand the value of TE and compare different TE schemes in a systematic and transparent manner, a comprehensive simulation-based TE valuation method is developed. The method has the following salient features: 1) it formally defines the valuation scenarios, use cases, baseline and valuation metrics; 2) an open-source simulation platform for transactive energy systems has been developed by integrating transmission, distribution and building simulators, and plugin TE and non-TE agents through themore » Framework for Network Co-Simulation (FNCS); 3) transparency and flexibility of the valuation is enhanced through separation of simulation and valuation, base valuation metrics and final valuation metrics. In conclusion, a valuation example based on the Smart Grid Interoperability Panel (SGIP) Use Case 1 is provided to demonstrate the developed TE simulation program and the valuation method.« less

  4. Simulation-Based Valuation of Transactive Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qiuhua; McDermott, Tom; Tang, Yingying

    Transactive Energy (TE) has been recognized as a promising technique for integrating responsive loads and distributed energy resources as well as advancing grid modernization. To help the industry better understand the value of TE and compare different TE schemes in a systematic and transparent manner, a comprehensive simulation-based TE valuation method is developed. The method has the following salient features: 1) it formally defines the valuation scenarios, use cases, baseline and valuation metrics; 2) an open-source simulation platform for transactive energy systems has been developed by integrating transmission, distribution and building simulators, and plugin TE and non-TE agents through themore » Framework for Network Co-Simulation (FNCS); 3) transparency and flexibility of the valuation is enhanced through separation of simulation and valuation, base valuation metrics and final valuation metrics. In conclusion, a valuation example based on the Smart Grid Interoperability Panel (SGIP) Use Case 1 is provided to demonstrate the developed TE simulation program and the valuation method.« less

  5. SCEC Earthquake System Science Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Archuleta, R.; Beroza, G.; Bielak, J.; Chen, P.; Cui, Y.; Day, S.; Deelman, E.; Graves, R. W.; Minster, J. B.; Olsen, K. B.

    2008-12-01

    The SCEC Community Modeling Environment (SCEC/CME) collaboration performs basic scientific research using high performance computing with the goal of developing a predictive understanding of earthquake processes and seismic hazards in California. SCEC/CME research areas including dynamic rupture modeling, wave propagation modeling, probabilistic seismic hazard analysis (PSHA), and full 3D tomography. SCEC/CME computational capabilities are organized around the development and application of robust, re- usable, well-validated simulation systems we call computational platforms. The SCEC earthquake system science research program includes a wide range of numerical modeling efforts and we continue to extend our numerical modeling codes to include more realistic physics and to run at higher and higher resolution. During this year, the SCEC/USGS OpenSHA PSHA computational platform was used to calculate PSHA hazard curves and hazard maps using the new UCERF2.0 ERF and new 2008 attenuation relationships. Three SCEC/CME modeling groups ran 1Hz ShakeOut simulations using different codes and computer systems and carefully compared the results. The DynaShake Platform was used to calculate several dynamic rupture-based source descriptions equivalent in magnitude and final surface slip to the ShakeOut 1.2 kinematic source description. A SCEC/CME modeler produced 10Hz synthetic seismograms for the ShakeOut 1.2 scenario rupture by combining 1Hz deterministic simulation results with 10Hz stochastic seismograms. SCEC/CME modelers ran an ensemble of seven ShakeOut-D simulations to investigate the variability of ground motions produced by dynamic rupture-based source descriptions. The CyberShake Platform was used to calculate more than 15 new probabilistic seismic hazard analysis (PSHA) hazard curves using full 3D waveform modeling and the new UCERF2.0 ERF. The SCEC/CME group has also produced significant computer science results this year. Large-scale SCEC/CME high performance codes were run on NSF TeraGrid sites including simulations that use the full PSC Big Ben supercomputer (4096 cores) and simulations that ran on more than 10K cores at TACC Ranger. The SCEC/CME group used scientific workflow tools and grid-computing to run more than 1.5 million jobs at NCSA for the CyberShake project. Visualizations produced by a SCEC/CME researcher of the 10Hz ShakeOut 1.2 scenario simulation data were used by USGS in ShakeOut publications and public outreach efforts. OpenSHA was ported onto an NSF supercomputer and was used to produce very high resolution hazard PSHA maps that contained more than 1.6 million hazard curves.

  6. Faster than Real-Time Dynamic Simulation for Large-Size Power System with Detailed Dynamic Models using High-Performance Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Jin, Shuangshuang; Chen, Yousu

    This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less

  7. A three-axis flight simulator. [for testing and evaluating inertial measuring units, and flight platforms

    NASA Technical Reports Server (NTRS)

    Mason, M. G.

    1975-01-01

    A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.

  8. A Platform for Simulating Language Evolution

    NASA Astrophysics Data System (ADS)

    Vogel, Carl; Woods, Justin

    A platform for conducting experiments in the simulation of natural language evolution is presented. The system is paramaterized for independent specification of important features like: number of agents, communication attempt frequency, agent short term memory capacity, communicative urgency, etc. Representative experiments are demonstrated.

  9. Visual cueing aids for rotorcraft landings

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Andre, Anthony D.

    1993-01-01

    The present study used a rotorcraft simulator to examine descents-to-hover at landing pads with one of three approach lighting configurations. The impact of simulator platform motion upon descents to hover was also examined. The results showed that the configuration with the most useful optical information led to the slowest final approach speeds, and that pilots found this configuration, together with the presence of simulator platform motion, most desirable. The results also showed that platform motion led to higher rates of approach to the landing pad in some cases. Implications of the results for the design of vertiport approach paths are discussed.

  10. Research the simulation model of the passenger travel behavior in urban rail platform

    NASA Astrophysics Data System (ADS)

    Wang, Yujia; Yin, Xiangyong

    2017-05-01

    Based on the results of the research on the platform of the Beijing Chegongzhuang subway station in the line 2, the passenger travel behavior in urban rail platform is divided into 4 parts, which are the enter passenger walking, the passenger waiting distribution and queuing up before the door, passenger boarding and alighting and the alighting passengers walking, according to the social force model, simulation model was built based on Matlab software. Combined with the actual data of subway the Chegongzhuang subway station in the line 2, the simulation results show that the social force model is effective.

  11. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    PubMed

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  12. A Facility and Architecture for Autonomy Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.

  13. Flight simulation software at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Norlin, Ken A.

    1995-01-01

    The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.

  14. Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms

    PubMed Central

    Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus

    2017-01-01

    All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130

  15. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  16. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  17. Computational Science and Innovation

    NASA Astrophysics Data System (ADS)

    Dean, D. J.

    2011-09-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  18. High-throughput landslide modelling using computational grids

    NASA Astrophysics Data System (ADS)

    Wallace, M.; Metson, S.; Holcombe, L.; Anderson, M.; Newbold, D.; Brook, N.

    2012-04-01

    Landslides are an increasing problem in developing countries. Multiple landslides can be triggered by heavy rainfall resulting in loss of life, homes and critical infrastructure. Through computer simulation of individual slopes it is possible to predict the causes, timing and magnitude of landslides and estimate the potential physical impact. Geographical scientists at the University of Bristol have developed software that integrates a physically-based slope hydrology and stability model (CHASM) with an econometric model (QUESTA) in order to predict landslide risk over time. These models allow multiple scenarios to be evaluated for each slope, accounting for data uncertainties, different engineering interventions, risk management approaches and rainfall patterns. Individual scenarios can be computationally intensive, however each scenario is independent and so multiple scenarios can be executed in parallel. As more simulations are carried out the overhead involved in managing input and output data becomes significant. This is a greater problem if multiple slopes are considered concurrently, as is required both for landslide research and for effective disaster planning at national levels. There are two critical factors in this context: generated data volumes can be in the order of tens of terabytes, and greater numbers of simulations result in long total runtimes. Users of such models, in both the research community and in developing countries, need to develop a means for handling the generation and submission of landside modelling experiments, and the storage and analysis of the resulting datasets. Additionally, governments in developing countries typically lack the necessary computing resources and infrastructure. Consequently, knowledge that could be gained by aggregating simulation results from many different scenarios across many different slopes remains hidden within the data. To address these data and workload management issues, University of Bristol particle physicists and geographical scientists are collaborating to develop methods for providing simple and effective access to landslide models and associated simulation data. Particle physicists have valuable experience in dealing with data complexity and management due to the scale of data generated by particle accelerators such as the Large Hadron Collider (LHC). The LHC generates tens of petabytes of data every year which is stored and analysed using the Worldwide LHC Computing Grid (WLCG). Tools and concepts from the WLCG are being used to drive the development of a Software-as-a-Service (SaaS) platform to provide access to hosted landslide simulation software and data. It contains advanced data management features and allows landslide simulations to be run on the WLCG, dramatically reducing simulation runtimes by parallel execution. The simulations are accessed using a web page through which users can enter and browse input data, submit jobs and visualise results. Replication of the data ensures a local copy can be accessed should a connection to the platform be unavailable. The platform does not know the details of the simulation software it runs, so it is therefore possible to use it to run alternative models at similar scales. This creates the opportunity for activities such as model sensitivity analysis and performance comparison at scales that are impractical using standalone software.

  19. Modeling and control of flexible space platforms with articulated payloads

    NASA Technical Reports Server (NTRS)

    Graves, Philip C.; Joshi, Suresh M.

    1989-01-01

    The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.

  20. A Multi-Paradigm Modeling Framework to Simulate Dynamic Reciprocity in a Bioreactor

    PubMed Central

    Kaul, Himanshu; Cui, Zhanfeng; Ventikos, Yiannis

    2013-01-01

    Despite numerous technology advances, bioreactors are still mostly utilized as functional black-boxes where trial and error eventually leads to the desirable cellular outcome. Investigators have applied various computational approaches to understand the impact the internal dynamics of such devices has on overall cell growth, but such models cannot provide a comprehensive perspective regarding the system dynamics, due to limitations inherent to the underlying approaches. In this study, a novel multi-paradigm modeling platform capable of simulating the dynamic bidirectional relationship between cells and their microenvironment is presented. Designing the modeling platform entailed combining and coupling fully an agent-based modeling platform with a transport phenomena computational modeling framework. To demonstrate capability, the platform was used to study the impact of bioreactor parameters on the overall cell population behavior and vice versa. In order to achieve this, virtual bioreactors were constructed and seeded. The virtual cells, guided by a set of rules involving the simulated mass transport inside the bioreactor, as well as cell-related probabilistic parameters, were capable of displaying an array of behaviors such as proliferation, migration, chemotaxis and apoptosis. In this way the platform was shown to capture not only the impact of bioreactor transport processes on cellular behavior but also the influence that cellular activity wields on that very same local mass transport, thereby influencing overall cell growth. The platform was validated by simulating cellular chemotaxis in a virtual direct visualization chamber and comparing the simulation with its experimental analogue. The results presented in this paper are in agreement with published models of similar flavor. The modeling platform can be used as a concept selection tool to optimize bioreactor design specifications. PMID:23555740

  1. CET exSim: mineral exploration experience via simulation

    NASA Astrophysics Data System (ADS)

    Wong, Jason C.; Holden, Eun-Jung; Kovesi, Peter; McCuaig, T. Campbell; Hronsky, Jon

    2013-08-01

    Undercover mineral exploration is a challenging task as it requires understanding of subsurface geology by relying heavily on remotely sensed (i.e. geophysical) data. Cost-effective exploration is essential in order to increase the chance of success using finite budgets. This requires effective decision-making in both the process of selecting the optimum data collection methods and in the process of achieving accuracy during subsequent interpretation. Traditionally, developing the skills, behaviour and practices of exploration decision-making requires many years of experience through working on exploration projects under various geological settings, commodities and levels of available resources. This implies long periods of sub-optimal exploration decision-making, before the necessary experience has been successfully obtained. To address this critical industry issue, our ongoing research focuses on the development of the unique and novel e-learning environment, exSim, which simulates exploration scenarios where users can test their strategies and learn the consequences of their choices. This simulator provides an engaging platform for self-learning and experimentation in exploration decision strategies, providing a means to build experience more effectively. The exSim environment also provides a unique platform on which numerous scenarios and situations (e.g. deposit styles) can be simulated, potentially allowing the user to become virtually familiarised with a broader scope of exploration practices. Harnessing the power of computer simulation, visualisation and an intuitive graphical user interface, the simulator provides a way to assess the user's exploration decisions and subsequent interpretations. In this paper, we present the prototype functionalities in exSim including: simulation of geophysical surveys, follow-up drill testing and interpretation assistive tools.

  2. Campus Energy Model for Control and Performance Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-09-19

    The core of the modeling platform is an extensible block library for the MATLAB/Simulink software suite. The platform enables true co-simulation (interaction at each simulation time step) with NREL's state-of-the-art modeling tools and other energy modeling software.

  3. IntellWheels: modular development platform for intelligent wheelchairs.

    PubMed

    Braga, Rodrigo Antonio Marques; Petry, Marcelo; Reis, Luis Paulo; Moreira, António Paulo

    2011-01-01

    Intelligent wheelchairs (IWs) can become an important solution to the challenge of assisting individuals who have disabilities and are thus unable to perform their daily activities using classic powered wheelchairs. This article describes the concept and design of IntellWheels, a modular platform to facilitate the development of IWs through a multiagent system paradigm. In fact, modularity is achieved not only in the software perspective, but also through a generic hardware framework that was designed to fit, in a straightforward manner, almost any commercial powered wheelchair. Experimental results demonstrate the successful integration of all modules in the platform, providing safe motion to the IW. Furthermore, the results achieved with a prototype running in autonomous mode in simulated and mixed-reality environments also demonstrate the potential of our approach. Although some future research is still necessary to fully accomplish our objectives, preliminary tests have shown that IntellWheels will effectively reduce users' limitations, offering them a much more independent life.

  4. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    PubMed

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  5. Experiences Integrating Transmission and Distribution Simulations for DERs with the Integrated Grid Modeling System (IGMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias

    2016-08-11

    This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactivemore » power impacts of PV inverter voltage support on the bulk power system.« less

  6. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  7. A lightweight, inexpensive robotic system for insect vision.

    PubMed

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Conceptual Architecture for Obtaining Cyber Situational Awareness

    DTIC Science & Technology

    2014-06-01

    1-893723-17-8. [10] SKYBOX SECURITY. Developer´s Guide. Skybox View. Manual.Version 11. 2010. [11] SCALABLE Network. EXata communications...E. Understanding command and control. Washington, D.C.: CCRP Publication Series, 2006. 255 p. ISBN 1-893723-17-8. • [10] SKYBOX SECURITY. Developer...s Guide. Skybox View. Manual.Version 11. 2010. • [11] SCALABLE Network. EXata communications simulation platform. Available: <http://www.scalable

  9. Development of a Rover Simulation to Assess Operational Proficiency Following Long Duration Spaceflights

    NASA Technical Reports Server (NTRS)

    DeDios, Y. E.; Dean, S. L.; Rpsemtja (. K/); < acdpig (as/ J/ G/); Moore, S. T.; Wood, S. J.

    2011-01-01

    Following long-duration space transits, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely control pressurized rovers designed to explore the new environment. We describe a rover simulation developed to quantify post-flight decrements in operational proficiency following International Space Station expeditions. The rover simulation consists of a serial presentation of discrete tasks to be completed as quickly and accurately as possible. Each task consists of 1) perspective taking using a map that defines a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilizes a Stewart-type motion base (CKAS, Australia), single seat cabin with triple scene projection covering approximately 150 horizontal by 40 vertical, and joystick controller. The software was implemented using Unity3 with next-gen PhysX engine to tightly synchronize simulation and motion platform commands. Separate C# applications allow investigators to customize session sequences with different lighting and gravitational conditions, and then execute tasks to be performed as well as record performance data. Preliminary tests resulted in low incidence of motion sickness (<15% unable to complete first session), with only negligible after effects and symptoms after familiarization sessions. Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to other vehicle designs to provide a platform to safely assess how sensorimotor and cognitive function impact manual control performance.

  10. Use of a Virtual Learning Platform for Distance-Based Simulation in an Acute Care Nurse Practitioner Curriculum.

    PubMed

    Carman, Margaret; Xu, Shu; Rushton, Sharron; Smallheer, Benjamin A; Williams, Denise; Amarasekara, Sathya; Oermann, Marilyn H

    Acute care nurse practitioner (ACNP) programs that use high-fidelity simulation as a teaching tool need to consider innovative strategies to provide distance-based students with learning experiences that are comparable to those in a simulation laboratory. The purpose of this article is to describe the use of virtual simulations in a distance-based ACNP program and student performance in the simulations. Virtual simulations using iSimulate were integrated into the ACNP course to promote the translation of content into a clinical context and enable students to develop their knowledge and decision-making skills. With these simulations, students worked as a team, even though they were at different sites from each other and from the faculty, to manage care of an acutely ill patient. The students were assigned to simulation groups of 4 students each. One week before the simulation, they reviewed past medical records. The virtual simulation sessions were recorded and then evaluated. The evaluation tools assessed 8 areas of performance and included key behaviors in each of these areas to be performed by students in the simulation. More than 80% of the student groups performed the key behaviors. Virtual simulations provide a learning platform that allows live interaction between students and faculty, at a distance, and application of content to clinical situations. With simulation, learners have an opportunity to practice assessment and decision-making in emergency and high-risk situations. Simulations not only are valuable for student learning but also provide a nonthreatening environment for staff to practice, receive feedback on their skills, and improve their confidence.

  11. HuMOVE: a low-invasive wearable monitoring platform in sexual medicine.

    PubMed

    Ciuti, Gastone; Nardi, Matteo; Valdastri, Pietro; Menciassi, Arianna; Basile Fasolo, Ciro; Dario, Paolo

    2014-10-01

    To investigate an accelerometer-based wearable system, named Human Movement (HuMOVE) platform, designed to enable quantitative and continuous measurement of sexual performance with minimal invasiveness and inconvenience for users. Design, implementation, and development of HuMOVE, a wearable platform equipped with an accelerometer sensor for monitoring inertial parameters for sexual performance assessment and diagnosis, were performed. The system enables quantitative measurement of movement parameters during sexual intercourse, meeting the requirements of wearability, data storage, sampling rate, and interfacing methods, which are fundamental for human sexual intercourse performance analysis. HuMOVE was validated through characterization using a controlled experimental test bench and evaluated in a human model during simulated sexual intercourse conditions. HuMOVE demonstrated to be a robust and quantitative monitoring platform and a reliable candidate for sexual performance evaluation and diagnosis. Characterization analysis on the controlled experimental test bench demonstrated an accurate correlation between the HuMOVE system and data from a reference displacement sensor. Experimental tests in the human model during simulated intercourse conditions confirmed the accuracy of the sexual performance evaluation platform and the effectiveness of the selected and derived parameters. The obtained outcomes also established the project expectations in terms of usability and comfort, evidenced by the questionnaires that highlighted the low invasiveness and acceptance of the device. To the best of our knowledge, HuMOVE platform is the first device for human sexual performance analysis compatible with sexual intercourse; the system has the potential to be a helpful tool for physicians to accurately classify sexual disorders, such as premature or delayed ejaculation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Novel predictive models for metabolic syndrome risk: a "big data" analytic approach.

