Liaw, Sok Ying; Koh, Yiwen; Dawood, Rabiah; Kowitlawakul, Yanika; Zhou, Wentao; Lau, Siew Tiang
2014-03-01
Preparing nursing students for making the transition to graduate nurse is crucial for entry into practice. Final year student nurses at the National University of Singapore (NUS) are required to undergo a consolidated clinical practice to prepare them for their transition to graduate nurse. To describe the development, implementation and evaluation of a simulation program known as SIMulated Professional Learning Environment (SIMPLE) in preparing the final year student nurses for their clinical practicum in transition to graduate nurse practice. A set of simulation features and best practices were used as conceptual framework to develop and implement the simulation program. 94 final year student nurses participated in the 15-hour SIMPLE program that incorporated multiple simulation scenarios based on actual ward clinical practices. Pre and post-tests were conducted to assess the students' preparedness for their clinical practice in transition to graduate nurse practice. The students also completed a satisfaction questionnaire and open questions to evaluate their simulation experiences. The student nurses demonstrated a significant improvement (t=12.06, p<0.01) on post-test score (mean=117.21, SD=15.17) from pre-test score (mean=97.86, SD=15.08) for their perceived preparedness towards their clinical practicum in transition to graduate nurse practice. They were highly satisfied with their simulation learning. Themes emerged from the comments on the most valuable aspects of the SIMPLE program and ways to improve the program. The study provided evidences on the effectiveness of the SIMPLE program in enhancing the students' preparedness for their transition to graduate nurse practice. A key success of the SIMPLE program was the used of simulation strategy and the involvement of practicing nurses that closely linked the students with the realities of current nursing practice to prepare them for the role of staff nurses. Copyright © 2013 Elsevier Ltd. All rights reserved.
ISS Robotic Student Programming
NASA Technical Reports Server (NTRS)
Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.
2016-01-01
The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.
Fusion Simulation Program Definition. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, John R.
2012-09-05
We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.
Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems
NASA Technical Reports Server (NTRS)
Switzer, George F.; Britt, Charles L.
1996-01-01
This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.
ERIC Educational Resources Information Center
Green, Vicki A.
The report describes a study designed to ascertain the effectiveness of 12 board game simulations developed and used in a fifth grade Canadian history program. Questions examined include: 1) Does the use of board game simulations increase group participation and cultural, environmental, and historical awareness? 2) Does use of the games promote…
Optimization Research of Generation Investment Based on Linear Programming Model
NASA Astrophysics Data System (ADS)
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
FOCUS: a fire management planning system -- final report
Frederick W. Bratten; James B. Davis; George T. Flatman; Jerold W. Keith; Stanley R. Rapp; Theodore G. Storey
1981-01-01
FOCUS (Fire Operational Characteristics Using Simulation) is a computer simulation model for evaluating alternative fire management plans. This final report provides a broad overview of the FOCUS system, describes two major modules-fire suppression and cost, explains the role in the system of gaming large fires, and outlines the support programs and ways of...
Survey of outcomes in a faculty development program on simulation pedagogy.
Roh, Young Sook; Kim, Mi Kang; Tangkawanich, Thitiarpha
2016-06-01
Although many nursing programs use simulation as a teaching-learning modality, there are few systematic approaches to help nursing educators learn this pedagogy. This study evaluates the effects of a simulation pedagogy nursing faculty development program on participants' learning perceptions using a retrospective pre-course and post-course design. Sixteen Thai participants completed a two-day nursing faculty development program on simulation pedagogy. Thirteen questionnaires were used in the final analysis. The participants' self-perceived learning about simulation teaching showed significant post-course improvement. On a five-point Likert scale, the composite mean attitude, subjective norm, and perceived behavioral control scores, as well as intention to use a simulator, showed a significant post-course increase. A faculty development program on simulation pedagogy induced favorable learning and attitudes. Further studies must test how faculty performance affects the cognitive, emotional, and social dimensions of learning in a simulation-based learning domain. © 2015 Wiley Publishing Asia Pty Ltd.
Solar heating and cooling system design and development
NASA Technical Reports Server (NTRS)
1978-01-01
The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.
User's guide to resin infusion simulation program in the FORTRAN language
NASA Technical Reports Server (NTRS)
Weideman, Mark H.; Hammond, Vince H.; Loos, Alfred C.
1992-01-01
RTMCL is a user friendly computer code which simulates the manufacture of fabric composites by the resin infusion process. The computer code is based on the process simulation model described in reference 1. Included in the user's guide is a detailed step by step description of how to run the program and enter and modify the input data set. Sample input and output files are included along with an explanation of the results. Finally, a complete listing of the program is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-12-04
The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)
ERIC Educational Resources Information Center
Macro Systems, Inc., Silver Spring, MD.
This final report describes the development of eight computer based science simulations designed for use with middle school mainstreamed students having learning disabilities or mild mental retardation. The total program includes software, a teacher's manual, 3 videos, and a set of 30 activity worksheets. Special features of the software for…
A trial of e-simulation of sudden patient deterioration (FIRST2ACT WEB) on student learning.
Bogossian, Fiona E; Cooper, Simon J; Cant, Robyn; Porter, Joanne; Forbes, Helen
2015-10-01
High-fidelity simulation pedagogy is of increasing importance in health professional education; however, face-to-face simulation programs are resource intensive and impractical to implement across large numbers of students. To investigate undergraduate nursing students' theoretical and applied learning in response to the e-simulation program-FIRST2ACT WEBTM, and explore predictors of virtual clinical performance. Multi-center trial of FIRST2ACT WEBTM accessible to students in five Australian universities and colleges, across 8 campuses. A population of 489 final-year nursing students in programs of study leading to license to practice. Participants proceeded through three phases: (i) pre-simulation-briefing and assessment of clinical knowledge and experience; (ii) e-simulation-three interactive e-simulation clinical scenarios which included video recordings of patients with deteriorating conditions, interactive clinical tasks, pop up responses to tasks, and timed performance; and (iii) post-simulation feedback and evaluation. Descriptive statistics were followed by bivariate analysis to detect any associations, which were further tested using standard regression analysis. Of 409 students who commenced the program (83% response rate), 367 undergraduate nursing students completed the web-based program in its entirety, yielding a completion rate of 89.7%; 38.1% of students achieved passing clinical performance across three scenarios, and the proportion achieving passing clinical knowledge increased from 78.15% pre-simulation to 91.6% post-simulation. Knowledge was the main independent predictor of clinical performance in responding to a virtual deteriorating patient R(2)=0.090, F(7, 352)=4.962, p<0.001. The use of web-based technology allows simulation activities to be accessible to a large number of participants and completion rates indicate that 'Net Generation' nursing students were highly engaged with this mode of learning. The web-based e-simulation program FIRST2ACTTM effectively enhanced knowledge, virtual clinical performance, and self-assessed knowledge, skills, confidence, and competence in final-year nursing students. Copyright © 2015 Elsevier Ltd. All rights reserved.
Glass fiber processing for the Moon/Mars program: Center director's discretionary fund final report
NASA Technical Reports Server (NTRS)
Tucker, D. S.; Ethridge, E.; Curreri, P.
1992-01-01
Glass fiber has been produced from two lunar soil simulants. These two materials simulate lunar mare soil and lunar highland soil compositions, respectively. Short fibers containing recrystallized areas were produced from the as-received simulants. Doping the highland simulant with 8 weight percent B2-O3 yielded a material which could be spun continuously. The effects of lunar gravity on glass fiber formation were studied utilizing NASA's KC-135 aircraft. Gravity was found to play a major role in final fiber diameter.
Simulating supersymmetry at the SSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, R.M.; Haber, H.E.
1984-08-01
Careful study of supersymmetric signatures at the SSC is required in order to distinguish them from Standard Model physics backgrounds. To this end, we have created an efficient, accurate computer program which simulates supersymmetric particle production and decay (or other new particles). We have incorporated the full matrix elements, keeping track of the polarizations of all intermediate states. (At this time hadronization of final-state partons is ignored). Using Monte Carlo techniques this program can generate any desired final-state distribution or individual events for Lego plots. Examples of the results of our study of supersymmetry at SSC are provided.
ERIC Educational Resources Information Center
Ellis, Richard
Volume IV of a study of program management procedures in the campus-based and Basic Educational Opportunity Grant (BEOG) programs deals with a set of simulated modifications in the statements made by BEOG applicants about their financial circumstances. Various kinds of misrepresentation of income, assets, and other factors are postulated, and the…
An extensive coronagraphic simulation applied to LBT
NASA Astrophysics Data System (ADS)
Vassallo, D.; Carolo, E.; Farinato, J.; Bergomi, M.; Bonavita, M.; Carlotti, A.; D'Orazi, V.; Greggio, D.; Magrin, D.; Mesa, D.; Pinna, E.; Puglisi, A.; Stangalini, M.; Verinaud, C.; Viotto, V.
2016-08-01
In this article we report the results of a comprehensive simulation program aimed at investigating coronagraphic capabilities of SHARK-NIR, a camera selected to proceed to the final design phase at Large Binocular Telescope. For the purpose, we developed a dedicated simulation tool based on physical optics propagation. The code propagates wavefronts through SHARK optical train in an end-to-end fashion and can implement any kind of coronagraph. Detection limits can be finally computed, exploring a wide range of Strehl values and observing conditions.
ERIC Educational Resources Information Center
Dragoset, Lisa; Gordon, Anne
2010-01-01
This report describes work using nationally representative 2005 data from the School Nutrition Dietary Assessment-III (SNDA-III) study to develop a simulation model to predict the potential implications of changes in policies or practices related to school meals and school food environments. The model focuses on three domains of outcomes: (1) the…
ERIC Educational Resources Information Center
Virginia Polytechnic Inst. and State Univ., Blacksburg.
Volume 3 of a three volume final report presents prototype job training plans developed as part of a research project which pilot tested a distributive education program for rural schools utilizing a retail store simulation plan. The plans are for 15 entry-level and 15 career-level jobs in seven categories of distributive business (department…
DOT National Transportation Integrated Search
2017-07-26
The datasets in this zip file are in support of FHWA-JPO-16-379, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...
ERIC Educational Resources Information Center
Larson, D. F.; Terry, C.
The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…
ERIC Educational Resources Information Center
Faconti, Victor; Epps, Robert
The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The Automated Instructional System designed for the ASUPT simulator was described in this report. The development of the Automated Instructional System for ASUPT was based upon…
Generalized Maintenance Trainer Simulator: Development of Hardware and Software. Final Report.
ERIC Educational Resources Information Center
Towne, Douglas M.; Munro, Allen
A general purpose maintenance trainer, which has the potential to simulate a wide variety of electronic equipments without hardware changes or new computer programs, has been developed and field tested by the Navy. Based on a previous laboratory model, the Generalized Maintenance Trainer Simulator (GMTS) is a relatively low cost trainer that…
NASA Technical Reports Server (NTRS)
Houck, J. A.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.
DOT National Transportation Integrated Search
2011-08-01
The Backing crash Countermeasures project, part of the U.S. Department of Transportation's Advanced Crash Avoidance Technologies (ACAT) program, developed a basic methodological framework and computerbased simulation model to estimate the effectiv...
Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation
NASA Technical Reports Server (NTRS)
Zwerneman, W. D.; Eller, B. G.
1994-01-01
For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.
Pre- and postprocessing for reservoir simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.
1991-05-01
This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syring, R.P.; Grubb, R.L.
1979-09-30
This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.
A microcomputer model for simulating pressurized flow in a storm sewer system : final report.
DOT National Transportation Integrated Search
1989-01-01
A review was made of several computer programs capable of simulating sewer flows under surcharge or pressurized flow conditions. A modified version of the EXTRAN module of the SYMM model, called PFSM, was developed and attached to the FHYA Pooled Fun...
Programming and machining of complex parts based on CATIA solid modeling
NASA Astrophysics Data System (ADS)
Zhu, Xiurong
2017-09-01
The complex parts of the use of CATIA solid modeling programming and simulation processing design, elaborated in the field of CNC machining, programming and the importance of processing technology. In parts of the design process, first make a deep analysis on the principle, and then the size of the design, the size of each chain, connected to each other. After the use of backstepping and a variety of methods to calculate the final size of the parts. In the selection of parts materials, careful study, repeated testing, the final choice of 6061 aluminum alloy. According to the actual situation of the processing site, it is necessary to make a comprehensive consideration of various factors in the machining process. The simulation process should be based on the actual processing, not only pay attention to shape. It can be used as reference for machining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syring, R.P.; Grubb, R.L.
1979-09-30
This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.
Automatic mathematical modeling for real time simulation program (AI application)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Purinton, Steve
1989-01-01
A methodology is described for automatic mathematical modeling and generating simulation models. The major objective was to create a user friendly environment for engineers to design, maintain, and verify their models; to automatically convert the mathematical models into conventional code for computation; and finally, to document the model automatically.
Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.
ERIC Educational Resources Information Center
Clymer, S. J.
Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…
Programs for Testing Processor-in-Memory Computing Systems
NASA Technical Reports Server (NTRS)
Katz, Daniel S.
2006-01-01
The Multithreaded Microbenchmarks for Processor-In-Memory (PIM) Compilers, Simulators, and Hardware are computer programs arranged in a series for use in testing the performances of PIM computing systems, including compilers, simulators, and hardware. The programs at the beginning of the series test basic functionality; the programs at subsequent positions in the series test increasingly complex functionality. The programs are intended to be used while designing a PIM system, and can be used to verify that compilers, simulators, and hardware work correctly. The programs can also be used to enable designers of these system components to examine tradeoffs in implementation. Finally, these programs can be run on non-PIM hardware (either single-threaded or multithreaded) using the POSIX pthreads standard to verify that the benchmarks themselves operate correctly. [POSIX (Portable Operating System Interface for UNIX) is a set of standards that define how programs and operating systems interact with each other. pthreads is a library of pre-emptive thread routines that comply with one of the POSIX standards.
Imhoff, Sarah; Lavallière, Martin; Germain-Robitaille, Mathieu; Teasdale, Normand; Fait, Philippe
2017-01-01
Traumatic brain injury (TBI) causes functional deficits that may significantly interfere with numerous activities of daily living such as driving. We report the case of a 20-year-old woman having lost her driver's license after sustaining a moderate TBI. We aimed to evaluate the effectiveness of an in-simulator training program with automated feedback on driving performance in a TBI individual. The participant underwent an initial and a final in-simulator driving assessment and 11 in-simulator training sessions with driving-specific automated feedbacks. Driving performance (simulation duration, speed regulation and lateral positioning) was measured in the driving simulator. Speeding duration decreased during training sessions from 1.50 ± 0.80 min (4.16 ± 2.22%) to 0.45 ± 0.15 min (0.44 ± 0.42%) but returned to initial duration after removal of feedbacks for the final assessment. Proper lateral positioning improved with training and was maintained at the final assessment. Time spent in an incorrect lateral position decreased from 18.85 min (53.61%) in the initial assessment to 1.51 min (4.64%) on the final assessment. Driving simulators represent an interesting therapeutic avenue. Considerable research efforts are needed to confirm the effectiveness of this method for driving rehabilitation of individuals who have sustained a TBI.
NASA Technical Reports Server (NTRS)
Jones, W. V.
1973-01-01
Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.
Comparisons of Field Tests with Simulations: Abrams Program Lessons Learned
1990-03-01
observed field out conme. Thiirtv-.-ixI\\ (3(-) of thle com parisons resulted in complete iuj .muatchves: thatif -. S ~u,-VSII inever )in its J000...2.REPORT DAE j3 EOTTP ~ AE OEE IMairch 1990 I-Final Jul 87 - Oct 89 4. TitE AND SUBTMTE S . PUNOING NUMBWERS (Comparisons or Field Tests with...Simulations: Abrams Program Lessons Learned 6. AUTHOR( S ) lPaul 11. lDcvtz, Jill I[. Smith. John 11. Stickling 7. PERFORMING ORGANIZATION NAME( S ) AND AIDDRESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, A.D.; Ayoub, A.K.; Singh, C.
1982-07-01
This report describes the structure and operation of prototype computer programs developed for a Monte Carlo simulation model, GENESIS, and for two analytical models, OPCON and OPPLAN. It includes input data requirements and sample test cases.
Instruction Using Experiments in a Computer. Final Report.
ERIC Educational Resources Information Center
Fulton, John P.; Hazeltine, Barrett
Included are four computer programs which simulate experiments suitable for freshman engineering and physics courses. The subjects of the programs are ballistic trajectories, variable mass systems, trajectory of a particle under various forces, and design of an electronic emplifier. The report includes the problem statement, its objectives, the…
ERIC Educational Resources Information Center
Pew, Lou Ann
The document consists of a brief project report, copies of program publicity and related correspondence, and one of the nine learning packets developed for use in the program. The purpose of the project was to develop guidelines for planning, conducting, managing, and evaluating a simulation program for teaching the skills and competencies…
Gaming via Computer Simulation Techniques for Junior College Economics Education. Final Report.
ERIC Educational Resources Information Center
Thompson, Fred A.
A study designed to answer the need for more attractive and effective economics education involved the teaching of one junior college economics class by the conventional (lecture) method and an experimental class by computer simulation techniques. Econometric models approximating the "real world" were computer programed to enable the experimental…
DOT National Transportation Integrated Search
2016-06-30
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
Cant, Robyn; Young, Susan; Cooper, Simon J; Porter, Joanne
2015-03-01
This study explores preregistration nursing students' views of a Web-based simulation program: FIRST ACTWeb (Feedback Incorporating Review and Simulation Techniques to Act on Clinical Trends-Web). The multimedia program incorporating three videoed scenarios portrayed by a standardized patient (human actor) aims to improve students' recognition and management of hospital patient deterioration. Participants were 367 final-year nursing students from three universities who completed an online evaluation survey and 19 students from two universities who attended one of five focus groups. Two researchers conducted a thematic analysis of the transcribed narratives. Three core themes identified were as follows: "ease of program use," "experience of e-Simulation," and "satisfaction with the learning experience." The Web-based clinical learning environment was endorsed as functional, feasible, and easy to use and was reported to have high fidelity and realism. Feedback in both focus groups and surveys showed high satisfaction with the learning experience. Overall, evaluation suggested that the Web-based simulation program successfully integrated elements essential for blended learning. Although Web-based educational applications are resource intensive to develop, positive appraisal of program quality, plus program accessibility and repeatability, appears to provide important educational benefits. Further research is needed to determine the transferability of these learning experiences into real-world practice.
Research of TREETOPS Structural Dynamics Controls Simulation Upgrade
NASA Technical Reports Server (NTRS)
Yates, Rose M.
1996-01-01
Under the provisions of contract number NAS8-40194, which was entitled 'TREETOPS Structural Dynamics and Controls Simulation System Upgrade', Oakwood College contracted to produce an upgrade to the existing TREETOPS suite of analysis tools. This suite includes the main simulation program, TREETOPS, two interactive preprocessors, TREESET and TREEFLX, an interactive post processor, TREEPLOT, and an adjunct program, TREESEL. A 'Software Design Document', which provides descriptions of the argument lists and internal variables for each subroutine in the TREETOPS suite, was established. Additionally, installation guides for both DOS and UNIX platforms were developed. Finally, updated User's Manuals, as well as a Theory Manual, were generated.
Imhoff, Sarah; Lavallière, Martin; Germain-Robitaille, Mathieu; Teasdale, Normand; Fait, Philippe
2017-01-01
Background Traumatic brain injury (TBI) causes functional deficits that may significantly interfere with numerous activities of daily living such as driving. We report the case of a 20-year-old woman having lost her driver’s license after sustaining a moderate TBI. Objective We aimed to evaluate the effectiveness of an in-simulator training program with automated feedback on driving performance in a TBI individual. Methods The participant underwent an initial and a final in-simulator driving assessment and 11 in-simulator training sessions with driving-specific automated feedbacks. Driving performance (simulation duration, speed regulation and lateral positioning) was measured in the driving simulator. Results Speeding duration decreased during training sessions from 1.50 ± 0.80 min (4.16 ± 2.22%) to 0.45 ± 0.15 min (0.44 ± 0.42%) but returned to initial duration after removal of feedbacks for the final assessment. Proper lateral positioning improved with training and was maintained at the final assessment. Time spent in an incorrect lateral position decreased from 18.85 min (53.61%) in the initial assessment to 1.51 min (4.64%) on the final assessment. Conclusion Driving simulators represent an interesting therapeutic avenue. Considerable research efforts are needed to confirm the effectiveness of this method for driving rehabilitation of individuals who have sustained a TBI. PMID:28243152
A Computer Simulation Modeling Tool to Assist Colleges in Long-Range Planning. Final Report.
ERIC Educational Resources Information Center
Salmon, Richard; And Others
Long-range planning involves the establishment of educational objectives within a rational philosophy, the design of activities and programs to meet stated objectives, the organization and allocation of resources to implement programs, and the analysis of results in terms of the objectives. Current trends of educational growth and complexity…
ERIC Educational Resources Information Center
Hansen, Duncan N.; And Others
Computer simulations of three individualized adaptive instructional models (AIM) were undertaken to determine if these models function as prescribed in Air Force technical training programs. In addition, the project sought to develop a user's guide for effective understanding of adaptive models during field implementation. Successful simulations…
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
Finally, a Good Way to Teach City Government! A Review of the Computer Simulation Game "SimCity."
ERIC Educational Resources Information Center
Pahl, Ronald H.
1991-01-01
Offers an evaluation of the computer simulation game "SimCity." Suggests possible uses for the game at different age and experience levels. Recommends the program as challenging, humorous, and an excellent aid in teaching about the problems and solutions facing city government. Explains that students serve as public officials. (DK)
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2016-06-29
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.
1979-06-01
The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less
Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Goldberg, Benjamin E.; Cook, Jerry
1993-01-01
The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.
NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.
ERIC Educational Resources Information Center
Harris, Carolyn DeMeyer; And Others
The project designed and developed a videodisc package that provides both assessment and related instruction programs for job-related mathematics problem solving, using simulations to provide direct access to vocational situations. The materials are intended to meet the needs of youth and young adults with mild mental handicaps in transition from…
Traffic operations modeling of Connecticut roundabouts : final report.
DOT National Transportation Integrated Search
2015-12-30
The Connecticut Department of Transportation (ConnDOT) has constructed four roundabouts in : the State of Connecticut within the past ten years. VISSIM, a microscopic traffic simulation software : program was utilized to analyze roundabout during the...
PV Systems Reliability Final Technical Report: Ground Fault Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrova, Olga; Flicker, Jack David; Johnson, Jay
We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.
Technology research for strapdown inertial experiment and digital flight control and guidance
NASA Technical Reports Server (NTRS)
Carestia, R. A.; Cottrell, D. E.
1985-01-01
A helicopter flight-test program to evaluate the performance of Honeywell's Tetrad - a strapdown, laser gyro, inertial navitation system is discussed. The results of 34 flights showed a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n.mi., with a standard deviation of 1.48 n.m.; and a modeled mean-position-error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. Tetrad's four-ring laser gyros provided reliable and accurate angular rate sensing during the test program and on sensor failures were detected during the evaluation. Criteria suitable for investigating cockpit systems in rotorcraft were developed. This criteria led to the development of two basic simulators. The first was a standard simulator which could be used to obtain baseline information for studying pilot workload and interactions. The second was an advanced simulator which integrated the RODAAS developed by Honeywell into this simulator. The second area also included surveying the aerospace industry to determine the level of use and impact of microcomputers and related components on avionics systems.
Computer Simulation of Protein-Protein and Protein-Peptide Interactions
1983-12-08
a full molecular dynamic z simulation is performed, with resulting dipolar re - laxation. However, this is prohibitive when a large . number of...1993 Dr. Mike Marron Program Manager Molecular Biology Office of Naval Research 800 N. Quincy Street Arlington, VA 22217 Dear Mike, Here is the...rztnbutior is unLi--ited. , 93-30630 98 12 12/08/93 01/0/92-;03/31/93: Final Report, Computer Simulation of Protein-Protein and Protein-Peptide
Managing simulation-based training: A framework for optimizing learning, cost, and time
NASA Astrophysics Data System (ADS)
Richmond, Noah Joseph
This study provides a management framework for optimizing training programs for learning, cost, and time when using simulation based training (SBT) and reality based training (RBT) as resources. Simulation is shown to be an effective means for implementing activity substitution as a way to reduce risk. The risk profile of 22 US Air Force vehicles are calculated, and the potential risk reduction is calculated under the assumption of perfect substitutability of RBT and SBT. Methods are subsequently developed to relax the assumption of perfect substitutability. The transfer effectiveness ratio (TER) concept is defined and modeled as a function of the quality of the simulator used, and the requirements of the activity trained. The Navy F/A-18 is then analyzed in a case study illustrating how learning can be maximized subject to constraints in cost and time, and also subject to the decision maker's preferences for the proportional and absolute use of simulation. Solution methods for optimizing multiple activities across shared resources are next provided. Finally, a simulation strategy including an operations planning program (OPP), an implementation program (IP), an acquisition program (AP), and a pedagogical research program (PRP) is detailed. The study provides the theoretical tools to understand how to leverage SBT, a case study demonstrating these tools' efficacy, and a set of policy recommendations to enable the US military to better utilize SBT in the future.
ERIC Educational Resources Information Center
Goschen, Todd; Warcup, Dennis
The final report evaluates the activities of the first nine weeks of a project designed to develop a curriculum guide for a school-model store at a North Dakota high school. The program combines the favorable aspects of both the school store and the model store, providing "live" experiences as well as simulated ones. The Distributive…
Laparoscopic skills maintenance: a randomized trial of virtual reality and box trainer simulators.
Khan, Montaha W; Lin, Diwei; Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy
2014-01-01
A number of simulators have been developed to teach surgical trainees the basic skills required to effectively perform laparoscopic surgery; however, consideration needs to be given to how well the skills taught by these simulators are maintained over time. This study compared the maintenance of laparoscopic skills learned using box trainer and virtual reality simulators. Participants were randomly allocated to be trained and assessed using either the Society of American Gastrointestinal Endoscopic Surgeons Fundamentals of Laparoscopic Surgery (FLS) simulator or the Surgical Science virtual reality simulator. Once participants achieved a predetermined level of proficiency, they were assessed 1, 3, and 6 months later. At each assessment, participants were given 2 practice attempts and assessed on their third attempt. The study was conducted through the Simulated Surgical Skills Program that was held at the Royal Australasian College of Surgeons, Adelaide, Australia. Overall, 26 participants (13 per group) completed the training and all follow-up assessments. There were no significant differences between simulation-trained cohorts for age, gender, training level, and the number of surgeries previously performed, observed, or assisted. Scores for the FLS-trained participants did not significantly change over the follow-up period. Scores for LapSim-trained participants significantly deteriorated at the first 2 follow-up points (1 and 3 months) (p < 0.050), but returned to be near initial levels by the final follow-up (6 months). This research showed that basic laparoscopic skills learned using the FLS simulator were maintained more consistently than those learned on the LapSim simulator. However, by the final follow-up, both simulator-trained cohorts had skill levels that were not significantly different to those at proficiency after the initial training period. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset.
Shirts, Michael R; Klein, Christoph; Swails, Jason M; Yin, Jian; Gilson, Michael K; Mobley, David L; Case, David A; Zhong, Ellen D
2017-01-01
We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to better than 0.1 % relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb's constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison.
Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset
Shirts, Michael R.; Klein, Christoph; Swails, Jason M.; Yin, Jian; Gilson, Michael K.; Mobley, David L.; Case, David A.; Zhong, Ellen D.
2017-01-01
We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to a better than 0.1% relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb’s constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison. PMID:27787702
Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset
NASA Astrophysics Data System (ADS)
Shirts, Michael R.; Klein, Christoph; Swails, Jason M.; Yin, Jian; Gilson, Michael K.; Mobley, David L.; Case, David A.; Zhong, Ellen D.
2017-01-01
We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to better than 0.1 % relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb's constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison.
Hardison, Mark E.
2017-01-01
Work-related musculoskeletal disorders are a significant burden; however, no consensus has been reached on how to maximize occupational rehabilitation programs for people with these disorders, and the impact of simulating work tasks as a mode of intervention has not been well examined. In this retrospective cohort study, the authors used logistic regression to identify client and program factors predicting success for 95 clients in a general occupational rehabilitation program and 71 clients in a comprehensive occupational rehabilitation program. The final predictive model for general rehabilitation included gender, number of sessions completed, and performance of work simulation activities. Maximum hours per session was the only significant predictor of success in the comprehensive rehabilitation program. This study identifies new factors associated with success in occupational rehabilitation, specifically highlighting the importance of intensity (i.e., session length and number of sessions) of therapy and occupation-based activities for this population. PMID:28027046
Spacecraft applications of advanced global positioning system technology
NASA Technical Reports Server (NTRS)
1988-01-01
This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.
Middleton, Robert M; Alvand, Abtin; Garfjeld Roberts, Patrick; Hargrove, Caroline; Kirby, Georgina; Rees, Jonathan L
2017-05-01
To determine whether a virtual reality (VR) arthroscopy simulator or benchtop (BT) arthroscopy simulator showed superiority as a training tool. Arthroscopic novices were randomized to a training program on a BT or a VR knee arthroscopy simulator. The VR simulator provided user performance feedback. Individuals performed a diagnostic arthroscopy on both simulators before and after the training program. Performance was assessed using wireless objective motion analysis and a global rating scale. The groups (8 in the VR group, 9 in the BT group) were well matched at baseline across all parameters (P > .05). Training on each simulator resulted in significant performance improvements across all parameters (P < .05). BT training conferred a significant improvement in all parameters when trainees were reassessed on the VR simulator (P < .05). In contrast, VR training did not confer improvement in performance when trainees were reassessed on the BT simulator (P > .05). BT-trained subjects outperformed VR-trained subjects in all parameters during final assessments on the BT simulator (P < .05). There was no difference in objective performance between VR-trained and BT-trained subjects on final VR simulator wireless objective motion analysis assessment (P > .05). Both simulators delivered improvements in arthroscopic skills. BT training led to skills that readily transferred to the VR simulator. Skills acquired after VR training did not transfer as readily to the BT simulator. Despite trainees receiving automated metric feedback from the VR simulator, the results suggest a greater gain in psychomotor skills for BT training. Further work is required to determine if this finding persists in the operating room. This study suggests that there are differences in skills acquired on different simulators and skills learnt on some simulators may be more transferable. Further work in identifying user feedback metrics that enhance learning is also required. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
Assessment of virtual reality robotic simulation performance by urology resident trainees.
Ruparel, Raaj K; Taylor, Abby S; Patel, Janil; Patel, Vipul R; Heckman, Michael G; Rawal, Bhupendra; Leveillee, Raymond J; Thiel, David D
2014-01-01
To examine resident performance on the Mimic dV-Trainer (MdVT; Mimic Technologies, Inc., Seattle, WA) for correlation with resident trainee level (postgraduate year [PGY]), console experience (CE), and simulator exposure in their training program to assess for internal bias with the simulator. Residents from programs of the Southeastern Section of the American Urologic Association participated. Each resident was scored on 4 simulator tasks (peg board, camera targeting, energy dissection [ED], and needle targeting) with 3 different outcomes (final score, economy of motion score, and time to complete exercise) measured for each task. These scores were evaluated for association with PGY, CE, and simulator exposure. Robotic skills training laboratory. A total of 27 residents from 14 programs of the Southeastern Section of the American Urologic Association participated. Time to complete the ED exercise was significantly shorter for residents who had logged live robotic console compared with those who had not (p = 0.003). There were no other associations with live robotic console time that approached significance (all p ≥ 0.21). The only measure that was significantly associated with PGY was time to complete ED exercise (p = 0.009). No associations with previous utilization of a robotic simulator in the resident's home training program were statistically significant. The ED exercise on the MdVT is most associated with CE and PGY compared with other exercises. Exposure of trainees to the MdVT in training programs does not appear to alter performance scores compared with trainees who do not have the simulator. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter
2007-01-01
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less
Simulation of decelerating landing approaches on an externally blown flap STOL transport airplane
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Nguyen, L. T.; Deal, P. L.
1974-01-01
A fixed-base simulator program was conducted to define the problems and methods for solution associated with performing decelerating landing approaches on a representative STOL transport having a high wing and equipped with an external-flow jet flap in combination with four high-bypass-ratio fan-jet engines. Real-time digital simulation techniques were used. The computer was programed with equations of motion for six degrees of freedom and the aerodynamic inputs were based on measured wind-tunnel data. The pilot's task was to capture the localizer and the glide slope and to maintain them as closely as possible while decelerating from an initial airspeed of 140 knots to a final airspeed of 75 knots, while under IFR conditions.
Study 2.5 final report. DORCA computer program. Volume 5: Analysis report
NASA Technical Reports Server (NTRS)
Campbell, N.
1972-01-01
A modification of the Dynamic Operational Requirements and Cost Analysis Program to perform traffic analyses of the automated satellite program is described. Inherent in the analyses of the automated satellite program was the assumption that a number of vehicles were available to perform any or all of the missions within the satellite program. The objective of the modification was to select a vehicle or group of vehicles for performing all of the missions at the lowest possible cost. A vehicle selection routine and the capability to simulate ground based vehicle operational modes were incorporated into the program.
NASA Astrophysics Data System (ADS)
Lee, Seul-Ki; Lee, Chang-Wook; Lee, Saro
2015-06-01
Located above the Java subduction zone, Merapi Volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Most Merapi eruptions are relatively small with volcanic explosivity index (VEI) of 1-3. However, the most recent eruption, which occurred in 2010, was quite violent with a VEI of 4 and 386 people were killed. In this study, lahars and pyroclastic flow zones were detected using optical Landsat images and the lahar and pyroclastic flow zone simulated using the LAHARZ program. To detect areal extents of lahar and pyroclastic flows using Landsat images, supervised classification was performed after atmospheric correction by using a cosine of the solar zenith correction (COST) model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the Calatrava Volcanic Province (CVP) monthly reports. Then, areas of potential lahar and pyroclastic flow inundation based on flow volume using the LAHARZ program were simulated and mapped. Finally, the detected lahars and pyroclastic flow zones were compared with the simulated potential zones using LAHARZ program and verified. Results showed satisfactory similarity (55.63 %) between the detected and simulated zone. The simulated zones using the LAHARZ program can be used as an essential volcanic hazard map for preventing life and property damages for Merapi Volcano and other hazardous volcanic areas. Also, the LAHARZ program can be used to map volcano hazards in other hazardous volcanic areas.
De Win, Gunter; Van Bruwaene, Siska; Allen, Christopher; De Ridder, Dirk
2013-01-01
Background Surgical simulation is becoming increasingly important in surgical education. Despite the important work done on simulators, simulator model development, and simulator assessment methodologies, there is a need for development of integrated simulators in the curriculum. In this paper, we describe the design of our evidence-based preclinical training program for medical students applying for a surgical career at the Centre for Surgical Technologies. Methods Twenty-two students participated in this training program. During their final months as medical students, they received structured, proficiency-based endoscopy training. The total amount of mentored training was 18 hours and the training was organized into three training blocks. The first block focused on psychomotor training, the second block focused on laparoscopic stitching and suturing, and the third block on laparoscopic dissection techniques and hemostasis. Deliberate practice was allowed and students had to show proficiency before proceeding to the next training block. Students’ psychomotor abilities were tested before the course and after each training block. At the beginning of their careers as surgical registrars, their performance on a laparoscopic suturing task was compared with that of registrars from the previous year who did not have this training course. Student opinions about this course were evaluated using a visual analog scale. Results All students rated the training course as useful and their psychomotor abilities improved markedly. All students performed deliberate practice, and those who participated in this course scored significantly (P < 0.0001) better on the laparoscopic suturing task than first year registrars who did not participate in this course. Conclusion Organization of a structured preclinical training program in laparoscopy for final year medical students is feasible, attractive, and successful. PMID:23901308
Modeling and Simulation Environment for Critical Infrastructure Protection
2006-06-20
address at the triennial International Symposium on Mathematical Programming, held in Copenhagen, Denmark in August 2003. Finally, in very recent work... Teleworking - The human and organizational issues of computer and information security. Paper presented at the 11th Annual Conference on Human
2014-01-01
Background We aimed to observe the preparedness level of final year medical students in approaching emergencies by computer-based simulation training and evaluate the efficacy of the program. Methods A computer-based prototype simulation program (Lsim), designed by researchers from the medical education and computer science departments, was used to present virtual cases for medical learning. Fifty-four final year medical students from Ondokuz Mayis University School of Medicine attended an education program on June 20, 2012 and were trained with Lsim. Volunteer attendants completed a pre-test and post-test exam at the beginning and end of the course, respectively, on the same day. Results Twenty-nine of the 54 students who attended the course accepted to take the pre-test and post-test exams; 58.6% (n = 17) were female. In 10 emergency medical cases, an average of 3.9 correct medical approaches were performed in the pre-test and an average of 9.6 correct medical approaches were performed in the post-test (t = 17.18, P = 0.006). Conclusions This study’s results showed that the readiness level of students for an adequate medical approach to emergency cases was very low. Computer-based training could help in the adequate approach of students to various emergency cases. PMID:24386919
Sonenshein, R.S.
1996-01-01
A technique has been developed to determine a wetlands hydroperiod by comparing simulated water levels from a ground-water flow model and land- surface elevation data through a geographic information system. The simulated water levels are compared with the land-surface elevation data to determine the height of the water surface above or below land surface for the area of interest. Finally, the hydroperiod is determined for established time periods using criteria specified by the user. The program application requires the use of geographic information system software (ARC/INFO), including the TIN and GRID subsystems of the software. The application consists of an ANSI compatible C program to translate ground- water data output from the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model (MODFLOW) into a format that can be used as input for the geographic information system programs (AML's). The application uses ARC/INFO AML programs and ARC/INFO menu interface programs to create digital spatial data layers of the land surface and water surface and to determine the hydroperiod. The technique can be used to evaluate and manage wetlands hydrology.
