NASA Astrophysics Data System (ADS)
Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.
1988-01-01
This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.
Preliminary analysis of one year long space climate simulation
NASA Astrophysics Data System (ADS)
Facsko, G.; Honkonen, I. J.; Juusola, L.; Viljanen, A.; Vanhamäki, H.; Janhunen, P.; Palmroth, M.; Milan, S. E.
2013-12-01
One full year (155 Cluster orbits, from January 29, 2002 to February 2, 2003) is simulated using the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS) in the European Cluster Assimilation Technology project (ECLAT). This enables us to study the performance of a global magnetospheric model in an unprecedented scale both in terms of the amount of available observations and the length of the timeseries that can be compared. The solar wind for the simulated period, obtained from OMNIWeb, is used as input to GUMICS. We present an overview of various comparisons of GUMICS results to observations for the simulated year. Results along the Cluster reference spacecraft orbit to are compared to Cluster measurements. The Cross Polar Cap Potential (CPCP) results are compared to SuperDARN measurements. The IMAGE electrojet indicators (IU, IL) calculated from the ionospheric currents of GUMICS are compared to observations. Finally, Geomagnetically Induced Currents (GIC) calculated from GUMICS results along the Finnish mineral gas pipeline at Mätsälä are also compared to measurements.
NASA Astrophysics Data System (ADS)
Kubota, Y.; Nagatsuma, T.; Den, M.; Nakamizo, A.; Matsumoto, H.; Tanaka, T.
2017-12-01
We are developing a numerical simulator for future space weather forecast using magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. We investigate the validity of the MHD simulation result as compared with observation. In this study we simulate some events including both quiet and disturbed geomagnetic conditions using OMNIWeb solar wind data. The simulation results are compared with magnetic field observations from Michibiki satellite, which is on the quasi-zenith orbit (QZO). In quiet geomagnetic condition, magnetic field variations at QZO obtained from simulation results have good consistency as compared correspondence with those from Michibiki observation. In disturbed geomagnetic condition in which the Dst < -20 nT, however, V component of magnetic field variations from simulation results tend to deviate from observations especially at the night side. We consider that this deviation during disturbed geomagnetic condition might be due to tail and/or ring current enhancement which is already suggested by many other MHD simulation studies as compared with the magnetic field observation at geosynchronous orbit. In this presentation, we will discuss the cause of this discrepancy in more detail with studying the relationship between the magnetic field deviation and some parameters such as Dst and solar wind.
Metrics for comparing dynamic earthquake rupture simulations
Barall, Michael; Harris, Ruth A.
2014-01-01
Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.
Kelly, Sinead; O'Rourke, Malachy
2012-04-01
This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given study.
Exit Presentation: Infrared Thermography on Graphite/Epoxy
NASA Technical Reports Server (NTRS)
Comeaux, Kayla
2010-01-01
This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects
Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions
Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; ...
2016-01-21
We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominatedmore » and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.« less
Investigation of the flight mechanics simulation of a hovering helicopter
NASA Technical Reports Server (NTRS)
Chaimovich, M.; Rosen, A.; Rand, O.; Mansur, M. H.; Tischler, M. B.
1992-01-01
The flight mechanics simulation of a hovering helicopter is investigated by comparing the results of two different numerical models with flight test data for a hovering AH-64 Apache. The two models are the U.S. Army BEMAP and the Technion model. These nonlinear models are linearized by applying a numerical linearization procedure. The results of the linear models are compared with identification results in terms of eigenvalues, stability and control derivatives, and frequency responses. Detailed time histories of the responses of the complete nonlinear models, as a result of various pilots' inputs, are compared with flight test results. In addition the sensitivity of the models to various effects are also investigated. The results are discussed and problematic aspects of the simulation are identified.
Planetary Boundary Layer Simulation Using TASS
NASA Technical Reports Server (NTRS)
Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael
1996-01-01
Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.
The 3-D numerical simulation research of vacuum injector for linear induction accelerator
NASA Astrophysics Data System (ADS)
Liu, Dagang; Xie, Mengjun; Tang, Xinbing; Liao, Shuqing
2017-01-01
Simulation method for voltage in-feed and electron injection of vacuum injector is given, and verification of the simulated voltage and current is carried out. The numerical simulation for the magnetic field of solenoid is implemented, and a comparative analysis is conducted between the simulation results and experimental results. A semi-implicit difference algorithm is adopted to suppress the numerical noise, and a parallel acceleration algorithm is used for increasing the computation speed. The RMS emittance calculation method of the beam envelope equations is analyzed. In addition, the simulated results of RMS emittance are compared with the experimental data. Finally, influences of the ferromagnetic rings on the radial and axial magnetic fields of solenoid as well as the emittance of beam are studied.
Comparison of simulated and measured nonlinear ultrasound fields
NASA Astrophysics Data System (ADS)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-03-01
In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are first compared with the linear simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound field is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both fundamental and second harmonic fields. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II and measurements are illustrated. The FWHM (full width at half maximum) values are 1.96 mm for the measurement and 1.84 mm for the Field II simulation. The fundamental and second harmonic components of the experimental results are plotted compared with the AS simulations. The RMS (root mean square) errors of the AS simulations are 7.19% and 10.3% compared with the fundamental and second harmonic components of the measurements.
Three-Dimensional Imaging in Rhinoplasty: A Comparison of the Simulated versus Actual Result.
Persing, Sarah; Timberlake, Andrew; Madari, Sarika; Steinbacher, Derek
2018-05-22
Computer imaging has become increasingly popular for rhinoplasty. Three-dimensional (3D) analysis permits a more comprehensive view from multiple vantage points. However, the predictability and concordance between the simulated and actual result have not been morphometrically studied. The purpose of this study was to aesthetically and quantitatively compare the simulated to actual rhinoplasty result. A retrospective review of 3D images (VECTRA, Canfield) for rhinoplasty patients was performed. Images (preop, simulated, and actual) were randomized. A blinded panel of physicians rated the images (1 = poor, 5 = excellent). The image series considered "best" was also recorded. A quantitative assessment of nasolabial angle and tip projection was compared. Paired and two-sample t tests were performed for statistical analysis (P < 0.05 as significant). Forty patients were included. 67.5% of preoperative images were rated as poor (mean = 1.7). The simulation received a mean score of 2.9 (good in 60% of cases). 82.5% of actual cases were rated good to excellent (mean 3.4) (P < 0.001). Overall, the panel significantly preferred the actual postoperative result in 77.5% of cases compared to the simulation in 22.5% of cases (P < 0.001). The actual nasal tip was more projected compared to the simulations for both males and females. There was no significant difference in nasal tip rotation between simulated and postoperative groups. 3D simulation is a powerful communication and planning tool in rhinoplasty. In this study, the actual result was deemed more aesthetic than the simulated image. Surgeon experience is important to translate the plan and achieve favorable postoperative results. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Sams, J. I.; Witt, E. C.
1995-01-01
The Hydrological Simulation Program - Fortran (HSPF) was used to simulate streamflow and sediment transport in two surface-mined basins of Fayette County, Pa. Hydrologic data from the Stony Fork Basin (0.93 square miles) was used to calibrate HSPF parameters. The calibrated parameters were applied to an HSPF model of the Poplar Run Basin (8.83 square miles) to evaluate the transfer value of model parameters. The results of this investigation provide information to the Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, regarding the value of the simulated hydrologic data for use in cumulative hydrologic-impact assessments of surface-mined basins. The calibration period was October 1, 1985, through September 30, 1988 (water years 1986-88). The simulated data were representative of the observed data from the Stony Fork Basin. Mean simulated streamflow was 1.64 cubic feet per second compared to measured streamflow of 1.58 cubic feet per second for the 3-year period. The difference between the observed and simulated peak stormflow ranged from 4.0 to 59.7 percent for 12 storms. The simulated sediment load for the 1987 water year was 127.14 tons (0.21 ton per acre), which compares to a measured sediment load of 147.09 tons (0.25 ton per acre). The total simulated suspended-sediment load for the 3-year period was 538.2 tons (0.30 ton per acre per year), which compares to a measured sediment load of 467.61 tons (0.26 ton per acre per year). The model was verified by comparing observed and simulated data from October 1, 1988, through September 30, 1989. The results obtained were comparable to those from the calibration period. The simulated mean daily discharge was representative of the range of data observed from the basin and of the frequency with which specific discharges were equalled or exceeded. The calibrated and verified parameters from the Stony Fork model were applied to an HSPF model of the Poplar Run Basin. The two basins are in a similar physical setting. Data from October 1, 1987, through September 30, 1989, were used to evaluate the Poplar Run model. In general, the results from the Poplar Run model were comparable to those obtained from the Stony Fork model. The difference between observed and simulated total streamflow was 1.1 percent for the 2-year period. The mean annual streamflow simulated by the Poplar Run model was 18.3 cubic feet per second. This compares to an observed streamflow of 18.15 cubic feet per second. For the 2-year period, the simulated sediment load was 2,754 tons (0.24 ton per acre per year), which compares to a measured sediment load of 3,051.2 tons (0.27 ton per acre per year) for the Poplar Run Basin. Cumulative frequency-distribution curves of the observed and simulated streamflow compared well. The comparison between observed and simulated data improved as the time span increased. Simulated annual means and totals were more representative of the observed data than hourly data used in comparing storm events. The structure and organization of the HSPF model facilitated the simulation of a wide range of hydrologic processes. The simulation results from this investigation indicate that model parameters may be transferred to ungaged basins to generate representative hydrologic data through modeling techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, J. H.; Robertson, A.; Jonkman, J.
Need to modify simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. without the new tower-load capability to examine its influence on the response characteristics of the system. This is important in situations when the turbine is parked in survival conditions. The simulation results were then compared to measured data from the SWAY system in bothmore » turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions.« less
Numerical Study of a High Head Francis Turbine with Measurements from the Francis-99 Project
NASA Astrophysics Data System (ADS)
Wallimann, H.; Neubauer, R.
2015-01-01
For the Francis-99 project initiated by the Norwegian University of Science and Technology (NTNU, Norway) and the Luleå University of Technology (LTU, Sweden) numerical flow simulation has been performed and the results compared to experimentally obtained data. The full machine including spiral casing, stay vanes, guide vanes, runner and draft tube was simulated transient for three operating points defined by the Francis-99 organisers. Two sets of results were created with differing time steps. Additionally, a reduced domain was simulated in a stationary manner to create a complete cut along constant prototype head and constant prototype discharge. The efficiency values and shape of the curves have been investigated and compared to the experimental data. Special attention has been given to rotor stator interaction (RSI). Signals from several probes and their counterpart in the simulation have been processed to evaluate the pressure fluctuations occurring due to the RSI. The direct comparison of the hydraulic efficiency obtained by the full machine simulation compared to the experimental data showed no improvement when using a 1° time step compared to a coarser 2° time step. At the BEP the 2° time step even showed a slightly better result with an absolute deviation 1.08% compared with 1.24% for the 1° time step. At the other two operating points the simulation results were practically identical but fell short of predicting the measured values. The RSI evaluation was done using the results of the 2° time step simulation, which proved to be an adequate setting to reproduce pressure signals with peaks at the correct frequencies. The simulation results showed the highest amplitudes in the vaneless space at the BEP operating point at a location different from the probe measurements available. This implies that not only the radial distance, but the shape of the vaneless space influences the RSI.
Prediction of Land use changes using CA in GIS Environment
NASA Astrophysics Data System (ADS)
Kiavarz Moghaddam, H.; Samadzadegan, F.
2009-04-01
Urban growth is a typical self-organized system that results from the interaction between three defined systems; developed urban system, natural non-urban system and planned urban system. Urban growth simulation for an artificial city is carried out first. It evaluates a number of urban sprawl parameters including the size and shape of neighborhood besides testing different types of constraints on urban growth simulation. The results indicate that circular-type neighborhood shows smoother but faster urban growth as compared to nine-cell Moore neighborhood. Cellular Automata is proved to be very efficient in simulating the urban growth simulation over time. The strength of this technology comes from the ability of urban modeler to implement the growth simulation model, evaluating the results and presenting the output simulation results in visual interpretable environment. Artificial city simulation model provides an excellent environment to test a number of simulation parameters such as neighborhood influence on growth results and constraints role in driving the urban growth .Also, CA rules definition is critical stage in simulating the urban growth pattern in a close manner to reality. CA urban growth simulation and prediction of Tehran over the last four decades succeeds to simulate specified tested growth years at a high accuracy level. Some real data layer have been used in the CA simulation training phase such as 1995 while others used for testing the prediction results such as 2002. Tuning the CA growth rules is important through comparing the simulated images with the real data to obtain feedback. An important notice is that CA rules need also to be modified over time to adapt to the urban growth pattern. The evaluation method used on region basis has its advantage in covering the spatial distribution component of the urban growth process. Next step includes running the developed CA simulation over classified raster data for three years in a developed ArcGIS extention. A set of crisp rules are defined and calibrated based on real urban growth pattern. Uncertainty analysis is performed to evaluate the accuracy of the simulated results as compared to the historical real data. Evaluation shows promising results represented by the high average accuracies achieved. The average accuracy for the predicted growth images 1964 and 2002 is over 80 %. Modifying CA growth rules over time to match the growth pattern changes is important to obtain accurate simulation. This modification is based on the urban growth relationship for Tehran over time as can be seen in the historical raster data. The feedback obtained from comparing the simulated and real data is crucial in identifying the optimal set of CA rules for reliable simulation and calibrating growth steps.
Walmsley, Christopher W; McCurry, Matthew R; Clausen, Phillip D; McHenry, Colin R
2013-01-01
Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be 'reasonable' are often assumed to have little influence on the results and their interpretation. HERE WE REPORT AN EXTENSIVE SENSITIVITY ANALYSIS WHERE HIGH RESOLUTION FINITE ELEMENT (FE) MODELS OF MANDIBLES FROM SEVEN SPECIES OF CROCODILE WERE ANALYSED UNDER LOADS TYPICAL FOR COMPARATIVE ANALYSIS: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results.
McCurry, Matthew R.; Clausen, Phillip D.; McHenry, Colin R.
2013-01-01
Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be ‘reasonable’ are often assumed to have little influence on the results and their interpretation. Here we report an extensive sensitivity analysis where high resolution finite element (FE) models of mandibles from seven species of crocodile were analysed under loads typical for comparative analysis: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results. PMID:24255817
Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasstrom, John; Piggott, Tom; Simpson, Matthew
2015-07-22
This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report aremore » based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.« less
NASA Astrophysics Data System (ADS)
van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis
2014-11-01
In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.
Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom
2017-01-01
In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.
2018-03-01
Results are compared to a previous study using a similar design of experiments but different simulation software. The baseline scenario for exploring the...behaviors are mimicked in this research, enabling Solem’s MANA results to be compared to our LITMUS’ results. By design , the principal difference...missions when using the second order NOLH, and compares favorably with the over six million in the full factorial design . 3. Advantages of Cluster
LES-ODT Simulations of Turbulent Reacting Shear Layers
NASA Astrophysics Data System (ADS)
Hoffie, Andreas; Echekki, Tarek
2012-11-01
Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.
NASA Technical Reports Server (NTRS)
Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.
2005-01-01
This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.
NASA Astrophysics Data System (ADS)
Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon
2017-06-01
In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less
NASA Technical Reports Server (NTRS)
Garrahan, Steven L.; Tolson, Robert H.; Williams, Robert L., II
1995-01-01
Industrial robots are usually attached to a rigid base. Placing the robot on a compliant base introduces dynamic coupling between the two systems. The Vehicle Emulation System (VES) is a six DOF platform that is capable of modeling this interaction. The VES employs a force-torque sensor as the interface between robot and base. A computer simulation of the VES is presented. Each of the hardware and software components is described and Simulink is used as the programming environment. The simulation performance is compared with experimental results to validate accuracy. A second simulation which models the dynamic interaction of a robot and a flexible base acts as a comparison to the simulated motion of the VES. Results are presented that compare the simulated VES motion with the motion of the VES hardware using the same admittance model. The two computer simulations are compared to determine how well the VES is expected to emulate the desired motion. Simulation results are given for robots mounted to the end effector of the Space Shuttle Remote Manipulator System (SRMS). It is shown that for fast motions of the two robots studied, the SRMS experiences disturbances on the order of centimeters. Larger disturbances are possible if different manipulators are used.
A comparative study between shielded and open coplanar waveguide discontinuities
NASA Technical Reports Server (NTRS)
Dib, Nihad I.; Harokopus, W. P., Jr.; Ponchak, G. E.; Katehi, L. P. B.
1993-01-01
A comparative study between open and shielded coplanar waveguide (CPW) discontinuities is presented. The space domain integral equation method is used to characterize several discontinuities such as the open-end CPW and CPW series stubs. Two different geometries of CPW series stubs (straight and bent stubs) are compared with respect to resonant frequency and radiation loss. In addition, the encountered radiation loss due to different CPW shunt stubs is evaluated experimentally. The notion of forced radiation simulation is presented, and the results of such a simulation are compared to the actual radiation loss obtained rigorously. It is shown that such a simulation cannot give reliable results concerning radiation loss from printed circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiotelis, Nicos; Popolo, Antonino Del, E-mail: adelpopolo@oact.inaf.it, E-mail: hiotelis@ipta.demokritos.gr
We construct an integral equation for the first crossing distributions for fractional Brownian motion in the case of a constant barrier and we present an exact analytical solution. Additionally we present first crossing distributions derived by simulating paths from fractional Brownian motion. We compare the results of the analytical solutions with both those of simulations and those of some approximated solutions which have been used in the literature. Finally, we present multiplicity functions for dark matter structures resulting from our analytical approach and we compare with those resulting from N-body simulations. We show that the results of analytical solutions aremore » in good agreement with those of path simulations but differ significantly from those derived from approximated solutions. Additionally, multiplicity functions derived from fractional Brownian motion are poor fits of the those which result from N-body simulations. We also present comparisons with other models which are exist in the literature and we discuss different ways of improving the agreement between analytical results and N-body simulations.« less
NASA Astrophysics Data System (ADS)
Elbakary, Mohamed I.; Iftekharuddin, Khan M.; Papelis, Yiannis; Newman, Brett
2017-05-01
Air Traffic Management (ATM) concepts are commonly tested in simulation to obtain preliminary results and validate the concepts before adoption. Recently, the researchers found that simulation is not enough because of complexity associated with ATM concepts. In other words, full-scale tests must eventually take place to provide compelling performance evidence before adopting full implementation. Testing using full-scale aircraft produces a high-cost approach that yields high-confidence results but simulation provides a low-risk/low-cost approach with reduced confidence on the results. One possible approach to increase the confidence of the results and simultaneously reduce the risk and the cost is using unmanned sub-scale aircraft in testing new concepts for ATM. This paper presents the simulation results of using unmanned sub-scale aircraft in implementing ATM concepts compared to the full scale aircraft. The results of simulation show that the performance of sub-scale is quite comparable to that of the full-scale which validates use of the sub-scale in testing new ATM concepts. Keywords: Unmanned
Simulated BRDF based on measured surface topography of metal
NASA Astrophysics Data System (ADS)
Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang
2017-06-01
The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.
Genetic Adaptive Control for PZT Actuators
NASA Technical Reports Server (NTRS)
Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.
1995-01-01
A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-08-01
Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.
Zhou, Peiyun; Christianson, Kiel
2016-01-01
Auditory perceptual simulation (APS) during silent reading refers to situations in which the reader actively simulates the voice of a character or other person depicted in a text. In three eye-tracking experiments, APS effects were investigated as people read utterances attributed to a native English speaker, a non-native English speaker, or no speaker at all. APS effects were measured via online eye movements and offline comprehension probes. Results demonstrated that inducing APS during silent reading resulted in observable differences in reading speed when readers simulated the speech of faster compared to slower speakers and compared to silent reading without APS. Social attitude survey results indicated that readers' attitudes towards the native and non-native speech did not consistently influence APS-related effects. APS of both native speech and non-native speech increased reading speed, facilitated deeper, less good-enough sentence processing, and improved comprehension compared to normal silent reading.
Closed loop models for analyzing engineering requirements for simulators
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D.
1980-01-01
A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.
Comparison of SPHC Hydrocode Results with Penetration Equations and Results of Other Codes
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Stallworth, Roderick; Stellingwerf, Robert F.
2004-01-01
The SPHC hydrodynamic code was used to simulate impacts of spherical aluminum projectiles on a single-wall aluminum plate and on a generic Whipple shield. Simulations were carried out in two and three dimensions. Projectile speeds ranged from 2 kilometers per second to 10 kilometers per second for the single-wall runs, and from 3 kilometers per second to 40 kilometers per second for the Whipple shield runs. Spallation limit results of the single-wall simulations are compared with predictions from five standard penetration equations, and are shown to fall comfortably within the envelope of these analytical relations. Ballistic limit results of the Whipple shield simulations are compared with results from the AUTODYN-2D and PAM-SHOCK-3D codes presented in a paper at the Hypervelocity Impact Symposium 2000 and the Christiansen formulation of 2003.
Results of a simulator test comparing two display concepts for piloted flight-path-angle control
NASA Technical Reports Server (NTRS)
Kelley, W. W.
1978-01-01
Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.
Update of global TC simulations using a variable resolution non-hydrostatic model
NASA Astrophysics Data System (ADS)
Park, S. H.
2017-12-01
Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.
Detailed characteristics of drop-laden mixing layers: LES predictions compared to DNS
NASA Technical Reports Server (NTRS)
Okong'o, N.; Leboissetier, A.; Bellan, J.
2004-01-01
Results have been compared from Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of a temporal mixing layer laden with evaporating drops, to assess the ability of LES to reproduce detailed characteristics of DNS.
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.
Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F
2015-02-01
The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed
NASA Astrophysics Data System (ADS)
Kallio, S.; Guldén, M.; Hermanson, A.
Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Bo; Fox, Rodney O.; Feng, Heng
An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less
Kong, Bo; Fox, Rodney O.; Feng, Heng; ...
2017-02-16
An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less
A Simulation Study Comparing Procedures for Assessing Individual Educational Growth. Report No. 182.
ERIC Educational Resources Information Center
Richards, James M., Jr.
A computer simulation procedure was developed to reproduce the overall pattern of results obtained in the Educational Testing Service Growth Study. Then simulated data for seven sets of 10,000 to 15,000 cases were analyzed, and findings compared on the basis of correlations between estimated and true growth scores. Findings showed that growth was…
Comparison of simulated and actual wind shear radar data products
NASA Technical Reports Server (NTRS)
Britt, Charles L.; Crittenden, Lucille H.
1992-01-01
Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.
Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer
NASA Astrophysics Data System (ADS)
Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay
2017-01-01
We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.
Measurement with microscopic MRI and simulation of flow in different aneurysm models.
Edelhoff, Daniel; Walczak, Lars; Frank, Frauke; Heil, Marvin; Schmitz, Inge; Weichert, Frank; Suter, Dieter
2015-10-01
The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Magnetic resonance flow imaging was used to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin-lattice relaxation. The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise in the measurement and by the limited resolution of the simulation. The resulting differences are small enough to allow reliable predictions of the flow distribution in vessels with stents and for pulsed blood flow.
Torner, Benjamin; Konnigk, Lucas; Hallier, Sebastian; Kumar, Jitendra; Witte, Matthias; Wurm, Frank-Hendrik
2018-06-01
Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier-Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the results with an unsteady Reynolds-averaged Navier-Stokes simulation. The simulations were carried out at two operation points of a blood pump. The flow was simulated on a 100M element mesh for the large eddy simulation and a 20M element mesh for the unsteady Reynolds-averaged Navier-Stokes simulation. As a first step, the large eddy simulation was verified by analyzing internal dissipative losses within the pump. Then, the pump characteristics and mean and turbulent viscous shear stresses were compared between the two simulation methods. The verification showed that the large eddy simulation is able to reproduce the significant portion of dissipative losses, which is a global indication that the equivalent viscous shear stresses are adequately resolved. The comparison with the unsteady Reynolds-averaged Navier-Stokes simulation revealed that the hydraulic parameters were in agreement, but differences for the shear stresses were found. The results show the potential of the large eddy simulation as a high-quality comparative case to check the suitability of a chosen Reynolds-averaged Navier-Stokes setup and turbulence model. Furthermore, the results lead to suggest that large eddy simulations are superior to unsteady Reynolds-averaged Navier-Stokes simulations when instantaneous stresses are applied for the blood damage prediction.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.
NASA Astrophysics Data System (ADS)
Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.
2016-03-01
Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.
Simulation loop between cad systems, GEANT-4 and GeoModel: Implementation and results
NASA Astrophysics Data System (ADS)
Sharmazanashvili, A.; Tsutskiridze, Niko
2016-09-01
Compare analysis of simulation and as-built geometry descriptions of detector is important field of study for data_vs_Monte-Carlo discrepancies. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: (1) Difference between simulated and as-built geometry descriptions; (2) Internal inaccuracies of geometry transformations added by simulation software infrastructure itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML->CATIA; VP1->CATIA; Geo-Model->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each other using the full power of CATIA and investigate both classes of reasons of faults of geometry descriptions. Paper represents results of case studies of ATLAS Coils and End-Cap toroid structures.
NASA Astrophysics Data System (ADS)
Li, Xin; Song, Weiying; Yang, Kai; Krishnan, N. M. Anoop; Wang, Bu; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Balonis, Magdalena; Bauchy, Mathieu
2017-08-01
Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.
Validation of the SimSET simulation package for modeling the Siemens Biograph mCT PET scanner
NASA Astrophysics Data System (ADS)
Poon, Jonathan K.; Dahlbom, Magnus L.; Casey, Michael E.; Qi, Jinyi; Cherry, Simon R.; Badawi, Ramsey D.
2015-02-01
Monte Carlo simulation provides a valuable tool in performance assessment and optimization of system design parameters for PET scanners. SimSET is a popular Monte Carlo simulation toolkit that features fast simulation time, as well as variance reduction tools to further enhance computational efficiency. However, SimSET has lacked the ability to simulate block detectors until its most recent release. Our goal is to validate new features of SimSET by developing a simulation model of the Siemens Biograph mCT PET scanner and comparing the results to a simulation model developed in the GATE simulation suite and to experimental results. We used the NEMA NU-2 2007 scatter fraction, count rates, and spatial resolution protocols to validate the SimSET simulation model and its new features. The SimSET model overestimated the experimental results of the count rate tests by 11-23% and the spatial resolution test by 13-28%, which is comparable to previous validation studies of other PET scanners in the literature. The difference between the SimSET and GATE simulation was approximately 4-8% for the count rate test and approximately 3-11% for the spatial resolution test. In terms of computational time, SimSET performed simulations approximately 11 times faster than GATE simulations. The new block detector model in SimSET offers a fast and reasonably accurate simulation toolkit for PET imaging applications.
Do Social Studies Teachers Use Simulations?
ERIC Educational Resources Information Center
Young, Gail A; Schug, Mark C.
1990-01-01
Reports the results of a survey of Wisconsin secondary social studies teachers designed to answer the question: To what extent do teachers use simulations? Describes the study designed to replicate an earlier survey of Ohio teachers in 1979 by J.J. Blaga. Compares the results of the two surveys. Concludes simulation use has increased. (RW)
Results of GEANT simulations and comparison with first experiments at DANCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reifarth, R.; Bredeweg, T. A.; Browne, J. C.
2003-07-29
This report describes intensive Monte Carlo simulations carried out to be compared with the results of the first run cycle with DANCE (Detector for Advanced Neutron Capture Experiments). The experimental results were gained during the commissioning phase 2002/2003 with only a part of the array. Based on the results of these simulations the most important items to be improved before the next experiments will be addressed.
Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál
2008-01-28
To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.Q.; Huber, A.H.; Arya, S.P.S.
The effects of incident shear and turbulence on flow around a cubical building are being investigated by a turbulent kinetic energy/dissipation model (TEMPEST). The numerical simulations demonstrate significant effects due to the differences in the incident flow. The addition of upstream turbulence and shear results in a reduced size of the cavity directly behind the building. The accuracy of numerical simulations is verified by comparing the predicted mean flow fields with the available wind-tunnel measurements of Castro and Robins (1977). Comparing the authors' results with experimental data, the authors show that the TEMPEST model can reasonably simulate the mean flow.
Daetwyler, Hans D; Calus, Mario P L; Pong-Wong, Ricardo; de Los Campos, Gustavo; Hickey, John M
2013-02-01
The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses a selection of topics related to application of genomic prediction in plants and animals.
Daetwyler, Hans D.; Calus, Mario P. L.; Pong-Wong, Ricardo; de los Campos, Gustavo; Hickey, John M.
2013-01-01
The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses a selection of topics related to application of genomic prediction in plants and animals. PMID:23222650
Radke, Wolfgang
2004-03-05
Simulations of the distribution coefficients of linear polymers and regular combs with various spacings between the arms have been performed. The distribution coefficients were plotted as a function of the number of segments in order to compare the size exclusion chromatography (SEC)-elution behavior of combs relative to linear molecules. By comparing the simulated SEC-calibration curves it is possible to predict the elution behavior of comb-shaped polymers relative to linear ones. In order to compare the results obtained by computer simulations with experimental data, a variety of comb-shaped polymers varying in side chain length, spacing between the side chains and molecular weights of the backbone were analyzed by SEC with light-scattering detection. It was found that the computer simulations could predict the molecular weights of linear molecules having the same retention volume with an accuracy of about 10%, i.e. the error in the molecular weight obtained by calculating the molecular weight of the comb-polymer based on a calibration curve constructed using linear standards and the results of the computer simulations are of the same magnitude as the experimental error of absolute molecular weight determination.
Molecular dynamics simulations of amphiphilic graft copolymer molecules at a water/air interface.
Anderson, Philip M; Wilson, Mark R
2004-11-01
Fully atomistic molecular dynamics simulations of amphiphilic graft copolymer molecules have been performed at a range of surface concentrations at a water/air interface. These simulations are compared to experimental results from a corresponding system over a similar range of surface concentrations. Neutron reflectivity data calculated from the simulation trajectories agrees well with experimentally acquired profiles. In particular, excellent agreement in neutron reflectivity is found for lower surface concentration simulations. A simulation of a poly(ethylene oxide) (PEO) chain in aqueous solution has also been performed. This simulation allows the conformational behavior of the free PEO chain and those tethered to the interface in the previous simulations to be compared. (c) 2004 American Institute of Physics.
FDTD simulation tools for UWB antenna analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brocato, Robert Wesley
2004-12-01
This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.
Effect of stern hull shape on turning circle of ships
NASA Astrophysics Data System (ADS)
Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman
2012-06-01
Many factors such as: stern hull shape, length, draught, trim, propulsion system and external forces affecting the drift angle influence rate of turn and size of turning circle of ships. This paper discusses turning circle characteristics of U and V stern hull shape of Very Large Crude Oil Carrier (VLCC) ships. The ships have same principal dimension such as length, beam, and draught. The turning circle characteristics of the VLCC ships are simulated at 35 degree of rudder angle. In the analysis, firstly, turning circle performance of U-type VLCC ship is simulated. In the simulation, initial ship speed is determined using given power and rpm. Hydrodynamic derivatives coefficients are determined by including effect of fullness of aft run. Using the obtained, speed and hydrodynamic coefficients, force and moment acting on hull, force and moment induced by propeller, force and moment induced by rudder are determined. Finally, ship trajectory, ratio of speed, yaw angle and drift angle are determined. Results of simulation results of the VLCC ship are compared with the experimental one as validation. Using the same method, V-type VLCC is simulated and the simulation results are compared with U-type VLCC ship. Results shows the turning circle of U-type is larger than V-type due to effect stern hul results of simulation are.
On the application of hybrid meshes in hydraulic machinery CFD simulations
NASA Astrophysics Data System (ADS)
Schlipf, M.; Tismer, A.; Riedelbauch, S.
2016-11-01
The application of two different hybrid mesh types for the simulation of a Francis runner for automated optimization processes without user input is investigated. Those mesh types are applied to simplified test cases such as flow around NACA airfoils to identify the special mesh resolution effects with reduced complexity, like rotating cascade flows, as they occur in a turbomachine runner channel. The analysis includes the application of those different meshes on the geometries by keeping defined quality criteria and exploring the influences on the simulation results. All results are compared with reference values gained by simulations with blockstructured hexahedron meshes and the same numerical scheme. This avoids additional inaccuracies caused by further numerical and experimental measurement methods. The results show that a simulation with hybrid meshes built up by a blockstructured domain with hexahedrons around the blade in combination with a tetrahedral far field in the channel is sufficient to get results which are almost as accurate as the results gained by the reference simulation. Furthermore this method is robust enough for automated processes without user input and enables comparable meshes in size, distribution and quality for different similar geometries as occurring in optimization processes.
Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok
2011-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.
Thisgaard, Malene; Makransky, Guido
2017-01-01
The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student's interest in and goals toward STEM related careers.
Thisgaard, Malene; Makransky, Guido
2017-01-01
The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student’s interest in and goals toward STEM related careers. PMID:28611701
Simulation study on the maximum continuous working condition of a power plant boiler
NASA Astrophysics Data System (ADS)
Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo
2018-05-01
First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.
Measurement with microscopic MRI and simulation of flow in different aneurysm models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelhoff, Daniel, E-mail: daniel.edelhoff@tu-dortmund.de; Frank, Frauke; Heil, Marvin
2015-10-15
Purpose: The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Methods: Magnetic resonance flow imaging was usedmore » to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin–lattice relaxation. Results: The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. Conclusions: The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise in the measurement and by the limited resolution of the simulation. The resulting differences are small enough to allow reliable predictions of the flow distribution in vessels with stents and for pulsed blood flow.« less
Case Studies Comparing System Advisor Model (SAM) Results to Real Performance Data: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, A.; Sather, N.
2012-06-01
NREL has completed a series of detailed case studies comparing the simulations of the System Advisor Model (SAM) and measured performance data or published performance expectations. These case studies compare PV measured performance data with simulated performance data using appropriate weather data. The measured data sets were primarily taken from NREL onsite PV systems and weather monitoring stations.
Bexfield, Laura M.; McAda, Douglas P.
2003-01-01
Future conditions in the Santa Fe Group aquifer system through 2040 were simulated using the most recent revision of the U.S. Geological Survey groundwater- flow model for the Middle Rio Grande Basin. Three simulations were performed to investigate the likely effects of different scenarios of future groundwater pumping by the City of Albuquerque on the ground-water system. For simulation I, pumping was held constant at known year-2000 rates. For simulation II, pumping was increased to simulate the use of pumping to meet all projected city water demand through 2040. For simulation III, pumpingwas reduced in accordance with a plan by the City of Albuquerque to use surfacewater to meet most of the projectedwater demand. The simulations indicate that for each of the three pumping scenarios, substantial additional watertable declines would occur in some areas of the basin through 2040. However, the reduced pumping scenario of simulation III also results in water-table rise over a broad area of the city. All three scenarios indicate that the contributions of aquifer storage and river leakage to the ground-water system would change between 2000 and 2040. Comparisons among the results for simulations I, II, and III indicate that the various pumping scenarios have substantially different effects on water-level declines in the Albuquerque area and on the contribution of each water-budget component to the total budget for the ground-water system. Between 2000 and 2040, water-level declines for continued pumping at year-2000 rates are as much as 120 feet greater than for reduced pumping; water-level declines for increased pumping to meet all projected city demand are as much as 160 feet greater. Over the same time period, reduced pumping results in retention in aquifer storage of about 1,536,000 acre-feet of ground water as compared with continued pumping at year- 2000 rates and of about 2,257,000 acre-feet as compared with increased pumping. The quantity of water retained in the Rio Grande as a result of reduced pumping and the associated decrease in induced recharge from the river is about 731,000 acre-feet as compared with continued pumping at year-2000 rates and about 872,000 acre-feet as compared with increased pumping. Reduced pumping results in slight increases in the quantity of water lost from the groundwater system to evapotranspiration and agriculturaldrain flow compared with the other pumping scenarios.