    PubMed

    Steinberg, Gregory B; Church, Bruce W; McCall, Carol J; Scott, Adam B; Kalis, Brian P

    2014-06-01

    We applied a proprietary "big data" analytic platform--Reverse Engineering and Forward Simulation (REFS)--to dimensions of metabolic syndrome extracted from a large data set compiled from Aetna's databases for 1 large national customer. Our goals were to accurately predict subsequent risk of metabolic syndrome and its various factors on both a population and individual level. The study data set included demographic, medical claim, pharmacy claim, laboratory test, and biometric screening results for 36,944 individuals. The platform reverse-engineered functional models of systems from diverse and large data sources and provided a simulation framework for insight generation. The platform interrogated data sets from the results of 2 Comprehensive Metabolic Syndrome Screenings (CMSSs) as well as complete coverage records; complete data from medical claims, pharmacy claims, and lab results for 2010 and 2011; and responses to health risk assessment questions. The platform predicted subsequent risk of metabolic syndrome, both overall and by risk factor, on population and individual levels, with ROC/AUC varying from 0.80 to 0.88. We demonstrated that improving waist circumference and blood glucose yielded the largest benefits on subsequent risk and medical costs. We also showed that adherence to prescribed medications and, particularly, adherence to routine scheduled outpatient doctor visits, reduced subsequent risk. The platform generated individualized insights using available heterogeneous data within 3 months. The accuracy and short speed to insight with this type of analytic platform allowed Aetna to develop targeted cost-effective care management programs for individuals with or at risk for metabolic syndrome.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  14. Performance modeling of the effects of aperture phase error, turbulence, and thermal blooming on tiled subaperture systems

    NASA Astrophysics Data System (ADS)

    Leakeas, Charles L.; Capehart, Shay R.; Bartell, Richard J.; Cusumano, Salvatore J.; Whiteley, Matthew R.

    2011-06-01

    Laser weapon systems comprised of tiled subapertures are rapidly emerging in importance in the directed energy community. Performance models of these laser weapon systems have been developed from numerical simulations of a high fidelity wave-optics code called WaveTrain which is developed by MZA Associates. System characteristics such as mutual coherence, differential jitter, and beam quality rms wavefront error are defined for a focused beam on the target. Engagement scenarios are defined for various platform and target altitudes, speeds, headings, and slant ranges along with the natural wind speed and heading. Inputs to the performance model include platform and target height and velocities, Fried coherence length, Rytov number, isoplanatic angle, thermal blooming distortion number, Greenwood and Tyler frequencies, and atmospheric transmission. The performance model fit is based on power-in-the-bucket (PIB) values against the PIB from the simulation results for the vacuum diffraction-limited spot size as the bucket. The goal is to develop robust performance models for aperture phase error, turbulence, and thermal blooming effects in tiled subaperture systems.

  15. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  16. Development of a chitosan based double layer-coated tablet as a platform for colon-specific drug delivery

    PubMed Central

    Kim, Min Soo; Yeom, Dong Woo; Kim, Sung Rae; Yoon, Ho Yub; Kim, Chang Hyun; Son, Ho Yong; Kim, Jin Han; Lee, Sangkil; Choi, Young Wook

    2017-01-01

    A double layer-coated colon-specific drug delivery system (DL-CDDS) was developed, which consisted of chitosan (CTN) based polymeric subcoating of the core tablet containing citric acid for microclimate acidification, followed by an enteric coating. The polymeric composition ratio of Eudragit E100 and ethyl cellulose and amount of subcoating were optimized using a two-level factorial design method. Drug-release characteristics in terms of dissolution efficiency and controlled-release duration were evaluated in various dissolution media, such as simulated colonic fluid in the presence or absence of CTNase. Microflora activation and a stepwise mechanism for drug release were postulated. Consequently, the optimized DL-CDDS showed drug release in a controlled manner by inhibiting drug release in the stomach and intestine, but releasing the drug gradually in the colon (approximately 40% at 10 hours and 92% at 24 hours in CTNase-supplemented simulated colonic fluid), indicating its feasibility as a novel platform for CDD. PMID:28053506

  17. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.

    2015-12-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiike, S.; Okazaki, Y.

    This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.

  19. KSC-99pc0142

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (top), known as the "iron bird," is lifted to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  20. KSC-99pc0145

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (top, right), known as the "iron bird," is lifted to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  1. KSC-99pc0144

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (left), known as the "iron bird," is fully raised to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  2. A gimbal platform stabilization for topographic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michele, Mangiameli, E-mail: michele.mangiameli@dica.unict.it; Giuseppe, Mussumeci

    2015-03-10

    The aim of this work is the stabilization of a Gimbal platform for optical sensors acquisitions in topographic applications using mobile vehicles. The stabilization of the line of sight (LOS) consists in tracking the command velocity in presence of nonlinear noise due to the external environment. The hardware architecture is characterized by an Ardupilot platform that allows the control of both the mobile device and the Gimbal. Here we developed a new approach to stabilize the Gimbal platform, which is based on neural network. For the control system, we considered a plant that represents the transfer function of the servomore » system control model for an inertial stabilized Gimbal platform. The transductor used in the feed-back line control is characterized by the Rate Gyro transfer function installed onboard of Ardupilot. For the simulation and investigation of the system performance, we used the Simulink tool of Matlab. Results show that the hardware/software approach is efficient, reliable and cheap for direct photogrammetry, as well as for general purpose applications using mobile vehicles.« less

  3. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  4. Modeling and analysis of a flywheel microvibration isolation system for spacecrafts

    NASA Astrophysics Data System (ADS)

    Wei, Zhanji; Li, Dongxu; Luo, Qing; Jiang, Jianping

    2015-01-01

    The microvibrations generated by flywheels running at full speed onboard high precision spacecrafts will affect stability of the spacecraft bus and further degrade pointing accuracy of the payload. A passive vibration isolation platform comprised of multi-segment zig-zag beams is proposed to isolate disturbances of the flywheel. By considering the flywheel and the platform as an integral system with gyroscopic effects, an equivalent dynamic model is developed and verified through eigenvalue and frequency response analysis. The critical speeds of the system are deduced and expressed as functions of system parameters. The vibration isolation performance of the platform under synchronal and high-order harmonic disturbances caused by the flywheel is investigated. It is found that the speed range within which the passive platform is effective and the disturbance decay rate of the system are greatly influenced by the locations of the critical speeds. Structure optimization of the platform is carried out to enhance its performance. Simulation results show that a properly designed vibration isolation platform can effectively reduce disturbances emitted by the flywheel operating above the critical speeds of the system.

  5. Aspects of detection and tracking of ground targets from an airborne EO/IR sensor

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam

    2015-05-01

    An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.

  6. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  7. A fast implementation of MPC-based motion cueing algorithms for mid-size road vehicle motion simulators

    NASA Astrophysics Data System (ADS)

    Bruschetta, M.; Maran, F.; Beghi, A.

    2017-06-01

    The use of dynamic driving simulators is constantly increasing in the automotive community, with applications ranging from vehicle development to rehab and driver training. The effectiveness of such devices is related to their capabilities of well reproducing the driving sensations, hence it is crucial that the motion control strategies generate both realistic and feasible inputs to the platform. Such strategies are called motion cueing algorithms (MCAs). In recent years several MCAs based on model predictive control (MPC) techniques have been proposed. The main drawback associated with the use of MPC is its computational burden, that may limit their application to high performance dynamic simulators. In the paper, a fast, real-time implementation of an MPC-based MCA for 9 DOF, high performance platform is proposed. Effectiveness of the approach in managing the available working area is illustrated by presenting experimental results from an implementation on a real device with a 200 Hz control frequency.

  8. Coupled simulation of the propulsion system and vehicle using the ESPSS satellite library

    NASA Astrophysics Data System (ADS)

    Koppel, C. R.; Di Matteo, F.; Moral, J.; Steelant, J.

    2018-06-01

    The paper documents the implementation and validation of the coupled simulation of the propulsion system and vehicle performed during the 4th development phase of the ESPSS (European Space Propulsion System Simulation) library running on the existing platform EcosimPro®. This covers a significant update of the spacecraft propulsion system modeling: the Fluid flow, Tanks and Combustion chamber components are updated to allow coupling to the vehicle's motion, the Archimedes pressure coming from acceleration and rotations given by the vehicle or by any perturbation forces are taken into account, several new features are added to the Satellite library along with new components enabling full attitude control of a platform. A new powerful compact equation is presented for solving elegantly the Archimedes pressure coming from combined acceleration and rotation in the most general case (noncollinear). Eventually, a propulsion system is modeled to check the correct implementation of the new components especially those dealing with the effects of the mission on the propulsion subsystem.

  9. OpenSim: open-source software to create and analyze dynamic simulations of movement.

    PubMed

    Delp, Scott L; Anderson, Frank C; Arnold, Allison S; Loan, Peter; Habib, Ayman; John, Chand T; Guendelman, Eran; Thelen, Darryl G

    2007-11-01

    Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.

  10. A Model-Based Approach for Bridging Virtual and Physical Sensor Nodes in a Hybrid Simulation Framework

    PubMed Central

    Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L.

    2014-01-01

    The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083

  11. Flight simulator platform motion and air transport pilot training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1987-01-01

    The effect of a flight simulator platform motion on the performance and training of a pilot was evaluated using subjective ratings and objective performance data obtained on experienced B-727 pilots and pilots with no prior heavy aircraft flying experience flying B-727-200 aircraft simulator used by the FAA in the upgrade and transition training for air carrier operations. The results on experienced pilots did not reveal any reliable effects of wide variations in platform motion design. On the other hand, motion variations significantly affected the behavior of pilots without heavy-aircraft experience. The effect was limited to pitch attitude control inputs during the early phase of landing training.

  12. A broadband proton backlighting platform to probe shock propagation in low-density systems

    DOE PAGES

    Sio, H.; Hua, R.; Ping, Y.; ...

    2017-01-17

    A proton backlighting platform has been developed for the study of strong shock propagation in low-density systems in planar geometry. Electric fields at the converging shock front in inertial confinement fusion implosions have been previously observed, demonstrating the presence of—and the need to understand—strong electric fields not modeled in standard radiation-hydrodynamic simulations. In this planar configuration, long-pulse ultraviolet lasers are used to drive a strong shock into a gas-cell target, while a short-pulse proton backlighter side-on radiographs the shock propagation. Finally, the capabilities of the platform are presented here. Future experiments will vary shock strength and gas fill, to probemore » shock conditions at different Z and T e.« less

  13. Wireless energy transfer platform for medical sensors and implantable devices.

    PubMed

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  14. Design Strategy for a Formally Verified Reliable Computing Platform

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Caldwell, James L.; DiVito, Ben L.

    1991-01-01

    This paper presents a high-level design for a reliable computing platform for real-time control applications. The design tradeoffs and analyses related to the development of a formally verified reliable computing platform are discussed. The design strategy advocated in this paper requires the use of techniques that can be completely characterized mathematically as opposed to more powerful or more flexible algorithms whose performance properties can only be analyzed by simulation and testing. The need for accurate reliability models that can be related to the behavior models is also stressed. Tradeoffs between reliability and voting complexity are explored. In particular, the transient recovery properties of the system are found to be fundamental to both the reliability analysis as well as the "correctness" models.

  15. The "Vsoil Platform" : a tool to integrate the various physical, chemical and biological processes contributing to the soil functioning at the local scale.

    NASA Astrophysics Data System (ADS)

    Lafolie, François; Cousin, Isabelle; Mollier, Alain; Pot, Valérie; Moitrier, Nicolas; Balesdent, Jérome; bruckler, Laurent; Moitrier, Nathalie; Nouguier, Cédric; Richard, Guy

    2014-05-01

    Models describing the soil functioning are valuable tools for addressing challenging issues related to agricultural production, soil protection or biogeochemical cycles. Coupling models that address different scientific fields is actually required in order to develop numerical tools able to simulate the complex interactions and feed-backs occurring within a soil profile in interaction with climate and human activities. We present here a component-based modelling platform named "VSoil", that aims at designing, developing, implementing and coupling numerical representation of biogeochemical and physical processes in soil, from the aggregate to the profile scales. The platform consists of four softwares, i) Vsoil_Processes dedicated to the conceptual description of processes and of their inputs and outputs, ii) Vsoil_Modules devoted to the development of numerical representation of elementary processes as modules, iii) Vsoil_Models which permits the coupling of modules to create models, iv) Vsoil_Player for the run of the model and the primary analysis of results. The platform is designed to be a collaborative tool, helping scientists to share not only their models, but also the scientific knowledge on which the models are built. The platform is based on the idea that processes of any kind can be described and characterized by their inputs (state variables required) and their outputs. The links between the processes are automatically detected by the platform softwares. For any process, several numerical representations (modules) can be developed and made available to platform users. When developing modules, the platform takes care of many aspects of the development task so that the user can focus on numerical calculations. Fortran2008 and C++ are the supported languages and existing codes can be easily incorporated into platform modules. Building a model from available modules simply requires selecting the processes being accounted for and for each process a module. During this task, the platform displays available modules and checks the compatibility between the modules. The model (main program) is automatically created when compatible modules have been selected for all the processes. A GUI is automatically generated to help the user providing parameters and initial situations. Numerical results can be immediately visualized, archived and exported. The platform also provides facilities to carry out sensitivity analysis. Parameters estimation and links with databases are being developed. The platform can be freely downloaded from the web site (http://www.inra.fr/sol_virtuel/) with a set of processes, variables, modules and models. However, it is designed so that any user can add its own components. Theses adds-on can be shared with co-workers by means of an export/import mechanism using the e-mail. The adds-on can also be made available to the whole community of platform users when developers asked for. A filtering tool is available to explore the content of the platform (processes, variables, modules, models).

  16. Virtual environments simulation in research reactor

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  17. Impact analysis of air gap motion with respect to parameters of mooring system for floating platform

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong

    2017-04-01

    In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.

  18. The design of real time infrared image generation software based on Creator and Vega

    NASA Astrophysics Data System (ADS)

    Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu

    2013-09-01

    Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.

  19. A novel platform to study magnetized high-velocity collisionless shocks

    DOE PAGES

    Higginson, D. P.; Korneev, Ph; Béard, J.; ...

    2014-12-13

    An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less

  20. A novel platform to study magnetized high-velocity collisionless shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, D. P.; Korneev, Ph; Béard, J.

    An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less

  1. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    PubMed

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  2. Fuzzy-neural control of an aircraft tracking camera platform

    NASA Technical Reports Server (NTRS)

    Mcgrath, Dennis

    1994-01-01

    A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

  3. Evaluation of Variable Refrigerant Flow Systems Performance on Oak Ridge National Laboratory s Flexible Research Platform: Part 3 Simulation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Cho, Heejin; Kim, Dongsu

    2016-08-01

    This report provides second-year project simulation results for the multi-year project titled “Evaluation of Variable Refrigeration Flow (VRF) system on Oak Ridge National Laboratory (ORNL)’s Flexible Research Platform (FRP).”

  4. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  5. Robotic kidney autotransplantation in a porcine model: a procedure-specific training platform for the simulation of robotic intracorporeal vascular anastomosis.

    PubMed

    Tiong, Ho Yee; Goh, Benjamin Yen Seow; Chiong, Edmund; Tan, Lincoln Guan Lim; Vathsala, Anatharaman

    2018-03-31

    Robotic-assisted kidney transplantation (RKT) with the Da Vinci (Intuitive, USA) platform has been recently developed to improve outcomes by decreasing surgical site complications and morbidity, especially in obese patients. This potential paradigm shift in the surgical technique of kidney transplantation is performed in only a few centers. For wider adoption of this high stake complex operation, we aimed to develop a procedure-specific simulation platform in a porcine model for the training of robotic intracorporeal vascular anastomosis and evaluating vascular anastomoses patency. This paper describes the requirements and steps developed for the above training purpose. Over a series of four animal ethics' approved experiments, the technique of robotic-assisted laparoscopic autotransplantation of the kidney was developed in Amsterdam live pigs (60-70 kg). The surgery was based around the vascular anastomosis technique described by Menon et al. This non-survival porcine training model is targeted at transplant surgeons with robotic surgery experience. Under general anesthesia, each pig was placed in lateral decubitus position with the placement of one robotic camera port, two robotic 8 mm ports and one assistant port. Robotic docking over the pig posteriorly was performed. The training platform involved the following procedural steps. First, ipsilateral iliac vessel dissection was performed. Second, robotic-assisted laparoscopic donor nephrectomy was performed with in situ perfusion of the kidney with cold Hartmann's solution prior to complete division of the hilar vessels, ureter and kidney mobilization. Thirdly, the kidney was either kept in situ for orthotopic autotransplantation or mobilized to the pelvis and orientated for the vascular anastomosis, which was performed end to end or end to side after vessel loop clamping of the iliac vessels, respectively, using 6/0 Gore-Tex sutures. Following autotransplantation and release of vessel loops, perfusion of the graft was assessed using intraoperative indocyanine green imaging and monitoring urine output after unclamping. This training platform demonstrates adequate face and content validity. With practice, arterial anastomotic time could be improved, showing its construct validity. This porcine training model can be useful in providing training for robotic intracorporeal vascular anastomosis and may facilitate confident translation into a transplant human recipient.

  6. 2000 Numerical Propulsion System Simulation Review

    NASA Technical Reports Server (NTRS)

    Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2001-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2000 by the High Performance Computing and Communications Program.

  7. 2001 Numerical Propulsion System Simulation Review

    NASA Technical Reports Server (NTRS)

    Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2002-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2001 by the High Performance Computing and Communications Program.

  8. 3D stratigraphic forward modelling of Shu'aiba Platform stratigraphy in the Bu Hasa Field, Abu Dhabi, United Arab Emirates.

    NASA Astrophysics Data System (ADS)

    Hu, J.; Lokier, S. W.

    2012-04-01

    This paper presents the results of three dimensional sequence stratigraphic forward modelling of the Aptian age Shu'aiba Formation from Abu Dhabi, United Arab Emirates (UAE). The Shu'aiba Formation lies within the uppermost part of the Lower Cretaceous Thamama Group and forms one of the most prolific hydrocarbon reservoir intervals of the Middle East with production dating back to the 1960's. The Shu'aiba Formation developed as a series of laterally-extensive shallow-water carbonate platforms in an epeiric sea that extended over the northern margin of the African-Arabian Plate. This shallow sea was bounded by the Arabian Shield to the west and the passive margin with the Neo-Tethys Ocean towards the north and east (Droste, 2010). The exposed Arabian Shield acted as a source of siliciclastic sediments to westernmost regions, however, more offshore areas were dominated by shallow-water carbonate deposition. Carbonate production was variously dominated by Lithocodium-Baccinella, orbitolinid foraminifera and rudist bivalves depending on local conditions. While there have been numerous studies of this important stratigraphic interval (for examples see van Buchem et al., 2010), there has been little attempt to simulate the sequence stratigraphic development of the formation. During the present study modelling was undertaken utilising the CARBONATE-3D stratigraphic forward modelling software (Warrlich et al., 2008; Warrlich et al., 2002)) thus allowing for the control of a diverse range of internal and external parameters on carbonate sequence development. This study focuses on platform development in the onshore Bu Hasa Field - the first giant oilfield to produce from the Shu'aiba Formation in Abu Dhabi. The carbonates of the Bu Hasa field were deposited on the southwest slope of the intra-shelf Bab Basin, siliciclastic content is minor. Initially these carbonates were algal dominated with rudist mounds becoming increasingly important over time (Alsharhan, 1987). Numerous simulations were undertaken, employing different sea level curves, platform geometries, etc. in order to accurately constrain and compare simulated facies geometries with those hypothesised from subsurface correlations. An initial low-angle ramp geometry was later overprinted by the development of localised relief through faulting and salt diapirism. Areas of bathymetric relief became sites of enhanced carbonate development with over-production resulting in aggradational geometries rapidly evolving to progradational systems. Several different regional, global and composite relative sea level curves were employed in the simulations in order to produce stratigraphic geometries comparable to those reported from previous studies. We conclude that none of the published sea level curves produce facies geometries directly analogous to those hypothesised from the sub-surface. We infer that this disparity primarily results from previous models lacking sufficient accommodation space and employing unrealistic carbonate production rates.

  9. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    PubMed

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  10. Arkheia: Data Management and Communication for Open Computational Neuroscience

    PubMed Central

    Antolík, Ján; Davison, Andrew P.