NASA Astrophysics Data System (ADS)
Manzara, Leonard Charles
1990-01-01
The dissertation is in two parts:. 1. Percussion Sextet. The Percussion Sextet is a one movement musical composition with a length of approximately fifteen minutes. It is for six instrumentalists, each on a number of percussion instruments. The overriding formal problem was to construct a coherent and compelling structure which fuses a diversity of musical materials and textures into a dramatic whole. Particularly important is the synthesis of opposing tendencies contained in stochastic and deterministic processes: global textures versus motivic detail, and randomness versus total control. Several compositional techniques are employed in the composition. These methods of composition will be aided, in part, by the use of artificial intelligence techniques programmed on a computer. Finally, the percussion ensemble is the ideal medium to realize the above processes since it encompasses a wide range of both pitched and unpitched timbres, and since a great variety of textures and densities can be created with a certain economy of means. 2. The simulation of acoustical space by means of physical modeling. This is a written report describing the research and development of a computer program which simulates the characteristics of acoustical space in two dimensions. With the computer program the user can simulate most conventional acoustical spaces, as well as those physically impossible to realize in the real world. The program simulates acoustical space by means of geometric modeling. This involves defining wall equations, phantom source points and wall diffusions, and then processing input files containing digital signals through the program, producing output files ready for digital to analog conversion. The user of the program is able to define wall locations and wall reflectivity and roughness characteristics, all of which can be changed over time. Sound source locations are also definable within the acoustical space and these locations can be changed independently at any rate of speed. The sounds themselves are generated from any external sound synthesis program or appropriate sampling system. Finally, listener location and orientation is also user definable and dynamic in nature. A Receive-ReBroadcast (RRB) model is used to play back the sound and is definable from two to eight channels of sound. (Abstract shortened with permission of author.).
Attitude dynamic of spin-stabilized satellites with flexible appendages
NASA Technical Reports Server (NTRS)
Renard, M. L.
1973-01-01
Equations of motion and computer programs have been developed for analyzing the motion of a spin-stabilized spacecraft having long, flexible appendages. Stability charts were derived, or can be redrawn with the desired accuracy for any particular set of design parameters. Simulation graphs of variables of interest are readily obtainable on line using program FLEXAT. Finally, applications to actual satellites, such as UK-4 and IMP-1 have been considered.
Range Image Processing for Local Navigation of an Autonomous Land Vehicle.
1986-09-01
such as doing long term exploration missions on the surface of the planets which mankind may wish to investigate . Certainly, mankind will soon return...intelligence programming, walking technology, and vision sensors to name but a few. 10 The purpose of this thesis will be to investigate , by simulation...bitmap graphics, both of which are important to this simulation. Finally, the methodology for displaying the symbolic information generated by the
Flight test results of the strapdown ring laser gyro tetrad inertial navigation system
NASA Technical Reports Server (NTRS)
Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.
1983-01-01
A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.
Newman Unit 1 advanced solar repowering. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The five appendices give the selection process and system specification of the Newman Unit 1 solar repowering system, including the conceptual design drawings and diagrams; input data for the simulation program; and a review of the most important characteristics of the existing plant. (LEW)
Static analysis techniques for semiautomatic synthesis of message passing software skeletons
Sottile, Matthew; Dagit, Jason; Zhang, Deli; ...
2015-06-29
The design of high-performance computing architectures demands performance analysis of large-scale parallel applications to derive various parameters concerning hardware design and software development. The process of performance analysis and benchmarking an application can be done in several ways with varying degrees of fidelity. One of the most cost-effective ways is to do a coarse-grained study of large-scale parallel applications through the use of program skeletons. The concept of a “program skeleton” that we discuss in this article is an abstracted program that is derived from a larger program where source code that is determined to be irrelevant is removed formore » the purposes of the skeleton. In this work, we develop a semiautomatic approach for extracting program skeletons based on compiler program analysis. Finally, we demonstrate correctness of our skeleton extraction process by comparing details from communication traces, as well as show the performance speedup of using skeletons by running simulations in the SST/macro simulator.« less
Simulating synchrotron radiation in accelerators including diffuse and specular reflections
Dugan, G.; Sagan, D.
2017-02-24
An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less
NASA/FAA helicopter simulator workshop
NASA Technical Reports Server (NTRS)
Larsen, William E. (Editor); Randle, Robert J., Jr. (Editor); Bray, Richard S. (Editor); Zuk, John (Editor)
1992-01-01
A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries.
Quantitative simulation of extraterrestrial engineering devices
NASA Technical Reports Server (NTRS)
Arabyan, A.; Nikravesh, P. E.; Vincent, T. L.
1991-01-01
This is a multicomponent, multidisciplinary project whose overall objective is to build an integrated database, simulation, visualization, and optimization system for the proposed oxygen manufacturing plant on Mars. Specifically, the system allows users to enter physical description, engineering, and connectivity data through a uniform, user-friendly interface and stores the data in formats compatible with other software also developed as part of this project. These latter components include: (1) programs to simulate the behavior of various parts of the plant in Martian conditions; (2) an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; (3) a control program to investigate the stability and response of the system under different disturbance conditions; and (4) an optimization program to maximize or minimize various criteria as the system evolves into its final design. All components of the system are interconnected so that changes entered through one component are reflected in the others.
History of the numerical aerodynamic simulation program
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Ballhaus, William F., Jr.
1987-01-01
The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.
Toothguide Trainer tests with color vision deficiency simulation monitor.
Borbély, Judit; Varsányi, Balázs; Fejérdy, Pál; Hermann, Péter; Jakstat, Holger A
2010-01-01
The aim of this study was to evaluate whether simulated severe red and green color vision deficiency (CVD) influenced color matching results and to investigate whether training with Toothguide Trainer (TT) computer program enabled better color matching results. A total of 31 color normal dental students participated in the study. Every participant had to pass the Ishihara Test. Participants with a red/green color vision deficiency were excluded. A lecture on tooth color matching was given, and individual training with TT was performed. To measure the individual tooth color matching results in normal and color deficient display modes, the TT final exam was displayed on a calibrated monitor that served as a hardware-based method of simulating protanopy and deuteranopy. Data from the TT final exams were collected in normal and in severe red and green CVD-simulating monitor display modes. Color difference values for each participant in each display mode were computed (∑ΔE(ab)(*)), and the respective means and standard deviations were calculated. The Student's t-test was used in statistical evaluation. Participants made larger ΔE(ab)(*) errors in severe color vision deficient display modes than in the normal monitor mode. TT tests showed significant (p<0.05) difference in the tooth color matching results of severe green color vision deficiency simulation mode compared to normal vision mode. Students' shade matching results were significantly better after training (p=0.009). Computer-simulated severe color vision deficiency mode resulted in significantly worse color matching quality compared to normal color vision mode. Toothguide Trainer computer program improved color matching results. Copyright © 2010 Elsevier Ltd. All rights reserved.
Rothenberger, Jens; Seyed Jafari, Seyed Morteza; Schnabel, Kai P; Tschumi, Christian; Angermeier, Sarina; Shafighi, Maziar
2015-01-01
Learning surgical skills in the operating room may be a challenge for medical students. Therefore, more approaches using simulation to enable students to develop their practical skills are required. We hypothesized that (1) there would be a need for additional surgical training for medical students in the pre-final year, and (2) our basic surgery skills training program using fresh human skin would improve medical students' surgical skills. We conducted a preliminary survey of medical students to clarify the need for further training in basic surgery procedures. A new approach using simulation to teach surgical skills on human skin was set up. The procedural skills of 15 randomly selected students were assessed in the operating room before and after participation in the simulation, using Objective Structured Assessment of Technical Skills. Furthermore, subjective assessment was performed based on students' self-evaluation. The data were analyzed using SPSS, version 21 (SPSS, Inc., Chicago, IL). The study took place at the Inselspital, Bern University Hospital. A total of 186 pre-final-year medical students were enrolled into the preliminary survey; 15 randomly selected medical students participated in the basic surgical skills training course on the fresh human skin operating room. The preliminary survey revealed the need for a surgical skills curriculum. The simulation approach we developed showed significant (p < 0.001) improvement for all 12 surgical skills, with mean cumulative precourse and postcourse values of 31.25 ± 5.013 and 45.38 ± 3.557, respectively. The self-evaluation contained positive feedback as well. Simulation of surgery using human tissue samples could help medical students become more proficient in handling surgical instruments before stepping into a real surgical situation. We suggest further studies evaluating our proposed teaching method and the possibility of integrating this simulation approach into the medical school curriculum. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, S.H.; Meroney, R.N.; Neff, D.E.
1991-03-01
Measurements of the behavior of simulated liquefied natural gas clouds dispersing over small-scale model placed in environmental wind tunnels permits evaluations of the fluid physics of dense cloud movement and dispersion in a controlled environment. A large data base on the interaction of simulated LNG plumes with the Falcon test configuration of vapor barrier fences and vortex generators was obtained. The purpose of the reported test program is to provide post-field-spill wind tunnel experiments to augment the LNG Vapor Fence Field Program data obtained during the Falcon Test Series in 1987. The goal of the program is to determine themore » probable response of a dense LNG Vapor cloud to vortex inducer obstacles and fences, examine the sensitivity of results to various scaling arguments which might augment limit, or extend the value of the field and wind-tunnel tests, and identify important details of the spill behavior which were not predicted during the pretest planning phase.« less
Simulation Of Research And Development Projects
NASA Technical Reports Server (NTRS)
Miles, Ralph F.
1987-01-01
Measures of preference for alternative project plans calculated. Simulation of Research and Development Projects (SIMRAND) program aids in optimal allocation of research and development resources needed to achieve project goals. Models system subsets or project tasks as various network paths to final goal. Each path described in terms of such task variables as cost per hour, cost per unit, and availability of resources. Uncertainty incorporated by treating task variables as probabilistic random variables. Written in Microsoft FORTRAN 77.
Study of the Transition Flow Regime using Monte Carlo Methods
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1999-01-01
This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
Simulation of an Air Cushion Vehicle
1977-03-01
Massachusetts 02139 ! DDC Niov 219T March 1977 Final Report for Period January 1975 - December 1976 DOD DISTRIBUTION STATEMENT Approved for public...or in ,art is permitted for any purpose of the United States Government. II II JI UNCLASSI FIED SECURITY CLASSIFICATiON OF TIlS PAGE flWhen Dato...overflow Floating point fault Decimal arithmetic fault Watch Dog timer runout 186 NAVTRAEQUIPCEN 75-C-0057- 1 PROGRAM ENi\\TRY Initial Program - LOAD Inhibit
Analysis of the Space Shuttle main engine simulation
NASA Technical Reports Server (NTRS)
Deabreu-Garcia, J. Alex; Welch, John T.
1993-01-01
This is a final report on an analysis of the Space Shuttle Main Engine Program, a digital simulator code written in Fortran. The research was undertaken in ultimate support of future design studies of a shuttle life-extending Intelligent Control System (ICS). These studies are to be conducted by NASA Lewis Space Research Center. The primary purpose of the analysis was to define the means to achieve a faster running simulation, and to determine if additional hardware would be necessary for speeding up simulations for the ICS project. In particular, the analysis was to consider the use of custom integrators based on the Matrix Stability Region Placement (MSRP) method. In addition to speed of execution, other qualities of the software were to be examined. Among these are the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files. Accuracy involves control of truncation error of the methods, and roundoff error induced by floating point operations. It also involves the requirement that the user be fully aware of the model that the simulator is implementing.
Video Monitoring a Simulation-Based Quality Improvement Program in Bihar, India.
Dyer, Jessica; Spindler, Hilary; Christmas, Amelia; Shah, Malay Bharat; Morgan, Melissa; Cohen, Susanna R; Sterne, Jason; Mahapatra, Tanmay; Walker, Dilys
2018-04-01
Simulation-based training has become an accepted clinical training andragogy in high-resource settings with its use increasing in low-resource settings. Video recordings of simulated scenarios are commonly used by facilitators. Beyond using the videos during debrief sessions, researchers can also analyze the simulation videos to quantify technical and nontechnical skills during simulated scenarios over time. Little is known about the feasibility and use of large-scale systems to video record and analyze simulation and debriefing data for monitoring and evaluation in low-resource settings. This manuscript describes the process of designing and implementing a large-scale video monitoring system. Mentees and Mentors were consented and all simulations and debriefs conducted at 320 Primary Health Centers (PHCs) were video recorded. The system design, number of video recordings, and inter-rater reliability of the coded videos were assessed. The final dataset included a total of 11,278 videos. Overall, a total of 2,124 simulation videos were coded and 183 (12%) were blindly double-coded. For the double-coded sample, the average inter-rater reliability (IRR) scores were 80% for nontechnical skills, and 94% for clinical technical skills. Among 4,450 long debrief videos received, 216 were selected for coding and all were double-coded. Data quality of simulation videos was found to be very good in terms of recorded instances of "unable to see" and "unable to hear" in Phases 1 and 2. This study demonstrates that video monitoring systems can be effectively implemented at scale in resource limited settings. Further, video monitoring systems can play several vital roles within program implementation, including monitoring and evaluation, provision of actionable feedback to program implementers, and assurance of program fidelity.
LACIE performance predictor final operational capability program description, volume 3
NASA Technical Reports Server (NTRS)
1976-01-01
The requirements and processing logic for the LACIE Error Model program (LEM) are described. This program is an integral part of the Large Area Crop Inventory Experiment (LACIE) system. LEM is that portion of the LPP (LACIE Performance Predictor) which simulates the sample segment classification, strata yield estimation, and production aggregation. LEM controls repetitive Monte Carlo trials based on input error distributions to obtain statistical estimates of the wheat area, yield, and production at different levels of aggregation. LEM interfaces with the rest of the LPP through a set of data files.
Accurate low-cost methods for performance evaluation of cache memory systems
NASA Technical Reports Server (NTRS)
Laha, Subhasis; Patel, Janak H.; Iyer, Ravishankar K.
1988-01-01
Methods of simulation based on statistical techniques are proposed to decrease the need for large trace measurements and for predicting true program behavior. Sampling techniques are applied while the address trace is collected from a workload. This drastically reduces the space and time needed to collect the trace. Simulation techniques are developed to use the sampled data not only to predict the mean miss rate of the cache, but also to provide an empirical estimate of its actual distribution. Finally, a concept of primed cache is introduced to simulate large caches by the sampling-based method.
Dr.LiTHO: a development and research lithography simulator
NASA Astrophysics Data System (ADS)
Fühner, Tim; Schnattinger, Thomas; Ardelean, Gheorghe; Erdmann, Andreas
2007-03-01
This paper introduces Dr.LiTHO, a research and development oriented lithography simulation environment developed at Fraunhofer IISB to flexibly integrate our simulation models into one coherent platform. We propose a light-weight approach to a lithography simulation environment: The use of a scripting (batch) language as an integration platform. Out of the great variety of different scripting languages, Python proved superior in many ways: It exhibits a good-natured learning-curve, it is efficient, available on virtually any platform, and provides sophisticated integration mechanisms for existing programs. In this paper, we will describe the steps, required to provide Python bindings for existing programs and to finally generate an integrated simulation environment. In addition, we will give a short introduction into selected software design demands associated with the development of such a framework. We will especially focus on testing and (both technical and user-oriented) documentation issues. Dr.LiTHO Python files contain not only all simulation parameter settings but also the simulation flow, providing maximum flexibility. In addition to relatively simple batch jobs, repetitive tasks can be pooled in libraries. And as Python is a full-blown programming language, users can add virtually any functionality, which is especially useful in the scope of simulation studies or optimization tasks, that often require masses of evaluations. Furthermore, we will give a short overview of the numerous existing Python packages. Several examples demonstrate the feasibility and productiveness of integrating Python packages into custom Dr.LiTHO scripts.
Simulation, guidance and navigation of the B-737 for rollout and turnoff using MLS measurements
NASA Technical Reports Server (NTRS)
Pines, S.; Schmidt, S. F.; Mann, F.
1975-01-01
A simulation program is described for the B-737 aircraft in landing approach, a touchdown, rollout and turnoff for normal and CAT III weather conditions. Preliminary results indicate that microwave landing systems can be used in place of instrument landing systems landing aids and that a single magnetic cable can be used for automated rollout and turnoff. Recommendations are made for further refinement of the model and additional testing to finalize a set of guidance laws for rollout and turnoff.
Use of refinery computer model to predict fuel production
NASA Technical Reports Server (NTRS)
Flores, F. J.
1979-01-01
Several factors (crudes, refinery operation and specifications) that affect yields and properties of broad specification jet fuel were parameterized using the refinery simulation model which can simulate different types of refineries were used to make the calculations. Results obtained from the program are used to correlate yield as a function of final boiling point, hydrogen content and freezing point for jet fuels produced in two refinery configurations, each one processing a different crude mix. Refinery performances are also compared in terms of energy consumption.
Specification and simulation of behavior of the Continuous Infusion Insulin Pump system.
Babamir, Seyed Morteza; Dehkordi, Mehdi Borhani
2014-01-01
Continuous Infusion Insulin Pump (CIIP) system is responsible for monitoring diabetic blood sugar. In this paper, we aim to specify and simulate the CIIP software behavior. To this end, we first: (1) presented a model consisting of the CIIP system behavior in response to its environment (diabetic) behavior and (2) we formally defined the safety requirements of the system environment (diabetic) in the Z formal modeling language. Such requirements should be satisfied by the CIIP software. Finally, we programmed the model and requirements.
Transient Analysis of Pressurization and Pneumatic Subsystems of the X-34 Main Propulsion System
NASA Technical Reports Server (NTRS)
Hedayat, A.; Knight, K. C.; Chamption, R. H., Jr.; Kennedy, Jim W. (Technical Monitor)
2000-01-01
Transient models for the pressurization, vent/relief, and pneumatic subsystems of the X-34 Main Propulsion System are presented and simulation of their operation within prescribed requirements are provided. First, using ROCket Engine Transient Simulation (ROCETS) program, pressurization subsystem operation was simulated and helium requirements and the ullage thermodynamic condition within each propellant tank were calculated. Then, Overpressurization scenarios of propellant tanks and the response of vent/relief valves were evaluated using ROCETS simulation of simultaneous operation of the pressurization and vent/relief subsystems by incorporating the valves data into the model. Finally, the ROCETS simulation of in-flight operation of pneumatic subsystem predicted the overall helium consumption, Inter-Propellant Seal (IPS) purge flowrate and thermodynamic conditions, and Spin Start power.
An efficient annealing in Boltzmann machine in Hopfield neural network
NASA Astrophysics Data System (ADS)
Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz
2012-09-01
This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.
Biomedical Simulation: Evolution, Concepts, Challenges and Future Trends.
Sá-Couto, Carla; Patrão, Luís; Maio-Matos, Francisco; Pêgo, José Miguel
2016-12-30
Biomedical simulation is an effective educational complement for healthcare training, both at undergraduate and postgraduate level. It enables knowledge, skills and attitudes to be acquired in a safe, educationally orientated and efficient manner. In this context, simulation provides skills and experience that facilitate the transfer of cognitive, psychomotor and proper communication competences, thus changing behavior and attitudes, and ultimately improving patient safety. Beyond the impact on individual and team performance, simulation provides an opportunity to study organizational failures and improve system performance. Over the last decades, simulation in healthcare had a slow but steady growth, with a visible maturation in the last ten years. The simulation community must continue to provide the core leadership in developing standards. There is a need for strategies and policy development to ensure its coordinated and cost-effective implementation, applied to patient safety. This paper reviews the evolutionary movements of biomedical simulation, including a review of the Portuguese initiatives and nationwide programs. For leveling knowledge and standardize terminology, basic but essential concepts in clinical simulation, together with some considerations on assessment, validation and reliability are presented. The final sections discuss the current challenges and future initiatives and strategies, crucial for the integration of simulation programs in the greater movement toward patient safety.
VR-simulation cataract surgery in non-experienced trainees: evolution of surgical skill
NASA Astrophysics Data System (ADS)
Söderberg, Per; Erngrund, Markus; Skarman, Eva; Nordh, Leif; Laurell, Carl-Gustaf
2011-03-01
Conclusion: The current data imply that the performance index as defined herein is a valid measure of the performance of a trainee using the virtual reality phacoemulsification simulator. Further, the performance index increase linearly with measurement cycles for less than five measurement cycles. To fully use the learning potential of the simulator more than four measurement cycles are required. Materials and methods: Altogether, 10 trainees were introduced to the simulator by an instructor and then performed a training program including four measurement cycles with three iterated measurements of the simulation at the end of each cycle. The simulation characteristics was standardized and defined in 14 parameters. The simulation was measured separately for the sculpting phase in 21 variables, and for the evacuation phase in 22 variables. A performance index based on all measured variables was estimated for the sculpting phase and the evacuation phase, respectively, for each measurement and the three measurements for each cycle were averaged. Finally, the performance as a function of measurement cycle was estimated for each trainee with regression, assuming a straight line. The estimated intercept and inclination coefficients, respectively, were finally averaged for all trainees. Results: The performance increased linearly with the number of measurement cycles both for the sculpting and for the evacuation phase.
Katznelson, Jessica H; Wang, Jiangxia; Stevens, Martha W; Mills, William A
2018-01-01
Critical access hospitals (CAH) see few pediatric patients. Many of these hospitals do not have access to physicians with pediatric training. We sought to evaluate the impact of an in situ pediatric simulation program in the CAH emergency department setting on care team performance during resuscitation scenarios. Five CAHs conducted 6 high-fidelity pediatric simulations over a 12-month period. Team performance was evaluated using a validated 35-item checklist representing commonly expected resuscitation team interventions. Checklists were scored by assigning zero point for "yes" and 1 point for "no". A lower final score meant more items on the list had been completed. The Kruskal-Wallis rank test was used to assess for differences in average scores among institutions. A linear mixed effects model with a random institution intercept was used to examine trends in average scores over time. P < 0.05 was considered significant. The Kruskal-Wallis rank test showed no difference in average scores among institutions. (P = 0.90). Checklist scores showed a significant downward trend over time, with a scenario-to-scenario decrease of 0.022 (P < 0.01). One hundred percent of providers surveyed in the last month stated they would benefit from ongoing scenarios. Regularly scheduled pediatric simulations in the CAH emergency department setting improved team performance over time on expected resuscitation tasks. The program was accepted by providers. Implementation of simulation-based training programs can help address concerns regarding pediatric preparedness in the CAH setting. A future project will look at the impact of the program on patient care and safety.
Massachusetts Air National Guard dad deploys with his son for final time >
Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications Civic Leader's Guide ARNG Vision 2020 Posture
ERIC Educational Resources Information Center
Hardin County Board of Education, Elizabethtown, KY.
A project was designed to measure the effects of integrating basic reading and mathematical instruction with prevocational instruction through the addition of a basic skills resource room, a technical simulation unit, and guidance and counseling to the ninth grade vocational experience program for educable mentally handicapped and disadvantaged…
2014-08-15
CAPE CANAVERAL, Fla. – The Kennedy Space Center Visitor Complex Spaceperson poses for a photo with Carver Middle School students and their teacher from Orlando, Florida, during the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. The team, members of the After School All-Stars, were regional winners and advanced to the final competition. For the competition, students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
Micromagnetic Code Development of Advanced Magnetic Structures Final Report CRADA No. TC-1561-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, Charles J.; Shi, Xizeng
The specific goals of this project were to: Further develop the previously written micromagnetic code DADIMAG (DOE code release number 980017); Validate the code. The resulting code was expected to be more realistic and useful for simulations of magnetic structures of specific interest to Read-Rite programs. We also planned to further the code for use in internal LLNL programs. This project complemented LLNL CRADA TC-840-94 between LLNL and Read-Rite, which allowed for simulations of the advanced magnetic head development completed under the CRADA. TC-1561-98 was effective concurrently with LLNL non-exclusive copyright license (TL-1552-98) to Read-Rite for DADIMAG Version 2 executablemore » code.« less
Microstructure Modeling of 3rd Generation Disk Alloys
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2010-01-01
The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.
Computer-based simulation training in emergency medicine designed in the light of malpractice cases.
Karakuş, Akan; Duran, Latif; Yavuz, Yücel; Altintop, Levent; Calişkan, Fatih
2014-07-27
Using computer-based simulation systems in medical education is becoming more and more common. Although the benefits of practicing with these systems in medical education have been demonstrated, advantages of using computer-based simulation in emergency medicine education are less validated. The aim of the present study was to assess the success rates of final year medical students in doing emergency medical treatment and evaluating the effectiveness of computer-based simulation training in improving final year medical students' knowledge. Twenty four Students trained with computer-based simulation and completed at least 4 hours of simulation-based education between the dates Feb 1, 2010 - May 1, 2010. Also a control group (traditionally trained, n =24) was chosen. After the end of training, students completed an examination about 5 randomized medical simulation cases. In 5 cases, an average of 3.9 correct medical approaches carried out by computer-based simulation trained students, an average of 2.8 correct medical approaches carried out by traditionally trained group (t = 3.90, p < 0.005). We found that the success of students trained with simulation training in cases which required complicated medical approach, was statistically higher than the ones who didn't take simulation training (p ≤ 0.05). Computer-based simulation training would be significantly effective in learning of medical treatment algorithms. We thought that these programs can improve the success rate of students especially in doing adequate medical approach to complex emergency cases.
Bringing UAVs to the fight: recent army autonomy research and a vision for the future
NASA Astrophysics Data System (ADS)
Moorthy, Jay; Higgins, Raymond; Arthur, Keith
2008-04-01
The Unmanned Autonomous Collaborative Operations (UACO) program was initiated in recognition of the high operational burden associated with utilizing unmanned systems by both mounted and dismounted, ground and airborne warfighters. The program was previously introduced at the 62nd Annual Forum of the American Helicopter Society in May of 20061. This paper presents the three technical approaches taken and results obtained in UACO. All three approaches were validated extensively in contractor simulations, two were validated in government simulation, one was flight tested outside the UACO program, and one was flight tested in Part 2 of UACO. Results and recommendations are discussed regarding diverse areas such as user training and human-machine interface, workload distribution, UAV flight safety, data link bandwidth, user interface constructs, adaptive algorithms, air vehicle system integration, and target recognition. Finally, a vision for UAV As A Wingman is presented.
Validation studies of the DOE-2 Building Energy Simulation Program. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, R.; Winkelmann, F.
1998-06-01
This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing themore » energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters. Until building simulation programs can get this data directly from CAD programs, such detail would negate the usefulness of the program for the practicing engineers and architects who currently use the program. In addition, the validation studies discussed herein indicate that such detail is really unnecessary. The comparison of calculated and measured quantities have resulted in a satisfactory level of confidence that is sufficient for continued use of the DOE-2 program. However, additional validation is warranted, particularly at the component level, to further improve the program.« less
NASA Astrophysics Data System (ADS)
Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.
2016-10-01
We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Guidi, Vincenzo
2013-08-01
A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.
Lewis Research Center studies of multiple large wind turbine generators on a utility network
NASA Technical Reports Server (NTRS)
Gilbert, L. J.; Triezenberg, D. M.
1979-01-01
A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.
Flight Telerobotic Servicer prototype simulator
NASA Astrophysics Data System (ADS)
Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob
A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.
FERN - a Java framework for stochastic simulation and evaluation of reaction networks.
Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf
2008-08-29
Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-alone program and within new systems biology applications. Finally, complex scenarios requiring intervention during the simulation progress can be modelled easily with FERN.
Preparing medical students for clinical practice: easing the transition.
Teagle, Alexandra R; George, Maria; Gainsborough, Nicola; Haq, Inam; Okorie, Michael
2017-08-01
The transition from medical student to junior doctor is a challenge; the UK General Medical Council has issued guidance emphasizing the importance of adequate preparation of medical students for clinical practice. This study aimed to determine whether a junior doctor-led simulation-based course is an effective way of preparing final year medical students for practice as a junior doctor.We piloted a new 'preparation for practice' course for final year medical students prior to beginning as Foundation Year 1 (first year of practice) doctors. The course ran over three days and consisted of four simulated stations: ward round, prescribing, handover, and lessons learnt. Quantitative and qualitative feedback was obtained.A total of 120 students attended (40 on each day) and feedback was collected from 95 of them. Using a scale of 1 (lowest) to 5 (highest), feedback was positive, with 99% and 96% rating 4 or 5 for the overall quality of the program and the relevance of the program content, respectively. A score of 5 was awarded by 67% of students for the ward round station; 58% for the handover station; 71% for the prescribing station, and 35% for the lessons learnt station. Following the prescribing station, students reported increased confidence in their prescribing.Preparation for practice courses and simulation are an effective and enjoyable way of easing the transition from medical student to junior doctor. Together with 'on-the-job' shadowing time, such programs can be used to improve students' confidence, competence, and ultimately patient safety and quality of care.
Development of a nondestructive vibration technique for bond assessment of Space Shuttle tiles
NASA Technical Reports Server (NTRS)
Moslehy, Faissal A.
1994-01-01
This final report describes the achievements of the above titled project. The project is funded by NASA-KSC (Grant No. NAG 10-0117) for the period of 1 Jan. to 31 Dec. 1993. The purpose of this project was to develop a nondestructive, noncontact technique based on 'vibration signature' of tile systems to quantify the bond conditions of the thermal protection system) tiles of Space Shuttle orbiters. The technique uses a laser rapid scan system, modal measurements, and finite element modeling. Finite element models were developed for tiles bonded to both clamped and deformable integrated skin-stringer orbiter mid-fuselage. Results showed that the size and location of a disbonded tile can be determined from frequency and mode shape information. Moreover, a frequency response survey was used to quickly identify the disbonded tiles. The finite element results were compared with experimentally determined frequency responses of a 17-tile test panel, where a rapidscan laser system was employed. An excellent degree of correlation between the mathematical simulation and experimental results was realized. An inverse solution for single-tile assemblies was also derived and is being implemented into a computer program that can interact with the modal testing software. The output of the program displays the size and location of disbond. This program has been tested with simulated input (i.e., finite element data), and excellent agreement between predicted and simulated disbonds was shown. Finally, laser vibration imaging and acoustic emission techniques were shown to be well suited for detecting and monitoring the progressive damage in Graphite/Epoxy composite materials.
Cockpit Resource Management (CRM) training in the 1550th combat crew training wing
NASA Technical Reports Server (NTRS)
Fiedler, Michael T.
1987-01-01
The training program the 1550th Combat Crew Training Wing at Kirtland Air Force Base, New Mexico, implemented in September 1985 is discussed. The program is called Aircrew Coordination Training (ACT), and it is designed specifically to help aircrew members work more effectively as a team in their respective aircraft and hopefully to reduce human factors-related accidents. The scope of the 1550th CCTW's training responsibilities is described, the structure of the program, along with a brief look at the content of the academic part of the course. Then the Mission-Oriented Simulator Training (MOST) program is discussed; a program similar to the Line Oriented Flight Training (LOFT) programs. Finally, the future plans for the Aircrew Coordination Training Program at the 1550th is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.; Mowrey, J.
1995-12-01
This report describes the design, development and testing of process controls for selected system operations in the Browns Ferry Nuclear Plant (BFNP) Reactor Water Cleanup System (RWCU) using a Computer Simulation Platform which simulates the RWCU System and the BFNP Integrated Computer System (ICS). This system was designed to demonstrate the feasibility of the soft control (video touch screen) of nuclear plant systems through an operator console. The BFNP Integrated Computer System, which has recently. been installed at BFNP Unit 2, was simulated to allow for operator control functions of the modeled RWCU system. The BFNP Unit 2 RWCU systemmore » was simulated using the RELAP5 Thermal/Hydraulic Simulation Model, which provided the steady-state and transient RWCU process variables and simulated the response of the system to control system inputs. Descriptions of the hardware and software developed are also included in this report. The testing and acceptance program and results are also detailed in this report. A discussion of potential installation of an actual RWCU process control system in BFNP Unit 2 is included. Finally, this report contains a section on industry issues associated with installation of process control systems in nuclear power plants.« less
QDENSITY—A Mathematica Quantum Computer simulation
NASA Astrophysics Data System (ADS)
Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank
2006-06-01
This Mathematica 5.2 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. Selected examples of the basic commands are presented here and a tutorial notebook, Tutorial.nb is provided with the package (available on our website) that serves as a full guide to the package. Finally, application is made to a variety of relevant cases, including Teleportation, Quantum Fourier transform, Grover's search and Shor's algorithm, in separate notebooks: QFT.nb, Teleportation.nb, Grover.nb and Shor.nb where each algorithm is explained in detail. Finally, two examples of the construction and manipulation of cluster states, which are part of "one way computing" ideas, are included as an additional tool in the notebook Cluster.nb. A Mathematica palette containing most commands in QDENSITY is also included: QDENSpalette.nb. Program summaryTitle of program: QDENSITY Catalogue identifier: ADXH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v1_0 Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Operating systems: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Programming language used: Mathematica 5.2 No. of bytes in distributed program, including test data, etc.: 180 581 No. of lines in distributed program, including test data, etc.: 19 382 Distribution format: tar.gz Method of solution: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. QDENSITY is available at http://www.pitt.edu/~tabakin/QDENSITY.
Modeling SSI financial eligibility and simulating the effect of policy options.
Davies, P S; Huynh, M; Newcomb, C; O'Leary, P; Rupp, K; Sears, J
This article simulates eligibility for Supplemental Security Income (SSI) among the elderly, analyzes factors affecting participation, and looks at the potential effects of various options to modify financial eligibility standards for the federal SSI program. We find that in the estimated noninstitutional elderly population of 30.2 million in the United States in 1991, approximately 2 million individuals aged 65 or older were eligible for SSI (a 6.6 percent rate of eligibility). Our overall estimate of the rate of participation among eligible elderly is approximately 63 percent, suggesting that more than a third of those who are eligible do not participate in the program. The results of our analysis of factors affecting participation among the eligible elderly show that expected SSI benefits and a number of demographic and socioeconomic variables are associated with the probability of participation. We also simulate the effects of various policy options on the poverty rate, poverty gap, annual program cost, the number of participants, and the average estimated benefits among participants. The simulations consider the potential effects of five policy alternatives: Increase the general income exclusion (GIE) from $20 to $80. Increase the earned income exclusion (EIE) from $65 to $260. Increase the federal benefit rate (FBR) by $50 for individuals and $75 for couples and eliminate the GIE. Increase the asset threshold to $3,000 for individuals and $4,500 for couples. Increase the asset threshold to $6,000 for individuals and $9,000 for couples. Using 1991 microdata from the Survey of Income and Program Participation (SIPP) matched to Social Security Administration administrative records and making adjustments reflecting aggregate program statistics, we present the results of our simulations for December 1999. The results show substantial variation in the simulated effects of the five policy alternatives along the various outcome dimensions considered. The simulated effects on the poverty gap of the elderly population range from a 7.9 percent reduction ("Increase the GIE from $20 to $80") to a 0.1 percent reduction ("Increase the EIE from $65 to $260"). All simulated interventions are expected to increase the rate of SSI participation among the elderly from a high of 20.3 percent ("Increase the GIE from $20 to $80") to a low of 0.5 percent ("Increase the EIE from $65 to $260"). We also find that the interventions that have greater estimated effects in terms of increased participation and reduced poverty tend to cost more. At the high end, we estimate that increasing the GIE from $20 to $80 could raise annual federal SSI cash benefit outlays by about 46 percent, compared with only 0.9 percent for increasing the EIE from $65 to $260. Similar to the EIE intervention, raising the resource thresholds by 50 percent would reduce the overall poverty gap of the elderly by only 0.2 percent, would increase SSI participation only modestly (by 1.3 percent), but would entail slightly higher program costs (by 1.4 percent). Increasing the asset threshold by 200 percent would have higher estimated effects on all three outcomes, but it would still be associated with relatively low increases in both costs and benefits. Finally, the simulated effects on the three key outcomes of increasing the FBR by $50 for individuals and $75 for couples, combined with eliminating the GIE, are relatively large but are clearly less substantial than increasing the GIE from $20 to $80. This work relies on data from the SIPP matched to administrative data on federal SSI benefits that provide a more accurate picture of SSI participation than has been feasible for previous studies. We simulate eligibility for federal SSI benefits by applying the program rules to detailed information on the characteristics of individuals and couples based on the rich array of demographic and socioeconomic data in the SIPP, particularly the comprehensive information SIPP provides on assets and monthly income. A probit model is estimated to analyze factors affecting participation among the eligible elderly. Finally, we conduct the policy simulations using altered program rules represented by the policy alternatives and predicted participation probabilities to estimate outcomes under simulated program rules. We compare those simulated outcomes to observed outcomes under current program rules. The results of our simulations are conditional on the characteristics of participants and eligibles in 1991, but they also reflect aggregate adjustments capturing substantial changes in overall participation and program benefit levels between 1991 and 1999.
Human Performance Modeling and Simulation for Launch Team Applications
NASA Technical Reports Server (NTRS)
Peaden, Cary J.; Payne, Stephen J.; Hoblitzell, Richard M., Jr.; Chandler, Faith T.; LaVine, Nils D.; Bagnall, Timothy M.
2006-01-01
This paper describes ongoing research into modeling and simulation of humans for launch team analysis, training, and evaluation. The initial research is sponsored by the National Aeronautics and Space Administration's (NASA)'s Office of Safety and Mission Assurance (OSMA) and NASA's Exploration Program and is focused on current and future launch team operations at Kennedy Space Center (KSC). The paper begins with a description of existing KSC launch team environments and procedures. It then describes the goals of new Simulation and Analysis of Launch Teams (SALT) research. The majority of this paper describes products from the SALT team's initial proof-of-concept effort. These products include a nominal case task analysis and a discrete event model and simulation of launch team performance during the final phase of a shuttle countdown; and a first proof-of-concept training demonstration of launch team communications in which the computer plays most roles, and the trainee plays a role of the trainee's choice. This paper then describes possible next steps for the research team and provides conclusions. This research is expected to have significant value to NASA's Exploration Program.
Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus
2017-01-01
All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130
FY2017 Report on NISC Measurements and Detector Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Madison Theresa; Meierbachtol, Krista Cruse; Jordan, Tyler Alexander
FY17 work focused on automation, both of the measurement analysis and comparison of simulations. The experimental apparatus was relocated and weeks of continuous measurements of the spontaneous fission source 252Cf was performed. Programs were developed to automate the conversion of measurements into ROOT data framework files with a simple terminal input. The complete analysis of the measurement (which includes energy calibration and the identification of correlated counts) can now be completed with a documented process which involves one simple execution line as well. Finally, the hurdles of slow MCNP simulations resulting in low simulation statistics have been overcome with themore » generation of multi-run suites which make use of the highperformance computing resources at LANL. Preliminary comparisons of measurements and simulations have been performed and will be the focus of FY18 work.« less
A study of ignition and simulation circuits for arcjet thrusters, part 1. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.; King, Roger J.; Altenburger, Gene P.
1991-01-01
A 1 kW electronic load was programmed to simulate the nonlinear i-v (volt-ampere) characteristics of an arcjet, both ignited and unignited. The simulator was tested and found to closely resemble an arcjet both for large transients and small perturbances up to about 40 kHz. No attempt was made to simulate the ignition process itself. The dynamic behavior of the arcjet (and the simulator) was shown to differ significantly from that of a resistor bank. Previous research led to the design and construction of a 1 kW arcjet power supply. A high voltage ignition circuit was added to this hardware, and tests on a 1 kW arcjet were performed at NASA-Lewis. All tests were successful and no ignition failures were observed. Circuit documentation and test results are included.
NASA Technical Reports Server (NTRS)
Kumar, P.; Lin, F. Y.; Vaishampayan, V.; Farvardin, N.
1986-01-01
A complete documentation of the software developed in the Communication and Signal Processing Laboratory (CSPL) during the period of July 1985 to March 1986 is provided. Utility programs and subroutines that were developed for a user-friendly image and speech processing environment are described. Additional programs for data compression of image and speech type signals are included. Also, programs for the zero-memory and block transform quantization in the presence of channel noise are described. Finally, several routines for simulating the perfromance of image compression algorithms are included.
Numerical aerodynamic simulation program long haul communications prototype
NASA Technical Reports Server (NTRS)
Cmaylo, Bohden K.; Foo, Lee
1987-01-01
This document is a report of the Numerical Aerodynamic Simulation (NAS) Long Haul Communications Prototype (LHCP). It describes the accomplishments of the LHCP group, presents the results from all LHCP experiments and testing activities, makes recommendations for present and future LHCP activities, and evaluates the remote workstation accesses from Langley Research Center, Lewis Research Center, and Colorado State University to Ames Research Center. The report is the final effort of the Long Haul (Wideband) Communications Prototype Plan (PT-1133-02-N00), 3 October 1985, which defined the requirements for the development, test, and operation of the LHCP network and was the plan used to evaluate the remote user bandwidth requirements for the Numerical Aerodynamic Simulation Processing System Network.
Dislocation dynamics: simulation of plastic flow of bcc metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lassila, D H
This is the final report for the LDRD strategic initiative entitled ''Dislocation Dynamic: Simulation of Plastic Flow of bcc Metals'' (tracking code: 00-SI-011). This report is comprised of 6 individual sections. The first is an executive summary of the project and describes the overall project goal, which is to establish an experimentally validated 3D dislocation dynamics simulation. This first section also gives some information of LLNL's multi-scale modeling efforts associated with the plasticity of bcc metals, and the role of this LDRD project in the multiscale modeling program. The last five sections of this report are journal articles that weremore » produced during the course of the FY-2000 efforts.« less
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
1986-01-01
Further development of utility program software for analyzing final results of Earth rotation parameter determination from different space geodetic systems was completed. Main simulation experiments were performed. Results and conclusions were compiled. The utilization of range-difference observations in geodynamics is also examined. A method based on the Bayesian philosophy and entropy measure of information is given for the elucidation of time-dependent models of crustal motions as part of a proposed algorithm. The strategy of model discrimination and design of measurements is illustrated in an example for the case of crustal deformation models.
1984-04-01
Directorate (Code 6032) V NAVAL AIR DEVELOPMENT CENTER Warminster, PA 18974 and I David A. Fender KETRON. INC. Warminster, PA 18974 DTlC APRIL 1984 ELECTE FINAL...A. D’Aulerio N62269-81-Z-0206 David A. Fender Task No. 630-1944 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEN1T PROJECT, TASKAREA A...0102LF01401UNCLASSIFIED SECURITY CLAWFICATION OF TNIS PAGE (011t1 Die pewed) UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE w JIMu D#& Ent:ed) 9. Continued Louis A
NASA Astrophysics Data System (ADS)
Taylor, Stephen R.; Simon, Joseph; Sampson, Laura
2017-01-01
The final parsec of supermassive black-hole binary evolution is subject to the complex interplay of stellar loss-cone scattering, circumbinary disk accretion, and gravitational-wave emission, with binary eccentricity affected by all of these. The strain spectrum of gravitational-waves in the pulsar-timing band thus encodes rich information about the binary population's response to these various environmental mechanisms. Current spectral models have heretofore followed basic analytic prescriptions, and attempt to investigate these final-parsec mechanisms in an indirect fashion. Here we describe a new technique to directly probe the environmental properties of supermassive black-hole binaries through "Bayesian model-emulation". We perform black-hole binary population synthesis simulations at a restricted set of environmental parameter combinations, compute the strain spectra from these, then train a Gaussian process to learn the shape of the spectrum at any point in parameter space. We describe this technique, demonstrate its efficacy with a program of simulated datasets, then illustrate its power by directly constraining final-parsec physics in a Bayesian analysis of the NANOGrav 5-year dataset. The technique is fast, flexible, and robust.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Simon, Joseph; Sampson, Laura
2017-01-01
The final parsec of supermassive black-hole binary evolution is subject to the complex interplay of stellar loss-cone scattering, circumbinary disk accretion, and gravitational-wave emission, with binary eccentricity affected by all of these. The strain spectrum of gravitational-waves in the pulsar-timing band thus encodes rich information about the binary population's response to these various environmental mechanisms. Current spectral models have heretofore followed basic analytic prescriptions, and attempt to investigate these final-parsec mechanisms in an indirect fashion. Here we describe a new technique to directly probe the environmental properties of supermassive black-hole binaries through ``Bayesian model-emulation''. We perform black-hole binary population synthesis simulations at a restricted set of environmental parameter combinations, compute the strain spectra from these, then train a Gaussian process to learn the shape of spectrum at any point in parameter space. We describe this technique, demonstrate its efficacy with a program of simulated datasets, then illustrate its power by directly constraining final-parsec physics in a Bayesian analysis of the NANOGrav 5-year dataset. The technique is fast, flexible, and robust.
Air Combat Training: Good Stick Index Validation. Final Report for Period 3 April 1978-1 April 1979.
ERIC Educational Resources Information Center
Moore, Samuel B.; And Others
A study was conducted to investigate and statistically validate a performance measuring system (the Good Stick Index) in the Tactical Air Command Combat Engagement Simulator I (TAC ACES I) Air Combat Maneuvering (ACM) training program. The study utilized a twelve-week sample of eighty-nine student pilots to statistically validate the Good Stick…
ERIC Educational Resources Information Center
Zimmerlin, Timothy A.; And Others
An effort to construct a model of the thermal properties of materials based on theoretical thermo-electromagnetic models, to construct a data base of the dense cultural hospital scene according to Defense Mapping Agency Aerospace Center (DMAAC) specifications, and to design and implement a program to evaluate the tonal model and generate imagery…
Design and Simulation of an Electrothermal Actuator Based Rotational Drive
NASA Astrophysics Data System (ADS)
Beeson, Sterling; Dallas, Tim
2008-10-01
As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.
Development and application of dynamic simulations of a subsonic wind tunnel
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Cole, G. L.; Seidel, R. C.; Arpasi, D. J.
1986-01-01
Efforts are currently underway at NASA Lewis to improve and expand ground test facilities and to develop supporting technologies to meet anticipated aeropropulsion research needs. Many of these efforts have been focused on a proposed rehabilitation of the Altitude Wind Tunnel (AWT). In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide input to the AWT final design process. This paper describes the approach taken to develop analytical, dynamic computer simulations of the AWT, and the use of these simulations as test-beds for: (1) predicting the dynamic response characteristics of the AWT, and (2) evaluating proposed AWT control concepts. Plans for developing a portable, real-time simulator for the AWT facility are also described.
Framework for Architecture Trade Study Using MBSE and Performance Simulation
NASA Technical Reports Server (NTRS)
Ryan, Jessica; Sarkani, Shahram; Mazzuchim, Thomas
2012-01-01
Increasing complexity in modern systems as well as cost and schedule constraints require a new paradigm of system engineering to fulfill stakeholder needs. Challenges facing efficient trade studies include poor tool interoperability, lack of simulation coordination (design parameters) and requirements flowdown. A recent trend toward Model Based System Engineering (MBSE) includes flexible architecture definition, program documentation, requirements traceability and system engineering reuse. As a new domain MBSE still lacks governing standards and commonly accepted frameworks. This paper proposes a framework for efficient architecture definition using MBSE in conjunction with Domain Specific simulation to evaluate trade studies. A general framework is provided followed with a specific example including a method for designing a trade study, defining candidate architectures, planning simulations to fulfill requirements and finally a weighted decision analysis to optimize system objectives.
John, Shalini; Thangapandian, Sundarapandian; Lee, Keun Woo
2012-01-01
Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.
Ku-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Magnusson, H. G.; Goff, M. F.
1984-01-01
All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.
Ku-Band rendezvous radar performance computer simulation model
NASA Astrophysics Data System (ADS)
Magnusson, H. G.; Goff, M. F.
1984-06-01
All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.
Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program
NASA Technical Reports Server (NTRS)
Peterson, V. L.
1985-01-01
Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics.
NASA's Human Research Program at The Glenn Research Center: Progress and Opportunities
NASA Technical Reports Server (NTRS)
Nall, Marsha; Griffin, DeVon; Myers, Jerry; Perusek, Gail
2008-01-01
The NASA Human Research Program is aimed at correcting problems in critical areas that place NASA human spaceflight missions at risk due to shortfalls in astronaut health, safety and performance. The Glenn Research Center (GRC) and partners from Ohio are significant contributors to this effort. This presentation describes several areas of GRC emphasis, the first being NASA s path to creating exercise hardware requirements and protocols that mitigate the effects of long duration spaceflight. Computational simulations will be a second area that is discussed. This includes deterministic models that simulate the effects of spaceflight on the human body, as well as probabilistic models that bound and quantify the probability that adverse medical incidents will happen during an exploration mission. Medical technology development for exploration will be the final area to be discussed.
Temperature and solute-transport simulation in streamflow using a Lagrangian reference frame
Jobson, Harvey E.
1980-01-01
A computer program for simulating one-dimensional, unsteady temperature and solute transport in a river has been developed and documented for general use. The solution approach to the convective-diffusion equation uses a moving reference frame (Lagrangian) which greatly simplifies the mathematics of the solution procedure and dramatically reduces errors caused by numerical dispersion. The model documentation is presented as a series of four programs of increasing complexity. The conservative transport model can be used to route a single conservative substance. The simplified temperature model is used to predict water temperature in rivers when only temperature and windspeed data are available. The complete temperature model is highly accurate but requires rather complete meteorological data. Finally, the 10-parameter model can be used to route as many as 10 interacting constituents through a river reach. (USGS)
Mariano, Edward R; Harrison, T Kyle; Kim, T Edward; Kan, Jack; Shum, Cynthia; Gaba, David M; Ganaway, Toni; Kou, Alex; Udani, Ankeet D; Howard, Steven K
2015-10-01
Practicing anesthesiologists have generally not received formal training in ultrasound-guided perineural catheter insertion. We designed this study to determine the efficacy of a standardized teaching program in this population. Anesthesiologists in practice for 10 years or more were recruited and enrolled to participate in a 1-day program: lectures and live-model ultrasound scanning (morning) and faculty-led iterative practice and mannequin-based simulation (afternoon). Participants were assessed and recorded while performing ultrasound-guided perineural catheter insertion at baseline, at midday (interval), and after the program (final). Videos were scored by 2 blinded reviewers using a composite tool and global rating scale. Participants were surveyed every 3 months for 1 year to report the number of procedures, efficacy of teaching methods, and implementation obstacles. Thirty-two participants were enrolled and completed the program; 31 of 32 (97%) completed the 1-year follow-up. Final scores [median (10th-90th percentiles)] were 21.5 (14.5-28.0) of 30 points compared to 14.0 (9.0-20.0) at interval (P < .001 versus final) and 12.0 (8.5-17.5) at baseline (P < .001 versus final), with no difference between interval and baseline. The global rating scale showed an identical pattern. Twelve of 26 participants without previous experience performed at least 1 perineural catheter insertion after training (P < .001). However, there were no differences in the monthly average number of procedures or complications after the course when compared to baseline. Practicing anesthesiologists without previous training in ultrasound-guided regional anesthesia can acquire perineural catheter insertion skills after a 1-day standardized course, but changing clinical practice remains a challenge. © 2015 by the American Institute of Ultrasound in Medicine.
Simulation-Based Valuation of Transactive Energy Systems
Huang, Qiuhua; McDermott, Tom; Tang, Yingying; ...
2018-05-18
Transactive Energy (TE) has been recognized as a promising technique for integrating responsive loads and distributed energy resources as well as advancing grid modernization. To help the industry better understand the value of TE and compare different TE schemes in a systematic and transparent manner, a comprehensive simulation-based TE valuation method is developed. The method has the following salient features: 1) it formally defines the valuation scenarios, use cases, baseline and valuation metrics; 2) an open-source simulation platform for transactive energy systems has been developed by integrating transmission, distribution and building simulators, and plugin TE and non-TE agents through themore » Framework for Network Co-Simulation (FNCS); 3) transparency and flexibility of the valuation is enhanced through separation of simulation and valuation, base valuation metrics and final valuation metrics. In conclusion, a valuation example based on the Smart Grid Interoperability Panel (SGIP) Use Case 1 is provided to demonstrate the developed TE simulation program and the valuation method.« less
Simulating an underwater vehicle self-correcting guidance system with Simulink
NASA Astrophysics Data System (ADS)
Fan, Hui; Zhang, Yu-Wen; Li, Wen-Zhe
2008-09-01
Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.
Simulation-Based Valuation of Transactive Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiuhua; McDermott, Tom; Tang, Yingying
Transactive Energy (TE) has been recognized as a promising technique for integrating responsive loads and distributed energy resources as well as advancing grid modernization. To help the industry better understand the value of TE and compare different TE schemes in a systematic and transparent manner, a comprehensive simulation-based TE valuation method is developed. The method has the following salient features: 1) it formally defines the valuation scenarios, use cases, baseline and valuation metrics; 2) an open-source simulation platform for transactive energy systems has been developed by integrating transmission, distribution and building simulators, and plugin TE and non-TE agents through themore » Framework for Network Co-Simulation (FNCS); 3) transparency and flexibility of the valuation is enhanced through separation of simulation and valuation, base valuation metrics and final valuation metrics. In conclusion, a valuation example based on the Smart Grid Interoperability Panel (SGIP) Use Case 1 is provided to demonstrate the developed TE simulation program and the valuation method.« less
NASA Technical Reports Server (NTRS)
Brown, S. C.; Hardy, G. H.; Hindson, W. S.
1983-01-01
As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.
Ultraviolet Communication for Medical Applications
2014-05-01
parent company Imaging Systems Technology (IST) demonstrated feasibility of several key concepts are being developed into a working prototype in the...program using multiple high-end GPUs ( NVIDIA Tesla K20). Finally, the Monte Carlo simulation task will be resumed after the Milestone 2 demonstration...is acceptable for automated printing and handling. Next, the option of having our shells electroded by an external company was investigated and DEI
LSD (Landing System Development) Impact Simulation
NASA Astrophysics Data System (ADS)
Ullio, R.; Riva, N.; Pellegrino, P.; Deloo, P.
2012-07-01
In the frame of the Exploration Programs, a soft landing on the planet surface is foreseen. To ensure a successful final landing phase, a landing system by using leg tripod design landing legs with adequate crushable damping system was selected, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, insuring stability. TAS-I developed a numerical non linear dynamic methodology for the landing impact simulation of the Lander system by using a commercial explicit finite element analysis code (i.e. Altair RADIOSS). In this paper the most significant FE modeling approaches and results of the analytical simulation of landing impact are reported, especially with respect to the definition of leg dimensioning loads and the design update of selected parts (if necessary).
Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety;more » and bibliography.« less
Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation
NASA Astrophysics Data System (ADS)
Du, Jiaoman; Yu, Lean; Li, Xiang
2016-04-01
Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.
Wahlgren, Carl-Fredrik; Edelbring, Samuel; Fors, Uno; Hindbeck, Hans; Ståhle, Mona
2006-01-01
Background Most of the many computer resources used in clinical teaching of dermatology and venereology for medical undergraduates are information-oriented and focus mostly on finding a "correct" multiple-choice alternative or free-text answer. We wanted to create an interactive computer program, which facilitates not only factual recall but also clinical reasoning. Methods Through continuous interaction with students, a new computerised interactive case simulation system, NUDOV, was developed. It is based on authentic cases and contains images of real patients, actors and healthcare providers. The student selects a patient and proposes questions for medical history, examines the skin, and suggests investigations, diagnosis, differential diagnoses and further management. Feedback is given by comparing the user's own suggestions with those of a specialist. In addition, a log file of the student's actions is recorded. The program includes a large number of images, video clips and Internet links. It was evaluated with a student questionnaire and by randomising medical students to conventional teaching (n = 85) or conventional teaching plus NUDOV (n = 31) and comparing the results of the two groups in a final written examination. Results The questionnaire showed that 90% of the NUDOV students stated that the program facilitated their learning to a large/very large extent, and 71% reported that extensive working with authentic computerised cases made it easier to understand and learn about diseases and their management. The layout, user-friendliness and feedback concept were judged as good/very good by 87%, 97%, and 100%, respectively. Log files revealed that the students, in general, worked with each case for 60–90 min. However, the intervention group did not score significantly better than the control group in the written examination. Conclusion We created a computerised case simulation program allowing students to manage patients in a non-linear format supporting the clinical reasoning process. The student gets feedback through comparison with a specialist, eliminating the need for external scoring or correction. The model also permits discussion of case processing, since all transactions are stored in a log file. The program was highly appreciated by the students, but did not significantly improve their performance in the written final examination. PMID:16907972
NASA Astrophysics Data System (ADS)
Wilcox, William Edward, Jr.
1995-01-01
A computer program (LIDAR-PC) and associated atmospheric spectral databases have been developed which accurately simulate the laser remote sensing of the atmosphere and the system performance of a direct-detection Lidar or tunable Differential Absorption Lidar (DIAL) system. This simulation program allows, for the first time, the use of several different large atmospheric spectral databases to be coupled with Lidar parameter simulations on the same computer platform to provide a real-time, interactive, and easy to use design tool for atmospheric Lidar simulation and modeling. LIDAR -PC has been used for a range of different Lidar simulations and compared to experimental Lidar data. In general, the simulations agreed very well with the experimental measurements. In addition, the simulation offered, for the first time, the analysis and comparison of experimental Lidar data to easily determine the range-resolved attenuation coefficient of the atmosphere and the effect of telescope overlap factor. The software and databases operate on an IBM-PC or compatible computer platform, and thus are very useful to the research community for Lidar analysis. The complete Lidar and atmospheric spectral transmission modeling program uses the HITRAN database for high-resolution molecular absorption lines of the atmosphere, the BACKSCAT/LOWTRAN computer databases and models for the effects of aerosol and cloud backscatter and attenuation, and the range-resolved Lidar equation. The program can calculate the Lidar backscattered signal-to-noise for a slant path geometry from space and simulate the effect of high resolution, tunable, single frequency, and moderate line width lasers on the Lidar/DIAL signal. The program was used to model and analyze the experimental Lidar data obtained from several measurements. A fixed wavelength, Ho:YSGG aerosol Lidar (Sugimoto, 1990) developed at USF and a tunable Ho:YSGG DIAL system (Cha, 1991) for measuring atmospheric water vapor at 2.1 μm were analyzed. The simulations agreed very well with the measurements, and also yielded, for the first time, the ability to easily deduce the atmospheric attentuation coefficient, alpha, from the Lidar data. Simulations and analysis of other Lidar measurements included that of a 1.57 mu m OPO aerosol Lidar system developed at USF (Harrell, 1995) and of the NASA LITE (Laser-in-Space Technology Experiment) Lidar recently flown in the Space shuttle. Finally, an extensive series of laboratory experiments were made with the 1.57 μm OPO Lidar system to test calculations of the telescope/laser overlap and the effect of different telescope sizes and designs. The simulations agreed well with the experimental data for the telescope diameter and central obscuration test cases. The LIDAR-PC programs are available on the Internet from the USAF Lidar Home Page Web site, http://www.cas.usf.edu/physics/lidar.html/.
NASA Technical Reports Server (NTRS)
Larsen, William E.; Randle, Robert J., Jr.; Bray, Richard S.; Zuk, John
1992-01-01
A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries. A great amount of information was generated and recorded verbatim. This information is presented herein within the limits of accuracy inherent in recording, transcribing, and editing spoken technical material.
Determining procedures for simulation-based training in radiology: a nationwide needs assessment.
Nayahangan, Leizl Joy; Nielsen, Kristina Rue; Albrecht-Beste, Elisabeth; Bachmann Nielsen, Michael; Paltved, Charlotte; Lindorff-Larsen, Karen Gilboe; Nielsen, Bjørn Ulrik; Konge, Lars
2018-06-01
New training modalities such as simulation are widely accepted in radiology; however, development of effective simulation-based training programs is challenging. They are often unstructured and based on convenience or coincidence. The study objective was to perform a nationwide needs assessment to identify and prioritize technical procedures that should be included in a simulation-based curriculum. A needs assessment using the Delphi method was completed among 91 key leaders in radiology. Round 1 identified technical procedures that radiologists should learn. Round 2 explored frequency of procedure, number of radiologists performing the procedure, risk and/or discomfort for patients, and feasibility for simulation. Round 3 was elimination and prioritization of procedures. Response rates were 67 %, 70 % and 66 %, respectively. In Round 1, 22 technical procedures were included. Round 2 resulted in pre-prioritization of procedures. In round 3, 13 procedures were included in the final prioritized list. The three highly prioritized procedures were ultrasound-guided (US) histological biopsy and fine-needle aspiration, US-guided needle puncture and catheter drainage, and basic abdominal ultrasound. A needs assessment identified and prioritized 13 technical procedures to include in a simulation-based curriculum. The list may be used as guide for development of training programs. • Simulation-based training can supplement training on patients in radiology. • Development of simulation-based training should follow a structured approach. • The CAMES Needs Assessment Formula explores needs for simulation training. • A national Delphi study identified and prioritized procedures suitable for simulation training. • The prioritized list serves as guide for development of courses in radiology.
Teaching professionalism in graduate medical education: What is the role of simulation?
Wali, Eisha; Pinto, Jayant M; Cappaert, Melissa; Lambrix, Marcie; Blood, Angela D; Blair, Elizabeth A; Small, Stephen D
2016-09-01
We systematically reviewed the literature concerning simulation-based teaching and assessment of the Accreditation Council for Graduate Medical Education professionalism competencies to elucidate best practices and facilitate further research. A systematic review of English literature for "professionalism" and "simulation(s)" yielded 697 abstracts. Two independent raters chose abstracts that (1) focused on graduate medical education, (2) described the simulation method, and (3) used simulation to train or assess professionalism. Fifty abstracts met the criteria, and seven were excluded for lack of relevant information. The raters, 6 professionals with medical education, simulation, and clinical experience, discussed 5 of these articles as a group; they calibrated coding and applied further refinements, resulting in a final, iteratively developed evaluation form. The raters then divided into 2 teams to read and assess the remaining articles. Overall, 15 articles were eliminated, and 28 articles underwent final analysis. Papers addressed a heterogeneous range of professionalism content via multiple methods. Common specialties represented were surgery (46.4%), pediatrics (17.9%), and emergency medicine (14.3%). Sixteen articles (57%) referenced a professionalism framework; 14 (50%) incorporated an assessment tool; and 17 (60.7%) reported debriefing participants, though in limited detail. Twenty-three (82.1%) articles evaluated programs, mostly using subjective trainee reports. Despite early innovation, reporting of simulation-based professionalism training and assessment is nonstandardized in methods and terminology and lacks the details required for replication. We offer minimum standards for reporting of future professionalism-focused simulation training and assessment as well as a basic framework for better mapping proper simulation methods to the targeted domain of professionalism. Copyright © 2016 Elsevier Inc. All rights reserved.
Understanding interprofessional relationships by the use of contact theory.
Mohaupt, Jennifer; van Soeren, Mary; Andrusyszyn, Mary-Anne; Macmillan, Kathleen; Devlin-Cop, Sandra; Reeves, Scott
2012-09-01
The importance and necessity of interprofessional collaboration (IPC) present challenges for educators as they determine how best to achieve IPC through interprofessional education (IPE). Simulation-based teaching has been shown to enhance students' understanding of professional roles and promote positive attitudes toward team members; yet, empirical evidence providing direction on the conditions necessary to promote these positive outcomes is lacking. This study used a quasi-experimental design with a pre-/post-test to examine changes in undergraduate healthcare students' perceptions and attitudes toward IPC following their participation in an interprofessional simulation program. Allport's (1954) intergroup contact theory was used to help understand the nature of this IPE workshop and its reported outcomes. Participants included students in the final year of their respective programs (n = 84) such as pharmacy technician, paramedic, nursing and occupational therapy assistant/physical therapy assistant programs. These students were engaged in simulation exercises with interactive contact opportunities. Using the interdisciplinary education perceptions scale, statistically significant increases in positive attitudes in three of four sub-scales were found. An analysis of the structure and format of the workshop suggests that this IPE initiative fulfilled the key conditions suggested by intergroup contact theory. Attention to the key conditions provided by Allport's theory in the context of successful intergroup relationships may help provide direction for educators interested in planning IPE initiatives with student groups enrolled in various health programs.
Krueger, Linda; Ernstmeyer, Kim; Kirking, Ellen
2017-06-01
The purpose of this study was to examine the influence of a multipatient, interprofessional simulation session on nursing students' attitudes toward nurse-physician collaboration using the Jefferson Scale of Attitudes Toward Physician-Nurse Collaboration. Final-semester nursing students, along with medical resident and students from other health programs, participated in a simulation exercise that included a period of prebriefing, simulation, and debriefing. Participants completed pre- and postsimulation surveys to assess the impact on collaboration. In total, 268 nursing students completed the survey. Participants had a more positive attitude toward nurse-physician collaboration following the simulation event, compared with prior to it. Significant differences between male and female nursing students were found on mean postsimulation scores and for three of the four subscales of the tool. Interprofessional simulation may be an effective way to enhance collaborative relationships, which ultimately may influence patient safety and quality of care. [J Nurs Educ. 2017;56(6):321-327.]. Copyright 2017, SLACK Incorporated.
Realization of planning design of mechanical manufacturing system by Petri net simulation model
NASA Astrophysics Data System (ADS)
Wu, Yanfang; Wan, Xin; Shi, Weixiang
1991-09-01
Planning design is to work out a more overall long-term plan. In order to guarantee a mechanical manufacturing system (MMS) designed to obtain maximum economical benefit, it is necessary to carry out a reasonable planning design for the system. First, some principles on planning design for MMS are introduced. Problems of production scheduling and their decision rules for computer simulation are presented. Realizable method of each production scheduling decision rule in Petri net model is discussed. Second, the solution of conflict rules for conflict problems during running Petri net is given. Third, based on the Petri net model of MMS which includes part flow and tool flow, according to the principle of minimum event time advance, a computer dynamic simulation of the Petri net model, that is, a computer dynamic simulation of MMS, is realized. Finally, the simulation program is applied to a simulation exmple, so the scheme of a planning design for MMS can be evaluated effectively.
Effect of Spatial Locality Prefetching on Structural Locality
1991-12-01
Pollution module calculates the SLC and CAM cache pollution percentages. And finally, the Generate Reference Frequency List module produces the output...3.2.5 Generate Reference Frequency List 3.2.6 Each program module in the structure chart is mapped into an Ada package. By performing this encapsulation...call routine to generate reference -- frequency list -- end if -- end loop -- close input, output, and reference files end Cache Simulator Figure 3.5
Gauvin, Crystal; Uchida, Emi; Rozelle, Scott; Xu, Jintao; Zhan, Jinyan
2010-03-01
The goal of this article is to understand strategies by which both the environmental and poverty alleviation objectives of PES programs can be achieved cost effectively. To meet this goal, we first create a conceptual framework to understand the implications of alternative targeting when policy makers have both environmental and poverty alleviation goals. We then use the Grain for Green program in China, the largest PES program in the developing world, as a case study. We also use a data set from a survey that we designed and implemented to evaluate the program. Using the data set we first evaluate what factors determined selection of program areas for the Grain for Green program. We then demonstrate the heterogeneity of parcels and households and examine the correlations across households and their parcels in terms of their potential environmental benefits, opportunity costs of participating, and the asset levels of households as an indicator of poverty. Finally, we compare five alternative targeting criteria and simulate their performance in terms of cost effectiveness in meeting both the environmental and poverty alleviation goals when given a fixed budget. Based on our simulations, we find that there is a substantial gain in the cost effectiveness of the program by targeting parcels based on the "gold standard," i.e., targeting parcels with low opportunity cost and high environmental benefit managed by poorer households.
NASA Astrophysics Data System (ADS)
Gauvin, Crystal; Uchida, Emi; Rozelle, Scott; Xu, Jintao; Zhan, Jinyan
2010-03-01
The goal of this article is to understand strategies by which both the environmental and poverty alleviation objectives of PES programs can be achieved cost effectively. To meet this goal, we first create a conceptual framework to understand the implications of alternative targeting when policy makers have both environmental and poverty alleviation goals. We then use the Grain for Green program in China, the largest PES program in the developing world, as a case study. We also use a data set from a survey that we designed and implemented to evaluate the program. Using the data set we first evaluate what factors determined selection of program areas for the Grain for Green program. We then demonstrate the heterogeneity of parcels and households and examine the correlations across households and their parcels in terms of their potential environmental benefits, opportunity costs of participating, and the asset levels of households as an indicator of poverty. Finally, we compare five alternative targeting criteria and simulate their performance in terms of cost effectiveness in meeting both the environmental and poverty alleviation goals when given a fixed budget. Based on our simulations, we find that there is a substantial gain in the cost effectiveness of the program by targeting parcels based on the “gold standard,” i.e., targeting parcels with low opportunity cost and high environmental benefit managed by poorer households.
Constructing an Educational Mars Simulation
NASA Technical Reports Server (NTRS)
Henke, Stephen A.
2004-01-01
January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Liou, Luen-Woei; Ray, Asok
1991-01-01
A state feedback control law for integrated communication and control systems (ICCS) is formulated by using the dynamic programming and optimality principle on a finite-time horizon. The control law is derived on the basis of a stochastic model of the plant which is augmented in state space to allow for the effects of randomly varying delays in the feedback loop. A numerical procedure for synthesizing the control parameters is then presented, and the performance of the control law is evaluated by simulating the flight dynamics model of an advanced aircraft. Finally, recommendations for future work are made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borst, M.
1984-03-01
This report covers the performance testing of five oil spill recovery devices at the Oil and Hazardous Materials Simulated Environmental Test Tank in Leonardo, New Jersey. The GOR Skimmer was tow tested in harbor chops, regular waves, and calm water at tow speeds through 2 knots to determine the effectiveness of modifications made to the device since it was last tested. The performance was consistently lower after the modifications in all conditions. The Hydrovac Veegarm was the most exhaustively tested skimmer in this program.
Study of fuel cell on-site, integrated energy systems in residential/commercial applications
NASA Technical Reports Server (NTRS)
Wakefield, R. A.; Karamchetty, S.; Rand, R. H.; Ku, W. S.; Tekumalla, V.
1980-01-01
Three building applications were selected for a detailed study: a low rise apartment building; a retail store, and a hospital. Building design data were then specified for each application, based on the design and construction of typical, actual buildings. Finally, a computerized building loads analysis program was used to estimate hourly end use load profiles for each building. Conventional and fuel cell based energy systems were designed and simulated for each building in each location. Based on the results of a computer simulation of each energy system, levelized annual costs and annual energy consumptions were calculated for all systems.
An analytic model for footprint dispersions and its application to mission design
NASA Technical Reports Server (NTRS)
Rao, J. R. Jagannatha; Chen, Yi-Chao
1992-01-01
This is the final report on our recent research activities that are complementary to those conducted by our colleagues, Professor Farrokh Mistree and students, in the context of the Taguchi method. We have studied the mathematical model that forms the basis of the Simulation and Optimization of Rocket Trajectories (SORT) program and developed an analytic method for determining mission reliability with a reduced number of flight simulations. This method can be incorporated in a design algorithm to mathematically optimize different performance measures of a mission, thus leading to a robust and easy-to-use methodology for mission planning and design.
Airfoil Ice-Accretion Aerodynamics Simulation
NASA Technical Reports Server (NTRS)
Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.
2007-01-01
NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.
Active tensor magnetic gradiometer system final report for Project MM–1514
Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond
2014-01-01
An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.
NASA Technical Reports Server (NTRS)
Meng, J. C. S.; Thomson, J. A. L.
1975-01-01
A data analysis program constructed to assess LDV system performance, to validate the simulation model, and to test various vortex location algorithms is presented. Real or simulated Doppler spectra versus range and elevation is used and the spatial distributions of various spectral moments or other spectral characteristics are calculated and displayed. Each of the real or simulated scans can be processed by one of three different procedures: simple frequency or wavenumber filtering, matched filtering, and deconvolution filtering. The final output is displayed as contour plots in an x-y coordinate system, as well as in the form of vortex tracks deduced from the maxima of the processed data. A detailed analysis of run number 1023 and run number 2023 is presented to demonstrate the data analysis procedure. Vortex tracks and system range resolutions are compared with theoretical predictions.
NASA Astrophysics Data System (ADS)
Profumieri, A.; Bonell, C.; Catalfamo, P.; Cherniz, A.
2016-04-01
Virtual reality has been proposed for different applications, including the evaluation of new control strategies and training protocols for upper limb prostheses and for the study of new rehabilitation programs. In this study, a lower limb simulation environment commanded by surface electromyography signals is evaluated. The time delays generated by the acquisition and processing stages for the signals that would command the knee joint, were measured and different acquisition windows were analysed. The subjective perception of the quality of simulation was also evaluated when extra delays were added to the process. The results showed that the acquisition window is responsible for the longest delay. Also, the basic implemented processes allowed for the acquisition of three signal channels for commanding the simulation. Finally, the communication between different applications is arguably efficient, although it depends on the amount of data to be sent.
Diagnostic Simulations of the Lunar Exosphere using Coma and Tail
NASA Astrophysics Data System (ADS)
Lee, Dong Wook; Kim, Sang J.
2017-10-01
The characteristics of the lunar exosphere can be constrained by comparing simulated models with observational data of the coma and tail (Lee et al., JGR, 2011); and thus far a few independent approaches on this issue have been performed and presented in the literature. Since there are two-different observational constraints for the lunar exosphere, it is interesting to find the best exospheric model that can account for the observed characteristics of the coma and tail. Considering various initial conditions of different sources and space weather, we present preliminary time-dependent simulations between the initial and final stages of the development of the lunar tail. Based on an updated 3-D model, we are planning to conduct numerous simulations to constrain the best model parameters from the coma images obtained from coronagraph observations supported by a NASA monitoring program (Morgan, Killen, and Potter, AGU, 2015) and future tail data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galassi, Mark C.