Requirements for future development of small scale rainfall simulators
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Ries, Johannes B.; Seeger, Manuel
2013-04-01
Rainfall simulation with small scale simulators is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. Following the outcomes of the project "Comparability of simulation results of different rainfall simulators as input data for soil erosion modelling (Deutsche Forschungsgemeinschaft - DFG, Project No. Ri 835/6-1)" and the "International Rainfall Simulator Workshop 2011" in Trier, the necessity for further technical improvements of simulators and strategies towards an adaption of designs and methods becomes obvious. Uniform measurements of artificially generated rainfall and comparative measurements on a prepared bare fallow with rainfall simulators used by European research groups showed limitations of the comparability of the results. The following requirements, essential for small portable rainfall simulators, were identified: (I) Low and efficient water consumption for use in areas with water shortage, (II) easy handling and control of test conditions, (III) homogeneous spatial rainfall distribution, (IV) best possible drop spectrum (physically), (V) reproducibility and knowledge of spatial distribution and drop spectrum, (VI) easy and fast training of operators to obtain reproducible experiments and (VII) good mobility and easy installation for use in remote areas and in regions where highly erosive rainfall events are rare or irregular. The presentation discusses possibilities for a common use of identical plot designs, rainfall intensities and nozzles.
Thermophysical Properties of Undercooled Alloys: An Overview of the Molecular Simulation Approaches
Lv, Yong J.; Chen, Min
2011-01-01
We review the studies on the thermophysical properties of undercooled metals and alloys by molecular simulations in recent years. The simulation methods of melting temperature, enthalpy, specific heat, surface tension, diffusion coefficient and viscosity are introduced and the simulated results are summarized. By comparing the experimental results and various theoretical models, the temperature and the composition dependences of the thermophysical properties in undercooled regime are discussed. PMID:21339987
Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jones, Greg; Lin, John C.
2011-01-01
Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.
Superconductive ADC Project Fabrication Package. Final Design Review Package (Briefing Charts)
2010-09-07
Simulation Results Iin 1.45mV 2.5Ω 1pH 4pH 100fF 310uA 1fΩ Ic = 300uA Rn = 0.8Ω Cs = 0.32pF Ic = 300uA Rn = 0.8Ω Cs = 0.32pF Iin Vout Vout Ic = 500uA Rn...0.55Ω Cs = 0.32pF ONR Superconductive ADC CLIN/SLIN 0001AD September 2010, Brad Perranoski Pg. 17 Modulator Design Documentation Comparator Design...Comparator Design - Cadence Schematic & Simulation Comparator Testbench Simulation Results 1.45mV 2.5Ω 1pH 4pH 100fF 310uA 1fΩSine wave 100uApk Iin Ic
Comparisons of NIF convergent ablation simulations with radiograph data.
Olson, R E; Hicks, D G; Meezan, N B; Koch, J A; Landen, O L
2012-10-01
A technique for comparing simulation results directly with radiograph data from backlit capsule implosion experiments will be discussed. Forward Abel transforms are applied to the kappa*rho profiles of the simulation. These provide the transmission ratio (optical depth) profiles of the simulation. Gaussian and top hat blurs are applied to the simulated transmission ratio profiles in order to account for the motion blurring and imaging slit resolution of the experimental measurement. Comparisons between the simulated transmission ratios and the radiograph data lineouts are iterated until a reasonable backlighter profile is obtained. This backlighter profile is combined with the blurred, simulated transmission ratios to obtain simulated intensity profiles that can be directly compared with the radiograph data. Examples will be shown from recent convergent ablation (backlit implosion) experiments at the NIF.
NASA Astrophysics Data System (ADS)
Lapusta, N.; Thomas, M.; Noda, H.; Avouac, J.
2012-12-01
Long-term simulations that incorporate both seismic events and aseismic slip are quite important for studies of earthquake physics but challenging computationally. To study long deformation histories, most simulation methods do not incorporate full inertial effects (wave propagation) during simulated earthquakes, using quasi-dynamic approximations instead. Here we compare the results of quasi-dynamic simulations to the fully dynamic ones for a range of problems to determine the applicability of the quasi-dynamic approach. Intuitively, the quasi-dynamic approach should do relatively well in problems where wave-mediated effects are relatively simple but should have substantially different (and hence wrong) response when the wave-mediated stress transfers dominate the character of the seismic events. This is exactly what we observe in our simulations. We consider a 2D model of a rate-and-state fault with a seismogenic (steady-state velocity-weakening) zone surrounded by creeping (steady-state velocity-strengthening) areas. If the seismogenic zone is described by the standard Dieterich-Ruina rate-and-state friction, the resulting earthquake sequences consist of relatively simple crack-like ruptures, and the inclusion of true wave-propagation effects mostly serves to concentrate stress more efficiently at the rupture front. Hence, in such models, rupture speeds and slip rates are significantly (several times) lower in the quasi-dynamic simulations compared to the fully dynamic ones, but the total slip, the crack-like nature of seismic events, and the overall pattern of earthquake sequences is comparable, consistently with prior studies. Such behavior can be classified as qualitatively similar but quantitatively different, and it motivates the popularity of the quasi-dynamic methods in simulations. However, the comparison changes dramatically once we consider a model with enhanced dynamic weakening in the seismogenic zone in the form of flash heating. In this case, the fully dynamic simulations produce seismic ruptures in the form of short-duration slip pulses, where the pulses form due to a combination of enhanced weakening and wave effects. The quasi-dynamic simulations in the same model produce completely different results, with large crack-like ruptures, different total slips, different rupture patterns, and different prestress state before large, model-spanning events. Such qualitative differences between the quasi-dynamic and fully-dynamic simulation should result in any model where inertial effects lead to qualitative differences, such as cases with supershear transition or fault with different materials on the two sides. We will present results on our current work on how the quasi-dynamic and fully dynamic simulations compare for the cases with heterogeneous fault properties.
Main steam line break accident simulation of APR1400 using the model of ATLAS facility
NASA Astrophysics Data System (ADS)
Ekariansyah, A. S.; Deswandri; Sunaryo, Geni R.
2018-02-01
A main steam line break simulation for APR1400 as an advanced design of PWR has been performed using the RELAP5 code. The simulation was conducted in a model of thermal-hydraulic test facility called as ATLAS, which represents a scaled down facility of the APR1400 design. The main steam line break event is described in a open-access safety report document, in which initial conditions and assumptionsfor the analysis were utilized in performing the simulation and analysis of the selected parameter. The objective of this work was to conduct a benchmark activities by comparing the simulation results of the CESEC-III code as a conservative approach code with the results of RELAP5 as a best-estimate code. Based on the simulation results, a general similarity in the behavior of selected parameters was observed between the two codes. However the degree of accuracy still needs further research an analysis by comparing with the other best-estimate code. Uncertainties arising from the ATLAS model should be minimized by taking into account much more specific data in developing the APR1400 model.
Micromagnetic studies of Full Huesler alloy, Co2FeAl, nanostructures
NASA Astrophysics Data System (ADS)
Yoritomo, Patricia; Mecholsky, Nicholas; Gyawali, Parshu; Sapkota, Keshab; Pegg, I. L.; Philip, John
2013-03-01
Co2FeAl (CFA) is a full Huesler alloy with interesting magnetic behavior and very high Curie temperature. We have carried out micromagnetic simulations on CFA nanopillars using a program, NMAG, with various dimensions and spacing. The micromagnetic simulations are compared with the experimental results that we have obtained. Nanopillars are produced using the liftoff technique after electron beam lithography. The CFA nanopillars are grown using electron beam deposition of Co, Fe and Al in the stoichiometric ratio and by further annealing at 850 K for one hour. We have simulated the magnetic behavior of CFA nanopillars ranging from 30 to 90 nm in diameter and with a height of about 115 nm. Preliminary results show the simulated coercivities are 700 Oe and 2400 Oe for 60 and 30 nm pillars. These are comparable to the experimental results that we have obtained. Magnetic behavior of polycrystalline nanowires of varying diameters is also simulated using NMAG. We will present the simulation and experimental results of nanopillars and polycrystalline nanowires in detail. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.
Direct numerical simulation of turbulent H2-O2 combustion using reduced chemistry
NASA Technical Reports Server (NTRS)
Montgomery, Christopher J.; Kosaly, George; Riley, James J.
1993-01-01
Results of direct numerical simulations of hydrogen-oxygen combustion using a partial-equilibrium chemistry scheme in constant density, decaying, isotropic turbulence are reported. The simulations qualitatively reproduce many features of experimental results, such as superequilibrium radical species mole fractions, with temperature and major species mole fractions closer to chemical equilibrium. It was also observed that the peak reaction rates occur in narrow zones where the stoichiometric surface intersects regions of high scalar dissipation, as might be expected for combustion conditions close to chemical equilibrium. Another finding was that high OH mole fraction correspond more closely to the stoichiometric surface than to areas of high reaction rate for conditions of the simulations. Simulation results were compared to predictions of the Conditional Moment Closure model. This model was found to give good results for all quantities of interest when the conditionally averaged scalar dissipation was used in the prediction. When the nonconditioned average dissipation was used, the predictions compared well to the simulations for most of the species and temperature, but not for the reaction rate. The comparison would be expected to improve for higher Reynolds number flows, however.
Yang, Shengfeng; Chen, Youping
2015-01-01
In this paper, we present the development of a concurrent atomistic–continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic–continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress–strain responses, the GB–crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB–crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation. PMID:25792957
Yang, Shengfeng; Chen, Youping
2015-03-08
In this paper, we present the development of a concurrent atomistic-continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic-continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress-strain responses, the GB-crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB-crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation.
NASA Technical Reports Server (NTRS)
Seltzer, S. M.; Patel, J. S.; Justice, D. W.; Schweitzer, G. E.
1972-01-01
The results are presented of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.
DSMC Shock Simulation of Saturn Entry Probe Conditions
NASA Technical Reports Server (NTRS)
Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.
2016-01-01
This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 kms shock waves are obtained at 0.2 and 0.1 Torr respectively and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.
DSMC Shock Simulation of Saturn Entry Probe Conditions
NASA Technical Reports Server (NTRS)
Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron M.; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.
2016-01-01
This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at the NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 km/s shock waves are obtained at 0.2 and 0.1 Torr, respectively, and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.
Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian
2016-03-20
We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.
High Energy Electron and Gamma - Ray Detection with ATIC
NASA Technical Reports Server (NTRS)
Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.
2002-01-01
Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.
Capabilities of stochastic rainfall models as data providers for urban hydrology
NASA Astrophysics Data System (ADS)
Haberlandt, Uwe
2017-04-01
For planning of urban drainage systems using hydrological models, long, continuous precipitation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative. This contribution compares three precipitation models regarding their suitability to provide 5 minute continuous rainfall time series for a) sizing of drainage networks for urban flood protection and b) dimensioning of combined sewage systems for pollution reduction. The rainfall models are a parametric stochastic model (Haberlandt et al., 2008), a non-parametric probabilistic approach (Bárdossy, 1998) and a stochastic downscaling of dynamically simulated rainfall (Berg et al., 2013); all models are operated both as single site and multi-site generators. The models are applied with regionalised parameters assuming that there is no station at the target location. Rainfall and discharge characteristics are utilised for evaluation of the model performance. The simulation results are compared against results obtained from reference rainfall stations not used for parameter estimation. The rainfall simulations are carried out for the federal states of Baden-Württemberg and Lower Saxony in Germany and the discharge simulations for the drainage networks of the cities of Hamburg, Brunswick and Freiburg. Altogether, the results show comparable simulation performance for the three models, good capabilities for single site simulations but low skills for multi-site simulations. Remarkably, there is no significant difference in simulation performance comparing the tasks flood protection with pollution reduction, so the models are finally able to simulate both the extremes and the long term characteristics of rainfall equally well. Bárdossy, A., 1998. Generating precipitation time series using simulated annealing. Wat. Resour. Res., 34(7): 1737-1744. Berg, P., Wagner, S., Kunstmann, H., Schädler, G., 2013. High resolution regional climate model simulations for Germany: part I — validation. Climate Dynamics, 40(1): 401-414. Haberlandt, U., Ebner von Eschenbach, A.-D., Buchwald, I., 2008. A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrol. Earth Syst. Sci., 12: 1353-1367.
Shahbazi-Gahrouei, Daryoush; Ayat, Saba
2012-01-01
Radioiodine therapy is an effective method for treating thyroid cancer carcinoma, but it has some affects on normal tissues, hence dosimetry of vital organs is important to weigh the risks and benefits of this method. The aim of this study is to measure the absorbed doses of important organs by Monte Carlo N Particle (MCNP) simulation and comparing the results of different methods of dosimetry by performing a t-paired test. To calculate the absorbed dose of thyroid, sternum, and cervical vertebra using the MCNP code, *F8 tally was used. Organs were simulated by using a neck phantom and Medical Internal Radiation Dosimetry (MIRD) method. Finally, the results of MCNP, MIRD, and Thermoluminescent dosimeter (TLD) measurements were compared by SPSS software. The absorbed dose obtained by Monte Carlo simulations for 100, 150, and 175 mCi administered 131I was found to be 388.0, 427.9, and 444.8 cGy for thyroid, 208.7, 230.1, and 239.3 cGy for sternum and 272.1, 299.9, and 312.1 cGy for cervical vertebra. The results of paired t-test were 0.24 for comparing TLD dosimetry and MIRD calculation, 0.80 for MCNP simulation and MIRD, and 0.19 for TLD and MCNP. The results showed no significant differences among three methods of Monte Carlo simulations, MIRD calculation and direct experimental dosimetry using TLD. PMID:23717806
Barabash, R. I.; Agarwal, V.; Koric, S.; ...
2016-01-01
Tmore » he depth-dependent strain partitioning across the interfaces in the growth direction of the NiAl/Cr(Mo) nanocomposite between the Cr and NiAl lamellae was directly measured experimentally and simulated using a finite element method (FEM). Depth-resolved X-ray microdiffraction demonstrated that in the as-grown state both Cr and NiAl lamellae grow along the 111 direction with the formation of as-grown distinct residual ~0.16% compressive strains for Cr lamellae and ~0.05% tensile strains for NiAl lamellae. hree-dimensional simulations were carried out using an implicit FEM. First simulation was designed to study residual strains in the composite due to cooling resulting in formation of crystals. Strains in the growth direction were computed and compared to those obtained from the microdiffraction experiments. Second simulation was conducted to understand the combined strains resulting from cooling and mechanical indentation of the composite. Numerical results in the growth direction of crystal were compared to experimental results confirming the experimentally observed trends.« less
A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff
2015-02-17
In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less
Structural Reliability and Monte Carlo Simulation.
ERIC Educational Resources Information Center
Laumakis, P. J.; Harlow, G.
2002-01-01
Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)
Performance of ICTP's RegCM4 in Simulating the Rainfall Characteristics over the CORDEX-SEA Domain
NASA Astrophysics Data System (ADS)
Neng Liew, Ju; Tangang, Fredolin; Tieh Ngai, Sheau; Chung, Jing Xiang; Narisma, Gemma; Cruz, Faye Abigail; Phan Tan, Van; Thanh, Ngo-Duc; Santisirisomboon, Jerasron; Milindalekha, Jaruthat; Singhruck, Patama; Gunawan, Dodo; Satyaningsih, Ratna; Aldrian, Edvin
2015-04-01
The performance of the RegCM4 in simulating rainfall variations over the Southeast Asia regions was examined. Different combinations of six deep convective parameterization schemes, namely i) Grell scheme with Arakawa-Schubert closure assumption, ii) Grell scheme with Fritch-Chappel closure assumption, iii) Emanuel MIT scheme, iv) mixed scheme with Emanuel MIT scheme over the Ocean and the Grell scheme over the land, v) mixed scheme with Grell scheme over the land and Emanuel MIT scheme over the ocean and (vi) Kuo scheme, and three ocean flux treatments were tested. In order to account for uncertainties among the observation products, four different gridded rainfall products were used for comparison. The simulated climate is generally drier over the equatorial regions and slightly wetter over the mainland Indo-China compare to the observation. However, simulation with MIT cumulus scheme used over the land area consistently produces large amplitude of positive rainfall biases, although it simulates more realistic annual rainfall variations. The simulations are found less sensitive to treatment of ocean fluxes. Although the simulations produced the rainfall climatology well, all of them simulated much stronger interannual variability compare to that of the observed. Nevertheless, the time evolution of the inter-annual variations was well reproduced particularly over the eastern part of maritime continent. Over the mainland Southeast Asia (SEA), unrealistic rainfall anomalies processes were simulated. The lacking of summer season air-sea interaction results in strong oceanic forcings over the regions, leading to positive rainfall anomalies during years with warm ocean temperature anomalies. This incurs much stronger atmospheric forcings on the land surface processes compare to that of the observed. A score ranking system was designed to rank the simulations according to their performance in reproducing different aspects of rainfall characteristics. The result suggests that the simulation with Emanuel MIT convective scheme and BATs land surface scheme produces better collective performance compare to the rest of the simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Arlid; Kohler, Christian; Dalehaug, Arvid
2008-12-01
This paper assesses the accuracy of the simplified frame cavity conduction/convection and radiation models presented in ISO 15099 and used in software for rating and labeling window products. Temperatures and U-factors for typical horizontal window frames with internal cavities are compared; results from Computational Fluid Dynamics (CFD) simulations with detailed radiation modeling are used as a reference. Four different frames were studied. Two were made of polyvinyl chloride (PVC) and two of aluminum. For each frame, six different simulations were performed, two with a CFD code and four with a building-component thermal-simulation tool using the Finite Element Method (FEM). Thismore » FEM tool addresses convection using correlations from ISO 15099; it addressed radiation with either correlations from ISO 15099 or with a detailed, view-factor-based radiation model. Calculations were performed using the CFD code with and without fluid flow in the window frame cavities; the calculations without fluid flow were performed to verify that the CFD code and the building-component thermal-simulation tool produced consistent results. With the FEM-code, the practice of subdividing small frame cavities was examined, in some cases not subdividing, in some cases subdividing cavities with interconnections smaller than five millimeters (mm) (ISO 15099) and in some cases subdividing cavities with interconnections smaller than seven mm (a breakpoint that has been suggested in other studies). For the various frames, the calculated U-factors were found to be quite comparable (the maximum difference between the reference CFD simulation and the other simulations was found to be 13.2 percent). A maximum difference of 8.5 percent was found between the CFD simulation and the FEM simulation using ISO 15099 procedures. The ISO 15099 correlation works best for frames with high U-factors. For more efficient frames, the relative differences among various simulations are larger. Temperature was also compared, at selected locations on the frames. Small differences was found in the results from model to model. Finally, the effectiveness of the ISO cavity radiation algorithms was examined by comparing results from these algorithms to detailed radiation calculations (from both programs). Our results suggest that improvements in cavity heat transfer calculations can be obtained by using detailed radiation modeling (i.e. view-factor or ray-tracing models), and that incorporation of these strategies may be more important for improving the accuracy of results than the use of CFD modeling for horizontal cavities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirley, Rachel; Smidts, Carol; Boring, Ronald
Information-Decision-Action Crew (IDAC) operator model simulations of a Steam Generator Tube Rupture are compared to student operator performance in studies conducted in the Ohio State University’s Nuclear Power Plant Simulator Facility. This study is presented as a prototype for conducting simulator studies to validate key aspects of Human Reliability Analysis (HRA) methods. Seven student operator crews are compared to simulation results for crews designed to demonstrate three different decision-making strategies. The IDAC model used in the simulations is modified slightly to capture novice behavior rather that expert operators. Operator actions and scenario pacing are compared. A preliminary review of availablemore » performance shaping factors (PSFs) is presented. After the scenario in the NPP Simulator Facility, student operators review a video of the scenario and evaluate six PSFs at pre-determined points in the scenario. This provides a dynamic record of the PSFs experienced by the OSU student operators. In this preliminary analysis, Time Constraint Load (TCL) calculated in the IDAC simulations is compared to TCL reported by student operators. We identify potential modifications to the IDAC model to develop an “IDAC Student Operator Model.” This analysis provides insights into how similar experiments could be conducted using expert operators to improve the fidelity of IDAC simulations.« less
Piloted simulation study of two tilt-wing flap control concepts, phase 2
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.
1994-01-01
A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.
Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model
NASA Astrophysics Data System (ADS)
Wan, Hang; Li, Ran; Pu, Xunchi; Zhang, Hongwei; Feng, Jingjie
2017-11-01
Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.
Improving the result of forcasting using reservoir and surface network simulation
NASA Astrophysics Data System (ADS)
Hendri, R. S.; Winarta, J.
2018-01-01
This study was aimed to get more representative results in production forcasting using integrated simulation in pipeline gathering system of X field. There are 5 main scenarios which consist of the production forecast of the existing condition, work over, and infill drilling. Then, it’s determined the best development scenario. The methods of this study is Integrated Reservoir Simulator and Pipeline Simulator so-calle as Integrated Reservoir and Surface Network Simulation. After well data result from reservoir simulator was then integrated with pipeline networking simulator’s to construct a new schedule, which was input for all simulation procedure. The well design result was done by well modeling simulator then exported into pipeline simulator. Reservoir prediction depends on the minimum value of Tubing Head Pressure (THP) for each well, where the pressure drop on the Gathering Network is not necessary calculated. The same scenario was done also for the single-reservoir simulation. Integration Simulation produces results approaching the actual condition of the reservoir and was confirmed by the THP profile, which difference between those two methods. The difference between integrated simulation compared to single-modeling simulation is 6-9%. The aimed of solving back-pressure problem in pipeline gathering system of X field is achieved.
Symeonidis, Vasileios; Em Karniadakis, George; Caswell, Bruce
2005-08-12
Dissipative particle dynamics simulations of several bead-spring representations of polymer chains in dilute solution are used to demonstrate the correct static scaling laws for the radius of gyration. Shear flow results for the wormlike chain simulating single DNA molecules compare well with average extensions from experiments, irrespective of the number of beads. However, coarse graining with more than a few beads degrades the agreement of the autocorrelation of the extension.
Realistic simulations of a cyclotron spiral inflector within a particle-in-cell framework
NASA Astrophysics Data System (ADS)
Winklehner, Daniel; Adelmann, Andreas; Gsell, Achim; Kaman, Tulin; Campo, Daniela
2017-12-01
We present an upgrade to the particle-in-cell ion beam simulation code opal that enables us to run highly realistic simulations of the spiral inflector system of a compact cyclotron. This upgrade includes a new geometry class and field solver that can handle the complicated boundary conditions posed by the electrode system in the central region of the cyclotron both in terms of particle termination, and calculation of self-fields. Results are benchmarked against the analytical solution of a coasting beam. As a practical example, the spiral inflector and the first revolution in a 1 MeV /amu test cyclotron, located at Best Cyclotron Systems, Inc., are modeled and compared to the simulation results. We find that opal can now handle arbitrary boundary geometries with relative ease. Simulated injection efficiencies and beam shape compare well with measured efficiencies and a preliminary measurement of the beam distribution after injection.
NASA Astrophysics Data System (ADS)
Agaesse, Tristan; Lamibrac, Adrien; Büchi, Felix N.; Pauchet, Joel; Prat, Marc
2016-11-01
Understanding and modeling two-phase flows in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important in order to improve fuel cells performance. They are scientifically challenging because of the peculiarities of GDLs microstructures. In the present work, simulations on a pore network model are compared to X-ray tomographic images of water distributions during an ex-situ water invasion experiment. A method based on watershed segmentation was developed to extract a pore network from the 3D segmented image of the dry GDL. Pore network modeling and a full morphology model were then used to perform two-phase simulations and compared to the experimental data. The results show good agreement between experimental and simulated microscopic water distributions. Pore network extraction parameters were also benchmarked using the experimental data and results from full morphology simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.
2014-07-28
Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realisticmore » solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.« less
Towards an Operational Definition of Clinical Competency in Pharmacy
2015-01-01
Objective. To estimate the inter-rater reliability and accuracy of ratings of competence in student pharmacist/patient clinical interactions as depicted in videotaped simulations and to compare expert panelist and typical preceptor ratings of those interactions. Methods. This study used a multifactorial experimental design to estimate inter-rater reliability and accuracy of preceptors’ assessment of student performance in clinical simulations. The study protocol used nine 5-10 minute video vignettes portraying different levels of competency in student performance in simulated clinical interactions. Intra-Class Correlation (ICC) was used to calculate inter-rater reliability and Fisher exact test was used to compare differences in distribution of scores between expert and nonexpert assessments. Results. Preceptors (n=42) across 5 states assessed the simulated performances. Intra-Class Correlation estimates were higher for 3 nonrandomized video simulations compared to the 6 randomized simulations. Preceptors more readily identified high and low student performances compared to satisfactory performances. In nearly two-thirds of the rating opportunities, a higher proportion of expert panelists than preceptors rated the student performance correctly (18 of 27 scenarios). Conclusion. Valid and reliable assessments are critically important because they affect student grades and formative student feedback. Study results indicate the need for pharmacy preceptor training in performance assessment. The process demonstrated in this study can be used to establish minimum preceptor benchmarks for future national training programs. PMID:26089563
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2009-01-01
Very large eddy simulation (VLES) of the nonreacting turbulent flow in a single-element lean direct injection (LDI) combustor has been successfully performed via the approach known as the partially resolved numerical simulation (PRNS/VLES) using a nonlinear subscale model. The grid is the same as the one used in a previous RANS simulation, which was considered as too coarse for a traditional LES simulation. In this study, we first carry out a steady RANS simulation to provide the initial flow field for the subsequent PRNS/VLES simulation. We have also carried out an unsteady RANS (URANS) simulation for the purpose of comparing its results with that of the PRNS/VLES simulation. In addition, these calculated results are compared with the experimental data. The present effort has demonstrated that the PRNS/VLES approach, while using a RANS type of grid, is able to reveal the dynamically important, unsteady large-scale turbulent structures occurring in the flow field of a single-element LDI combustor. The interactions of these coherent structures play a critical role in the dispersion of the fuel, hence, the mixing between the fuel and the oxidizer in a combustor.
Evaluation of mesoporous silicon thermal conductivity by electrothermal finite element simulation
2012-01-01
The aim of this work is to determine the thermal conductivity of mesoporous silicon (PoSi) by fitting the experimental results with simulated ones. The electrothermal response (resistance versus applied current) of differently designed test lines integrated onto PoSi/silicon substrates and the bulk were compared to the simulations. The PoSi thermal conductivity was the single parameter used to fit the experimental results. The obtained thermal conductivity values were compared with those determined from Raman scattering measurements, and a good agreement between both methods was found. This methodology can be used to easily determine the thermal conductivity value for various porous silicon morphologies. PMID:22849851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, M. R.; Biner, S. B.; Mille, P. C.
2013-07-01
In this work, we used the phase field method to simulate the post-irradiation annealing of UO{sub 2} described in the experimental work by Kashibe et al., 1993 [1]. The simulations were carried out in 2D and 3D using the MARMOT FEM-based phase-field modeling framework. The 2-D results compared fairly well with the experiments, in spite of the assumptions made in the model. The 3-D results compare even more favorably to experiments, indicating that diffusion in all three directions must be considered to accurate represent the bubble growth. (authors)
Combat Simulation Using Breach Computer Language
1979-09-01
simulation and weapon system analysis computer language Two types of models were constructed: a stochastic duel and a dynamic engagement model The... duel model validates the BREACH approach by comparing results with mathematical solutions. The dynamic model shows the capability of the BREACH...BREACH 2 Background 2 The Language 3 Static Duel 4 Background and Methodology 4 Validation 5 Results 8 Tank Duel Simulation 8 Dynamic Assault Model
NASA Astrophysics Data System (ADS)
Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.
2017-07-01
Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.
Clinical simulation training improves the clinical performance of Chinese medical students
Zhang, Ming-ya; Cheng, Xin; Xu, An-ding; Luo, Liang-ping; Yang, Xuesong
2015-01-01
Background Modern medical education promotes medical students’ clinical operating capacity rather than the mastery of theoretical knowledge. To accomplish this objective, clinical skill training using various simulations was introduced into medical education to cultivate creativity and develop the practical ability of students. However, quantitative analysis of the efficiency of clinical skill training with simulations is lacking. Methods In the present study, we compared the mean scores of medical students (Jinan University) who graduated in 2013 and 2014 on 16 stations between traditional training (control) and simulative training groups. In addition, in a clinical skill competition, the objective structured clinical examination (OSCE) scores of participating medical students trained using traditional and simulative training were compared. The data were statistically analyzed and qualitatively described. Results The results revealed that simulative training could significantly enhance the graduate score of medical students compared with the control. The OSCE scores of participating medical students in the clinical skill competition, trained using simulations, were dramatically higher than those of students trained through traditional methods, and we also observed that the OSCE marks were significantly increased for the same participant after simulative training for the clinical skill competition. Conclusions Taken together, these data indicate that clinical skill training with a variety of simulations could substantially promote the clinical performance of medical students and optimize the resources used for medical education, although a precise analysis of each specialization is needed in the future. PMID:26478142
Evaluation of snowmelt simulation in the Weather Research and Forecasting model
NASA Astrophysics Data System (ADS)
Jin, Jiming; Wen, Lijuan
2012-05-01
The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.
Modeling unstable alcohol flooding of DNAPL-contaminated columns
NASA Astrophysics Data System (ADS)
Roeder, Eberhard; Falta, Ronald W.
Alcohol flooding, consisting of injection of a mixture of alcohol and water, is one source removal technology for dense non-aqueous phase liquids (DNAPLs) currently under investigation. An existing compositional multiphase flow simulator (UTCHEM) was adapted to accurately represent the equilibrium phase behavior of ternary and quaternary alcohol/DNAPL systems. Simulator predictions were compared to laboratory column experiments and the results are presented here. It was found that several experiments involved unstable displacements of the NAPL bank by the alcohol flood or of the alcohol flood by the following water flood. Unstable displacement led to additional mixing compared to ideal displacement. This mixing was approximated by a large dispersion in one-dimensional simulations and or by including permeability heterogeneities on a very small scale in three-dimensional simulations. Three-dimensional simulations provided the best match. Simulations of unstable displacements require either high-resolution grids, or need to consider the mixing of fluids in a different manner to capture the resulting effects on NAPL recovery.
Results of a joint NOAA/NASA sounder simulation study
NASA Technical Reports Server (NTRS)
Phillips, N.; Susskind, Joel; Mcmillin, L.
1988-01-01
This paper presents the results of a joint NOAA and NASA sounder simulation study in which the accuracies of atmospheric temperature profiles and surface skin temperature measuremnents retrieved from two sounders were compared: (1) the currently used IR temperature sounder HIRS2 (High-resolution Infrared Radiation Sounder 2); and (2) the recently proposed high-spectral-resolution IR sounder AMTS (Advanced Moisture and Temperature Sounder). Simulations were conducted for both clear and partial cloud conditions. Data were analyzed at NASA using a physical inversion technique and at NOAA using a statistical technique. Results show significant improvement of AMTS compared to HIRS2 for both clear and cloudy conditions. The improvements are indicated by both methods of data analysis, but the physical retrievals outperform the statistical retrievals.
Reducing EnergyPlus Run Time For Code Compliance Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athalye, Rahul A.; Gowri, Krishnan; Schultz, Robert W.
2014-09-12
Integration of the EnergyPlus ™ simulation engine into performance-based code compliance software raises a concern about simulation run time, which impacts timely feedback of compliance results to the user. EnergyPlus annual simulations for proposed and code baseline building models, and mechanical equipment sizing result in simulation run times beyond acceptable limits. This paper presents a study that compares the results of a shortened simulation time period using 4 weeks of hourly weather data (one per quarter), to an annual simulation using full 52 weeks of hourly weather data. Three representative building types based on DOE Prototype Building Models and threemore » climate zones were used for determining the validity of using a shortened simulation run period. Further sensitivity analysis and run time comparisons were made to evaluate the robustness and run time savings of using this approach. The results of this analysis show that the shortened simulation run period provides compliance index calculations within 1% of those predicted using annual simulation results, and typically saves about 75% of simulation run time.« less
NASA Astrophysics Data System (ADS)
Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.
2009-12-01
Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.
The Simulation of a Jumbo Jet Transport Aircraft. Volume 2: Modeling Data
NASA Technical Reports Server (NTRS)
Hanke, C. R.; Nordwall, D. R.
1970-01-01
The manned simulation of a large transport aircraft is described. Aircraft and systems data necessary to implement the mathematical model described in Volume I and a discussion of how these data are used in model are presented. The results of the real-time computations in the NASA Ames Research Center Flight Simulator for Advanced Aircraft are shown and compared to flight test data and to the results obtained in a training simulator known to be satisfactory.
Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.
2015-01-01
The rise of innovative unmanned aeronautical systems and the emergence of commercial space activities have resulted in a number of relatively new aerospace organizations that are designing innovative systems and solutions. These organizations use a variety of commercial off-the-shelf and in-house-developed simulation and analysis tools including 6-degree-of-freedom (6-DOF) flight simulation tools. The increased affordability of computing capability has made highfidelity flight simulation practical for all participants. Verification of the tools' equations-of-motion and environment models (e.g., atmosphere, gravitation, and geodesy) is desirable to assure accuracy of results. However, aside from simple textbook examples, minimal verification data exists in open literature for 6-DOF flight simulation problems. This assessment compared multiple solution trajectories to a set of verification check-cases that covered atmospheric and exo-atmospheric (i.e., orbital) flight. Each scenario consisted of predefined flight vehicles, initial conditions, and maneuvers. These scenarios were implemented and executed in a variety of analytical and real-time simulation tools. This tool-set included simulation tools in a variety of programming languages based on modified flat-Earth, round- Earth, and rotating oblate spheroidal Earth geodesy and gravitation models, and independently derived equations-of-motion and propagation techniques. The resulting simulated parameter trajectories were compared by over-plotting and difference-plotting to yield a family of solutions. In total, seven simulation tools were exercised.
NASA Astrophysics Data System (ADS)
Guo, Yue; Du, Lei; Jiang, Long; Li, Qing; Zhao, Zhenning
2017-01-01
In this paper, the combustion and NOx emission characteristics of a 300 MW tangential boiler are simulated, we obtain the flue gas velocity field in the hearth, component concentration distribution of temperature field and combustion products, and the speed, temperature, concentration of oxygen and NOx emissions compared with the test results in the waisting air distribution conditions, found the simulation values coincide well with the test value, to verify the rationality of the model. At the same time, the flow field in the furnace, the combustion and the influence of NOx emission characteristics are simulated by different conditions, including compared with primary zone secondary waisting air distribution, uniform air distribution and pagodas go down air distribution, the results show that, waisting air distribution is useful to reduce NOx emissions.
Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation
NASA Technical Reports Server (NTRS)
Padilla, Jose F.
2010-01-01
Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.
NASA Astrophysics Data System (ADS)
Paik, Kwang-Jun; Park, Hyung-Gil; Seo, Jongsoo
2013-12-01
Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.
NASA Astrophysics Data System (ADS)
Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan
2015-10-01
Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.
Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com
We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process ofmore » positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.« less
What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping Yang; Daniel B. Ames; Andre Fonseca
This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each DEM and were compared to reference data. Hydrological simulations were conducted and the outputs were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated features and reference data. However, minor differences been found between streamflow simulations resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These findings indicatemore » that while higher resolution DEM grids may result in more accurate representation of terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling. Hence the additional expense of generating high resolution DEM's for the purpose of watershed modeling at daily or longer time steps may not be warranted.« less
A Process for Comparing Dynamics of Distributed Space Systems Simulations
NASA Technical Reports Server (NTRS)
Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.
2009-01-01
The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.
Comparison between simulations and lab results on the ASSIST test-bench
NASA Astrophysics Data System (ADS)
Le Louarn, Miska; Madec, Pierre-Yves; Kolb, Johann; Paufique, Jerome; Oberti, Sylvain; La Penna, Paolo; Arsenault, Robin
2016-07-01
We present the latest comparison results between laboratory tests carried out on the ASSIST test bench and Octopus end-to end simulations. We simulated, as closely to the lab conditions as possible, the different AOF modes (Maintenance and commissioning mode (SCAO), GRAAL (GLAO in the near IR), Galacsi Wide Field mode (GLAO in the visible) and Galacsi narrow field mode (LTAO in the visible)). We then compared the simulation results to the ones obtained on the lab bench. Several aspects were investigated, like number of corrected modes, turbulence wind speeds, LGS photon flux etc. The agreement between simulations and lab is remarkably good for all investigated parameters, giving great confidence in both simulation tool and performance of the AO system in the lab.
Evaluation of Airframe Noise Reduction Concepts via Simulations Using a Lattice Boltzmann Approach
NASA Technical Reports Server (NTRS)
Fares, Ehab; Casalino, Damiano; Khorrami, Mehdi R.
2015-01-01
Unsteady computations are presented for a high-fidelity, 18% scale, semi-span Gulfstream aircraft model in landing configuration, i.e. flap deflected at 39 degree and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW® to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. In addition to the baseline geometry, which was presented previously, various noise reduction concepts for the flap and main landing gear are simulated. In particular, care is taken to fully resolve the complex geometrical details associated with these concepts in order to capture the resulting intricate local flow field thus enabling accurate prediction of their acoustic behavior. To determine aeroacoustic performance, the farfield noise predicted with the concepts applied is compared to high-fidelity simulations of the untreated baseline configurations. To assess the accuracy of the computed results, the aerodynamic and aeroacoustic impact of the noise reduction concepts is evaluated numerically and compared to experimental results for the same model. The trends and effectiveness of the simulated noise reduction concepts compare well with measured values and demonstrate that the computational approach is capable of capturing the primary effects of the acoustic treatment on a full aircraft model.
NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures
NASA Technical Reports Server (NTRS)
Wheless, T. K.
1985-01-01
This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.
A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maile, Tobias; Bazjanac, Vladimir; O'Donnell, James
2011-11-01
Building energy performance is often inadequate when compared to design goals. To link design goals to actual operation one can compare measured with simulated energy performance data. Our previously developed comparison approach is the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured and simulated performance data. In context of this method, we developed a software tool that provides graphing and data processing capabilities of the two performance data sets. The software tool called SEE IT (Stanford Energy Efficiency Information Tool) eliminates the need for manual generation of data plots andmore » data reformatting. SEE IT makes the generation of time series, scatter and carpet plots independent of the source of data (measured or simulated) and provides a valuable tool for comparing measurements with simulation results. SEE IT also allows assigning data points on a predefined building object hierarchy and supports different versions of simulated performance data. This paper briefly introduces the EPCM, describes the SEE IT tool and illustrates its use in the context of a building case study.« less
CLVTOPS Liftoff and Separation Analysis Validation Using Ares I-X Flight Data
NASA Technical Reports Server (NTRS)
Burger, Ben; Schwarz, Kristina; Kim, Young
2011-01-01
CLVTOPS is a multi-body time domain flight dynamics simulation tool developed by NASA s Marshall Space Flight Center (MSFC) for a space launch vehicle and is based on the TREETOPS simulation tool. CLVTOPS is currently used to simulate the flight dynamics and separation/jettison events of the Ares I launch vehicle including liftoff and staging separation. In order for CLVTOPS to become an accredited tool, validation against other independent simulations and real world data is needed. The launch of the Ares I-X vehicle (first Ares I test flight) on October 28, 2009 presented a great opportunity to provide validation evidence for CLVTOPS. In order to simulate the Ares I-X flight, specific models were implemented into CLVTOPS. These models include the flight day environment, reconstructed thrust, reconstructed mass properties, aerodynamics, and the Ares I-X guidance, navigation and control models. The resulting simulation output was compared to Ares I-X flight data. During the liftoff region of flight, trajectory states from the simulation and flight data were compared. The CLVTOPS results were used to make a semi-transparent animation of the vehicle that was overlaid directly on top of the flight video to provide a qualitative measure of the agreement between the simulation and the actual flight. During ascent, the trajectory states of the vehicle were compared with flight data. For the stage separation event, the trajectory states of the two stages were compared to available flight data. Since no quantitative rotational state data for the upper stage was available, the CLVTOPS results were used to make an animation of the two stages to show a side-by-side comparison with flight video. All of the comparisons between CLVTOPS and the flight data show good agreement. This paper documents comparisons between CLVTOPS and Ares I-X flight data which serve as validation evidence for the eventual accreditation of CLVTOPS.
Judd, Belinda Karyn; Alison, Jennifer Ailsey; Waters, Donna; Gordon, Christopher James
2016-08-01
Simulation-based clinical education often aims to replicate varying aspects of real clinical practice. It is unknown whether learners' stress levels in simulation are comparable with those in clinical practice. The current study compared acute stress markers during simulation-based clinical education with that experienced in situ in a hospital-based environment. Undergraduate physiotherapy students' (n = 33) acute stress responses [visual analog scales of stress and anxiety, continuous heart rate (HR), and saliva cortisol] were assessed during matched patient encounters in simulation-based laboratories using standardized patients and during hospital clinical placements with real patients. Group differences in stress variables were compared using repeated measures analysis of variance for 3 time points (before, during the patient encounter, and after) at 2 settings (simulation and hospital). Visual analog scale stress and anxiety as well as HR increased significantly from baseline levels before the encounter in both settings (all P < 0.05). Stress and anxiety were significantly higher in simulation [mean (SD), 45 (22) and 44 (25) mm; P = 0.003] compared with hospital [mean (SD), 31 (21) and 26 (20) mm; P = 0.002]. The mean (SD) HR during the simulation patient encounter was 90 (16) beats per minute and was not different compared with hospital [mean (SD), 87 (15) beats per minute; P = 0.89]. Changes in salivary cortisol before and after patient encounters were not statistically different between settings [mean (SD) simulation, 1.5 (2.4) nmol/L; hospital, 2.5 (2.9) nmol/L; P = 0.70]. Participants' experienced stress on clinical placements, irrespective of the clinical education setting (simulation vs. hospital). This study revealed that psychological stress and anxiety were greater during simulation compared with hospital settings; however, physiological stress responses (HR and cortisol) were comparable. These results indicate that psychological stress may be heightened in simulation, and health professional educators need to consider the impact of this on learners in simulation-based clinical education. New learners in their clinical education program may benefit from a less stressful simulation environment, before a gradual increase in stress demands as they approach clinical practice.
Simulator for concurrent processing data flow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.
1992-01-01
A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.
Introduction to study and simulation of low rate video coding schemes
NASA Technical Reports Server (NTRS)
1992-01-01
During this period, the development of simulators for the various HDTV systems proposed to the FCC were developed. These simulators will be tested using test sequences from the MPEG committee. The results will be extrapolated to HDTV video sequences. Currently, the simulator for the compression aspects of the Advanced Digital Television (ADTV) was completed. Other HDTV proposals are at various stages of development. A brief overview of the ADTV system is given. Some coding results obtained using the simulator are discussed. These results are compared to those obtained using the CCITT H.261 standard. These results in the context of the CCSDS specifications are evaluated and some suggestions as to how the ADTV system could be implemented in the NASA network are made.
Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations
NASA Astrophysics Data System (ADS)
Eskandari Nasrabad, A.; Laghaei, R.
2018-04-01
Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.
Numerical simulation of tornado wind loading on structures
NASA Technical Reports Server (NTRS)
Maiden, D. E.
1976-01-01
A numerical simulation of a tornado interacting with a building was undertaken in order to compare the pressures due to a rotational unsteady wind with that due to steady straight winds used in design of nuclear facilities. The numerical simulations were performed on a two-dimensional compressible hydrodynamics code. Calculated pressure profiles for a typical building were then subjected to a tornado wind field and the results were compared with current quasisteady design calculations. The analysis indicates that current design practices are conservative.
Teaching Business Simulation Games: Comparing Achievements Frontal Teaching vs. eLearning
NASA Astrophysics Data System (ADS)
Bregman, David; Keinan, Gila; Korman, Arik; Raanan, Yossi
This paper addresses the issue of comparing results achieved by students taught the same course but in two drastically different - a regular, frontal method and an eLearning method. The subject taught required intensive communications among the students, thus making the eLearning students, a priori, less likely to do well in it. The research, comparing the achievements of students in a business simulation game over three semesters, shows that the use of eLearning method did not result in any differences in performance, grades or cooperation, thus strengthening the case for using eLearning in this type of course.
A comparison of solute-transport solution techniques based on inverse modelling results
Mehl, S.; Hill, M.C.
2000-01-01
Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com; Suprijadi; Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132
Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic imagesmore » and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.« less
Use of the Marshall Space Flight Center solar simulator in collector performance evaluation
NASA Technical Reports Server (NTRS)
Humphries, W. R.
1978-01-01
Actual measured values from simulator checkout tests are detailed. Problems encountered during initial startup are discussed and solutions described. Techniques utilized to evaluate collector performance from simulator test data are given. Performance data generated in the simulator are compared to equivalent data generated during natural outdoor testing. Finally, a summary of collector performance parameters generated to date as a result of simulator testing are given.
Thermalized Drude Oscillators with the LAMMPS Molecular Dynamics Simulator.
Dequidt, Alain; Devémy, Julien; Pádua, Agílio A H
2016-01-25
LAMMPS is a very customizable molecular dynamics simulation software, which can be used to simulate a large diversity of systems. We introduce a new package for simulation of polarizable systems with LAMMPS using thermalized Drude oscillators. The implemented functionalities are described and are illustrated by examples. The implementation was validated by comparing simulation results with published data and using a reference software. Computational performance is also analyzed.
Pan, Jui-Wen; Tsai, Pei-Jung; Chang, Kao-Der; Chang, Yung-Yuan
2013-03-01
In this paper, we propose a method to analyze the light extraction efficiency (LEE) enhancement of a nanopatterned sapphire substrates (NPSS) light-emitting diode (LED) by comparing wave optics software with ray optics software. Finite-difference time-domain (FDTD) simulations represent the wave optics software and Light Tools (LTs) simulations represent the ray optics software. First, we find the trends of and an optimal solution for the LEE enhancement when the 2D-FDTD simulations are used to save on simulation time and computational memory. The rigorous coupled-wave analysis method is utilized to explain the trend we get from the 2D-FDTD algorithm. The optimal solution is then applied in 3D-FDTD and LTs simulations. The results are similar and the difference in LEE enhancement between the two simulations does not exceed 8.5% in the small LED chip area. More than 10(4) times computational memory is saved during the LTs simulation in comparison to the 3D-FDTD simulation. Moreover, LEE enhancement from the side of the LED can be obtained in the LTs simulation. An actual-size NPSS LED is simulated using the LTs. The results show a more than 307% improvement in the total LEE enhancement of the NPSS LED with the optimal solution compared to the conventional LED.
Comparing the IRT Pre-equating and Section Pre-equating: A Simulation Study.
ERIC Educational Resources Information Center
Hwang, Chi-en; Cleary, T. Anne
The results obtained from two basic types of pre-equatings of tests were compared: the item response theory (IRT) pre-equating and section pre-equating (SPE). The simulated data were generated from a modified three-parameter logistic model with a constant guessing parameter. Responses of two replication samples of 3000 examinees on two 72-item…
Koivisto, J; Kiljunen, T; Tapiovaara, M; Wolff, J; Kortesniemi, M
2012-09-01
The aims of this study were to assess the organ and effective dose (International Commission on Radiological Protection (ICRP) 103) resulting from dental cone-beam computerized tomography (CBCT) imaging using a novel metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter device, and to assess the reliability of the MOSFET measurements by comparing the results with Monte Carlo PCXMC simulations. Organ dose measurements were performed using 20 MOSFET dosimeters that were embedded in the 8 most radiosensitive organs in the maxillofacial and neck area. The dose-area product (DAP) values attained from CBCT scans were used for PCXMC simulations. The acquired MOSFET doses were then compared with the Monte Carlo simulations. The effective dose measurements using MOSFET dosimeters yielded, using 0.5-cm steps, a value of 153 μSv and the PCXMC simulations resulted in a value of 136 μSv. The MOSFET dosimeters placed in a head phantom gave results similar to Monte Carlo simulations. Minor vertical changes in the positioning of the phantom had a substantial affect on the overall effective dose. Therefore, the MOSFET dosimeters constitute a feasible method for dose assessment of CBCT units in the maxillofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.
MOCCA code for star cluster simulation: comparison with optical observations using COCOA
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz
2016-02-01
We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.
Dislocation dynamics simulations of plasticity at small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Caizhi
2010-01-01
As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less
Nonlinear vs. linear biasing in Trp-cage folding simulations
NASA Astrophysics Data System (ADS)
Spiwok, Vojtěch; Oborský, Pavel; Pazúriková, Jana; Křenek, Aleš; Králová, Blanka
2015-03-01
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.
Nonlinear vs. linear biasing in Trp-cage folding simulations.
Spiwok, Vojtěch; Oborský, Pavel; Pazúriková, Jana; Křenek, Aleš; Králová, Blanka
2015-03-21
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.
2013-01-01
Background The validity of studies describing clinicians’ judgements based on their responses to paper cases is questionable, because - commonly used - paper case simulations only partly reflect real clinical environments. In this study we test whether paper case simulations evoke similar risk assessment judgements to the more realistic simulated patients used in high fidelity physical simulations. Methods 97 nurses (34 experienced nurses and 63 student nurses) made dichotomous assessments of risk of acute deterioration on the same 25 simulated scenarios in both paper case and physical simulation settings. Scenarios were generated from real patient cases. Measures of judgement ‘ecology’ were derived from the same case records. The relationship between nurses’ judgements, actual patient outcomes (i.e. ecological criteria), and patient characteristics were described using the methodology of judgement analysis. Logistic regression models were constructed to calculate Lens Model Equation parameters. Parameters were then compared between the modeled paper-case and physical-simulation judgements. Results Participants had significantly less achievement (ra) judging physical simulations than when judging paper cases. They used less modelable knowledge (G) with physical simulations than with paper cases, while retaining similar cognitive control and consistency on repeated patients. Respiration rate, the most important cue for predicting patient risk in the ecological model, was weighted most heavily by participants. Conclusions To the extent that accuracy in judgement analysis studies is a function of task representativeness, improving task representativeness via high fidelity physical simulations resulted in lower judgement performance in risk assessments amongst nurses when compared to paper case simulations. Lens Model statistics could prove useful when comparing different options for the design of simulations used in clinical judgement analysis. The approach outlined may be of value to those designing and evaluating clinical simulations as part of education and training strategies aimed at improving clinical judgement and reasoning. PMID:23718556
Hydrodynamic Simulations of Protoplanetary Disks with GIZMO
NASA Astrophysics Data System (ADS)
Rice, Malena; Laughlin, Greg
2018-01-01
Over the past several decades, the field of computational fluid dynamics has rapidly advanced as the range of available numerical algorithms and computationally feasible physical problems has expanded. The development of modern numerical solvers has provided a compelling opportunity to reconsider previously obtained results in search for yet undiscovered effects that may be revealed through longer integration times and more precise numerical approaches. In this study, we compare the results of past hydrodynamic disk simulations with those obtained from modern analytical resources. We focus our study on the GIZMO code (Hopkins 2015), which uses meshless methods to solve the homogeneous Euler equations of hydrodynamics while eliminating problems arising as a result of advection between grid cells. By comparing modern simulations with prior results, we hope to provide an improved understanding of the impact of fluid mechanics upon the evolution of protoplanetary disks.
MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries
NASA Astrophysics Data System (ADS)
Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas
2015-11-01
The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.
Asymmetric Eyewall Vertical Motion in a High-Resolution Simulation of Hurricane Bonnie (1998)
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Pu, Zhao-Xia
2003-01-01
This study examines a high-resolution simulation of Hurricane Bonnie. Results from the simulation will be compared to the conceptual model of Heymsfield et al. (2001) to determine the extent to which this conceptual model explains vertical motions and precipitation growth in the eyewall.
Simulation optimization of the cathode deposit growth in a coaxial electrolyzer-refiner
NASA Astrophysics Data System (ADS)
Smirnov, G. B.; Fokin, A. A.; Markina, S. E.; Vakhitov, A. I.
2015-08-01
The results of simulation of the cathode deposit growth in a coaxial electrolyzer-refiner are presented. The sizes of the initial cathode matrix are optimized. The data obtained by simulation and full-scale tests of the precipitation of platinum from a salt melt are compared.
Simulation and Advanced Practice Nursing Education
ERIC Educational Resources Information Center
Blue, Dawn I.
2016-01-01
This quantitative study compared changes in level of confidence resulting from participation in simulation or traditional instructional methods for BSN (Bachelor of Science in Nursing) to DNP (Doctor of Nursing Practice) students in a nurse practitioner course when they entered the clinical practicum. Simulation has been used in many disciplines…
2013-01-01
Background Investigation of conformational changes in a protein is a prerequisite to understand its biological function. To explore these conformational changes in proteins we developed a strategy with the combination of molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy. The major goal of this work is to investigate how far computer simulations can meet the experiments. Methods Vinculin tail protein is chosen as a model system as conformational changes within the vinculin protein are believed to be important for its biological function at the sites of cell adhesion. MD simulations were performed on vinculin tail protein both in water and in vacuo environments. EPR experimental data is compared with those of the simulated data for corresponding spin label positions. Results The calculated EPR spectra from MD simulations trajectories of selected spin labelled positions are comparable to experimental EPR spectra. The results show that the information contained in the spin label mobility provides a powerful means of mapping protein folds and their conformational changes. Conclusions The results suggest the localization of dynamic and flexible regions of the vinculin tail protein. This study shows MD simulations can be used as a complementary tool to interpret experimental EPR data. PMID:23445506
NASA Astrophysics Data System (ADS)
Rodgers-Lee, D.; Ray, T. P.; Downes, T. P.
2016-11-01
The redistribution of angular momentum is a long standing problem in our understanding of protoplanetary disc (PPD) evolution. The magnetorotational instability (MRI) is considered a likely mechanism. We present the results of a study involving multifluid global simulations including Ohmic dissipation, ambipolar diffusion and the Hall effect in a dynamic, self-consistent way. We focus on the turbulence resulting from the non-linear development of the MRI in radially stratified PPDs and compare with ideal magnetohydrodynamics simulations. In the multifluid simulations, the disc is initially set up to transition from a weak Hall-dominated regime, where the Hall effect is the dominant non-ideal effect but approximately the same as or weaker than the inductive term, to a strong Hall-dominated regime, where the Hall effect dominates the inductive term. As the simulations progress, a substantial portion of the disc develops into a weak Hall-dominated disc. We find a transition from turbulent to laminar flow in the inner regions of the disc, but without any corresponding overall density feature. We introduce a dimensionless parameter, αRM, to characterize accretion with αRM ≳ 0.1 corresponding to turbulent transport. We calculate the eddy turnover time, teddy, and compared this with an effective recombination time-scale, trcb, to determine whether the presence of turbulence necessitates non-equilibrium ionization calculations. We find that trcb is typically around three orders of magnitude smaller than teddy. Also, the ionization fraction does not vary appreciably. These two results suggest that these multifluid simulations should be comparable to single-fluid non-ideal simulations.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1995-01-01
The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Chao, Winston C.; Walker, G. K.
1992-01-01
The influence of a cumulus convection scheme on the simulated atmospheric circulation and hydrologic cycle is investigated by means of a coarse version of the GCM. Two sets of integrations, each containing an ensemble of three summer simulations, were produced. The ensemble sets of control and experiment simulations are compared and differentially analyzed to determine the influence of a cumulus convection scheme on the simulated circulation and hydrologic cycle. The results show that cumulus parameterization has a very significant influence on the simulation circulation and precipitation. The upper-level condensation heating over the ITCZ is much smaller for the experiment simulations as compared to the control simulations; correspondingly, the Hadley and Walker cells for the control simulations are also weaker and are accompanied by a weaker Ferrel cell in the Southern Hemisphere. Overall, the difference fields show that experiment simulations (without cumulus convection) produce a cooler and less energetic atmosphere.
HEBS and Binary 1-sinc masks simulations, HCIT experiments and results
NASA Technical Reports Server (NTRS)
Balasubramanian, Bala K.; Hoppe, Dan; Wilson, Dan; Echternach, Pierre; Trauger, John; Halverson, Peter; Niessner, Al; Shi, Fang; Lowman, Andrew
2005-01-01
Based on preliminary experiments and results with a binary 1-sinc mask in the HCIT early in August 2004, we planned for a detailed experiment to compare the performance of HEBS and Binary masks under nearly identical conditions in the HCIT. This report details the design and fabrication of the masks, simulated predictions, and experimental results.
Simulation of root forms using cellular automata model
NASA Astrophysics Data System (ADS)
Winarno, Nanang; Prima, Eka Cahya; Afifah, Ratih Mega Ayu
2016-02-01
This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled "A New Kind of Science" discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram's investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.
Effect of Impact Location on the Response of Shuttle Wing Leading Edge Panel 9
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Spellman, Regina L.; Hardy, Robin C.; Fasanella, Edwin L.; Jackson, Karen E.
2005-01-01
The objective of this paper is to compare the results of several simulations performed to determine the worst-case location for a foam impact on the Space Shuttle wing leading edge. The simulations were performed using the commercial non-linear transient dynamic finite element code, LS-DYNA. These simulations represent the first in a series of parametric studies performed to support the selection of the worst-case impact scenario. Panel 9 was selected for this study to enable comparisons with previous simulations performed during the Columbia Accident Investigation. The projectile for this study is a 5.5-in cube of typical external tank foam weighing 0.23 lb. Seven locations spanning the panel surface were impacted with the foam cube. For each of these cases, the foam was traveling at 1000 ft/s directly aft, along the orbiter X-axis. Results compared from the parametric studies included strains, contact forces, and material energies for various simulations. The results show that the worst case impact location was on the top surface, near the apex.
American Society of Composites, 32nd Technical Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitharaju, Venkat; Wollschlager, Jeffrey; Plakomytis2, Dimitrios
This paper will present a general methodology by which weave draping manufacturing simulation results can be utilized to include the effects of weave draping and scissor angle in a structural multiscale simulation. While the methodology developed is general in nature, this paper will specifically demonstrate the methodology applied to a truncated pyramid, utilizing manufacturing simulation weave draping results from ESI PAM-FORM, and multiscale simulation using Altair Multiscale Designer (MDS) and OptiStruct. From a multiscale simulation perspective, the weave draping manufacturing simulation results will be used to develop a series of woven unit cells which cover the range of weave scissormore » angles existing within the part. For each unit cell, a multiscale material model will be developed, and applied to the corresponding spatial locations within the structural simulation mesh. In addition, the principal material orientation will be mapped from the wave draping manufacturing simulation mesh to the structural simulation mesh using Altair HyperMesh mapping technology. Results of the coupled simulation will be compared and verified against experimental data of the same available via General Motors (GM) Department of Energy (DOE) project.« less
Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery.
Atabi, Farideh; Jafarigol, Farzaneh; Moattar, Faramarz; Nouri, Jafar
2016-09-01
In this study, concentration of SO2 from a gas refinery located in complex terrain was calculated by the steady-state, AERMOD model, and nonsteady-state CALPUFF model. First, in four seasons, SO2 concentrations emitted from 16 refinery stacks, in nine receptors, were obtained by field measurements, and then the performance of both models was evaluated. Then, the simulated results for SO2 ambient concentrations made by each model were compared with the results of the observed concentrations, and model results were compared among themselves. The evaluation of the two models to simulate SO2 concentrations was based on the statistical analysis and Q-Q plots. Review of statistical parameters and Q-Q plots has shown that, according to the evaluation of estimations made, performance of both models to simulate the concentration of SO2 in the region can be considered acceptable. The results showed the AERMOD composite ratio between simulated values made by models and the observed values in various receptors for all four average times is 0.72, whereas CALPUFF's ratio is 0.89. However, in the complex conditions of topography, CALPUFF offers better agreement with the observed concentrations.
SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output
Hunter, William C. J.; Barrett, Harrison H.; Lewellen, Thomas K.; Miyaoka, Robert S.; Muzi, John P.; Li, Xiaoli; McDougald, Wendy; MacDonald, Lawrence R.
2011-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:22072297
SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output†
Hunter, William C J; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.
2013-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:23640136
A hybrid method of estimating pulsating flow parameters in the space-time domain
NASA Astrophysics Data System (ADS)
Pałczyński, Tomasz
2017-05-01
This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.
NASA Astrophysics Data System (ADS)
Schumaker, Merit G.; Kennedy, Gregory; Thadhani, Naresh; Hankin, Markos; Stewart, Sarah T.; Borg, John P.
2017-01-01
Determining stress and temperature distributions of dynamically compacted particles is of interest to the geophysical and astrological research communities. However, the researcher cannot easily observe particle interactions during a planar shock experiment. By using mesoscale simulations, we can unravel granular particle interactions. Unlike homogenous materials, the averaged Hugoniot state for heterogeneous granular materials differs from the individual stress and temperature states of particles during a shock event. From planar shock experiments for dry and water-saturated Oklahoma sand, we constructed simulations using Sandia National Laboratory code known as CTH and then compared these simulated results to the experimental results. This document compares and presents stress and temperature distributions from simulations, with a discussion on the difference between Hugoniot measurements and distribution peaks for dry and water-saturated sand.
North Atlantic Jet Variability in PMIP3 LGM Simulations
NASA Astrophysics Data System (ADS)
Hezel, P.; Li, C.
2017-12-01
North Atlantic jet variability in glacial climates has been shown inmodelling studies to be strongly influenced by upstream ice sheettopography. We analyze the results of 8 models from the PMIP3simulations, forced with a hybrid Laurentide Ice Sheet topography, andcompare them to the PMIP2 simulations which were forced with theICE-5G topography, to develop a general understanding of the NorthAtlantic jet and jet variability. The strengthening of the jet andreduced spatial variability is a robust feature of the last glacialmaximum (LGM) simulations compared to the pre-industrial state.However, the canonical picture of the LGM North Atlantic jet as beingmore zonal and elongated compared to pre-industrial climate states isnot a robust result across models, and may have arisen in theliterature as a function of multiple studies performed with the samemodel.
Assessment of different gridded weather data for soybean yield simulations in Brazil
NASA Astrophysics Data System (ADS)
Battisti, R.; Bender, F. D.; Sentelhas, P. C.
2018-01-01
A high-density, well-distributed, and consistent historical weather data series is of major importance for agricultural planning and climatic risk evaluation. A possible option for regions where weather station network is irregular is the use of gridded weather data (GWD), which can be downloaded online from different sources. Based on that, the aim of this study was to assess the suitability of two GWD, AgMERRA and XAVIER, by comparing them with measured weather data (MWD) for estimating soybean yield in Brazil. The GWD and MWD were obtained for 24 locations across Brazil, considering the period between 1980 and 2010. These data were used to estimate soybean yield with DSSAT-CROPGRO-Soybean model. The comparison of MWD with GWD resulted in a good agreement between climate variables, except for solar radiation. The crop simulations with GWD and MWD resulted in a good agreement for vegetative and reproductive phases. Soybean potential yield (Yp) simulated with AgMERRA and XAVIER had a high correlation (r > 0.88) when compared to the estimates with MWD, with the RMSE of about 400 kg ha-1. For attainable yield (Ya), estimates with XAVIER resulted in a RMSE of 700 kg ha-1 against 864 kg ha-1 from AgMERRA, both compared to the simulations using MWD. Even with these differences in Ya simulations, both GWD can be considered suitable for simulating soybean growth, development, and yield in Brazil; however, with XAVIER GWD presenting a better performance for weather and crop variables assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korayem, M. H.; Khaksar, H.; Taheri, M.
2013-11-14
This article has dealt with the development and modeling of various contact theories for biological nanoparticles shaped as cylinders and circular crowned rollers for application in the manipulation of different biological micro/nanoparticles based on Atomic Force Microscope. First, the effective contact forces were simulated, and their impact on contact mechanics simulation was investigated. In the next step, the Hertz contact model was simulated and compared for gold and DNA nanoparticles with the three types of spherical, cylindrical, and circular crowned roller type contact geometries. Then by reducing the length of the cylindrical section in the circular crowned roller geometry, themore » geometry of the body was made to approach that of a sphere, and the results were compared for DNA nanoparticles. To anticipatory validate the developed theories, the results of the cylindrical and the circular crowned roller contacts were compared with the results of the existing spherical contact simulations. Following the development of these contact models for the manipulation of various biological micro/nanoparticles, the cylindrical and the circular crowned roller type contact theories were modeled based on the theories of Lundberg, Dowson, Nikpur, Heoprich, and Hertz for the manipulation of biological micro/nanoparticles. Then, for a more accurate validation, the results obtained from the simulations were compared with those obtained by the finite element method and with the experimental results available in previous articles. The previous research works on the simulation of nanomanipulation have mainly investigated the contact theories used in the manipulation of spherical micro/nanoparticles. However since in real biomanipulation situations, biological micro/nanoparticles of more complex shapes need to be displaced in biological environments, this article therefore has modeled and compared, for the first time, different contact theories for use in the biomanipulation of cylindrical and circular crowned roller shaped micro/nanoparticles. The results of models indicate that the contact model of Hertz achieves the largest amount of deformation for the DNA nanoparticle in cylindrical form and the contact model of Heoprich achieves the largest deformation for the circular crowned roller shaped DNA. Of course, this finding is not always true for the other nanoparticles; and considering the mechanical and environmental characteristics, different results can be obtained. Also, by comparing the deformations of different types of nanoparticles, it was determined that the platelet type nanoparticles display the highest degree of deformation in all the considered models, due to their particular mechanical characteristics.« less
A parallel algorithm for step- and chain-growth polymerization in molecular dynamics.
de Buyl, Pierre; Nies, Erik
2015-04-07
Classical Molecular Dynamics (MD) simulations provide insight into the properties of many soft-matter systems. In some situations, it is interesting to model the creation of chemical bonds, a process that is not part of the MD framework. In this context, we propose a parallel algorithm for step- and chain-growth polymerization that is based on a generic reaction scheme, works at a given intrinsic rate and produces continuous trajectories. We present an implementation in the ESPResSo++ simulation software and compare it with the corresponding feature in LAMMPS. For chain growth, our results are compared to the existing simulation literature. For step growth, a rate equation is proposed for the evolution of the crosslinker population that compares well to the simulations for low crosslinker functionality or for short times.
A parallel algorithm for step- and chain-growth polymerization in molecular dynamics
NASA Astrophysics Data System (ADS)
de Buyl, Pierre; Nies, Erik
2015-04-01
Classical Molecular Dynamics (MD) simulations provide insight into the properties of many soft-matter systems. In some situations, it is interesting to model the creation of chemical bonds, a process that is not part of the MD framework. In this context, we propose a parallel algorithm for step- and chain-growth polymerization that is based on a generic reaction scheme, works at a given intrinsic rate and produces continuous trajectories. We present an implementation in the ESPResSo++ simulation software and compare it with the corresponding feature in LAMMPS. For chain growth, our results are compared to the existing simulation literature. For step growth, a rate equation is proposed for the evolution of the crosslinker population that compares well to the simulations for low crosslinker functionality or for short times.
NASA Astrophysics Data System (ADS)
Kim, Minwoo; Park, Hyeon K.; Yun, Gunsu; Lee, Jaehyun; Lee, Jieun; Lee, Woochang; Jardin, Stephen; Xu, X. Q.; Kstar Team
2015-11-01
The modeling of the Edge-localized-mode (ELM) should be rigorously pursued for reliable and robust ELM control for steady-state long-pulse H-mode operation in ITER as well as DEMO. In the KSTAR discharge #7328, a linear stability of the ELMs is investigated using M3D-C1 and BOUT + + codes. This is achieved by linear simulation for the n = 8 mode structure of the ELM observed by the KSTAR electron cyclotron emission imaging (ECEI) systems. In the process of analysis, variations due to the plasma equilibrium profiles and transport coefficients on the ELM growth rate are investigated and simulation results with the two codes are compared. The numerical simulations are extended to nonlinear phase of the ELM dynamics, which includes saturation and crash of the modes. Preliminary results of the nonlinear simulations are compared with the measured images especially from the saturation to the crash. This work is supported by NRF of Korea under contract no. NRF-2014M1A7A1A03029865, US DoE by LLNL under contract DE-AC52-07NA27344 and US DoE by PPPL under contract DE-AC02-09CH11466.
Molecular dynamics simulation of the thermosensitivity of the human connexin 26 hemichannel
NASA Astrophysics Data System (ADS)
Alizadeh, Hadi; Davoodi, Jamal; Zeilinger, Carsten; Rafii-Tabar, Hashem
2018-01-01
Connexin hemichannels mediate cytoplasm and extracellular milieu communication by exchanging a variety of cytoplasmic molecules and ions. These hemichannels can be regulated by external stimuli such as mechanical stress, applied voltage, pH and temperature changes. Although there are many studies on structures and functions of connexin 26 in contexts of pH, ion concentration and voltage, employing computational methods, no such study has been performed so far involving temperature changes. In this study, using molecular dynamics simulation, we investigate thermosensitivity of the human Connexin 26 hemichannel. Our results show that the channel approaches a structurally closed state at lower temperature compared to higher temperature. This is in fair agreement with experimental results that indicate channel closure at lower temperature. Furthermore, our MD simulation results show that some regions of connexin 26 hemichannel are more sensitive to temperature compared to other regions. Whereas the intercellular half of the channel does not show any considerable response to temperature during the simulation time accessible in this study, the cytoplasmic half approaches a closed structural state at lower temperature compared to the higher temperature. Specifically, our results suggest that the cytoplasmic loop, the cytoplasmic half of the second transmembrane helix, and the N-terminus helix play a dominant role in temperature gating.