    2018-01-01

    Two trends have been unfolding in computational neuroscience during the last decade. First, a shift of focus to increasingly complex and heterogeneous neural network models, with a concomitant increase in the level of collaboration within the field (whether direct or in the form of building on top of existing tools and results). Second, a general trend in science toward more open communication, both internally, with other potential scientific collaborators, and externally, with the wider public. This multi-faceted development toward more integrative approaches and more intense communication within and outside of the field poses major new challenges for modelers, as currently there is a severe lack of tools to help with automatic communication and sharing of all aspects of a simulation workflow to the rest of the community. To address this important gap in the current computational modeling software infrastructure, here we introduce Arkheia. Arkheia is a web-based open science platform for computational models in systems neuroscience. It provides an automatic, interactive, graphical presentation of simulation results, experimental protocols, and interactive exploration of parameter searches, in a web browser-based application. Arkheia is focused on automatic presentation of these resources with minimal manual input from users. Arkheia is written in a modular fashion with a focus on future development of the platform. The platform is designed in an open manner, with a clearly defined and separated API for database access, so that any project can write its own backend translating its data into the Arkheia database format. Arkheia is not a centralized platform, but allows any user (or group of users) to set up their own repository, either for public access by the general population, or locally for internal use. Overall, Arkheia provides users with an automatic means to communicate information about not only their models but also individual simulation results and the entire experimental context in an approachable graphical manner, thus facilitating the user's ability to collaborate in the field and outreach to a wider audience. PMID:29556187

  11. Arkheia: Data Management and Communication for Open Computational Neuroscience.

    PubMed

    Antolík, Ján; Davison, Andrew P

    2018-01-01

    Two trends have been unfolding in computational neuroscience during the last decade. First, a shift of focus to increasingly complex and heterogeneous neural network models, with a concomitant increase in the level of collaboration within the field (whether direct or in the form of building on top of existing tools and results). Second, a general trend in science toward more open communication, both internally, with other potential scientific collaborators, and externally, with the wider public. This multi-faceted development toward more integrative approaches and more intense communication within and outside of the field poses major new challenges for modelers, as currently there is a severe lack of tools to help with automatic communication and sharing of all aspects of a simulation workflow to the rest of the community. To address this important gap in the current computational modeling software infrastructure, here we introduce Arkheia. Arkheia is a web-based open science platform for computational models in systems neuroscience. It provides an automatic, interactive, graphical presentation of simulation results, experimental protocols, and interactive exploration of parameter searches, in a web browser-based application. Arkheia is focused on automatic presentation of these resources with minimal manual input from users. Arkheia is written in a modular fashion with a focus on future development of the platform. The platform is designed in an open manner, with a clearly defined and separated API for database access, so that any project can write its own backend translating its data into the Arkheia database format. Arkheia is not a centralized platform, but allows any user (or group of users) to set up their own repository, either for public access by the general population, or locally for internal use. Overall, Arkheia provides users with an automatic means to communicate information about not only their models but also individual simulation results and the entire experimental context in an approachable graphical manner, thus facilitating the user's ability to collaborate in the field and outreach to a wider audience.

  12. Supervising simulations with the Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Carenton, Nicolas; Denvil, Sebastien

    2015-04-01

    At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of High Performance Computing (HPC) environments spread throughout France. The IPSL's simulation execution runtime is called libIGCM (library for IPSL Global Climate Modeling group). libIGCM has recently been enhanced so as to support realtime operational use cases. Such use cases include simulation monitoring, data publication, environment metrics collection, automated simulation control … etc. At the core of this enhancement is the Prodiguer messaging platform. libIGCM now emits information, in the form of messages, for remote processing at IPSL servers in Paris. The remote message processing takes several forms, for example: 1. Persisting message content to database(s); 2. Notifying an operator of changes in a simulation's execution status; 3. Launching rollback jobs upon simulation failure; 4. Dynamically updating controlled vocabularies; 5. Notifying downstream applications such as the Prodiguer web portal; We will describe how the messaging platform has been implemented from a technical perspective and demonstrate the Prodiguer web portal receiving realtime notifications.

  13. A Automated Tool for Supporting FMEAs of Digital Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue,M.; Chu, T.-L.; Martinez-Guridi, G.

    2008-09-07

    Although designs of digital systems can be very different from each other, they typically use many of the same types of generic digital components. Determining the impacts of the failure modes of these generic components on a digital system can be used to support development of a reliability model of the system. A novel approach was proposed for such a purpose by decomposing the system into a level of the generic digital components and propagating failure modes to the system level, which generally is time-consuming and difficult to implement. To overcome the associated issues of implementing the proposed FMEA approach,more » an automated tool for a digital feedwater control system (DFWCS) has been developed in this study. The automated FMEA tool is in nature a simulation platform developed by using or recreating the original source code of the different module software interfaced by input and output variables that represent physical signals exchanged between modules, the system, and the controlled process. For any given failure mode, its impacts on associated signals are determined first and the variables that correspond to these signals are modified accordingly by the simulation. Criteria are also developed, as part of the simulation platform, to determine whether the system has lost its automatic control function, which is defined as a system failure in this study. The conceptual development of the automated FMEA support tool can be generalized and applied to support FMEAs for reliability assessment of complex digital systems.« less

  14. OpenACC performance for simulating 2D radial dambreak using FVM HLLE flux

    NASA Astrophysics Data System (ADS)

    Gunawan, P. H.; Pahlevi, M. R.

    2018-03-01

    The aim of this paper is to investigate the performances of openACC platform for computing 2D radial dambreak. Here, the shallow water equation will be used to describe and simulate 2D radial dambreak with finite volume method (FVM) using HLLE flux. OpenACC is a parallel computing platform based on GPU cores. Indeed, from this research this platform is used to minimize computational time on the numerical scheme performance. The results show the using OpenACC, the computational time is reduced. For the dry and wet radial dambreak simulations using 2048 grids, the computational time of parallel is obtained 575.984 s and 584.830 s respectively for both simulations. These results show the successful of OpenACC when they are compared with the serial time of dry and wet radial dambreak simulations which are collected 28047.500 s and 29269.40 s respectively.

  15. Business analysis for a sustainable, multi-stakeholder ecosystem for leveraging the Electronic Health Records for Clinical Research (EHR4CR) platform in Europe.

    PubMed

    Dupont, Danielle; Beresniak, Ariel; Sundgren, Mats; Schmidt, Andreas; Ainsworth, John; Coorevits, Pascal; Kalra, Dipak; Dewispelaere, Marc; De Moor, Georges

    2017-01-01

    The Electronic Health Records for Clinical Research (EHR4CR) technological platform has been developed to enable the trustworthy reuse of hospital electronic health records data for clinical research. The EHR4CR platform can enhance and speed up clinical research scenarios: protocol feasibility assessment, patient identification for recruitment in clinical trials, and clinical data exchange, including for reporting serious adverse events. Our objective was to seed a multi-stakeholder ecosystem to enable the scalable exploitation of the EHR4CR platform in Europe, and to assess its economic sustainability. Market analyses were conducted by a multidisciplinary task force to define an EHR4CR emerging ecosystem and multi-stakeholder value chain. This involved mapping stakeholder groups and defining their unmet needs, incentives, potential barriers for adopting innovative solutions, roles and interdependencies. A comprehensive business model, value propositions, and sustainability strategies were developed accordingly. Using simulation modelling (including Monte Carlo simulations) and a 5-year horizon, the potential financial outcomes of the business model were forecasted from the perspective of an EHR4CR service provider. A business ecosystem was defined to leverage the EHR4CR multi-stakeholder value chain. Value propositions were developed describing the expected benefits of EHR4CR solutions for all stakeholders. From an EHR4CR service provider's viewpoint, the business model simulation estimated that a profitability ratio of up to 1.8 could be achieved at year 1, with potential for growth in subsequent years depending on projected market uptake. By enhancing and speeding up existing processes, EHR4CR solutions promise to transform the clinical research landscape. The ecosystem defined provides the organisational framework for optimising the value and benefits for all stakeholders involved, in a sustainable manner. Our study suggests that the exploitation of EHR4CR solutions appears profitable and sustainable in Europe, with a growth potential depending on the rates of market and hospital adoption. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Generating performance portable geoscientific simulation code with Firedrake (Invited)

    NASA Astrophysics Data System (ADS)

    Ham, D. A.; Bercea, G.; Cotter, C. J.; Kelly, P. H.; Loriant, N.; Luporini, F.; McRae, A. T.; Mitchell, L.; Rathgeber, F.

    2013-12-01

    This presentation will demonstrate how a change in simulation programming paradigm can be exploited to deliver sophisticated simulation capability which is far easier to programme than are conventional models, is capable of exploiting different emerging parallel hardware, and is tailored to the specific needs of geoscientific simulation. Geoscientific simulation represents a grand challenge computational task: many of the largest computers in the world are tasked with this field, and the requirements of resolution and complexity of scientists in this field are far from being sated. However, single thread performance has stalled, even sometimes decreased, over the last decade, and has been replaced by ever more parallel systems: both as conventional multicore CPUs and in the emerging world of accelerators. At the same time, the needs of scientists to couple ever-more complex dynamics and parametrisations into their models makes the model development task vastly more complex. The conventional approach of writing code in low level languages such as Fortran or C/C++ and then hand-coding parallelism for different platforms by adding library calls and directives forces the intermingling of the numerical code with its implementation. This results in an almost impossible set of skill requirements for developers, who must simultaneously be domain science experts, numericists, software engineers and parallelisation specialists. Even more critically, it requires code to be essentially rewritten for each emerging hardware platform. Since new platforms are emerging constantly, and since code owners do not usually control the procurement of the supercomputers on which they must run, this represents an unsustainable development load. The Firedrake system, conversely, offers the developer the opportunity to write PDE discretisations in the high-level mathematical language UFL from the FEniCS project (http://fenicsproject.org). Non-PDE model components, such as parametrisations, can be written as short C kernels operating locally on the underlying mesh, with no explicit parallelism. The executable code is then generated in C, CUDA or OpenCL and executed in parallel on the target architecture. The system also offers features of special relevance to the geosciences. In particular, the large scale separation between the vertical and horizontal directions in many geoscientific processes can be exploited to offer the flexibility of unstructured meshes in the horizontal direction, without the performance penalty usually associated with those methods.

  17. 6 DOF Nonlinear AUV Simulation Toolbox

    DTIC Science & Technology

    1997-01-01

    is to supply a flexible 3D -simulation platform for motion visualization, in-lab debugging and testing of mission-specific strategies as well as those...Explorer are modular designed [Smith] in order to cut time and cost for vehicle recontlguration. A flexible 3D -simulation platform is desired to... 3D models. Current implemented modules include a nonlinear dynamic model for the OEX, shared memory and semaphore manager tools, shared memory monitor

  18. Micromagnetics on high-performance workstation and mobile computational platforms

    NASA Astrophysics Data System (ADS)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  19. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  20. Xyce Parallel Electronic Simulator Users' Guide Version 6.7.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one tomore » develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright c 2002-2017 Sandia Corporation. All rights reserved. Trademarks Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. All other trademarks are property of their respective owners. Contacts World Wide Web http://xyce.sandia.gov https://info.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only) Bug Reports (Sandia only) http://joseki-vm.sandia.gov/bugzilla http://morannon.sandia.gov/bugzilla« less

  1. Lattice QCD simulations using the OpenACC platform

    NASA Astrophysics Data System (ADS)

    Majumdar, Pushan

    2016-10-01

    In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs.

  2. Atomic-scale to Meso-scale Simulation Studies of Thermal Ageing and Irradiation Effects in Fe- Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Eugene; Liu, Li

    In this project, we target at three primary objectives: (1) Molecular Dynamics (MD) code development for Fe-Cr alloys, which can be utilized to provide thermodynamic and kinetic properties as inputs in mesoscale Phase Field (PF) simulations; (2) validation and implementation of the MD code to explain thermal ageing and radiation damage; and (3) an integrated modeling platform for MD and PF simulations. These two simulation tools, MD and PF, will ultimately be merged to understand and quantify the kinetics and mechanisms of microstructure and property evolution of Fe-Cr alloys under various thermal and irradiation environments

  3. Modeling and Simulating Airport Surface Operations with Gate Conflicts

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Windhorst, Robert

    2017-01-01

    The Surface Operations Simulator and Scheduler (SOSS) is a fast-time simulation platform used to develop and test future surface scheduling concepts such as NASA's Air Traffic Demonstration 2 of time-based surface metering at Charlotte Douglass International Airport (CLT). Challenges associated with CLT surface operations have driven much of SOSS development. Recently, SOSS functionality for modeling harsdstand operations was developed to address gate conflicts, which occur when an arrival and departure wish to occupy the same gate at the same time. Because surface metering concepts such as ATD2 have the potential to increase gates conflicts as departures are held at their gates, it is important to study the interaction between surface metering and gate conflict management. Several approaches to managing gate conflicts with and without the use of hardstands were simulated and their effects on surface operations and scheduler performance compared.

  4. Modeling and Simulating Airport Surface Operations with Gate Conflicts

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Windhorst, Robert

    2017-01-01

    The Surface Operations Simulator and Scheduler (SOSS) is a fast-time simulation platform used to develop and test future surface scheduling concepts such as NASAs Air Traffic Demonstration 2 of time-based surface metering at Charlotte Douglas International Airport (CLT). Challenges associated with CLT surface operations have driven much of SOSS development. Recently, SOSS functionality for modeling hardstand operations was developed to address gate conflicts, which occur when an arrival and departure wish to occupy the same gate at the same time. Because surface metering concepts such as ATD2 have the potential to increase gates conflicts as departure are held at their gates, it is important to study the interaction between surface metering and gate conflict management. Several approaches to managing gate conflicts with and without the use of hardstands were simulated and their effects on surface operations and scheduler performance compared.

  5. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    NASA Technical Reports Server (NTRS)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  6. Development of an Unmanned Aerial System (UAS) for Scaling Terrestrial Ecosystem Traits

    NASA Astrophysics Data System (ADS)

    Meng, R.; McMahon, A. M.; Serbin, S.; Rogers, A.

    2015-12-01

    The next generation of Ecosystem and Earth System Models (EESMs) will require detailed information on ecosystem structure and function, including properties of vegetation related to carbon (C), water, and energy cycling, in order to project the future state of ecosystems. High spatial-temporal resolution measurements of terrestrial ecosystem are also important for EESMs, because they can provide critical inputs and benchmark datasets for evaluation of EESMs simulations across scales. The recent development of high-quality, low-altitude remote sensing platforms or small UAS (< 25 kg) enables measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Specifically, these new platforms can provide detailed information on patterns and processes of terrestrial ecosystems at a critical intermediate scale between point measurements and suborbital and satellite platforms. Given their potential for sub-decimeter spatial resolution, improved mission safety, high revisit frequency, and reduced operation cost, these platforms are of particular interest in the development of ecological scaling algorithms to parameterize and benchmark EESMs, particularly over complex and remote terrain. Our group is developing a small UAS platform and integrated sensor package focused on measurement needs for scaling and informing ecosystem modeling activities, as well as scaling and mapping plant functional traits. To do this we are developing an integrated software workflow and hardware package using off-the-shelf instrumentation including a high-resolution digital camera for Structure from Motion, spectroradiometer, and a thermal infrared camera. Our workflow includes platform design, measurement, image processing, data management, and information extraction. The fusion of 3D structure information, thermal-infrared imagery, and spectroscopic measurements, will provide a foundation for the development of ecological scaling and mapping algorithms. Our initial focus is in temperate forests but near-term research will expand into the high-arctic and eventually tropical systems. The results of this prototype study show that off-the-shelf technology can be used to develop a low-cost alternative for mapping plant traits and three-dimensional structure for ecological research.

  7. Control of an automated mobile manipulator using artificial immune system

    NASA Astrophysics Data System (ADS)

    Deepak, B. B. V. L.; Parhi, Dayal R.

    2016-03-01

    This paper addresses the coordination and control of a wheeled mobile manipulator (WMM) using artificial immune system. The aim of the developed methodology is to navigate the system autonomously and transport jobs and tools in manufacturing environments. This study integrates the kinematic structures of a four-axis manipulator and a differential wheeled mobile platform. The motion of the developed WMM is controlled by the complete system of parametric equation in terms of joint velocities and makes the robot to follow desired trajectories by the manipulator and platform within its workspace. The developed robot system performs its action intelligently according to the sensed environmental criteria within its search space. To verify the effectiveness of the proposed immune-based motion planner for WMM, simulations as well as experimental results are presented in various unknown environments.

  8. Research and realization of key technology in HILS interactive system

    NASA Astrophysics Data System (ADS)

    Liu, Che; Lu, Huiming; Wang, Fankai

    2018-03-01

    This paper designed HILS (Hardware In the Loop Simulation) interactive system based on xPC platform . Through the interface between C++ and MATLAB engine, establish the seamless data connection between Simulink and interactive system, complete data interaction between system and Simulink, realize the function development of model configuration, parameter modification and off line simulation. We establish the data communication between host and target machine through TCP/IP protocol to realize the model download and real-time simulation. Use database to store simulation data, implement real-time simulation monitoring and simulation data management. Realize system function integration by Qt graphic interface library and dynamic link library. At last, take the typical control system as an example to verify the feasibility of HILS interactive system.

  9. The Search for Subsurface Life on Mars: Results from the MARTE Analog Drill Experiment in Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.

    2006-03-01

    The Mars Analog Research and Technology (MARTE) experiment has developed an automated drilling system on a simulated Mars lander platform including drilling, sample handling, core analysis and down-hole instruments relevant to searching for life in the Martian subsurface.

  10. Speaking Personally--With John "Pathfinder" Lester

    ERIC Educational Resources Information Center

    Beaubois, Terry

    2013-01-01

    John Lester is currently the chief learning officer at ReactionGrid, a software company developing 3-D simulations and multiuser virtual world platforms. Lester's background includes working with Linden Lab on Second Life's education activities and neuroscience research. His primary focus is on collaborative learning and instructional…

  11. A microfabricated platform to form three-dimensional toroidal multicellular aggregate.

    PubMed

    Masuda, Taisuke; Takei, Natsuki; Nakano, Takuma; Anada, Takahisa; Suzuki, Osamu; Arai, Fumihito

    2012-12-01

    Techniques that allow cells to self-assemble into three-dimensional (3D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular in fields such as stem cell research, tissue engineering, and cancer biology. Appropriate simulation of the 3D environment in which tissues normally develop and function is crucial for the engineering of in vitro models that can be used for the formation of complex tissues. We have developed a unique multicellular aggregate formation platform that utilizes a maskless gray-scale photolithography. The cellular aggregate formed using this platform has a toroidal-like geometry and includes a micro lumen that facilitates the supply of oxygen and growth factors and the expulsion of waste products. As a result, this platform was capable of rapidly producing hundreds of multicellular aggregates at a time, and of regulating the diameter of aggregates with complex design. These toroidal multicellular aggregates can grow as long-term culture. In addition, the micro lumen can be used as a continuous channel and for the insertion of a vascular system or a nerve system into the assembled tissue. These platform characteristics highlight its potential to be used in a wide variety of applications, e.g. as a bioactuator, as a micro-machine component or in drug screening and tissue engineering.

  12. Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Coryphaeus Software, founded in 1989 by former NASA electronic engineer Steve Lakowske, creates real-time 3D software. Designer's Workbench, the company flagship product, is a modeling and simulation tool for the development of both static and dynamic 3D databases. Other products soon followed. Activation, specifically designed for game developers, allows developers to play and test the 3D games before they commit to a target platform. Game publishers can shorten development time and prove the "playability" of the title, maximizing their chances of introducing a smash hit. Another product, EasyT, lets users create massive, realistic representation of Earth terrains that can be viewed and traversed in real time. Finally, EasyScene software control the actions among interactive objects within a virtual world. Coryphaeus products are used on Silican Graphics workstation and supercomputers to simulate real-world performance in synthetic environments. Customers include aerospace, aviation, architectural and engineering firms, game developers, and the entertainment industry.