Diorama is written as a collection of modules that can run in separate threads or in separate processes. This defines a clear interface between the modules and also allows concurrent processing of different parts of the pipeline. The pipeline is determined by a description in a scenario file[Norman and Tornga, 2012, Tornga and Norman, 2014]. The scenario manager parses the XML scenario and sets up the sequence of modules which will generate an event, propagate the signal to a set of sensors, and then run processing modules on the results provided by those sensor simulations. During a run a varietymore » of “observer” and “processor” modules can be invoked to do interim analysis of results. Observers do not modify the simulation results, while processors may affect the final result. At the end of a run results are collated and final reports are put out. A detailed description of the scenario file and how it puts together a simulation are given in [Tornga and Norman, 2014]. The processing pipeline and how to program it with the Diorama API is described in Tornga et al. [2015] and Tornga and Wakeford [2015]. In this report I describe the communications infrastructure that is used.« less
Guidance/Navigation Requirements Study Final Report. Volume III. Appendices
1978-04-30
shown Figure G-2. The free-flight simulation program FFSIM uses quaternions to calculate the body attitude as a function of time. To calculate the...the lack of open-loop damping, the existence of a feedback controller which will stabilize the closed-loon system depends upon the satisfaction of a...re-entry vehicle has dynamic pecularitles which tend to discourage the use of "linear-quadratic" feedback regulators in guidance. The disadvantageous
STS-135 crew during AEM (Animal Enclosure Module) training
2011-03-25
JSC2011-E-029133 (25 March 2011) --- STS-135 crew members participate in an Animal Enclosure Module (AEM) training session in the Jake Garn Simulation and Training Facility at NASA's Johnson Space Center. Pictured from the right are NASA astronauts Chris Ferguson, commander; Sandy Magnus and Rex Walheim, both mission specialists. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
NASA Astrophysics Data System (ADS)
Golosio, Bruno; Schoonjans, Tom; Brunetti, Antonio; Oliva, Piernicola; Masala, Giovanni Luca
2014-03-01
The simulation of X-ray imaging experiments is often performed using deterministic codes, which can be relatively fast and easy to use. However, such codes are generally not suitable for the simulation of even slightly more complex experimental conditions, involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions, or more complex geometries, particularly for experiments that combine spatial resolution with spectral information. In such cases, simulations are often performed using codes based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction position of an X-ray photon and the state of the photon after an interaction are obtained simply according to the theoretical probability distributions. This approach may be quite inefficient because the final channels of interest may include only a limited region of space or photons produced by a rare interaction, e.g., fluorescent emission from elements with very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has been solved by combining the Monte Carlo method with variance reduction techniques, which can reduce the computation time by several orders of magnitude. In this work, we present a C++ code for the general simulation of X-ray imaging and spectroscopy experiments, based on the application of the Monte Carlo method in combination with variance reduction techniques, with a description of sample geometry based on quadric surfaces. We describe the benefits of the object-oriented approach in terms of code maintenance, the flexibility of the program for the simulation of different experimental conditions and the possibility of easily adding new modules. Sample applications in the fields of X-ray imaging and X-ray spectroscopy are discussed. Catalogue identifier: AERO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 83617 No. of bytes in distributed program, including test data, etc.: 1038160 Distribution format: tar.gz Programming language: C++. Computer: Tested on several PCs and on Mac. Operating system: Linux, Mac OS X, Windows (native and cygwin). RAM: It is dependent on the input data but usually between 1 and 10 MB. Classification: 2.5, 21.1. External routines: XrayLib (https://github.com/tschoonj/xraylib/wiki) Nature of problem: Simulation of a wide range of X-ray imaging and spectroscopy experiments using different types of sources and detectors. Solution method: XRMC is a versatile program that is useful for the simulation of a wide range of X-ray imaging and spectroscopy experiments. It enables the simulation of monochromatic and polychromatic X-ray sources, with unpolarised or partially/completely polarised radiation. Single-element detectors as well as two-dimensional pixel detectors can be used in the simulations, with several acquisition options. In the current version of the program, the sample is modelled by combining convex three-dimensional objects demarcated by quadric surfaces, such as planes, ellipsoids and cylinders. The Monte Carlo approach makes XRMC able to accurately simulate X-ray photon transport and interactions with matter up to any order of interaction. The differential cross-sections and all other quantities related to the interaction processes (photoelectric absorption, fluorescence emission, elastic and inelastic scattering) are computed using the xraylib software library, which is currently the most complete and up-to-date software library for X-ray parameters. The use of variance reduction techniques makes XRMC able to reduce the simulation time by several orders of magnitude compared to other general-purpose Monte Carlo simulation programs. Running time: It is dependent on the complexity of the simulation. For the examples distributed with the code, it ranges from less than 1 s to a few minutes.
Simulation verification techniques study: Simulation self test hardware design and techniques report
NASA Technical Reports Server (NTRS)
1974-01-01
The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.
University of Arizona High Energy Physics Program at the Cosmic Frontier 2014-2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
abate, alex; cheu, elliott
This is the final technical report from the University of Arizona High Energy Physics program at the Cosmic Frontier covering the period 2014-2016. The work aims to advance the understanding of dark energy using the Large Synoptic Survey Telescope (LSST). Progress on the engineering design of the power supplies for the LSST camera is discussed. A variety of contributions to photometric redshift measurement uncertainties were studied. The effect of the intergalactic medium on the photometric redshift of very distant galaxies was evaluated. Computer code was developed realizing the full chain of calculations needed to accurately and efficiently run large-scale simulations.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Final Report for DOE Grant Number DE-SC0001481
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Edison
2013-12-02
This report covers research activities, major results and publications supported by DE-SC-000-1481. This project was funded by the DOE OFES-NNSA HEDLP program. It was a joint research program between Rice University and the University of Texas at Austin. The physics of relativistic plasmas was investigated in the context of ultra-intense laser irradiation of high-Z solid targets. Laser experiments using the Texas Petawatt Laser were performed in the summers of 2011, 2012 and 2013. Numerical simulations of laser-plasma interactions were performed using Monte Carlo and Particle-in-Cell codes to design and support these experiments. Astrophysical applications of these results were also investigated.
Unifying Model-Based and Reactive Programming within a Model-Based Executive
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)
1999-01-01
Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
Jha, Praveen
Deforestation and degradation of forest areas, including those in the Protected Areas (PAs), are major concerns in India. There were 2 broad objectives of the study: the technological objective pertained to the development of state-of-art programs that could serve as Decision Support Systems while finalizing plans and policy interventions, while the other objective aimed at generating geo-spatial data in 2 PAs. A part of the Eastern Himalaya biodiversity hotspot, Manas Tiger Reserve (MTR), Assam, India having an area of 2837.12 sq km and an important part of Rajaji-Corbett Tiger Conservation Unit, Rajaji National Park (RNP), Uttarakhand, India, having an area of 820.42 sq km, were taken for the assessment of land use and land cover (LULC) change during 1990--2004. Simulation was undertaken in a smaller area of 1.2 km * 1.2 km right on the fringe of RNP. Three advanced geo-spatial programs---Multi-Algorithm Automation Program (MAAP), Data Automatic Modification Program (DAMP) and Multi-Stage Simulation Program (MUSSIP)---developed by the author were used extensively. Based on the satellite data, MAAP was used for the rapid assessments of LULC of 2004 and 1990; DAMP was used for the spectral modification of the satellite data of the adjacent scenes of 2004 and of 1990; and MUSSIP was used to simulate LULC maps for the future periods (till 2018). These programs produced very high accuracy levels: 91.12% in 2004 and 89.67% in 1990 were obtained for MTR; and 94.87% in 2004 and 94.10% in 1990 were obtained for RNP; 93.40% pixel-to-pixel accuracy and 0.7904 for kappa were achieved for simulation. The annual rate of loss of forests (0.41% in MTR and 1.20% in RNP) and loss of water (1.79% in MTR and 1.69% in RNP) during 1990-2004 is a matter of serious concern. The scenario analysis in the study area for simulation revealed that the deforestation rate of 1.27% per year during 2004--2018 would increase to 2.04% if the human population growth rate is enhanced by 10%. Hence these PAs need urgent restoration measures and effective conservation planning to address the problems of deforestation, severe degradation and immense loss of water.
Computational steering of GEM based detector simulations
NASA Astrophysics Data System (ADS)
Sheharyar, Ali; Bouhali, Othmane
2017-10-01
Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.
Educational treasures in radiology: a free online program for Radiology Boards preparation.
Talanow, Roland
2011-01-01
An objective tool is desired, which optimally prepares for Radiology boards examination. Such program should prepare examinees with pertinent radiological contents and simulations as expected in the real examination. Many countries require written boards examinations for Radiology certification eligibility. No objective measure exists to tell if the examinee is ready to pass the exam or not. Time pressure and computer environment might be unfamiliar to examinees. Traditional preparation lectures don't simulate the "real" Radiology exam because they don't provide the special environment with multiple choice questions and timing. This online program consists of 4 parts. The entry section allows to create questions with additional fields for comprehensive information. Sections include Pediatrics/Mammography/GI/IR/Nucs/Thoracic/Musculoskeletal/GU/Neuro/Ultrasound/Cardiac/OB/GYN and Miscellaneous. Experienced radiologists and educators evaluate and release/delete these entries in the administrator section. In the exam section users can create (un)timed customized exams for individual needs and learning pace. Exams can either include all sections or only specific sections to gear learning towards areas with weaker performance. Comprehensive statistics unveil the user's strengths and weaknesses to help focussing on "weak" areas. In the search section a comprehensive search and review can be performed by searching the entire database for keywords/topics or only searching within specific sections. www.RadiologyBoards.org is a new working concept of Radiology boards preparation to detect and improve the examinee's weaknesses and finally to increase the examinee's confidence level for the final exam. It is beneficial for Radiology residents and also board certified radiologists to refresh/maintain radiological knowledge.
Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes
NASA Technical Reports Server (NTRS)
Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.
2010-01-01
Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication
Whitbeck, David E.
2006-01-01
The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.
Space Shuttle Orbiter Approach and Landing Test: Final Evaluation Report
NASA Technical Reports Server (NTRS)
1978-01-01
The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.
Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields
NASA Astrophysics Data System (ADS)
Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo
The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.
Accelerating simulation for the multiple-point statistics algorithm using vector quantization
NASA Astrophysics Data System (ADS)
Zuo, Chen; Pan, Zhibin; Liang, Hao
2018-03-01
Multiple-point statistics (MPS) is a prominent algorithm to simulate categorical variables based on a sequential simulation procedure. Assuming training images (TIs) as prior conceptual models, MPS extracts patterns from TIs using a template and records their occurrences in a database. However, complex patterns increase the size of the database and require considerable time to retrieve the desired elements. In order to speed up simulation and improve simulation quality over state-of-the-art MPS methods, we propose an accelerating simulation for MPS using vector quantization (VQ), called VQ-MPS. First, a variable representation is presented to make categorical variables applicable for vector quantization. Second, we adopt a tree-structured VQ to compress the database so that stationary simulations are realized. Finally, a transformed template and classified VQ are used to address nonstationarity. A two-dimensional (2D) stationary channelized reservoir image is used to validate the proposed VQ-MPS. In comparison with several existing MPS programs, our method exhibits significantly better performance in terms of computational time, pattern reproductions, and spatial uncertainty. Further demonstrations consist of a 2D four facies simulation, two 2D nonstationary channel simulations, and a three-dimensional (3D) rock simulation. The results reveal that our proposed method is also capable of solving multifacies, nonstationarity, and 3D simulations based on 2D TIs.
Highlights of Transient Plume Impingement Model Validation and Applications
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2011-01-01
This paper describes highlights of an ongoing validation effort conducted to assess the viability of applying a set of analytic point source transient free molecule equations to model behavior ranging from molecular effusion to rocket plumes. The validation effort includes encouraging comparisons to both steady and transient studies involving experimental data and direct simulation Monte Carlo results. Finally, this model is applied to describe features of two exotic transient scenarios involving NASA Goddard Space Flight Center satellite programs.
2013-01-01
pretest and posttests ( p G .05). An additional analysis was conducted to determine if there were differences in outcomes based on whether par- ticipants...would be predicted based on FIGURE 1 Pretest and posttest mean performance scores for all 26 objectives of the anaphylaxis scenario. FIGURE 2 Pretest ...clinical practice. Another limitation of the study is the use of a pretest / posttest designwithout a control group for comparison of results. Finally
Validation of the Chemistry Module for the Euler Solver in Unified Flow Solver
2012-03-01
traveling through the atmosphere there are three types of flow regimes that exist; the first is the continuum regime, second is the rarified regime and...The second method has been used in a program called Unified Flow Solver (UFS). UFS is currently being developed under collaborative efforts the Air...thermal non-equilibrium case and finally to a thermo-chemical non- equilibrium case. The data from the simulations will be compared to a second code
Distribution and Fate of Energetics on DoD Test and Training Ranges: Final Report
2006-11-01
tests for unconfined charges........................................................ 106 Table 5-3. Mass (g) of residue generated by BIP of unfuzed anti...Lands Withdrawal Act (Public Law 106 -65). As a portion of this EIS, the Army has pledged to implement a program to identify possible munitions...containing Tritonal, PBXN -109, Composition H-6, and Composition B (Baker et al. 2000). Included in the list of simulated UXOs was the 155-mm, 105-mm, and 8
Mastoidectomy performance assessment of virtual simulation training using final-product analysis.
Andersen, Steven A W; Cayé-Thomasen, Per; Sørensen, Mads S
2015-02-01
The future development of integrated automatic assessment in temporal bone virtual surgical simulators calls for validation against currently established assessment tools. This study aimed to explore the relationship between mastoidectomy final-product performance assessment in virtual simulation and traditional dissection training. Prospective trial with blinding. A total of 34 novice residents performed a mastoidectomy on the Visible Ear Simulator and on a cadaveric temporal bone. Two blinded senior otologists assessed the final-product performance using a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures. Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator. A modified version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency in simulation has been achieved. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Current status of endoscopic simulation in gastroenterology fellowship training programs.
Jirapinyo, Pichamol; Thompson, Christopher C
2015-07-01
Recent guidelines have encouraged gastroenterology and surgical training programs to integrate simulation into their core endoscopic curricula. However, the role that simulation currently has within training programs is unknown. This study aims to assess the current status of simulation among gastroenterology fellowship programs. This questionnaire study consisted of 38 fields divided into two sections. The first section queried program directors' experience on simulation and assessed the current status of simulation at their institution. The second portion surveyed their opinion on the potential role of simulation on the training curriculum. The study was conducted at the 2013 American Gastroenterological Association Training Directors' Workshop in Phoenix, Arizona. The participants were program directors from Accreditation Council for Graduate Medical Education accredited gastroenterology training programs, who attended the workshop. The questionnaire was returned by 69 of 97 program directors (response rate of 71%). 42% of programs had an endoscopic simulator. Computerized simulators (61.5%) were the most common, followed by mechanical (30.8%) and animal tissue (7.7%) simulators, respectively. Eleven programs (15%) required fellows to use simulation prior to clinical cases. Only one program has a minimum number of hours fellows have to participate in simulation training. Current simulators are deemed as easy to use (76%) and good educational tools (65%). Problems are cost (72%) and accessibility (69%). The majority of program directors believe that there is a need for endoscopic simulator training, with only 8% disagreeing. Additionally, a majority believe there is a role for simulation prior to initiation of clinical cases with 15% disagreeing. Gastroenterology fellowship program directors widely recognize the importance of simulation. Nevertheless, simulation is used by only 42% of programs and only 15% of programs require that trainees use simulation prior to clinical cases. No programs currently use simulation as part of the evaluation process.
NASA Astrophysics Data System (ADS)
Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.
2014-03-01
Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).
Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Kellas, Sotiris; Fuchs, Yvonne T.
2009-01-01
This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.
Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fuchs, Yvonne T.; Kellas, Sotiris
2008-01-01
This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.
Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.
Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng
2015-06-01
A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.
GPU accelerated particle visualization with Splotch
NASA Astrophysics Data System (ADS)
Rivi, M.; Gheller, C.; Dykes, T.; Krokos, M.; Dolag, K.
2014-07-01
Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very large-scale datasets through an effective mix of the OpenMP and MPI parallel programming paradigms. This article reports our experiences in re-designing Splotch for exploiting emerging HPC architectures nowadays increasingly populated with GPUs. A performance model is introduced to guide our re-factoring of Splotch. A number of parallelization issues are discussed, in particular relating to race conditions and workload balancing, towards achieving optimal performances. Our implementation was accomplished by using the CUDA programming paradigm. Our strategy is founded on novel schemes achieving optimized data organization and classification of particles. We deploy a reference cosmological simulation to present performance results on acceleration gains and scalability. We finally outline our vision for future work developments including possibilities for further optimizations and exploitation of hybrid systems and emerging accelerators.
Application of digital computer APU modeling techniques to control system design.
NASA Technical Reports Server (NTRS)
Bailey, D. A.; Burriss, W. L.
1973-01-01
Study of the required controls for a H2-O2 auxiliary power unit (APU) technology program for the Space Shuttle. A steady-state system digital computer program was prepared and used to optimize initial system design. Analytical models of each system component were included. The program was used to solve a nineteen-dimensional problem, and then time-dependent differential equations were added to the computer program to simulate transient APU system and control. Some system parameters were considered quasi-steady-state, and others were treated as differential variables. The dynamic control analysis proceeded from initial ideal control modeling (which considered one control function and assumed the others to be ideal), stepwise through the system (adding control functions), until all of the control functions and their interactions were considered. In this way, the adequacy of the final control design over the required wide range of APU operating conditions was established.
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Florida middle school students and their teachers greet students from other locations via webex before the start of the Zero Robotics finals competition. The Florida teams are at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Florida middle school students and their teachers watch the Zero Robotics finals competition broadcast live via webex from the International Space Station. The Florida teams are at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
Controller design approach based on linear programming.
Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa
2013-11-01
This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Four primary tasks have been carried out in this program. Upon request of LANL, the Eloranta paper was reviewed. It was determined that the correlation solution presented was too computationally complex to execute in the allocated 1 second update time. An alternative algorithm approach was under taken using a simulation baseline. A simulation was developed and applied to generate synthetic LIDAR data from randomized aerosol patches drifting with the wind. Algorithms have been designed and implemented in the simulation to reduce the data and apply it to obtain wind estimates. A substantial effort was completed in reverse engineering the EVIEW data format structure of the supplied data. Finally the collected, LIDAR data has been examined to obtain an assessment of the prospects for successful wind estimation. Unfortunately, the data examination has not shown good prospects for a successful outcome. It is recommended that future data be taken with the procedure previously outlined. Hercules believes that if lidar data is collected using this procedure that wind information will be as successful using the collected data as it was in simulation.
Laser program annual report, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, L.W.; Krupke, W.F.; Strack, J.R.
1981-06-01
Volume 2 contains five sections that cover the areas of target design, target fabrication, diagnostics, and fusion experiments. Section 3 reports on target design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication Group, Section 5 contains the results of our diagnostics development, and Section 6 describes advances made in the management and analysis of experimental data. Finally, Section 7 in Volume 2 reports the results of laser target experiments conducted during the year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-02-01
DOE support for a broad research program in the sciences of complexity permitted the Santa Fe Institute to initiate new collaborative research within its integrative core activities as well as to host visitors to participate in research on specific topics that serve as motivation and testing ground for the study of the general principles of complex systems. Results are presented on computational biology, biodiversity and ecosystem research, and advanced computing and simulation.
Calculation of self–shielding factor for neutron activation experiments using GEANT4 and MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero–Barrientos, Jaime, E-mail: jaromero@ing.uchile.cl; Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago; Molina, F.
2016-07-07
The neutron self–shielding factor G as a function of the neutron energy was obtained for 14 pure metallic samples in 1000 isolethargic energy bins from 1·10{sup −5}eV to 2·10{sup 7}eV using Monte Carlo simulations in GEANT4 and MCNP6. The comparison of these two Monte Carlo codes shows small differences in the final self–shielding factor mostly due to the different cross section databases that each program uses.
PEPSI — a Monte Carlo generator for polarized leptoproduction
NASA Astrophysics Data System (ADS)
Mankiewicz, L.; Schäfer, A.; Veltri, M.
1992-09-01
We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.
STS-135 crew during AEM (Animal Enclosure Module) training
2011-03-25
JSC2011-E-029131 (25 March 2011) --- STS-135 crew members participate in an Animal Enclosure Module (AEM) training session in the Jake Garn Simulation and Training Facility at NASA's Johnson Space Center. Pictured on the right (front to back) are NASA astronauts Chris Ferguson, commander; Sandy Magnus and Rex Walheim, both mission specialists; along with Doug Hurley (left foreground), pilot. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-135 crew during AEM (Animal Enclosure Module) training
2011-03-25
JSC2011-E-029132 (25 March 2011) --- STS-135 crew members participate in an Animal Enclosure Module (AEM) training session in the Jake Garn Simulation and Training Facility at NASA's Johnson Space Center. Pictured from the left (facing camera) are NASA astronauts Rex Walheim and Sandy Magnus, both mission specialists; and Chris Ferguson, commander; along with Doug Hurley (right foreground), pilot. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1993-01-01
As part of the RICIS project, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use these two terms interchangeably to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS) and programming/testing support from other contractor personnel. This report is the final deliverable D4 in our milestones and project activity. It provides the test results for the special testcase of approach/docking scenario for the shuttle and SMM satellite. Based on our experience and analysis with the attitude and translational controllers, we have modified the basic configuration of the reinforcement learning algorithm in ARIC. The shuttle translational controller and its implementation in ARIC is described in our deliverable D3. In order to simulate the final approach and docking operations, we have set-up this special testcase as described in section 2. The ARIC performance results for these operations are discussed in section 3 and conclusions are provided in section 4 along with the summary for the project.
Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.
2013-01-01
A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.
Modeling structural change in spatial system dynamics: A Daisyworld example.
Neuwirth, C; Peck, A; Simonović, S P
2015-03-01
System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.
Parallel Unsteady Turbopump Simulations for Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William
2000-01-01
This paper reports the progress being made towards complete turbo-pump simulation capability for liquid rocket engines. Space Shuttle Main Engine (SSME) turbo-pump impeller is used as a test case for the performance evaluation of the MPI and hybrid MPI/Open-MP versions of the INS3D code. Then, a computational model of a turbo-pump has been developed for the shuttle upgrade program. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbo-pump, which contains 136 zones with 35 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from time-accurate simulations with moving boundary capability, and the performance of the parallel versions of the code will be presented in the final paper.
Visual simulation of fatigue crack growth
NASA Astrophysics Data System (ADS)
Wang, Shuanzhu; Margolin, Harold; Lin, Fengbao
1998-07-01
An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an “ear” profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state I and II crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.
Wei, Qinglai; Liu, Derong; Lin, Qiao
In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
Interactive computer simulations of knee-replacement surgery.
Gunther, Stephen B; Soto, Gabriel E; Colman, William W
2002-07-01
Current surgical training programs in the United States are based on an apprenticeship model. This model is outdated because it does not provide conceptual scaffolding, promote collaborative learning, or offer constructive reinforcement. Our objective was to create a more useful approach by preparing students and residents for operative cases using interactive computer simulations of surgery. Total-knee-replacement surgery (TKR) is an ideal procedure to model on the computer because there is a systematic protocol for the procedure. Also, this protocol is difficult to learn by the apprenticeship model because of the multiple instruments that must be used in a specific order. We designed an interactive computer tutorial to teach medical students and residents how to perform knee-replacement surgery. We also aimed to reinforce the specific protocol of the operative procedure. Our final goal was to provide immediate, constructive feedback. We created a computer tutorial by generating three-dimensional wire-frame models of the surgical instruments. Next, we applied a surface to the wire-frame models using three-dimensional modeling. Finally, the three-dimensional models were animated to simulate the motions of an actual TKR. The tutorial is a step-by-step tutorial that teaches and tests the correct sequence of steps in a TKR. The student or resident must select the correct instruments in the correct order. The learner is encouraged to learn the stepwise surgical protocol through repetitive use of the computer simulation. Constructive feedback is acquired through a grading system, which rates the student's or resident's ability to perform the task in the correct order. The grading system also accounts for the time required to perform the simulated procedure. We evaluated the efficacy of this teaching technique by testing medical students who learned by the computer simulation and those who learned by reading the surgical protocol manual. Both groups then performed TKR on manufactured bone models using real instruments. Their technique was graded with the standard protocol. The students who learned on the computer simulation performed the task in a shorter time and with fewer errors than the control group. They were also more engaged in the learning process. Surgical training programs generally lack a consistent approach to preoperative education related to surgical procedures. This interactive computer tutorial has allowed us to make a quantum leap in medical student and resident teaching in our orthopedic department because the students actually participate in the entire process. Our technique provides a linear, sequential method of skill acquisition and direct feedback, which is ideally suited for learning stepwise surgical protocols. Since our initial evaluation has shown the efficacy of this program, we have implemented this teaching tool into our orthopedic curriculum. Our plans for future work with this simulator include modeling procedures involving other anatomic areas of interest, such as the hip and shoulder.
Drive and protection circuit for converter module of cascaded H-bridge STATCOM
NASA Astrophysics Data System (ADS)
Wang, Xuan; Yuan, Hongliang; Wang, Xiaoxing; Wang, Shuai; Fu, Yongsheng
2018-04-01
Drive and protection circuit is an important part of power electronics, which is related to safe and stable operation issues in the power electronics. The drive and protection circuit is designed for the cascaded H-bridge STATCOM. This circuit can realize flexible dead-time setting, operation status self-detection, fault priority protection and detailed fault status uploading. It can help to improve the reliability of STATCOM's operation. Finally, the proposed circuit is tested and analyzed by power electronic simulation software PSPICE (Simulation Program with IC Emphasis) and a series of experiments. Further studies showed that the proposed circuit can realize drive and control of H-bridge circuit, meanwhile it also can realize fast processing faults and have advantage of high reliability.
Grid Computing for Disaster Mitigation
NASA Astrophysics Data System (ADS)
Koh, Hock Lye; Teh, Su Yean; Majid, Taksiah A.; Aziz, Hamidi Abdul
The infamous 2004 Andaman tsunami has highlighted the need to be prepared and to be resilient to such disasters. Further, recent episodes of infectious disease epidemics worldwide underline the urgency to control and manage infectious diseases. Universiti Sains Malaysia (USM) has recently formed the Disaster Research Nexus (DRN) within the School of Civil Engineering to spearhead research and development in natural disaster mitigation programs to mitigate the adverse effects of natural disasters. This paper presents a brief exposition on the aspirations of DRN towards achieving resilience in communities affected by these natural disasters. A brief review of the simulations of the 2004 Andaman tsunami, with grid application is presented. Finally, the application of grid technology in large scale simulations of disease transmission dynamics is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A. J.
This is the final report for United States Geological Survey (USGS) National Earthquake Hazard Reduction Program (NEHRP) Project 08HQGR0022, entitled “Quantifying Uncertainties in Ground Motion Simulations for Scenario Earthquakes on the HaywardRodgers Creek Fault System Using the USGS 3D Seismic Velocity Model and Realistic Pseudodynamics Ruptures”. Work for this project involved three-dimensional (3D) simulations of ground motions for Hayward Fault (HF) earthquakes. We modeled moderate events on the HF and used them to evaluate the USGS 3D model of the San Francisco Bay Area. We also contributed to ground motions modeling effort for a large suite of scenario earthquakes onmore » the HF. Results were presented at conferences (see appendix) and in one peer-reviewed publication (Aagaard et al., 2010).« less
NASA Astrophysics Data System (ADS)
Gómez, Walter; Chávez, Carlos; Salgado, Hugo; Vásquez, Felipe
2017-11-01
We present the design, implementation, and evaluation of a subsidy program to introduce cleaner and more efficient household wood combustion technologies. The program was conducted in the city of Temuco, one of the most polluted cities in southern Chile, as a pilot study to design a new national stove replacement initiative for pollution control. In this city, around 90% of the total emissions of suspended particulate matter is caused by households burning wood. We created a simulated market in which households could choose among different combustion technologies with an assigned subsidy. The subsidy was a relevant factor in the decision to participate, and the inability to secure credit was a significant constraint for the participation of low-income households. Due to several practical difficulties and challenges associated with the implementation of large-scale programs that encourage technological innovation at the household level, it is strongly advisable to start with a small-scale pilot that can provide useful insights into the final design of a fuller, larger-scale program.
Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems
Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk; ...
2017-11-07
We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less
Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk
We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less
Simulation for analysis and control of superplastic forming. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; Aramayo, G.A.; Simunovic, S.
1996-08-01
A joint study was conducted by Oak Ridge National Laboratory (ORNL) and the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy-Lightweight Materials (DOE-LWM) Program. the purpose of the study was to assess and benchmark the current modeling capabilities with respect to accuracy of predictions and simulation time. Two modeling capabilities with respect to accuracy of predictions and simulation time. Two simulation platforms were considered in this study, which included the LS-DYNA3D code installed on ORNL`s high- performance computers and the finite element code MARC used at PNL. both ORNL and PNL performed superplastic forming (SPF) analysis on amore » standard butter-tray geometry, which was defined by PNL, to better understand the capabilities of the respective models. The specific geometry was selected and formed at PNL, and the experimental results, such as forming time and thickness at specific locations, were provided for comparisons with numerical predictions. Furthermore, comparisons between the ORNL simulation results, using elasto-plastic analysis, and PNL`s results, using rigid-plastic flow analysis, were performed.« less
Nayahangan, L J; Konge, L; Schroeder, T V; Paltved, C; Lindorff-Larsen, K G; Nielsen, B U; Eiberg, J P
2017-04-01
Practical skills training in vascular surgery is facing challenges because of an increased number of endovascular procedures and fewer open procedures, as well as a move away from the traditional principle of "learning by doing." This change has established simulation as a cornerstone in providing trainees with the necessary skills and competences. However, the development of simulation based programs often evolves based on available resources and equipment, reflecting convenience rather than a systematic educational plan. The objective of the present study was to perform a national needs assessment to identify the technical procedures that should be integrated in a simulation based curriculum. A national needs assessment using a Delphi process was initiated by engaging 33 predefined key persons in vascular surgery. Round 1 was a brainstorming phase to identify technical procedures that vascular surgeons should learn. Round 2 was a survey that used a needs assessment formula to explore the frequency of procedures, the number of surgeons performing each procedure, risk and/or discomfort, and feasibility for simulation based training. Round 3 involved elimination and ranking of procedures. The response rate for round 1 was 70%, with 36 procedures identified. Round 2 had a 76% response rate and resulted in a preliminary prioritised list after exploring the need for simulation based training. Round 3 had an 85% response rate; 17 procedures were eliminated, resulting in a final prioritised list of 19 technical procedures. A national needs assessment using a standardised Delphi method identified a list of procedures that are highly suitable and may provide the basis for future simulation based training programs for vascular surgeons in training. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Simulation of major space particles toward selected materials in a near-equatorial low earth orbit
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Zulkeple, Siti Katrina
2017-05-01
A low earth orbit near the equator (LEO-NEqO) is exposed to the highest energies from galactic cosmic rays (GCR) and from trapped protons with a wide range of energies. Moreover, GCR fluxes were seen to be the highest in 2009 to 2010 when communication belonging to the RazakSAT-1 satellite was believed to have been lost. Hence, this study aimed to determine the influence of the space environment toward the operation of LEO-NEqO satellites by investigating the behavior of major space particles toward satellite materials. The space environment was referred to GCR protons and trapped protons. Their fluxes were obtained from the Space Environment Information System (SPENVIS) and their tracks were simulated through three materials using a simulation program called Geometry and Tracking (Geant4). The materials included aluminum (Al), gallium arsenide (GaAs) and silicon (Si). Then the total ionizing dose (TID) and non-ionizing dose (NIEL) were calculated for a three-year period. Simulations showed that GCR traveled at longer tracks and produced more secondary radiation than trapped protons. Al turned out to receive the lowest total dose, while GaAs showed to be susceptible toward GCR than Si. However, trapped protons contributed the most in spacecraft doses where Si received the highest doses. Finally, the comparison between two Geant4 programs revealed the estimated doses differed at <18%.
Prieto-Díaz-Chávez, Emilio; Medina-Chávez, José Luís; Martínez-Lira, Rafael; Millán-Guerrero, Rebeca; Vázquez-Jiménez, Clemente; Trujillo-Hernández, Benjamín
2014-01-01
The changes in recent decades in the training of medical student seem to agree that the educational model for professional skills is most appropriate. The virtual simulator translates skills acquired the operating room, in the Faculty of Medicine of the University of Colima noticed the need to prepare the students of pregrade transferring surgical trainees' skills in basic laparoscopic activities that require a simple cognitive effort. The hypothesis in this study was to evaluate the acquisition of skills in laparoscopic simulator in students of pregrade. Educational research, analytical comparison, which was conducted within the activities of the program of Problem Based Learning in the program of Education and Surgical Technique, Faculty of Medicine of the University of Colima. All participants in the simulator achieved a significantly better during the task one after three repetitions (p= 0.001). The evaluation of final students calcification, we observed significant differences in means being lower during the initial assessment (8.60 ± 0.76) compared to the end (8.96 ± 0.58) p= 0.001. The acquisition of skills in the simulator is longer but at the end is better than the acquisition of skills from the traditional method, showing that leads to the acquisition of skills that promote the transfer of skills to the surgical environment.
CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.
Kim, Seonghoon; Lee, Jumin; Jo, Sunhwan; Brooks, Charles L; Lee, Hui Sun; Im, Wonpil
2017-06-05
Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM-GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM-GUI modules to build a protein-ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM-GUI at http://www.charmm-gui.org/input/ligandrm. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Load Designs For MJ Dense Plasma Foci
NASA Astrophysics Data System (ADS)
Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.
2017-10-01
Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.
NASA Astrophysics Data System (ADS)
García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.
2017-06-01
The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been developed, helping ACS Cobra to adequately handle the optical and thermal coupled simulations. According to current results it can be concluded that the developed model has resulted in a powerful tool to improve the design and operation of future ACS Cobra's Molten Salts Solar Towers, since historical data based on its projects have been used for validation of the final tool.
A brief introduction to PYTHIA 8.1
NASA Astrophysics Data System (ADS)
Sjöstrand, Torbjörn; Mrenna, Stephen; Skands, Peter
2008-06-01
The PYTHIA program is a standard tool for the generation of high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multihadronic final state. It contains a library of hard processes and models for initial- and final-state parton showers, multiple parton-parton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and interfaces to external programs. While previous versions were written in Fortran, PYTHIA 8 represents a complete rewrite in C++. The current release is the first main one after this transition, and does not yet in every respect replace the old code. It does contain some new physics aspects, on the other hand, that should make it an attractive option especially for LHC physics studies. Program summaryProgram title:PYTHIA 8.1 Catalogue identifier: ACTU_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ACTU_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL version 2 No. of lines in distributed program, including test data, etc.: 176 981 No. of bytes in distributed program, including test data, etc.: 2 411 876 Distribution format: tar.gz Programming language: C++ Computer: Commodity PCs Operating system: Linux; should also work on other systems RAM: 8 megabytes Classification: 11.2 Does the new version supersede the previous version?: yes, partly Nature of problem: High-energy collisions between elementary particles normally give rise to complex final states, with large multiplicities of hadrons, leptons, photons and neutrinos. The relation between these final states and the underlying physics description is not a simple one, for two main reasons. Firstly, we do not even in principle have a complete understanding of the physics. Secondly, any analytical approach is made intractable by the large multiplicities. Solution method: Complete events are generated by Monte Carlo methods. The complexity is mastered by a subdivision of the full problem into a set of simpler separate tasks. All main aspects of the events are simulated, such as hard-process selection, initial- and final-state radiation, beam remnants, fragmentation, decays, and so on. Therefore events should be directly comparable with experimentally observable ones. The programs can be used to extract physics from comparisons with existing data, or to study physics at future experiments. Reasons for new version: Improved and expanded physics models, transition from Fortran to C++. Summary of revisions: New user interface, transverse-momentum-ordered showers, interleaving with multiple interactions, and much more. Restrictions: Depends on the problem studied. Running time: 10-1000 events per second, depending on process studied. References: [1] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Comm. 135 (2001) 238.
Numerical simulation of metallic wire arc additive manufacturing (WAAM)
NASA Astrophysics Data System (ADS)
Graf, M.; Pradjadhiana, K. P.; Hälsig, A.; Manurung, Y. H. P.; Awiszus, B.
2018-05-01
Additive-manufacturing technologies have been gaining tremendously in popularity for some years in the production of single-part series with complex, close-to-final-contour geometries and the processing of special or hybrid materials. In principle, the processes can be subdivided into wire-based and powder-based processes in accordance with the Association of German Engineers (VDI) Guideline 3405. A further subdivision is made with respect to the smelting technology. In all of the processes, the base material is applied in layers at the points where it is needed in accordance with the final contour. The process that was investigated was wire-based, multi-pass welding by means of gas-metal arc welding. This was accomplished in the present study by determining the material parameters (thermo-mechanical and thermo-physical characteristics) of the welding filler G3Si1 (material number: 1.5125) that were necessary for the numerical simulation and implementing them in a commercial FE program (MSC Marc Mentat). The focus of this paper was on simulation and validation with respect to geometry and microstructural development in the welding passes. The resulting minimal deviation between reality and simulation was a result of the measurement inertia of the thermocouples. In general, however, the FE model can be used to make a very good predetermination of the cooling behaviour, which affects the microstructural development and thus the mechanical properties of the joining zone, as well as the geometric design of the component (distortion, etc.).
Collaborative gaming and competition for CS-STEM education using SPHERES Zero Robotics
NASA Astrophysics Data System (ADS)
Nag, Sreeja; Katz, Jacob G.; Saenz-Otero, Alvar
2013-02-01
There is widespread investment of resources in the fields of Computer Science, Science, Technology, Engineering, Mathematics (CS-STEM) education to improve STEM interests and skills. This paper addresses the goal of revolutionizing student education using collaborative gaming and competition, both in virtual simulation environments and on real hardware in space. The concept is demonstrated using the SPHERES Zero Robotics (ZR) Program which is a robotics programming competition. The robots are miniature satellites called SPHERES—an experimental test bed developed by the MIT SSL on the International Space Station (ISS) to test navigation, formation flight and control algorithms in microgravity. The participants compete to win a technically challenging game by programming their strategies into the SPHERES satellites, completely from a web browser. The programs are demonstrated in simulation, on ground hardware and then in a final competition when an astronaut runs the student software aboard the ISS. ZR had a pilot event in 2009 with 10 High School (HS) students, a nationwide pilot tournament in 2010 with over 200 HS students from 19 US states, a summer tournament in 2010 with ˜150 middle school students and an open-registration tournament in 2011 with over 1000 HS students from USA and Europe. The influence of collaboration was investigated by (1) building new web infrastructure and an Integrated Development Environment where intensive inter-participant collaboration is possible, (2) designing and programming a game to solve a relevant formation flight problem, collaborative in nature—and (3) structuring a tournament such that inter-team collaboration is mandated. This paper introduces the ZR web tools, assesses the educational value delivered by the program using space and games and evaluates the utility of collaborative gaming within this framework. There were three types of collaborations as variables—within matches (to achieve game objectives), inter-team alliances and unstructured communication on online forums. Simulation competition scores, website usage statistics and post-competition surveys are used to evaluate educational impact and the effect of collaboration.