NASA Astrophysics Data System (ADS)
Wang, Kelu; Li, Xin; Zhang, Xiaobo
2018-03-01
The power dissipation maps of Ti-25Al-15Nb alloy were constructed by using the compression test data. A method is proposed to predict the distribution and variation of power dissipation coefficient in hot forging process using both the dynamic material model and finite element simulation. Using the proposed method, the change characteristics of the power dissipation coefficient are simulated and predicted. The effectiveness of the proposed method was verified by comparing the simulation results with the physical experimental results.
Adjustment and validation of a simulation tool for CSP plants based on parabolic trough technology
NASA Astrophysics Data System (ADS)
García-Barberena, Javier; Ubani, Nora
2016-05-01
The present work presents the validation process carried out for a simulation tool especially designed for the energy yield assessment of concentrating solar plants based on parabolic through (PT) technology. The validation has been carried out by comparing the model estimations with real data collected from a commercial CSP plant. In order to adjust the model parameters used for the simulation, 12 different days were selected among one-year of operational data measured at the real plant. The 12 days were simulated and the estimations compared with the measured data, focusing on the most important variables from the simulation point of view: temperatures, pressures and mass flow of the solar field, gross power, parasitic power, and net power delivered by the plant. Based on these 12 days, the key parameters for simulating the model were properly fixed and the simulation of a whole year performed. The results obtained for a complete year simulation showed very good agreement for the gross and net electric total production. The estimations for these magnitudes show a 1.47% and 2.02% BIAS respectively. The results proved that the simulation software describes with great accuracy the real operation of the power plant and correctly reproduces its transient behavior.
Renner, Franziska
2016-09-01
Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.
Yabe, Takuya; Sasano, Makoto; Hirano, Yoshiyuki; Toshito, Toshiyuki; Akagi, Takashi; Yamashita, Tomohiro; Hayashi, Masateru; Azuma, Tetsushi; Sakamoto, Yusuku; Komori, Masataka; Yamamoto, Seiichi
2018-06-20
Although luminescence of water lower in energy than the Cerenkov-light threshold during proton and carbon-ion irradiation has been found, the phenomenon has not yet been implemented for Monte Carlo simulations. The results provided by the simulations lead to misunderstandings of the physical phenomenon in optical imaging of water during proton and carbon-ion irradiation. To solve the problems, as well as to clarify the light production of the luminescence of water, we modified a Monte Carlo simulation code to include the light production from the luminescence of water and compared them with the experimental results of luminescence imaging of water. We used GEANT4 for the simulation of emitted light from water during proton and carbon-ion irradiation. We used the light production from the luminescence of water using the scintillation process in GEANT4 while those of Cerenkov light from the secondary electrons and prompt gamma photons in water were also included in the simulation. The modified simulation results showed similar depth profiles to those of the measured data for both proton and carbon-ion. When the light production of 0.1 photons/MeV was used for the luminescence of water in the simulation, the simulated depth profiles showed the best match to those of the measured results for both the proton and carbon-ion compared with those used for smaller and larger numbers of photons/MeV. We could successively obtain the simulated depth profiles that were basically the same as the experimental data by using GEANT4 when we assumed the light production by the luminescence of water. Our results confirmed that the inclusion of the luminescence of water in Monte Carlo simulation is indispensable to calculate the precise light distribution in water during irradiation of proton and carbon-ion.
NASA Astrophysics Data System (ADS)
Hudson, Brian D.; George, Ashley R.; Ford, Martyn G.; Livingstone, David J.
1992-04-01
Molecular dynamics simulations have been performed on a number of conformationally flexible pyrethroid insecticides. The results indicate that molecular dynamics is a suitable tool for conformational searching of small molecules given suitable simulation parameters. The structures derived from the simulations are compared with the static conformation used in a previous study. Various physicochemical parameters have been calculated for a set of conformations selected from the simulations using multivariate analysis. The averaged values of the parameters over the selected set (and the factors derived from them) are compared with the single conformation values used in the previous study.
Hypervelocity impact simulations of Whipple shields
NASA Technical Reports Server (NTRS)
Segletes, Steven B.; Zukas, Jonas A.
1992-01-01
The problem associated with protecting space vehicles from space debris impact is described. Numerical simulation is espoused as a useful complement to experimentation: as a means to help understand and describe the hypervelocity impact phenomena. The capabilities of a PC-based hydrocode, ZeuS, are described, for application to the problem of hypervelocity impact. Finally, results of ZeuS simulations, as applied to the problem of bumper shield impact, are presented and compared with experimental results.
SU-F-T-211: Evaluation of a Dual Focusing Magnet System for the Treatment of Small Proton Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, TT; McAuley, GA; Heczko, S
Purpose: To investigate magnetic focusing for small volume proton targets using a doublet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Monte Carlo computer simulations were performed using the Geant4 toolkit to compare dose depositions of proton beams transported through two focusing magnets or in their absence. Proton beams with energies of 127 MeV and initial diameters of 5, 8 and 10 mm were delivered through two identical focusing magnets similar to those currently in experimental use at Loma Linda University Medical Center. Analogous experiments used optimized configurations based on the simulation results. Dose was measured bymore » a diode detector and Gafchromic EBT3 film and compared to simulation data. Based on results from the experimental data, an additional set of simulations was performed with an initial beam diameter of 18 mm and a two differing length magnets (40mm & 68mm). Results: Experimental data matched well with Monte Carlo simulations. However, under conditions necessary to produce circular beam spots at target depth, magnetically focused beams using two identical 40 mm length magnets did not meet all of our performance criteria of circular beam spots, improved peak to entrance (P/E) dose ratios and dose delivery efficiencies. The simulations using the longer 68 mm 2nd magnet yielded better results with 34% better P/E dose ratio and 20–50% better dose delivery efficiencies when compared to unfocused 10 mm beams. Conclusion: While magnetic focusing using two magnets with identical focusing power did not yield desired results, ongoing Monte Carlo simulations suggest that increasing the length of the 2nd magnet to 68 mm could improve P/E dose ratios and dose efficiencies. Future work includes additional experimental validation of the longer 2nd magnet setup as well as experiments with triplet magnet systems. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).« less
Simulation techniques for estimating error in the classification of normal patterns
NASA Technical Reports Server (NTRS)
Whitsitt, S. J.; Landgrebe, D. A.
1974-01-01
Methods of efficiently generating and classifying samples with specified multivariate normal distributions were discussed. Conservative confidence tables for sample sizes are given for selective sampling. Simulation results are compared with classified training data. Techniques for comparing error and separability measure for two normal patterns are investigated and used to display the relationship between the error and the Chernoff bound.
NASA Astrophysics Data System (ADS)
Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean
2014-05-01
We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.
High-gain EDFA using ASE suppression: numerical simulation and experimental characterization
NASA Astrophysics Data System (ADS)
Woellner, Eudes F.; Fugihara, Meire C.; Vendramin, Marcio; Chitz, Edson; Kalinowski, Hypolito J.; Pontes, Maria J.
2001-08-01
A single stage, bi-directionally pumped Erbium Doped Fiber Amplifier is studied, using a scheme that reduces the counter propagating ASE, avoiding self saturation due to ASE. The amplifier is numerically simulated and experimentally characterized. Gain, saturation and polarization dependence measurements are carried to compare with simulated results. Transient response is simulated to verify the amplifier performance in cable television distribution network.
Physician Utilization of a Hospital Information System: A Computer Simulation Model
Anderson, James G.; Jay, Stephen J.; Clevenger, Stephen J.; Kassing, David R.; Perry, Jane; Anderson, Marilyn M.
1988-01-01
The purpose of this research was to develop a computer simulation model that represents the process through which physicians enter orders into a hospital information system (HIS). Computer simulation experiments were performed to estimate the effects of two methods of order entry on outcome variables. The results of the computer simulation experiments were used to perform a cost-benefit analysis to compare the two different means of entering medical orders into the HIS. The results indicate that the use of personal order sets to enter orders into the HIS will result in a significant reduction in manpower, salaries and fringe benefits, and errors in order entry.
Computational Control Workstation: Users' perspectives
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Straube, Timothy M.; Tave, Jeffrey S.
1993-01-01
A Workstation has been designed and constructed for rapidly simulating motions of rigid and elastic multibody systems. We examine the Workstation from the point of view of analysts who use the machine in an industrial setting. Two aspects of the device distinguish it from other simulation programs. First, one uses a series of windows and menus on a computer terminal, together with a keyboard and mouse, to provide a mathematical and geometrical description of the system under consideration. The second hallmark is a facility for animating simulation results. An assessment of the amount of effort required to numerically describe a system to the Workstation is made by comparing the process to that used with other multibody software. The apparatus for displaying results as a motion picture is critiqued as well. In an effort to establish confidence in the algorithms that derive, encode, and solve equations of motion, simulation results from the Workstation are compared to answers obtained with other multibody programs. Our study includes measurements of computational speed.
Simulating tracer transport in variably saturated soils and shallow groundwater
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in variably saturated soils and to compare simulation results with the detailed monitoring observations. The USDA-ARS OPE3 field site was selected for the case study due to ava...
The effect of sampling techniques used in the multiconfigurational Ehrenfest method
NASA Astrophysics Data System (ADS)
Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.
2018-05-01
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method.
Symonds, C; Kattirtzi, J A; Shalashilin, D V
2018-05-14
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
Analysis of Waves in Space Plasma (WISP) near field simulation and experiment
NASA Technical Reports Server (NTRS)
Richie, James E.
1992-01-01
The WISP payload scheduler for a 1995 space transportation system (shuttle flight) will include a large power transmitter on board at a wide range of frequencies. The levels of electromagnetic interference/electromagnetic compatibility (EMI/EMC) must be addressed to insure the safety of the shuttle crew. This report is concerned with the simulation and experimental verification of EMI/EMC for the WISP payload in the shuttle cargo bay. The simulations have been carried out using the method of moments for both thin wires and patches to stimulate closed solids. Data obtained from simulation is compared with experimental results. An investigation of the accuracy of the modeling approach is also included. The report begins with a description of the WISP experiment. A description of the model used to simulate the cargo bay follows. The results of the simulation are compared to experimental data on the input impedance of the WISP antenna with the cargo bay present. A discussion of the methods used to verify the accuracy of the model is shown to illustrate appropriate methods for obtaining this information. Finally, suggestions for future work are provided.
Occupational exposure of personnel operating military radio equipment: measurements and simulation.
Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin
2015-09-01
Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards.
NASA Astrophysics Data System (ADS)
Bornand, Garrett Randall
Fire safety is an important part of engineering when human lives are at stake. From everyday homes to spacecraft that can cost hundreds of millions of dollars. The research in this thesis attempts to provide scientific evidence that the apparatus in question successfully simulates microgravity and can possibly replace NASA's current test method for spacecraft fire safety. Flame spread tests were conducted with thermally thick and thermally thin polymethylmethacrylate (PMMA) samples to study flame spread behavior in response to environmental changes. The tests were conducted using the San Diego State University Narrow Channel Apparatus (SDSU NCA) as well as within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS). The SDSU NCA can suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression attained in the NCA allows tests to be conducted in a simulated microgravity environment-a characteristic that NASA's Test 1 lacks since flames present in Test 1 are driven by buoyant flows. The SDSU NCA allows for tests to be conducted at various opposed flow oxidizer velocities, oxygen percent by volume, and total pressure to mimic various spacecraft and habitat atmospheres. Tests were conducted at 1 atm pressure, thin fuel thickness of 50 and 75 microns, thick fuel thickness ranging from 3 mm to 5.6 mm, opposed oxidizer velocity ranging from 10 to 25 cm/s, and oxygen concentration by volume at 21, 30, and 50 percent. The simulated microgravity flame spread results were then compared to true microgravity experiments including; testing conducted on the International Space Station (ISS) under the Burning and Suppression of Solids (BASS) research, NASA's 5.2 second Drop Tower, and Micro-Gravity Laboratory's (MGLAB) 4.5 second Drop Tower. Data was also compared to results found by Michigan State University's NCA. Flame spread results from the SDSU NCA compare closely to that of the other experimental techniques. Additionally, an infrared camera and species concentration sensors were added to the SDSU NCA and initial results are provided. Fire Dynamics Simulator (FDS) was used to model the combustion of PMMA within the SDSU NCA. Both thin and thick fuel beds were simulated and the numerical results were compared to experimental data. The simulation was then used to determine various results that cannot easily be found with experimentation, including how effectively the NCA simulates microgravity under certain environmental conditions, gas and fuel bed temperatures, heat fluxes, species concentrations, pyrolysis rate, and other various data. The simulation was found to give reasonable results and overall flame spread trends, but could be improved upon with further detailed kinetic parameter studies.
Assessment of simulation fidelity using measurements of piloting technique in flight
NASA Technical Reports Server (NTRS)
Clement, W. F.; Cleveland, W. B.; Key, D. L.
1984-01-01
The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.
Simulation and experimental research of 1MWe solar tower power plant in China
NASA Astrophysics Data System (ADS)
Yu, Qiang; Wang, Zhifeng; Xu, Ershu
2016-05-01
The establishment of a reliable simulation system for a solar tower power plant can greatly increase the economic and safety performance of the whole system. In this paper, a dynamic model of the 1MWe Solar Tower Power Plant at Badaling in Beijing is developed based on the "STAR-90" simulation platform, including the heliostat field, the central receiver system (water/steam), etc. The dynamic behavior of the global CSP plant can be simulated. In order to verify the validity of simulation system, a complete experimental process was synchronously simulated by repeating the same operating steps based on the simulation platform, including the locations and number of heliostats, the mass flow of the feed water, etc. According to the simulation and experimental results, some important parameters are taken out to make a deep comparison. The results show that there is good alignment between the simulations and the experimental results and that the error range can be acceptable considering the error of the models. In the end, a comprehensive and deep analysis on the error source is carried out according to the comparative results.
The Gas Distribution in the Outer Regions of Galaxy Clusters
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, L.; Gastaldello, F.
2012-01-01
Aims. We present our analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We have exploited the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius, We stacked the density profiles to detect a signal beyond T200 and measured the typical density and scatter in cluster outskirts. We also computed the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compared our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict density profiles that are too steep, whereas runs including additional physics and/ or treating gas clumping agree better with the observed gas distribution. We report high-confidence detection of a systematic difference between cool-core and non cool-core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only small differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the ENZO simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior agrees more closely with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and consideration of gas clumping is required to construct realistic models of the outer regions of clusters.
The Gas Distribution in Galaxy Cluster Outer Regions
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Laue, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.
2012-01-01
Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior is in better agreement with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and taking into account gas clumping is required to construct realistic models of cluster outer regions.
Walker, A M; Applegate, C; Pfau, T; Sparkes, E L; Wilson, A M; Witte, T H
2016-10-03
Movement of a racehorse simulator differs to that of a real horse, but the effects of these differences on jockey technique have not been evaluated. We quantified and compared the kinematics and kinetics of jockeys during gallop riding on a simulator and real horses. Inertial measurement units were attached mid-shaft to the long bones of six jockeys and the sacrum of the horse or simulator. Instrumented stirrups were used to measure force. Data were collected during galloping on a synthetic gallop or while riding a racehorse simulator. Jockey kinematics varied more on a real horse compared to the simulator. Greater than double the peak stirrup force was recorded during gallop on real horses compared to the simulator. On the simulator stirrup forces were symmetrical, whereas on a real horse peak forces were higher on the opposite side to the lead limb. Asymmetric forces and lateral movement of the horse and jockey occurs away from the side of the lead leg, likely a result of horse trunk roll. Jockeys maintained a more upright trunk position on a real horse compared to simulator, with no change in pitch. The feet move in phase with the horse and simulator exhibiting similar magnitude displacements in all directions. In contrast the pelvis was in phase with the horse and simulator in the dorso-ventral and medio-lateral axes while a phase shift of 180° was seen in the cranio-caudal direction indicating an inverted pendulum action of the jockey. Copyright © 2016 Elsevier Ltd. All rights reserved.
Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids
NASA Technical Reports Server (NTRS)
Housman, Jeffrey A.; Kiris, Cetin
2016-01-01
Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.
ERIC Educational Resources Information Center
Bazaldua, Diego A. Luna; Lee, Young-Sun; Keller, Bryan; Fellers, Lauren
2017-01-01
The performance of various classical test theory (CTT) item discrimination estimators has been compared in the literature using both empirical and simulated data, resulting in mixed results regarding the preference of some discrimination estimators over others. This study analyzes the performance of various item discrimination estimators in CTT:…
Hill, Mary C.
1988-01-01
Simulated results of the coupled freshwater-saltwater sharp interface and convective-dispersive numerical models are compared by using steady-state cross-sectional simulations. The results indicate that in some aquifers the calculated sharp interface is located further landward than would be expected.
Comparison of different types of medium scale field rainfall simulators
NASA Astrophysics Data System (ADS)
Dostál, Tomáš; Strauss, Peter; Schindewolf, Marcus; Kavka, Petr; Schmidt, Jürgen; Bauer, Miroslav; Neumann, Martin; Kaiser, Andreas; Iserloh, Thomas
2015-04-01
Rainfall simulators are used in numerous experiments to study runoff and soil erosion characteristics. However, they usually differ in their construction details, rainfall generation, plot size and other technical parameters. As field experiments using medium to large scale rainfall simulators (plot length 3 - 8 m) are very much time and labor consuming, close cooperation of individual teams and comparability of results is highly desirable to enlarge the database of results. Two experimental campaigns were organized to compare three field rainfall simulators of similar scale (plot size), but with different technical parameters. The results were then compared, to identify parameters that are crucial for soil loss and surface runoff formation and test if results from individual devices can be reliably compared. The rainfall simulators compared were: field rainfall simulator of CTU Prague (the Czech Republic) (Kavka et al., 2012; EGU2015-11025), field simulator of BAW (Austria) (Strauss et al., 2002) and field simulator of TU Bergakademie Freiberg (Germany) (Schindewolf & Schmidt 2012). The device of CTU Prague is usually applied to a plot size of 9,5 x 2 m employing 4 nozzles SS Full Jet 40WSQ mounted on folding arm, working pressure is 0.8 bar, height of nozzles is 2.65 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The rainfall simulator of BAW is constructed as a modular system, which is usually applied for a length of 5 m (area 2 x 5 m), using 6 nozzles SS Full Jet 40WSQ. Usual working pressure is 0.25 bar. Elevation of nozzles is 2.6 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The device of TU Bergakademie Freiberg is also standard modular system, working usually with a plot size of 3 x 1 m, using 3 oscillating VeeJet 80/100 nozzles with an usual operating pressure of 0.5 bar. Intensity is regulated by the frequency of sweeps above the experimental plot. Comparison was done during two independent campaigns, where always two devices were present. Rainfall intensity for the experiments varied between 40 to 60 mm/h. Mutual comparison was carried out between the CTU Prague and TU Freiberg RSs at plot size of 3 x 1 m and Between CTU Prague and BAW RSs at plot size of 5 x 2 m. In general, the experiments revealed a significant effect of potential heterogeneities at the experimental plots and an effect of raindrop energy on both surface runoff formation and mainly soil loss. Therefore, coordination of methodology of the experiments and careful control of initial conditions seem to be a crucial point for comparability of results from individual devices. Detailed results will be presented on the poster. The research has been supported by the research grants SGS14/180/OHK1/3T/11, QJ1230056 and 7AMB14AT020. References Kavka, P., Davidová, T., Janotová, B., Bauer, M. a Dostál, T. 2012. Mobilní dešťový simulátor.(in Czech), Stavební obzor. 8, 2012. Schindewolf, M. & J. Schmidt (2012): Parameterization of the EROSION 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation, Catena 91, pp. 47-55, DOI: 10.1016/j.catena.2011.01.007 Strauss P., J.Pitty, M.Pfeffer, A. Mentler (2000): Rainfall Simulation for Outdoor Experiments. In: P. Jamet, J. Cornejo(eds.): Current research methods to assess the environmental fate of pesticides. pp. 329-333, INRA Editions.
Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla
2016-11-01
Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.
NASA Technical Reports Server (NTRS)
VanKeuls, Fred W.; Chevalier, Chris T.; Miranda, Felix A.; Carlson, C. M.; Rivkin, T. V.; Parilla, P. A.; Perkins, J. D.; Ginley, D. S.
2001-01-01
Experimental measurements of coplanar waveguide (CPW) circuits atop thin films of ferroelectric Ba(x)Sr(1-x)TiO3 (BST) were made as a function bias from 0 to 200 V and frequency from 0.045 to 20 GHz. The resulting phase shifts are compared with method of moments electromagnetic simulations and a conformal mapping analysis to determine the dielectric constant of the BST films. Based on the correlation between the experimental and the modeled data, an analysis of the extent to which the electromagnetic simulators provide reliable values for the dielectric constant of the ferroelectric in these structures has been performed. In addition, to determine how well the modeled data compare with experimental data, the dielectric constant values were also compared to low frequency measurements of interdigitated capacitor circuits on the same films. Results of these comparisons will be presented.
M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U
NASA Astrophysics Data System (ADS)
Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam
2013-10-01
Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.
Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements
Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.
2016-01-01
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037
Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.
2009-01-01
Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.
NASA Astrophysics Data System (ADS)
Cassak, P. A.; Genestreti, K. J.; Burch, J. L.; Phan, T.-D.; Shay, M. A.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Ergun, R. E.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.
2017-11-01
We use theory and simulations to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations (Genestreti et al., 2017). For weak guide fields, energy conversion is maximum on the magnetospheric side of the X line, midway between the X line and electron stagnation point. As the guide field increases, the electron stagnation point gets closer to the X line, and energy conversion occurs closer to the electron stagnation point. We motivate one possible nonrigorous approach to extend the theory of the stagnation point location to include a guide field. The predictions are compared to two-dimensional particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three events observed with Magnetospheric Multiscale (MMS). The predictions agree reasonably well with the simulation results, capturing trends with the guide field. The theory correctly predicts that the X line and stagnation points approach each other as the guide field increases. The results are compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and a global resistive-magnetohydrodynamics simulation of the 16 October 2015 event. The PIC simulation results agree well with the global observations and simulation but differ in the strong electric fields and energy conversion rates found in MMS observations. The observational, theoretical, and numerical results suggest that the strong electric fields observed by MMS do not represent a steady global reconnection rate.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lau, W.; Baker, R.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Lau, W.; Baker, R. D.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.
Cascade Defect Evolution Processes: Comparison of Atomistic Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Haixuan; Stoller, Roger E; Osetskiy, Yury N
2013-11-01
Determining the defect evolution beyond the molecular dynamics (MD) time scale is critical in bridging the gap between atomistic simulations and experiments. The recently developed self-evolving atomistic kinetic Monte Carlo (SEAKMC) method provides new opportunities to simulate long-term defect evolution with MD-like fidelity. In this study, SEAKMC is applied to investigate the cascade defect evolution in bcc iron. First, the evolution of a vacancy rich region is simulated and compared with results obtained using autonomous basin climbing (ABC) +KMC and kinetic activation-relaxation technique (kART) simulations. Previously, it is found the results from kART are orders of magnitude faster than ABC+KMC.more » The results obtained from SEAKMC are similar to kART but the time predicted is about one order of magnitude faster than kART. The fidelity of SEAKMC is confirmed by statistically relevant MD simulations at multiple higher temperatures, which proves that the saddle point sampling is close to complete in SEAKMC. The second is the irradiation-induced formation of C15 Laves phase nano-size defect clusters. In contrast to previous studies, which claim the defects can grow by capturing self-interstitials, we found these highly stable clusters can transform to <111> glissile configuration on a much longer time scale. Finally, cascade-annealing simulations using SEAKMC is compared with traditional object KMC (OKMC) method. SEAKMC predicts substantially fewer surviving defects compared with OKMC. The possible origin of this difference is discussed and a possible way to improve the accuracy of OKMC based on SEAKMC results is outlined. These studies demonstrate the atomistic fidelity of SEAKMC in comparison with other on-the-fly KMC methods and provide new information on long-term defect evolution in iron.« less
Structure of Sphingomyelin Bilayers: A Simulation Study
Chiu, S. W.; Vasudevan, S.; Jakobsson, Eric; Mashl, R. Jay; Scott, H. Larry
2003-01-01
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC. PMID:14645055
Evaluation of Glyceraldehyde Under Simulated Prebiotic Conditions
NASA Astrophysics Data System (ADS)
Aguilar-Ovando, E.; Buhse, T.; Negrón-Mendoza, A.
2017-07-01
The aim of this work is to compare the behavior under irradiation of solid and aqueous DL-glyceraldehyde simulating prebiotic conditions. The results show the formation of sugar-like products of prebiotic significance as function of irradiation dose.
Using Monte Carlo Simulation to Prioritize Key Maritime Environmental Impacts of Port Infrastructure
NASA Astrophysics Data System (ADS)
Perez Lespier, L. M.; Long, S.; Shoberg, T.
2016-12-01
This study creates a Monte Carlo simulation model to prioritize key indicators of environmental impacts resulting from maritime port infrastructure. Data inputs are derived from LandSat imagery, government databases, and industry reports to create the simulation. Results are validated using subject matter experts and compared with those returned from time-series regression to determine goodness of fit. The Port of Prince Rupert, Canada is used as the location for the study.
Toothguide Trainer tests with color vision deficiency simulation monitor.
Borbély, Judit; Varsányi, Balázs; Fejérdy, Pál; Hermann, Péter; Jakstat, Holger A
2010-01-01
The aim of this study was to evaluate whether simulated severe red and green color vision deficiency (CVD) influenced color matching results and to investigate whether training with Toothguide Trainer (TT) computer program enabled better color matching results. A total of 31 color normal dental students participated in the study. Every participant had to pass the Ishihara Test. Participants with a red/green color vision deficiency were excluded. A lecture on tooth color matching was given, and individual training with TT was performed. To measure the individual tooth color matching results in normal and color deficient display modes, the TT final exam was displayed on a calibrated monitor that served as a hardware-based method of simulating protanopy and deuteranopy. Data from the TT final exams were collected in normal and in severe red and green CVD-simulating monitor display modes. Color difference values for each participant in each display mode were computed (∑ΔE(ab)(*)), and the respective means and standard deviations were calculated. The Student's t-test was used in statistical evaluation. Participants made larger ΔE(ab)(*) errors in severe color vision deficient display modes than in the normal monitor mode. TT tests showed significant (p<0.05) difference in the tooth color matching results of severe green color vision deficiency simulation mode compared to normal vision mode. Students' shade matching results were significantly better after training (p=0.009). Computer-simulated severe color vision deficiency mode resulted in significantly worse color matching quality compared to normal color vision mode. Toothguide Trainer computer program improved color matching results. Copyright © 2010 Elsevier Ltd. All rights reserved.
Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations
NASA Astrophysics Data System (ADS)
Fujimoto, Keiichiro; Fujii, Kozo
Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.
Whole Atmosphere Simulation of Anthropogenic Climate Change
NASA Astrophysics Data System (ADS)
Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.
2018-02-01
We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.
Stiegler, Marjorie; Hobbs, Gene; Martinelli, Susan M; Zvara, David; Arora, Harendra; Chen, Fei
2018-01-01
Background Simulation is an effective method for creating objective summative assessments of resident trainees. Real-time assessment (RTA) in simulated patient care environments is logistically challenging, especially when evaluating a large group of residents in multiple simulation scenarios. To date, there is very little data comparing RTA with delayed (hours, days, or weeks later) video-based assessment (DA) for simulation-based assessments of Accreditation Council for Graduate Medical Education (ACGME) sub-competency milestones. We hypothesized that sub-competency milestone evaluation scores obtained from DA, via audio-video recordings, are equivalent to the scores obtained from RTA. Methods Forty-one anesthesiology residents were evaluated in three separate simulated scenarios, representing different ACGME sub-competency milestones. All scenarios had one faculty member perform RTA and two additional faculty members perform DA. Subsequently, the scores generated by RTA were compared with the average scores generated by DA. Variance component analysis was conducted to assess the amount of variation in scores attributable to residents and raters. Results Paired t-tests showed no significant difference in scores between RTA and averaged DA for all cases. Cases 1, 2, and 3 showed an intraclass correlation coefficient (ICC) of 0.67, 0.85, and 0.50 for agreement between RTA scores and averaged DA scores, respectively. Analysis of variance of the scores assigned by the three raters showed a small proportion of variance attributable to raters (4% to 15%). Conclusions The results demonstrate that video-based delayed assessment is as reliable as real-time assessment, as both assessment methods yielded comparable scores. Based on a department’s needs or logistical constraints, our findings support the use of either real-time or delayed video evaluation for assessing milestones in a simulated patient care environment. PMID:29736352
Werner, Joel Benjamin
2008-01-01
Objectives To assess whether audio taping simulated patient interactions can improve the reliability of manually documented data and result in more accurate assessments. Methods Over a 3-month period, 1340 simulated patient visits were made to community pharmacies. Following the encounters, data gathered by the simulated patient were relayed to a coordinator who completed a rating form. Data recorded on the forms were later compared to an audiotape of the interaction. Corrections were tallied and reasons for making them were coded. Results Approximately 10% of cases required corrections, resulting in a 10%-20% modification in the pharmacy's total score. The difference between postcorrection and precorrection scores was significant. Conclusions Audio taping simulated patient visits enhances data integrity. Most corrections were required because of the simulated patients' poor recall abilities. PMID:19325956
Empirical models of wind conditions on Upper Klamath Lake, Oregon
Buccola, Norman L.; Wood, Tamara M.
2010-01-01
Upper Klamath Lake is a large (230 square kilometers), shallow (mean depth 2.8 meters at full pool) lake in southern Oregon. Lake circulation patterns are driven largely by wind, and the resulting currents affect the water quality and ecology of the lake. To support hydrodynamic modeling of the lake and statistical investigations of the relation between wind and lake water-quality measurements, the U.S. Geological Survey has monitored wind conditions along the lakeshore and at floating raft sites in the middle of the lake since 2005. In order to make the existing wind archive more useful, this report summarizes the development of empirical wind models that serve two purposes: (1) to fill short (on the order of hours or days) wind data gaps at raft sites in the middle of the lake, and (2) to reconstruct, on a daily basis, over periods of months to years, historical wind conditions at U.S. Geological Survey sites prior to 2005. Empirical wind models based on Artificial Neural Network (ANN) and Multivariate-Adaptive Regressive Splines (MARS) algorithms were compared. ANNs were better suited to simulating the 10-minute wind data that are the dependent variables of the gap-filling models, but the simpler MARS algorithm may be adequate to accurately simulate the daily wind data that are the dependent variables of the historical wind models. To further test the accuracy of the gap-filling models, the resulting simulated winds were used to force the hydrodynamic model of the lake, and the resulting simulated currents were compared to measurements from an acoustic Doppler current profiler. The error statistics indicated that the simulation of currents was degraded as compared to when the model was forced with observed winds, but probably is adequate for short gaps in the data of a few days or less. Transport seems to be less affected by the use of the simulated winds in place of observed winds. The simulated tracer concentration was similar between model results when simulated winds were used to force the model, and when observed winds were used to force the model, and differences between the two results did not accumulate over time.
Framework for modeling urban restoration resilience time in the aftermath of an extreme event
Ramachandran, Varun; Long, Suzanna K.; Shoberg, Thomas G.; Corns, Steven; Carlo, Héctor
2015-01-01
The impacts of extreme events continue long after the emergency response has terminated. Effective reconstruction of supply-chain strategic infrastructure (SCSI) elements is essential for postevent recovery and the reconnectivity of a region with the outside. This study uses an interdisciplinary approach to develop a comprehensive framework to model resilience time. The framework is tested by comparing resilience time results for a simulated EF-5 tornado with ground truth data from the tornado that devastated Joplin, Missouri, on May 22, 2011. Data for the simulated tornado were derived for Overland Park, Johnson County, Kansas, in the greater Kansas City, Missouri, area. Given the simulated tornado, a combinatorial graph considering the damages in terms of interconnectivity between different SCSI elements is derived. Reconstruction in the aftermath of the simulated tornado is optimized using the proposed framework to promote a rapid recovery of the SCSI. This research shows promising results when compared with the independent quantifiable data obtained from Joplin, Missouri, returning a resilience time of 22 days compared with 25 days reported by city and state officials.
Comparing multiple turbulence restoration algorithms performance on noisy anisoplanatic imagery
NASA Astrophysics Data System (ADS)
Rucci, Michael A.; Hardie, Russell C.; Dapore, Alexander J.
2017-05-01
In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a block matching method with restoration filter. These algorithms were chosen because they incorporate different approaches and processing techniques. The results quantitatively show how well the algorithms are able to restore the simulated degraded imagery.
Multi-Fluid Simulations of Field Reversed Configuration Formation
NASA Astrophysics Data System (ADS)
Sousa, Eder; Martin, Robert
2017-10-01
The use of field reversed configuration (FRC) have been studied extensively for fusion application but here we investigate them for propulsion purposes. FRCs have the potential to produce highly variable thrust and specific impulse using different gases as propellant. Aspects of the FRC formation physics, using a rotating magnetic field (RMF) at low power, are simulated using a multi-fluid plasma model. Results are compared with experimental observations with emphasis in the development of instabilities and robustness of the field reversal. The use of collisional radiative models are used to help compare experiment versus simulation results. Distribution A: Approved for public release; distribution unlimited; Clearance No. 17445. This work is supported by the Air Force Office of Scientific Research Grant Number 17RQCOR465.
NASA Astrophysics Data System (ADS)
Anderson, Brian J.; Korth, Haje; Welling, Daniel T.; Merkin, Viacheslav G.; Wiltberger, Michael J.; Raeder, Joachim; Barnes, Robin J.; Waters, Colin L.; Pulkkinen, Antti A.; Rastaetter, Lutz
2017-02-01
Two of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4-5 April 2010 and 5-6 August 2011 storms. The four models are the Weimer (2005b) field-aligned current statistical model, the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real-time specification.
Jason Forthofer; Bret Butler
2007-01-01
A computational fluid dynamics (CFD) model and a mass-consistent model were used to simulate winds on simulated fire spread over a simple, low hill. The results suggest that the CFD wind field could significantly change simulated fire spread compared to traditional uniform winds. The CFD fire spread case may match reality better because the winds used in the fire...
Laser fractional photothermolysis of the skin: numerical simulation of microthermal zones.
Marqa, Mohamad Feras; Mordon, Serge
2014-04-01
Laser Fractional Photothermolysis (FP) is one of the innovative techniques for skin remodeling and resurfacing. During treatment, the control of the Microscopic Thermal Zones' (MTZs) dimensions versus pulse energy requires detailed knowledge of the various parameters governing the heat transfer process. In this study, a mathematical model is devised to simulate the effect of pulse energy variations on the dimensions of MTZs. Two series of simulations for ablative (10.6 μm CO2) and non-ablative (1.550 μm Er:Glass) lasers systems were performed. In each series, simulations were carried for the following pulses energies: 5, 10, 15, 20, 25, 30, 35, and 40 mJ. Results of simulations are validated by histological analysis images of MTZs sections reported in works by Hantash et al. and Bedi et al. MTZs dimensions were compared between histology and those achieved using our simulation model using fusion data technique for both ablative FP and non-ablative FP treatment methods. Depths and widths from simulations are usually deeper (21 ± 2%) and wider (12 ± 2%) when compared with histological analysis data. When accounting for the shrinkage effect of excision of cutaneous tissues, a good correlation can be established between the simulation and the histological analysis results.