  13. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    NASA Astrophysics Data System (ADS)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data volume are constrained, and the COLLABORATE module will support simulations of coordination among multiple platforms with adaptive sensors. When used together these modules will for a simulation OSSEs that can enable both the design of adaptive algorithms to support remote sensing and the prediction of the sensor performance.

  14. Multi-Axis Independent Electromechanical Load Control for Docking System Actuation Development and Verification Using dSPACE

    NASA Technical Reports Server (NTRS)

    Oesch, Christopher; Dick, Brandon; Rupp, Timothy

    2015-01-01

    The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).

  15. SMC: SCENIC Model Control

    NASA Technical Reports Server (NTRS)

    Srivastava, Priyaka; Kraus, Jeff; Murawski, Robert; Golden, Bertsel, Jr.

    2015-01-01

    NASAs Space Communications and Navigation (SCaN) program manages three active networks: the Near Earth Network, the Space Network, and the Deep Space Network. These networks simultaneously support NASA missions and provide communications services to customers worldwide. To efficiently manage these resources and their capabilities, a team of student interns at the NASA Glenn Research Center is developing a distributed system to model the SCaN networks. Once complete, the system shall provide a platform that enables users to perform capacity modeling of current and prospective missions with finer-grained control of information between several simulation and modeling tools. This will enable the SCaN program to access a holistic view of its networks and simulate the effects of modifications in order to provide NASA with decisional information. The development of this capacity modeling system is managed by NASAs Strategic Center for Education, Networking, Integration, and Communication (SCENIC). Three primary third-party software tools offer their unique abilities in different stages of the simulation process. MagicDraw provides UMLSysML modeling, AGIs Systems Tool Kit simulates the physical transmission parameters and de-conflicts scheduled communication, and Riverbed Modeler (formerly OPNET) simulates communication protocols and packet-based networking. SCENIC developers are building custom software extensions to integrate these components in an end-to-end space communications modeling platform. A central control module acts as the hub for report-based messaging between client wrappers. Backend databases provide information related to mission parameters and ground station configurations, while the end user defines scenario-specific attributes for the model. The eight SCENIC interns are working under the direction of their mentors to complete an initial version of this capacity modeling system during the summer of 2015. The intern team is composed of four students in Computer Science, two in Computer Engineering, one in Electrical Engineering, and one studying Space Systems Engineering.

  16. Development of IR imaging system simulator

    NASA Astrophysics Data System (ADS)

    Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu

    2017-02-01

    To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.

  17. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  18. From Apollo to Cognac

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Shell Oil Company started oil and gas production from a new offshore platform called Cognac located in the Gulf of Mexico. It is the world's tallest oil platform, slightly taller than the Empire State Building. The highly complex job of installing Cognac's support "jacket" under water more than a thousand feet deep was directed from a barge-based control center. To enable crews to practice in advance difficult tasks never before accomplished, Honeywell, adapting NASA's Apollo technology, developed a system for simulating the various underwater operations. In training sessions, displays and controls reacted exactly as they would in real operation.

  19. Controlling multiple security robots in a warehouse environment

    NASA Technical Reports Server (NTRS)

    Everett, H. R.; Gilbreath, G. A.; Heath-Pastore, T. A.; Laird, R. T.

    1994-01-01

    The Naval Command Control and Ocean Surveillance Center (NCCOSC) has developed an architecture to provide coordinated control of multiple autonomous vehicles from a single host console. The multiple robot host architecture (MRHA) is a distributed multiprocessing system that can be expanded to accommodate as many as 32 robots. The initial application will employ eight Cybermotion K2A Navmaster robots configured as remote security platforms in support of the Mobile Detection Assessment and Response System (MDARS) Program. This paper discusses developmental testing of the MRHA in an operational warehouse environment, with two actual and four simulated robotic platforms.

  20. A platform for evolving intelligently interactive adversaries.

    PubMed

    Fogel, David B; Hays, Timothy J; Johnson, Douglas R

    2006-07-01

    Entertainment software developers face significant challenges in designing games with broad appeal. One of the challenges concerns creating nonplayer (computer-controlled) characters that can adapt their behavior in light of the current and prospective situation, possibly emulating human behaviors. This adaptation should be inherently novel, unrepeatable, yet within the bounds of realism. Evolutionary algorithms provide a suitable method for generating such behaviors. This paper provides background on the entertainment software industry, and details a prior and current effort to create a platform for evolving nonplayer characters with genetic and behavioral traits within a World War I combat flight simulator.

  1. Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to bemore » performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.« less

  2. Design and implementation of a 3D ocean virtual reality and visualization engine

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Li, Bo; Tian, Fenglin; Ji, Pengbo; Li, Wenqing

    2012-12-01

    In this study, a 3D virtual reality and visualization engine for rendering the ocean, named VV-Ocean, is designed for marine applications. The design goals of VV-Ocean aim at high fidelity simulation of ocean environment, visualization of massive and multidimensional marine data, and imitation of marine lives. VV-Ocean is composed of five modules, i.e. memory management module, resources management module, scene management module, rendering process management module and interaction management module. There are three core functions in VV-Ocean: reconstructing vivid virtual ocean scenes, visualizing real data dynamically in real time, imitating and simulating marine lives intuitively. Based on VV-Ocean, we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface. Environment factors such as ocean current and wind field have been considered in this simulation. On this platform oil spilling process can be abstracted as movements of abundant oil particles. The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering. VV-Ocean can be widely used in ocean applications such as demonstrating marine operations, facilitating maritime communications, developing ocean games, reducing marine hazards, forecasting the weather over oceans, serving marine tourism, and so on. Finally, further technological improvements of VV-Ocean are discussed.

  3. KSC-99pc0143

    NASA Image and Video Library

    1999-01-28

    As part of X-33 launch equipment testing at Edwards Air Force Base, CA, the KSC-developed X-33 weight simulator (top), known as the "iron bird," is lifted to a vertical position at the X-33 launch site. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  4. SURA-IOOS Coastal Inundation Testbed Inter-Model Evaluation of Tides, Waves, and Hurricane Surge in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kerr, P. C.; Donahue, A.; Westerink, J. J.; Luettich, R.; Zheng, L.; Weisberg, R. H.; Wang, H. V.; Slinn, D. N.; Davis, J. R.; Huang, Y.; Teng, Y.; Forrest, D.; Haase, A.; Kramer, A.; Rhome, J.; Feyen, J. C.; Signell, R. P.; Hanson, J. L.; Taylor, A.; Hope, M.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T.

    2012-12-01

    The Southeastern Universities Research Association (SURA), in collaboration with the NOAA Integrated Ocean Observing System program and other federal partners, developed a testbed to help accelerate progress in both research and the transition to operational use of models for both coastal and estuarine prediction. This testbed facilitates cyber-based sharing of data and tools, archival of observation data, and the development of cross-platform tools to efficiently access, visualize, skill assess, and evaluate model results. In addition, this testbed enables the modeling community to quantitatively assess the behavior (e.g., skill, robustness, execution speed) and implementation requirements (e.g. resolution, parameterization, computer capacity) that characterize the suitability and performance of selected models from both operational and fundamental science perspectives. This presentation focuses on the tropical coastal inundation component of the testbed and compares a variety of model platforms as well as grids in simulating tides, and the wave and surge environments for two extremely well documented historical hurricanes, Hurricanes Rita (2005) and Ike (2008). Model platforms included are ADCIRC, FVCOM, SELFE, SLOSH, SWAN, and WWMII. Model validation assessments were performed on simulation results using numerous station observation data in the form of decomposed harmonic constituents, water level high water marks and hydrographs of water level and wave data. In addition, execution speed, inundation extents defined by differences in wetting/drying schemes, resolution and parameterization sensitivities are also explored.

  5. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    PubMed

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.

  6. OpenFLUID: an open-source software environment for modelling fluxes in landscapes

    NASA Astrophysics Data System (ADS)

    Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc

    2013-04-01

    Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network transfer, diagnosis and prediction of water quality taking into account human activities, study of the effect of spatial organization on hydrological fluxes, modelling of surface-subsurface water exchanges, … At LISAH research unit, OpenFLUID is the supporting development platform of the MHYDAS model, which is a distributed model for agrosystems (Moussa et al., 2002, Hydrological Processes, 16, 393-412). OpenFLUID web site : http://www.openfluid-project.org

  7. Simulations of ultrafast x-ray laser experiments

    NASA Astrophysics Data System (ADS)

    Fortmann-Grote, C.; Andreev, A. A.; Appel, K.; Branco, J.; Briggs, R.; Bussmann, M.; Buzmakov, A.; Garten, M.; Grund, A.; Huebl, A.; Jurek, Z.; Loh, N. D.; Nakatsutsumi, M.; Samoylova, L.; Santra, R.; Schneidmiller, E. A.; Sharma, A.; Steiniger, K.; Yakubov, S.; Yoon, C. H.; Yurkov, M. V.; Zastrau, U.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-06-01

    Simulations of experiments at modern light sources, such as optical laser laboratories, synchrotrons, and free electron lasers, become increasingly important for the successful preparation, execution, and analysis of these experiments investigating ever more complex physical systems, e.g. biomolecules, complex materials, and ultra-short lived states of matter at extreme conditions. We have implemented a platform for complete start-to-end simulations of various types of photon science experiments, tracking the radiation from the source through the beam transport optics to the sample or target under investigation, its interaction with and scattering from the sample, and registration in a photon detector. This tool allows researchers and facility operators to simulate their experiments and instruments under real life conditions, identify promising and unattainable regions of the parameter space and ultimately make better use of valuable beamtime. In this paper, we present an overview about status and future development of the simulation platform and discuss three applications: 1.) Single-particle imaging of biomolecules using x-ray free electron lasers and optimization of x-ray pulse properties, 2.) x-ray scattering diagnostics of hot dense plasmas in high power laser-matter interaction and identification of plasma instabilities, and 3.) x-ray absorption spectroscopy in warm dense matter created by high energy laser-matter interaction and pulse shape optimization for low-isentrope dynamic compression.

  8. TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Michael S; Cetiner, Mustafa S; Fugate, David L

    Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and supportmore » tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less

  9. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  10. Information-computational platform for collaborative multidisciplinary investigations of regional climatic changes and their impacts

    NASA Astrophysics Data System (ADS)

    Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    Analysis of growing volume of related to climate change data from sensors and model outputs requires collaborative multidisciplinary efforts of researchers. To do it timely and in reliable way one needs in modern information-computational infrastructure supporting integrated studies in the field of environmental sciences. Recently developed experimental software and hardware platform Climate (http://climate.scert.ru/) provides required environment for regional climate change related investigations. The platform combines modern web 2.0 approach, GIS-functionality and capabilities to run climate and meteorological models, process large geophysical datasets and support relevant analysis. It also supports joint software development by distributed research groups, and organization of thematic education for students and post-graduate students. In particular, platform software developed includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also run of integrated into the platform WRF and «Planet Simulator» models, modeling results data preprocessing and visualization is provided. All functions of the platform are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of selection of geographical region of interest (pan and zoom), data layers manipulation (order, enable/disable, features extraction) and visualization of results. Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches. Using it even unskilled user without specific knowledge can perform reliable computational processing and visualization of large meteorological, climatic and satellite monitoring datasets through unified graphical web-interface. Partial support of RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2 and Projects 69, 131, 140 and APN CBA2012-16NSY project is acknowledged.

  11. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    ScienceCinema

    Guenther, Chris

    2018-05-23

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  12. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, Chris

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  13. An Introduction to Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2017-01-01

    Observing System Simulation Experiments (OSSEs) are used to estimate the potential impact of proposed new instruments and data on numerical weather prediction. OSSEs can also be used to help design new observing platforms and to investigate the behavior of data assimilation systems. A basic overview of how to design and perform an OSSE will be given, as well as best practices and pitfalls. Some examples using the OSSE framework developed at the NASA Global Modeling and Assimilation Office will be shown.

  14. A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.

    2014-01-01

    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink(R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.

  15. A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.

    2015-01-01

    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.

  16. A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia Mae; Culley, Dennis E.; Aretskin-Hariton, Eliot D.

    2014-01-01

    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (40,000 pound force thrust) (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink (R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.

  17. Flight simulator requirements for airline transport pilot training - An evaluation of motion system design alternatives

    NASA Technical Reports Server (NTRS)

    Lee, A. T.; Bussolari, S. R.

    1986-01-01

    The effect of motion platform systems on pilot behavior is considered with emphasis placed on civil aviation applications. A dynamic model for human spatial orientation based on the physiological structure and function of the human vestibular system is presented. Motion platform alternatives were evaluated on the basis of the following motion platform conditions: motion with six degrees-of-freedom required for Phase II simulators and two limited motion conditions. Consideration was given to engine flameout, airwork, and approach and landing scenarios.

  18. Analysis of the economic and ecological performances in the transient regimes of the European driving cycle for a midsize SUV equipped with a DHEP, using the simulation platforms

    NASA Astrophysics Data System (ADS)

    Bancă, Gheorghe; Ivan, Florian; Iozsa, Daniel; Nisulescu, Valentin

    2017-10-01

    Currently, the tendency of the car manufacturers is to continue the expansion of the global production of SUVs (Sport Utility Vehicle), while observing the requirements imposed by the new pollution standards by developing new technologies like DHEP (Diesel Hybrid Electric Powertrain). Experience has shown that the transient regimes are the most difficult to control from an economic and ecological perspective. As a result, this paper will highlight the behaviour of such engines that are provided in a middle class SUV (Sport Utility Vehicle), which operates in such states. We selected the transient regimes characteristic to the NMVEG (New Motor Vehicle Emissions Group) cycle. The investigations using the modelling platform AMESim allowed for rigorous interpretations for the 16 acceleration and 18 deceleration states. The results obtained from the simulation will be validated by experiments.

  19. Coordinating teams of autonomous vehicles: an architectural perspective

    NASA Astrophysics Data System (ADS)

    Czichon, Cary; Peterson, Robert W.; Mettala, Erik G.; Vondrak, Ivo

    2005-05-01

    In defense-related robotics research, a mission level integration gap exists between mission tasks (tactical) performed by ground, sea, or air applications and elementary behaviors enacted by processing, communications, sensors, and weaponry resources (platform specific). The gap spans ensemble (heterogeneous team) behaviors, automatic MOE/MOP tracking, and tactical task modeling/simulation for virtual and mixed teams comprised of robotic and human combatants. This study surveys robotic system architectures, compares approaches for navigating problem/state spaces by autonomous systems, describes an architecture for an integrated, repository-based modeling, simulation, and execution environment, and outlines a multi-tiered scheme for robotic behavior components that is agent-based, platform-independent, and extendable via plug-ins. Tools for this integrated environment, along with a distributed agent framework for collaborative task performance are being developed by a U.S. Army funded SBIR project (RDECOM Contract N61339-04-C-0005).

  20. The Marble Experiment: Overview and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas, M. R.; Murphy, T. J.; Cobble, J. A.; Fincke, J. R.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2015-11-01

    The Marble ICF platform has recently been launched on both OMEGA and NIF with the goal to investigate the influence of heterogeneous mix on fusion burn. The unique separated reactant capsule design consists of an ``engineered'' CH capsule filled with deuterated plastic foam that contains pores or voids that are filled with tritium gas. Initially the deuterium and tritium are separated, but as the implosion proceeds, the D and T mix, producing a DT signature. The results of these experiments will be used to inform a probability density function (PDF) burn modelling approach for un-resolved cell morphology. Initial targets for platform development have consisted of either fine-pore foams or gas mixtures, with the goal to field the engineered foams in 2016. An overview of the Marble experimental campaign will be presented and simulations will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  1. Development and Validation of a Portable Platform for Deploying Decision-Support Algorithms in Prehospital Settings

    PubMed Central

    Reisner, A. T.; Khitrov, M. Y.; Chen, L.; Blood, A.; Wilkins, K.; Doyle, W.; Wilcox, S.; Denison, T.; Reifman, J.

    2013-01-01

    Summary Background Advanced decision-support capabilities for prehospital trauma care may prove effective at improving patient care. Such functionality would be possible if an analysis platform were connected to a transport vital-signs monitor. In practice, there are technical challenges to implementing such a system. Not only must each individual component be reliable, but, in addition, the connectivity between components must be reliable. Objective We describe the development, validation, and deployment of the Automated Processing of Physiologic Registry for Assessment of Injury Severity (APPRAISE) platform, intended to serve as a test bed to help evaluate the performance of decision-support algorithms in a prehospital environment. Methods We describe the hardware selected and the software implemented, and the procedures used for laboratory and field testing. Results The APPRAISE platform met performance goals in both laboratory testing (using a vital-sign data simulator) and initial field testing. After its field testing, the platform has been in use on Boston MedFlight air ambulances since February of 2010. Conclusion These experiences may prove informative to other technology developers and to healthcare stakeholders seeking to invest in connected electronic systems for prehospital as well as in-hospital use. Our experiences illustrate two sets of important questions: are the individual components reliable (e.g., physical integrity, power, core functionality, and end-user interaction) and is the connectivity between components reliable (e.g., communication protocols and the metadata necessary for data interpretation)? While all potential operational issues cannot be fully anticipated and eliminated during development, thoughtful design and phased testing steps can reduce, if not eliminate, technical surprises. PMID:24155791

  2. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.

    PubMed

    Zhang, Qiang; Zhang, Peiran; Su, Yetian; Mou, Chunbo; Zhou, Teng; Yang, Menglong; Xu, Jian; Ma, Bo

    2014-12-21

    A simple, low-cost and on-demand microfluidic flow controlling platform was developed based on a unique capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was innovatively employed as a stable and controllable driving force for the manipulation of the microfluidic system by connecting a piece of capillary between the microvalve and the microfluidic chip, which caused significant hydrodynamic resistance differences among the solenoid valve ports and changed the flowing mode inside the valve. The volume of sucked liquid could be controlled from microliters even down to picoliters either by decreasing the valve energized duration (from a maximum energized duration to the valve response time of 20 ms) or by increasing the inserted capillary length (i.e., its hydrodynamic resistance). Several important microfluidic unit operations such as cell/droplet sorting and on-demand size-controllable droplet generation have been demonstrated on the developed platform and both simulations and experiments confirmed that this platform has good controllability and stability.

  3. Publishing Platform for Scientific Software - Lessons Learned

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Fritzsch, Bernadette; Reusser, Dominik; Brembs, Björn; Deinzer, Gernot; Loewe, Peter; Fenner, Martin; van Edig, Xenia; Bertelmann, Roland; Pampel, Heinz; Klump, Jens; Wächter, Joachim

    2015-04-01

    Scientific software has become an indispensable commodity for the production, processing and analysis of empirical data but also for modelling and simulation of complex processes. Software has a significant influence on the quality of research results. For strengthening the recognition of the academic performance of scientific software development, for increasing its visibility and for promoting the reproducibility of research results, concepts for the publication of scientific software have to be developed, tested, evaluated, and then transferred into operations. For this, the publication and citability of scientific software have to fulfil scientific criteria by means of defined processes and the use of persistent identifiers, similar to data publications. The SciForge project is addressing these challenges. Based on interviews a blueprint for a scientific software publishing platform and a systematic implementation plan has been designed. In addition, the potential of journals, software repositories and persistent identifiers have been evaluated to improve the publication and dissemination of reusable software solutions. It is important that procedures for publishing software as well as methods and tools for software engineering are reflected in the architecture of the platform, in order to improve the quality of the software and the results of research. In addition, it is necessary to work continuously on improving specific conditions that promote the adoption and sustainable utilization of scientific software publications. Among others, this would include policies for the development and publication of scientific software in the institutions but also policies for establishing the necessary competencies and skills of scientists and IT personnel. To implement the concepts developed in SciForge a combined bottom-up / top-down approach is considered that will be implemented in parallel in different scientific domains, e.g. in earth sciences, climate research and the life sciences. Based on the developed blueprints a scientific software publishing platform will be iteratively implemented, tested, and evaluated. Thus the platform should be developed continuously on the basis of gained experiences and results. The platform services will be extended one by one corresponding to the requirements of the communities. Thus the implemented platform for the publication of scientific software can be improved and stabilized incrementally as a tool with software, science, publishing, and user oriented features.