78 FR 29117 - After Final Consideration Pilot Program 2.0
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
...] After Final Consideration Pilot Program 2.0 AGENCY: United States Patent and Trademark Office, Commerce... Final Consideration Pilot Program (AFCP) to create the After Final Consideration Pilot Program 2.0 (AFCP... without modifications) depending on feedback from the participants and the effectiveness of the pilot...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Arushi; Baer, Marcel D.; Mundy, Christopher J.
Peptoids are peptide-mimetic biopolymers that are easy-to-synthesize and adaptable for use in drugs, chemical scaffolds, and coatings. However, there is insufficient information about their structural preferences and interactions with the environment in various applications. We conducted a study to understand the fundamental differences between peptides and peptoids using molecular dynamics simulations with semi-empirical (PM6) and empirical (AMBER) potentials, in conjunction with metadynamics enhanced sampling. From studies of single molecules in water and on surfaces, we found that sarcosine (model peptoid) is much more flexible than alanine (model peptide) in different environments. However, the sarcosine and alanine interact similarly with amore » hydrophobic or a hydrophilic. Finally, this study highlights the conformational landscape of peptoids and the dominant interactions that drive peptoids towards these conformations. ACKNOWLEDGMENT: MD simulations and manuscript preparation were supported by the MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. CJM was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by the US Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL. Computing resources were generously allocated by University of Washington's IT department and PNNL's Institutional Computing program. The authors greatly acknowledge conversations with Dr. Kayla Sprenger, Josh Smith, and Dr. Yeneneh Yimer.« less
An agent-based stochastic Occupancy Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Hong, Tianzhen; Luo, Xuan
Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less
An agent-based stochastic Occupancy Simulator
Chen, Yixing; Hong, Tianzhen; Luo, Xuan
2017-06-01
Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less
Roze, E; Flamand-Roze, C; Méneret, A; Ruiz, M; Le Liepvre, H; Duguet, A; Renaud, M-C; Alamowitch, S; Steichen, O
2016-01-01
Neurological disorders are frequently being managed by general practitioners. It is therefore critical that future physicians become comfortable with neurological examination and physical diagnosis. Graduating medical students often consider neurological examination as one of the clinical skills they are least comfortable with, and they even tend to be neurophobic. One way to improve the learning of neurological semiology is to design innovative learner-friendly educational methods, including simulation training. The feasibility of mime-based roleplaying was tested by a simulation training program in neurological semiology called 'The Move'. The program was proposed to third-year medical students at Pierre and Marie Curie University in Paris during their neurology rotation. Students were trained to roleplay patients by miming various neurological syndromes (pyramidal, vestibular, cerebellar, parkinsonian) as well as distal axonopathy, chorea and tonic-clonic seizures. Using an anonymous self-administered questionnaire, the students' and teachers' emotional experience and views on the impact of the program were then investigated. A total of 223/365 students (61%) chose to participate in the study. Both students and teachers felt their participation was pleasant. Students stated that The Move increased their motivation to learn neurological semiology (78%), and improved both their understanding of the subject (77%) and their long-term memorization of the teaching content (86%). Although only a minority thought The Move was likely to improve their performance on their final medical examination (32%), a clear majority (77%) thought it would be useful for their future clinical practice. Both students (87%) and teachers (95%) thought The Move should be included in the medical curriculum. Mime-based roleplaying simulation may be a valuable tool for training medical students in neurological semiology, and may also help them to overcome neurophobia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Cosmological N-body Simulation
NASA Astrophysics Data System (ADS)
Lake, George
1994-05-01
.90ex> }}} The ``N'' in N-body calculations has doubled every year for the last two decades. To continue this trend, the UW N-body group is working on algorithms for the fast evaluation of gravitational forces on parallel computers and establishing rigorous standards for the computations. In these algorithms, the computational cost per time step is ~ 10(3) pairwise forces per particle. A new adaptive time integrator enables us to perform high quality integrations that are fully temporally and spatially adaptive. SPH--smoothed particle hydrodynamics will be added to simulate the effects of dissipating gas and magnetic fields. The importance of these calculations is two-fold. First, they determine the nonlinear consequences of theories for the structure of the Universe. Second, they are essential for the interpretation of observations. Every galaxy has six coordinates of velocity and position. Observations determine two sky coordinates and a line of sight velocity that bundles universal expansion (distance) together with a random velocity created by the mass distribution. Simulations are needed to determine the underlying structure and masses. The importance of simulations has moved from ex post facto explanation to an integral part of planning large observational programs. I will show why high quality simulations with ``large N'' are essential to accomplish our scientific goals. This year, our simulations have N >~ 10(7) . This is sufficient to tackle some niche problems, but well short of our 5 year goal--simulating The Sloan Digital Sky Survey using a few Billion particles (a Teraflop-year simulation). Extrapolating past trends, we would have to ``wait'' 7 years for this hundred-fold improvement. Like past gains, significant changes in the computational methods are required for these advances. I will describe new algorithms, algorithmic hacks and a dedicated computer to perform Billion particle simulations. Finally, I will describe research that can be enabled by Petaflop computers. This research is supported by the NASA HPCC/ESS program.
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Li; Jiao, Yong-Chang
2016-07-01
This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.
NASA Technical Reports Server (NTRS)
Lieber, Lysbeth; Repp, Russ; Weir, Donald S.
1996-01-01
A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.
NASA Technical Reports Server (NTRS)
1990-01-01
Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.
Numerical simulation of liquid-layer breakup on a moving wall due to an impinging jet
NASA Astrophysics Data System (ADS)
Yu, Taejong; Moon, Hojoon; You, Donghyun; Kim, Dokyun; Ovsyannikov, Andrey
2014-11-01
Jet wiping, which is a hydrodynamic method for controlling the liquid film thickness in coating processes, is constrained by a rather violent film instability called splashing. The instability is characterized by the ejection of droplets from the runback flow and results in an explosion of the film. The splashing phenomenon degrades the final coating quality. In the present research, a volume-of-fluid (VOF)-based method, which is developed at Cascade Technologies, is employed to simulate the air-liquid multiphase flow dynamics. The present numerical method is based on an unstructured-grid unsplit geometric VOF scheme and guarantees strict conservation of mass of two-phase flow, The simulation results are compared with experimental measurements such as the liquid-film thickness before and after the jet wiping, wall pressure and shear stress distributions. The trajectories of liquid droplets due to the fluid motion entrained by the gas-jet operation, are also qualitatively compared with experimental visualization. Physical phenomena observed during the liquid-layer breakup due to an impinging jet is characterized in order to develop ideas for controlling the liquid-layer instability and resulting splash generation and propagation. Supported by the Grant NRF-2012R1A1A2003699, the Brain Korea 21+ program, POSCO, and 2014 CTR Summer Program.
NASA Astrophysics Data System (ADS)
Pantale, O.; Caperaa, S.; Rakotomalala, R.
2004-07-01
During the last 50 years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. In the same time, the finite element method has become a widely used tool for researchers and engineers. Recent advances in computational software have made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high strain and high-strain rate problems. In this field, an accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of plastic flow. In this presentation, the object-oriented implementation, using the C++ language, of an explicit finite element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. The most significant advantage of OOP is in the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual sub-problems based on physical, mathematical or geometric reasoning. We first focus on the advantages of OOP for the development of scientific programs. Specific aspects of OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes are detailed. Then we present the approach used for the development of our finite element code through the presentation of the kinematics, conservative and constitutive laws and their respective implementation in C++. Finally, the efficiency and accuracy of our finite element program are investigated using a number of benchmark tests relative to metal forming and impact simulations.
[Training program in endourological surgery. Future perspectives.
Soria, Federico; Villacampa, Felipe; Serrano, Alvaro; Moreno, Jesús; Rioja, Jorge; Sánchez, Francisco Miguel
2018-01-01
Current training in urological endoscopy lacks a specific training program. However, there is a clear need for a specific and uniform program, which will ensure the training, regardless of the unit where it is carried out. So, the goal is to first evaluate the current model and then bring improvements for update. The hospital training accreditation programme are only the adjustment of the official program of the urology specialty to the specific circumstances of each center, which causes variability in training of residents. After reviewing 19 training programs belonging to 12 Spanish regions. The current outlook shows that scarcely 10% of hospitals quantify the number of procedures/ year, although the Spanish program emphasizes that the achievement of the residents should be quantified. Urology residents, sense their training as inadequate and therefore their level of satisfaction is moderate. The three main problems detected by residents as an obstacle on their training are: the lack of supervision, tutors completing their own learning. Finally, the lack of quantification in surgical activities is described as a threat. This has no easy solution, since the learning curve of the most common techniques in endourology is not correctly established. Regarding aspects that can improve the current model, they highlight the need to design a specific program. The need to customize the training, the ineludible accreditation of tutors and obviously dignify the tutor's teaching activity. Another basic aspect is the inclusion of new technologies as training tools, e-learning. As well as the implementation of an adequate competency assessment plan and the possibility of relying on simulation systems. Finally, they highlight the need to attend monographic meetings and external clinic rotations to promote critical training.
Design for dependability: A simulation-based approach. Ph.D. Thesis, 1993
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.
1994-01-01
This research addresses issues in simulation-based system level dependability analysis of fault-tolerant computer systems. The issues and difficulties of providing a general simulation-based approach for system level analysis are discussed and a methodology that address and tackle these issues is presented. The proposed methodology is designed to permit the study of a wide variety of architectures under various fault conditions. It permits detailed functional modeling of architectural features such as sparing policies, repair schemes, routing algorithms as well as other fault-tolerant mechanisms, and it allows the execution of actual application software. One key benefit of this approach is that the behavior of a system under faults does not have to be pre-defined as it is normally done. Instead, a system can be simulated in detail and injected with faults to determine its failure modes. The thesis describes how object-oriented design is used to incorporate this methodology into a general purpose design and fault injection package called DEPEND. A software model is presented that uses abstractions of application programs to study the behavior and effect of software on hardware faults in the early design stage when actual code is not available. Finally, an acceleration technique that combines hierarchical simulation, time acceleration algorithms and hybrid simulation to reduce simulation time is introduced.
NASA Astrophysics Data System (ADS)
Borriello, G.; Bonori, V.; Cresti, M.; Dente, E.; Ideo, L.; Mazzi, G.; Usai, A.; Tafuto, A.; Togna, F.
2014-10-01
In this paper authors provide a description of the currently deployed Man Portable Air Defense System (ManPADS) heat-seeking missiles. Principles of IR seeking and Aircraft signatures are shortly described. Basic information are listed on currently designed Infra-Red Counter Measure Systems, intended to protect Aircrafts against ManPADS. Authors provide an overview on ELT-572(v)2 DIRCM Program, funded by Italian Air Force, currently in low rate production phase. Description of the Design and Development phase, completed in Elettronica SpA in 2013, is reported. Development Test and Evaluation (DTE) Activities on ELT-572(v)2 DIRCM, jointly performed by Elettronica Spa and Italian Air Force Flight Test Centre, are shortly described. A summary of tests and some results are also discussed. Platform Installation Programs, using the low rate production units from ELT-572(v)2 DIRCM Program, are finally listed.
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
A high-resolution physically-based global flood hazard map
NASA Astrophysics Data System (ADS)
Kaheil, Y.; Begnudelli, L.; McCollum, J.
2016-12-01
We present the results from a physically-based global flood hazard model. The model uses a physically-based hydrologic model to simulate river discharges, and 2D hydrodynamic model to simulate inundation. The model is set up such that it allows the application of large-scale flood hazard through efficient use of parallel computing. For hydrology, we use the Hillslope River Routing (HRR) model. HRR accounts for surface hydrology using Green-Ampt parameterization. The model is calibrated against observed discharge data from the Global Runoff Data Centre (GRDC) network, among other publicly-available datasets. The parallel-computing framework takes advantage of the river network structure to minimize cross-processor messages, and thus significantly increases computational efficiency. For inundation, we implemented a computationally-efficient 2D finite-volume model with wetting/drying. The approach consists of simulating flood along the river network by forcing the hydraulic model with the streamflow hydrographs simulated by HRR, and scaled up to certain return levels, e.g. 100 years. The model is distributed such that each available processor takes the next simulation. Given an approximate criterion, the simulations are ordered from most-demanding to least-demanding to ensure that all processors finalize almost simultaneously. Upon completing all simulations, the maximum envelope of flood depth is taken to generate the final map. The model is applied globally, with selected results shown from different continents and regions. The maps shown depict flood depth and extent at different return periods. These maps, which are currently available at 3 arc-sec resolution ( 90m) can be made available at higher resolutions where high resolution DEMs are available. The maps can be utilized by flood risk managers at the national, regional, and even local levels to further understand their flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, L.M.
1995-12-12
The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed andmore » results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).« less
NASA Astrophysics Data System (ADS)
Griesse-Nascimento, Sarah; Bridger, Joshua; Brown, Keith; Westervelt, Robert
2011-03-01
Interactive computer simulations increase students' understanding of difficult concepts and their ability to explain complex ideas. We created a module of eight interactive programs and accompanying lesson plans for teaching the fundamental concepts of Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) that we call interactive NMR (iNMR). We begin with an analogy between nuclear spins and metronomes to start to build intuition about the dynamics of spins in a magnetic field. We continue to explain T1, T2, and pulse sequences with the metronome analogy. The final three programs are used to introduce and explain the Magnetic Resonance Switch, a recent diagnostic technique based on NMR. A modern relevant application is useful to generate interest in the topic and confidence in the students' ability to apply their knowledge. The iNMR module was incorporated into a high school AP physics class. In a preliminary evaluation of implementation, students expressed enthusiasm and demonstrated enhanced understanding of the material relative to the previous year. Funded by NSF PHY-0646094 grant.
Orbital Sciences Pegasus XL Flight Simulation
2007-02-28
At Vandenberg Air Force Base in California, workers monitor the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Orbital Sciences Pegasus XL Flight Simulation
2007-02-28
At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket undergoes its second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Orbital Sciences Pegasus XL Flight Simulation
2007-02-28
At Vandenberg Air Force Base in California, a worker monitors the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Orbital Sciences Pegasus XL Flight Simulation
2007-02-28
At Vandenberg Air Force Base in California, a worker monitors the Orbital Sciences Pegasus XL rocket after a second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
NASA Technical Reports Server (NTRS)
1983-01-01
The longitudinal dynamics of a medium range twin-jet or tri-jet transport aircraft are simulated. For the climbing trajectory, the thrust is constrained to maximum value, and for descent, the thrust is set at idle. For cruise, the aircraft is held in the trim condition. For climb or descent, the aircraft is steered to follow either (a) a fixed profile which is input to the program or (b) a profile computed at the beginning of that segment of the run. For climb, the aircraft is steered to maintain the given airspeed as a function of altitude. For descent, the aircraft is steered to maintain the given altitude as a function of range-to-go. In both cases, the control variable is angle-of-attack. The given output trajectory is presented and compared with the input trajectory. Step climb is treated just as climb. For cruise, the Breguet equations are used to compute the fuel burned to achieve a given range and to connect given initial and final values of altitude and Mach number.
Security Assessment Simulation Toolkit (SAST) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitzler, Wayne D.; Ouderkirk, Steven J.; Hughes, Chad O.
2009-11-15
The Department of Defense Technical Support Working Group (DoD TSWG) investment in the Pacific Northwest National Laboratory (PNNL) Security Assessment Simulation Toolkit (SAST) research planted a technology seed that germinated into a suite of follow-on Research and Development (R&D) projects culminating in software that is used by multiple DoD organizations. The DoD TSWG technology transfer goal for SAST is already in progress. The Defense Information Systems Agency (DISA), the Defense-wide Information Assurance Program (DIAP), the Marine Corps, Office Of Naval Research (ONR) National Center For Advanced Secure Systems Research (NCASSR) and Office Of Secretary Of Defense International Exercise Program (OSDmore » NII) are currently investing to take SAST to the next level. PNNL currently distributes the software to over 6 government organizations and 30 DoD users. For the past five DoD wide Bulwark Defender exercises, the adoption of this new technology created an expanding role for SAST. In 2009, SAST was also used in the OSD NII International Exercise and is currently scheduled for use in 2010.« less
Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation
NASA Astrophysics Data System (ADS)
Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi
In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.
Flight test experience and controlled impact of a remotely piloted jet transport aircraft
NASA Technical Reports Server (NTRS)
Horton, Timothy W.; Kempel, Robert W.
1988-01-01
The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.
Fernandez, Gladys L; Page, David W; Coe, Nicholas P; Lee, Patrick C; Patterson, Lisa A; Skylizard, Loki; St Louis, Myron; Amaral, Marisa H; Wait, Richard B; Seymour, Neal E
2012-01-01
Preparatory training for new trainees beginning residency has been used by a variety of programs across the country. To improve the clinical orientation process for our new postgraduate year (PGY)-1 residents, we developed an intensive preparatory training curriculum inclusive of cognitive and procedural skills, training activities considered essential for early PGY-1 clinical management. We define our surgical PGY-1 Boot Camp as preparatory simulation-based training implemented at the onset of internship for introduction of skills necessary for basic surgical patient problem assessment and management. This orientation process includes exposure to simulated patient care encounters and technical skills training essential to new resident education. We report educational results of 4 successive years of Boot Camp training. Results were analyzed to determine if performance evidenced at onset of training was predictive of later educational outcomes. Learners were PGY-1 residents, in both categorical and preliminary positions, at our medium-sized surgical residency program. Over a 4-year period, from July 2007 to July 2010, all 30 PGY-1 residents starting surgical residency at our institution underwent specific preparatory didactic and skills training over a 9-week period. This consisted of mandatory weekly 1-hour and 3-hour sessions in the Simulation Center, representing a 4-fold increase in time in simulation laboratory training compared with the remainder of the year. Training occurred in 8 procedural skills areas (instrument use, knot-tying, suturing, laparoscopic skills, airway management, cardiopulmonary resuscitation, central venous catheter, and chest tube insertion) and in simulated patient care (shock, surgical emergencies, and respiratory, cardiac, and trauma management) using a variety of high- and low-tech simulation platforms. Faculty and senior residents served as instructors. All educational activities were structured to include preparatory materials, pretraining briefing sessions, and immediate in-training or post-training review and debriefing. Baseline cognitive skills were assessed with written tests on basic patient management. Post-Boot Camp tests similarly evaluated cognitive skills. Technical skills were assessed using a variety of task-specific instruments, and expressed as a mean score for all activities for each resident. All measurements were expressed as percent (%) best possible score. Cognitive and technical performance in Boot Camp was compared with subsequent clinical and core curriculum evaluations including weekly quiz scores, annual American Board of Surgery In-Training Examination (ABSITE) scores, program in-training evaluations (New Innovations, Uniontown, Ohio), and operative assessment instrument scores (OP-Rate, Baystate Medical Center, Springfield, Massachusetts) for the remainder of the PGY-1 year. Performance data were available for 30 PGY-1 residents over 4 years. Baseline cognitive skills were lower for the first year of Boot Camp as compared with subsequent years (71 ± 13, 83 ± 9, 84 ± 11, and 86 ± 6, respectively; p = 0.028, analysis of variance; ANOVA). Performance improved between pretests and final testing (81 ± 11 vs 89 ± 7; p < 0.001 paired t test). There was statistically significant correlation between Boot Camp final cognitive test results and American Board of Surgery In-Training Examination scores (p = 0.01; n = 22), but not quite significant for weekly curriculum quiz scores (p = 0.055; n = 22) and New Innovations cognitive assessments (p = 0.09; n = 25). Statistically significant correlation was also noted between Boot Camp mean overall skills and New Innovations technical skills assessments (p = 0.002; n = 25) and OP-Rate assessments (p = 0.01; n = 12). Individual simulation-based Boot Camp performance scores for cognitive and procedural skills assessments in PGY-1 residents correlate with subjective and objective clinical performance evaluations. This concurrent correlation with multiple traditional evaluation methods used to express competency in our residency program supports the use of Boot Camp performance measures as needs assessment tools as well as adjuncts to cumulative resident evaluation data. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
An integrated database with system optimization and design features
NASA Technical Reports Server (NTRS)
Arabyan, A.; Nikravesh, P. E.; Vincent, T. L.
1992-01-01
A customized, mission-specific relational database package was developed to allow researchers working on the Mars oxygen manufacturing plant to enter physical description, engineering, and connectivity data through a uniform, graphical interface and to store the data in formats compatible with other software also developed as part of the project. These latter components include an optimization program to maximize or minimize various criteria as the system evolves into its final design; programs to simulate the behavior of various parts of the plant in Martian conditions; an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; and a control program to investigate the stability and response of the system under different disturbance conditions. All components of the system are interconnected so that changes entered through one component are reflected in the others.
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, at left, executive director of the Center for the Advancement of Science in Space, and NASA Kennedy Space Center Director Bob Cabana, visit with Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
Learning directed acyclic graphs from large-scale genomics data.
Nikolay, Fabio; Pesavento, Marius; Kritikos, George; Typas, Nassos
2017-09-20
In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.
Polyanskiy, Mikhail N.
2015-01-01
We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.
Acquisition of Real Time Simulator for Intelligent Power Networks in Operational Energy Applications
2017-12-05
Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 Final Report W911NF-16-1-0515 68926-RT-REP.1 210-458-5086 a. REPORT 14. ABSTRACT 16...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Texas at San
QuantumOptics.jl: A Julia framework for simulating open quantum systems
NASA Astrophysics Data System (ADS)
Krämer, Sebastian; Plankensteiner, David; Ostermann, Laurin; Ritsch, Helmut
2018-06-01
We present an open source computational framework geared towards the efficient numerical investigation of open quantum systems written in the Julia programming language. Built exclusively in Julia and based on standard quantum optics notation, the toolbox offers speed comparable to low-level statically typed languages, without compromising on the accessibility and code readability found in dynamic languages. After introducing the framework, we highlight its features and showcase implementations of generic quantum models. Finally, we compare its usability and performance to two well-established and widely used numerical quantum libraries.
STS-135 crew during AEM (Animal Enclosure Module) training
2011-03-25
JSC2011-E-029136 (25 March 2011) --- STS-135 crew members participate in an Animal Enclosure Module (AEM) training session in the Jake Garn Simulation and Training Facility at NASA's Johnson Space Center. Pictured on the right (foreground) is NASA astronaut Chris Ferguson, commander. Pictured in the background (from the left) are astronauts Doug Hurley (mostly obscured), pilot; Rex Walheim and Sandy Magnus (partially obscured), both mission specialists. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
On program restructuring, scheduling, and communication for parallel processor systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polychronopoulos, Constantine D.
1986-08-01
This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, thesemore » algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.« less
Simulation Training in Obstetrics and Gynaecology Residency Programs in Canada.
Sanders, Ari; Wilson, R Douglas
2015-11-01
The integration of simulation into residency programs has been slower in obstetrics and gynaecology than in other surgical specialties. The goal of this study was to evaluate the current use of simulation in obstetrics and gynaecology residency programs in Canada. A 19-question survey was developed and distributed to all 16 active and accredited obstetrics and gynaecology residency programs in Canada. The survey was sent to program directors initially, but on occasion was redirected to other faculty members involved in resident education or to senior residents. Survey responses were collected over an 18-month period. Twelve programs responded to the survey (11 complete responses). Eleven programs (92%) reported introducing an obstetrics and gynaecology simulation curriculum into their residency education. All respondents (100%) had access to a simulation centre. Simulation was used to teach various obstetrical and gynaecological skills using different simulation modalities. Barriers to simulation integration were primarily the costs of equipment and space and the need to ensure dedicated time for residents and educators. The majority of programs indicated that it was a priority for them to enhance their simulation curriculum and transition to competency-based resident assessment. Simulation training has increased in obstetrics and gynaecology residency programs. The development of formal simulation curricula for use in obstetrics and gynaecology resident education is in early development. A standardized national simulation curriculum would help facilitate the integration of simulation into obstetrics and gynaecology resident education and aid in the shift to competency-based resident assessment. Obstetrics and gynaecology residency programs need national collaboration (between centres and specialties) to develop a standardized simulation curriculum for use in obstetrics and gynaecology residency programs in Canada.
Quantum Accelerators for High-performance Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S.; Britt, Keith A.; Mohiyaddin, Fahd A.
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, themore » prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.« less
LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality
Simulation Use in Paramedic Education Research (SUPER): A Descriptive Study
McKenna, Kim D.; Carhart, Elliot; Bercher, Daniel; Spain, Andrew; Todaro, John; Freel, Joann
2015-01-01
Abstract Objectives. The purpose of this research was to characterize the use of simulation in initial paramedic education programs in order assist stakeholders’ efforts to target educational initiatives and resources. This group sought to provide a snapshot of what simulation resources programs have or have access to and how they are used; faculty perceptions about simulation; whether program characteristics, resources, or faculty training influence simulation use; and if simulation resources are uniform for patients of all ages. Methods. This was a cross-sectional census survey of paramedic programs that were accredited or had a Letter of Review from the Committee on Accreditation of Educational Programs for the EMS Professions at the time of the study. The data were analyzed using descriptive statistics and chi-square analyses. Results. Of the 638 surveys sent, 389 valid responses (61%) were analyzed. Paramedic programs reported they have or have access to a wide range of simulation resources (task trainers [100%], simple manikins [100%], intermediate manikins [99%], advanced/fully programmable manikins [91%], live simulated patients [83%], computer-based [71%], and virtual reality [19%]); however, they do not consistently use them, particularly advanced (71%), live simulated patients (66%), computer-based (games, scenarios) (31%), and virtual reality (4%). Simulation equipment (of any type) reportedly sits idle and unused in (31%) of programs. Lack of training was cited as the most common reason. Personnel support specific to simulation was available in 44% of programs. Programs reported using simulation to replace skills more frequently than to replace field or clinical hours. Simulation goals included assessment, critical thinking, and problem-solving most frequently, and patient and crew safety least often. Programs using advanced manikins report manufacturers as their primary means of training (87%) and that 19% of faculty had no training specific to those manikins. Many (78%) respondents felt they should use more simulation. Conclusions. Paramedic programs have and have access to diverse simulation resources; however, faculty training and other program resources appear to influence their use. PMID:25664774
Simulation Use in Paramedic Education Research (SUPER): A Descriptive Study.
McKenna, Kim D; Carhart, Elliot; Bercher, Daniel; Spain, Andrew; Todaro, John; Freel, Joann
2015-01-01
The purpose of this research was to characterize the use of simulation in initial paramedic education programs in order assist stakeholders' efforts to target educational initiatives and resources. This group sought to provide a snapshot of what simulation resources programs have or have access to and how they are used; faculty perceptions about simulation; whether program characteristics, resources, or faculty training influence simulation use; and if simulation resources are uniform for patients of all ages. This was a cross-sectional census survey of paramedic programs that were accredited or had a Letter of Review from the Committee on Accreditation of Educational Programs for the EMS Professions at the time of the study. The data were analyzed using descriptive statistics and chi-square analyses. Of the 638 surveys sent, 389 valid responses (61%) were analyzed. Paramedic programs reported they have or have access to a wide range of simulation resources (task trainers [100%], simple manikins [100%], intermediate manikins [99%], advanced/fully programmable manikins [91%], live simulated patients [83%], computer-based [71%], and virtual reality [19%]); however, they do not consistently use them, particularly advanced (71%), live simulated patients (66%), computer-based (games, scenarios) (31%), and virtual reality (4%). Simulation equipment (of any type) reportedly sits idle and unused in (31%) of programs. Lack of training was cited as the most common reason. Personnel support specific to simulation was available in 44% of programs. Programs reported using simulation to replace skills more frequently than to replace field or clinical hours. Simulation goals included assessment, critical thinking, and problem-solving most frequently, and patient and crew safety least often. Programs using advanced manikins report manufacturers as their primary means of training (87%) and that 19% of faculty had no training specific to those manikins. Many (78%) respondents felt they should use more simulation. Paramedic programs have and have access to diverse simulation resources; however, faculty training and other program resources appear to influence their use.
Guillaume, François; Fritz, Sébastien; Boichard, Didier; Druet, Tom
2008-01-01
The efficiency of the French marker-assisted selection (MAS) was estimated by a simulation study. The data files of two different time periods were used: April 2004 and 2006. The simulation method used the structure of the existing French MAS: same pedigree, same marker genotypes and same animals with records. The program simulated breeding values and new records based on this existing structure and knowledge on the QTL used in MAS (variance and frequency). Reliabilities of genetic values of young animals (less than one year old) obtained with and without marker information were compared to assess the efficiency of MAS for evaluation of milk, fat and protein yields and fat and protein contents. Mean gains of reliability ranged from 0.015 to 0.094 and from 0.038 to 0.114 in 2004 and 2006, respectively. The larger number of animals genotyped and the use of a new set of genetic markers can explain the improvement of MAS reliability from 2004 to 2006. This improvement was also observed by analysis of information content for young candidates. The gain of MAS reliability with respect to classical selection was larger for sons of sires with genotyped progeny daughters with records. Finally, it was shown that when superiority of MAS over classical selection was estimated with daughter yield deviations obtained after progeny test instead of true breeding values, the gain was underestimated. PMID:18096117
CARES/LIFE Software Commercialization
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Lewis Research Center has entered into a letter agreement with BIOSYM Technologies Inc. (now merged with Molecular Simulations Inc. (MSI)). Under this agreement, NASA will provide a developmental copy of the CARES/LIFE computer program to BIOSYM for evaluation. This computer code predicts the time-dependent reliability of a thermomechanically loaded component. BIOSYM will become familiar with CARES/LIFE, provide results of computations useful in validating the code, evaluate it for potential commercialization, and submit suggestions for improvements or extensions to the code or its documentation. If BIOSYM/Molecular Simulations reaches a favorable evaluation of CARES/LIFE, NASA will enter into negotiations for a cooperative agreement with BIOSYM/Molecular Simulations to further develop the code--adding features such as a user-friendly interface and other improvements. This agreement would give BIOSYM intellectual property rights in the modified codes, which they could protect and then commercialize. NASA would provide BIOSYM with the NASA-developed source codes and would agree to cooperate with BIOSYM in further developing the code. In return, NASA would receive certain use rights in the modified CARES/LIFE program. Presently BIOSYM Technologies Inc. has been involved with integration issues concerning its merger with Molecular Simulations Inc., since both companies used to compete in the computational chemistry market, and to some degree, in the materials market. Consequently, evaluation of the CARES/LIFE software is on hold for a month or two while the merger is finalized. Their interest in CARES continues, however, and they expect to get back to the evaluation by early November 1995.
Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape
NASA Astrophysics Data System (ADS)
Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.
2014-10-01
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.
Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Terblans, J. J.
2017-10-01
Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.
A Planet Detection Tutorial and Simulator
NASA Technical Reports Server (NTRS)
Knoch, David; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional 'flat' presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.
Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition
Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; ...
2016-06-10
Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less
An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming
2017-02-01
In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.
Status of the Space Radiation Monte Carlos Simulation Based on FLUKA and ROOT
NASA Technical Reports Server (NTRS)
Andersen, Victor; Carminati, Federico; Empl, Anton; Ferrari, Alfredo; Pinsky, Lawrence; Sala, Paola; Wilson, Thomas L.
2002-01-01
The NASA-funded project reported on at the first IWSSRR in Arona to develop a Monte-Carlo simulation program for use in simulating the space radiation environment based on the FLUKA and ROOT codes is well into its second year of development, and considerable progress has been made. The general tasks required to achieve the final goals include the addition of heavy-ion interactions into the FLUKA code and the provision of a ROOT-based interface to FLUKA. The most significant progress to date includes the incorporation of the DPMJET event generator code within FLUKA to handle heavy-ion interactions for incident projectile energies greater than 3GeV/A. The ongoing effort intends to extend the treatment of these interactions down to 10 MeV, and at present two alternative approaches are being explored. The ROOT interface is being pursued in conjunction with the CERN LHC ALICE software team through an adaptation of their existing AliROOT software. As a check on the validity of the code, a simulation of the recent data taken by the ATIC experiment is underway.
Simulation in Canadian postgraduate emergency medicine training - a national survey.
Russell, Evan; Hall, Andrew Koch; Hagel, Carly; Petrosoniak, Andrew; Dagnone, Jeffrey Damon; Howes, Daniel
2018-01-01
Simulation-based education (SBE) is an important training strategy in emergency medicine (EM) postgraduate programs. This study sought to characterize the use of simulation in FRCPC-EM residency programs across Canada. A national survey was administered to residents and knowledgeable program representatives (PRs) at all Canadian FRCPC-EM programs. Survey question themes included simulation program characteristics, the frequency of resident participation, the location and administration of SBE, institutional barriers, interprofessional involvement, content, assessment strategies, and attitudes about SBE. Resident and PR response rates were 63% (203/321) and 100% (16/16), respectively. Residents reported a median of 20 (range 0-150) hours of annual simulation training, with 52% of residents indicating that the time dedicated to simulation training met their needs. PRs reported the frequency of SBE sessions ranging from weekly to every 6 months, with 15 (94%) programs having an established simulation curriculum. Two (13%) of the programs used simulation for resident assessment, although 15 (94%) of PRs indicated that they would be comfortable with simulation-based assessment. The most common PR-identified barriers to administering simulation were a lack of protected faculty time (75%) and a lack of faculty experience with simulation (56%). Interprofessional involvement in simulation was strongly valued by both residents and PRs. SBE is frequently used by Canadian FRCPC-EM residency programs. However, there exists considerable variability in the structure, frequency, and timing of simulation-based activities. As programs transition to competency-based medical education, national organizations and collaborations should consider the variability in how SBE is administered.
A Simulation Program for Dynamic Infrared (IR) Spectra
ERIC Educational Resources Information Center
Zoerb, Matthew C.; Harris, Charles B.
2013-01-01
A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…
Gamification in thoracic surgical education: Using competition to fuel performance.
Mokadam, Nahush A; Lee, Richard; Vaporciyan, Ara A; Walker, Jennifer D; Cerfolio, Robert J; Hermsen, Joshua L; Baker, Craig J; Mark, Rebecca; Aloia, Lauren; Enter, Dan H; Carpenter, Andrea J; Moon, Marc R; Verrier, Edward D; Fann, James I
2015-11-01
In an effort to stimulate residents and trainers to increase their use of simulation training and the Thoracic Surgery Curriculum, a gamification strategy was developed in a friendly but competitive environment. "Top Gun." Low-fidelity simulators distributed annually were used for the technical competition. Baseline and final video assessments were performed, and 5 finalists were invited to compete in a live setting from 2013 to 2015. "Jeopardy." A screening examination was devised to test knowledge contained in the Thoracic Surgery Curriculum. The top 6 2-member teams were invited to compete in a live setting structured around the popular game show Jeopardy. "Top Gun." Over 3 years, there were 43 baseline and 34 final submissions. In all areas of assessment, there was demonstrable improvement. There was increasing evidence of simulation as seen by practice and ritualistic behavior. "Jeopardy." Sixty-eight individuals completed the screening examination, and 30 teams were formed. The largest representation came from the second-year residents in traditional programs. Contestants reported an average in-training examination percentile of 72.9. Finalists reported increased use of the Thoracic Surgery Curriculum by an average of 10 hours per week in preparation. The live competition was friendly, engaging, and spirited. This gamification approach focused on technical and cognitive skills, has been successfully implemented, and has encouraged the use of simulators and the Thoracic Surgery Curriculum. This framework may capitalize on the competitive nature of our trainees and can provide recognition of their achievements. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sramek, C
2003-11-20
At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effectsmore » as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.« less
78 FR 79613 - Final Requirement-Migrant Education Program Consortium Incentive Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
... DEPARTMENT OF EDUCATION 34 CFR Chapter II [CFDA Number 84.144F] Final Requirement--Migrant Education Program Consortium Incentive Grant Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Final requirement. SUMMARY: The Assistant Secretary for Elementary and...
Comparison of Building Energy Modeling Programs: Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Dandan; Hong, Tianzhen; Yan, Da
This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In themore » fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to identify the differences in solution algorithms, modeling assumptions and simplifications. Identifying inputs of each program and their default values or algorithms for load simulation was a critical step. These tend to be overlooked by users, but can lead to large discrepancies in simulation results. As weather data was an important input, weather file formats and weather variables used by each program were summarized. Some common mistakes in the weather data conversion process were discussed. ASHRAE Standard 140-2007 tests were carried out to test the fundamental modeling capabilities of the load calculations of the three BEMPs, where inputs for each test case were strictly defined and specified. The tests indicated that the cooling and heating load results of the three BEMPs fell mostly within the range of spread of results from other programs. Based on ASHRAE 140-2007 test results, the finer differences between DeST and EnergyPlus were further analyzed by designing and conducting additional tests. Potential key influencing factors (such as internal gains, air infiltration, convection coefficients of windows and opaque surfaces) were added one at a time to a simple base case with an analytical solution, to compare their relative impacts on load calculation results. Finally, special tests were designed and conducted aiming to ascertain the potential limitations of each program to perform accurate load calculations. The heat balance module was tested for both single and double zone cases. Furthermore, cooling and heating load calculations were compared between the three programs by varying the heat transfer between adjacent zones, the occupancy of the building, and the air-conditioning schedule.« less
2009-03-19
CAPE CANAVERAL, Fla. – The booster segments for the Ares I-X test rocket were delivered to NASA's Kennedy Space Center in Florida by the Florida East Coast Railroad and the NASA Railroad. Accompanying the train on its route from Jacksonville, Fla., were NASA and ATK officials. Standing here, from left, are ATK Ares I Flight Tests Program Director Joe Oliva, ATK Ares I-X Florida Program Manager Russ Page, NASA Ares Program Manager Steve Cook, ATK Deputy Site Director in Florida Ted Shaffner, NASA KSC Ares I-X Deputy Mission Manager Jon Cowart, ATK Vice President of Space Launch Propulson Cary Ralston, ATK Ares I First Stage program Director Fred Brasfield, ATK Vice President Space Launch Systems Charlie Precourt, ATK Ares I Flight Tests Deputy Program Director Kathy Philpot, NASA Marshall Space Flight Center Reusable Solid Rocket Booster Integration Lead Roy Worthy, ATK Florida Site Director Bob Herman, NASA Res First Stage Project Manager Alex Priskos and NASA KSC Shuttle Launch Director Mike Leinbach. The four reusable motor segments and the nozzle exit cone, manufactured by the Ares I first-stage prime contractor Alliant Techsystems Inc., or ATK, departed Utah March 12 on the seven-day, cross-country trip to Florida. The segments will be delivered to the Rotation, Processing and Surge Facility for final processing and integration. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming test flight this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Kim Shiflett
RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations
Kirsch, L. E.; Bernstein, L. A.