How Much Should You Pay for that Box
1974-10-01
1974. The paper is concerned with a general problem "hat has been brought into focus for the author by the results of several different lines of...results fiom simulator to aircraft. For example, experiments involving flight attitude and steering guidance displays show that different simulator...motion conditions not only can result in absolute differences in per- formance level when compared with flight performance, but also can result in
Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.
2015-01-01
This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2015-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit Reynolds stress model. Fortunately, the numerical error assessment at most of the axial stations used to compare with measurements clearly indicated that the scale-resolving simulations were improving (i.e. approaching the measured values) as the grid was refined. Hence, unlike a Reynolds-averaged simulation, the hybrid approach provides a mechanism to the end-user for reducing model-form errors.
Differential die-away instrument: Report on comparison of fuel assembly experiments and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsell, Alison Victoria; Henzl, Vladimir; Swinhoe, Martyn Thomas
2015-01-14
Experimental results of the assay of mock-up (fresh) fuel with the differential die-away (DDA) instrument were compared to the Monte Carlo N-Particle eXtended (MCNPX) simulation results. Most principal experimental observables, the die-away time and the in tegral of the DDA signal in several time domains, have been found in good agreement with the MCNPX simulation results. The remaining discrepancies between the simulation and experimental results are likely due to small differences between the actual experimental setup and the simulated geometry, including uncertainty in the DT neutron generator yield. Within this report we also present a sensitivity study of the DDAmore » instrument which is a complex and sensitive system and demonstrate to what degree it can be impacted by geometry, material composition, and electronics performance.« less
Predicting mesoscale microstructural evolution in electron beam welding
Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; ...
2016-03-16
Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less
A novel, highly efficient cavity backshort design for far-infrared TES detectors
NASA Astrophysics Data System (ADS)
Bracken, C.; de Lange, G.; Audley, M. D.; Trappe, N.; Murphy, J. A.; Gradziel, M.; Vreeling, W.-J.; Watson, D.
2018-03-01
In this paper we present a new cavity backshort design for TES (transition edge sensor) detectors which will provide increased coupling of the incoming astronomical signal to the detectors. The increased coupling results from the improved geometry of the cavities, where the geometry is a consequence of the proposed chemical etching manufacturing technique. Using a number of modelling techniques, predicted results of the performance of the cavities for frequencies of 4.3-10 THz are presented and compared to more standard cavity designs. Excellent optical efficiency is demonstrated, with improved response flatness across the band. In order to verify the simulated results, a scaled model cavity was built for testing at the lower W-band frequencies (75-100 GHz) with a VNA system. Further testing of the scale model at THz frequencies was carried out using a globar and bolometer via an FTS measurement set-up. The experimental results are presented, and compared to the simulations. Although there is relatively poor comparison between simulation and measurement at some frequencies, the discrepancies are explained by means of higher-mode excitation in the measured cavity which are not accounted for in the single-mode simulations. To verify this assumption, a better behaved cylindrical cavity is simulated and measured, where excellent agreement is demonstrated in those results. It can be concluded that both the simulations and the supporting measurements give confidence that this novel cavity design will indeed provide much-improved optical coupling for TES detectors in the far-infrared/THz band.
Use NU-WRF and GCE Model to Simulate the Precipitation Processes During MC3E Campaign
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Matsui, Toshi; Li, Xiaowen; Zeng, Xiping; Peter-Lidard, Christa; Hou, Arthur
2012-01-01
One of major CRM approaches to studying precipitation processes is sometimes referred to as "cloud ensemble modeling". This approach allows many clouds of various sizes and stages of their lifecycles to be present at any given simulation time. Large-scale effects derived from observations are imposed into CRMs as forcing, and cyclic lateral boundaries are used. The advantage of this approach is that model results in terms of rainfall and QI and Q2 usually are in good agreement with observations. In addition, the model results provide cloud statistics that represent different types of clouds/cloud systems during their lifetime (life cycle). The large-scale forcing derived from MC3EI will be used to drive GCE model simulations. The model-simulated results will be compared with observations from MC3E. These GCE model-simulated datasets are especially valuable for LH algorithm developers. In addition, the regional scale model with very high-resolution, NASA Unified WRF is also used to real time forecast during the MC3E campaign to ensure that the precipitation and other meteorological forecasts are available to the flight planning team and to interpret the forecast results in terms of proposed flight scenarios. Post Mission simulations are conducted to examine the sensitivity of initial and lateral boundary conditions to cloud and precipitation processes and rainfall. We will compare model results in terms of precipitation and surface rainfall using GCE model and NU-WRF
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang
2017-08-01
The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).
NASA Astrophysics Data System (ADS)
Vater, Stefan; Behrens, Jörn
2017-04-01
Simulations of historic tsunami events such as the 2004 Sumatra or the 2011 Tohoku event are usually initialized using earthquake sources resulting from inversion of seismic data. Also, other data from ocean buoys etc. is sometimes included in the derivation of the source model. The associated tsunami event can often be well simulated in this way, and the results show high correlation with measured data. However, it is unclear how the derived source model compares to the particular earthquake event. In this study we use the results from dynamic rupture simulations obtained with SeisSol, a software package based on an ADER-DG discretization solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. The tsunami model is based on a second-order Runge-Kutta discontinuous Galerkin (RKDG) scheme on triangular grids and features a robust wetting and drying scheme for the simulation of inundation events at the coast. Adaptive mesh refinement enables the efficient computation of large domains, while at the same time it allows for high local resolution and geometric accuracy. The results are compared to measured data and results using earthquake sources based on inversion. With the approach of using the output of actual dynamic rupture simulations, we can estimate the influence of different earthquake parameters. Furthermore, the comparison to other source models enables a thorough comparison and validation of important tsunami parameters, such as the runup at the coast. This work is part of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, which aims at an improved understanding of the coupling between the earthquake and the generated tsunami event.
Global Response to Local Ionospheric Mass Ejection
NASA Technical Reports Server (NTRS)
Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.
2010-01-01
We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.
Simulation of Laser Induced Thermal Damage in Nd:YVO4 Crystals
NASA Astrophysics Data System (ADS)
Nagi, Richie
Neodymium-doped yttrium orthovanadate (Nd:YVO4) is a commonly used gain medium in Diode Pumped Solid State (DPSS) lasers, but high heat loading of Nd:YVO4 at high pump powers (≥ 5 W) leads to thermal distortions and crystal fracture, which limits the utility of Nd:YVO 4 for high power applications. In this thesis, a Nd:YVO4 crystal suffered thermal damage during experiments for investigating the optical gain characteristics of the crystal. This thesis examines the thermal damage mechanisms in detail. Principally, laser induced melting, as well as laser induced thermal stress fracture were studied, all in the absence of stimulated emission in the crystal. The optical system for coupling the pump laser light into the crystal was first simulated in Zemax, an optical design software, and the simulations were then compared to the experimental coupling efficiency results, which were found to be in agreement. The simulations for the laser coupling system were then used in conjunction with LASCAD, a finite element analysis software, to obtain the temperatures inside the crystal, as a function of optical power coupled into the crystal. The temperature simulations were then compared to the experimental results, which were in excellent agreement, and the temperature simulations were then generalized to other crystal geometries and Nd doping levels. Zemax and LASCAD were also used to simulate the thermal stress in the crystal as a function of the coupled optical power, and the simulations were compared to experiments, both of which were found to be in agreement. The thermal stress simulations were then generalized to different crystal geometries and Nd doping levels as well.
Nonlinear vs. linear biasing in Trp-cage folding simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka
2015-03-21
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energymore » minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.« less
CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor
NASA Astrophysics Data System (ADS)
Gelves, R.
2013-10-01
In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.
Present-day Circum-Antarctic Simulations using the POPSICLES Coupled Ice Sheet-Ocean Model
NASA Astrophysics Data System (ADS)
Asay-Davis, X.; Martin, D. F.; Price, S. F.; Maltrud, M. E.; Collins, W.
2014-12-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1o (~5 km) ocean resolution and with adaptive ice-sheet model resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal trends in submarine melting from several Antarctic regions. Finally, we explore the influence on basal melting and system dynamics resulting from two different choices of climate forcing: a "normal-year" climatology and the CORE v. 2 forcing data (Large and Yeager 2008).POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3D; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).A companion presentation, "Response of the Antarctic Ice Sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model" in session C024 covers the ice-sheet response to these melt rates in the coupled simulation. The figure shows eddy activity in the vertically integrated (barotropic) velocity nearly six years into a POPSICLES simulation of the Antarctic region.
Comparing Simulated and Theoretical Sampling Distributions of the U3 Person-Fit Statistic.
ERIC Educational Resources Information Center
Emons, Wilco H. M.; Meijer, Rob R.; Sijtsma, Klaas
2002-01-01
Studied whether the theoretical sampling distribution of the U3 person-fit statistic is in agreement with the simulated sampling distribution under different item response theory models and varying item and test characteristics. Simulation results suggest that the use of standard normal deviates for the standardized version of the U3 statistic may…
Some issues in the simulation of two-phase flows: The relative velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gräbel, J.; Hensel, S.; Ueberholz, P.
In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, B.; Mendillo, M.
1981-04-30
A three-dimensional model of the ionosphere was developed including chemical reactions and neutral and plasma transport. The model uses Finite Element Simulation to simulate ionospheric modification rather than solving a set of differential equations. The initial conditions of the Los Alamos Scientific Laboratory experiments, Lagopedo Uno and Dos, were input to the model, and these events were simulated. Simulation results were compared to ground and rocketborne electron-content measurements. A simulation of the transport of released SF6 was also made.
Mathematical Simulation of Drying Process of Fibrous Material
NASA Astrophysics Data System (ADS)
Blejchař, Tomáš; Raška, Jiří; Jablonská, Jana
2018-06-01
The article describes mathematical simulation of flowing air through porous zone and water vaporisation from mentioned porous area which actually represents dried fibrous material - cotton towel. Simulation is based on finite volume method. Wet towel is placed in pipe and hot air flow through the towel. Water from towel is evaporated. Simulation of airflow through porous element is described first. Eulerian multiphase model is then used for simulation of water vaporisation from porous medium. Results of simulation are compared with experiment. Ansys Fluent 13.0 was used for calculation.
NASA Technical Reports Server (NTRS)
Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.
1980-01-01
NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.
Measuring driver responses at railway level crossings.
Tey, Li-Sian; Ferreira, Luis; Wallace, Angela
2011-11-01
Railway level crossings are amongst the most complex of road safety control systems, due to the conflicts between road vehicles and rail infrastructure, trains and train operations. Driver behaviour at railway crossings is the major collision factor. The main objective of the present paper was to evaluate the existing conventional warning devices in relation to driver behaviour. The common conventional warning devices in Australia are a stop sign (passive), flashing lights and a half boom-barrier with flashing lights (active). The data were collected using two approaches, namely: field video recordings at selected sites and a driving simulator in a laboratory. This paper describes and compares the driver response results from both the field survey and the driving simulator. The conclusion drawn is that different types of warning systems resulted in varying driver responses at crossings. The results showed that on average driver responses to passive crossings were poor when compared to active ones. The field results were consistent with the simulator results for the existing conventional warning devices and hence they may be used to calibrate the simulator for further evaluation of alternative warning systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Herrmann, Kimberly A.; Kory, Carol L.; Wilson, Jeffrey D.; Cross, Andrew W.; Santana , Samuel
2003-01-01
The electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS) was used to compute the cold-test parameters - frequency-phase dispersion, on-axis impedance, and attenuation - for a traveling-wave tube (TWT) slow-wave circuit. The results were compared to experimental data, as well as to results from MAFIA, another three-dimensional simulation code from CST currently used at the NASA Glenn Research Center (GRC). The strong agreement between cold-test parameters simulated with MWS and those measured experimentally demonstrates the potential of this code to reduce the time and cost of TWT development.
Design and simulation of ion optics for ion sources for production of singly charged ions
NASA Astrophysics Data System (ADS)
Zelenak, A.; Bogomolov, S. L.
2004-05-01
During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.
Simulation of SEU Cross-sections using MRED under Conditions of Limited Device Information
NASA Technical Reports Server (NTRS)
Lauenstein, J. M.; Reed, R. A.; Weller, R. A.; Mendenhall, M. H.; Warren, K. M.; Pellish, J. A.; Schrimpf, R. D.; Sierawski, B. D.; Massengill, L. W.; Dodd, P. E.;
2007-01-01
This viewgraph presentation reviews the simulation of Single Event Upset (SEU) cross sections using the membrane electrode assembly (MEA) resistance and electrode diffusion (MRED) tool using "Best guess" assumptions about the process and geometry, and direct ionization, low-energy beam test results. This work will also simulate SEU cross-sections including angular and high energy responses and compare the simulated results with beam test data for the validation of the model. Using MRED, we produced a reasonably accurate upset response model of a low-critical charge SRAM without detailed information about the circuit, device geometry, or fabrication process
NASA Astrophysics Data System (ADS)
Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.
2014-06-01
In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.
Li, Min; Zhang, John Z H
2017-02-14
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Protein simulation using coarse-grained two-bead multipole force field with polarizable water models
NASA Astrophysics Data System (ADS)
Li, Min; Zhang, John Z. H.
2017-02-01
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Risk/benefit assessment of delayed action concept for rail inspection
DOT National Transportation Integrated Search
1999-02-01
A Monte Carlo simulation of certain aspects of rail inspection is presented. The simulation is used to investigate alternative practices in railroad rail inspection programs. Results are presented to compare the present practice of immediately repair...
Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units
NASA Astrophysics Data System (ADS)
Bard, C.; Dorelli, J.
2017-12-01
The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.
Girod, Sabine; Schvartzman, Sara C; Gaudilliere, Dyani; Salisbury, Kenneth; Silva, Rebeka
2016-01-01
Computer-assisted surgical (CAS) planning tools are available for craniofacial surgery, but are usually based on computer-aided design (CAD) tools that lack the ability to detect the collision of virtual objects (i.e., fractured bone segments). We developed a CAS system featuring a sense of touch (haptic) that enables surgeons to physically interact with individual, patient-specific anatomy and immerse in a three-dimensional virtual environment. In this study, we evaluated initial user experience with our novel system compared to an existing CAD system. Ten surgery resident trainees received a brief verbal introduction to both the haptic and CAD systems. Users simulated mandibular fracture reduction in three clinical cases within a 15 min time limit for each system and completed a questionnaire to assess their subjective experience. We compared standard landmarks and linear and angular measurements between the simulated results and the actual surgical outcome and found that haptic simulation results were not significantly different from actual postoperative outcomes. In contrast, CAD results significantly differed from both the haptic simulation and actual postoperative results. In addition to enabling a more accurate fracture repair, the haptic system provided a better user experience than the CAD system in terms of intuitiveness and self-reported quality of repair.
NASA Astrophysics Data System (ADS)
Edwards, J. D.; Dreike, P.; Smith, M. W.; Clemenson, M. D.; Zollweg, J. D.
2015-12-01
We describe developments to a 1-D cylindrical, radiation-hydrodynamics model of a lightning return stroke that simulates lighting spectra with 1 Angstrom resolution in photon wavelength. In previous calculations we assumed standard density air in the return stroke channel and the resulting optical spectrum was that of an optically thick emitter, unlike measured spectra that are optically thin. In this work, we improve our model by initializing our simulation assuming that the leader-heated channel is pre-expanded to a density of 0.01-0.05 ambient and near pressure equilibrium with the surrounding ambient air and by implementing a time-dependent, external heat source to incorporate the effects of continuing current. By doing so, our simulated spectra, illustrated in the attached figure, show strong spectral emission characteristics at wavelengths similar to spectra measured by Orville (1968). In this poster, we describe our model and compare our simulated results with spectra measured by Orville (1968) and Smith (2015). We also use spectroscopic methods to compute physical properties of the plasma channel, e.g. temperature, from Smith's measurements and compare these with our simulated results.
Simulation of root forms using cellular automata model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winarno, Nanang, E-mail: nanang-winarno@upi.edu; Prima, Eka Cahya; Afifah, Ratih Mega Ayu
This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled “A New Kind of Science” discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram’s investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation usedmore » four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.« less
Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki; Himuro, Kazuhiko
2015-04-15
Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitativelymore » consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually superior to SPECT image because of the low background noise. The simulation reveals that the detected photon number in SPECT is comparable to that of PET, but the large fraction (approximately 75%) of scattered and penetration photons contaminates SPECT image. The lower limit of {sup 90}Y detection in SPECT image was approximately 200 kBq/ml, while that in PET image was approximately 100 kBq/ml. Conclusions: By comparing the background noise level and the image concentration profile of both the techniques, PET image quality was determined to be superior to that of bremsstrahlung SPECT. The developed simulation codes will be very useful in the future investigations of PET and bremsstrahlung SPECT imaging of {sup 90}Y.« less
Chung, Tae Nyoung; Kim, Sun Wook; You, Je Sung; Chung, Hyun Soo
2016-01-01
Objective Tube thoracostomy (TT) is a commonly performed intensive care procedure. Simulator training may be a good alternative method for TT training, compared with conventional methods such as apprenticeship and animal skills laboratory. However, there is insufficient evidence supporting use of a simulator. The aim of this study is to determine whether training with medical simulator is associated with faster TT process, compared to conventional training without simulator. Methods This is a simulation study. Eligible participants were emergency medicine residents with very few (≤3 times) TT experience. Participants were randomized to two groups: the conventional training group, and the simulator training group. While the simulator training group used the simulator to train TT, the conventional training group watched the instructor performing TT on a cadaver. After training, all participants performed a TT on a cadaver. The performance quality was measured as correct placement and time delay. Subjects were graded if they had difficulty on process. Results Estimated median procedure time was 228 seconds in the conventional training group and 75 seconds in the simulator training group, with statistical significance (P=0.040). The difficulty grading did not show any significant difference among groups (overall performance scale, 2 vs. 3; P=0.094). Conclusion Tube thoracostomy training with a medical simulator, when compared to no simulator training, is associated with a significantly faster procedure, when performed on a human cadaver. PMID:27752610
Parametric study of graphite foam fins and application in heat exchangers
NASA Astrophysics Data System (ADS)
Collins, Michael
This thesis focuses on the simulation and experimental studies of finned graphite foam extended surfaces to test their heat transfer characteristics and potential applications in condensers. Different fin designs were developed to conduct a parametric study on the thermal effectiveness with respect to thickness, spacing and fin offset angle. Each fin design was computationally simulated to estimate the heat transfer under specific conditions. The simulations showed that this optimal fin configuration could conduct more than 297% the amount of thermal energy as compared to straight aluminum fins. Graphite foam fins were then implemented into a simulation of the condenser system. The condenser was simulated with six different orientations of baffles to examine the incoming vapor and resulting two-phase flow patterns. The simulations showed that using both horizontal and vertical baffling provided the configuration with the highest heat transfer and minimized the bypass regions where the vapor would circumvent the graphite foam. This baffle configuration increased the amount of vapor flow through the inner graphite fins and cold water pipes, which gave this configuration the highest heat transfer. The results from experimental tests using the condenser system confirmed that using three baffles will increase performance consistent with the simulation results. The experimental data showed that the condenser using graphite foam had five times the heat transfer compared to the condenser using only aluminum fins. Incorporating baffles into the condenser using graphite foam enabled this system to conduct nearly ten times more heat transfer than the condenser system which only had aluminum fins without baffles. The results from this research indicate that graphite foam is a far superior material heat transfer enhancement material for heat transfer compared to aluminum used as an extended surface. The longitudinal and horizontal baffles incorporated into the condenser system greatly enhanced the heat transfer because of the increased interaction with the porous graphite foam fins.
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
NASA Astrophysics Data System (ADS)
Chiroux, Robert Charles
The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.
Finite element modeling of ROPS in static testing and rear overturns.
Harris, J R; Mucino, V H; Etherton, J R; Snyder, K A; Means, K H
2000-08-01
Even with the technological advances of the last several decades, agricultural production remains one of the most hazardous occupations in the United States. Death due to tractor rollover is a prime contributor to this hazard. Standards for rollover protective structures (ROPS) performance and certification have been developed by groups such as the Society of Automotive Engineers (SAE) and the American Society of Agricultural Engineers (ASAE) to combat these problems. The current ROPS certification standard, SAE J2194, requires either a dynamic or static testing sequence or both. Although some ROPS manufacturers perform both the dynamic and static phases of SAE J2194 testing, it is possible for a ROPS to be certified for field operation using static testing alone. This research compared ROPS deformation response from a simulated SAE J2194 static loading sequence to ROPS deformation response as a result of a simulated rearward tractor rollover. Finite element analysis techniques for plastic deformation were used to simulate both the static and dynamic rear rollover scenarios. Stress results from the rear rollover model were compared to results from simulated static testing per SAE J2194. Maximum stress values from simulated rear rollovers exceeded maximum stress values recorded during simulated static testing for half of the elements comprising the uprights. In the worst case, the static model underpredicts dynamic model results by approximately 7%. In the best case, the static model overpredicts dynamic model results by approximately 32%. These results suggest the need for additional experimental work to characterize ROPS stress levels during staged overturns and during testing according to the SAE standard.
Simulation of secondary emission calorimeter for future colliders
NASA Astrophysics Data System (ADS)
Yetkin, E. A.; Yetkin, T.; Ozok, F.; Iren, E.; Erduran, M. N.
2018-03-01
We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.
Simulations and experiments on RITA-2 at PSI
NASA Astrophysics Data System (ADS)
Klausen, S. N.; Lefmann, K.; McMorrow, D. F.; Altorfer, F.; Janssen, S.; Lüthy, M.
The cold-neutron triple-axis spectrometer RITA-2 designed and built at Riso National Laboratory was installed at the neutron source SINQ at Paul Scherrer Institute in April/May 2001. In connection with the installation of RITA-2, computer simulations were performed using the neutron ray-tracing package McStas. The simulation results are compared to real experimental results obtained with a powder sample. Especially, the flux at the sample position and the resolution function of the spectrometer are investigated.
Casutt, Gianclaudio; Theill, Nathan; Martin, Mike; Keller, Martin; Jäncke, Lutz
2014-01-01
Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training. Methods: Ninety-one healthy active drivers (62–87 years) were randomly assigned to one of three groups: (1) a driving simulator training group, (2) an attention training group (vigilance and selective attention), or (3) a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85%) completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned orthogonal comparisons. Results: The driving simulator-training group showed an improvement in on-road driving performance compared to the attention-training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers' safety on the road. PMID:24860497
Teaching End-of-Life Care Using Interprofessional Simulation.
Gannon, Jane; Motycka, Carol; Egelund, Eric; Kraemer, Dale F; Smith, W Thomas; Solomon, Kathleen
2017-04-01
Competency in end-of-life (EOL) care is a growing expectation for health professions students. This study assessed the impact of four EOL care scenarios, using high-fidelity simulation, on the perceived learning needs and attitudes of pharmacy and nursing students. On three campuses, pharmacy students (N = 158) were exposed to standard paper EOL case scenarios, while a fourth campus exposed eight graduate nursing and 37 graduate pharmacy students to simulated versions of the same cases. The paper-based groups produced similar pre-post changes on the End of Life Professional Caregiver Survey. Results were pooled and compared with the simulation-only group, revealing significantly higher changes in pre-post scores for the simulation group. Students participating in the simulation group showed some significant differences in attitudes toward EOL care, compared with students in the classroom setting. [J Nurs Educ. 2017;56(4):205-210.]. Copyright 2017, SLACK Incorporated.
An analysis of airline landing flare data based on flight and training simulator measurements
NASA Technical Reports Server (NTRS)
Heffley, R. K.; Schulman, T. M.; Clement, T. M.
1982-01-01
Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft.
NASA Astrophysics Data System (ADS)
Gajdošová, Lenka; Seyringer, Dana
2017-02-01
We present the design and simulation of 20-channel, 50-GHz Si3N4 based AWG using three different commercial photonics tools, namely PHASAR from Optiwave Systems Inc., APSS from Apollo Photonics Inc. and RSoft from Synopsys Inc. For this purpose we created identical waveguide structures and identical AWG layouts in these tools and performed BPM simulations. For the simulations the same calculation conditions were used. These AWGs were designed for TM-polarized light with an AWG central wavelength of 850 nm. The output of all simulations, the transmission characteristics, were used to calculate the transmission parameters defining the optical properties of the simulated AWGs. These parameters were summarized and compared with each other. The results feature very good correlation between the tools and are comparable to the designed parameters in AWG-Parameters tool.
NASA Astrophysics Data System (ADS)
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Yu, Yuanyuan
2018-01-01
A two-dimensional axisymmetric inductively coupled plasma (ICP) model with its implementation in the COMSOL (Multi-physics simulation software) platform is described. Specifically, a large size ICP generator filled with argon is simulated in this study. Distributions of the number density and temperature of electrons are obtained for various input power and pressure settings and compared. In addition, the electron trajectory distribution is obtained in simulation. Finally, using experimental data, the results from simulations are compared to assess the veracity of the two-dimensional fluid model. The purpose of this comparison is to validate the veracity of the simulation model. An approximate agreement was found (variation tendency is the same). The main reasons for the numerical magnitude discrepancies are the assumption of a Maxwellian distribution and a Druyvesteyn distribution for the electron energy and the lack of cross sections of collision frequencies and reaction rates for argon plasma.
Stormtime Simulations of Sub-Auroral Polarization Streams (SAPS)
NASA Astrophysics Data System (ADS)
Huba, J.; Sazykin, S. Y.; Coster, A. J.
2017-12-01
We present simulation results from the self-consistently coupled SAMI3/RCM code on the impact of geomagnetic storms on the ionosphere/plasmasphere system with an emphasis on the development of sub-auroral plasma streams (SAPS). We consider the following storm events: March 31, 2001, March 17, 2013, March 17, 2015, September 3, 2012, and June 23, 2015. We compare and contrast the development of SAPS for these storms. The main results are the development of sub-auroral (< 60 degrees) low-density, high-speed flows (1 - 2 km/s). Additionally, we discuss the impact on plasmaspheric dynamics. We compare our model results to data (e.g., Millstone Hill radar, GPS TEC).
NASA Technical Reports Server (NTRS)
Queen, Eric M.; Omara, Thomas M.
1990-01-01
A realization of a stochastic atmosphere model for use in simulations is presented. The model provides pressure, density, temperature, and wind velocity as a function of latitude, longitude, and altitude, and is implemented in a three degree of freedom simulation package. This implementation is used in the Monte Carlo simulation of an aeroassisted orbital transfer maneuver and results are compared to those of a more traditional approach.
Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C
NASA Astrophysics Data System (ADS)
Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.
2004-11-01
The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.
Chaabène, Helmi; Mkaouer, Bessem; Franchini, Emerson; Souissi, Nafaa; Selmi, Mohamed Amine; Nagra, Yassine; Chamari, Karim
2013-01-01
Purpose This study aimed to compare physiological responses and time-motion analysis between official and simulated karate combat. Methods Ten high-level karatekas participated in this study, which included official and simulated karate combat. Results Karatekas used more upper-limb attack techniques during official combat compared to simulated ones (6±3 vs 3±1; P=0.05, respectively). For official and simulated karate matches, the numbers of high-intensity actions (i.e. offensive and defensive fighting activity) were 14±6 and 18±5, respectively (P>0.05), lasting from <1s to 5s each. Total fighting activity phase was lower during official compared to simulated matches (21.0±8.2s vs 30.4±9.9s, P<0.01, respectively). Effort (10.0±2.8s) to rest (11.9±2.7s) ratio (E:R) was 1:1 and high-intensity actions (1.6±0.3s) to rest (11.9±2.7s) ratio was higher than 1:7 during simulated combat. During official karate match, the activity and rest duration were 10.0±3.4s and 16.2±4.1s, respectively (E:R ratio 1:1.5), while high-intensity actions were 1.5±0.3s, resulting in an E:R ratio of 1:11. Blood lactate concentration was higher during official (11.14±1.82 mmol.l-1) compared to simulated karate combat (7.80±2.66 mmol.l-1) (P<0.05). Subjective perceived exertion differed significantly between official and simulated combat (14±2 vs. 12±2; P<0.05, respectively). The majority of karatekas’ perceived exertion was higher in the lower limb muscle groups irrespective of the karate combat condition. Conclusion Official and simulated matches differ considerably, therefore coaches should create new strategies during training sessions to achieve the same effort and pause profile of competitive matches and/or that athletes should be submitted to frequent competitions to adapt themselves to the profile of this event. PMID:24868428
Fu, Shangxi; Liu, Xiao; Zhou, Li; Zhou, Meisheng; Wang, Liming
2017-08-01
The purpose of this study was to estimate the effects of surgical laparoscopic operation course on laparoscopic operation skills after the simulated training for medical students with relatively objective results via data gained before and after the practice course of laparoscopic simulator of the resident standardized trainees. Experiment 1: 20 resident standardized trainees with no experience in laparoscopic surgery were included in the inexperienced group and finished simulated cholecystectomy according to simulator videos. Simulator data was collected (total operation time, path length, average speed of instrument movement, movement efficiency, number of perforations, the time cautery is applied without appropriate contact with adhesions, number of serious complications). Ten attending doctors were included in the experienced group and conducted the operation of simulated cholecystectomy directly. Data was collected with simulator. Data of two groups was compared. Experiment 2: Participants in inexperienced group were assigned to basic group (receiving 8 items of basic operation training) and special group (receiving 8 items of basic operation training and 4 items of specialized training), and 10 persons for each group. They received training course designed by us respectively. After training level had reached the expected target, simulated cholecystectomy was performed, and data was collected. Experimental data between basic group and special group was compared and then data between special group and experienced group was compared. Results of experiment 1 showed that there is significant difference between data in inexperienced group in which participants operated simulated cholecystectomy only according to instructors' teaching and operation video and data in experienced group. Result of experiment 2 suggested that, total operation time, number of perforations, number of serious complications, number of non-cauterized bleeding and the time cautery is applied without appropriate contact with adhesions in special group were all superior to those in basic group. There was no statistical difference on other data between special group and basic group. Comparing special group with experienced group, data of total operation time and the time cautery is applied without appropriate contact with adhesions in experienced group was superior to that in special group. There was no statistical difference on other data between special group and experienced group. Laparoscopic simulators are effective for surgical skills training. Basic courses could mainly improve operator's hand-eye coordination and perception of sense of the insertion depth for instruments. Specialized training courses could not only improve operator's familiarity with surgeries, but also reduce operation time and risk, and improve safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Taraphdar, Sourav; Wang, Taiping
This paper presents a modeling study conducted to evaluate the uncertainty of a regional model in simulating hurricane wind and pressure fields, and the feasibility of driving coastal storm surge simulation using an ensemble of region model outputs produced by 18 combinations of three convection schemes and six microphysics parameterizations, using Hurricane Katrina as a test case. Simulated wind and pressure fields were compared to observed H*Wind data for Hurricane Katrina and simulated storm surge was compared to observed high-water marks on the northern coast of the Gulf of Mexico. The ensemble modeling analysis demonstrated that the regional model wasmore » able to reproduce the characteristics of Hurricane Katrina with reasonable accuracy and can be used to drive the coastal ocean model for simulating coastal storm surge. Results indicated that the regional model is sensitive to both convection and microphysics parameterizations that simulate moist processes closely linked to the tropical cyclone dynamics that influence hurricane development and intensification. The Zhang and McFarlane (ZM) convection scheme and the Lim and Hong (WDM6) microphysics parameterization are the most skillful in simulating Hurricane Katrina maximum wind speed and central pressure, among the three convection and the six microphysics parameterizations. Error statistics of simulated maximum water levels were calculated for a baseline simulation with H*Wind forcing and the 18 ensemble simulations driven by the regional model outputs. The storm surge model produced the overall best results in simulating the maximum water levels using wind and pressure fields generated with the ZM convection scheme and the WDM6 microphysics parameterization.« less
Comparing CTH Simulations and Experiments on Explosively Loaded Rings
NASA Astrophysics Data System (ADS)
Braithwaite, C. H.; Aydelotte, B.; Thadhani, N. N.; Williamson, D. M.
2011-06-01
A series of experiments were conducted on explosively loaded rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with PDV and the arrangement was imaged using a high speed camera. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 450 m/s, which was achieved through loading with a 5g PETN based charge.
Pagan, Darren C.; Miller, Matthew P.
2014-01-01
A forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye’s model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity. Simulation results compared against diffraction data measured in situ from a silicon single-crystal specimen plastically deformed under single-slip conditions indicate that slip system activity can be identified during HEDM experiments. PMID:24904242
Molecular dynamics simulations study of nano bubble attachment at hydrophobic surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jiaqi; Dang, Liem X.; Miller, Jan D.
Bubble attachment phenomena are examined using Molecular Dynamics Simulations (MDS) for the first time. The simulation involves a nitrogen nano bubble containing 906 nitrogen molecules in a water phase with 74,000 water molecules at molybdenite surfaces. During a simulation period of 1 ns, film rupture and displacement occurs. The attached nanobubble at the hydrophobic molybdenite face surface results in a contact angle of about 90º. This spontaneous attachment is due to a “water exclusion zone” at the molybdenite face surface and can be explained by a van der Waals (vdW) attractive force, as discussed in the literature. In contrast, themore » film is stable at the hydrophilic quartz (001) surface and the bubble does not attach. Contact angles determined from MD simulations are reported, and these results agree well with experimental and MDS sessile drop results. In this way, film stability and bubble attachment are described with respect to interfacial water structure for surfaces of different polarity. Interfacial water molecules at the hydrophobic molybdenite face surface have relatively weak interactions with the surface when compared to the hydrophilic quartz (001) surface, as revealed by the presence of a 3 Å “water exclusion zone” at the molybdenite/water interface. The molybdenite armchair-edge and zigzag-edge surfaces show a comparably slow process for film rupture and displacement when compared to the molybdenite face surface, which is consistent with their relatively weak hydrophobic character.« less
2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.
Self-Assembly of Trimer Colloids: Effect of Shape and Interaction Range†
Hatch, Harold W.; Yang, Seung-Yeob; Mittal, Jeetain; Shen, Vincent K.
2016-01-01
Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled structures for different shapes and interaction potentials. Extended corresponding states principle was successfully applied to self-assembling systems in order to approximately collapse the results for models with the same shape, but different interaction range. This helps us directly compare simulation results with previous experiment, and good agreement was found between the two. In addition, a variety of self-assembled structures were observed by varying the trimer geometry, including spherical clusters, elongated clusters, monolayers, and spherical shells. In conclusion, our results help to compare simulations and experiments, via extended corresponding states, and we predict the formation of self-assembled structures for trimer shapes that have not been experimentally synthesized. PMID:27087490
NASA Technical Reports Server (NTRS)
Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.
2010-01-01
A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.
Gray: a ray tracing-based Monte Carlo simulator for PET
NASA Astrophysics Data System (ADS)
Freese, David L.; Olcott, Peter D.; Buss, Samuel R.; Levin, Craig S.
2018-05-01
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within % when accounting for differences in peak NECR. We also estimate the peak NECR to be kcps, or within % of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
NASA Astrophysics Data System (ADS)
Elbashir, B. O.; Dong, M. G.; Sayyed, M. I.; Issa, Shams A. M.; Matori, K. A.; Zaid, M. H. M.