  4. Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China.

    PubMed

    Jiang, Zaidi; Yin, Shan; Zhang, Xianxian; Li, Changsheng; Shen, Guangrong; Zhou, Pei; Liu, Chunjiang

    2017-12-01

    Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Denitrification Decomposition (DNDC) online model-for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1) moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N₂O emission while maintaining the paddy rice yield; (2) ground straw residue had almost no influence on paddy rice yield, but the CH₄ emission and the surface SOC concentration increased along with the quantity of the straw residue; (3) compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH₄ emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.

  5. SU-E-J-45: Design and Study of An In-House Respiratory Gating Phantom Platform for Gated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthilkumar, S

    2014-06-01

    Purpose: The main purpose of this work was to develop an in-house low cost respiratory motion phantom platform for testing the accuracy of the gated radiotherapy system and analyze the dosimetric difference during gated radiotherapy. Methods: An in-house respiratory motion platform(RMP) was designed and constructed for testing the targeting accuracy of respiratory tracking system. The RMP consist of acrylic Chest Wall Platform, 2 DC motors, 4 IR sensors, speed controller circuit, 2 LED and 2 moving rods inside the RMP. The velocity of the movement can be varied from 0 to 30 cycles per minute. The platform mounted to amore » base using precision linear bearings. The base and platform are made of clear, 15mm thick polycarbonate plastic and the linear ball bearings are oriented to restrict the platform to a movement of approximately 50mm up and down with very little friction. Results: The targeting accuracy of the respiratory tracking system was evaluated using phantom with and without respiratory movement with varied amplitude. We have found the 5% dose difference to the PTV during the movement in comparison with stable PTV. The RMP can perform sinusoidal motion in 1D with fixed peak to peak motion of 5 to 50mm and cycle interval from 2 to 6 seconds. The RMP was designed to be able to simulate the gross anatomical anterior posterior motion attributable to respiration-induced motion of the thoracic region. Conclusion: The unique RMP simulates breathing providing the means to create a comprehensive program for commissioning, training, quality assurance and dose verification of gated radiotherapy treatments. Create the anterior/posterior movement of a target over a 5 to 50 mm distance to replicate tumor movement. The targeting error of the respiratory tracking system is less than 1.0 mm which shows suitable for clinical treatment with highly performance.« less

  6. A future Outlook: Web based Simulation of Hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Islam, A. S.; Piasecki, M.

    2003-12-01

    Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as Web Archive (WAR) files which is platform and OS independent and can be used by Windows, UNIX, or Linux. Keywords: Apache, ISO 19115, Java Servlet, Jena, JSP, Metadata, MOF, Linux, Ontology, OWL, PostgresSQL, Protégé, RDF, RDQL, RQL, Tomcat, UML, UNIX, Windows, WAR, XML

  7. SPAIDE: A Real-time Research Platform for the Clarion CII/90K Cochlear Implant

    NASA Astrophysics Data System (ADS)

    Van Immerseel, L.; Peeters, S.; Dykmans, P.; Vanpoucke, F.; Bracke, P.

    2005-12-01

    SPAIDE ( sound-processing algorithm integrated development environment) is a real-time platform of Advanced Bionics Corporation (Sylmar, Calif, USA) to facilitate advanced research on sound-processing and electrical-stimulation strategies with the Clarion CII and 90K implants. The platform is meant for testing in the laboratory. SPAIDE is conceptually based on a clear separation of the sound-processing and stimulation strategies, and, in specific, on the distinction between sound-processing and stimulation channels and electrode contacts. The development environment has a user-friendly interface to specify sound-processing and stimulation strategies, and includes the possibility to simulate the electrical stimulation. SPAIDE allows for real-time sound capturing from file or audio input on PC, sound processing and application of the stimulation strategy, and streaming the results to the implant. The platform is able to cover a broad range of research applications; from noise reduction and mimicking of normal hearing, over complex (simultaneous) stimulation strategies, to psychophysics. The hardware setup consists of a personal computer, an interface board, and a speech processor. The software is both expandable and to a great extent reusable in other applications.

  8. E-learning platform for automated testing of electronic circuits using signature analysis method

    NASA Astrophysics Data System (ADS)

    Gherghina, Cǎtǎlina; Bacivarov, Angelica; Bacivarov, Ioan C.; Petricǎ, Gabriel

    2016-12-01

    Dependability of electronic circuits can be ensured only through testing of circuit modules. This is done by generating test vectors and their application to the circuit. Testability should be viewed as a concerted effort to ensure maximum efficiency throughout the product life cycle, from conception and design stage, through production to repairs during products operating. In this paper, is presented the platform developed by authors for training for testability in electronics, in general and in using signature analysis method, in particular. The platform allows highlighting the two approaches in the field namely analog and digital signature of circuits. As a part of this e-learning platform, it has been developed a database for signatures of different electronic components meant to put into the spotlight different techniques implying fault detection, and from this there were also self-repairing techniques of the systems with this kind of components. An approach for realizing self-testing circuits based on MATLAB environment and using signature analysis method is proposed. This paper analyses the benefits of signature analysis method and simulates signature analyzer performance based on the use of pseudo-random sequences, too.

  9. Status of the planar electrostatic gradiometer GREMLIT for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Boulanger, D.; Foulon, B.; Lebat, V.; Bresson, A.; Christophe, B.

    2016-12-01

    Taking advantage of technologies, developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is based of a planar electrostatic gradiometer configuration. The feasibility of the instrument and of its performance was proved by realistic simulations, based on actual data and recorded environmental aircraft perturbations, with performance of about one Eötvös along the two horizontal components of the gravity gradient. In order to assess the operation of the electrostatic gradiometer on its associated stabilized platform, a one axis prototype has also been built. The next step is the realization of the stabilization platform, controlled by the common mode outputs of the instrument itself, in order to reject the perturbations induced by the airborne environment in the horizontal directions. One of the interests of the GREMLIT instrument is the possibility of an easy hybrid configuration with a vertical one axis Cold Atoms Interferometer gravity gradiometer called GIBON and also under development at ONERA. In such hybrid instrument, The CAI instrument takes also advantage of the platform stabilized by the electrostatic one. The poster will emphasize the status of realization of the instrument and of its stabilized platform.

  10. Large Scale Simulation Platform for NODES Validation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotorrio, P.; Qin, Y.; Min, L.

    2017-04-27

    This report summarizes the Large Scale (LS) simulation platform created for the Eaton NODES project. The simulation environment consists of both wholesale market simulator and distribution simulator and includes the CAISO wholesale market model and a PG&E footprint of 25-75 feeders to validate the scalability under a scenario of 33% RPS in California with additional 17% of DERS coming from distribution and customers. The simulator can generate hourly unit commitment, 5-minute economic dispatch, and 4-second AGC regulation signals. The simulator is also capable of simulating greater than 10k individual controllable devices. Simulated DERs include water heaters, EVs, residential and lightmore » commercial HVAC/buildings, and residential-level battery storage. Feeder-level voltage regulators and capacitor banks are also simulated for feeder-level real and reactive power management and Vol/Var control.« less

  11. Detecting Motion from a Moving Platform; Phase 2: Lightweight, Low Power Robust Means of Removing Image Jitter

    DTIC Science & Technology

    2011-11-01

    common housefly , Musca domestica. “Lightweight, Low Power Robust Means of Removing Image Jitter,” (AFRL-RX-TY-TR-2011-0096-02) develops an optimal...biological vision system of the common housefly , Musca domestica. Several variations of this sensor were designed, simulated extensively, and hardware

  12. Development of Autonomous Unmanned Aerial Vehicle Platform: Modeling, Simulating, and Flight Testing

    DTIC Science & Technology

    2006-03-01

    Eppler 193 Airfoil .............................................................. 58 Figure 18. Rascal Airfoil vs. Eppler 205 Airfoil ...53 Table 14. E193 Airfoil Data at Re = 204,200 ................................................................... 61 ...two hours. According to the manufacturer, the Rascal uses an airfoil married from two Eppler airfoils . The top airfoil is an Eppler 193, while the

  13. The GraVent DDT database

    NASA Astrophysics Data System (ADS)

    Boeck, Lorenz R.; Katzy, Peter; Hasslberger, Josef; Kink, Andreas; Sattelmayer, Thomas

    2016-09-01

    An open-access online platform containing data from experiments on deflagration-to-detonation transition conducted at the Institute of Thermodynamics, Technical University of Munich, has been developed and is accessible at http://www.td.mw.tum.de/ddt. The database provides researchers working on explosion dynamics with data for theoretical analyses and for the validation of numerical simulations.

  14. Real-Time Computer Graphics Simulation of Blockplay in Early Childhood

    ERIC Educational Resources Information Center

    Albin-Clark, A.; Howard, T. L. J.; Anderson, B.

    2011-01-01

    Observation of young children is commonplace in educational settings. For trainee practitioners however, gaining access at convenient times can be difficult. Even then, small snapshots of observable activity can only ever be captured. We describe the design and development of a cross-platform software application which can be used to support…

  15. OpenSatKit Enables Quick Startup for CubeSat Missions

    NASA Technical Reports Server (NTRS)

    McComas, David; Melton, Ryan

    2017-01-01

    The software required to develop, integrate, and operate a spacecraft is substantial regardless of whether its a large or small satellite. Even getting started can be a monumental task. To solve this problem, NASAs Core Flight System (cFS), NASA's 42 spacecraft dynamics simulator, and Ball Aerospaces COSMOS ground system have been integrated together into a kit called OpenSatKit that provides a complete and open source software solution for starting a new satellite mission. Users can have a working system with flight software, dynamics simulation, and a ground command and control system up and running within hours.Every satellite mission requires three primary categories of software to function. The first is Flight Software (FSW) which provides the onboard control of the satellites and its payload(s). NASA's cFS provides a great platform for developing this software. Second, while developing a satellite on earth, it is necessary to simulate the satellites orbit, attitude, and actuators, to ensure that the systems that control these aspects will work correctly in the real environment. NASAs 42 simulator provides these functionalities. Finally, the ground has to be able to communicate with the satellite, monitor its performance and health, and display its data. Additionally, test scripts have to be written to verify the system on the ground. Ball Aerospace's COSMOS command and control system provides this functionality. Once the OpenSatKit is up and running, the next step is to customize the platform and get it running on the end target. Starting from a fully working system makes porting the cFS from Linux to a users platform much easier. An example Raspberry Pi target is included in the kit so users can gain experience working with a low cost hardware target. All users can benefit from OpenSatKit but the greatest impact and benefits will be to SmallSat missions with constrained budgets and small software teams. This paper describes OpenSatKits system design, the steps necessary to run the system to target the Raspberry Pi, and future plans. OpenSatKit is a free fully functional spacecraft software system that we hope will greatly benefit the SmallSat community.

  16. Commercial potential of remote sensing data from the Earth observing system

    NASA Technical Reports Server (NTRS)

    Merry, Carolyn J.; Tomlin, Sandra M.

    1992-01-01

    The purpose was to assess the market potential of remote sensing value-added products from the Earth Observing System (EOS) platform. Sensors on the EOS platform were evaluated to determine which qualities and capabilities could be useful to the commercial user. The approach was to investigate past and future satellite data distribution programs. A questionnaire was developed for use in a telephone survey. Based on the results of the survey of companies that add value to remotely sensed data, conversations with the principal investigators in charge of each EOS sensor, a study of past commercial satellite data ventures, and reading from the commercial remote sensing industry literature, three recommendations were developed: develop a strategic plan for commercialization of EOS data, define a procedure for commercial users within the EOS data stream, and develop an Earth Observations Commercial Applications Program-like demonstration program within NASA using EOS simulated data.

  17. Model Predictive Control Based Motion Drive Algorithm for a Driving Simulator

    NASA Astrophysics Data System (ADS)

    Rehmatullah, Faizan

    In this research, we develop a model predictive control based motion drive algorithm for the driving simulator at Toronto Rehabilitation Institute. Motion drive algorithms exploit the limitations of the human vestibular system to formulate a perception of motion within the constrained workspace of a simulator. In the absence of visual cues, the human perception system is unable to distinguish between acceleration and the force of gravity. The motion drive algorithm determines control inputs to displace the simulator platform, and by using the resulting inertial forces and angular rates, creates the perception of motion. By using model predictive control, we can optimize the use of simulator workspace for every maneuver while simulating the vehicle perception. With the ability to handle nonlinear constraints, the model predictive control allows us to incorporate workspace limitations.

  18. Accuracy of the lattice-Boltzmann method using the Cell processor

    NASA Astrophysics Data System (ADS)

    Harvey, M. J.; de Fabritiis, G.; Giupponi, G.

    2008-11-01

    Accelerator processors like the new Cell processor are extending the traditional platforms for scientific computation, allowing orders of magnitude more floating-point operations per second (flops) compared to standard central processing units. However, they currently lack double-precision support and support for some IEEE 754 capabilities. In this work, we develop a lattice-Boltzmann (LB) code to run on the Cell processor and test the accuracy of this lattice method on this platform. We run tests for different flow topologies, boundary conditions, and Reynolds numbers in the range Re=6 350 . In one case, simulation results show a reduced mass and momentum conservation compared to an equivalent double-precision LB implementation. All other cases demonstrate the utility of the Cell processor for fluid dynamics simulations. Benchmarks on two Cell-based platforms are performed, the Sony Playstation3 and the QS20/QS21 IBM blade, obtaining a speed-up factor of 7 and 21, respectively, compared to the original PC version of the code, and a conservative sustained performance of 28 gigaflops per single Cell processor. Our results suggest that choice of IEEE 754 rounding mode is possibly as important as double-precision support for this specific scientific application.

  19. A positional misalignment correction method for Fourier ptychographic microscopy based on simulated annealing

    NASA Astrophysics Data System (ADS)

    Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao

    2017-02-01

    Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.

  20. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    PubMed

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  1. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  2. Simulation videos presented in a blended learning platform to improve Australian nursing students' knowledge of family assessment.

    PubMed

    Coyne, Elisabeth; Frommolt, Valda; Rands, Hazel; Kain, Victoria; Mitchell, Marion

    2018-07-01

    The provision of simulation to enhance learning is becoming common practice as clinical placement becomes harder to secure within Bachelor of Nursing programs. The use of simulation videos within a blended learning platform enables students to view best practice and provides relevant links between theory and practice. Four simulation videos depicting family assessment viewed by a cohort of Australian undergraduate nursing students were evaluated. These videos were professionally developed using actors and experienced family nurses. Surveys were used to explore the students' self-assessed knowledge, confidence and learning preferences before and after exposure to blended learning resources. Students' engagement with the simulated videos was captured via the Learning Management System. Time 1 survey was completed by 163 students and Time 2 by 91 students. There was a significant increase in students' perceived knowledge of family theory Item 1 from a mean 4.13 (SD = 1.04) at Time 1 to 4.74 (SD = 0.89) (Z = -4.54 p < 0.001) at Time 2; Item 2- Knowledge of family assessment improved from mean 3.91 (SD = 1.02) at Time 1 to 4.90 (SD = 0.67) (Z = -7.86 p < 0.001) at Time 2. Also a significant increase in their confidence undertaking family assessment Item 5 from a mean 3.55 (SD = 1.14) at Time 1 to 4.44 (SD = 0.85) (Z = -6.12 p < 0.001) at Time 2. The students watched the videos an average of 1.9 times. The simulated videos as a blended learning resource increases the students' understanding of family assessment and is worth incorporating into future development of courses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    NASA Astrophysics Data System (ADS)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.

  4. Platform for Testing Robotic Vehicles on Simulated Terrain

    NASA Technical Reports Server (NTRS)

    Lindemann, Randel

    2006-01-01

    The variable terrain tilt platform (VTTP) is a means of providing simulated terrain for mobility testing of engineering models of the Mars Exploration Rovers. The VTTP could also be used for testing the ability of other robotic land vehicles (and small vehicles in general) to move across terrain under diverse conditions of slope and surface texture, and in the presence of obstacles of various sizes and shapes. The VTTP consists mostly of a 16-ft-(4.88-m)-square tilt table. The tilt can be adjusted to any angle between 0 (horizontal) and 25 . The test surface of the table can be left bare; can be covered with hard, high-friction material; or can be covered with sand, gravel, and/or other ground-simulating material or combination of materials to a thickness of as much as 6 in. (approx. 15 cm). Models of rocks, trenches, and other obstacles can be placed on the simulated terrain. For example, for one of the Mars- Rover tests, a high-friction mat was attached to the platform, then a 6-in.- ( 15 cm) deep layer of dry, loose beach sand was deposited on the mat. The choice of these two driving surface materials was meant to bound the range of variability of terrain that the rover was expected to encounter on the Martian surface. At each of the different angles at which tests were performed, for some of the tests, rocklike concrete obstacles ranging in height from 10 to 25 cm were placed in the path of the rover (see figure). The development of the VTTP was accompanied by development of a methodology of testing to characterize the performance and modes of failure of a vehicle under test. In addition to variations in slope, ground material, and obstacles, testing typically includes driving up-slope, down-slope, cross-slope, and at intermediate angles relative to slope. Testing includes recording of drive-motor currents, wheel speeds, articulation of suspension mechanisms, and the actual path of the vehicle over the simulated terrain. The collected data can be used to compute curves that summarize torque, speed, power-demand, and slip characteristics of wheels during the traverse.

  5. Developing a Framework for Control of Agile Aircraft Platforms in Autonomous Hover

    DTIC Science & Technology

    2009-03-01

    profiles. Two dynamical systems are considered, a scale YAK -54 aerobatic remote control aircraft and the Flexrotor concept developed by Aerovel. Both models...System [28]. . . . . . . 2 1.2 A YAK -54 in hover in the Real Flight RC Simulator [24]. . . . . . . . 3 1.3 The Aerovel Flexrotor concept...17 3.1 A three-view of the YAK -54 showing all geometry and dimensions (in mm) [15

  6. Fabrication and analysis of microfiber array platform for optogenetics with cellular resolution

    PubMed Central

    Chen, Jian-Hong; Chou, Ming-Yi; Pan, Chien-Yuan; Wang, Lon A.

    2016-01-01

    Optogenetics has emerged as a revolutionary technology especially for neuroscience and has advanced continuously over the past decade. Conventional approaches for patterned in vivo optical illumination have a limitation on the implanted device size and achievable spatio-temporal resolution. In this work, we developed a fabrication process for a microfiber array platform. Arrayed poly(methyl methacrylate) (PMMA) microfibers were drawn from a polymer solution and packaged with polydimethylsiloxane (PDMS). The exposed end face of a packaged microfiber was tuned to have a size corresponding to a single cell. To demonstrate its capability for single cell optogenetics, HEK293T cells expressing channelrhodopsin-2 (ChR2) were cultured on the platform and excited with UV laser. We could then observe an elevation in the intracellular Ca2+ concentrations due to the influx of Ca2+ through the activated ChR2 into the cytosol. The statistical and simulation results indicate that the proposed microfiber array platform can be used for single cell optogenetic applications. PMID:27895984

  7. Capstone: A Geometry-Centric Platform to Enable Physics-Based Simulation and Design of Systems

    DTIC Science & Technology

    2015-10-05

    foundation for the air-vehicle early design tool DaVinci being developed by CREATETM-AV project to enable development of associative models of air...CREATETM-AV solvers Kestrel [11] and Helios [16,17]. Furthermore, it is the foundation for the CREATETM-AV’s DaVinci [9] tool that provides a... Tools and Environments (CREATETM) program [6] aimed at developing a suite of high- performance physics-based computational tools addressing the needs

  8. A scalable parallel black oil simulator on distributed memory parallel computers

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Liu, Hui; Chen, Zhangxin

    2015-11-01

    This paper presents our work on developing a parallel black oil simulator for distributed memory computers based on our in-house parallel platform. The parallel simulator is designed to overcome the performance issues of common simulators that are implemented for personal computers and workstations. The finite difference method is applied to discretize the black oil model. In addition, some advanced techniques are employed to strengthen the robustness and parallel scalability of the simulator, including an inexact Newton method, matrix decoupling methods, and algebraic multigrid methods. A new multi-stage preconditioner is proposed to accelerate the solution of linear systems from the Newton methods. Numerical experiments show that our simulator is scalable and efficient, and is capable of simulating extremely large-scale black oil problems with tens of millions of grid blocks using thousands of MPI processes on parallel computers.