2018-03-04
In this paper, a new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the usemore » of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Finally, several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.« less
RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirsch, L. E.; Bernstein, L. A.
In this paper, a new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the usemore » of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Finally, several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.« less
Du, Tingsong; Hu, Yang; Ke, Xianting
2015-01-01
An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.
The Lake Tahoe Basin Land Use Simulation Model
Forney, William M.; Oldham, I. Benson
2011-01-01
This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.
NASA Astrophysics Data System (ADS)
Pigot, Corentin; Gilibert, Fabien; Reyboz, Marina; Bocquet, Marc; Zuliani, Paola; Portal, Jean-Michel
2018-04-01
Phase-change memory (PCM) compact modeling of the threshold switching based on a thermal runaway in Poole–Frenkel conduction is proposed. Although this approach is often used in physical models, this is the first time it is implemented in a compact model. The model accuracy is validated by a good correlation between simulations and experimental data collected on a PCM cell embedded in a 90 nm technology. A wide range of intermediate states is measured and accurately modeled with a single set of parameters, allowing multilevel programing. A good convergence is exhibited even in snapback simulation owing to this fully continuous approach. Moreover, threshold properties extraction indicates a thermally enhanced switching, which validates the basic hypothesis of the model. Finally, it is shown that this model is compliant with a new drift-resilient cell-state metric. Once enriched with a phase transition module, this compact model is ready to be implemented in circuit simulators.
NASA Astrophysics Data System (ADS)
Menicucci, D. F.
1986-01-01
The performance of a photovoltaic (PV) system is affected by its mounting configuration. The optimal configuration is unclear because of lack of experience and data. Sandia National Laboratories, Albuquerque (SNLA), has conducted a controlled field experiment to compare four types of the most common module mounting. The data from the experiment were used to verify the accuracy of PVFORM, a new computer program that simulates PV performance. PVFORM was then used to simulate the performance of identical PV modules on different mounting configurations at 10 sites throughout the US. This report describes the module mounting configurations, the experimental methods used, the specialized statistical techniques used in the analysis, and the final results of the effort. The module mounting configurations are rank ordered at each site according to their annual and seasonal energy production performance, and each is briefly discussed in terms of its advantages and disadvantages in various applications.
Hu, Yang; Ke, Xianting
2015-01-01
An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713
Investigation of Transonic Wake Dynamics for Mechanically Deployable Entry Systems
NASA Technical Reports Server (NTRS)
Stern, Eric; Barnhardt, Michael; Venkatapathy, Ethiraj; Candler, Graham; Prabhu, Dinesh
2012-01-01
A numerical investigation of transonic flow around a mechanically deployable entry system being considered for a robotic mission to Venus has been performed, and preliminary results are reported. The flow around a conceptual representation of the vehicle geometry was simulated at discrete points along a ballistic trajectory using Detached Eddy Simulation (DES). The trajectory points selected span the low supersonic to transonic regimes with freestream Mach numbers from 1:5 to 0:8, and freestream Reynolds numbers (based on diameter) between 2:09 x 10(exp 6) and 2:93 x 10(exp 6). Additionally, the Mach 0:8 case was simulated at angles of attack between 0 and 5 . Static aerodynamic coefficients obtained from the data show qualitative agreement with data from 70deg sphere-cone wind tunnel tests performed for the Viking program. Finally, the effect of choices of models and numerical algorithms is addressed by comparing the DES results to those using a Reynolds Averaged Navier-Stokes (RANS) model, as well as to results using a more dissipative numerical scheme.
Huet, Michaël; Jacobs, David M; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles
2011-12-01
The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice conditions than under constant practice conditions. This finding is attributed to the education of attention to the more useful informational variables: Variability of practice reduces the usefulness of initially used informational variables, which leads to a quicker change in variable use, and hence to a larger improvement in performance. In the practice phase of Experiment 2 variability was selectively applied to some experimental factors but not to others. Participants tended to converge toward the variables that were useful in the specific conditions that they encountered during practice. This indicates that an explanation for variability of practice effects in terms of the education of attention is a useful alternative to traditional explanations based on the notion of the generalized motor program and to explanations based on the notions of noise and local minima.
Payload training methodology study
NASA Technical Reports Server (NTRS)
1990-01-01
The results of the Payload Training Methodology Study (PTMS) are documented. Methods and procedures are defined for the development of payload training programs to be conducted at the Marshall Space Flight Center Payload Training Complex (PCT) for the Space Station Freedom program. The study outlines the overall training program concept as well as the six methodologies associated with the program implementation. The program concept outlines the entire payload training program from initial identification of training requirements to the development of detailed design specifications for simulators and instructional material. The following six methodologies are defined: (1) The Training and Simulation Needs Assessment Methodology; (2) The Simulation Approach Methodology; (3) The Simulation Definition Analysis Methodology; (4) The Simulator Requirements Standardization Methodology; (5) The Simulator Development Verification Methodology; and (6) The Simulator Validation Methodology.
NASA Technical Reports Server (NTRS)
Bade, W. L.; Yos, J. M.
1975-01-01
The present, third volume of the final report is a programmer's manual for the code. It provides a listing of the FORTRAN 4 source program; a complete glossary of FORTRAN symbols; a discussion of the purpose and method of operation of each subroutine (including mathematical analyses of special algorithms); and a discussion of the operation of the code on IBM/360 and UNIVAC 1108 systems, including required control cards and the overlay structure used to accommodate the code to the limited core size of the 1108. In addition, similar information is provided to document the programming of the NOZFIT code, which is employed to set up nozzle profile curvefits for use in NATA.
A complexity-scalable software-based MPEG-2 video encoder.
Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin
2004-05-01
With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.
A gene network simulator to assess reverse engineering algorithms.
Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio
2009-03-01
In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.
Rizal, Datu; Tani, Shinichi; Nishiyama, Kimitoshi; Suzuki, Kazuhiko
2006-10-11
In this paper, a novel methodology in batch plant safety and reliability analysis is proposed using a dynamic simulator. A batch process involving several safety objects (e.g. sensors, controller, valves, etc.) is activated during the operational stage. The performance of the safety objects is evaluated by the dynamic simulation and a fault propagation model is generated. By using the fault propagation model, an improved fault tree analysis (FTA) method using switching signal mode (SSM) is developed for estimating the probability of failures. The timely dependent failures can be considered as unavailability of safety objects that can cause the accidents in a plant. Finally, the rank of safety object is formulated as performance index (PI) and can be estimated using the importance measures. PI shows the prioritization of safety objects that should be investigated for safety improvement program in the plants. The output of this method can be used for optimal policy in safety object improvement and maintenance. The dynamic simulator was constructed using Visual Modeler (VM, the plant simulator, developed by Omega Simulation Corp., Japan). A case study is focused on the loss of containment (LOC) incident at polyvinyl chloride (PVC) batch process which is consumed the hazardous material, vinyl chloride monomer (VCM).
Programming of a flexible computer simulation to visualize pharmacokinetic-pharmacodynamic models.
Lötsch, J; Kobal, G; Geisslinger, G
2004-01-01
Teaching pharmacokinetic-pharmacodynamic (PK/PD) models can be made more effective using computer simulations. We propose the programming of educational PK or PK/PD computer simulations as an alternative to the use of pre-built simulation software. This approach has the advantage of adaptability to non-standard or complicated PK or PK/PD models. Simplicity of the programming procedure was achieved by selecting the LabVIEW programming environment. An intuitive user interface to visualize the time courses of drug concentrations or effects can be obtained with pre-built elements. The environment uses a wiring analogy that resembles electrical circuit diagrams rather than abstract programming code. The goal of high interactivity of the simulation was attained by allowing the program to run in continuously repeating loops. This makes the program behave flexibly to the user input. The programming is described with the aid of a 2-compartment PK simulation. Examples of more sophisticated simulation programs are also given where the PK/PD simulation shows drug input, concentrations in plasma, and at effect site and the effects themselves as a function of time. A multi-compartmental model of morphine, including metabolite kinetics and effects is also included. The programs are available for download from the World Wide Web at http:// www. klinik.uni-frankfurt.de/zpharm/klin/ PKPDsimulation/content.html. For pharmacokineticists who only program occasionally, there is the possibility of building the computer simulation, together with the flexible interactive simulation algorithm for clinical pharmacological teaching in the field of PK/PD models.
Nuclear Nonproliferation Ontology Assessment Team Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strasburg, Jana D.; Hohimer, Ryan E.
Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importancemore » of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.« less
Simulation Activity in Otolaryngology Residencies.
Deutsch, Ellen S; Wiet, Gregory J; Seidman, Michael; Hussey, Heather M; Malekzadeh, Sonya; Fried, Marvin P
2015-08-01
Simulation has become a valuable tool in medical education, and several specialties accept or require simulation as a resource for resident training or assessment as well as for board certification or maintenance of certification. This study investigates current simulation resources and activities in US otolaryngology residency programs and examines interest in advancing simulation training and assessment within the specialty. Web-based survey. US otolaryngology residency training programs. An electronic web-based survey was disseminated to all US otolaryngology program directors to determine their respective institutional and departmental simulation resources, existing simulation activities, and interest in further simulation initiatives. Descriptive results are reported. Responses were received from 43 of 104 (43%) residency programs. Simulation capabilities and resources are available in most respondents' institutions (78.6% report onsite resources; 73.8% report availability of models, manikins, and devices). Most respondents (61%) report limited simulation activity within otolaryngology. Areas of simulation are broad, addressing technical and nontechnical skills related to clinical training (94%). Simulation is infrequently used for research, credentialing, or systems improvement. The majority of respondents (83.8%) expressed interest in participating in multicenter trials of simulation initiatives. Most respondents from otolaryngology residency programs have incorporated some simulation into their curriculum. Interest among program directors to participate in future multicenter trials appears high. Future research efforts in this area should aim to determine optimal simulators and simulation activities for training and assessment as well as how to best incorporate simulation into otolaryngology residency training programs. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
78 FR 30956 - Cruise Vessel Security and Safety Training Provider Certification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-23
..., practical demonstration, or simulation program. A detailed instructor manual must be submitted. Submissions... simulation programs to be used. If a simulator or simulation program is to be used, include technical... lessons and, if appropriate, for practical demonstrations or simulation exercises and assessments...
77 FR 69788 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). The EPA proposes to grant final authorization to the hazardous waste program changes submitted by the...
Sechopoulos, Ioannis; Ali, Elsayed S M; Badal, Andreu; Badano, Aldo; Boone, John M; Kyprianou, Iacovos S; Mainegra-Hing, Ernesto; McMillan, Kyle L; McNitt-Gray, Michael F; Rogers, D W O; Samei, Ehsan; Turner, Adam C
2015-10-01
The use of Monte Carlo simulations in diagnostic medical imaging research is widespread due to its flexibility and ability to estimate quantities that are challenging to measure empirically. However, any new Monte Carlo simulation code needs to be validated before it can be used reliably. The type and degree of validation required depends on the goals of the research project, but, typically, such validation involves either comparison of simulation results to physical measurements or to previously published results obtained with established Monte Carlo codes. The former is complicated due to nuances of experimental conditions and uncertainty, while the latter is challenging due to typical graphical presentation and lack of simulation details in previous publications. In addition, entering the field of Monte Carlo simulations in general involves a steep learning curve. It is not a simple task to learn how to program and interpret a Monte Carlo simulation, even when using one of the publicly available code packages. This Task Group report provides a common reference for benchmarking Monte Carlo simulations across a range of Monte Carlo codes and simulation scenarios. In the report, all simulation conditions are provided for six different Monte Carlo simulation cases that involve common x-ray based imaging research areas. The results obtained for the six cases using four publicly available Monte Carlo software packages are included in tabular form. In addition to a full description of all simulation conditions and results, a discussion and comparison of results among the Monte Carlo packages and the lessons learned during the compilation of these results are included. This abridged version of the report includes only an introductory description of the six cases and a brief example of the results of one of the cases. This work provides an investigator the necessary information to benchmark his/her Monte Carlo simulation software against the reference cases included here before performing his/her own novel research. In addition, an investigator entering the field of Monte Carlo simulations can use these descriptions and results as a self-teaching tool to ensure that he/she is able to perform a specific simulation correctly. Finally, educators can assign these cases as learning projects as part of course objectives or training programs.
Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT
Thorne, D.; Langevin, C.D.; Sukop, M.C.
2006-01-01
SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.
Uncertainty quantification of US Southwest climate from IPCC projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boslough, Mark Bruce Elrick
2011-01-01
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) made extensive use of coordinated simulations by 18 international modeling groups using a variety of coupled general circulation models (GCMs) with different numerics, algorithms, resolutions, physics models, and parameterizations. These simulations span the 20th century and provide forecasts for various carbon emissions scenarios in the 21st century. All the output from this panoply of models is made available to researchers on an archive maintained by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at LLNL. I have downloaded this data and completed the first steps toward a statisticalmore » analysis of these ensembles for the US Southwest. This constitutes the final report for a late start LDRD project. Complete analysis will be the subject of a forthcoming report.« less
Energy Minimization of Molecular Features Observed on the (110) Face of Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Perozzo, Mary A.; Konnert, John H.; Li, Huayu; Nadarajah, Arunan; Pusey, Marc
1999-01-01
Molecular dynamics and energy minimization have been carried out using the program XPLOR to check the plausibility of a model lysozyme crystal surface. The molecular features of the (110) face of lysozyme were observed using atomic force microscopy (AFM). A model of the crystal surface was constructed using the PDB file 193L, and was used to simulate an AFM image. Molecule translations, van der Waals radii, and assumed AFM tip shape were adjusted to maximize the correlation coefficient between the experimental and simulated images. The highest degree of 0 correlation (0.92) was obtained with the molecules displaced over 6 A from their positions within the bulk of the crystal. The quality of this starting model, the extent of energy minimization, and the correlation coefficient between the final model and the experimental data will be discussed.
Introducing Seismic Tomography with Computational Modeling
NASA Astrophysics Data System (ADS)
Neves, R.; Neves, M. L.; Teodoro, V.
2011-12-01
Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.
Dawe, Susan R; Windsor, John A; Broeders, Joris A J L; Cregan, Patrick C; Hewett, Peter J; Maddern, Guy J
2014-02-01
A systematic review to determine whether skills acquired through simulation-based training transfer to the operating room for the procedures of laparoscopic cholecystectomy and endoscopy. Simulation-based training assumes that skills are directly transferable to the operation room, but only a few studies have investigated the effect of simulation-based training on surgical performance. A systematic search strategy that was used in 2006 was updated to retrieve relevant studies. Inclusion of articles was determined using a predetermined protocol, independent assessment by 2 reviewers, and a final consensus decision. Seventeen randomized controlled trials and 3 nonrandomized comparative studies were included in this review. In most cases, simulation-based training was in addition to patient-based training programs. Only 2 studies directly compared simulation-based training in isolation with patient-based training. For laparoscopic cholecystectomy (n = 10 studies) and endoscopy (n = 10 studies), participants who reached simulation-based skills proficiency before undergoing patient-based assessment performed with higher global assessment scores and fewer errors in the operating room than their counterparts who did not receive simulation training. Not all parameters measured were improved. Two of the endoscopic studies compared simulation-based training in isolation with patient-based training with different results: for sigmoidoscopy, patient-based training was more effective, whereas for colonoscopy, simulation-based training was equally effective. Skills acquired by simulation-based training seem to be transferable to the operative setting for laparoscopic cholecystectomy and endoscopy. Future research will strengthen these conclusions by evaluating predetermined competency levels on the same simulators and using objective validated global rating scales to measure operative performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slepoy, Alexander; Mitchell, Scott A.; Backus, George A.
2008-09-01
Sandia National Laboratories is investing in projects that aim to develop computational modeling and simulation applications that explore human cognitive and social phenomena. While some of these modeling and simulation projects are explicitly research oriented, others are intended to support or provide insight for people involved in high consequence decision-making. This raises the issue of how to evaluate computational modeling and simulation applications in both research and applied settings where human behavior is the focus of the model: when is a simulation 'good enough' for the goals its designers want to achieve? In this report, we discuss two years' worthmore » of review and assessment of the ASC program's approach to computational model verification and validation, uncertainty quantification, and decision making. We present a framework that extends the principles of the ASC approach into the area of computational social and cognitive modeling and simulation. In doing so, we argue that the potential for evaluation is a function of how the modeling and simulation software will be used in a particular setting. In making this argument, we move from strict, engineering and physics oriented approaches to V&V to a broader project of model evaluation, which asserts that the systematic, rigorous, and transparent accumulation of evidence about a model's performance under conditions of uncertainty is a reasonable and necessary goal for model evaluation, regardless of discipline. How to achieve the accumulation of evidence in areas outside physics and engineering is a significant research challenge, but one that requires addressing as modeling and simulation tools move out of research laboratories and into the hands of decision makers. This report provides an assessment of our thinking on ASC Verification and Validation, and argues for further extending V&V research in the physical and engineering sciences toward a broader program of model evaluation in situations of high consequence decision-making.« less
Stockert, Brad; Ohtake, Patricia J
2017-10-01
There is growing recognition that collaborative practice among healthcare professionals is associated with improved patient outcomes and enhanced team functioning, but development of collaborative practitioners requires interprofessional education (IPE). Immersive simulation, a clinically relevant experience that deeply engages the learner in realistic clinical environments, is used increasingly for IPE. The purpose of this study was to assess the use of immersive simulation as a strategy for IPE in physical therapist (PT) education programs. During fall 2014 and spring 2015, we contacted all 214 Commission on Accreditation in Physical Therapy Education accredited PT education programs in the United States and invited a faculty member to participate in our online survey. One hundred fourteen PT programs responded (53% response rate). Eighty responding programs (70%) identified themselves as users of immersive simulation, and 45 programs (39%) used simulation for IPE. Of these 45 programs, more than 90% included Interprofessional Education Collaborative competency learning objectives of roles/responsibilities, interprofessional communication, and teams/teamwork and 51% reported learning objectives for values/ethics for interprofessional practice. Interprofessional simulations with PT students commonly included nursing (91%). In programs using immersive simulation for IPE, 91% included debriefing and 51% included debriefing by interprofessional teams. Eighty accredited PT programs (70%) that responded to the survey use immersive simulation, and 45 programs (39%) use simulation for IPE. Most programs conduct simulations consistent with recognized best practice, including debriefing and Interprofessional Education Collaborative competency learning objectives for promoting interprofessional collaborative practice. We anticipate an increase in the use of immersive simulation for IPE as an educational strategy to comply with the revised Commission on Accreditation in Physical Therapy Education accreditation standards related to interprofessional collaborative practice that will become effective on January 1, 2018.
Self-directed versus traditional classroom training for neonatal resuscitation.
Weiner, Gary M; Menghini, Karin; Zaichkin, Jeanette; Caid, Ann E; Jacoby, Carrie J; Simon, Wendy M
2011-04-01
Neonatal Resuscitation Program instructors spend most of their classroom time giving lectures and demonstrating basic skills. We hypothesized that a self-directed education program could shift acquisition of these skills outside the classroom, shorten the duration of the class, and allow instructors to use their time to facilitate low-fidelity simulation and debriefing. Novice providers were randomly allocated to self-directed education or a traditional class. Self-directed participants received a textbook, instructional video, and portable equipment kit and attended a 90-minute simulation session with an instructor. The traditional class included 6 hours of lectures and instructor-directed skill stations. Outcome measures included resuscitation skill (megacode assessment score), content knowledge, participant satisfaction, and self-confidence. Forty-six subjects completed the study. There was no significant difference between the study groups in either the megacode assessment score (23.8 [traditional] vs 24.5 [self-directed]; P = .46) or fraction that passed the "megacode" (final skills assessment) (56% [traditional] vs 65% [self-directed]; P = .76). There were no significant differences in content knowledge, course satisfaction, or postcourse self-confidence. Content knowledge, years of experience, and self-confidence did not predict resuscitation skill. Self-directed education improves the educational efficiency of the neonatal resuscitation course by shifting the acquisition of cognitive and basic procedural skills outside of the classroom, which allows the instructor to add low-fidelity simulation and debriefing while significantly decreasing the duration of the course.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celik, I.; Chattree, M.
1988-07-01
An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situationsmore » in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.« less
Houston Pre-Freshman Enrichment Program (Houston PREP). Final report, June 9, 1997--July 25, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-10-01
The 1997 Houston Pre-Freshman Enrichment Program (PREP) was conducted at the campus of the University of Houston-Downtown from June 9 to July 25, 1997. Program participants were recruited from the Greater Houston Area. All participants were identified as high-achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Clear Creek, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein,more » North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 194 students starting the program, 165 students were from economically and socially disadvantage groups under-represented in the engineering and science professions, and 118 of the 194 were women. Our First Year group for 1997 composed of 96% minority and women students. Second and Third Year students combined were 96% minority or women. With financial support from the Center for Computational Sciences and Advanced Distributed Simulation, the Fourth Year Program was added to PREP this year. Twelve students completed the program (83% minority or women).« less
Optimized multiple quantum MAS lineshape simulations in solid state NMR
NASA Astrophysics Data System (ADS)
Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.
2009-10-01
The majority of nuclei available for study in solid state Nuclear Magnetic Resonance have half-integer spin I>1/2, with corresponding electric quadrupole moment. As such, they may couple with a surrounding electric field gradient. This effect introduces anisotropic line broadening to spectra, arising from distinct chemical species within polycrystalline solids. In Multiple Quantum Magic Angle Spinning (MQMAS) experiments, a second frequency dimension is created, devoid of quadrupolar anisotropy. As a result, the center of gravity of peaks in the high resolution dimension is a function of isotropic second order quadrupole and chemical shift alone. However, for complex materials, these parameters take on a stochastic nature due in turn to structural and chemical disorder. Lineshapes may still overlap in the isotropic dimension, complicating the task of assignment and interpretation. A distributed computational approach is presented here which permits simulation of the two-dimensional MQMAS spectrum, generated by random variates from model distributions of isotropic chemical and quadrupole shifts. Owing to the non-convex nature of the residual sum of squares (RSS) function between experimental and simulated spectra, simulated annealing is used to optimize the simulation parameters. In this manner, local chemical environments for disordered materials may be characterized, and via a re-sampling approach, error estimates for parameters produced. Program summaryProgram title: mqmasOPT Catalogue identifier: AEEC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3650 No. of bytes in distributed program, including test data, etc.: 73 853 Distribution format: tar.gz Programming language: C, OCTAVE Computer: UNIX/Linux Operating system: UNIX/Linux Has the code been vectorised or parallelized?: Yes RAM: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 3.5M, SMP AMD opteron Classification: 2.3 External routines: OCTAVE ( http://www.gnu.org/software/octave/), GNU Scientific Library ( http://www.gnu.org/software/gsl/), OPENMP ( http://openmp.org/wp/) Nature of problem: The optimal simulation and modeling of multiple quantum magic angle spinning NMR spectra, for general systems, especially those with mild to significant disorder. The approach outlined and implemented in C and OCTAVE also produces model parameter error estimates. Solution method: A model for each distinct chemical site is first proposed, for the individual contribution of crystallite orientations to the spectrum. This model is averaged over all powder angles [1], as well as the (stochastic) parameters; isotropic chemical shift and quadrupole coupling constant. The latter is accomplished via sampling from a bi-variate Gaussian distribution, using the Box-Muller algorithm to transform Sobol (quasi) random numbers [2]. A simulated annealing optimization is performed, and finally the non-linear jackknife [3] is applied in developing model parameter error estimates. Additional comments: The distribution contains a script, mqmasOpt.m, which runs in the OCTAVE language workspace. Running time: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 58.35 seconds, SMP AMD opteron. References:S.K. Zaremba, Annali di Matematica Pura ed Applicata 73 (1966) 293. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992. T. Fox, D. Hinkley, K. Larntz, Technometrics 22 (1980) 29.
Constructing and Evaluating a Validity Argument for the Final-Year Ward Simulation Exercise
ERIC Educational Resources Information Center
Till, Hettie; Ker, Jean; Myford, Carol; Stirling, Kevin; Mires, Gary
2015-01-01
The authors report final-year ward simulation data from the University of Dundee Medical School. Faculty who designed this assessment intend for the final score to represent an individual senior medical student's level of clinical performance. The results are included in each student's portfolio as one source of evidence of the student's…
Simulation of CIFF (Centralized IFF) remote control displays
NASA Astrophysics Data System (ADS)
Tucker, D. L.; Leibowitz, L. M.
1986-06-01
This report presents the software simulation of the Remote-Control-Display (RCS) proposed to be used in the Centralized IFF (CIFF) system. A description of the simulation programs along with simulated menu formats are presented. A sample listing of the simulation programs and a brief description of the program operation are also included.
Simulation and visualization of energy-related occupant behavior in office buildings
Chen, Yixing; Liang, Xin; Hong, Tianzhen; ...
2017-03-15
In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less
Simulation and visualization of energy-related occupant behavior in office buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Liang, Xin; Hong, Tianzhen
In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less
Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems.
Su, Housheng; Wu, Han; Chen, Xia
2017-10-01
This paper studies the multi-input and multi-output discrete-time nonnegative edge synchronization of networked systems based on neighbors' output information. The communication relationship among the edges of networked systems is modeled by well-known line graph. Two observer-based edge synchronization algorithms are designed, for which some necessary and sufficient synchronization conditions are derived. Moreover, some computable sufficient synchronization conditions are obtained, in which the feedback matrix and the observer matrix are computed by solving the linear programming problems. We finally design several simulation examples to demonstrate the validity of the given nonnegative edge synchronization algorithms.
Research on optimal investment path of transmission corridor under the global energy Internet
NASA Astrophysics Data System (ADS)
Huang, Yuehui; Li, Pai; Wang, Qi; Liu, Jichun; Gao, Han
2018-02-01
Under the background of the global energy Internet, the investment planning of transmission corridor from XinJiang to Germany is studied in this article, which passes through four countries: Kazakhstan, Russia, Belarus and Poland. Taking the specific situation of different countries into account, including the length of transmission line, unit construction cost, completion time, transmission price, state tariff, inflation rate and so on, this paper constructed a power transmission investment model. Finally, the dynamic programming method is used to simulate the example, and the optimal strategies under different objective functions are obtained.
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Kutler, Paul
1988-01-01
Discussed are the capabilities of NASA's Numerical Aerodynamic Simulation (NAS) Program and its application as an advanced supercomputing system for computational fluid dynamics (CFD) research. First, the paper describes the NAS computational system, called the NAS Processing System Network, and the advanced computational capabilities it offers as a consequence of carrying out the NAS pathfinder objective. Second, it presents examples of pioneering CFD research accomplished during NAS's first operational year. Examples are included which illustrate CFD applications for predicting fluid phenomena, complementing and supplementing experimentation, and aiding in design. Finally, pacing elements and future directions for CFD and NAS are discussed.
Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook
2014-11-01
To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared. Copyright © 2014 Elsevier Ltd. All rights reserved.
2002-05-20
this transition will have on the CSEPP communities using a risk-based simulation suite. 34 Arms Control & Proliferation WG-3 Chir To Mcian USDprmn f3tt...conjunction with the Army Office of the Surgeon General (OTSG). 166 Measures of Effectiveness WG-24 Chir MA ar . zl,UM The following abstracts are...the effects on resources and budgets that result from major force, support and infrastructure changes. 193 Decision Analysis WG-28 Chir Gwe F.Dln,J A
New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing ofmore » PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.« less
Electro-Thermal-Mechanical Simulation Capability Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D
This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There aremore » numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R&D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems such as magnetic flux compression generators and railguns. This project compliments ongoing DNT projects that have an experimental emphasis. Our research efforts have been encapsulated in the Diablo and ALE3D simulation codes. This new ETM capability already has both internal and external users, and has spawned additional research in plasma railgun technology. By developing this capability Engineering has become a world-leader in ETM design, analysis, and simulation. This research has positioned LLNL to be able to compete for new business opportunities with the DoD in the area of railgun design. We currently have a three-year $1.5M project with the Office of Naval Research to apply our ETM simulation capability to railgun bore life issues and we expect to be a key player in the railgun community.« less
Al-Bustani, Saif; Halvorson, Eric G
2016-06-01
Various simulation models for microsurgery have been developed to overcome the limitations of Halstedian training on real patients. We wanted to assess the status of microsurgery simulation in plastic surgery residency programs in the United States. Data were analyzed from responses to a survey sent to all plastic surgery program directors in the United States, asking for type of simulation, quality of facilities, utilization by trainees, evaluation of trainee sessions, and perception of the relevance of simulation. The survey response rate was 50%. Of all programs, 69% provide microsurgical simulation and 75% of these have a laboratory with microscope and 52% provide live animal models. Half share facilities with other departments. The quality of facilities is rated as good or great in 89%. Trainee utilization is once every 3 to 6 months in 82% of programs. Only in 11% is utilization monthly. Formal evaluation of simulation sessions is provided by 41% of programs. All program directors agree simulation is relevant to competence in microsurgery, 60% agree simulation should be mandatory, and 43% require trainees to complete a formal microsurgery course prior to live surgery. There seems to be consensus that microsurgical simulation improves competence, and the majority of program directors agree it should be mandatory. Developing and implementing standardized simulation modules and assessment tools for trainees across the nation as part of a comprehensive competency-based training program for microsurgery is an important patient safety initiative that should be considered. Organizing with other departments to share facilities may improve their quality and hence utilization.
Simulated Space Environmental Testing on Thin Films
NASA Technical Reports Server (NTRS)
Russell, Dennis A.; Fogdall, Larry B.; Bohnhoff-Hlavacek, Gail; Connell, John W. (Technical Monitor)
2000-01-01
An exploratory program has been conducted, to irradiate some mature commercial and some experimental polymer films with radiation simulating certain Earth orbits, and to obtain data about the response of each test film's reflective and tensile properties. Protocols to conduct optimized tests were considered and developed to a "prototype" level during this program. Fifteen polymer film specimens were arranged on a specially designed test fixture. The fixture featured controlled exposure areas, and protected the ends of the samples for later gripping in tensile tests. The fixture featured controlled exposure areas, and protected the ends of the samples for later gripping in tensile tests. The fixture containing the films was installed in a clean vacuum chamber where protons, electrons and solar ultraviolet (UV) radiation could simultaneously irradiate the specimens. Near realtime UV rates were used, whereas proton and electron rates were accelerated appreciably to simulate 5 years in orbit during a two month test. Periodically, the spectral reflectance of each film was measured in situ. After the end of the irradiation, final reflectance measurements were made in situ, and solar absorptance values were derived for each specimen. These samples were then measured in air for thermal emittance and for tensile strength. Most specimens withstood the irradiation intact, but with reduced reflectance (increased solar absorptance). Thermal emittance changed slightly in several materials, as did their tensile strength and elongation at break. Conclusions are drawn about the performance of the films. Simulated testing to an expected 5 year dose of electrons and protons consistent with those expected at L2 and 0.98 AU orbits and 100 equivalent solar hours exposure.
Influence of plasticity models upon the outcome of simulated hypervelocity impacts
NASA Astrophysics Data System (ADS)
Thomas, John N.
1994-07-01
This paper describes the results of numerical simulations of aluminum upon aluminum impacts which were performed with the CTH hydrocode to determine the effect plasticity formulations upon the final perforation size in the targets. The targets were 1 mm and 5 mm thick plates and the projectiles were 10 mm by 10 mm right circular cylinders. Both targets and projectiles were represented as 2024 aluminium alloy. The hydrocode simulations were run in a two-dimensional cylindrical geometry. Normal impacts at velocites between 5 and 15 km/s were simulated. Three isotropic yield stress models were explored in the simulations: an elastic-perfectly plastic model and the Johnson-Cook and Steinberg-Guinan-Lund viscoplastic models. The fracture behavior was modeled by a simple tensile pressure criterion. The simulations show that using the three strength models resulted in only minor differences in the final perforation diameter. The simulation results were used to construct an equation to predict the final hole size resulting from impacts on thin targets.
Program For Simulation Of Trajectories And Events
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1992-01-01
Universal Simulation Executive (USE) program accelerates and eases generation of application programs for numerical simulation of continuous trajectories interrupted by or containing discrete events. Developed for simulation of multiple spacecraft trajectories with events as one spacecraft crossing the equator, two spacecraft meeting or parting, or firing rocket engine. USE also simulates operation of chemical batch processing factory. Written in Ada.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
PLAYGROUND: preparing students for the cyber battleground
NASA Astrophysics Data System (ADS)
Nielson, Seth James
2016-12-01
Attempting to educate practitioners of computer security can be difficult if for no other reason than the breadth of knowledge required today. The security profession includes widely diverse subfields including cryptography, network architectures, programming, programming languages, design, coding practices, software testing, pattern recognition, economic analysis, and even human psychology. While an individual may choose to specialize in one of these more narrow elements, there is a pressing need for practitioners that have a solid understanding of the unifying principles of the whole. We created the Playground network simulation tool and used it in the instruction of a network security course to graduate students. This tool was created for three specific purposes. First, it provides simulation sufficiently powerful to permit rigorous study of desired principles while simultaneously reducing or eliminating unnecessary and distracting complexities. Second, it permitted the students to rapidly prototype a suite of security protocols and mechanisms. Finally, with equal rapidity, the students were able to develop attacks against the protocols that they themselves had created. Based on our own observations and student reviews, we believe that these three features combine to create a powerful pedagogical tool that provides students with a significant amount of breadth and intense emotional connection to computer security in a single semester.
Testing and Analytical Modeling for Purging Process of a Cryogenic Line
NASA Technical Reports Server (NTRS)
Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.
2013-01-01
The purging operations for cryogenic main propulsion systems of upper stage are usually carried out for the following cases: 1) Purging of the Fill/Drain line after completion of propellant loading. This operation allows the removal of residual propellant mass; and 2) Purging of the Feed/Drain line if the mission is scrubbed. The lines would be purged by connections to a ground high-pressure gas storage source. The flowrate of purge gas should be regulated such that the pressure in the line will not exceed the required maximum allowable value. Exceeding the maximum allowable pressure may lead to structural damage in the line. To gain confidence in analytical models of the purge process, a test series was conducted. The test article, a 20-cm incline line, was filled with liquid hydrogen and then purged with gaseous helium (GHe). The influences of GHe flowrates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program, an in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the testing. The test procedures, modeling descriptions, and the results will be presented in the final paper.
Testing and Analytical Modeling for Purging Process of a Cryogenic Line
NASA Technical Reports Server (NTRS)
Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.
2015-01-01
The purging operations for cryogenic main propulsion systems of upper stage are usually carried out for the following cases: 1) Purging of the Fill/Drain line after completion of propellant loading. This operation allows the removal of residual propellant mass; and 2) Purging of the Feed/Drain line if the mission is scrubbed. The lines would be purged by connections to a ground high-pressure gas storage source. The flow-rate of purge gas should be regulated such that the pressure in the line will not exceed the required maximum allowable value. Exceeding the maximum allowable pressure may lead to structural damage in the line. To gain confidence in analytical models of the purge process, a test series was conducted. The test article, a 20-cm incline line, was filled with liquid hydrogen and then purged with gaseous helium (GHe). The influences of GHe flow-rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program, an in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the testing. The test procedures, modeling descriptions, and the results will be presented in the final paper.
Mirzaeinejad, Hossein; Mirzaei, Mehdi; Rafatnia, Sadra
2018-06-11
This study deals with the enhancement of directional stability of vehicle which turns with high speeds on various road conditions using integrated active steering and differential braking systems. In this respect, the minimum usage of intentional asymmetric braking force to compensate the drawbacks of active steering control with small reduction of vehicle longitudinal speed is desired. To this aim, a new optimal multivariable controller is analytically developed for integrated steering and braking systems based on the prediction of vehicle nonlinear responses. A fuzzy programming extracted from the nonlinear phase plane analysis is also used for managing the two control inputs in various driving conditions. With the proposed fuzzy programming, the weight factors of the control inputs are automatically tuned and softly changed. In order to simulate a real-world control system, some required information about the system states and parameters which cannot be directly measured, are estimated using the Unscented Kalman Filter (UKF). Finally, simulations studies are carried out using a validated vehicle model to show the effectiveness of the proposed integrated control system in the presence of model uncertainties and estimation errors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
BEST (Better Educational Skills Training). Final Report.
ERIC Educational Resources Information Center
Vermont Adult Learning, Rutland.
This document contains a final report, evaluation report, and materials from the Better Educational Skills Training (BEST) workplace literacy program in Vermont. The seven-page final report describes program components: (1) expanding and institutionalizing the workplace literacy program developed through two previous national workplace literacy…
Program For Parallel Discrete-Event Simulation
NASA Technical Reports Server (NTRS)
Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.
1991-01-01
User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.
Interprofessional simulation of birth in a non-maternity setting for pre-professional students.