2018-06-01
The mass attenuation coefficients (μ/ρ), effective atomic numbers (Zeff) and electron densities (Ne) of some amino acids obtained experimentally by the other researchers have been calculated using MCNP5 simulations in the energy range 0.122-1.330 MeV. The simulated values of μ/ρ, Zeff, and Ne were compared with the previous experimental work for the amino acids samples and a good agreement was noticed. Moreover, the values of mean free path (MFP) for the samples were calculated using MCNP5 program and compared with the theoretical results obtained by XCOM. The investigation of μ/ρ, Zeff, Ne and MFP values of amino acids using MCNP5 simulations at various photon energies when compared with the XCOM values and previous experimental data for the amino acids samples revealed that MCNP5 code provides accurate photon interaction parameters for amino acids.
NASA Astrophysics Data System (ADS)
Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé
2014-05-01
Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.
NASA Technical Reports Server (NTRS)
Carr, Peter C.; Mckissick, Burnell T.
1988-01-01
A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.
NASA Astrophysics Data System (ADS)
Cassak, P.; Genestreti, K.; Burch, J. L.; Shay, M.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.; Phan, T.; Ergun, R.
2017-12-01
We use theoretical and computational techniques to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations by Genestreti et al. (J. Geophys. Res, submitted). For weak guide fields, the energy conversion rate is maximum midway between the X-line and electron stagnation point. As the guide field increases, it moves towards the electron stagnation point. We motivate how to extend the theory of the location of the stagnation points to include the effect of a guide field. The predictions are compared to two-dimensional (2D) particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three reconnection events observed with MMS. The predictions agree reasonably well with the simulation results, having captured trends with the guide field. The theory correctly predicts that the energy conversion is closer to the X-line in the absolute sense as the guide field increases. The results are then compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and global resistive magnetohydrodynamics simulations of the 2015 Oct 16 event. The PIC simulation results agree well with the global observations and simulations, but differ in the strong electric fields and energy conversion rates found in the MMS observations. The results suggest that the strong electric fields observed by MMS do not represent a steady global rate.
Comparing simulated carbon budget of a Lei bamboo forest with flux tower data
Li, Xuehe; Jiang, Hong; Liu, Jinxun; Sun, Cheng; Wang, Ying; Jin, Jiaxin
2014-01-01
Bamboo forest ecosystem is the part of the forest ecosystem. The distribution area of bamboo forest is limited, but in somewhere, like south China, it has been cultivate for a long time with human management. As the climate change has been take great effect on forest carbon budget, many researchers pay attention to the carbon budget in bamboo forest. Moreover cultivative management had a significant impact on the bamboo forest carbon budget. In this study, we modified a terrestrial ecosystem model named Integrated Biosphere Simulator (IBIS) according the management of Lei bamboo forest. Some management, like fertilization, shoots harvesting and organic mulching in winter, had been incorporated into model. Then we had compared model results with the observation data from a Lei bamboo flux tower. The simulated and observed results had achieved good consistency. Our simulated Lei bamboo forest yearly net ecosystem productivity (NEP) was 0.41 kgC a-1 of carbon, which is very close to the observation data 0.45 kgC a-1 of carbon. And the monthly simulated results can take the change of carbon budget in each month, similar to the data we got from flux tower. It reflects that the modified IBIS model can characterize the growth of bamboo forest and perform the simulation well. And then two groups of simulations were set to evaluate effects of cultivative managements on Lei bamboo forests carbon budget. And results showed that both fertilization and organic mulching had taken positive effects on Lei bamboo forests carbon sequestration.
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A
2016-03-21
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Jae-sik; Oh, Eun-Joo; Bae, Min-Jung; Song, Doo-Sam
2017-12-01
Given that the Korean government is implementing what has been termed the energy standards and labelling program for windows, window companies will be required to assign window ratings based on the experimental results of their product. Because this has added to the cost and time required for laboratory tests by window companies, the simulation system for the thermal performance of windows has been prepared to compensate for time and cost burdens. In Korea, a simulator is usually used to calculate the thermal performance of a window through WINDOW/THERM, complying with ISO 15099. For a single window, the simulation results are similar to experimental results. A double window is also calculated using the same method, but the calculation results for this type of window are unreliable. ISO 15099 should not recommend the calculation of the thermal properties of an air cavity between window sashes in a double window. This causes a difference between simulation and experimental results pertaining to the thermal performance of a double window. In this paper, the thermal properties of air cavities between window sashes in a double window are analyzed through computational fluid dynamics (CFD) simulations with the results compared to calculation results certified by ISO 15099. The surface temperature of the air cavity analyzed by CFD is compared to the experimental temperatures. These results show that an appropriate calculation method for an air cavity between window sashes in a double window should be established for reliable thermal performance results for a double window.
Park, Jae Hong; Peters, Thomas M.; Altmaier, Ralph; Jones, Samuel M.; Gassman, Richard; Anthony, T. Renée
2017-01-01
We have developed a time-dependent simulation model to estimate in-room concentrations of multiple contaminants [ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO) and dust] as a function of increased ventilation with filtered recirculation for swine farrowing facilities. Energy and mass balance equations were used to simulate the indoor air quality (IAQ) and operational cost for a variety of ventilation conditions over a 3-month winter period for a facility located in the Midwest U.S., using simplified and real-time production parameters, comparing results to field data. A revised model was improved by minimizing the sum of squared errors (SSE) between modeled and measured NH3 and CO2. After optimizing NH3 and CO2, other IAQ results from the simulation were compared to field measurements using linear regression. For NH3, the coefficient of determination (R2) for simulation results and field measurements improved from 0.02 with the original model to 0.37 with the new model. For CO2, the R2 for simulation results and field measurements was 0.49 with the new model. When the makeup air was matched to hallway air CO2 concentrations (1,500 ppm), simulation results showed the smallest SSE. With the new model, the R2 for other contaminants were 0.34 for inhalable dust, 0.36 for respirable dust, and 0.26 for CO. Operation of the air cleaner decreased inhalable dust by 35% and respirable dust concentrations by 33%, while having no effect on NH3, CO2, in agreement with field data, and increasing operational cost by $860 (58%) for the three-month period. PMID:28775911
The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone
NASA Astrophysics Data System (ADS)
Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth
2018-04-01
The study investigates the role of the air-sea interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the sea- state-dependent momentum flux, the sea-spray-mediated heat flux, and a combination of the former two processes with the sea-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the sea-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in USDA-ARS OPE3 field site and to compare simulation results with the detailed monitoring observations. The site has been studied for over 10 years with the extensive availabl...
Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region
NASA Astrophysics Data System (ADS)
Hong, X.; Wang, S.; Nachamkin, J. E.
2017-12-01
Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.
NASA Astrophysics Data System (ADS)
Rytka, C.; Lungershausen, J.; Kristiansen, P. M.; Neyer, A.
2016-06-01
Flow simulations can cut down both costs and time for the development of injection moulded polymer parts with functional surfaces used in life science and optical applications. We simulated the polymer melt flow into 3D micro- and nanostructures with Moldflow and Comsol and compared the results to real iso- and variothermal injection moulding trials below, at and above the transition temperature of the polymer. By adjusting the heat transfer coefficient and the transition temperature in the simulation it was possible to achieve good correlation with experimental findings at different processing conditions (mould temperature, injection velocity) for two polymers, namely polymethylmethacrylate and amorphous polyamide. The macroscopic model can be scaled down in volume and number of elements to save computational time for microstructure simulation and to enable first and foremost the nanostructure simulation, as long as local boundary conditions such as flow front speed are transferred correctly. The heat transfer boundary condition used in Moldflow was further evaluated in Comsol. Results showed that the heat transfer coefficient needs to be increased compared to macroscopic moulding in order to represent interfacial polymer/mould effects correctly. The transition temperature is most important in the packing phase for variothermal injection moulding.
Comparative Study of Three High Order Schemes for LES of Temporally Evolving Mixing Layers
NASA Technical Reports Server (NTRS)
Yee, Helen M. C.; Sjogreen, Biorn Axel; Hadjadj, C.
2012-01-01
Three high order shock-capturing schemes are compared for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7) and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.
Phenylalanine ab initio models for the simulation of skin natural moisturizing factor
NASA Astrophysics Data System (ADS)
Carvalho, B. G.; Raniero, L. J.; Martin, A. A.; Favero, P. P.
2013-04-01
In this study, we evaluated models that can be used to simulate amino acids in biological environments via density functional theory (DFT). The goal was to obtain realistic representations that combine computational economy and result quality when compared to experimental data. We increased the complexity of the models by using a model of an amino acid in a vacuum, followed by a water-solvated amino acid model. To consider pH variation, we simulated zwitterionic and nonionic amino acid configurations. The amino acid chosen for testing was phenylalanine, an aromatic amino acid present in high concentrations in the natural moisturizing factor of skin that plays a fundamental role in ultraviolet protection and vitiligo disease. To validate the models, vibrational modes and electronic properties were calculated and compared to experimental results.
Optical CAD Utilization for the Design and Testing of a LED Streetlamp.
Jafrancesco, David; Mercatelli, Luca; Fontani, Daniela; Sansoni, Paola
2017-08-24
The design and testing of LED lamps are vital steps toward broader use of LED lighting for outdoor illumination and traffic signalling. The characteristics of LED sources, in combination with the need to limit light pollution and power consumption, require a precise optical design. In particular, in every step of the process, it is important to closely compare theoretical or simulated results with measured data (obtained from a prototype). This work examines the various possibilities for using an optical CAD (Lambda Research TracePro ) to design and check a LED lamp for outdoor use. This analysis includes the simulations and testing on a prototype as an example; data acquired by measurement are inserted into the same simulation software, making it easy to compare theoretical and actual results.
Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; ...
2016-03-22
In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.
Performance characteristics of three-phase induction motors
NASA Technical Reports Server (NTRS)
Wood, M. E.
1977-01-01
An investigation into the characteristics of three phase, 400 Hz, induction motors of the general type used on aircraft and spacecraft is summarized. Results of laboratory tests are presented and compared with results from a computer program. Representative motors were both tested and simulated under nominal conditions as well as off nominal conditions of temperature, frequency, voltage magnitude, and voltage balance. Good correlation was achieved between simulated and laboratory results. The primary purpose of the program was to verify the simulation accuracy of the computer program, which in turn will be used as an analytical tool to support the shuttle orbiter.
MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport
Langevin, C.D.; Guo, W.
2006-01-01
This paper presents an approach for coupling MODFLOW and MT3DMS for the simulation of variable-density ground water flow. MODFLOW routines were modified to solve a variable-density form of the ground water flow equation in which the density terms are calculated using an equation of state and the simulated MT3DMS solute concentrations. Changes to the MODFLOW and MT3DMS input files were kept to a minimum, and thus existing data files and data files created with most pre- and postprocessors can be used directly with the SEAWAT code. The approach was tested by simulating the Henry problem and two of the saltpool laboratory experiments (low- and high-density cases). For the Henry problem, the simulated results compared well with the steady-state semianalytic solution and also the transient isochlor movement as simulated by a finite-element model. For the saltpool problem, the simulated breakthrough curves compared better with the laboratory measurements for the low-density case than for the high-density case but showed good agreement with the measured salinity isosurfaces for both cases. Results from the test cases presented here indicate that the MODFLOW/MT3DMS approach provides accurate solutions for problems involving variable-density ground water flow and solute transport. ?? 2006 National Ground Water Association.
Gyrokinetic δ f simulation of collisionless and semi-collisional tearing mode instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Chen, Yang; Parker, Scott
2004-11-01
The evolution of collisionless and semi-collisional tearing mode instabilities is studied using a three-dimensional particle-in-cell simulation model that utilizes the δ f-method with the split-weight scheme to enhance the time step, and a novel algorithm(Y. Chen and S.E. Parker, J. Comput. Phys. 198), 463 (2003) to accurately solve the Ampere's equation for experimentally relevant β values, βfracm_im_e≫ 1. We use the model of drift-kinetic electrons and gyrokinetic ions. Linear simulation results are benchmarked with eigenmode analysis for the case of fixed ions. In small box simulations the ions response can be neglected but for large box simulations the ions response is important because the width of perturbed current is larger than ρ_i.The nonlinear dynamics of magnetic islands will be studied and the results will be compared with previous theoretical studiesfootnote J.F. Drake and Y. C. Lee, Phys. Rev. Lett. 39, 453 (1977) on the saturation level and the electron bounce frequency. A collision operator is included in the electron drift kinetic equation to study the simulation in the semi-collisional regime. The algebraical growth stage has been observed and compared quantitatively with theory. Our progress on three-dimensional simulations of tearing mode instabilities will be reported.
Excess thermodynamics of mixtures involving xenon and light linear alkanes by computer simulation.
Carvalho, A J Palace; Ramalho, J P Prates; Martins, Luís F G
2007-06-14
Excess molar enthalpies and excess molar volumes as a function of composition for liquid mixtures of xenon + ethane (at 161.40 K), xenon + propane (at 161.40 K) and xenon + n-butane (at 182.34 K) have been obtained by Monte Carlo computer simulations and compared with available experimental data. Simulation conditions were chosen to closely match those of the corresponding experimental results. The TraPPE-UA force field was selected among other force fields to model all the alkanes studied, whereas the one-center Lennard-Jones potential from Bohn et al. was used for xenon. The calculated H(m)(E) and V(m)(E) for all systems are negative, increasing in magnitude as the alkane chain length increases. The results for these systems were compared with experimental data and with other theoretical calculations using the SAFT approach. An excellent agreement between simulation and experimental results was found for xenon + ethane system, whereas for the remaining two systems, some deviations that become progressively more significant as the alkane chain length increases were observed.
Investigation of Dual-Mode Microstrip Bandpass Filter Based on SIR Technique
Mezaal, Yaqeen S.; Ali, Jawad K.
2016-01-01
In this paper, a new bandpass filter design has been presented using simple topology of stepped impedance square loop resonator. The proposed bandpass filter has been simulated and fabricated using a substrate with an insulation constant of 10.8, thickness of 1.27mm and loss tangent of 0.0023 at center frequency of 5.8 GHz. The simulation results have been evaluated using Sonnet simulator that is extensively adopted in microwave analysis and implementation. The output frequency results demonstrated that the proposed filter has high-quality frequency responses in addition to isolated second harmonic frequency. Besides, this filter has very small surface area and perceptible narrow band response features that represent the conditions of recent wireless communication systems. Various filter specifications have been compared with different magnitudes of perturbation element dimension. Furthermore, phase scattering response and current intensity distribution of the proposed filter have been discussed. The simulated and experimental results are well-matched. Lastly, the features of the proposed filter have been compared with other designed microstrip filters in the literature. PMID:27798675
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
Lu, Liqiang; Morris, Aaron; Li, Tingwen; ...
2017-04-18
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Morris, Aaron; Li, Tingwen
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
Research on numerical simulation technology about regional important pollutant diffusion of haze
NASA Astrophysics Data System (ADS)
Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan
2018-02-01
In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.
Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W
2013-01-01
The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.
Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.
2012-01-01
The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771
NASA Astrophysics Data System (ADS)
Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.
2014-12-01
We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks
Khan, Komal Saifullah; Tariq, Muhammad
2014-01-01
Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739
Boza, Camilo; León, Felipe; Buckel, Erwin; Riquelme, Arnoldo; Crovari, Fernando; Martínez, Jorge; Aggarwal, Rajesh; Grantcharov, Teodor; Jarufe, Nicolás; Varas, Julián
2017-01-01
Multiple simulation training programs have demonstrated that effective transfer of skills can be attained and applied into a more complex scenario, but evidence regarding transfer to the operating room is limited. To assess junior residents trained with simulation performing an advanced laparoscopic procedure in the OR and compare results to those of general surgeons without simulation training and expert laparoscopic surgeons. Experimental study: After a validated 16-session advanced laparoscopy simulation training program, junior trainees were compared to general surgeons (GS) with no simulation training and expert bariatric surgeons (BS) in performing a stapled jejuno-jejunostomy (JJO) in the OR. Global rating scale (GRS) and specific rating scale scores, operative time and the distance traveled by both hands measured with a tracking device, were assessed. In addition, all perioperative and immediate postoperative morbidities were registered. Ten junior trainees, 12 GS and 5 BS experts were assessed performing a JJO in the OR. All trainees completed the entire JJO in the OR without any takeovers by the BS. Six (50 %) BS takeovers took place in the GS group. Trainees had significantly better results in all measured outcomes when compared to GS with considerable higher GRS median [19.5 (18.8-23.5) vs. 12 (9-13.8) p < 0.001] and lower operative time. One morbidity was registered; a patient in the trainees group was readmitted at postoperative day 10 for mechanical ileus that resolved with medical treatment. This study demonstrated transfer of advanced laparoscopic skills acquired through a simulated training program in novice surgical residents to the OR.
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.
2015-01-01
This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.
Rodrigues, Domingos M C; Lopes, Rafaela N; Franco, Marcos A R; Werneck, Marcelo M; Allil, Regina C S B
2017-12-19
Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 μm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI) sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli . Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.
Molecular dynamics simulations of classical sound absorption in a monatomic gas
NASA Astrophysics Data System (ADS)
Ayub, M.; Zander, A. C.; Huang, D. M.; Cazzolato, B. S.; Howard, C. Q.
2018-05-01
Sound wave propagation in argon gas is simulated using molecular dynamics (MD) in order to determine the attenuation of acoustic energy due to classical (viscous and thermal) losses at high frequencies. In addition, a method is described to estimate attenuation of acoustic energy using the thermodynamic concept of exergy. The results are compared against standing wave theory and the predictions of the theory of continuum mechanics. Acoustic energy losses are studied by evaluating various attenuation parameters and by comparing the changes in behavior at three different frequencies. This study demonstrates acoustic absorption effects in a gas simulated in a thermostatted molecular simulation and quantifies the classical losses in terms of the sound attenuation constant. The approach can be extended to further understanding of acoustic loss mechanisms in the presence of nanoscale porous materials in the simulation domain.
Burger, Stefan; Fraunholz, Thomas; Leirer, Christian; Hoppe, Ronald H W; Wixforth, Achim; Peter, Malte A; Franke, Thomas
2013-06-25
Phase decomposition in lipid membranes has been the subject of numerous investigations by both experiment and theoretical simulation, yet quantitative comparisons of the simulated data to the experimental results are rare. In this work, we present a novel way of comparing the temporal development of liquid-ordered domains obtained from numerically solving the Cahn-Hilliard equation and by inducing a phase transition in giant unilamellar vesicles (GUVs). Quantitative comparison is done by calculating the structure factor of the domain pattern. It turns out that the decomposition takes place in three distinct regimes in both experiment and simulation. These regimes are characterized by different rates of growth of the mean domain diameter, and there is quantitative agreement between experiment and simulation as to the duration of each regime and the absolute rate of growth in each regime.
2009-09-01
69 VI. CONCLUSIONS AND RECOMMENDATIONS ........................73 A. CONCLUSION ........................................73 1. Benefits of Off...simulation software results and similar results produced from the thesis work conducted by Ozdemir (2009). This study directly benefits decision makers...interested in identifying and benefiting from a cost- effective, readily available aggregated learning tool, with the potential to provide tactical
Performance evaluation of CESM in simulating the dust cycle
NASA Astrophysics Data System (ADS)
Parajuli, S. P.; Yang, Z. L.; Kocurek, G.; Lawrence, D. M.
2014-12-01
Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health and visibility. Mineral dust is injected into the atmosphere during dust storms when the surface winds are sufficiently strong and the land surface conditions are favorable. Dust storms are very common in specific regions of the world including the Middle East and North Africa (MENA) region, which contains more than 50% of the global dust sources. In this work, we present simulation of the dust cycle under the framework of CESM1.2.2 and evaluate how well the model captures the spatio-temporal characteristics of dust sources, transport and deposition at global scale, especially in dust source regions. We conducted our simulations using two existing erodibility maps (geomorphic and topographic) and a new erodibility map, which is based on the correlation between observed wind and dust. We compare the simulated results with MODIS satellite data, MACC reanalysis data, and AERONET station data. Comparison with MODIS satellite data and MACC reanalysis data shows that all three erodibility maps generally reproduce the spatio-temporal characteristics of dust optical depth globally. However, comparison with AERONET station data shows that the simulated dust optical depth is generally overestimated for all erodibility maps. Results vary greatly by region and scale of observational data. Our results also show that the simulations forced by reanalysis meteorology capture the overall dust cycle more realistically compared to the simulations done using online meteorology.
Enhancement of CFD validation exercise along the roof profile of a low-rise building
NASA Astrophysics Data System (ADS)
Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.
2018-04-01
The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.
Comparison of spatial interpolation of rainfall with emphasis on extreme events
NASA Astrophysics Data System (ADS)
Amin, Kanwal; Duan, Zheng; Disse, Markus
2017-04-01
The sparse network of rain-gauges has always motivated the scientists to find more robust ways to include the spatial variability of precipitation. Turning Bands Simulation, External Drift Kriging, Copula and Random Mixing are amongst one of them. Remote sensing Technologies i.e., radar and satellite estimations are widely known to provide a spatial profile of the precipitation, however during extreme events the accuracy of the resulted areal precipitation is still under discussion. The aim is to compare the areal hourly precipitation results of a flood event from RADOLAN (Radar online adjustment) with the gridded rainfall obtained via Turning Bands Simulation (TBM) and Inverse Distance Weighting (IDW) method. The comparison is mainly focused on performing the uncertainty analysis of the areal precipitation through the said simulation and remote sensing technique for the Upper Main Catchment. The comparison of the results obtained from TBM, IDW and RADOLAN show considerably similar results near the rain gauge stations, but the degree of ambiguity elevates with the increasing distance from the gauge stations. Future research will be carried out to compare the forecasted gridded precipitation simulations with the real-time rainfall forecast system (RADVOR) to make the flood evacuation process more robust and efficient.
Type Ia Supernova Explosions from Hybrid Carbon-Oxygen-Neon White Dwarf Progenitors
NASA Astrophysics Data System (ADS)
Willcox, Donald E.; Townsley, Dean M.; Calder, Alan C.; Denissenkov, Pavel A.; Herwig, Falk
2016-11-01
Motivated by recent results in stellar evolution that predict the existence of hybrid white dwarf (WD) stars with a C-O core inside an O-Ne shell, we simulate thermonuclear (Type Ia) supernovae from these hybrid progenitors. We use the FLASH code to perform multidimensional simulations in the deflagration-to-detonation transition (DDT) explosion paradigm. Our hybrid progenitor models were produced with the MESA stellar evolution code and include the effects of the Urca process, and we map the progenitor model to the FLASH grid. We performed a suite of DDT simulations over a range of ignition conditions consistent with the progenitor’s thermal and convective structure assuming multiple ignition points. To compare the results from these hybrid WD stars to previous results from C-O WDs, we construct a set of C-O WD models with similar properties and similarly simulate a suite of explosions. We find that despite significant variability within each suite, trends distinguishing the explosions are apparent in their {}56{Ni} yields and the kinetic properties of the ejecta. We compare our results with other recent work that studies explosions from these hybrid progenitors.
Direct simulations of chemically reacting turbulent mixing layers
NASA Technical Reports Server (NTRS)
Riley, J. J.; Metcalfe, R. W.
1984-01-01
The report presents the results of direct numerical simulations of chemically reacting turbulent mixing layers. The work consists of two parts: (1) the development and testing of a spectral numerical computer code that treats the diffusion reaction equations; and (2) the simulation of a series of cases of chemical reactions occurring on mixing layers. The reaction considered is a binary, irreversible reaction with no heat release. The reacting species are nonpremixed. The results of the numerical tests indicate that the high accuracy of the spectral methods observed for rigid body rotation are also obtained when diffusion, reaction, and more complex flows are considered. In the simulations, the effects of vortex rollup and smaller scale turbulence on the overall reaction rates are investigated. The simulation results are found to be in approximate agreement with similarity theory. Comparisons of simulation results with certain modeling hypotheses indicate limitations in these hypotheses. The nondimensional product thickness computed from the simulations is compared with laboratory values and is found to be in reasonable agreement, especially since there are no adjustable constants in the method.
Deuchler, Svenja; Wagner, Clemens; Singh, Pankaj; Müller, Michael; Al-Dwairi, Rami; Benjilali, Rachid; Schill, Markus; Ackermann, Hanns; Bon, Dimitra; Kohnen, Thomas; Schoene, Benjamin; Koss, Michael; Koch, Frank
2016-01-01
Purpose To evaluate the efficacy of the virtual reality training simulator Eyesi to prepare surgeons for performing pars plana vitrectomies and its potential to predict the surgeons’ performance. Methods In a preparation phase, four participating vitreoretinal surgeons performed repeated simulator training with predefined tasks. If a surgeon was assigned to perform a vitrectomy for the management of complex retinal detachment after a surgical break of at least 60 hours it was randomly decided whether a warmup training on the simulator was required (n = 9) or not (n = 12). Performance at the simulator was measured using the built-in scoring metrics. The surgical performance was determined by two blinded observers who analyzed the video-recorded interventions. One of them repeated the analysis to check for intra-observer consistency. The surgical performance of the interventions with and without simulator training was compared. In addition, for the surgeries with simulator training, the simulator performance was compared to the performance in the operating room. Results Comparing each surgeon’s performance with and without warmup trainingshowed a significant effect of warmup training onto the final outcome in the operating room. For the surgeries that were preceeded by the warmup procedure, the performance at the simulator was compared with the operating room performance. We found that there is a significant relation. The governing factor of low scores in the simulator were iatrogenic retinal holes, bleedings and lens damage. Surgeons who caused minor damage in the simulation also performed well in the operating room. Conclusions Despite the large variation of conditions, the effect of a warmup training as well as a relation between the performance at the simulator and in the operating room was found with statistical significance. Simulator training is able to serve as a warmup to increase the average performance. PMID:26964040
Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide
2017-04-05
Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p < 0.05) in arthroscopic skills compared with baseline scores and untrained controls, both in and ex vivo. The virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality simulation was superior to bench-top simulation in the acquisition of arthroscopic skills, both in the laboratory and in vivo. Further clinical investigation is needed to interpret the importance of these results.
WRF-Cordex simulations for Europe: mean and extreme precipitation for present and future climates
NASA Astrophysics Data System (ADS)
Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.
2013-04-01
The Weather Research and Forecast (WRF-ARW) model, version 3.3.1, was used to perform the European domain Cordex simulations, at 50km resolution. A first simulation, forced by ERA-Interim (1989-2009), was carried out to evaluate the models performance to represent the mean and extreme precipitation in present European climate. This evaluation is based in the comparison of WRF results against the ECAD regular gridded dataset of daily precipitation. Results are comparable to recent studies with other models for the European region, at this resolution. For the same domain a control and a future scenario (RCP8.5) simulation was performed to assess the climate change impact on the mean and extreme precipitation. These regional simulations were forced by EC-EARTH model results, and, encompass the periods from 1960-2006 and 2006-2100, respectively.
Buckling and Post-Buckling Behaviors of a Variable Stiffness Composite Laminated Wing Box Structure
NASA Astrophysics Data System (ADS)
Wang, Peiyan; Huang, Xinting; Wang, Zhongnan; Geng, Xiaoliang; Wang, Yuansheng
2018-04-01
The buckling and post-buckling behaviors of variable stiffness composite laminates (VSCL) with curvilinear fibers were investigated and compared with constant stiffness composite laminates (CSCL) with straight fibers. A VSCL box structure was evaluated under a pure bending moment. The results of the comparative test showed that the critical buckling load of the VSCL box was approximately 3% higher than that of the CSCL box. However, the post-buckling load-bearing capacity was similar due to the layup angle and the immature status of the material processing technology. The properties of the VSCL and CSCL boxes under a pure bending moment were simulated using the Hashin criterion and cohesive interface elements. The simulation results are consistent with the experimental results in stiffness, critical buckling load and failure modes but not in post-buckling load capacity. The results of the experiment, the simulation and laminated plate theory show that VSCL greatly improves the critical buckling load but has little influence on the post-buckling load-bearing capacity.
Modelling and validation of Proton exchange membrane fuel cell (PEMFC)
NASA Astrophysics Data System (ADS)
Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.
2018-01-01
This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.
NASA Astrophysics Data System (ADS)
Akai, Takashi; Bijeljic, Branko; Blunt, Martin J.
2018-06-01
In the color gradient lattice Boltzmann model (CG-LBM), a fictitious-density wetting boundary condition has been widely used because of its ease of implementation. However, as we show, this may lead to inaccurate results in some cases. In this paper, a new scheme for the wetting boundary condition is proposed which can handle complicated 3D geometries. The validity of our method for static problems is demonstrated by comparing the simulated results to analytical solutions in 2D and 3D geometries with curved boundaries. Then, capillary rise simulations are performed to study dynamic problems where the three-phase contact line moves. The results are compared to experimental results in the literature (Heshmati and Piri, 2014). If a constant contact angle is assumed, the simulations agree with the analytical solution based on the Lucas-Washburn equation. However, to match the experiments, we need to implement a dynamic contact angle that varies with the flow rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, Gennady; /Fermilab
CST Particle Studio combines electromagnetic field simulation, multi-particle tracking, adequate post-processing and advanced probabilistic emission model, which is the most important new capability in multipactor simulation. The emission model includes in simulation the stochastic properties of emission and adds primary electron elastic and inelastic reflection from the surfaces. The simulation of multipactor in coaxial waveguides have been performed to study the effects of the innovations on the multipactor threshold and the range over which multipactor can occur. The results compared with available previous experiments and simulations as well as the technique of MP simulation with CST PS are presented andmore » discussed.« less
LES of flow in the street canyon
NASA Astrophysics Data System (ADS)
Fuka, Vladimír; Brechler, Josef
2012-04-01
Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.
Simulation of minimally invasive vascular interventions for training purposes.
Alderliesten, Tanja; Konings, Maurits K; Niessen, Wiro J
2004-01-01
To master the skills required to perform minimally invasive vascular interventions, proper training is essential. A computer simulation environment has been developed to provide such training. The simulation is based on an algorithm specifically developed to simulate the motion of a guide wire--the main instrument used during these interventions--in the human vasculature. In this paper, the design and model of the computer simulation environment is described and first results obtained with phantom and patient data are presented. To simulate minimally invasive vascular interventions, a discrete representation of a guide wire is used which allows modeling of guide wires with different physical properties. An algorithm for simulating the propagation of a guide wire within a vascular system, on the basis of the principle of minimization of energy, has been developed. Both longitudinal translation and rotation are incorporated as possibilities for manipulating the guide wire. The simulation is based on quasi-static mechanics. Two types of energy are introduced: internal energy related to the bending of the guide wire, and external energy resulting from the elastic deformation of the vessel wall. A series of experiments were performed on phantom and patient data. Simulation results are qualitatively compared with 3D rotational angiography data. The results indicate plausible behavior of the simulation.
Lattice Boltzmann simulations of multiple-droplet interaction dynamics.
Zhou, Wenchao; Loney, Drew; Fedorov, Andrei G; Degertekin, F Levent; Rosen, David W
2014-03-01
A lattice Boltzmann (LB) formulation, which is consistent with the phase-field model for two-phase incompressible fluid, is proposed to model the interface dynamics of droplet impingement. The interparticle force is derived by comparing the macroscopic transport equations recovered from LB equations with the governing equations of the continuous phase-field model. The inconsistency between the existing LB implementations and the phase-field model in calculating the relaxation time at the phase interface is identified and an approximation is proposed to ensure the consistency with the phase-field model. It is also shown that the commonly used equilibrium velocity boundary for the binary fluid LB scheme does not conserve momentum at the wall boundary and a modified scheme is developed to ensure the momentum conservation at the boundary. In addition, a geometric formulation of the wetting boundary condition is proposed to replace the popular surface energy formulation and results show that the geometric approach enforces the prescribed contact angle better than the surface energy formulation in both static and dynamic wetting. The proposed LB formulation is applied to simulating droplet impingement dynamics in three dimensions and results are compared to those obtained with the continuous phase-field model, the LB simulations reported in the literature, and experimental data from the literature. The results show that the proposed LB simulation approach yields not only a significant speed improvement over the phase-field model in simulating droplet impingement dynamics on a submillimeter length scale, but also better accuracy than both the phase-field model and the previously reported LB techniques when compared to experimental data. Upon validation, the proposed LB modeling methodology is applied to the study of multiple-droplet impingement and interactions in three dimensions, which demonstrates its powerful capability of simulating extremely complex interface phenomena.
Simulation-based training for nurses: Systematic review and meta-analysis.
Hegland, Pål A; Aarlie, Hege; Strømme, Hilde; Jamtvedt, Gro
2017-07-01
Simulation-based training is a widespread strategy to improve health-care quality. However, its effect on registered nurses has previously not been established in systematic reviews. The aim of this systematic review is to evaluate effect of simulation-based training on nurses' skills and knowledge. We searched CDSR, DARE, HTA, CENTRAL, CINAHL, MEDLINE, Embase, ERIC, and SveMed+ for randomised controlled trials (RCT) evaluating effect of simulation-based training among nurses. Searches were completed in December 2016. Two reviewers independently screened abstracts and full-text, extracted data, and assessed risk of bias. We compared simulation-based training to other learning strategies, high-fidelity simulation to other simulation strategies, and different organisation of simulation training. Data were analysed through meta-analysis and narrative syntheses. GRADE was used to assess the quality of evidence. Fifteen RCTs met the inclusion criteria. For the comparison of simulation-based training to other learning strategies on nurses' skills, six studies in the meta-analysis showed a significant, but small effect in favour of simulation (SMD -1.09, CI -1.72 to -0.47). There was large heterogeneity (I 2 85%). For the other comparisons, there was large between-study variation in results. The quality of evidence for all comparisons was graded as low. The effect of simulation-based training varies substantially between studies. Our meta-analysis showed a significant effect of simulation training compared to other learning strategies, but the quality of evidence was low indicating uncertainty. Other comparisons showed inconsistency in results. Based on our findings simulation training appears to be an effective strategy to improve nurses' skills, but further good-quality RCTs with adequate sample sizes are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ignacio, Jeanette; Dolmans, Diana; Scherpbier, Albert; Rethans, Jan-Joost; Chan, Sally; Liaw, Sok Ying
2015-12-01
The use of standardized patients in deteriorating patient simulations adds realism that can be valuable for preparing nurse trainees for stress and enhancing their performance during actual patient deterioration. Emotional engagement resulting from increased fidelity can provide additional stress for student nurses with limited exposure to real patients. To determine the presence of increased stress with the standardized patient modality, this study compared the use of standardized patients (SP) with the use of high-fidelity simulators (HFS) during deteriorating patient simulations. Performance in managing deteriorating patients was also compared. It also explored student nurses' insights on the use of standardized patients and patient simulators in deteriorating patient simulations as preparation for clinical placement. Fifty-seven student nurses participated in a randomized controlled design study with pre- and post-tests to evaluate stress and performance in deteriorating patient simulations. Performance was assessed using the Rescuing A Patient in Deteriorating Situations (RAPIDS) rating tool. Stress was measured using salivary alpha-amylase levels. Fourteen participants who joined the randomized controlled component then participated in focus group discussions that elicited their insights on SP use in patient deterioration simulations. Analysis of covariance (ANCOVA) results showed no significant difference (p=0.744) between the performance scores of the SP and HFS groups in managing deteriorating patients. Amylase levels were also not significantly different (p=0.317) between the two groups. Stress in simulation, awareness of patient interactions, and realism were the main themes that resulted from the thematic analysis. Performance and stress in deteriorating patient simulations with standardized patients did not vary from similar simulations using high-fidelity patient simulators. Data from focus group interviews, however, suggested that the use of standardized patients was perceived to be valuable in preparing students for actual patient deterioration management. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio
2018-03-01
This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Madden, Michael M.; Shelton, Robert; Jackson, A. A.; Castro, Manuel P.; Noble, Deleena M.; Zimmerman, Curtis J.; Shidner, Jeremy D.; White, Joseph P.; Dutta, Doumyo;
2015-01-01
This follow-on paper describes the principal methods of implementing, and documents the results of exercising, a set of six-degree-of-freedom rigid-body equations of motion and planetary geodetic, gravitation and atmospheric models for simple vehicles in a variety of endo- and exo-atmospheric conditions with various NASA, and one popular open-source, engineering simulation tools. This effort is intended to provide an additional means of verification of flight simulations. The models used in this comparison, as well as the resulting time-history trajectory data, are available electronically for persons and organizations wishing to compare their flight simulation implementations of the same models.