  9. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  10. Geant4-DNA: overview and recent developments

    NASA Astrophysics Data System (ADS)

    Štěpán, Václav

    Space travel and high altitude flights are inherently associated with prolonged exposure to cosmic and solar radiation. Understanding and simulation of radiation action on cellular and subcellular level contributes to precise assessment of the associated health risks and remains a challenge of today’s radiobiology research. The Geant4-DNA project (http://geant4-dna.org) aims at developing an experimentally validated simulation platform for modelling of the damage induced by ionizing radiation at DNA level. The platform is based on the Geant4 Monte Carlo simulation toolkit. This project extends specific functionalities of Geant4 in following areas: The step-by-step single scattering modelling of elementary physical interactions of electrons, protons, alpha particles and light ions with liquid water and DNA bases, for the so-called “physical” stage. The modelling of the “physico-chemical and chemical” stages corresponding to the production, the diffusion, the chemical reactions occurring between chemical species produced by water radiolysis, and to the radical attack on the biological targets. Physical and chemical stage simulations are combined with biological target models on several scales, from DNA double helix, through nucleosome, to chromatin segments and cell geometries. In addition, data mining clustering algorithms have been developed and optimised for the purpose of DNA damage scoring in simulated tracks. Experimental measurements on pBR322 plasmid DNA are being carried out in order to validate the Geant4-DNA models. The plasmid DNA has been irradiated in dry conditions by protons with energies from 100 keV to 30 MeV and in aqueous conditions, with and without scavengers, by 30 MeV protons, 290 MeV/u carbon and 500 MeV/u iron ions. Agarose gel electrophoresis combined with enzymatic treatment has been used to measure the resulting DNA damage. An overview of the developments undertaken by the Geant4-DNA collaboration including a description of software already available for download, as well as future perspectives, will be presented, on behalf of the Geant4-DNA Collaboration.

  11. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    NASA Astrophysics Data System (ADS)

    Uzun Ozsahin, D.; Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  12. Microsecond Simulations of DNA and Ion Transport in Nanopores with Novel Ion-Ion and Ion-Nucleotides Effective Potentials

    PubMed Central

    De Biase, Pablo M.; Markosyan, Suren; Noskov, Sergei

    2014-01-01

    We developed a novel scheme based on the Grand-Canonical Monte-Carlo/Brownian Dynamics (GCMC/BD) simulations and have extended it to studies of ion currents across three nanopores with the potential for ssDNA sequencing: solid-state nanopore Si3N4, α-hemolysin, and E111N/M113Y/K147N mutant. To describe nucleotide-specific ion dynamics compatible with ssDNA coarse-grained model, we used the Inverse Monte-Carlo protocol, which maps the relevant ion-nucleotide distribution functions from an all-atom MD simulations. Combined with the previously developed simulation platform for Brownian Dynamic (BD) simulations of ion transport, it allows for microsecond- and millisecond-long simulations of ssDNA dynamics in nanopore with a conductance computation accuracy that equals or exceeds that of all-atom MD simulations. In spite of the simplifications, the protocol produces results that agree with the results of previous studies on ion conductance across open channels and provide direct correlations with experimentally measured blockade currents and ion conductances that have been estimated from all-atom MD simulations. PMID:24738152

  13. Business Simulation Exercises in Small Business Management Education: Using Principles and Ideas from Action Learning

    ERIC Educational Resources Information Center

    Gabrielsson, Jonas; Tell, Joakim; Politis, Diamanto

    2010-01-01

    Recent calls to close the rigour-relevance gap in business school education have suggested incorporating principles and ideas from action learning in small business management education. In this paper we discuss how business simulation exercises can be used as a platform to trigger students' learning by providing them with a platform where they…

  14. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery.

    PubMed

    Dluska, Ewa; Markowska-Radomska, Agnieszka; Metera, Agata; Tudek, Barbara; Kosicki, Konrad

    2017-09-01

    Developing pH-responsive multiple emulsion platforms for effective glioblastoma multiforme therapy with reduced toxicity, a drug release study and modeling. Cancer cell line: U87 MG, multiple emulsions with pH-responsive biopolymer and encapsulated doxorubicin (DOX); preparation of multiple emulsions in a Couette-Taylor flow biocontactor, in vitro release study of DOX (fluorescence intensity analysis), in vitro cytotoxicity study (alamarBlue cell viability assay) and numerical simulation of DOX release rates. The multiple emulsions offered a high DOX encapsulation efficiency (97.4 ± 1%) and pH modulated release rates of a drug. Multiple emulsions with a low concentration of DOX (0.02 μM) exhibited broadly advanced cell (U87 MG) cytotoxicity than free DOX solution used at the same concentration. Emulsion platforms could be explored for potential delivery of chemotherapeutics in glioblastoma multiforme therapy.

  15. Conceptual Design of Simulation Models in an Early Development Phase of Lunar Spacecraft Simulator Using SMP2 Standard

    NASA Astrophysics Data System (ADS)

    Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.

  16. A Distributed Control System Prototyping Environment to Support Control Room Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less

  17. Active tensor magnetic gradiometer system final report for Project MM–1514

    USGS Publications Warehouse

    Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond

    2014-01-01

    An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.

  18. IgSimulator: a versatile immunosequencing simulator.

    PubMed

    Safonova, Yana; Lapidus, Alla; Lill, Jennie

    2015-10-01

    The recent introduction of next-generation sequencing technologies to antibody studies have resulted in a growing number of immunoinformatics tools for antibody repertoire analysis. However, benchmarking these newly emerging tools remains problematic since the gold standard datasets that are needed to validate these tools are typically not available. Since simulating antibody repertoires is often the only feasible way to benchmark new immunoinformatics tools, we developed the IgSimulator tool that addresses various complications in generating realistic antibody repertoires. IgSimulator's code has modular structure and can be easily adapted to new requirements to simulation. IgSimulator is open source and freely available as a C++ and Python program running on all Unix-compatible platforms. The source code is available from yana-safonova.github.io/ig_simulator. safonova.yana@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Applying Reduced Generator Models in the Coarse Solver of Parareal in Time Parallel Power System Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Nan; Dimitrovski, Aleksandar D; Simunovic, Srdjan

    2016-01-01

    The development of high-performance computing techniques and platforms has provided many opportunities for real-time or even faster-than-real-time implementation of power system simulations. One approach uses the Parareal in time framework. The Parareal algorithm has shown promising theoretical simulation speedups by temporal decomposing a simulation run into a coarse simulation on the entire simulation interval and fine simulations on sequential sub-intervals linked through the coarse simulation. However, it has been found that the time cost of the coarse solver needs to be reduced to fully exploit the potentials of the Parareal algorithm. This paper studies a Parareal implementation using reduced generatormore » models for the coarse solver and reports the testing results on the IEEE 39-bus system and a 327-generator 2383-bus Polish system model.« less

  20. Propagation of THz pulses in rectangular subwavelength dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Wu, Qiang; Zhang, Qi; Wang, Ride; Zhao, Wenjuan; Zhang, Deng; Pan, Chongpei; Qi, Jiwei; Xu, Jingjun

    2018-06-01

    Rectangular subwavelength waveguides are necessary for the development of micro/nanophotonic devices and on-chip platforms. Using a time-resolved imaging system, we studied the transient properties and the propagation modes of THz pulses in rectangular subwavelength dielectric waveguides. The dynamic process of THz pulses was systematically recorded to a movie. In addition, an anomalous group velocity dispersion was demonstrated in rectangular subwavelength waveguides. By using the effective index method, we theoretically calculated the modes in rectangular subwavelength waveguides, which agree well with the experiments and simulations. This work provides the opportunity to improve the analysis and design of the integrated platforms and photonic devices.

  1. Adaptive Tunable Laser Spectrometer for Space Applications

    NASA Technical Reports Server (NTRS)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  2. Research of TREETOPS Structural Dynamics Controls Simulation Upgrade

    NASA Technical Reports Server (NTRS)

    Yates, Rose M.

    1996-01-01

    Under the provisions of contract number NAS8-40194, which was entitled 'TREETOPS Structural Dynamics and Controls Simulation System Upgrade', Oakwood College contracted to produce an upgrade to the existing TREETOPS suite of analysis tools. This suite includes the main simulation program, TREETOPS, two interactive preprocessors, TREESET and TREEFLX, an interactive post processor, TREEPLOT, and an adjunct program, TREESEL. A 'Software Design Document', which provides descriptions of the argument lists and internal variables for each subroutine in the TREETOPS suite, was established. Additionally, installation guides for both DOS and UNIX platforms were developed. Finally, updated User's Manuals, as well as a Theory Manual, were generated.

  3. Urban search mobile platform modeling in hindered access conditions

    NASA Astrophysics Data System (ADS)

    Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.; Barankov, V. V.

    2018-05-01

    The article explores the control system simulation and the design of the experimental model of the rescue robot mobile platform. The functional interface, a structural functional diagram of the mobile platform control unit, and a functional control scheme for the mobile platform of secure robot were modeled. The task of design a mobile platform for urban searching in hindered access conditions is realized through the use of a mechanical basis with a chassis and crawler drive, a warning device, human heat sensors and a microcontroller based on Arduino platforms.

  4. Sliding Mode Control of Real-Time PNU Vehicle Driving Simulator and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Lee, Min Cheol; Park, Min Kyu; Yoo, Wan Suk; Son, Kwon; Han, Myung Chul

    This paper introduces an economical and effective full-scale driving simulator for study of human sensibility and development of new vehicle parts and its control. Real-time robust control to accurately reappear a various vehicle motion may be a difficult task because the motion platform is the nonlinear complex system. This study proposes the sliding mode controller with a perturbation compensator using observer-based fuzzy adaptive network (FAN). This control algorithm is designed to solve the chattering problem of a sliding mode control and to select the adequate fuzzy parameters of the perturbation compensator. For evaluating the trajectory control performance of the proposed approach, a tracking control of the developed simulator named PNUVDS is experimentally carried out. And then, the driving performance of the simulator is evaluated by using human perception and sensibility of some drivers in various driving conditions.

  5. C3 System Performance Simulation and User Manual. Getting Started: Guidelines for Users

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This document is a User's Manual describing the C3 Simulation capabilities. The subject work was designed to simulate the communications involved in the flight of a Remotely Operated Aircraft (ROA) using the Opnet software. Opnet provides a comprehensive development environment supporting the modeling of communication networks and distributed systems. It has tools for model design, simulation, data collection, and data analysis. Opnet models are hierarchical -- consisting of a project which contains node models which in turn contain process models. Nodes can be fixed, mobile, or satellite. Links between nodes can be physical or wireless. Communications are packet based. The model is very generic in its current form. Attributes such as frequency and bandwidth can easily be modified to better reflect a specific platform. The model is not fully developed at this stage -- there are still more enhancements to be added. Current issues are documented throughout this guide.

  6. Automated complex for research of electric drives control

    NASA Astrophysics Data System (ADS)

    Avlasko, P. V.; Antonenko, D. A.

    2018-05-01

    In the article, the automated complex intended for research of various control modes of electric motors including the inductor motor of double-way feed is described. As a basis of the created complex, the National Instruments platform is chosen. The operating controller built in a platform is delivered with an operating system of real-time for creation of systems of measurement and management. The software developed in the environment of LabVIEW consists of several connected modules which are in different elements of a complex. Besides the software for automated management by experimental installation, the program complex is developed for modelling of processes in the electric drive. As a result there is an opportunity to compare simulated and received experimentally transitional characteristics of the electric drive in various operating modes.

  7. The Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  8. Upset Simulation and Training Initiatives for U.S. Navy Commercial Derived Aircraft

    NASA Technical Reports Server (NTRS)

    Donaldson, Steven; Priest, James; Cunningham, Kevin; Foster, John V.

    2012-01-01

    Militarized versions of commercial platforms are growing in popularity due to many logistical benefits in the form of commercial off-the-shelf (COTS) parts, established production methods, and commonality for different certifications. Commercial data and best practices are often leveraged to reduce procurement and engineering development costs. While the developmental and cost reduction benefits are clear, these militarized aircraft are routinely operated in flight at significantly different conditions and in significantly different manners than for routine commercial flight. Therefore they are at a higher risk of flight envelope exceedance. This risk may lead to departure from controlled flight and/or aircraft loss1. Historically, the risk of departure from controlled flight for military aircraft has been mitigated by piloted simulation training and engineering analysis of typical aircraft response. High-agility military aircraft simulation databases are typically developed to include high angles of attack (AoA) and sideslip due to the dynamic nature of their missions and have been developed for many tactical configurations over the previous decades. These aircraft simulations allow for a more thorough understanding of the vehicle flight dynamics characteristics at high AoA and sideslip. In recent years, government sponsored research on transport airplane aerodynamic characteristics at high angles of attack has produced a growing understanding of stall/post-stall behavior. This research along with recent commercial airline training initiatives has resulted in improved understanding of simulator-based training requirements and simulator model fidelity.2-5 In addition, inflight training research over the past decade has produced a database of pilot performance and recurrency metrics6. Innovative solutions to aerodynamically model large commercial aircraft for upset conditions such as high AoA, high sideslip, and ballistic damage, as well as capability to accurately account for scaling factors, is necessary to develop realistic engineering and training simulations. Such simulations should significantly reduce the risk of departure from controlled flight, loss of aircraft, and ease the airworthiness certification process. The characteristics of commercial derivative aircraft are exemplified by the P-8A Multi-mission Maritime Aircraft (MMA) aircraft, and the largest benefits of initial investigation are likely to be yielded from this platform. The database produced would also be utilized by flight dynamics engineers as a means to further develop and investigate vehicle flight characteristics as mission tactics evolve through the years ahead. This paper will describe ongoing efforts by the U.S. Navy to develop a methodology for simulation and training for large commercial-derived transport aircraft at unusual attitudes, typically experienced during an aircraft upset. This methodology will be applied to a representative Navy aircraft (P-8A) and utilized to develop a robust simulation that should accurately represent aircraft response in these extremes. Simulation capabilities would then extend to flight dynamics analysis and simulation, as well as potential training applications. Recent evaluations of integrated academic, ground-based simulation, and in-flight upset training will be described along with important lessons learned, specific to military requirements.

  9. Generalized DSS shell for developing simulation and optimization hydro-economic models of complex water resources systems

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio; Harou, Julien J.; Andreu, Joaquin

    2013-04-01

    Hydrologic-economic models allow integrated analysis of water supply, demand and infrastructure management at the river basin scale. These models simultaneously analyze engineering, hydrology and economic aspects of water resources management. Two new tools have been designed to develop models within this approach: a simulation tool (SIM_GAMS), for models in which water is allocated each month based on supply priorities to competing uses and system operating rules, and an optimization tool (OPT_GAMS), in which water resources are allocated optimally following economic criteria. The characterization of the water resource network system requires a connectivity matrix representing the topology of the elements, generated using HydroPlatform. HydroPlatform, an open-source software platform for network (node-link) models, allows to store, display and export all information needed to characterize the system. Two generic non-linear models have been programmed in GAMS to use the inputs from HydroPlatform in simulation and optimization models. The simulation model allocates water resources on a monthly basis, according to different targets (demands, storage, environmental flows, hydropower production, etc.), priorities and other system operating rules (such as reservoir operating rules). The optimization model's objective function is designed so that the system meets operational targets (ranked according to priorities) each month while following system operating rules. This function is analogous to the one used in the simulation module of the DSS AQUATOOL. Each element of the system has its own contribution to the objective function through unit cost coefficients that preserve the relative priority rank and the system operating rules. The model incorporates groundwater and stream-aquifer interaction (allowing conjunctive use simulation) with a wide range of modeling options, from lumped and analytical approaches to parameter-distributed models (eigenvalue approach). Such functionality is not typically included in other water DSS. Based on the resulting water resources allocation, the model calculates operating and water scarcity costs caused by supply deficits based on economic demand functions for each demand node. The optimization model allocates the available resource over time based on economic criteria (net benefits from demand curves and cost functions), minimizing the total water scarcity and operating cost of water use. This approach provides solutions that optimize the economic efficiency (as total net benefit) in water resources management over the optimization period. Both models must be used together in water resource planning and management. The optimization model provides an initial insight on economically efficient solutions, from which different operating rules can be further developed and tested using the simulation model. The hydro-economic simulation model allows assessing economic impacts of alternative policies or operating criteria, avoiding the perfect foresight issues associated with the optimization. The tools have been applied to the Jucar river basin (Spain) in order to assess the economic results corresponding to the current modus operandi of the system and compare them with the solution from the optimization that maximizes economic efficiency. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536) and the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (CGL2009-13238-C02-01 and CGL2009-13238-C02-02).

  10. 3D Biomimetic Platform

    NASA Technical Reports Server (NTRS)

    Scott Carnell, Lisa A. (Inventor)

    2017-01-01

    An apparatus and method that utilizes a radiation source and a simulated microgravity to provide combined stressors. The response of cells/bacteria/viruses and/or other living matter to the combined stressors can be evaluated to predict the effects of extended space missions. The apparatus and method can also be utilized to study diseases and to develop new treatments and vaccinations.

  11. A Study of Umbilical Communication Interface of Simulator Kernel to Enhance Visibility and Controllability

    NASA Astrophysics Data System (ADS)

    Koo, Cheol Hea; Lee, Hoon Hee; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    In aerospace research and practical development area, increasing the usage of simulation in software development, component design and system operation has been maintained and the increasing speed getting faster. This phenomenon can be found from the easiness of handling of simulation and the powerfulness of the output from the simulation. Simulation brings lots of benefit from the several characteristics of it as following, - easy to handle ; it is never broken or damaged by mistake - never wear out ; it is never getting old - cost effective ; once it is built, it can be distributed over 100 ~ 1000 people GenSim (Generic Simulator) which is developing by KARI and compatible with ESA SMP standard provides such a simulation platform to support flight software validation and mission operation verification. User interface of GenSim is shown in Figure 1 [1,2]. As shown in Figure 1, as most simulation platform typically has, GenSim has GRD (Graphical Display) and AND (Alpha Numeric Display). But frequently more complex and powerful handling of the simulated data is required at the actual system validation for example mission operation. In Figure 2, system simulation result of COMS (Communication, Ocean, and Meteorological Satellite, launched at June 28 2008) is being drawn by Celestia 3D program. In this case, the needed data from Celestia is given by one of the simulation model resident in system simulator through UDP network connection in this case. But the requirement of displaying format, data size, and communication rate is variable so developer has to manage the connection protocol manually at each time and each case. It brings a chaos in the simulation model design and development, also to the performance issue at last. Performance issue is happen when the required data magnitude is higher than the capacity of simulation kernel to process the required data safely. The problem is that the sending data to a visualization tool such as celestia is given by a simulation model not kernel. Because the simulation model has no way to know about the status of simulation kernel load to process simulation events, as the result the simulation model sends the data as frequent as needed. This story may make many potential problems like lack of response, failure of meeting deadline and data integrity problem with the model data during the simulation. SIMSAT and EuroSim gives a warning message if the user request event such as printing log can't be processed as planned or requested. As the consequence the requested event will be delayed or not be able to be processed, and it means that this phenomenon may violate the planned deadline. In most soft real time simulation, this can be neglected and just make a little inconvenience of users. But it shall be noted that if the user request is not managed properly at some critical situation, the simulation results may be ended with a mess and chaos. As we traced the disadvantages of what simulation model provide the user request, simulation model is not appropriate to provide a service for such user request. This kind of work shall be minimized as much as possible.