McLelland, Gayle; Perera, Chantal; Morphet, Julia; McKenna, Lisa; Hall, Helen; Williams, Brett; Cant, Robyn; Stow, Jill
2017-11-01
Simulation-based learning is an approach recommended for teaching undergraduate health professionals. There is a scarcity of research around interprofessional simulation training for pre-professional students in obstetric emergencies that occur prior to arrival at the maternity ward. The primary aims of the study were to examine whether an interprofessional team-based simulated birth scenario would improve undergraduate paramedic, nursing, and midwifery students' self-efficacy scores and clinical knowledge when managing birth in an unplanned location. The secondary aim was to assess students' satisfaction with the newly developed interprofessional simulation. Quasi-experimental descriptive study with repeated measures. Simulated hospital emergency department. Final year undergraduate paramedic, nursing, and midwifery students. Interprofessional teams of five students managed a simulated unplanned vaginal birth, followed by debriefing. Students completed a satisfaction with simulation survey. Serial surveys of clinical knowledge and self-efficacy were conducted at three time points. Twenty-four students participated in one of five simulation scenarios. Overall, students' self-efficacy and confidence in ability to achieve a successful birth outcome was significantly improved at one month (p<0.001) with a magnitude of increase (effect) of 40% (r=0.71) and remained so after a further three months. Clinical knowledge was significantly increased in only one of three student groups: nursing (p=0.04; r=0.311). Students' satisfaction with the simulation experience was high (M=4.65/5). Results from this study indicate that an interprofessional simulation of a birth in an unplanned setting can improve undergraduate paramedic, nursing and midwifery students' confidence working in an interprofessional team. There was a significant improvement in clinical knowledge of the nursing students (who had least content about managing birth in their program). All students were highly satisfied with the interprofessional simulation experience simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
75 FR 71325 - Wildlife Habitat Incentive Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... Wildlife Habitat Incentive Program AGENCY: Commodity Credit Corporation, Natural Resources Conservation... final rule for the Wildlife Habitat Incentive Program (WHIP). This final rule sets forth how NRCS, using... Albert Cerna, National Wildlife Habitat Incentive Program Manager, Financial Assistance Programs Division...
Design and Testing of CPAS Main Deployment Bag Energy Modulator
NASA Technical Reports Server (NTRS)
Mollmann, Catherine
2017-01-01
During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.
The Airborne Ocean Color Imager - System description and image processing
NASA Technical Reports Server (NTRS)
Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.
1992-01-01
The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.
Investigation of a low NOx full-scale annular combustor
NASA Technical Reports Server (NTRS)
1982-01-01
An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.
Evolutionary programming-based univector field navigation method for past mobile robots.
Kim, Y J; Kim, J H; Kwon, D S
2001-01-01
Most of navigation techniques with obstacle avoidance do not consider the robot orientation at the target position. These techniques deal with the robot position only and are independent of its orientation and velocity. To solve these problems this paper proposes a novel univector field method for fast mobile robot navigation which introduces a normalized two dimensional vector field. The method provides fast moving robots with the desired posture at the target position and obstacle avoidance. To obtain the sub-optimal vector field, a function approximator is used and trained by evolutionary programming. Two kinds of vector fields are trained, one for the final posture acquisition and the other for obstacle avoidance. Computer simulations and real experiments are carried out for a fast moving mobile robot to demonstrate the effectiveness of the proposed scheme.
NASA Technical Reports Server (NTRS)
Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)
1991-01-01
The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. A compilation of the final reports on the research projects done by the faculty fellows during the summer of 1991 are presented. Some of the topics covered include: collision avoidance for rover vehicles, bioinstrumentation, neural nets, total quality management of flexible space structures, project scheduling, nondestructive tests, orthostatic intolerance to bedrest, hypersonic reentry simulation, measuring human energy expenditure, tribological models, trace element movement in Anarctic ice, gastrointestinal function, and computer assisted instruction.
NASA Technical Reports Server (NTRS)
Reichert, R, S.; Biringen, S.; Howard, J. E.
1999-01-01
LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.
A simulation model for wind energy storage systems. Volume 3: Program descriptions
NASA Technical Reports Server (NTRS)
Warren, A. W.; Edsinger, R. W.; Burroughs, J. D.
1977-01-01
Program descriptions, flow charts, and program listings for the SIMWEST model generation program, the simulation program, the file maintenance program, and the printer plotter program are given. For Vol 2, see .
NASA Technical Reports Server (NTRS)
Simpson, Robert W.
1993-01-01
This presentation outlines a concept for an adaptive, interactive decision support system to assist controllers at a busy airport in achieving efficient use of multiple runways. The concept is being implemented as a computer code called FASA (Final Approach Spacing for Aircraft), and will be tested and demonstrated in ATCSIM, a high fidelity simulation of terminal area airspace and airport surface operations. Objectives are: (1) to provide automated cues to assist controllers in the sequencing and spacing of landing and takeoff aircraft; (2) to provide the controller with a limited ability to modify the sequence and spacings between aircraft, and to insert takeoffs and missed approach aircraft in the landing flows; (3) to increase spacing accuracy using more complex and precise separation criteria while reducing controller workload; and (4) achieve higher operational takeoff and landing rates on multiple runways in poor visibility.
Human operator identification model and related computer programs
NASA Technical Reports Server (NTRS)
Kessler, K. M.; Mohr, J. N.
1978-01-01
Four computer programs which provide computational assistance in the analysis of man/machine systems are reported. The programs are: (1) Modified Transfer Function Program (TF); (2) Time Varying Response Program (TVSR); (3) Optimal Simulation Program (TVOPT); and (4) Linear Identification Program (SCIDNT). The TV program converts the time domain state variable system representative to frequency domain transfer function system representation. The TVSR program computes time histories of the input/output responses of the human operator model. The TVOPT program is an optimal simulation program and is similar to TVSR in that it produces time histories of system states associated with an operator in the loop system. The differences between the two programs are presented. The SCIDNT program is an open loop identification code which operates on the simulated data from TVOPT (or TVSR) or real operator data from motion simulators.
NASA Technical Reports Server (NTRS)
Stephenson, Frank W., Jr.
1988-01-01
The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.
Hanafusa, A; Komeda, T; Ito, K; Zobel, P Beomonte
2015-08-01
Project-based learning (PBL) is effective for developing human resources of young students. The design of welfare equipment, such as wheelchairs and gait assistive devices, is taken as the subject in this study because these devices must be fit to their environment, users, and method of use; students must consider the circumstances of each country concerned. The program commenced in 2012 at L'Aquila, Italy, and the Shibaura Institute of Technology, Japan and has been continuing for three years. Students were divided into four groups and discussions were held on how to adapt the equipment to the user and environment. After discussion, they designed and simulated a model of the equipment using CAD. Finally, they presented their designs to each other. Through the program, students had fruitful discussions, exchanged ideas from different cultures, and learned from each other. Furthermore, friendships among the students were nurtured. It is believed that the objective of the program was satisfactorily accomplished.
NASA Astrophysics Data System (ADS)
Li, Shuang; Zhu, Yongsheng; Wang, Yukai
2014-02-01
Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.
Solving Partial Differential Equations in a data-driven multiprocessor environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudiot, J.L.; Lin, C.M.; Hosseiniyar, M.
1988-12-31
Partial differential equations can be found in a host of engineering and scientific problems. The emergence of new parallel architectures has spurred research in the definition of parallel PDE solvers. Concurrently, highly programmable systems such as data-how architectures have been proposed for the exploitation of large scale parallelism. The implementation of some Partial Differential Equation solvers (such as the Jacobi method) on a tagged token data-flow graph is demonstrated here. Asynchronous methods (chaotic relaxation) are studied and new scheduling approaches (the Token No-Labeling scheme) are introduced in order to support the implementation of the asychronous methods in a data-driven environment.more » New high-level data-flow language program constructs are introduced in order to handle chaotic operations. Finally, the performance of the program graphs is demonstrated by a deterministic simulation of a message passing data-flow multiprocessor. An analysis of the overhead in the data-flow graphs is undertaken to demonstrate the limits of parallel operations in dataflow PDE program graphs.« less
Virtual manufacturing work cell for engineering
NASA Astrophysics Data System (ADS)
Watanabe, Hideo; Ohashi, Kazushi; Takahashi, Nobuyuki; Kato, Kiyotaka; Fujita, Satoru
1997-12-01
The life cycles of products have been getting shorter. To meet this rapid turnover, manufacturing systems must be frequently changed as well. In engineering to develop manufacturing systems, there are several tasks such as process planning, layout design, programming, and final testing using actual machines. This development of manufacturing systems takes a long time and is expensive. To aid the above engineering process, we have developed the virtual manufacturing workcell (VMW). This paper describes a concept of VMW and design method through computer aided manufacturing engineering using VMW (CAME-VMW) related to the above engineering tasks. The VMW has all design data, and realizes a behavior of equipment and devices using a simulator. The simulator has logical and physical functionality. The one simulates a sequence control and the other simulates motion control, shape movement in 3D space. The simulator can execute the same control software made for actual machines. Therefore we can verify the behavior precisely before the manufacturing workcell will be constructed. The VMW creates engineering work space for several engineers and offers debugging tools such as virtual equipment and virtual controllers. We applied this VMW to development of a transfer workcell for vaporization machine in actual manufacturing system to produce plasma display panel (PDP) workcell and confirmed its effectiveness.
NASA Technical Reports Server (NTRS)
Red, Michael T.; Hess, Philip W.
1989-01-01
Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.
NASA Astrophysics Data System (ADS)
Robbins, Joshua; Voth, Thomas
2011-06-01
Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Global Fluxon Modeling of the Solar Corona and Inner Heliosphere
NASA Astrophysics Data System (ADS)
Lamb, D. A.; DeForest, C. E.
2017-12-01
The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.
Quantification of MagLIF stagnation morphology using the Mallat Scattering Transformation
NASA Astrophysics Data System (ADS)
Glinsky, Michael; Weis, Matthew; Jennings, Christopher; Ampleford, David; Harding, Eric; Knapp, Patrick; Gomez, Matthew
2017-10-01
The morphology of the stagnated plasma resulting from MagLIF is measured by imaging the self-emission x-rays coming from the multi-keV plasma. Equivalent diagnostic response can be derived from integrated rad-hydro simulations from programs such as Hydra and Gorgon. There have been only limited quantitative ways to compare the image morphology, that is the texture, of the simulations to that of the experiments, to compare one experiment to another, or to compare one simulation to another. We have developed a metric of image morphology based on the Mallat Scattering Transformation, a transformation that has proved to be effective at distinguishing textures, sounds, and written characters. This metric has demonstrated excellent performance in classifying an ensemble of synthetic stagnations images. A good regression of the scattering coefficients to the parameters used to generate the synthetic images was found. Finally, the metric has been used to quantitatively compare simulations to experimental self-emission images. Sandia National Laboratories is a multi-mission laboratory managed and operated by NTESS, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the USDoEs NNSA under contract DE-NA0003525.
This final rule establishes consolidated permit program requirements governing the Hazardous Waste Management program under the Resource Conservation and Recovery Act (RCRA) and other related programs.
Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play architecture, called NPSS Version 1, (2) A full engine simulation that combines a 3D low-pressure subsystem with a 0D high pressure core simulation. This demonstrates the ability to integrate analyses at different levels of detail and to aerodynamically couple components, the fan/booster and low-pressure turbine, through a 3D computational fluid dynamics simulation. (3) Simulation of all of the turbomachinery in a modern turbofan engine on parallel computing platform for rapid and cost-effective execution. This capability can also be used to generate full compressor map, requiring both design and off-design simulation. (4) Three levels of coupling characterize the multidisciplinary analysis under NPSS: loosely coupled, process coupled and tightly coupled. The loosely coupled and process coupled approaches require a common geometry definition to link CAD to analysis tools. The tightly coupled approach is currently validating the use of arbitrary Lagrangian/Eulerian formulation for rotating turbomachinery. The validation includes both centrifugal and axial compression systems. The results of the validation will be reported in the paper. (5) The demonstration of significant computing cost/performance reduction for turbine engine applications using PC clusters. The NPSS Project is supported under the NASA High Performance Computing and Communications Program.
Wind tunnel tests of a free yawing downwind wind turbine
NASA Astrophysics Data System (ADS)
Verelst, D. R. S.; Larsen, T. J.; van Wingerden, J. W.
2014-12-01
This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.
Scientific documentary animation: How much accuracy is enough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Max, N.L.
1992-02-06
Scientific documentary animation presents final results, and thus has a somewhat different purpose than the scientific visualization used in their discovery. For an audience of non-specialists, production quality in the graphics, pacing, narration, music, and story-telling are important. However, the animation need only be qualitatively correct in order to communicate the desired information. When physical simulations are used to produce animated movement, the laws of motion can be adjusted to give a nicer appearance, to allow for easier programming, to compensate for incompatible time or size scales, or to artifically push things in a desired direction. Graphic tricks may evenmore » be used to disguise inadequacies in the simulation. Biological structures which are not yet completely understood may be given an arbitrary or approximate form in order to show their function. But in illustrating mathematics, it is often easy to be completely accurate.« less
Scientific documentary animation: How much accuracy is enough?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Max, N.L.
1992-02-06
Scientific documentary animation presents final results, and thus has a somewhat different purpose than the scientific visualization used in their discovery. For an audience of non-specialists, production quality in the graphics, pacing, narration, music, and story-telling are important. However, the animation need only be qualitatively correct in order to communicate the desired information. When physical simulations are used to produce animated movement, the laws of motion can be adjusted to give a nicer appearance, to allow for easier programming, to compensate for incompatible time or size scales, or to artifically push things in a desired direction. Graphic tricks may evenmore » be used to disguise inadequacies in the simulation. Biological structures which are not yet completely understood may be given an arbitrary or approximate form in order to show their function. But in illustrating mathematics, it is often easy to be completely accurate.« less
Powder agglomeration in a microgravity environment
NASA Technical Reports Server (NTRS)
Cawley, James D.
1994-01-01
This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.
Admixture Aberration Analysis: Application to Mapping in Admixed Population Using Pooled DNA
NASA Astrophysics Data System (ADS)
Bercovici, Sivan; Geiger, Dan
Admixture mapping is a gene mapping approach used for the identification of genomic regions harboring disease susceptibility genes in the case of recently admixed populations such as African Americans. We present a novel method for admixture mapping, called admixture aberration analysis (AAA), that uses a DNA pool of affected admixed individuals. We demonstrate through simulations that AAA is a powerful and economical mapping method under a range of scenarios, capturing complex human diseases such as hypertension and end stage kidney disease. The method has a low false-positive rate and is robust to deviation from model assumptions. Finally, we apply AAA on 600 prostate cancer-affected African Americans, replicating a known risk locus. Simulation results indicate that the method can yield over 96% reduction in genotyping. Our method is implemented as a Java program called AAAmap and is freely available.
A novel navigation method used in a ballistic missile
NASA Astrophysics Data System (ADS)
Qian, Hua-ming; Sun, Long; Cai, Jia-nan; Peng, Yu
2013-10-01
The traditional strapdown inertial/celestial integrated navigation method used in a ballistic missile cannot accurately estimate the accelerometer bias. It might cause a divergence of navigation errors. To solve this problem, a new navigation method named strapdown inertial/starlight refractive celestial integrated navigation is proposed. To verify the feasibility of the proposed method, a simulated program of a ballistic missile is presented. The simulation results indicated that, when multiple refraction stars are used, the proposed method can accurately estimate the accelerometer bias, and suppress the divergence of navigation errors completely. Specifically, in order to apply this method to a ballistic missile, a novel measurement equation based on stellar refraction was developed. Furthermore a method to calculate the number of refraction stars observed by the stellar sensor was given. Finally, the relationship between the number of refraction stars used and the navigation accuracy is analysed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janjusic, Tommy; Kartsaklis, Christos
Application analysis is facilitated through a number of program profiling tools. The tools vary in their complexity, ease of deployment, design, and profiling detail. Specifically, understand- ing, analyzing, and optimizing is of particular importance for scientific applications where minor changes in code paths and data-structure layout can have profound effects. Understanding how intricate data-structures are accessed and how a given memory system responds is a complex task. In this paper we describe a trace profiling tool, Glprof, specifically aimed to lessen the burden of the programmer to pin-point heavily involved data-structures during an application's run-time, and understand data-structure run-time usage.more » Moreover, we showcase the tool's modularity using additional cache simulation components. We elaborate on the tool's design, and features. Finally we demonstrate the application of our tool in the context of Spec bench- marks using the Glprof profiler and two concurrently running cache simulators, PPC440 and AMD Interlagos.« less
A novel solution for LED wall lamp design and simulation
NASA Astrophysics Data System (ADS)
Ge, Rui; Hong, Weibin; Li, Kuangqi; Liang, Pengxiang; Zhao, Fuli
2014-11-01
The model of the wall washer lamp and the practical illumination application have been established with a new design of the lens to meet the uniform illumination demand for wall washer lamp based on the Lambertian light sources. Our secondary optical design of freeform surface lens to LED wall washer lamp based on the conservation law of energy and Snell's law can improve the lighting effects as a uniform illumination. With the relationship between the surface of the lens and the surface of the target, a great number of discrete points of the freeform profile curve were obtained through the iterative method. After importing the data into our modeling program, the optical entity was obtained. Finally, to verify the feasibility of the algorithm, the model was simulated by specialized software, with both the LED Lambertian point source and LED panel source model.
Large-Angle Scattering of Multi-GeV Muons on Thin Lead Targets
NASA Astrophysics Data System (ADS)
Longhin, A.; Paoloni, A.; Pupilli, F.
2015-10-01
The probability of large-angle scattering for multi-GeV muons in lead targets with a thickness of O(10 - 1) radiation lengths is studied. The new estimates presented here are based both on simulation programs (GEANT4 libraries) and theoretical calculations. In order to validate the results provided by simulation, a comparison is drawn with experimental data from the literature. This study is particularly relevant when applied to muons originating from νμ CC interactions of CNGS beam neutrinos. In that circumstance the process under study represents the dominant background for the νμ → ντ search in the τ→ μ channel for the OPERA experiment at LNGS. Finally we also investigate, in the CNGS context, possible contributions from the muon photo-nuclear process which might in principle also produce a large-angle muon scattering signature in the detector.
Parametric study using modal analysis of a bi-material plate with defects
NASA Astrophysics Data System (ADS)
Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.
2015-03-01
Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.
NASA Astrophysics Data System (ADS)
Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok
2013-08-01
The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.
An Investigation of the Outward Bound Final Expedition
ERIC Educational Resources Information Center
Bobilya, Andrew J.; Kalisch, Ken; Daniel, Brad
2011-01-01
Research of wilderness programs indicates a clear need for additional investigation of specific program components and their influence on participant outcomes. This study examines one component of the Outward Bound wilderness program--the Final Expedition. The Final Expedition is a student-led wilderness expedition and is also referred to as an…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... Department of Environmental Protection, (WVDEP), Division of Water and Waste Management, 601 57th Street SE...] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... for final authorization of revisions to its hazardous waste program under the Resource Conservation...
Final environmental statement, Liquid Metal Fast Breeder Reactor Program. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1975-12-01
Information is presented under the following section headings: LMFBR program options and their compatibility with the major issues affecting commercial development, Proposed Final Environmental Statement for the LMFBR program, December 1974, WASH-1535, supplemental material, and material relating to Proposed Final Environmental Statement review. (DG)
Gamble, Andree S
2017-03-01
Simulation in health education has been shown to increase confidence, psychomotor and professional skills, and thus positively impact on student preparedness for clinical placement. It is recognised as a valuable tool to expose and engage students in realistic patient care encounters without the potential to cause patient harm. Although inherent challenges exist in the development and implementation of simulation, variability in clinical placement time, availability and quality dictates the need to provide students with learning opportunities they may otherwise not experience. With this, and a myriad of other issues providing the impetus for improved clinical preparation, 28 final semester undergraduate nursing students in a paediatric nursing course were involved in an extended multi-scenario simulated clinical shift prior to clinical placement. The simulation focussed on a complex ward experience, giving students the opportunity to demonstrate a variety of psychomotor skills, decision making, leadership, team work and other professional attributes integral for successful transition into the clinical arena. Evaluation data were collected at 3 intermittent points; post-simulation, post clinical placement, and 3 months after commencing employment as a Registered Nurse. Quantitative and qualitative analysis suggested positive impacts on critical nursing concepts and psychomotor skills resulted for participants in both clinical placement and beyond into the first months of employment. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Specialist's training for laparoscopic surgery in Wet-lab educational operating theatre].
Khubezov, D A; Sazhin, V P; Ogoreltsev, A Yu; Puchkov, D K; Rodimov, S V; Ignatov, I S; Tazina, T V; Evsyukova, M A
2018-01-01
To develop system for students training in laparoscopic surgery by using of Wet-lab educational operating theatre. We have launched laparoscopic surgery teaching program for students of Ryazan State Medical University. This system includes several stages. At the first stage professional selection was carried out on 'dry' laparoscopic simulators among III-IV-year students of medical faculty. So, 10 people were selected. The second stage included theoretical and practical parts consisting of development of basic laparoscopic skills on 'dry' simulators. 5 students who scored the maximum points were admitted to the next stage. The third stage is working in Wet-lab operating theatre with a mentor. There were 10 sessions on 10 laboratory pigs. Final stage of our study compares two groups of participants: main group - 5 students who underwent above-described program and control group of 5 residents without experience for laparoscopic operations. The participants of the main group had significantly higher OSATS score compared with another group (20 vs. 10; p<0.05). Movements effectiveness estimated by measuring of movements trajectory total length was also higher in main group than in control group (6 vs. 20; p<0.05). Experts' subjective assessment according to 10-point scale was also higher for students than for interns (9 vs. 5, p<0.05). Participants in the main group required significantly less time to complete the task compared with the control group (40 vs. 90 minutes, p<0.05). Our experience has shown that training system with Wet-lab operating theatre is effective for quick and efficient training of medical students in main laparoscopic procedures. In our opinion, introduction of students into 'advanced' surgery from early age will make it possible to get finally highly professional specialists.
Simulation Model for the Piper PA-30 Light Maneuverable Aircraft in the Final Approach
DOT National Transportation Integrated Search
1971-07-01
The report describes the Piper PA-30 'Twin Comanche' aircraft and a representative autopilot during the final approach configuration for simulation purposes. The aircraft is modeled by linearized six-degree-of-freedom perturbation equations reference...
SICONID: a FORTRAN-77 program for conditional simulation in one dimension
NASA Astrophysics Data System (ADS)
Pardo-Igúzquiza, E.; Chica-Olmo, M.; Delgado-García, J.
1992-07-01
The SICONID program, written in FORTRAN 77 for the conditional simulation of geological variables in one dimension, is presented. The program permits all the necessary steps to obtain a simulated series of the experimental data to be carried out. These states are: acquisition of the experimental values, modelization of the anamorphosis function, variogram of the normal scores, conditional simulation, and restoration of the experimental histogram. A practical case of simulation of the evolution of the groundwater level in a survey to show the operation of the program is given.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.
1999-01-01
A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.
78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Gwendolyn Gleaton, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...
Space Fence PDR Concept Development Phase
NASA Astrophysics Data System (ADS)
Haines, L.; Phu, P.
2011-09-01
The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.
Visual exploration and analysis of human-robot interaction rules
NASA Astrophysics Data System (ADS)
Zhang, Hui; Boyles, Michael J.
2013-01-01
We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming interfaces, information visualization, and visual data mining methods to facilitate designing, comprehending, and evaluating HRI interfaces.
Parallelization of sequential Gaussian, indicator and direct simulation algorithms
NASA Astrophysics Data System (ADS)
Nunes, Ruben; Almeida, José A.
2010-08-01
Improving the performance and robustness of algorithms on new high-performance parallel computing architectures is a key issue in efficiently performing 2D and 3D studies with large amount of data. In geostatistics, sequential simulation algorithms are good candidates for parallelization. When compared with other computational applications in geosciences (such as fluid flow simulators), sequential simulation software is not extremely computationally intensive, but parallelization can make it more efficient and creates alternatives for its integration in inverse modelling approaches. This paper describes the implementation and benchmarking of a parallel version of the three classic sequential simulation algorithms: direct sequential simulation (DSS), sequential indicator simulation (SIS) and sequential Gaussian simulation (SGS). For this purpose, the source used was GSLIB, but the entire code was extensively modified to take into account the parallelization approach and was also rewritten in the C programming language. The paper also explains in detail the parallelization strategy and the main modifications. Regarding the integration of secondary information, the DSS algorithm is able to perform simple kriging with local means, kriging with an external drift and collocated cokriging with both local and global correlations. SIS includes a local correction of probabilities. Finally, a brief comparison is presented of simulation results using one, two and four processors. All performance tests were carried out on 2D soil data samples. The source code is completely open source and easy to read. It should be noted that the code is only fully compatible with Microsoft Visual C and should be adapted for other systems/compilers.
ERIC Educational Resources Information Center
National Archives and Records Administration, 2006
2006-01-01
The Secretary is adopting as final, with changes, interim final regulations in: 34 CFR part 691 for the Academic Competitiveness Grant (ACG) and National Science and Mathematics Access to Retain Talent Grant (National SMART Grant) programs; 34 CFR part 668 (Student Assistance General Provisions); and 34 CFR part 690 (Federal Pell Grant Program).…
Implementing a high-fidelity simulation program in a community college setting.
Tuoriniemi, Pamela; Schott-Baer, Darlene
2008-01-01
Despite their relatively high cost, there is heightened interest by faculty in undergraduate nursing programs to implement high-fidelity simulation (HFS) programs. High-fidelity simulators are appealing because they allow students to experience high-risk, low-volume patient problems in a realistic setting. The decision to purchase a simulator is the first step in the process of implementing and maintaining an HFS lab. Knowledge, technical skill, commitment, and considerable time are needed to develop a successful program. The process, as experienced by one community college nursing program, is described.
Simulating smokers' acceptance of modifications in a cessation program.
Spoth, R
1992-01-01
Recent research has underscored the importance of assessing barriers to smokers' acceptance of cessation programs. This paper illustrates the use of computer simulations to gauge smokers' response to program modifications which may produce barriers to participation. It also highlights methodological issues encountered in conducting this work. Computer simulations were based on conjoint analysis, a consumer research method which enables measurement of smokers' relative preference for various modifications of cessation programs. Results from two studies are presented in this paper. The primary study used a randomly selected sample of 218 adult smokers who participated in a computer-assisted phone interview. Initially, the study assessed smokers' relative utility rating of 30 features of cessation programs. Utility data were used in computer-simulated comparisons of a low-cost, self-help oriented program under development and five other existing programs. A baseline version of the program under development and two modifications (for example, use of a support group with a higher level of cost) were simulated. Both the baseline version and modifications received a favorable response vis-à-vis comparison programs. Modifications requiring higher program costs were, however, associated with moderately reduced levels of favorable consumer response. The second study used a sample of 70 smokers who responded to an expanded set of smoking cessation program features focusing on program packaging. This secondary study incorporate in-person, computer-assisted interviews at a shopping mall, with smokers viewing an artist's mock-up of various program options on display. A similar pattern of responses to simulated program modifications emerged, with monetary cost apparently playing a key role. The significance of conjoint-based computer simulation as a tool in program development or dissemination, salient methodological issues, and implications for further research are discussed. PMID:1738813
Simulating smokers' acceptance of modifications in a cessation program.
Spoth, R
1992-01-01
Recent research has underscored the importance of assessing barriers to smokers' acceptance of cessation programs. This paper illustrates the use of computer simulations to gauge smokers' response to program modifications which may produce barriers to participation. It also highlights methodological issues encountered in conducting this work. Computer simulations were based on conjoint analysis, a consumer research method which enables measurement of smokers' relative preference for various modifications of cessation programs. Results from two studies are presented in this paper. The primary study used a randomly selected sample of 218 adult smokers who participated in a computer-assisted phone interview. Initially, the study assessed smokers' relative utility rating of 30 features of cessation programs. Utility data were used in computer-simulated comparisons of a low-cost, self-help oriented program under development and five other existing programs. A baseline version of the program under development and two modifications (for example, use of a support group with a higher level of cost) were simulated. Both the baseline version and modifications received a favorable response vis-à-vis comparison programs. Modifications requiring higher program costs were, however, associated with moderately reduced levels of favorable consumer response. The second study used a sample of 70 smokers who responded to an expanded set of smoking cessation program features focusing on program packaging. This secondary study incorporate in-person, computer-assisted interviews at a shopping mall, with smokers viewing an artist's mock-up of various program options on display. A similar pattern of responses to simulated program modifications emerged, with monetary cost apparently playing a key role. The significance of conjoint-based computer simulation as a tool in program development or dissemination, salient methodological issues, and implications for further research are discussed.
NASA Astrophysics Data System (ADS)
Petrişor, Silviu-Mihai; Bârsan, GhiÅ£Ä.
2013-12-01
The authors of this paper wish to highlight elements regarding the organology, functioning and simulation, in a real workspace, of a tracked mini robot structure destined for special applications in theatres of operation, a technological product which is subject to a national patent granted to our institution (patent no. RO a 2012 01051), the result of research activities undertaken under a contract won by national competition, a grant for young research teams, PN-RUTE- 2010 type. The issues outlined in this paper are aspects related to the original invention in comparison with other mini-robot structures, the inventors presenting succinctly the technological product description and its applicability both in the military and applicative area as well as in the educational one. Additionally, the advantages of using the technological product are shown in a real workspace, the constructive and functional solution before, finally, presenting, based on the modelling of the mechanical structure of the tilting module attached to the mini-robot, an application on the simulation and programming of the mini-robot under study.
Three-Dimensional Hybrid-Kinetic Simulations of Alfvénic Turbulence in the Solar Wind
NASA Astrophysics Data System (ADS)
Arzamasskiy, Lev; Kunz, Matthew; Chandran, Ben; Quataert, Eliot
2016-10-01
It is well established that the solar wind is turbulent, exhibiting a power spectrum extending over several decades in scale and with most of the energy at large scales is in form of Alfvénic fluctuations. The solar wind is also weakly collisional, with a wide variety of non-Maxwellian features observed in the particle distribution functions. In this talk, we present the first hybrid-kinetic three-dimensional simulations of driven Alfvénic turbulence in the solar wind. We confirm power-law indices obtained in previous analytical and numerical (e.g., gyrokinetic) studies, and carefully explore the location of and physics occurring at the ion Larmor scale. In the low-beta regime, we find evidence of stochastic heating, which arises when ions interact with strong fluctuations at wavelengths comparable to the ion Larmor scale. Finally, we discuss the interpretation of spacecraft measurements of the turbulence by testing the Taylor hypothesis with synthetic spacecraft measurements of our simulation data. This work was supported by Grant NNX16AK09G from NASA's Heliophysics Theory Program.
Comparison of various contact algorithms for poroelastic tissues.
Galbusera, Fabio; Bashkuev, Maxim; Wilke, Hans-Joachim; Shirazi-Adl, Aboulfazl; Schmidt, Hendrik
2014-01-01
Capabilities of the commercial finite element package ABAQUS in simulating frictionless contact between two saturated porous structures were evaluated and compared with those of an open source code, FEBio. In ABAQUS, both the default contact implementation and another algorithm based on an iterative approach requiring script programming were considered. Test simulations included a patch test of two cylindrical slabs in a gapless contact and confined compression conditions; a confined compression test of a porous cylindrical slab with a spherical porous indenter; and finally two unconfined compression tests of soft tissues mimicking diarthrodial joints. The patch test showed almost identical results for all algorithms. On the contrary, the confined and unconfined compression tests demonstrated large differences related to distinct physical and boundary conditions considered in each of the three contact algorithms investigated in this study. In general, contact with non-uniform gaps between fluid-filled porous structures could be effectively simulated with either ABAQUS or FEBio. The user should be aware of the parameter definitions, assumptions and limitations in each case, and take into consideration the physics and boundary conditions of the problem of interest when searching for the most appropriate model.
Multistage reaction pathways in detonating high explosives
NASA Astrophysics Data System (ADS)
Li, Ying; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; CACS Collaboration; ALCF Team
2015-06-01
Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N2 and H2O within 10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct uni-molecular and intermolecular reaction pathways, respectively, for the rapid N2 and H2O productions. This work was supported by the Office of Naval Research Grant No. N000014-12-1-0555 and the Basic Research Program of Defense Threat Reduction Agency (DTRA) Grant No. HDTRA1-08-1-0036. All the simulations were performed at USC and Argonne LCF.
7 CFR 1493.250 - Final application and issuance of a facility payment guarantee.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.250 Final application and issuance of a... commitment may, within six months of the date of such letter, submit a final application to CCC for a...
7 CFR 1493.250 - Final application and issuance of a facility payment guarantee.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.250 Final application and issuance of a... commitment may, within six months of the date of such letter, submit a final application to CCC for a...
7 CFR 1493.250 - Final application and issuance of a facility payment guarantee.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.250 Final application and issuance of a... commitment may, within six months of the date of such letter, submit a final application to CCC for a...
NASA Astrophysics Data System (ADS)
Vrolijk, Mark; Ogawa, Takayuki; Camanho, Arthur; Biasutti, Manfredi; Lorenz, David
2018-05-01
As a result from the ever increasing demand to produce lighter vehicles, more and more advanced high-strength materials are used in automotive industry. Focusing on sheet metal cold forming processes, these materials require high pressing forces and exhibit large springback after forming. Due to the high pressing forces deformations occur in the tooling geometry, introducing dimensional inaccuracies in the blank and potentially impact the final springback behavior. As a result the tool deformations can have an impact on the final assembly or introduce cosmetic defects. Often several iterations are required in try-out to obtain the required tolerances, with costs going up to as much as 30% of the entire product development cost. To investigate the sheet metal part feasibility and quality, in automotive industry CAE tools are widely used. However, in current practice the influence of the tool deformations on the final part quality is generally neglected and simulations are carried out with rigid tools to avoid drastically increased calculation times. If the tool deformation is analyzed through simulation it is normally done at the end of the drawing prosses, when contact conditions are mapped on the die structure and a static analysis is performed to check the deflections of the tool. But this method does not predict the influence of these deflections on the final quality of the part. In order to take tool deformations into account during drawing simulations, ESI has developed the ability to couple solvers efficiently in a way the tool deformations can be real-time included in the drawing simulation without high increase in simulation time compared to simulations with rigid tools. In this paper a study will be presented which demonstrates the effect of tool deformations on the final part quality.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... Activities; Proposed Collection; Comment Request; Final Authorization for Hazardous Waste Management Programs... Request (ICR) concerning final authorization for State Hazardous Waste Management Programs. This ICR is... potentially affected by this action are States. Title: Final Authorization for Hazardous Waste Management...
NASA Astrophysics Data System (ADS)
Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.
2017-03-01
This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 h prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude diagrams (CFADs) reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.
Nicholls, Stephen D; Decker, Steven G; Tao, Wei-Kuo; Lang, Stephen E; Shi, Jainn J; Mohr, Karen I
2017-01-01
This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.
Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.
2018-01-01
This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217–0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions. PMID:29697705
NASA Technical Reports Server (NTRS)
Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen Irene
2017-01-01
This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217 to 0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.
76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S...
77 FR 60963 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division...
A real-time digital computer program for the simulation of a single rotor helicopter
NASA Technical Reports Server (NTRS)
Houck, J. A.; Gibson, L. H.; Steinmetz, G. G.
1974-01-01
A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case.
Incentives for nondiscriminatory wellness programs in group health plans. Final rule.
2013-06-03
This document contains final regulations, consistent with the Affordable Care Act, regarding nondiscriminatory wellness programs in group health coverage. Specifically, these final regulations increase the maximum permissible reward under a health-contingent wellness program offered in connection with a group health plan (and any related health insurance coverage) from 20 percent to 30 percent of the cost of coverage. The final regulations further increase the maximum permissible reward to 50 percent for wellness programs designed to prevent or reduce tobacco use. These regulations also include other clarifications regarding the reasonable design of health-contingent wellness programs and the reasonable alternatives they must offer in order to avoid prohibited discrimination.
Recent Results of NASA's Space Environments and Effects Program
NASA Technical Reports Server (NTRS)
Minor, Jody L.; Brewer, Dana S.
1998-01-01
The Space Environments and Effects (SEE) Program is a multi-center multi-agency program managed by the NASA Marshall Space Flight Center. The program evolved from the Long Duration Exposure Facility (LDEF), analysis of LDEF data, and recognition of the importance of the environments and environmental effects on future space missions. It is a very comprehensive and focused approach to understanding the space environments, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. Formal funding of the SEE Program began initially in FY95. A NASA Research Announcement (NRA) solicited research proposals in the following categories: 1) Engineering environment definitions; 2) Environments and effects design guidelines; 3) Environments and effects assessment models and databases; and, 4) Flight/ground simulation/technology assessment data. This solicitation resulted in funding for eighteen technology development activities (TDA's). This paper will present and describe technical results rom the first set of TDA's of the SEE Program. It will also describe the second set of technology development activities which are expected to begin in January 1998. These new technology development activities will enable the SEE Program to start numerous new development activities in support of mission customer needs.
Impact of Frequent Interruption on Nurses' Patient-Controlled Analgesia Programming Performance.
Campoe, Kristi R; Giuliano, Karen K
2017-12-01
The purpose was to add to the body of knowledge regarding the impact of interruption on acute care nurses' cognitive workload, total task completion times, nurse frustration, and medication administration error while programming a patient-controlled analgesia (PCA) pump. Data support that the severity of medication administration error increases with the number of interruptions, which is especially critical during the administration of high-risk medications. Bar code technology, interruption-free zones, and medication safety vests have been shown to decrease administration-related errors. However, there are few published data regarding the impact of number of interruptions on nurses' clinical performance during PCA programming. Nine acute care nurses completed three PCA pump programming tasks in a simulation laboratory. Programming tasks were completed under three conditions where the number of interruptions varied between two, four, and six. Outcome measures included cognitive workload (six NASA Task Load Index [NASA-TLX] subscales), total task completion time (seconds), nurse frustration (NASA-TLX Subscale 6), and PCA medication administration error (incorrect final programming). Increases in the number of interruptions were associated with significant increases in total task completion time ( p = .003). We also found increases in nurses' cognitive workload, nurse frustration, and PCA pump programming errors, but these increases were not statistically significant. Complex technology use permeates the acute care nursing practice environment. These results add new knowledge on nurses' clinical performance during PCA pump programming and high-risk medication administration.