Effects of forming history on crash simulation of a vehicle
NASA Astrophysics Data System (ADS)
Gökler, M. İ.; Doğan, U. Ç.; Darendeliler, H.
2016-08-01
The effects of forming on the crash simulation of a vehicle have been investigated by considering the load paths produced by sheet metal forming process. The frontal crash analysis has been performed by the finite element method, firstly without considering the forming history, to find out the load paths that absorb the highest energy. The sheet metal forming simulations have been realized for each structural component of the load paths and the frontal crash analysis has been repeated by including forming history. The results of the simulations with and without forming effects have been compared with the physical crash test results available in literature.
Feller, S E; Yin, D; Pastor, R W; MacKerell, A D
1997-01-01
A potential energy function for unsaturated hydrocarbons is proposed and is shown to agree well with experiment, using molecular dynamics simulations of a water/octene interface and a dioleoyl phosphatidylcholine (DOPC) bilayer. The simulation results verify most of the assumptions used in interpreting the DOPC experiments, but suggest a few that should be reconsidered. Comparisons with recent results of a simulation of a dipalmitoyl phosphatidylcholine (DPPC) lipid bilayer show that disorder is comparable, even though the temperature, hydration level, and surface area/lipid for DOPC are lower. These observations highlight the dramatic effects of unsaturation on bilayer structure. Images FIGURE 3 PMID:9370424
Nonlinear Control of Large Disturbances in Magnetic Bearing Systems
NASA Technical Reports Server (NTRS)
Jiang, Yuhong; Zmood, R. B.
1996-01-01
In this paper, the nonlinear operation of magnetic bearing control methods is reviewed. For large disturbances, the effects of displacement constraints and power amplifier current and di/dt limits on bearing control system performance are analyzed. The operation of magnetic bearings exhibiting self-excited large scale oscillations have been studied both experimentally and by simulation. The simulation of the bearing system has been extended to include the effects of eddy currents in the actuators, so as to improve the accuracy of the simulation results. The results of these experiments and simulations are compared, and some useful conclusions are drawn for improving bearing system robustness.
Simulation-based education with mastery learning improves residents' lumbar puncture skills
Cohen, Elaine R.; Caprio, Timothy; McGaghie, William C.; Simuni, Tanya; Wayne, Diane B.
2012-01-01
Objective: To evaluate the effect of simulation-based mastery learning (SBML) on internal medicine residents' lumbar puncture (LP) skills, assess neurology residents' acquired LP skills from traditional clinical education, and compare the results of SBML to traditional clinical education. Methods: This study was a pretest-posttest design with a comparison group. Fifty-eight postgraduate year (PGY) 1 internal medicine residents received an SBML intervention in LP. Residents completed a baseline skill assessment (pretest) using a 21-item LP checklist. After a 3-hour session featuring deliberate practice and feedback, residents completed a posttest and were expected to meet or exceed a minimum passing score (MPS) set by an expert panel. Simulator-trained residents' pretest and posttest scores were compared to assess the impact of the intervention. Thirty-six PGY2, 3, and 4 neurology residents from 3 medical centers completed the same simulated LP assessment without SBML. SBML posttest scores were compared to neurology residents' baseline scores. Results: PGY1 internal medicine residents improved from a mean of 46.3% to 95.7% after SBML (p < 0.001) and all met the MPS at final posttest. The performance of traditionally trained neurology residents was significantly lower than simulator-trained residents (mean 65.4%, p < 0.001) and only 6% met the MPS. Conclusions: Residents who completed SBML showed significant improvement in LP procedural skills. Few neurology residents were competent to perform a simulated LP despite clinical experience with the procedure. PMID:22675080
Simulation Data as Data Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulla, G; Arrighi, W; Critchlow, T
2003-11-18
Computational or scientific simulations are increasingly being applied to solve a variety of scientific problems. Domains such as astrophysics, engineering, chemistry, biology, and environmental studies are benefiting from this important capability. Simulations, however, produce enormous amounts of data that need to be analyzed and understood. In this overview paper, we describe scientific simulation data, its characteristics, and the way scientists generate and use the data. We then compare and contrast simulation data to data streams. Finally, we describe our approach to analyzing simulation data, present the AQSim (Ad-hoc Queries for Simulation data) system, and discuss some of the challenges thatmore » result from handling this kind of data.« less
Strom, Suzanne L; Anderson, Craig L; Yang, Luanna; Canales, Cecilia; Amin, Alpesh; Lotfipour, Shahram; McCoy, C Eric; Osborn, Megan Boysen; Langdorf, Mark I
2015-11-01
Traditional Advanced Cardiac Life Support (ACLS) courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. We performed a prospective cohort study to determine the correlation between simulation-based evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. The composite average score on the written evaluation was substantially higher (93.6%) than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6-14.0%], p<0.00005). We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04), validating the new evaluation method. Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation.
Dawe, Susan R; Windsor, John A; Broeders, Joris A J L; Cregan, Patrick C; Hewett, Peter J; Maddern, Guy J
2014-02-01
A systematic review to determine whether skills acquired through simulation-based training transfer to the operating room for the procedures of laparoscopic cholecystectomy and endoscopy. Simulation-based training assumes that skills are directly transferable to the operation room, but only a few studies have investigated the effect of simulation-based training on surgical performance. A systematic search strategy that was used in 2006 was updated to retrieve relevant studies. Inclusion of articles was determined using a predetermined protocol, independent assessment by 2 reviewers, and a final consensus decision. Seventeen randomized controlled trials and 3 nonrandomized comparative studies were included in this review. In most cases, simulation-based training was in addition to patient-based training programs. Only 2 studies directly compared simulation-based training in isolation with patient-based training. For laparoscopic cholecystectomy (n = 10 studies) and endoscopy (n = 10 studies), participants who reached simulation-based skills proficiency before undergoing patient-based assessment performed with higher global assessment scores and fewer errors in the operating room than their counterparts who did not receive simulation training. Not all parameters measured were improved. Two of the endoscopic studies compared simulation-based training in isolation with patient-based training with different results: for sigmoidoscopy, patient-based training was more effective, whereas for colonoscopy, simulation-based training was equally effective. Skills acquired by simulation-based training seem to be transferable to the operative setting for laparoscopic cholecystectomy and endoscopy. Future research will strengthen these conclusions by evaluating predetermined competency levels on the same simulators and using objective validated global rating scales to measure operative performance.
Self-consistent simulation of CdTe solar cells with active defects
Brinkman, Daniel; Guo, Da; Akis, Richard; ...
2015-07-21
We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations tomore » demonstrate the accuracy of the solver and then show results unique to the 2D case.« less
Simulation of Tip-Sample Interaction in the Atomic Force Microscope
NASA Technical Reports Server (NTRS)
Good, Brian S.; Banerjea, Amitava
1994-01-01
Recent simulations of the interaction between planar surfaces and model Atomic Force Microscope (AFM) tips have suggested that there are conditions under which the tip may become unstable and 'avalanche' toward the sample surface. Here we investigate via computer simulation the stability of a variety of model AFM tip configurations with respect to the avalanche transition for a number of fcc metals. We perform Monte-Carlo simulations at room temperature using the Equivalent Crystal Theory (ECT) of Smith and Banerjea. Results are compared with recent experimental results as well as with our earlier work on the avalanche of parallel planar surfaces. Our results on a model single-atom tip are in excellent agreement with recent experiments on tunneling through mechanically-controlled break junctions.
Parallel tempering for the traveling salesman problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percus, Allon; Wang, Richard; Hyman, Jeffrey
We explore the potential of parallel tempering as a combinatorial optimization method, applying it to the traveling salesman problem. We compare simulation results of parallel tempering with a benchmark implementation of simulated annealing, and study how different choices of parameters affect the relative performance of the two methods. We find that a straightforward implementation of parallel tempering can outperform simulated annealing in several crucial respects. When parameters are chosen appropriately, both methods yield close approximation to the actual minimum distance for an instance with 200 nodes. However, parallel tempering yields more consistently accurate results when a series of independent simulationsmore » are performed. Our results suggest that parallel tempering might offer a simple but powerful alternative to simulated annealing for combinatorial optimization problems.« less
NASA Technical Reports Server (NTRS)
Ferrier, Brad S.; Tao, Wei-Kuo; Simpson, Joanne
1991-01-01
The basic features of a new and improved bulk-microphysical parameterization capable of simulating the hydrometeor structure of convective systems in all types of large-scale environments (with minimal adjustment of coefficients) are studied. Reflectivities simulated from the model are compared with radar observations of an intense midlatitude convective system. Simulated reflectivities using the novel four-class ice scheme with a microphysical parameterization rain distribution at 105 min are illustrated. Preliminary results indicate that this new ice scheme works efficiently in simulating midlatitude continental storms.
Huber, Tobias; Paschold, Markus; Hansen, Christian; Lang, Hauke; Kneist, Werner
2018-06-01
Immersive virtual reality (VR) laparoscopy simulation connects VR simulation with head-mounted displays to increase presence during VR training. The goal of the present study was the comparison of 2 different surroundings according to performance and users' preference. With a custom immersive virtual reality laparoscopy simulator, an artificially created VR operating room (AVR) and a highly immersive VR operating room (IVR) were compared. Participants (n = 30) performed 3 tasks (peg transfer, fine dissection, and cholecystectomy) in AVR and IVR in a crossover study design. No overall difference in virtual laparoscopic performance was obtained when comparing results from AVR with IVR. Most participants preferred the IVR surrounding (n = 24). Experienced participants (n = 10) performed significantly better than novices (n = 10) in all tasks regardless of the surrounding ( P < .05). Participants with limited experience (n = 10) showed differing results. Presence, immersion, and exhilaration were significantly higher in IVR. Two thirds assumed that IVR would have a positive influence on their laparoscopic simulator use. This first study comparing AVR and IVR did not reveal differences in virtual laparoscopic performance. IVR is considered the more realistic surrounding and is therefore preferred by the participants.
NASA Technical Reports Server (NTRS)
Stone, Peter H.; Yao, Mao-Sung
1990-01-01
A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.
Simulation of seismic events induced by CO2 injection at In Salah, Algeria
NASA Astrophysics Data System (ADS)
Verdon, James P.; Stork, Anna L.; Bissell, Rob C.; Bond, Clare E.; Werner, Maximilian J.
2015-09-01
Carbon capture and storage technology has the potential to reduce anthropogenic CO2 emissions. However, the geomechanical response of the reservoir and sealing caprocks must be modelled and monitored to ensure that injected CO2 is safely stored. To ensure confidence in model results, there is a clear need to develop ways of comparing model predictions with observations from the field. In this paper we develop an approach to simulate microseismic activity induced by injection, which allows us to compare geomechanical model predictions with observed microseismic activity. We apply this method to the In Salah CCS project, Algeria. A geomechanical reconstruction is used to simulate the locations, orientations and sizes of pre-existing fractures in the In Salah reservoir. The initial stress conditions, in combination with a history matched reservoir flow model, are used to determine when and where these fractures exceed Mohr-Coulomb limits, triggering failure. The sizes and orientations of fractures, and the stress conditions thereon, are used to determine the resulting micro-earthquake focal mechanisms and magnitudes. We compare our simulated event population with observations made at In Salah, finding good agreement between model and observations in terms of event locations, rates of seismicity, and event magnitudes.
Detecting Recombination Hotspots from Patterns of Linkage Disequilibrium.
Wall, Jeffrey D; Stevison, Laurie S
2016-08-09
With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots, LDhot, has been used in a handful of species to further our understanding of the basic biology of recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is unknown. In this study, we run extensive simulations to compare the effectiveness of three different implementations of LDhot. We find large differences in the power and false positive rates of these different approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to more accurate estimation of hotspot locations). We also compared our LDhot simulation results with comparable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots. Surprisingly, we found that the latter computationally intensive approach had substantially lower power over the parameter values considered in our simulations. Copyright © 2016 Wall and Stevison.
Steiner, Malte; Claes, Lutz; Ignatius, Anita; Simon, Ulrich; Wehner, Tim
2014-07-01
The outcome of secondary fracture healing processes is strongly influenced by interfragmentary motion. Shear movement is assumed to be more disadvantageous than axial movement, however, experimental results are contradictory. Numerical fracture healing models allow simulation of the fracture healing process with variation of single input parameters and under comparable, normalized mechanical conditions. Thus, a comparison of the influence of different loading directions on the healing process is possible. In this study we simulated fracture healing under several axial compressive, and translational and torsional shear movement scenarios, and compared their respective healing times. Therefore, we used a calibrated numerical model for fracture healing in sheep. Numerous variations of movement amplitudes and musculoskeletal loads were simulated for the three loading directions. Our results show that isolated axial compression was more beneficial for the fracture healing success than both isolated shearing conditions for load and displacement magnitudes which were identical as well as physiological different, and even for strain-based normalized comparable conditions. Additionally, torsional shear movements had less impeding effects than translational shear movements. Therefore, our findings suggest that osteosynthesis implants can be optimized, in particular, to limit translational interfragmentary shear under musculoskeletal loading. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
A new clocking method for a charge coupled device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umezu, Rika; Kitamoto, Shunji, E-mail: kitamoto@rikkyo.ac.jp; Murakami, Hiroshi
2014-07-15
We propose and demonstrate a new clocking method for a charge-coupled device (CCD). When a CCD is used for a photon counting detector of X-rays, its weak point is a limitation of its counting rate, because high counting rate makes non-negligible pile-up of photons. In astronomical usage, this pile-up is especially severe for an observation of a bright point-like object. One typical idea to reduce the pile-up is a parallel sum (P-sum) mode. This mode completely loses one-dimensional information. Our new clocking method, panning mode, provides complementary properties between the normal mode and the P-sum mode. We performed a simplemore » simulation in order to investigate a pile-up probability and compared the simulated result and actual obtained event rates. Using this simulation and the experimental results, we compared the pile-up tolerance of various clocking modes including our new method and also compared their other characteristics.« less
Huntjens, Rafaële J C; Postma, Albert; Woertman, Liesbeth; van der Hart, Onno; Peters, Madelon L
2005-06-01
In a serial reaction time task, procedural memory was examined in Dissociative Identity Disorder (DID). Thirty-one DID patients were tested for inter-identity transfer of procedural learning and their memory performance was compared with 25 normal controls and 25 controls instructed to simulate DID. Results of patients seemed to indicate a pattern of inter-identity amnesia. Simulators, however, were able to mimic a pattern of inter-identity amnesia, rendering the results of patients impossible to interpret as either a pattern of amnesia or a pattern of simulation. It is argued that studies not including DID-simulators or simulation-free memory tasks, should not be taken as evidence for (or against) amnesia in DID.
Liu, Xin
2014-01-01
This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.
NASA Astrophysics Data System (ADS)
Sundberg, Mikaela
While the distinction between theory and experiment is often used to discuss the place of simulation from a philosophical viewpoint, other distinctions are possible from a sociological perspective. Turkle (1995) distinguishes between cultures of calculation and cultures of simulation and relates these cultures to the distinction between modernity and postmodernity, respectively. What can we understand about contemporary simulation practices in science by looking at them from the point of view of these two computer cultures? What new questions does such an analysis raise for further studies? On the basis of two case studies, the present paper compares and discusses simulation activities in astrophysics and meteorology. It argues that simulation practices manifest aspects of both of these cultures simultaneously, but in different situations. By employing the dichotomies surface/depth, play/seriousness, and extreme/reasonable to characterize and operationalize cultures of calculation and cultures of simulation as sensitizing concepts, the analysis shows how simulation code work shifts from development to use, the importance of but also resistance towards too much visualizations, and how simulation modelers play with extreme values, yet also try to achieve reasonable results compared to observations.
Computer simulation of reconstructed image for computer-generated holograms
NASA Astrophysics Data System (ADS)
Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi
2009-02-01
This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.
NASA Technical Reports Server (NTRS)
Arneson, Heather; Evans, Antony D.; Li, Jinhua; Wei, Mei Yueh
2017-01-01
Integrated Demand Management (IDM) is a near- to mid-term NASA concept that proposes to address mismatches in air traffic system demand and capacity by using strategic flow management capabilities to pre-condition demand into the more tactical Time-Based Flow Management System (TBFM). This paper describes an automated simulation capability to support IDM concept development. The capability closely mimics existing human-in-the-loop (HITL) capabilities, automating both the human components and collaboration between operational systems, and speeding up the real-time aircraft simulations. Such a capability allows for parametric studies that will inform the HITL simulations, identifying breaking points and parameter values at which significant changes in system behavior occur. This paper also describes the initial validation of individual components of the automated simulation capability, and an example application comparing the performance of the IDM concept under two TBFM scheduling paradigms. The results and conclusions from this simulation compare closely to those from previous HITL simulations using similar scenarios, providing an initial validation of the automated simulation capability.
Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-01-03
In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. In this paper, we perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects aremore » ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Finally, our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.« less
NASA Astrophysics Data System (ADS)
Bazanov, A. A.; Ivanovskii, A. V.; Panov, A. I.; Samodolov, A. V.; Sokolov, S. S.; Shaidullin, V. Sh.
2017-06-01
We report on the results of the computer simulation of the operation of magnetodynamic break switches used as the second stage of current pulse formation in magnetic explosion generators. The simulation was carried out under the conditions when the magnetic field energy density on the surface of the switching conductor as a function of the current through it was close to but still did not exceed the critical value typical of the beginning of electric explosion. In the computational model, we used the parameters of experimentally tested sample of a coil magnetic explosion generator that can store energy of up to 2.7 MJ in the inductive storage circuit and equipped with a primary explosion stage of the current pulse formation. It has been shown that the choice of the switching conductor material, as well as its elastoplastic properties, considerably affects the breaker speed. Comparative results of computer simulation for copper and aluminum have been considered.
Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons
NASA Astrophysics Data System (ADS)
Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.
2015-12-01
Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.
NASA Astrophysics Data System (ADS)
Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.
2018-05-01
Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.
Song, Sangha; Elgezua, Inko; Kobayashi, Yo; Fujie, Masakatsu G
2013-01-01
In biomedical, Monte-carlo simulation is commonly used for simulation of light diffusion in tissue. But, most of previous studies did not consider a radial beam LED as light source. Therefore, we considered characteristics of a radial beam LED and applied them on MC simulation as light source. In this paper, we consider 3 characteristics of radial beam LED. The first is an initial launch area of photons. The second is an incident angle of a photon at an initial photon launching area. The third is the refraction effect according to contact area between LED and a turbid medium. For the verification of the MC simulation, we compared simulation and experimental results. The average of the correlation coefficient between simulation and experimental results is 0.9954. Through this study, we show an effective method to simulate light diffusion on tissue with characteristics for radial beam LED based on MC simulation.
RotCFD Analysis of the AH-56 Cheyenne Hub Drag
NASA Technical Reports Server (NTRS)
Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen
2016-01-01
In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.
Multi-scale strategies for dealing with moving contact lines
NASA Astrophysics Data System (ADS)
Smith, Edward R.; Theodorakis, Panagiotis; Craster, Richard V.; Matar, Omar K.
2017-11-01
Molecular dynamics (MD) has great potential to elucidate the dynamics of the moving contact line. As a more fundamental model, it can provide a priori results for fluid-liquid interfaces, surface tension, viscosity, phase change, and near wall stick-slip behaviour which typically show very good agreement to experimental results. However, modelling contact line motion combines all this complexity in a single problem. In this talk, MD simulations of the contact line are compared to the experimental results obtained from studying the dynamics of a sheared liquid bridge. The static contact angles are correctly matched to the experimental data for a range of different electro-wetting results. The moving contact line results are then compared for each of these electro-wetting values. Despite qualitative agreement, there are notable differences between the simulation and experiments. Many MD simulation have studied contact lines, and the sheared liquid bridge, so it is of interest to review the limitations of this setup in light of this discrepancy. A number of factors are discussed, including the inter-molecular interaction model, molecular-scale surface roughness, model of electro-wetting and, perhaps most importantly, the limited system sizes possible using MD simulation. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
How many molecules are required to measure a cyclic voltammogram?
NASA Astrophysics Data System (ADS)
Cutress, Ian J.; Compton, Richard G.
2011-05-01
The stochastic limit at which fully-reversible cyclic voltammetry can accurately be measured is investigated. Specifically, Monte Carlo GPU simulation is used to study low concentration cyclic voltammetry at a microdisk electrode over a range of scan rates and concentrations, and the results compared to the statistical limit as predicted by finite difference simulation based on Fick's Laws of Diffusion. Both Butler-Volmer and Marcus-Hush electrode kinetics are considered, simulated via random-walk methods, and shown to give identical results in the fast kinetic limit.
Simulation of blast action on civil structures using ANSYS Autodyn
NASA Astrophysics Data System (ADS)
Fedorova, N. N.; Valger, S. A.; Fedorov, A. V.
2016-10-01
The paper presents the results of 3D numerical simulations of shock wave spreading in cityscape area. ANSYS Autodyne software is used for the computations. Different test cases are investigated numerically. On the basis of the computations, the complex transient flowfield structure formed in the vicinity of prismatic bodies was obtained and analyzed. The simulation results have been compared to the experimental data. The ability of two numerical schemes is studied to correctly predict the pressure history in several gauges placed on walls of the obstacles.
Applications of the Lattice Boltzmann Method to Complex and Turbulent Flows
NASA Technical Reports Server (NTRS)
Luo, Li-Shi; Qi, Dewei; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We briefly review the method of the lattice Boltzmann equation (LBE). We show the three-dimensional LBE simulation results for a non-spherical particle in Couette flow and 16 particles in sedimentation in fluid. We compare the LBE simulation of the three-dimensional homogeneous isotropic turbulence flow in a periodic cubic box of the size 1283 with the pseudo-spectral simulation, and find that the two results agree well with each other but the LBE method is more dissipative than the pseudo-spectral method in small scales, as expected.
NASA Technical Reports Server (NTRS)
Stankovic, Ana V.
2003-01-01
Professor Stankovic will be developing and refining Simulink based models of the PM alternator and comparing the simulation results with experimental measurements taken from the unit. Her first task is to validate the models using the experimental data. Her next task is to develop alternative control techniques for the application of the Brayton Cycle PM Alternator in a nuclear electric propulsion vehicle. The control techniques will be first simulated using the validated models then tried experimentally with hardware available at NASA. Testing and simulation of a 2KW PM synchronous generator with diode bridge output is described. The parameters of a synchronous PM generator have been measured and used in simulation. Test procedures have been developed to verify the PM generator model with diode bridge output. Experimental and simulation results are in excellent agreement.
Fabrication and evaluation of novel rabbit model cardiovascular simulator with 3D printer
NASA Astrophysics Data System (ADS)
Jang, Min; Lee, Min-Woo; Seo, See-Yoon; Shin, Sang-Hoon
2017-03-01
Simulators allow researchers to study the hemodynamics of the cardiovascular system in a reproducible way without using complicated equations. Previous simulators focused on heart functions. However, a detailed model of the vessels is required to replicate the pulse wave of the arterial system. A computer simulation was used to simplify the arterial branch because producing every small artery is neither possible nor necessary. A 3D-printed zig was used to make a hand-made arterial tree. The simulator that was developed was evaluated by comparing its results to in-vivo data, in terms of the hemodynamic parameters (waveform, augmentation index, impedance, etc.) that were measured at three points: the ascending aorta, the thoracic aorta, and the brachiocephalic artery. The results from the simulator showed good agreement with the in-vivo data. Therefore, this simulator can be used as a research tool for the cardiovascular study of animal models, specifically rabbits.
NASA Astrophysics Data System (ADS)
Pu, Wanli
The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir simulations also indicate that original rock properties are the dominant factor for the ultimate oil recovery for both primary recovery and gas injection EOR. Because reservoir simulations provide critical inputs for project planning and management, more effort needs to be invested into reservoir modeling and simulation, including building enhanced geologic models, fracture characterization and modeling, and history matching with field data. Gas injection EOR projects are integrated projects, and the viability of a project also depends on different economic conditions.
NASA Astrophysics Data System (ADS)
Fukazawa, K.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.
2016-12-01
Planetary magnetospheres are very large, while phenomena within them occur on meso- and micro-scales. These scales range from 10s of planetary radii to kilometers. To understand dynamics in these multi-scale systems, numerical simulations have been performed by using the supercomputer systems. We have studied the magnetospheres of Earth, Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations for a long time, however, we have not obtained the phenomena near the limits of the MHD approximation. In particular, we have not studied meso-scale phenomena that can be addressed by using MHD.Recently we performed our MHD simulation of Earth's magnetosphere by using the K-computer which is the first 10PFlops supercomputer and obtained multi-scale flow vorticity for the both northward and southward IMF. Furthermore, we have access to supercomputer systems which have Xeon, SPARC64, and vector-type CPUs and can compare simulation results between the different systems. Finally, we have compared the results of our parameter survey of the magnetosphere with observations from the HISAKI spacecraft.We have encountered a number of difficulties effectively using the latest supercomputer systems. First the size of simulation output increases greatly. Now a simulation group produces over 1PB of output. Storage and analysis of this much data is difficult. The traditional way to analyze simulation results is to move the results to the investigator's home computer. This takes over three months using an end-to-end 10Gbps network. In reality, there are problems at some nodes such as firewalls that can increase the transfer time to over one year. Another issue is post-processing. It is hard to treat a few TB of simulation output due to the memory limitations of a post-processing computer. To overcome these issues, we have developed and introduced the parallel network storage, the highly efficient network protocol and the CUI based visualization tools.In this study, we will show the latest simulation results using the petascale supercomputer and problems from the use of these supercomputer systems.
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2013-09-21
For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β(+)-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β(+)-activity and dose is not feasible, a simulation of the expected β(+)-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β(+)-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β(+)-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET.
NASA Astrophysics Data System (ADS)
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2013-09-01
For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β+-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β+-activity and dose is not feasible, a simulation of the expected β+-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β+-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β+-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET.
Case Studies of Forecasting Ionospheric Total Electron Content
NASA Astrophysics Data System (ADS)
Mannucci, A. J.; Meng, X.; Verkhoglyadova, O. P.; Tsurutani, B.; McGranaghan, R. M.
2017-12-01
We report on medium-range forecast-mode runs of ionosphere-thermosphere coupled models that calculate ionospheric total electron content (TEC), focusing on low-latitude daytime conditions. A medium-range forecast-mode run refers to simulations that are driven by inputs that can be predicted 2-3 days in advance, for example based on simulations of the solar wind. We will present results from a weak geomagnetic storm caused by a high-speed solar wind stream on June 29, 2012. Simulations based on the Global Ionosphere Thermosphere Model (GITM) and the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) significantly over-estimate TEC in certain low latitude daytime regions, compared to TEC maps based on observations. We will present the results from a more intense coronal mass ejection (CME) driven storm where the simulations are closer to observations. We compare high latitude data sets to model inputs, such as auroral boundary and convection patterns, to assess the degree to which poorly estimated high latitude drivers may be the largest cause of discrepancy between simulations and observations. Our results reveal many factors that can affect the accuracy of forecasts, including the fidelity of empirical models used to estimate high latitude precipitation patterns, or observation proxies for solar EUV spectra, such as the F10.7 index. Implications for forecasts with few-day lead times are discussed
NASA Astrophysics Data System (ADS)
Safaei, Hadi; Emami, Mohsen Davazdah; Jazi, Hamidreza Salimi; Mostaghimi, Javad
2017-12-01
Applications of hollow spherical particles in thermal spraying process have been developed in recent years, accompanied by attempts in the form of experimental and numerical studies to better understand the process of impact of a hollow droplet on a surface. During such process, volume and density of the trapped gas inside droplet change. The numerical models should be able to simulate such changes and their consequent effects. The aim of this study is to numerically simulate the impact of a hollow ZrO2 droplet on a flat surface using the volume of fluid technique for compressible flows. An open-source, finite-volume-based CFD code was used to perform the simulations, where appropriate subprograms were added to handle the studied cases. Simulation results were compared with the available experimental data. Results showed that at high impact velocities ( U 0 > 100 m/s), the compression of trapped gas inside droplet played a significant role in the impact dynamics. In such velocities, the droplet splashed explosively. Compressibility effects result in a more porous splat, compared to the corresponding incompressible model. Moreover, the compressible model predicted a higher spread factor than the incompressible model, due to planetary structure of the splat.
Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models
NASA Astrophysics Data System (ADS)
Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.
2016-12-01
This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.
Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith
NASA Astrophysics Data System (ADS)
Piquette, Marcus; Horányi, Mihály; Stern, S. Alan
2017-09-01
The existence of water ice on the lunar surface has been a long-standing topic with implications for both lunar science and in-situ resource utilization (ISRU). Cold traps on the lunar surface may have conditions necessary to retain water ice, but no laboratory experiments have been conducted to verify modeling results. We present an experiment testing the ability to thermally control bulk samples of lunar regolith simulant mixed with water ice under vacuum in an effort to constrain sublimation rates. The simulant used was JSC-1A lunar regolith simulant developed by NASA's Johnson Space Center. Samples with varying ratios of water ice and JSC-1A regolith simulant, totally about 1 kg, were placed under vacuum and cooled to 100 K to simulate conditions in lunar cold traps. The resulting sublimation of water ice over an approximately five-day period was measured by comparing the mass of the samples before and after the experimental run. Our results indicate that water ice in lunar cold traps is stable on timescales comparable to the lunar night, and should continue to be studied as possible resources for future utilization. This experiment also gauges the efficacy of the synthetic lunar atmosphere mission (SLAM) as a low-cost water resupply mission to lunar outposts.
Lemaster, Margaret; Flores, Joyce M; Blacketer, Margaret S
2016-02-01
This study explored the effectiveness of simulated mouth models to improve identification and recording of dental restorations when compared to using traditional didactic instruction combined with 2-dimensional images. Simulation has been adopted into medical and dental education curriculum to improve both student learning and patient safety outcomes. A 2-sample, independent t-test analysis of data was conducted to compare graded dental recordings of dental hygiene students using simulated mouth models and dental hygiene students using 2-dimensional photographs. Evaluations from graded dental charts were analyzed and compared between groups of students using the simulated mouth models containing random placement of custom preventive and restorative materials and traditional 2-dimensional representations of didactically described conditions. Results demonstrated a statistically significant (p≤0.0001) difference: for experimental group, students using the simulated mouth models to identify and record dental conditions had a mean of 86.73 and variance of 33.84. The control group students using traditional 2-dimensional images mean graded dental chart scores were 74.43 and variance was 14.25. Using modified simulation technology for dental charting identification may increase level of dental charting skill competency in first year dental hygiene students. Copyright © 2016 The American Dental Hygienists’ Association.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Nixon, Andrew; Barber, Tom; Budyn, Nicolas; Bevan, Rhodri; Croxford, Anthony; Wilcox, Paul
2018-04-01
In this paper, a methodology of using finite element (FE) model to validate a ray-based model in the simulation of full matrix capture (FMC) ultrasonic array data set is proposed. The overall aim is to separate signal contributions from different interactions in FE results for easier comparing each individual component in the ray-based model results. This is achieved by combining the results from multiple FE models of the system of interest that include progressively more geometrical features while preserving the same mesh structure. It is shown that the proposed techniques allow the interactions from a large number of different ray-paths to be isolated in FE results and compared directly to the results from a ray-based forward model.
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic-conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non-Gaussian behavior of the mean cloud, are reported on as well.
Simulation's Ensemble is Better Than Ensemble Simulation
NASA Astrophysics Data System (ADS)
Yan, X.
2017-12-01
Simulation's ensemble is better than ensemble simulation Yan Xiaodong State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE) Beijing Normal University,19 Xinjiekouwai Street, Haidian District, Beijing 100875, China Email: yxd@bnu.edu.cnDynamical system is simulated from initial state. However initial state data is of great uncertainty, which leads to uncertainty of simulation. Therefore, multiple possible initial states based simulation has been used widely in atmospheric science, which has indeed been proved to be able to lower the uncertainty, that was named simulation's ensemble because multiple simulation results would be fused . In ecological field, individual based model simulation (forest gap models for example) can be regarded as simulation's ensemble compared with community based simulation (most ecosystem models). In this talk, we will address the advantage of individual based simulation and even their ensembles.
Han, Jeong-Hwan; Oda, Takuji
2018-04-14
The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.
Enhanced vadose zone nitrogen removal by poplar during dormancy.
Ausland, Hayden; Ward, Adam; Licht, Louis; Just, Craig
2015-01-01
A pilot-scale, engineered poplar tree vadose zone system was utilized to determine effluent nitrate (NO3(-)) and ammonium concentrations resulting from intermittent dosing of a synthetic wastewater onto sandy soils at 4.5°C. The synthetic wastewater replicated that of an industrial food processor that irrigates onto sandy soils even during dormancy which can leave groundwater vulnerable to NO3(-) contamination. Data from a 21-day experiment was used to assess various Hydrus model parameterizations that simulated the impact of dormant roots. Bromide tracer data indicated that roots impacted the hydraulic properties of the packed sand by increasing effective dispersion, water content and residence time. The simulated effluent NO3(-) concentration on day 21 was 1.2 mg-N L(-1) in the rooted treatments compared to a measured value of 1.0 ± 0.72 mg-N L(-1). For the non-rooted treatment, the simulated NO3(-) concentration was 4.7 mg-N L(-1) compared to 5.1 ± 3.5 mg-N L(-1) measured on day 21. The model predicted a substantial "root benefit" toward protecting groundwater through increased denitrification in rooted treatments during a 21-day simulation with 8% of dosed nitrogen converted to N2 compared to 3.3% converted in the non-rooted test cells. Simulations at the 90-day timescale provided similar results, indicating increased denitrification in rooted treatments.
NASA Astrophysics Data System (ADS)
Han, Jeong-Hwan; Oda, Takuji
2018-04-01
The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.