  12. An open source web interface for linking models to infrastructure system databases

    NASA Astrophysics Data System (ADS)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  13. GIS-Based Noise Simulation Open Source Software: N-GNOIS

    NASA Astrophysics Data System (ADS)

    Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh

    2015-12-01

    Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.

  14. Contributions of Platform Motion to Simulator Training Effectiveness: Study II--Aerobatics. Interim Report for Period March 1976-November 1977.

    ERIC Educational Resources Information Center

    Martin, Elizabeth L.; Waag, Wayne L.

    A transfer-of-training design was used to evaluate the contributions of simulator training with synergistic six-degrees-of-freedom platform motion to aerobatic skills acquisition in the novice pilot. Thirty-six undergraduate pilot trainees were randomly assigned to one of three treatment groups: motion, no-motion, and control. Those in the control…

  15. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  16. Xyce Parallel Electronic Simulator Users Guide Version 6.2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. Trademarks The information herein is subject to change without notice. Copyright c 2002-2014 Sandia Corporation. All rights reserved. Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Portions of the Xyce TM code are: Copyright c 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. Xyce 's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California. The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. All other trademarks are property of their respective owners. Contacts Bug Reports (Sandia only) http://joseki.sandia.gov/bugzilla http://charleston.sandia.gov/bugzilla World Wide Web http://xyce.sandia.gov http://charleston.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only)« less

  17. Xyce Parallel Electronic Simulator Users Guide Version 6.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. Trademarks The information herein is subject to change without notice. Copyright c 2002-2015 Sandia Corporation. All rights reserved. Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Portions of the Xyce TM code are: Copyright c 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. Xyce 's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California. The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. All other trademarks are property of their respective owners. Contacts Bug Reports (Sandia only) http://joseki.sandia.gov/bugzilla http://charleston.sandia.gov/bugzilla World Wide Web http://xyce.sandia.gov http://charleston.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only)« less

  18. An evaluation of software tools for the design and development of cockpit displays

    NASA Technical Reports Server (NTRS)

    Ellis, Thomas D., Jr.

    1993-01-01

    The use of all-glass cockpits at the NASA Langley Research Center (LaRC) simulation facility has changed the means of design, development, and maintenance of instrument displays. The human-machine interface has evolved from a physical hardware device to a software-generated electronic display system. This has subsequently caused an increased workload at the facility. As computer processing power increases and the glass cockpit becomes predominant in facilities, software tools used in the design and development of cockpit displays are becoming both feasible and necessary for a more productive simulation environment. This paper defines LaRC requirements of a display software development tool and compares two available applications against these requirements. As a part of the software engineering process, these tools reduce development time, provide a common platform for display development, and produce exceptional real-time results.

  19. Countermeasure development using a formalised metric-based process

    NASA Astrophysics Data System (ADS)

    Barker, Laurence

    2008-10-01

    Guided weapons, are a potent threat to both air and surface platforms; to protect the platform, Countermeasures are often used to disrupt the operation of the tracking system. Development of effective techniques to defeat the guidance sensors is a complex activity. The countermeasure often responds to the behaviour of a responsive sensor system, creating a "closed loop" interaction. Performance assessment is difficult, and determining that enough knowledge exists to make a case that a platform is adequately protected is challenging. A set of metrics known as Countermeasure Confidence Levels (CCL) is described. These set out a measure of confidence in prediction of Countermeasure performance. The CCL scale provides, for the first time, a method to determine whether enough evidence exists to support development activity and introduction to operational service. Application of the CCL scale to development of a hypothetical countermeasure is described. This tracks how the countermeasure is matured from initial concept to in-service application. The purpose of each stage is described, together with a description of what work is likely to be needed. This will involve timely use of analysis, simulation, laboratory work and field testing. The use of the CCL scale at key decision points is described. These include procurement decision points, and entry-to-service decisions. Each stage requires collection of evidence of effectiveness. Completeness of the available evidence can be assessed, and duplication can be avoided. Read-across between concepts, weapon systems and platforms can be addressed and the impact of technology insertion can be assessed.

  20. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    PubMed

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  1. Virtual Observer Controller (VOC) for Small Unit Infantry Laser Simulation Training

    DTIC Science & Technology

    2007-04-01

    per-seat license when deployed. As a result, ViaVoice was abandoned early in development. Next, the SPHINX engine from Carnegie Mellon University was...examined. Sphinx is Java-based software, providing cross-platform functionality, and it is also free, open-source software. Software developers at...IST had experience using SPHINX , so it was initially selected it to be the VOC speech engine. After implementing a small portion of the VOC grammar

  2. ATOM - Accelerating therapeutics through opportunities in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcmahon, Benjamin Hamilton; Dotson, Paul Jeffrey

    Create a new paradigm of drug discovery that would reduce the time from an identified drug target to clinical candidate from the current ~6 years to just 12 months. ATOM will develop, test, and validate a multidisciplinary approach to drug discovery in which modern science, technology and engineering, supercomputing, simulations, data science, and artificial intelligence are highly integrated into a single drug-discovery platform that can ultimately be shared with the drug development community at-large.

  3. Robust integration schemes for junction-based modulators in a 200mm CMOS compatible silicon photonic platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe

    2017-05-01

    Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive electro-optic characterization of these components will be presented.

  4. Modular programming for tuberculosis control, the "AuTuMN" platform.

    PubMed

    Trauer, James McCracken; Ragonnet, Romain; Doan, Tan Nhut; McBryde, Emma Sue

    2017-08-07

    Tuberculosis (TB) is now the world's leading infectious killer and major programmatic advances will be needed if we are to meet the ambitious new End TB Targets. Although mathematical models are powerful tools for TB control, such models must be flexible enough to capture the complexity and heterogeneity of the global TB epidemic. This includes simulating a disease that affects age groups and other risk groups differently, has varying levels of infectiousness depending upon the organ involved and varying outcomes from treatment depending on the drug resistance pattern of the infecting strain. We adopted sound basic principles of software engineering to develop a modular software platform for simulation of TB control interventions ("AuTuMN"). These included object-oriented programming, logical linkage between modules and consistency of code syntax and variable naming. The underlying transmission dynamic model incorporates optional stratification by age, risk group, strain and organ involvement, while our approach to simulating time-variant programmatic parameters better captures the historical progression of the epidemic. An economic model is overlaid upon this epidemiological model which facilitates comparison between new and existing technologies. A "Model runner" module allows for predictions of future disease burden trajectories under alternative scenario situations, as well as uncertainty, automatic calibration, cost-effectiveness and optimisation. The model has now been used to guide TB control strategies across a range of settings and countries, with our modular approach enabling repeated application of the tool without the need for extensive modification for each application. The modular construction of the platform minimises errors, enhances readability and collaboration between multiple programmers and enables rapid adaptation to answer questions in a broad range of contexts without the need for extensive re-programming. Such features are particularly important in simulating an epidemic as complex and diverse as TB.

  5. A flexible simulation platform to quantify and manage emergency department crowding.

    PubMed

    Hurwitz, Joshua E; Lee, Jo Ann; Lopiano, Kenneth K; McKinley, Scott A; Keesling, James; Tyndall, Joseph A

    2014-06-09

    Hospital-based Emergency Departments are struggling to provide timely care to a steadily increasing number of unscheduled ED visits. Dwindling compensation and rising ED closures dictate that meeting this challenge demands greater operational efficiency. Using techniques from operations research theory, as well as a novel event-driven algorithm for processing priority queues, we developed a flexible simulation platform for hospital-based EDs. We tuned the parameters of the system to mimic U.S. nationally average and average academic hospital-based ED performance metrics and are able to assess a variety of patient flow outcomes including patient door-to-event times, propensity to leave without being seen, ED occupancy level, and dynamic staffing and resource use. The causes of ED crowding are variable and require site-specific solutions. For example, in a nationally average ED environment, provider availability is a surprising, but persistent bottleneck in patient flow. As a result, resources expended in reducing boarding times may not have the expected impact on patient throughput. On the other hand, reallocating resources into alternate care pathways can dramatically expedite care for lower acuity patients without delaying care for higher acuity patients. In an average academic ED environment, bed availability is the primary bottleneck in patient flow. Consequently, adjustments to provider scheduling have a limited effect on the timeliness of care delivery, while shorter boarding times significantly reduce crowding. An online version of the simulation platform is available at http://spark.rstudio.com/klopiano/EDsimulation/. In building this robust simulation framework, we have created a novel decision-support tool that ED and hospital managers can use to quantify the impact of proposed changes to patient flow prior to implementation.

  6. DCMS: A data analytics and management system for molecular simulation.

    PubMed

    Kumar, Anand; Grupcev, Vladimir; Berrada, Meryem; Fogarty, Joseph C; Tu, Yi-Cheng; Zhu, Xingquan; Pandit, Sagar A; Xia, Yuni

    Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data volumes and their intensive interactions impose significant challenges for data accessing, managing, and analysis. To date, existing MS software systems fall short on storage and handling of MS data, mainly because of the missing of a platform to support applications that involve intensive data access and analytical process. In this paper, we present the database-centric molecular simulation (DCMS) system our team developed in the past few years. The main idea behind DCMS is to store MS data in a relational database management system (DBMS) to take advantage of the declarative query interface ( i.e. , SQL), data access methods, query processing, and optimization mechanisms of modern DBMSs. A unique challenge is to handle the analytical queries that are often compute-intensive. For that, we developed novel indexing and query processing strategies (including algorithms running on modern co-processors) as integrated components of the DBMS. As a result, researchers can upload and analyze their data using efficient functions implemented inside the DBMS. Index structures are generated to store analysis results that may be interesting to other users, so that the results are readily available without duplicating the analysis. We have developed a prototype of DCMS based on the PostgreSQL system and experiments using real MS data and workload show that DCMS significantly outperforms existing MS software systems. We also used it as a platform to test other data management issues such as security and compression.

  7. Trans-oceanic Remote Power Hardware-in-the-Loop: Multi-site Hardware, Integrated Controller, and Electric Network Co-simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel

    Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less

  8. Trans-oceanic Remote Power Hardware-in-the-Loop: Multi-site Hardware, Integrated Controller, and Electric Network Co-simulation

    DOE PAGES

    Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel; ...

    2017-07-24

    Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less

  9. Pulse!!: a model for research and development of virtual-reality learning in military medical education and training.

    PubMed

    Dunne, James R; McDonald, Claudia L

    2010-07-01

    Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.

  10. Design and implementation of laser target simulator in hardware-in-the-loop simulation system based on LabWindows/CVI and RTX

    NASA Astrophysics Data System (ADS)

    Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong

    2016-11-01

    In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.

  11. Editorial: Challenges for the usability of AR and VR for clinical neurosurgical procedures.

    PubMed

    de Ribaupierre, Sandrine; Eagleson, Roy

    2017-10-01

    There are a number of challenges that must be faced when trying to develop AR and VR-based Neurosurgical simulators, Surgical Navigation Platforms, and "Smart OR" systems. Trying to simulate an operating room environment and surgical tasks in Augmented and Virtual Reality is a challenge many are attempting to solve, in order to train surgeons or help them operate. What are some of the needs of the surgeon, and what are the challenges encountered (human computer interface, perception, workflow, etc). We discuss these tradeoffs and conclude with critical remarks.

  12. Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboud, C.; Premel, D.; Lesselier, D.

    2007-03-21

    Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.

  13. Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations

    NASA Astrophysics Data System (ADS)

    Reboud, C.; Prémel, D.; Lesselier, D.; Bisiaux, B.

    2007-03-01

    Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.

  14. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    PubMed

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  15. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    PubMed Central

    Cheung, Kit; Schultz, Simon R.; Luk, Wayne

    2016-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542

  16. Seismic waveform modeling over cloud

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  17. MetaNET--a web-accessible interactive platform for biological metabolic network analysis.

    PubMed

    Narang, Pankaj; Khan, Shawez; Hemrom, Anmol Jaywant; Lynn, Andrew Michael

    2014-01-01

    Metabolic reactions have been extensively studied and compiled over the last century. These have provided a theoretical base to implement models, simulations of which are used to identify drug targets and optimize metabolic throughput at a systemic level. While tools for the perturbation of metabolic networks are available, their applications are limited and restricted as they require varied dependencies and often a commercial platform for full functionality. We have developed MetaNET, an open source user-friendly platform-independent and web-accessible resource consisting of several pre-defined workflows for metabolic network analysis. MetaNET is a web-accessible platform that incorporates a range of functions which can be combined to produce different simulations related to metabolic networks. These include (i) optimization of an objective function for wild type strain, gene/catalyst/reaction knock-out/knock-down analysis using flux balance analysis. (ii) flux variability analysis (iii) chemical species participation (iv) cycles and extreme paths identification and (v) choke point reaction analysis to facilitate identification of potential drug targets. The platform is built using custom scripts along with the open-source Galaxy workflow and Systems Biology Research Tool as components. Pre-defined workflows are available for common processes, and an exhaustive list of over 50 functions are provided for user defined workflows. MetaNET, available at http://metanet.osdd.net , provides a user-friendly rich interface allowing the analysis of genome-scale metabolic networks under various genetic and environmental conditions. The framework permits the storage of previous results, the ability to repeat analysis and share results with other users over the internet as well as run different tools simultaneously using pre-defined workflows, and user-created custom workflows.

  18. Study of CFB Simulation Model with Coincidence at Multi-Working Condition

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, F.; Yang, Z. W.; Li, Z.; Ni, W. D.

    A circulating fluidized bed (CFB) two-stage simulation model was developed. To realize the model results coincident with the design value or real operation value at specified multi-working conditions and with capability of real-time calculation, only the main key processes were taken into account and the dominant factors were further abstracted out of these key processes. The simulation results showed a sound accordance at multi-working conditions, and confirmed the advantage of the two-stage model over the original single-stage simulation model. The combustion-support effect of secondary air was investigated using the two-stage model. This model provides a solid platform for investigating the pant-leg structured CFB furnace, which is now under design for a supercritical power plant.

  19. JGromacs: a Java package for analyzing protein simulations.

    PubMed

    Münz, Márton; Biggin, Philip C

    2012-01-23

    In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license .

  20. JGromacs: A Java Package for Analyzing Protein Simulations

    PubMed Central

    2011-01-01

    In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. Availability: JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license. PMID:22191855

  1. SCA Waveform Development for Space Telemetry

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  2. Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2013-01-01

    With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results frommore » experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.« less

  3. Cloud computing and validation of expandable in silico livers.

    PubMed

    Ropella, Glen E P; Hunt, C Anthony

    2010-12-03

    In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.

  4. Advancements of in-flight mass moment of inertia and structural deflection algorithms for satellite attitude simulators

    NASA Astrophysics Data System (ADS)

    Wright, Jonathan W.

    Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.

  5. Development of the McGill simulator for endoscopic sinus surgery: a new high-fidelity virtual reality simulator for endoscopic sinus surgery.

    PubMed

    Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A

    2014-01-01

    The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.

  6. Investigating structure-property relationships of biomineralized calcium phosphate compounds as fluorescent quenching-recovery platform

    NASA Astrophysics Data System (ADS)

    Wang, Liuzheng; He, Xiang; Zhang, Wei; Liu, Yong; Banks, Craig E.; Zhang, Ying

    2018-02-01

    The structure-property relationship between biomineralized calcium phosphate compounds upon a fluorescent quenching-recovery platform and their distinct crystalline structure and surficial functional groups are investigated. A fluorescence-based sensing platform is shown to be viable for the sensing of 8-hydroxy-2-deoxy-guanosine in simulated systems.

  7. A stochastic Markov chain approach for tennis: Monte Carlo simulation and modeling

    NASA Astrophysics Data System (ADS)

    Aslam, Kamran

    This dissertation describes the computational formulation of probability density functions (pdfs) that facilitate head-to-head match simulations in tennis along with ranking systems developed from their use. A background on the statistical method used to develop the pdfs , the Monte Carlo method, and the resulting rankings are included along with a discussion on ranking methods currently being used both in professional sports and in other applications. Using an analytical theory developed by Newton and Keller in [34] that defines a tennis player's probability of winning a game, set, match and single elimination tournament, a computational simulation has been developed in Matlab that allows further modeling not previously possible with the analytical theory alone. Such experimentation consists of the exploration of non-iid effects, considers the concept the varying importance of points in a match and allows an unlimited number of matches to be simulated between unlikely opponents. The results of these studies have provided pdfs that accurately model an individual tennis player's ability along with a realistic, fair and mathematically sound platform for ranking them.

  8. The Osseus platform: a prototype for advanced web-based distributed simulation

    NASA Astrophysics Data System (ADS)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  9. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    PubMed Central

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  10. Dynamic control of a moving platform using the CAREN system to optimize walking in virtual reality environments.

    PubMed

    Makssoud, Hassan El; Richards, Carol L; Comeau, François

    2009-01-01

    Virtual reality (VR) technology offers the opportunity to expose patients to complex physical environments without physical danger and thus provides a wide range of opportunities for locomotor training or the study of human postural and walking behavior. A VR-based locomotor training system has been developed for gait rehabilitation post-stroke. A clinical study has shown that persons after stroke are able to adapt and benefit from this novel system wherein they walk into virtual environments (VEs) on a self-paced treadmill mounted on a platform with 6 degrees of freedom. This platform is programmed to mimic changes in the terrain encountered in the VEs. While engaging in these VEs, excessive trunk movements and speed alterations have been observed, especially during the pitch perturbations accompanying uphill or downhill terrain changes. An in-depth study of the subject's behavior in relation to the platform movements revealed that the platform rotational axes need to be modified, as previously shown by Barton et al, and in addition did not consider the subject's position on the treadmill. The aim of this study was to determine an optimal solution to simulate walking in real life when engaging in VEs.

  11. Blood glucose level prediction based on support vector regression using mobile platforms.

    PubMed

    Reymann, Maximilian P; Dorschky, Eva; Groh, Benjamin H; Martindale, Christine; Blank, Peter; Eskofier, Bjoern M

    2016-08-01

    The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models. However, these approaches required a physiological model, representing the human body's response to insulin and glucose intake, or are not directly applicable to mobile platforms (smart phones, tablets). In this paper, we propose an algorithm for mobile platforms to predict blood glucose levels without the need for a physiological model. Using an online software simulator program, we trained a Support Vector Regression (SVR) model and exported the parameter settings to our mobile platform. The prediction accuracy of our mobile platform was evaluated with pre-recorded data of a type 1 diabetes patient. The blood glucose level was predicted with an error of 19 % compared to the true value. Considering the permitted error of commercially used devices of 15 %, our algorithm is the basis for further development of mobile prediction algorithms.

  12. Knowledge discovery through games and game theory

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Rhyne, Robert D.

    2001-03-01

    A fuzzy logic based expert system has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar platforms. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. The initial version of the algorithm was optimized using a genetic algorithm employing fitness functions constructed based on expertise. A new approach is being explored that involves embedding the resource manager in a electronic game environment. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge, it calls a data mining function, a genetic algorithm, for data mining of the database as required. The game allows easy evaluation of the information mined in the second step. The measure of effectiveness (MOE) for re-optimization is discussed. The mined information is extremely valuable as shown through demanding scenarios.

  13. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  14. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.

    PubMed

    Shi, Chaoyang; Kojima, Masahiro; Anzai, Hitomi; Tercero, Carlos; Ikeda, Seiichi; Ohta, Makoto; Fukuda, Toshio; Arai, Fumihito; Najdovski, Zoran; Negoro, Makoto; Irie, Keiko

    2013-06-01

    The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery. Copyright © 2013 John Wiley & Sons, Ltd.

  15. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    NASA Astrophysics Data System (ADS)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  16. Validating Pseudo-dynamic Source Models against Observed Ground Motion Data at the SCEC Broadband Platform, Ver 16.5

    NASA Astrophysics Data System (ADS)

    Song, S. G.