Beowulf Distributed Processing and the United States Geological Survey
Maddox, Brian G.
2002-01-01
Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing technology. It will describe the benefits of the technology. Real data about a distributed application will be presented as an example of the benefits that this technology can bring to USGS scientific programs. Finally, some of the issues with distributed processing that relate to USGS work will be discussed.
NASA Technical Reports Server (NTRS)
1988-01-01
The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.
2016-08-05
This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2017. In addition, it specifies a potentially preventable readmission measure for the Skilled Nursing Facility Value-Based Purchasing Program (SNF VBP), and implements requirements for that program, including performance standards, a scoring methodology, and a review and correction process for performance information to be made public, aimed at implementing value-based purchasing for SNFs. Additionally, this final rule includes additional polices and measures in the Skilled Nursing Facility Quality Reporting Program (SNF QRP). This final rule also responds to comments on the SNF Payment Models Research (PMR) project.
GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR
NASA Technical Reports Server (NTRS)
Garrick, J.
1994-01-01
The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and ASSEMBLER and has been implemented on a VAX 11/780 under VMS 4.5. It has a virtual memory requirement of 255k. GROSS was developed in 1986.
The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results
NASA Astrophysics Data System (ADS)
Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.
2012-04-01
The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.
ERIC Educational Resources Information Center
Bricker, Diane; Squires, Jane
This final report discusses the activities and outcomes of the early intervention interdisciplinary preservice program at the University of Oregon. This master's degree program used both "measurement of" and "reflection about" preservice efforts to address important questions regarding program effectiveness and identify…
G and C boost and abort study summary, exhibit B
NASA Technical Reports Server (NTRS)
Backman, H. D.
1972-01-01
A six degree of freedom simulation of rigid vehicles was developed to study space shuttle vehicle boost-abort guidance and control techniques. The simulation was described in detail as an all digital program and as a hybrid program. Only the digital simulation was implemented. The equations verified in the digital simulation were adapted for use in the hybrid simulation. Study results were obtained from four abort cases using the digital program.
NASA Technical Reports Server (NTRS)
Mcenulty, R. E.
1977-01-01
The G189A simulation of the Shuttle Orbiter ECLSS was upgraded. All simulation library versions and simulation models were converted from the EXEC2 to the EXEC8 computer system and a new program, G189PL, was added to the combination master program library. The program permits the post-plotting of up to 100 frames of plot data over any time interval of a G189 simulation run. The overlay structure of the G189A simulations were restructured for the purpose of conserving computer core requirements and minimizing run time requirements.
14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...
14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...
14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...
14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. Link to an amendment published at 78 FR 67836, Nov. 12, 2013. (a) Each airplane simulator and other training device...
14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...
Simulator: A Pilot Interactive Simulation Program for Use in Teaching Public Relations.
ERIC Educational Resources Information Center
Pavlik, John V.
An interactive simulation program was developed for use in teaching students how to handle public relations problems. The program user is placed in the role of assistant newsletter editor, facing a series of decision-making situations. Each choice the user makes affects the subsequent reality created by the program, which is designed to provide…
Development of a multilayer interference simulation program for MSS systems
NASA Technical Reports Server (NTRS)
Izadian, Jamal S.
1993-01-01
This paper discusses the development of a multilayer interference analysis and simulation program which is used to evaluate interference between non-geostationary and geostationary satellites. In addition to evaluating interference, this program can be used in the development of sharing criteria and coordination among various Mobile Satellite Services (MSS) systems. A C++/Windows implementation of this program, called Globalstar Interference Simulation Program (GISP), has been developed.
Evidence flow graph methods for validation and verification of expert systems
NASA Technical Reports Server (NTRS)
Becker, Lee A.; Green, Peter G.; Bhatnagar, Jayant
1988-01-01
This final report describes the results of an investigation into the use of evidence flow graph techniques for performing validation and verification of expert systems. This was approached by developing a translator to convert horn-clause rule bases into evidence flow graphs, a simulation program, and methods of analysis. These tools were then applied to a simple rule base which contained errors. It was found that the method was capable of identifying a variety of problems, for example that the order of presentation of input data or small changes in critical parameters could effect the output from a set of rules.
Layout of bunch compressor for Beijing XFEL test facility
NASA Astrophysics Data System (ADS)
Zhu, Xiongwei; Du, Yingchao; He, Xiaozhong; Yang, Yufeng
2006-10-01
In this paper, we describe the layout of the bunch compressor for the Beijing XFEL test facility (BTF). Our bunch compressor setup is different from the usual one due to the space limit. The compensation X-BAND cavity and the first bunch compressor are separate in distance. The electron bunch is decelerated first and then accelerated to enter the first bunch compressor. The simulation result shows that our setup works well, and the nonlinear term is well compensated. Also, we present the result about the CSR emittance dilution study. Finally, we develop a program to study microbunch instability in the second BTF bunch compressor.
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Jana Ranjani, R.
2018-04-01
In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.
Low-lift-to-drag-ratio approach and landing studies using a CV-990 airplane
NASA Technical Reports Server (NTRS)
Kock, B. M.; Fulton, F. L.; Drinkwater, F. J., III
1972-01-01
The results are presented of a flight-test program utilizing a CV-990 airplane, flow in low-lift-to-drag-ratio (L/D) configurations, to simulate terminal area operation, approach, and landing of large unpowered vehicles. The results indicate that unpowered approaches and landings are practical with vehicles of the size and performance characteristics of the proposed shuttle vehicle. Low L/D landings provided touchdown dispersion patterns acceptable for operation on runways of reasonable length. The dispersion pattern was reduced when guidance was used during the final approach. High levels of pilot proficiency were not required for acceptable performance.
NASA Technical Reports Server (NTRS)
Colton, Andrew
2012-01-01
I am finishing up my internship with the Application & Simulation group at NASA Kennedy Space Center (KSC). During this internship I was working with the Plant Habitat development team. The Plant Habitat provides a large enclosed, environmentally controlled chamber designed to support commercial and fundamental plant research onboard the International Space Station (ISS). The work that I did was for the prototype of the Graphical User Interface (GUI) display. This display is used by the scientists to monitor the system health, start new experiment configurations, and get real-time information about the experiment as its being run. This display is developed using the Qt Framework Integrated Development Environment (IDE) and the programming language C++.
1994-12-01
Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque, New Mexico Sponsored by: Air ...Summer Research Program Phillips Laboratory Sponsored by. Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico...UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8
2016-07-29
This rule adopts as final, with some modifications, the National School Lunch Program and School Breakfast Program regulations set forth in the interim final rule published in the Federal Register on June 28, 2013. The requirements addressed in this rule conform to the provisions in the Healthy, Hunger-Free Kids Act of 2010 regarding nutrition standards for all foods sold in schools, other than food sold under the lunch and breakfast programs. Most provisions of this final rule were implemented on July 1, 2014, a full year subsequent to publication of the interim final rule. This was in compliance with section 208 of the Healthy, Hunger-Free Kids Act of 2010, which required that State and local educational agencies have at least one full school year from the date of publication of the interim final rule to implement the competitive food provisions. Based on comments received on the interim final rule and implementation experience, this final rule makes a few modifications to the nutrition standards for all foods sold in schools implemented on July 1, 2014. In addition, this final rule codifies specific policy guidance issued after publication of the interim rule. Finally, this rule retains the provision related to the standard for total fat as interim and requests further comment on this single standard.
76 FR 64085 - Post-2014 Resource Pool-Loveland Area Projects, Final Power Allocation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... power allocation. SUMMARY: The Western Area Power Administration (Western), a Federal power marketing..., Final Power Allocation developed under the requirements of subpart C-Power Marketing Initiative of the Energy Planning and Management Program (Program) Final Rule, 10 CFR part 905. These final power...
Automatic programming of simulation models
NASA Technical Reports Server (NTRS)
Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.
1988-01-01
The objective of automatic programming is to improve the overall environment for describing the program. This improved environment is realized by a reduction in the amount of detail that the programmer needs to know and is exposed to. Furthermore, this improved environment is achieved by a specification language that is more natural to the user's problem domain and to the user's way of thinking and looking at the problem. The goal of this research is to apply the concepts of automatic programming (AP) to modeling discrete event simulation system. Specific emphasis is on the design and development of simulation tools to assist the modeler define or construct a model of the system and to then automatically write the corresponding simulation code in the target simulation language, GPSS/PC. A related goal is to evaluate the feasibility of various languages for constructing automatic programming simulation tools.
Ilyina, Margarita G; Khamitov, Edward M; Galiakhmetov, Rail N; Mustafin, Ildar A; Mustafin, Akhat G
2017-03-01
In the present work, a 0.4nm nickel cluster has been theoretically studied. Its equilibrium structural parameters have been calculated by the DFT method based on the PBEH1PBE hybrid functional and split-valence basis set Lanl2DZ including effective core potentials. We have systematically considered diverse spin states of this cluster and find out its ground state. The relative stability of these states depends on the HOMO-LUMO gap. The interaction of the Ni 6 with 4-propylheptane С 10 Н 22 has been studied to simulate the process of catalytic cracking of hydrocarbons. The optimization of this structure has been performed by the ωPBE/Lanl2DZ_ecp method (the TeraChem V.1.9 program package) with no symmetry restrictions; the electron shells of the metal were described by effective core pseudopotentials. For visualization and quantitative estimation of the bonding bonds between the nickel nanocluster and 4-propylheptane, the analysis of weak interactions based on RGD has been performed. To confirm the proposition about the formation of Ni-H bonds, we have scrutinized critical points of electronic density. Values of laplasian of electronic density and Bader atomic charge distribution in the global minimum of the total energy have been estimated by the AIMAll 15.05.18 program suite. Finally, we have simulated interaction of Ni 6 with 4-propylheptane in terms of the Born-Oppenheimer ab initio molecular dynamics. The results of the molecular dynamics simulation provide pair radial distribution function CH at 1500°C and a detailed picture of the processes occurring in the system. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.; Yoshimura, A.; Butler, D.
This report describes the results of a Cooperative Research and Development Agreement between Sandia National Laboratories and Kaiser Permanente Southern California to develop a prototype computer model of Kaiser Permanente`s health care delivery system. As a discrete event simulation, SimHCO models for each of 100,000 patients the progression of disease, individual resource usage, and patient choices in a competitive environment. SimHCO is implemented in the object-oriented programming language C{sup 2}, stressing reusable knowledge and reusable software components. The versioned implementation of SimHCO showed that the object-oriented framework allows the program to grow in complexity in an incremental way. Furthermore, timingmore » calculations showed that SimHCO runs in a reasonable time on typical workstations, and that a second phase model will scale proportionally and run within the system constraints of contemporary computer technology.« less
Nicole Lautze
2015-01-01
Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.
NASA Technical Reports Server (NTRS)
Haimes, Robert; Follen, Gregory J.
1998-01-01
CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.
Satellite interference analysis and simulation using personal computers
NASA Astrophysics Data System (ADS)
Kantak, Anil
1988-03-01
This report presents the complete analysis and formulas necessary to quantify the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both satellites, the desired as well as the interfering satellite, are considered to be in elliptical orbits. Formulas are developed for the satellite look angles and the satellite transmit angles generally related to the land mask of the receiving station site for both satellites. Formulas for considering Doppler effect due to the satellite motion as well as the Earth's rotation are developed. The effect of the interfering-satellite signal modulation and the Doppler effect on the power received are considered. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. Finally, a computer program suitable for microcomputers such as IBM AT is provided with the flowchart, a sample run, results of the run, and the program code.
Large-Format Dual-Counter Pixelated X-Ray Detector Platform: Phase II Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Adam; Williams, George; Huntington, Andrew
2016-10-10
Within the program, a Voxtel led team demonstrated both prototype (48 x 48, 130-μm pitch, VX-798) and full-format (192 x 192, 100-μm pitch, VX-810) versions of a high-dynamic-range, x-ray photon-counting (HDR-XPC) sensor. Within the program the following tasks were completed: 1) integration and evaluation of the VX-798 prototype camera at the Advanced Photon Source beamline at Argonne National Labs; 2) the design, simulation, and fabrication of the full-format VX-810 ROIC was completed; 3) fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of themore » optically sensitive FPA (FPA), and 4) development of an evaluation camera to enable electrical and optical characterization of the sensor.« less
NASA Astrophysics Data System (ADS)
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Satellite Interference Analysis and Simulation Using Personal Computers
NASA Technical Reports Server (NTRS)
Kantak, Anil
1988-01-01
This report presents the complete analysis and formulas necessary to quantify the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both satellites, the desired as well as the interfering satellite, are considered to be in elliptical orbits. Formulas are developed for the satellite look angles and the satellite transmit angles generally related to the land mask of the receiving station site for both satellites. Formulas for considering Doppler effect due to the satellite motion as well as the Earth's rotation are developed. The effect of the interfering-satellite signal modulation and the Doppler effect on the power received are considered. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. Finally, a computer program suitable for microcomputers such as IBM AT is provided with the flowchart, a sample run, results of the run, and the program code.
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.
Exploration criteria for low permeability geothermal resources. Final report. [Coso KGRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, D.
1977-10-01
Low permeability geothermal systems related to high temperature plutons in the upper crust were analyzed in order to ascertain those characteristics of these systems which could be detected by surface and shallow subsurface exploration methods. Analyses were designed to integrate data and concepts from the literature, which relate to the transport processes, together with computer simulation of idealized systems. The systems were analyzed by systematically varying input parameters in order to understand their effect on the variables which might be measured in an exploration-assessment program. The methods were applied to a prospective system in its early stages of evaluation. Datamore » from the Coso system were used. The study represents a first-order approximation to transport processes in geothermal systems, which consist of high temperature intrusions, host rock, and fluids. Included in an appendix are operations procedures for interactive graphics programs developed during the study. (MHR)« less
Steady-state simulation program for attitude control propulsion systems
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1973-01-01
The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.
Computerized Clinical Simulations.
ERIC Educational Resources Information Center
Reinecker, Lynn
1985-01-01
Describes technique involved in designing a clinical simulation problem for the allied health field of respiratory therapy; discusses the structure, content, and scoring categories of the simulation; and provides a sample program which illustrates a programming technique in BASIC, including a program listing and a sample flowchart. (MBR)
Path planning and Ground Control Station simulator for UAV
NASA Astrophysics Data System (ADS)
Ajami, A.; Balmat, J.; Gauthier, J.-P.; Maillot, T.
In this paper we present a Universal and Interoperable Ground Control Station (UIGCS) simulator for fixed and rotary wing Unmanned Aerial Vehicles (UAVs), and all types of payloads. One of the major constraints is to operate and manage multiple legacy and future UAVs, taking into account the compliance with NATO Combined/Joint Services Operational Environment (STANAG 4586). Another purpose of the station is to assign the UAV a certain degree of autonomy, via autonomous planification/replanification strategies. The paper is organized as follows. In Section 2, we describe the non-linear models of the fixed and rotary wing UAVs that we use in the simulator. In Section 3, we describe the simulator architecture, which is based upon interacting modules programmed independently. This simulator is linked with an open source flight simulator, to simulate the video flow and the moving target in 3D. To conclude this part, we tackle briefly the problem of the Matlab/Simulink software connection (used to model the UAV's dynamic) with the simulation of the virtual environment. Section 5 deals with the control module of a flight path of the UAV. The control system is divided into four distinct hierarchical layers: flight path, navigation controller, autopilot and flight control surfaces controller. In the Section 6, we focus on the trajectory planification/replanification question for fixed wing UAV. Indeed, one of the goals of this work is to increase the autonomy of the UAV. We propose two types of algorithms, based upon 1) the methods of the tangent and 2) an original Lyapunov-type method. These algorithms allow either to join a fixed pattern or to track a moving target. Finally, Section 7 presents simulation results obtained on our simulator, concerning a rather complicated scenario of mission.
Isaranuwatchai, Wanrudee; Brydges, Ryan; Carnahan, Heather; Backstein, David; Dubrowski, Adam
2014-05-01
While the ultimate goal of simulation training is to enhance learning, cost-effectiveness is a critical factor. Research that compares simulation training in terms of educational- and cost-effectiveness will lead to better-informed curricular decisions. Using previously published data we conducted a cost-effectiveness analysis of three simulation-based programs. Medical students (n = 15 per group) practiced in one of three 2-h intravenous catheterization skills training programs: low-fidelity (virtual reality), high-fidelity (mannequin), or progressive (consisting of virtual reality, task trainer, and mannequin simulator). One week later, all performed a transfer test on a hybrid simulation (standardized patient with a task trainer). We used a net benefit regression model to identify the most cost-effective training program via paired comparisons. We also created a cost-effectiveness acceptability curve to visually represent the probability that one program is more cost-effective when compared to its comparator at various 'willingness-to-pay' values. We conducted separate analyses for implementation and total costs. The results showed that the progressive program had the highest total cost (p < 0.001) whereas the high-fidelity program had the highest implementation cost (p < 0.001). While the most cost-effective program depended on the decision makers' willingness-to-pay value, the progressive training program was generally most educationally- and cost-effective. Our analyses suggest that a progressive program that strategically combines simulation modalities provides a cost-effective solution. More generally, we have introduced how a cost-effectiveness analysis may be applied to simulation training; a method that medical educators may use to investment decisions (e.g., purchasing cost-effective and educationally sound simulators).
Identifying content for simulation-based curricula in urology: a national needs assessment.
Nayahangan, Leizl Joy; Bølling Hansen, Rikke; Gilboe Lindorff-Larsen, Karen; Paltved, Charlotte; Nielsen, Bjørn Ulrik; Konge, Lars
2017-12-01
Simulation-based training is well recognized in the transforming field of urological surgery; however, integration into the curriculum is often unstructured. Development of simulation-based curricula should follow a stepwise approach starting with a needs assessment. This study aimed to identify technical procedures in urology that should be included in a simulation-based curriculum for residency training. A national needs assessment was performed using the Delphi method involving 56 experts with significant roles in the education of urologists. Round 1 identified technical procedures that newly qualified urologists should perform. Round 2 included a survey using an established needs assessment formula to explore: the frequency of procedures; the number of physicians who should be able to perform the procedure; the risk and/or discomfort to patients when a procedure is performed by an inexperienced physician; and the feasibility of simulation training. Round 3 involved elimination and reranking of procedures according to priority. The response rates for the three Delphi rounds were 70%, 55% and 67%, respectively. The 34 procedures identified in Round 1 were reduced to a final prioritized list of 18 technical procedures for simulation-based training. The five procedures that reached the highest prioritization were cystoscopy, transrectal ultrasound-guided biopsy of the prostate, placement of ureteral stent, insertion of urethral and suprapubic catheter, and transurethral resection of the bladder. The prioritized list of technical procedures in urology that were identified as highly suitable for simulation can be used as an aid in the planning and development of simulation-based training programs.
The Predictive Value of Ultrasound Learning Curves Across Simulated and Clinical Settings.
Madsen, Mette E; Nørgaard, Lone N; Tabor, Ann; Konge, Lars; Ringsted, Charlotte; Tolsgaard, Martin G
2017-01-01
The aim of the study was to explore whether learning curves on a virtual-reality (VR) sonographic simulator can be used to predict subsequent learning curves on a physical mannequin and learning curves during clinical training. Twenty midwives completed a simulation-based training program in transvaginal sonography. The training was conducted on a VR simulator as well as on a physical mannequin. A subgroup of 6 participants underwent subsequent clinical training. During each of the 3 steps, the participants' performance was assessed using instruments with established validity evidence, and they advanced to the next level only after attaining predefined levels of performance. The number of repetitions and time needed to achieve predefined performance levels were recorded along with the performance scores in each setting. Finally, the outcomes were correlated across settings. A good correlation was found between time needed to achieve predefined performance levels on the VR simulator and the physical mannequin (Pearson correlation coefficient .78; P < .001). Performance scores on the VR simulator correlated well to the clinical performance scores (Pearson correlation coefficient .81; P = .049). No significant correlations were found between numbers of attempts needed to reach proficiency across the 3 different settings. A post hoc analysis found that the 50% fastest trainees at reaching proficiency during simulation-based training received higher clinical performance scores compared to trainees with scores placing them among the 50% slowest (P = .025). Performances during simulation-based sonography training may predict performance in related tasks and subsequent clinical learning curves. © 2016 by the American Institute of Ultrasound in Medicine.
The Psychologist Said Quickly, “Dialogue Descriptions Modulate Reading Speed!”
Stites, Mallory C.; Luke, Steven G.; Christianson, Kiel
2012-01-01
The current study investigates whether the semantic content of a dialogue description can affect reading times on an embedded quote to determine if the speed at which a character is described as saying a quote influences how quickly it is read. Yao and Scheepers (2011) previously found that readers were faster to read direct quotes when the preceding context implied that the talker generally spoke quickly, an effect attributed to perceptual simulation of talker speed. The current study manipulated the speed of a physical action performed by the speaker independently from character talking rate to determine if these sources have separable effects on perceptual simulation of a direct quote. Results showed that readers spent less time reading direct quotes described as being said quickly compared to slowly (e.g., John walked/bolted into the room and said energetically/nonchalantly, “I finally found my car keys”), an effect that was not present when a nearly identical phrase was presented as an indirect quote (e.g., John…said energetically that he finally found his car keys). The speed of the character’s movement did not affect direct quote reading times. Furthermore, fast adverbs were themselves read significantly faster than slow adverbs, an effect we attribute to implicit effects on the eye movement program stemming from automatically activated semantic features of the adverbs. Our findings add to the literature on perceptual simulation by showing that these effects can be instantiated with only a single adverb, and are strong enough to override effects of global sentence speed. PMID:22927027
Ullman, Edward; Kennedy, Maura; Di Delupis, Francesco Dojmi; Pisanelli, Paolo; Burbui, Andrea Giuliattini; Cussen, Meaghan; Galli, Laura; Pini, Riccardo; Gensini, Gian Franco
2016-09-01
Simulation has become a critical aspect of medical education. It allows health care providers the opportunity to focus on safety and high-risk situations in a protected environment. Recently, in situ simulation, which is performed in the actual clinical setting, has been used to recreate a more realistic work environment. This form of simulation allows for better team evaluation as the workers are in their traditional roles, and can reveal latent safety errors that often are not seen in typical simulation scenarios. We discuss the creation and implementation of a mobile in situ simulation program in emergency departments of three hospitals in Tuscany, Italy, including equipment, staffing, and start-up costs for this program. We also describe latent safety threats identified in the pilot in situ simulations. This novel approach has the potential to both reduce the costs of simulation compared to traditional simulation centers, and to expand medical simulation experiences to providers and healthcare organizations that do not have access to a large simulation center.
Software for Secondary-School Learning About Robotics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.
2005-01-01
The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.
Effects of a System Thinking-Based Simulation Program for Congestive Heart Failure.
Kim, Hyeon-Young; Yun, Eun Kyoung
2018-03-01
This study evaluated a system thinking-based simulation program for the care of patients with congestive heart failure. Participants were 67 undergraduate nursing students from a nursing college in Seoul, South Korea. The experimental group was given a 4-hour system-thinking program and a 2-hour simulation program, whereas the control group had a 4-hour case study and a 2-hour simulation program. There were significant improvements in critical thinking in both groups, but no significant group differences between educational methods (F = 3.26, P = .076). Problem-solving ability in the experimental group was significantly higher than in the control group (F = 5.04, P = .028). Clinical competency skills in the experimental group were higher than in the control group (t = 2.12, P = .038). A system thinking-based simulation program is a more effective learning method in terms of problem-solving ability and clinical competency skills compared to the existing simulation program. Further research using a longitudinal study is needed to test the long-term effect of the intervention and apply it to the nursing curriculum.
Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Michel; Archer, Bill; Matzen, M. Keith
2014-09-16
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less
Simulation of Robot Kinematics Using Interactive Computer Graphics.
ERIC Educational Resources Information Center
Leu, M. C.; Mahajan, R.
1984-01-01
Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…
Micromechanics based simulation of ductile fracture in structural steels
NASA Astrophysics Data System (ADS)
Yellavajjala, Ravi Kiran
The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under monotonic loading for a wide range of stress states. Novel differentiation procedures based on complex analyses along with existing finite difference methods and automatic differentiation are extended using perturbation techniques to evaluate tensor derivatives. These tensor differentiation techniques are then used to automate nonlinear constitutive models into implicit finite element framework. Finally, the efficiency of these automation procedures is demonstrated using benchmark problems.
3D Simulation: Microgravity Environments and Applications
NASA Technical Reports Server (NTRS)
Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)
2001-01-01
Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Chan; Mori, W.
2013-10-21
This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasksmore » listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
Diesel Bus Performance Simulation Program
DOT National Transportation Integrated Search
1979-04-01
A diesel bus performance computer simulation program was developed. This program provides information on acceleration, velocity, horsepower, distance traveled, and fuel consumption as a function of time from the originating station. The program was w...
Space Ultrareliable Modular Computer (SUMC) instruction simulator
NASA Technical Reports Server (NTRS)
Curran, R. T.
1972-01-01
The design principles, description, functional operation, and recommended expansion and enhancements are presented for the Space Ultrareliable Modular Computer interpretive simulator. Included as appendices are the user's manual, program module descriptions, target instruction descriptions, simulator source program listing, and a sample program printout. In discussing the design and operation of the simulator, the key problems involving host computer independence and target computer architectural scope are brought into focus.
Simulator sickness research program at NASA-Ames Research Center
NASA Technical Reports Server (NTRS)
Mccauley, Michael E.; Cook, Anthony M.
1987-01-01
The simulator sickness syndrome is receiving increased attention in the simulation community. NASA-Ames Research Center has initiated a program to facilitate the exchange of information on this topic among the tri-services and other interested government organizations. The program objectives are to identify priority research issues, promote efficient research strategies, serve as a repository of information, and disseminate information to simulator users.
NASA Astrophysics Data System (ADS)
Major, Louis; Kyriacou, Theocharis; Brereton, Pearl
2014-07-01
This work investigates the effectiveness of simulated robots as tools to support the learning of programming. After the completion of a systematic review and exploratory research, a multi-case case study was undertaken. A simulator, named Kebot, was developed and used to run four 10-hour programming workshops. Twenty-three student participants (aged 16-18) in addition to 23 pre-service, and 3 in-service, teachers took part. The effectiveness of this intervention was determined by considering opinions, attitudes, and motivation as well as by analysing students' programming performance. Pre- and post-questionnaires, in- and post-workshop exercises, and interviews were used. Participants enjoyed learning using the simulator and believed the approach to be valuable and engaging. The performance of students indicates that the simulator aids learning as most completed tasks to a satisfactory standard. Evidence suggests robot simulators can offer an effective means of introducing programming. Recommendations to support the development of other simulators are provided.
Hosny, Shady G; Johnston, Maximilian J; Pucher, Philip H; Erridge, Simon; Darzi, Ara
2017-12-01
Despite evidence demonstrating the advantages of simulation training in general surgery, it is not widely integrated into surgical training programs worldwide. The aim of this study was to identify barriers and facilitators to the implementation and uptake of surgical simulation training programs. A multinational qualitative study was conducted using semi-structured interviews of general surgical residents and experts. Each interview was audio recorded, transcribed verbatim, and underwent emergent theme analysis. All data were anonymized and results pooled. A total of 37 individuals participated in the study. Seventeen experts (Program Directors and Surgical Attendings with an interest in surgical education) and 20 residents drawn from the United States, Canada, United Kingdom, France, and Japan were interviewed. Barriers to simulation-based training were identified based on key themes including financial cost, access, and translational benefit. Participants described cost (89%) and access (76%) as principal barriers to uptake. Common facilitators included a mandatory requirement to complete simulation training (78%) and on-going assessment of skills (78%). Participants felt that simulation training could improve patient outcomes (76%) but identified a lack of evidence to demonstrate benefit (38%). There was a consensus that simulation training has not been widely implemented (70%). There are multiple barriers to the implementation of surgical simulation training programs, however, there is agreement that these programs could potentially improve patient outcomes. Identifying these barriers enable the targeted use of facilitators to deliver simulation training programs. Copyright © 2017 Elsevier Inc. All rights reserved.
The transition of a real-time single-rotor helicopter simulation program to a supercomputer
NASA Technical Reports Server (NTRS)
Martinez, Debbie
1995-01-01
This report presents the conversion effort and results of a real-time flight simulation application transition to a CONVEX supercomputer. Enclosed is a detailed description of the conversion process and a brief description of the Langley Research Center's (LaRC) flight simulation application program structure. Currently, this simulation program may be configured to represent Sikorsky S-61 helicopter (a five-blade, single-rotor, commercial passenger-type helicopter) or an Army Cobra helicopter (either the AH-1 G or AH-1 S model). This report refers to the Sikorsky S-61 simulation program since it is the most frequently used configuration.
Program to Optimize Simulated Trajectories (POST). Volume 1: Formulation manual
NASA Technical Reports Server (NTRS)
Brauer, G. L.; Cornick, D. E.; Habeger, A. R.; Petersen, F. M.; Stevenson, R.
1975-01-01
A general purpose FORTRAN program for simulating and optimizing point mass trajectories (POST) of aerospace vehicles is described. The equations and the numerical techniques used in the program are documented. Topics discussed include: coordinate systems, planet model, trajectory simulation, auxiliary calculations, and targeting and optimization.
Users manual for linear Time-Varying Helicopter Simulation (Program TVHIS)
NASA Technical Reports Server (NTRS)
Burns, M. R.
1979-01-01
A linear time-varying helicopter simulation program (TVHIS) is described. The program is designed as a realistic yet efficient helicopter simulation. It is based on a linear time-varying helicopter model which includes rotor, actuator, and sensor models, as well as a simulation of flight computer logic. The TVHIS can generate a mean trajectory simulation along a nominal trajectory, or propagate covariance of helicopter states, including rigid-body, turbulence, control command, controller states, and rigid-body state estimates.
Medical Simulation Practices 2010 Survey Results
NASA Technical Reports Server (NTRS)
McCrindle, Jeffrey J.
2011-01-01
Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity
76 FR 43571 - Small Business HUBZone Program; Government Contracting Programs
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... SMALL BUSINESS ADMINISTRATION 13 CFR Part 126 RIN 3245-AG45 Small Business HUBZone Program; Government Contracting Programs AGENCY: U.S. Small Business Administration. ACTION: Interim final rule with request for comments. SUMMARY: This interim final rule amends the U.S. Small Business Administration's...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act... Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S. Environmental Protection...
77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...
Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira
2015-01-01
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology. PMID:26356082
Petascale Simulation Initiative Tech Base: FY2007 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, J; Chen, R; Jefferson, D
The Petascale Simulation Initiative began as an LDRD project in the middle of Fiscal Year 2004. The goal of the project was to develop techniques to allow large-scale scientific simulation applications to better exploit the massive parallelism that will come with computers running at petaflops per second. One of the major products of this work was the design and prototype implementation of a programming model and a runtime system that lets applications extend data-parallel applications to use task parallelism. By adopting task parallelism, applications can use processing resources more flexibly, exploit multiple forms of parallelism, and support more sophisticated multiscalemore » and multiphysics models. Our programming model was originally called the Symponents Architecture but is now known as Cooperative Parallelism, and the runtime software that supports it is called Coop. (However, we sometimes refer to the programming model as Coop for brevity.) We have documented the programming model and runtime system in a submitted conference paper [1]. This report focuses on the specific accomplishments of the Cooperative Parallelism project (as we now call it) under Tech Base funding in FY2007. Development and implementation of the model under LDRD funding alone proceeded to the point of demonstrating a large-scale materials modeling application using Coop on more than 1300 processors by the end of FY2006. Beginning in FY2007, the project received funding from both LDRD and the Computation Directorate Tech Base program. Later in the year, after the three-year term of the LDRD funding ended, the ASC program supported the project with additional funds. The goal of the Tech Base effort was to bring Coop from a prototype to a production-ready system that a variety of LLNL users could work with. Specifically, the major tasks that we planned for the project were: (1) Port SARS [former name of the Coop runtime system] to another LLNL platform, probably Thunder or Peloton (depending on when Peloton becomes available); (2) Improve SARS's robustness and ease-of-use, and develop user documentation; and (3) Work with LLNL code teams to help them determine how Symponents could benefit their applications. The original funding request was $296,000 for the year, and we eventually received $252,000. The remainder of this report describes our efforts and accomplishments for each of the goals listed above.« less
PyFly: A fast, portable aerodynamics simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.
Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less
A prototype knowledge-based simulation support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, T.R.; Roberts, S.D.
1987-04-01
As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less
PyFly: A fast, portable aerodynamics simulator
Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.; ...
2018-03-14
Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less
SimZones: An Organizational Innovation for Simulation Programs and Centers.
Roussin, Christopher J; Weinstock, Peter
2017-08-01
The complexity and volume of simulation-based learning programs have increased dramatically over the last decade, presenting several major challenges for those who lead and manage simulation programs and centers. The authors present five major issues affecting the organization of simulation programs: (1) supporting both single- and double-loop learning experiences; (2) managing the training of simulation teaching faculty; (3) optimizing the participant mix, including individuals, professional groups, teams, and other role-players, to ensure learning; (4) balancing in situ, node-based, and center-based simulation delivery; and (5) organizing simulation research and measuring value. They then introduce the SimZones innovation, a system of organization for simulation-based learning, and explain how it can alleviate the problems associated with these five issues.Simulations are divided into four zones (Zones 0-3). Zone 0 simulations include autofeedback exercises typically practiced by solitary learners, often using virtual simulation technology. Zone 1 simulations include hands-on instruction of foundational clinical skills. Zone 2 simulations include acute situational instruction, such as clinical mock codes. Zone 3 simulations involve authentic, native teams of participants and facilitate team and system development.The authors also discuss the translation of debriefing methods from Zone 3 simulations to real patient care settings (Zone 4), and they illustrate how the SimZones approach can enable the development of longitudinal learning systems in both teaching and nonteaching hospitals. The SimZones approach was initially developed in the context of the Boston Children's Hospital Simulator Program, which the authors use to illustrate this innovation in action.
United States Air Force Summer Research Program -- 1993. Volume 8. Phillips Laboratory
1993-12-01
Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque. New Mexico Sponsored by...Best Available Copy UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8 PHILLIPS LABORATORY ...Alabama Box 870344 Tuscaloosa, AL 35487-0344 Final Report for: Graduate Student Research Program Phillips Laboratory , Hanscom AFB Sponsored by: Air
Planning Educational Programs: An Evaluation Report for the Occupational Exploration Program.
ERIC Educational Resources Information Center
Altschuld, James W.; Pritz, Sandra
The evaluation report is one of seven produced for the Occupational Exploration Program (OEP), a series of simulated occupational experiences designed for junior high school students. Describing the pilot testing of the simulation dealing with education, the report contains sections describing the simulation context, evaluation procedures,…
Simulation Higher Order Language Requirements Study.
ERIC Educational Resources Information Center
Goodenough, John B.; Braun, Christine L.
The definitions provided for high order language (HOL) requirements for programming flight training simulators are based on the analysis of programs written for a variety of simulators. Examples drawn from these programs are used to justify the need for certain HOL capabilities. A description of the general structure and organization of the…
Modeling and Analysis of Chill and Fill Processes for the EDU Tank
NASA Technical Reports Server (NTRS)
Hedayat, A.; Cartagena, W.; Majumdar, A. K.; Leclair, A. C.
2015-01-01
NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center (GRC), is a Cryogenic Fluid Management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article, comprises a flight like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen in a space-like vacuum environment. A series of tests, with liquid hydrogen as a testing fluid, was conducted at Test Stand 300 at MSFC during summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. Generalized Fluid System Simulation Program (GFSSP), an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the liquid hydrogen supply source, feed system, EDU tank, and vent system. The modeling description and comparison of model predictions with the test data will be presented in the final paper.
Human-simulation-based learning to prevent medication error: A systematic review.
Sarfati, Laura; Ranchon, Florence; Vantard, Nicolas; Schwiertz, Vérane; Larbre, Virginie; Parat, Stéphanie; Faudel, Amélie; Rioufol, Catherine
2018-01-31
In the past 2 decades, there has been an increasing interest in simulation-based learning programs to prevent medication error (ME). To improve knowledge, skills, and attitudes in prescribers, nurses, and pharmaceutical staff, these methods enable training without directly involving patients. However, best practices for simulation for healthcare providers are as yet undefined. By analysing the current state of experience in the field, the present review aims to assess whether human simulation in healthcare helps to reduce ME. A systematic review was conducted on Medline from 2000 to June 2015, associating the terms "Patient Simulation," "Medication Errors," and "Simulation Healthcare." Reports of technology-based simulation were excluded, to focus exclusively on human simulation in nontechnical skills learning. Twenty-one studies assessing simulation-based learning programs were selected, focusing on pharmacy, medicine or nursing students, or concerning programs aimed at reducing administration or preparation errors, managing crises, or learning communication skills for healthcare professionals. The studies varied in design, methodology, and assessment criteria. Few demonstrated that simulation was more effective than didactic learning in reducing ME. This review highlights a lack of long-term assessment and real-life extrapolation, with limited scenarios and participant samples. These various experiences, however, help in identifying the key elements required for an effective human simulation-based learning program for ME prevention: ie, scenario design, debriefing, and perception assessment. The performance of these programs depends on their ability to reflect reality and on professional guidance. Properly regulated simulation is a good way to train staff in events that happen only exceptionally, as well as in standard daily activities. By integrating human factors, simulation seems to be effective in preventing iatrogenic risk related to ME, if the program is well designed. © 2018 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Houck, J. A.; Markos, A. T.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.
NASA Technical Reports Server (NTRS)
Rhouck, J. A.; Markos, A. T.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.