    2016-12-01

    Simulation-based ground motion prediction approaches have several benefits over empirical ground motion prediction equations (GMPEs). For instance, full 3-component waveforms can be produced and site-specific hazard analysis is also possible. However, it is important to validate them against observed ground motion data to confirm their efficiency and validity before practical uses. There have been community efforts for these purposes, which are supported by the Broadband Platform (BBP) project at the Southern California Earthquake Center (SCEC). In the simulation-based ground motion prediction approaches, it is a critical element to prepare a possible range of scenario rupture models. I developed a pseudo-dynamic source model for Mw 6.5-7.0 by analyzing a number of dynamic rupture models, based on 1-point and 2-point statistics of earthquake source parameters (Song et al. 2014; Song 2016). In this study, the developed pseudo-dynamic source models were tested against observed ground motion data at the SCEC BBP, Ver 16.5. The validation was performed at two stages. At the first stage, simulated ground motions were validated against observed ground motion data for past events such as the 1992 Landers and 1994 Northridge, California, earthquakes. At the second stage, they were validated against the latest version of empirical GMPEs, i.e., NGA-West2. The validation results show that the simulated ground motions produce ground motion intensities compatible with observed ground motion data at both stages. The compatibility of the pseudo-dynamic source models with the omega-square spectral decay and the standard deviation of the simulated ground motion intensities are also discussed in the study

  17. Developing a calibrated CONUS-wide watershed-scale simulation platform for quantifying the influence of different sources of uncertainty on streamflow forecast skill

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Sampson, K. M.; Wood, A. W.; Hopson, T. M.; Brekke, L. D.; Arnold, J.; Raff, D. A.; Clark, M. P.

    2013-12-01

    Skill in model-based hydrologic forecasting depends on the ability to estimate a watershed's initial moisture and energy conditions, to forecast future weather and climate inputs, and on the quality of the hydrologic model's representation of watershed processes. The impact of these factors on prediction skill varies regionally, seasonally, and by model. We are investigating these influences using a watershed simulation platform that spans the continental US (CONUS), encompassing a broad range of hydroclimatic variation, and that uses the current simulation models of National Weather Service streamflow forecasting operations. The first phase of this effort centered on the implementation and calibration of the SNOW-17 and Sacramento soil moisture accounting (SAC-SMA) based hydrologic modeling system for a range of watersheds. The base configuration includes 630 basins in the United States Geological Survey's Hydro-Climatic Data Network 2009 (HCDN-2009, Lins 2012) conterminous U.S. basin subset. Retrospective model forcings were derived from Daymet (http://daymet.ornl.gov/), and where available, a priori parameter estimates were based on or compared with the operational NWS model parameters. Model calibration was accomplished by several objective, automated strategies, including the shuffled complex evolution (SCE) optimization approach developed within the NWS in the early 1990s (Duan et al. 1993). This presentation describes outcomes from this effort, including insights about measuring simulation skill, and on relationships between simulation skill and model parameters, basin characteristics (climate, topography, vegetation, soils), and the quality of forcing inputs. References: %Z Thornton, P.; Thornton, M.; Mayer, B.; Wilhelmi, N.; Wei, Y.; Devarakonda, R; Cook, R. Daymet: Daily Surface Weather on a 1 km Grid for North America. 1980-2008; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2012; Volume 10.

  18. The application of a Web-geographic information system for improving urban water cycle modelling.

    PubMed

    Mair, M; Mikovits, C; Sengthaler, M; Schöpf, M; Kinzel, H; Urich, C; Kleidorfer, M; Sitzenfrei, R; Rauch, W

    2014-01-01

    Research in urban water management has experienced a transition from traditional model applications to modelling water cycles as an integrated part of urban areas. This includes the interlinking of models of many research areas (e.g. urban development, socio-economy, urban water management). The integration and simulation is realized in newly developed frameworks (e.g. DynaMind and OpenMI) and often assumes a high knowledge in programming. This work presents a Web based urban water management modelling platform which simplifies the setup and usage of complex integrated models. The platform is demonstrated with a small application example on a case study within the Alpine region. The used model is a DynaMind model benchmarking the impact of newly connected catchments on the flooding behaviour of an existing combined sewer system. As a result the workflow of the user within a Web browser is demonstrated and benchmark results are shown. The presented platform hides implementation specific aspects behind Web services based technologies such that the user can focus on his main aim, which is urban water management modelling and benchmarking. Moreover, this platform offers a centralized data management, automatic software updates and access to high performance computers accessible with desktop computers and mobile devices.

  19. VOLCWORKS: A suite for optimization of hazards mapping

    NASA Astrophysics Data System (ADS)

    Delgado Granados, H.; Ramírez Guzmán, R.; Villareal Benítez, J. L.; García Sánchez, T.

    2012-04-01

    Making hazards maps is a process linking basic science, applied science and engineering for the benefit of the society. The methodologies for hazards maps' construction have evolved enormously together with the tools that allow the forecasting of the behavior of the materials produced by different eruptive processes. However, in spite of the development of tools and evolution of methodologies, the utility of hazards maps has not changed: prevention and mitigation of volcanic disasters. Integration of different tools for simulation of different processes for a single volcano is a challenge to be solved using software tools including processing, simulation and visualization techniques, and data structures in order to build up a suit that helps in the construction process starting from the integration of the geological data, simulations and simplification of the output to design a hazards/scenario map. Scientific visualization is a powerful tool to explore and gain insight into complex data from instruments and simulations. The workflow from data collection, quality control and preparation for simulations, to achieve visual and appropriate presentation is a process that is usually disconnected, using in most of the cases different applications for each of the needed processes, because it requires many tools that are not built for the solution of a specific problem, or were developed by research groups to solve particular tasks, but disconnected. In volcanology, due to its complexity, groups typically examine only one aspect of the phenomenon: ash dispersal, laharic flows, pyroclastic flows, lava flows, and ballistic projectile ejection, among others. However, when studying the hazards associated to the activity of a volcano, it is important to analyze all the processes comprehensively, especially for communication of results to the end users: decision makers and planners. In order to solve this problem and connect different parts of a workflow we are developing the suite VOLCWORKS, whose principle is to have a flexible-implementation architecture allowing rapid development of software to the extent specified by the needs including calculations, routines, or algorithms, both new and through redesign of available software in the volcanological community, but especially allowing to include new knowledge, models or software transferring them to software modules. The design is component-oriented platform, which allows incorporating particular solutions (routines, simulations, etc.), which can be concatenated for integration or highlighting information. The platform includes a graphical interface with capabilities for working in different visual environments that can be focused to the particular work of different types of users (researchers, lecturers, students, etc.). This platform aims to integrate simulation and visualization phases, incorporating proven tools (now isolated). VOLCWORKS can be used under different operating systems (Windows, Linux and Mac OS) and fit the context of use automatically and at runtime: in both tasks and their sequence, such as utilization of hardware resources (CPU, GPU, special monitors, etc.). The application has the ability to run on a laptop or even in a virtual reality room with access to supercomputers.

  20. Time and Space Partitioning the EagleEye Reference Misson

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  1. Enhanced automated platform for 2D characterization of RFID communications

    NASA Astrophysics Data System (ADS)

    Vuza, Dan Tudor; Vlǎdescu, Marian

    2016-12-01

    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  2. A high data rate universal lattice decoder on FPGA

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Huang, Xinming; Kura, Swapna

    2005-06-01

    This paper presents the architecture design of a high data rate universal lattice decoder for MIMO channels on FPGA platform. A phost strategy based lattice decoding algorithm is modified in this paper to reduce the complexity of the closest lattice point search. The data dependency of the improved algorithm is examined and a parallel and pipeline architecture is developed with the iterative decoding function on FPGA and the division intensive channel matrix preprocessing on DSP. Simulation results demonstrate that the improved lattice decoding algorithm provides better bit error rate and less iteration number compared with the original algorithm. The system prototype of the decoder shows that it supports data rate up to 7Mbit/s on a Virtex2-1000 FPGA, which is about 8 times faster than the original algorithm on FPGA platform and two-orders of magnitude better than its implementation on a DSP platform.

  3. A spacecraft attitude and articulation control system design for the Comet Halley intercept mission

    NASA Technical Reports Server (NTRS)

    Key, R. W.

    1981-01-01

    An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.

  4. FVMS: A novel SiL approach on the evaluation of controllers for autonomous MAV

    NASA Astrophysics Data System (ADS)

    Sampaio, Rafael C. B.; Becker, Marcelo; Siqueira, Adriano A. G.; Freschi, Leonardo W.; Montanher, Marcelo P.

    The originality of this work is to propose a novel SiL (Software-in-the-Loop) platform using Microsoft Flight Simulator (MSFS) to assist control design regarding the stabilization problem found in © AscTec Pelican platform. Aerial Robots Team (USP/EESC/LabRoM/ART) has developed a custom C++/C# software named FVMS (Flight Variables Management System) that interfaces the communication between the virtual Pelican and the control algorithms allowing the control designer to perform fast full closed loop real time algorithms. Emulation of embedded sensors as well as the possibility to integrate OpenCV Optical Flow algorithms to a virtual downward camera makes the SiL even more reliable. More than a strictly numeric analysis, the proposed SiL platform offers an unique experience, simultaneously offering both dynamic and graphical responses. Performance of SiL algorithms is presented and discussed.

  5. The Schisto Track: A System for Gathering and Monitoring Epidemiological Surveys by Connecting Geographical Information Systems in Real Time

    PubMed Central

    2014-01-01

    Background Using the Android platform as a notification instrument for diseases and disorders forms a new alternative for computerization of epidemiological studies. Objective The objective of our study was to construct a tool for gathering epidemiological data on schistosomiasis using the Android platform. Methods The developed application (app), named the Schisto Track, is a tool for data capture and analysis that was designed to meet the needs of a traditional epidemiological survey. An initial version of the app was finished and tested in both real situations and simulations for epidemiological surveys. Results The app proved to be a tool capable of automation of activities, with data organization and standardization, easy data recovery (to enable interfacing with other systems), and totally modular architecture. Conclusions The proposed Schisto Track is in line with worldwide trends toward use of smartphones with the Android platform for modeling epidemiological scenarios. PMID:25099881

  6. The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms

    NASA Astrophysics Data System (ADS)

    Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert

    2018-01-01

    We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.

  7. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Wen; Yang, Zhaoqing; Copping, Andrea E.

    : As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3Dmore » sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Cheng, Liang; Chuah, Mooi Choo

    In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impactsmore » of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.« less

  9. Simulation Framework to Estimate the Performance of CO2 and O2 Sensing from Space and Airborne Platforms for the ASCENDS Mission Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Plitau, Denis; Prasad, Narasimha S.

    2012-01-01

    The Active Sensing of CO2 Emissions over Nights Days and Seasons (ASCENDS) mission recommended by the NRC Decadal Survey has a desired accuracy of 0.3% in carbon dioxide mixing ratio (XCO2) retrievals requiring careful selection and optimization of the instrument parameters. NASA Langley Research Center (LaRC) is investigating 1.57 micron carbon dioxide as well as the 1.26-1.27 micron oxygen bands for our proposed ASCENDS mission requirements investigation. Simulation studies are underway for these bands to select optimum instrument parameters. The simulations are based on a multi-wavelength lidar modeling framework being developed at NASA LaRC to predict the performance of CO2 and O2 sensing from space and airborne platforms. The modeling framework consists of a lidar simulation module and a line-by-line calculation component with interchangeable lineshape routines to test the performance of alternative lineshape models in the simulations. As an option the line-by-line radiative transfer model (LBLRTM) program may also be used for line-by-line calculations. The modeling framework is being used to perform error analysis, establish optimum measurement wavelengths as well as to identify the best lineshape models to be used in CO2 and O2 retrievals. Several additional programs for HITRAN database management and related simulations are planned to be included in the framework. The description of the modeling framework with selected results of the simulation studies for CO2 and O2 sensing is presented in this paper.

  10. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    PubMed

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  11. Synthetic Diagnostics Platform for Fusion Plasma and a Two-Dimensional Synthetic Electron Cyclotron Emission Imaging Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Lei

    Magnetic confinement fusion is one of the most promising approaches to achieve fusion energy. With the rapid increase of the computational power over the past decades, numerical simulation have become an important tool to study the fusion plasmas. Eventually, the numerical models will be used to predict the performance of future devices, such as the International Thermonuclear Experiment Reactor (ITER) or DEMO. However, the reliability of these models needs to be carefully validated against experiments before the results can be trusted. The validation between simulations and measurements is hard particularly because the quantities directly available from both sides are different.more » While the simulations have the information of the plasma quantities calculated explicitly, the measurements are usually in forms of diagnostic signals. The traditional way of making the comparison relies on the diagnosticians to interpret the measured signals as plasma quantities. The interpretation is in general very complicated and sometimes not even unique. In contrast, given the plasma quantities from the plasma simulations, we can unambiguously calculate the generation and propagation of the diagnostic signals. These calculations are called synthetic diagnostics, and they enable an alternate way to compare the simulation results with the measurements. In this dissertation, we present a platform for developing and applying synthetic diagnostic codes. Three diagnostics on the platform are introduced. The reflectometry and beam emission spectroscopy diagnostics measure the electron density, and the electron cyclotron emission diagnostic measures the electron temperature. The theoretical derivation and numerical implementation of a new two dimensional Electron cyclotron Emission Imaging code is discussed in detail. This new code has shown the potential to address many challenging aspects of the present ECE measurements, such as runaway electron effects, and detection of the cross phase between the electron temperature and density fluctuations.« less

  12. Across-Platform Imputation of DNA Methylation Levels Incorporating Nonlocal Information Using Penalized Functional Regression.

    PubMed

    Zhang, Guosheng; Huang, Kuan-Chieh; Xu, Zheng; Tzeng, Jung-Ying; Conneely, Karen N; Guan, Weihua; Kang, Jian; Li, Yun

    2016-05-01

    DNA methylation is a key epigenetic mark involved in both normal development and disease progression. Recent advances in high-throughput technologies have enabled genome-wide profiling of DNA methylation. However, DNA methylation profiling often employs different designs and platforms with varying resolution, which hinders joint analysis of methylation data from multiple platforms. In this study, we propose a penalized functional regression model to impute missing methylation data. By incorporating functional predictors, our model utilizes information from nonlocal probes to improve imputation quality. Here, we compared the performance of our functional model to linear regression and the best single probe surrogate in real data and via simulations. Specifically, we applied different imputation approaches to an acute myeloid leukemia dataset consisting of 194 samples and our method showed higher imputation accuracy, manifested, for example, by a 94% relative increase in information content and up to 86% more CpG sites passing post-imputation filtering. Our simulated association study further demonstrated that our method substantially improves the statistical power to identify trait-associated methylation loci. These findings indicate that the penalized functional regression model is a convenient and valuable imputation tool for methylation data, and it can boost statistical power in downstream epigenome-wide association study (EWAS). © 2016 WILEY PERIODICALS, INC.

  13. Energy Efficient High-Pressure Turbine Leakage Technology Report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1980-01-01

    The leakage test program was one of such supporting technology programs structured to provide guidance to the Energy Efficient Engine High Pressure Turbine Component Design Effort. Leakage reduction techniques were identified and evaluated. Test models were used to simulate component leak paths and to evaluate leakage reduction techniques. These models simulated the blade/disk attachment, the vane inner platform attachment, and the vane outer platform attachment combined with the blade outer airseal. Disk blade attachment testing indicated that leakage in this area could be reduced to very low levels by paying careful attention to the tolerances along the contact surface between the blade vibration damper and the blade platform contact surface. The aim of feather seal testing was to achieve a goal for an effective leakage gap of one mil (.001 inch) per inch of feather seal length. Results indicated that effective gaps even below the goal level were achievable by (1) maintaining close tolerances between feather seals and their slots to minimize end gaps and limit seal rotation, (2) avoiding feather seal overlap, and (3) minimizing feather seal intersections. W seals were shown to be effective leakage control devices. Wire rope, in its present state of development, was shown not to be an effective sealing concept for application to the component design.

  14. Quantum Monte Carlo for large chemical systems: implementing efficient strategies for petascale platforms and beyond.

    PubMed

    Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William

    2013-04-30

    Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible. Copyright © 2013 Wiley Periodicals, Inc.

  15. SiMon: Simulation Monitor for Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming

    2017-09-01

    Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.

  16. MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations.

    PubMed

    Hospital, Adam; Andrio, Pau; Fenollosa, Carles; Cicin-Sain, Damjan; Orozco, Modesto; Gelpí, Josep Lluís

    2012-05-01

    MDWeb and MDMoby constitute a web-based platform to help access to molecular dynamics (MD) in the standard and high-throughput regime. The platform provides tools to prepare systems from PDB structures mimicking the procedures followed by human experts. It provides inputs and can send simulations for three of the most popular MD packages (Amber, NAMD and Gromacs). Tools for analysis of trajectories, either provided by the user or retrieved from our MoDEL database (http://mmb.pcb.ub.es/MoDEL) are also incorporated. The platform has two ways of access, a set of web-services based on the BioMoby framework (MDMoby), programmatically accessible and a web portal (MDWeb). http://mmb.irbbarcelona.org/MDWeb; additional information and methodology details can be found at the web site ( http://mmb.irbbarcelona.org/MDWeb/help.php)

  17. Study on Vortex-Induced Motions of A New Type of Deep Draft Multi-Columns FDPSO

    NASA Astrophysics Data System (ADS)

    Gu, Jia-yang; Xie, Yu-lin; Zhao, Yuan; Li, Wen-juan; Tao, Yan-wu; Huang, Xiang-hong

    2018-03-01

    A numerical simulation and an experimental study on vortex-induced motion (VIM) of a new type of deep draft multi-columns floating drilling production, storage and offloading (FDPSO) are presented in this paper. The main dimension, the special variable cross-section column and the cabin arrangement of the octagonal pontoon are introduced based on the result. The numerical simulation is adapted to study the effects of current incidence angles and reduced velocities on this platform's sway motion response. The 300 m water depth equivalent truncated mooring system is adopted for the model tests. The model tests are carried out to check the reliability of numerical simulation. The results consist of surge, sway and yaw motions, as well as motion trajectories. The maximum sway amplitudes for different types of offshore platform is also studied. The main results show that the peak frequencies of sway motion under different current incidence angles and reduced velocities vary around the natural frequency. The analysis result of flow field indicates that the change of distribution of vortex in vertical presents significant influences on the VIM of platform. The trend of sway amplitude ratio curve of this new type FDPSO differs from the other types of platform. Under 45° current incidence angle, the sway amplitude of this new type of FDPSO is much smaller than those of other types of offshore platform at 4.4 ≤ V r ≤ 8.9. The typical `8' shape trajectory does not appear in the platform's motion trajectories.

  18. Network Reduction Algorithm for Developing Distribution Feeders for Real-Time Simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Nelson, Austin A; Prabakar, Kumaraguru

    As advanced grid-support functions (AGF) become more widely used in grid-connected photovoltaic (PV) inverters, utilities are increasingly interested in their impacts when implemented in the field. These effects can be understood by modeling feeders in real-time simulators and test PV inverters using power hardware-in-the-loop (PHIL) techniques. This paper presents a novel feeder model reduction algorithm using a ruin & reconstruct methodology that enables large feeders to be solved and operated on real-time computing platforms. Two Hawaiian Electric feeder models in Synergi Electric's load flow software were converted to reduced order models in OpenDSS, and subsequently implemented in the OPAL-RT real-timemore » digital testing platform. Smart PV inverters were added to the realtime model with AGF responses modeled after characterizing commercially available hardware inverters. Finally, hardware inverters were tested in conjunction with the real-time model using PHIL techniques so that the effects of AGFs on the feeders could be analyzed.« less

  19. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  20. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    NASA Astrophysics Data System (ADS)

    Torlapati, Jagadish; Prabhakar Clement, T.

    2013-01-01

    We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.

Top