Atomistic Simulation of Initiation in Hexanitrostilbene
NASA Astrophysics Data System (ADS)
Shan, Tzu-Ray; Wixom, Ryan; Yarrington, Cole; Thompson, Aidan
2015-06-01
We report on the effect of cylindrical voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations and by comparing the primary dissociation pathway to ab initio calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating through the HNS crystal along the [010] orientation are performed with an impact velocity (or particle velocity) of 1.25 km/s, resulting in shockwave propagation at 4.0 km/s in the bulk material and a bulk shock pressure of ~ 11GPa. The effect of cylindrical void sizes varying from 0.02 to 0.1 μm on hot spot formation and growth rate has been studied. Interaction between multiple voids in the HNS crystal and its effect on hot spot formation will also be addressed. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Fernández, Alfonso; Najafi, Mohammad Reza; Durand, Michael; Mark, Bryan G.; Moritz, Mark; Jung, Hahn Chul; Neal, Jeffrey; Shastry, Apoorva; Laborde, Sarah; Phang, Sui Chian; Hamilton, Ian M.; Xiao, Ningchuan
2016-08-01
Recent innovations in hydraulic modeling have enabled global simulation of rivers, including simulation of their coupled wetlands and floodplains. Accurate simulations of floodplains using these approaches may imply tremendous advances in global hydrologic studies and in biogeochemical cycling. One such innovation is to explicitly treat sub-grid channels within two-dimensional models, given only remotely sensed data in areas with limited data availability. However, predicting inundated area in floodplains using a sub-grid model has not been rigorously validated. In this study, we applied the LISFLOOD-FP hydraulic model using a sub-grid channel parameterization to simulate inundation dynamics on the Logone River floodplain, in northern Cameroon, from 2001 to 2007. Our goal was to determine whether floodplain dynamics could be simulated with sufficient accuracy to understand human and natural contributions to current and future inundation patterns. Model inputs in this data-sparse region include in situ river discharge, satellite-derived rainfall, and the shuttle radar topography mission (SRTM) floodplain elevation. We found that the model accurately simulated total floodplain inundation, with a Pearson correlation coefficient greater than 0.9, and RMSE less than 700 km2, compared to peak inundation greater than 6000 km2. Predicted discharge downstream of the floodplain matched measurements (Nash-Sutcliffe efficiency of 0.81), and indicated that net flow from the channel to the floodplain was modeled accurately. However, the spatial pattern of inundation was not well simulated, apparently due to uncertainties in SRTM elevations. We evaluated model results at 250, 500 and 1000-m spatial resolutions, and found that results are insensitive to spatial resolution. We also compared the model output against results from a run of LISFLOOD-FP in which the sub-grid channel parameterization was disabled, finding that the sub-grid parameterization simulated more realistic dynamics. These results suggest that analysis of global inundation is feasible using a sub-grid model, but that spatial patterns at sub-kilometer resolutions still need to be adequately predicted.
SU-F-T-370: A Fast Monte Carlo Dose Engine for Gamma Knife
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, T; Zhou, L; Li, Y
2016-06-15
Purpose: To develop a fast Monte Carlo dose calculation algorithm for Gamma Knife. Methods: To make the simulation more efficient, we implemented the track repeating technique on GPU. We first use EGSnrc to pre-calculate the photon and secondary electron tracks in water from two mono-energy photons of 60Co. The total photon mean free paths for different materials and energies are obtained from NIST. During simulation, each entire photon track was first loaded to shared memory for each block, the incident original photon was then splitted to Nthread sub-photons, each thread transport one sub-photon, the Russian roulette technique was applied formore » scattered and bremsstrahlung photons. The resultant electrons from photon interactions are simulated by repeating the recorded electron tracks. The electron step length is stretched/shrunk proportionally based on the local density and stopping power ratios of the local material. Energy deposition in a voxel is proportional to the fraction of the equivalent step length in that voxel. To evaluate its accuracy, dose deposition in a 300mm*300mm*300mm water phantom is calculated, and compared to EGSnrc results. Results: Both PDD and OAR showed great agreements (within 0.5%) between our dose engine result and the EGSnrc result. It only takes less than 1 min for every simulation, being reduced up to ∼40 times compared to EGSnrc simulations. Conclusion: We have successfully developed a fast Monte Carlo dose engine for Gamma Knife.« less
Comparing CTH simulations and experiments on explosively loaded rings
NASA Astrophysics Data System (ADS)
Braithwaite, C. H.; Aydelotte, Brady; Collins, Adam; Thadhani, Naresh; Williamson, David Martin
2012-03-01
A series of experiments were conducted on explosively loaded metallic rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with photon Doppler velocimetry (PDV) and the arrangement was imaged using high speed photography. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 380 m/s, which was achieved through loading with a 5g PETN based charge.
Experimental and Computational Study of Sonic and Supersonic Jet Plumes
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Naughton, J. W.; Fletcher, D. G.; Edwards, Thomas A. (Technical Monitor)
1994-01-01
Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock-shear-layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
Sonic and Supersonic Jet Plumes
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)
1994-01-01
Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
NASA Astrophysics Data System (ADS)
Magyar, Rudolph
2013-06-01
We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Large eddy simulation on buoyant gas diffusion near building
NASA Astrophysics Data System (ADS)
Tominaga, Yoshihide; Murakami, Shuzo; Mochida, Akashi
1992-12-01
Large eddy simulations on turbulent diffusion of buoyant gases near a building model are carried out for three cases in which the densimetric Froude Number (Frd) was specified at - 8.6, zero and 8.6 respectively. The accuracy of these simulations is examined by comparing the numerically predicted results with wind tunnel experiments conducted. Two types of sub-grid scale models, the standard Smagorinsky model (type 1) and the modified Smagorinsky model (type 2) are compared. The former does not take account of the production of subgrid energy by buoyancy force but the latter incorporates this effect. The latter model (type 2) gives more accurate results than those given by the standard Smagorinsky model (type 1) in terms of the distributions of kappa greater than sign C less than sign greater than sign C(sup - 2) less than sign.
Design and evaluation of a DAMQ multiprocessor network with self-compacting buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.; O`Krafka, B.W.O.; Vassiliadis, S.
1994-12-31
This paper describes a new approach to implement Dynamically Allocated Multi-Queue (DAMQ) switching elements using a technique called ``self-compacting buffers``. This technique is efficient in that the amount of hardware required to manage the buffers is relatively small; it offers high performance since it is an implementation of a DAMQ. The first part of this paper describes the self-compacting buffer architecture in detail, and compares it against a competing DAMQ switch design. The second part presents extensive simulation results comparing the performance of a self compacting buffer switch against an ideal switch including several examples of k-ary n-cubes and deltamore » networks. In addition, simulation results show how the performance of an entire network can be quickly and accurately approximated by simulating just a single switching element.« less
NASA Technical Reports Server (NTRS)
Tabiei, Al; Lawrence, Charles; Fasanella, Edwin L.
2009-01-01
A series of crash tests were conducted with dummies during simulated Orion crew module landings at the Wright-Patterson Air Force Base. These tests consisted of several crew configurations with and without astronaut suits. Some test results were collected and are presented. In addition, finite element models of the tests were developed and are presented. The finite element models were validated using the experimental data, and the test responses were compared with the computed results. Occupant crash data, such as forces, moments, and accelerations, were collected from the simulations and compared with injury criteria to assess occupant survivability and injury. Some of the injury criteria published in the literature is summarized for completeness. These criteria were used to determine potential injury during crew impact events.
Bednar, James A.
2008-01-01
Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major technical challenge. In this paper, we show that the Python-based Topographica simulator makes it straightforward to build systems that cross levels of analysis, as well as providing a common framework for evaluating and comparing models implemented in other simulators. These results rely on the general-purpose abstractions around which Topographica is designed, along with the Python interfaces becoming available for many simulators. In particular, we present a detailed, general-purpose example of how to wrap an external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines of Python code, making it possible to use any of the extensive input presentation, analysis, and plotting tools of Topographica. Additional examples show how to interface easily with models in other types of simulators. Researchers simulating topographic maps externally should consider using Topographica's analysis tools (such as preference map, receptive field, or tuning curve measurement) to compare results consistently, and for connecting models at different levels. This seamless interoperability will help neuroscientists and computational scientists to work together to understand how neurons in topographic maps organize and operate. PMID:19352443
Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor
NASA Technical Reports Server (NTRS)
Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.;
2012-01-01
Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused convergence problems in some RANS simulations, was also captured in LES / RANS simulations, which were able to accommodate its effects accurately.
NASA Astrophysics Data System (ADS)
Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad
2018-04-01
Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in a regional model.
HadCM3 Simulations of ENSO behaviour during the Mid-Pliocene Warm Period
NASA Astrophysics Data System (ADS)
Bonham, S. G.; Haywood, A. M.; Lunt, D. J.
2009-04-01
It has been suggested that a permanent El Niño state existed during the mid-Pliocene (ca. 3.3 - 3.0 Ma BP), with a west-to-east temperature gradient in the tropical Pacific considerably weaker than today. This is based upon a number of palaeoceanographic studies which have examined the development of the thermocline and SST gradient in the tropical Pacific over the last five million years. This state is now being referred to as El Padre in recognition of the fact that a mean state warming in EEP SSTs does not necessarily imply the presence of a permanent El Niño. Recent results from mid-Pliocene coupled ocean-atmosphere model simulations have shown clear ENSO variability whilst maintaining the warming in the EEP. This research expands on this study, using the UK Met Office GCM (HadCM3), to examine the behaviour and characteristics of ENSO in two mid-Pliocene simulations (with an open and closed Central American Seaway, CAS) compared with a control pre-industrial run, as well as produce a detailed profile of the mean state climates. The results shown include timescales of ENSO variability across four regions in the Pacific, as well as frequency, EOF and wavelet analysis. We have also looked at the interaction of ENSO with the annual cycle and the onset of ENSO events, and the interdecadal variability in the simulations. The initial timeseries produced have shown a greater variability of ENSO during the closed CAS mid-Pliocene simulation where the system oscillates between events much more frequently than seen in the pre-industrial run. The EOF and wavelet analyses quantify this behaviour, showing that the variability is approximately 15% higher over the central and eastern equatorial Pacific, with a period of oscillation of 2-5 years compared with 4-8 years for the pre-industrial simulation. These results will be compared with those obtained from the second mid-Pliocene simulation (open CAS).
NASA Astrophysics Data System (ADS)
Yang, Zhengjun; Wang, Fujun; Zhou, Peijian
2012-09-01
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
Timko, Jeff; Kuyucak, Serdar
2012-11-28
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Analysis of historical and recent PBX 9404 cylinder tests using FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooten, Hasani Omar; Whitley, Von Howard
2017-01-31
Cylinder test experiments using aged PBX-9404 were recently conducted. When compared to similar historical tests using the same materials, but different diagnostics, the data indicate that PBX 9404 imparts less energy to surrounding copper. The purpose of this work was to simulate historical and recent cylinder tests using the Lagrangian hydrodynamics code, FLAG, and identify any differences in the energetic behavior of the material. Nine experiments spanning approximately 4.5 decades were simulated, and radial wall expansions and velocities were compared. Equation-of-state parameters were adjusted to obtain reasonable matches with experimental data. Pressure-volume isentropes were integrated, and resultant energies at specificmore » volume expansions were compared. FLAG simulations matched to experimental data indicate energetic changes of approximately -0.57% to -0.78% per decade.« less
Isaranuwatchai, Wanrudee; Brydges, Ryan; Carnahan, Heather; Backstein, David; Dubrowski, Adam
2014-05-01
While the ultimate goal of simulation training is to enhance learning, cost-effectiveness is a critical factor. Research that compares simulation training in terms of educational- and cost-effectiveness will lead to better-informed curricular decisions. Using previously published data we conducted a cost-effectiveness analysis of three simulation-based programs. Medical students (n = 15 per group) practiced in one of three 2-h intravenous catheterization skills training programs: low-fidelity (virtual reality), high-fidelity (mannequin), or progressive (consisting of virtual reality, task trainer, and mannequin simulator). One week later, all performed a transfer test on a hybrid simulation (standardized patient with a task trainer). We used a net benefit regression model to identify the most cost-effective training program via paired comparisons. We also created a cost-effectiveness acceptability curve to visually represent the probability that one program is more cost-effective when compared to its comparator at various 'willingness-to-pay' values. We conducted separate analyses for implementation and total costs. The results showed that the progressive program had the highest total cost (p < 0.001) whereas the high-fidelity program had the highest implementation cost (p < 0.001). While the most cost-effective program depended on the decision makers' willingness-to-pay value, the progressive training program was generally most educationally- and cost-effective. Our analyses suggest that a progressive program that strategically combines simulation modalities provides a cost-effective solution. More generally, we have introduced how a cost-effectiveness analysis may be applied to simulation training; a method that medical educators may use to investment decisions (e.g., purchasing cost-effective and educationally sound simulators).
Effective description of a 3D object for photon transportation in Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Suganuma, R.; Ogawa, K.
2000-06-01
Photon transport simulation by means of the Monte Carlo method is an indispensable technique for examining scatter and absorption correction methods in SPECT and PET. The authors have developed a method for object description with maximum size regions (maximum rectangular regions: MRRs) to speed up photon transport simulation, and compared the computation time with that for conventional object description methods, a voxel-based (VB) method and an octree method, in the simulations of two kinds of phantoms. The simulation results showed that the computation time with the proposed method became about 50% of that with the VD method and about 70% of that with the octree method for a high resolution MCAT phantom. Here, details of the expansion of the MRR method to three dimensions are given. Moreover, the effectiveness of the proposed method was compared with the VB and octree methods.
Fenske, Cynthia L; Harris, Margaret A; Aebersold, Michelle L; Hartman, Laurie S
2013-09-01
This study was conducted to determine how closely nurses' perceptions of their clinical judgment abilities matched their demonstrated clinical judgment skills during a simulation. Seventy-four registered nurses participated in a simulation using a video format. After the simulation, the nurses self-assessed their performance using the Lasater Clinical Judgment Rubric. This rubric was then used to rate the nurses' actual performance in the simulation activity. The study results showed a significant discrepancy between nurses' perceptions of their own clinical judgment abilities and their demonstrated clinical judgment skills. Age and length of nursing experience enhanced the difference between the findings of self-assessment and actual performance. Younger nurses and those with 1 year or less of nursing experience were significantly more likely to have self-assessed their abilities at a much higher level compared with their actual skills. Copyright 2013, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storelli, A., E-mail: alexandre.storelli@lpp.polytechnique.fr; Vermare, L.; Hennequin, P.
2015-06-15
In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation timemore » are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.« less
Spotting the difference in molecular dynamics simulations of biomolecules
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Kono, Hidetoshi
2016-08-01
Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.
Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion
NASA Technical Reports Server (NTRS)
Baring, M. G.; Ellison, D. C.; Jones, F. C.
1995-01-01
The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.
NASA Astrophysics Data System (ADS)
Teich, M.; Feistl, T.; Fischer, J.; Bartelt, P.; Bebi, P.; Christen, M.; Grêt-Regamey, A.
2013-12-01
Two-dimensional avalanche simulation software operating in three-dimensional terrain are widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. This varying decelerating effect has rarely been addressed or implemented in avalanche simulation. We present an evaluation and operationalization of a novel forest detrainment modeling approach implemented in the avalanche simulation software RAMMS. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The extracted avalanche mass caught behind trees stops immediately and, therefore, is instantly subtracted from the flow and the momentum of the stopped mass is removed from the total momentum of the avalanche flow. This relationship is parameterized by the empirical detrainment coefficient K [Pa] which accounts for the braking power of different forest types per unit area. To define K dependent on specific forest characteristics, we simulated 40 well-documented small- to medium-scale avalanches which released in and ran through forests with varying K-values. Comparing two-dimensional simulation results with one-dimensional field observations for a high number of avalanche events and simulations manually is however time consuming and rather subjective. In order to process simulation results in a comprehensive and standardized way, we used a recently developed automatic evaluation and comparison method defining runout distances based on a pressure-based runout indicator in an avalanche path dependent coordinate system. Analyzing and comparing observed and simulated runout distances statistically revealed values for K suitable to simulate the combined influence of four forest characteristics on avalanche runout: forest type, crown coverage, vertical structure and surface roughness, e.g. values for K were higher for dense spruce and mixed spruce-beech forests compared to open larch forests at the upper treeline. Considering forest structural conditions within avalanche simulation will improve current applications for avalanche simulation tools in mountain forest and natural hazard management considerably. Furthermore, we show that an objective and standardized evaluation of two-dimensional simulation results is essential for a successful evaluation and further calibration of avalanche models in general.
Isele-Holder, Rolf E; Mitchell, Wayne; Ismail, Ahmed E
2012-11-07
For inhomogeneous systems with interfaces, the inclusion of long-range dispersion interactions is necessary to achieve consistency between molecular simulation calculations and experimental results. For accurate and efficient incorporation of these contributions, we have implemented a particle-particle particle-mesh Ewald solver for dispersion (r(-6)) interactions into the LAMMPS molecular dynamics package. We demonstrate that the solver's O(N log N) scaling behavior allows its application to large-scale simulations. We carefully determine a set of parameters for the solver that provides accurate results and efficient computation. We perform a series of simulations with Lennard-Jones particles, SPC/E water, and hexane to show that with our choice of parameters the dependence of physical results on the chosen cutoff radius is removed. Physical results and computation time of these simulations are compared to results obtained using either a plain cutoff or a traditional Ewald sum for dispersion.
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...
2018-06-20
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, Edmundo; Song, Bo
This memo concerns the transmission of mechanical signals through silicone foam pads in a compression Kolsky bar set-up. The results of numerical simulations for four levels of pad pre-compression and two striker velocities were compared directly to test measurements to assess the delity of the simulations. The nite element model simulated the Kolsky tests in their entirety and used the hyperelastic `hyperfoam' model for the silicone foam pads. Calibration of the hyperfoam model was deduced from quasi-static compression data. It was necessary, however, to augment the material model by adding sti ness proportional damping in order to generate results thatmore » resembled the experimental measurements. Based on the results presented here, it is important to account for the dynamic behavior of polymeric foams in numerical simulations that involve high loading rates.« less
Optimally analyzing and implementing of bolt fittings in steel structure based on ANSYS
NASA Astrophysics Data System (ADS)
Han, Na; Song, Shuangyang; Cui, Yan; Wu, Yongchun
2018-03-01
ANSYS simulation software for its excellent performance become outstanding one in Computer-aided Engineering (CAE) family, it is committed to the innovation of engineering simulation to help users to shorten the design process. First, a typical procedure to implement CAE was design. The framework of structural numerical analysis on ANSYS Technology was proposed. Then, A optimally analyzing and implementing of bolt fittings in beam-column join of steel structure was implemented by ANSYS, which was display the cloud chart of XY-shear stress, the cloud chart of YZ-shear stress and the cloud chart of Y component of stress. Finally, ANSYS software simulating results was compared with the measured results by the experiment. The result of ANSYS simulating and analyzing is reliable, efficient and optical. In above process, a structural performance's numerical simulating and analyzing model were explored for engineering enterprises' practice.
Gray: a ray tracing-based Monte Carlo simulator for PET.
Freese, David L; Olcott, Peter D; Buss, Samuel R; Levin, Craig S
2018-05-21
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a [Formula: see text] speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within [Formula: see text]% when accounting for differences in peak NECR. We also estimate the peak NECR to be [Formula: see text] kcps, or within [Formula: see text]% of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
High Speed Civil Transport Aircraft Simulation: Reference-H Cycle 1, MATLAB Implementation
NASA Technical Reports Server (NTRS)
Sotack, Robert A.; Chowdhry, Rajiv S.; Buttrill, Carey S.
1999-01-01
The mathematical model and associated code to simulate a high speed civil transport aircraft - the Boeing Reference H configuration - are described. The simulation was constructed in support of advanced control law research. In addition to providing time histories of the dynamic response, the code includes the capabilities for calculating trim solutions and for generating linear models. The simulation relies on the nonlinear, six-degree-of-freedom equations which govern the motion of a rigid aircraft in atmospheric flight. The 1962 Standard Atmosphere Tables are used along with a turbulence model to simulate the Earth atmosphere. The aircraft model has three parts - an aerodynamic model, an engine model, and a mass model. These models use the data from the Boeing Reference H cycle 1 simulation data base. Models for the actuator dynamics, landing gear, and flight control system are not included in this aircraft model. Dynamic responses generated by the nonlinear simulation are presented and compared with results generated from alternate simulations at Boeing Commercial Aircraft Company and NASA Langley Research Center. Also, dynamic responses generated using linear models are presented and compared with dynamic responses generated using the nonlinear simulation.
Observational and Numerical Diagnostics of Galaxy Cluster Outer Regions
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.
2011-01-01
Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r(sub 200) and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to several recent results, we observe a steepening of the density profiles beyond approximately 0.3r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or gas clumping are in better agreement with the observed gas distribution. We note a systematic difference between cool-core and non-cool core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. The general trend of steepening density around the virial radius indicates that the shallow density profiles found in several recent works were probably obtained along particular directions (e.g., filaments) and are not representative of the typical behavior of clusters. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Therefore, a detailed treatment of gas cooling, star formation, clumping, and AGN feedback is required to construct realistic models of cluster outer regions.
Human cadavers Vs. multimedia simulation: A study of student learning in anatomy.
Saltarelli, Andrew J; Roseth, Cary J; Saltarelli, William A
2014-01-01
Multimedia and simulation programs are increasingly being used for anatomy instruction, yet it remains unclear how learning with these technologies compares with learning with actual human cadavers. Using a multilevel, quasi-experimental-control design, this study compared the effects of "Anatomy and Physiology Revealed" (APR) multimedia learning system with a traditional undergraduate human cadaver laboratory. APR is a model-based multimedia simulation tool that uses high-resolution pictures to construct a prosected cadaver. APR also provides animations showing the function of specific anatomical structures. Results showed that the human cadaver laboratory offered a significant advantage over the multimedia simulation program on cadaver-based measures of identification and explanatory knowledge. These findings reinforce concerns that incorporating multimedia simulation into anatomy instruction requires careful alignment between learning tasks and performance measures. Findings also imply that additional pedagogical strategies are needed to support transfer from simulated to real-world application of anatomical knowledge. © 2014 American Association of Anatomists.
Malataras, G; Kappas, C; Lovelock, D M; Mohan, R
1997-01-01
This article presents a comparison between two implementations of an EGS4 Monte Carlo simulation of a radiation therapy machine. The first implementation was run on a high performance RISC workstation, and the second was run on an inexpensive PC. The simulation was performed using the MCRAD user code. The photon energy spectra, as measured at a plane transverse to the beam direction and containing the isocenter, were compared. The photons were also binned radially in order to compare the variation of the spectra with radius. With 500,000 photons recorded in each of the two simulations, the running times were 48 h and 116 h for the workstation and the PC, respectively. No significant statistical differences between the two implementations were found.
Higher-level simulations of turbulent flows
NASA Technical Reports Server (NTRS)
Ferziger, J. H.
1981-01-01
The fundamentals of large eddy simulation are considered and the approaches to it are compared. Subgrid scale models and the development of models for the Reynolds-averaged equations are discussed as well as the use of full simulation in testing these models. Numerical methods used in simulating large eddies, the simulation of homogeneous flows, and results from full and large scale eddy simulations of such flows are examined. Free shear flows are considered with emphasis on the mixing layer and wake simulation. Wall-bounded flow (channel flow) and recent work on the boundary layer are also discussed. Applications of large eddy simulation and full simulation in meteorological and environmental contexts are included along with a look at the direction in which work is proceeding and what can be expected from higher-level simulation in the future.
Ortiz, Roderick F.; Miller, Lisa D.
2009-01-01
Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Southern Delivery System (SDS) project is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various Environmental Impact Statements (EIS) alternatives and plans by Pueblo West to discharge treated wastewater into the reservoir. Wastewater plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (year 2006 demand conditions) were compared to the No Action scenario (projected demands in 2046) to assess changes in water quality over time. All scenario modeling used an external nutrient-decay model to simulate degradation and assimilation of nutrients along the riverine reach upstream from Pueblo Reservoir. Reservoir modeling was conducted using the U.S. Army Corps of Engineers CE-QUAL-W2 two-dimensional water-quality model. Lake hydrodynamics, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, algal biomass, and total iron were simulated. Two reservoir site locations were selected for comparison. Results of simulations at site 3B were characteristic of a riverine environment in the reservoir, whereas results at site 7B (near the dam) were characteristic of the main body of the reservoir. Simulation results for the epilimnion and hypolimnion at these two sites also were evaluated and compared. The simulation results in the hypolimnion at site 7B were indicative of the water quality leaving the reservoir. Comparisons of the different scenario results were conducted to assess if substantial differences were observed between selected scenarios. Each of the scenarios was simulated for three contiguous years representing a wet, average, and dry annual hydrologic cycle (water years 2000 through 2002). Additionally, each selected simulation scenario was evaluated for differences in direct and cumulative effects on a particular scenario. Direct effects are intended to isolate the future effects of the scenarios. Cumulative effects are intended to evaluate the effects of the scenarios in conjunction with all reasonably foreseeable future activities in the study area. Comparisons between the direct- and cumulative-effects analyses indicated that there were not large differences in the results between most of the simulation scenarios, and, as such, the focus of this report was on results for the direct-effects analysis. Additionally, the differences between simulation results generally were
NASA Astrophysics Data System (ADS)
Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rhoades, Alan M.; Ullrich, Paul A.; Zarzycki, Colin M.; Lu, Zheng; Rahimi-Esfarjani, Stefan R.
2017-10-01
The reliability of climate simulations and projections, particularly in the regions with complex terrains, is greatly limited by the model resolution. In this study we evaluate the variable-resolution Community Earth System Model (VR-CESM) with a high-resolution (0.125°) refinement over the Rocky Mountain region. The VR-CESM results are compared with observations, as well as CESM simulation at a quasi-uniform 1° resolution (UNIF) and Canadian Regional Climate Model version 5 (CRCM5) simulation at a 0.11° resolution. We find that VR-CESM is effective at capturing the observed spatial patterns of temperature, precipitation, and snowpack in the Rocky Mountains with the performance comparable to CRCM5, while UNIF is unable to do so. VR-CESM and CRCM5 simulate better the seasonal variations of precipitation than UNIF, although VR-CESM still overestimates winter precipitation whereas CRCM5 and UNIF underestimate it. All simulations distribute more winter precipitation along the windward (west) flanks of mountain ridges with the greatest overestimation in VR-CESM. VR-CESM simulates much greater snow water equivalent peaks than CRCM5 and UNIF, although the peaks are still 10-40% less than observations. Moreover, the frequency of heavy precipitation events (daily precipitation ≥ 25 mm) in VR-CESM and CRCM5 is comparable to observations, whereas the same events in UNIF are an order of magnitude less frequent. In addition, VR-CESM captures the observed occurrence frequency and seasonal variation of rain-on-snow days and performs better than UNIF and CRCM5. These results demonstrate the VR-CESM's capability in regional climate modeling over the mountainous regions and its promising applications for climate change studies.
Solar panel thermal cycling testing by solar simulation and infrared radiation methods
NASA Technical Reports Server (NTRS)
Nuss, H. E.
1980-01-01
For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.
Shot Peening Numerical Simulation of Aircraft Aluminum Alloy Structure
NASA Astrophysics Data System (ADS)
Liu, Yong; Lv, Sheng-Li; Zhang, Wei
2018-03-01
After shot peening, the 7050 aluminum alloy has good anti-fatigue and anti-stress corrosion properties. In the shot peening process, the pellet collides with target material randomly, and generated residual stress distribution on the target material surface, which has great significance to improve material property. In this paper, a simplified numerical simulation model of shot peening was established. The influence of pellet collision velocity, pellet collision position and pellet collision time interval on the residual stress of shot peening was studied, which is simulated by the ANSYS/LS-DYNA software. The analysis results show that different velocity, different positions and different time intervals have great influence on the residual stress after shot peening. Comparing with the numerical simulation results based on Kriging model, the accuracy of the simulation results in this paper was verified. This study provides a reference for the optimization of the shot peening process, and makes an effective exploration for the precise shot peening numerical simulation.
NASA Astrophysics Data System (ADS)
Clark, Stephen; Winske, Dan; Schaeffer, Derek; Everson, Erik; Bondarenko, Anton; Constantin, Carmen; Niemann, Christoph
2014-10-01
We present 3D hybrid simulations of laser produced expanding debris clouds propagating though a magnetized ambient plasma in the context of magnetized collisionless shocks. New results from the 3D code are compared to previously obtained simulation results using a 2D hybrid code. The 3D code is an extension of a previously developed 2D code developed at Los Alamos National Laboratory. It has been parallelized and ported to execute on a cluster environment. The new simulations are used to verify scaling relationships, such as shock onset time and coupling parameter (Rm /ρd), developed via 2D simulations. Previous 2D results focus primarily on laboratory shock formation relevant to experiments being performed on the Large Plasma Device, where the shock propagates across the magnetic field. The new 3D simulations show wave structure and dynamics oblique to the magnetic field that introduce new physics to be considered in future experiments.
DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules
NASA Technical Reports Server (NTRS)
Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.
1997-01-01
The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.
[Simulation and Design of Infant Incubator Assembly Line].
Ke, Huqi; Hu, Xiaoyong; Ge, Xia; Hu, Yanhai; Chen, Zaihong
2015-11-01
According to current assembly situation of infant incubator in company A, basic industrial engineering means such as time study was used to analyze the actual products assembly production and an assembly line was designed. The assembly line was modeled and simulated with software Flexsim. The problem of the assembly line was found by comparing simulation result and actual data, then through optimization to obtain high efficiency assembly line.
Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.
Resat, H; Mezei, M
1996-09-01
The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations.
Assessment of the effects of horizontal grid resolution on long ...
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment.
Reduced order model based on principal component analysis for process simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Y.; Malacina, A.; Biegler, L.
2009-01-01
It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models,more » this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization.« less
Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang
2016-01-07
Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for (60)Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with (60)Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.
Particle Image Velocimetry During Injection Molding
NASA Astrophysics Data System (ADS)
Bress, Thomas; Dowling, David
2012-11-01
Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.
GEANT4 and PHITS simulations of the shielding of neutrons from the 252Cf source
NASA Astrophysics Data System (ADS)
Shin, Jae Won; Hong, Seung-Woo; Bak, Sang-In; Kim, Do Yoon; Kim, Chong Yeal
2014-09-01
Monte Carlo simulations are performed by using the GEANT4 and the PHITS for studying the neutron-shielding abilities of several materials, such as graphite, iron, polyethylene, NS-4-FR and KRAFTON-HB. As a neutron source, 252Cf is considered. For the Monte Carlo simulations by using the GEANT4, high precision (G4HP) models with the G4NDL 4.2 based on ENDF/B-VII data are used. For the simulations by using the PHITS, the JENDL-4.0 library is used. The neutron-dose-equivalent rates with or without five different shielding materials are estimated and compared with the experimental values. The differences between the shielding abilities calculated by using the GEANT4 with the G4NDL 4.2 and the PHITS with the JENDL-4.0 are found not to be significant for all the cases considered in this work. The neutron-dose-equivalent rates obtained by using the GEANT4 and the PHITS are compared with experimental data and other simulation results. Our neutron-dose-equivalent rates agree well with the experimental dose-equivalent rates, within 20% errors, except for polyethylene. For polyethylene, the discrepancies between our calculations and the experiments are less than 40%, as observed in other simulation results.
Actionable Capability for Social and Economic Systems (ACSES)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Steven J; Brecke, Peter K; Carmichael, Theodore D
The foundation of the Actionable Capability for Social and Economic Systems (ACSES) project is a useful regional-scale social-simulation system. This report is organized into five chapters that describe insights that were gained concerning the five key feasibility questions pertaining to such a system: (1) Should such a simulation system exist, would the current state of data sets or collectible data sets be adequate to support such a system? (2) By comparing different agent-based simulation systems, is it feasible to compare simulation systems and select one appropriate for a given application with agents behaving according to modern social theory rather thanmore » ad hoc rule sets? (3) Provided that a selected simulation system for a region of interest could be constructed, can the simulation system be updated with new and changing conditions so that the universe of potential outcomes are constrained by events on the ground as they evolve? (4) As these results are constrained by evolving events on the ground, is it feasible to still generate surprise and emerging behavior to suggest outcomes from novel courses of action? (5) As these systems may for the first time require large numbers (hundreds of millions) of agents operating with complexities demanded of modern social theories, can results still be generated within actionable decision cycles?« less
A divergence-cleaning scheme for cosmological SPMHD simulations
NASA Astrophysics Data System (ADS)
Stasyszyn, F. A.; Dolag, K.; Beck, A. M.
2013-01-01
In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (SPMHD) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from {nabla }\\cdot {boldsymbol B} related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. to give good results and prevent numerical artefacts from growing. Additionally, we demonstrate that certain current SPMHD implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in SPMHD at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical {nabla }\\cdot {boldsymbol B} errors at small scales.
NASA Technical Reports Server (NTRS)
Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.
2004-01-01
A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.
CFD simulation of a dry scroll vacuum pump with clearances, solid heating and thermal deformation
NASA Astrophysics Data System (ADS)
Spille-Kohoff, A.; Hesse, J.; Andres, R.; Hetze, F.
2017-08-01
Although dry scroll vacuum pumps (DSPV) are essential devices in many different industrial processes, the CFD simulation of such pumps is not widely used and often restricted to simplified cases due to its complexity: The working principle with a fixed and an orbiting scroll leads to working chambers that are changing in time and are connected through moving small radial and axial clearances in the range of 10 to 100 μm. Due to the low densities and low mass flow rates in vacuum pumps, it is important to include heat transfer towards and inside the solid components. Solid heating is very slow compared to the scroll revolution speed and the gas behaviour, thus a special workflow is necessary to reach the working conditions in reasonable simulation times. The resulting solid temperature is then used to compute the thermal deformation, which usually results in gap size changes that influence leakage flows. In this paper, setup steps and results for the simulation of a DSVP are shown and compared to theoretical and experimental results. The time-varying working chambers are meshed with TwinMesh, a hexahedral meshing programme for positive displacement machines. The CFD simulation with ANSYS CFX accounts for gas flow with compressibility and turbulence effects, conjugate heat transfer between gas and solids, and leakage flows through the clearances. Time-resolved results for torques, chamber pressure, mass flow, and heat flow between gas and solids are shown, as well as time- and space-resolved results for pressure, velocity, and temperature for different operating conditions of the DSVP.
Algebraic Turbulence-Chemistry Interaction Model
NASA Technical Reports Server (NTRS)
Norris, Andrew T.
2012-01-01
The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.
Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver
NASA Astrophysics Data System (ADS)
Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab
2017-03-01
This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.
Proline puckering parameters for collagen structure simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di, E-mail: diwu@fudan.edu.cn
Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations.more » Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.« less
Application of local indentations for film cooling of gas turbine blade leading edge
NASA Astrophysics Data System (ADS)
Petelchyts, V. Yu.; Khalatov, A. A.; Pysmennyi, D. N.; Dashevskyy, Yu. Ya.
2016-09-01
The paper presents results of computer simulation of the film cooling on the turbine blade leading edge model where the air coolant is supplied through radial holes and row of cylindrical inclined holes placed inside hemispherical dimples or trench. The blowing factor was varied from 0.5 to 2.0. The model size and key initial parameters for simulation were taken as for a real blade of a high-pressure high-performance gas turbine. Simulation was performed using commercial software code ANSYS CFX. The simulation results were compared with reference variant (no dimples or trench) both for the leading edge area and for the flat plate downstream of the leading edge.
Comparison of CFD simulations with experimental data for a tanker model advancing in waves
NASA Astrophysics Data System (ADS)
Orihara, Hideo
2011-03-01
In this paper, CFD simulation results for a tanker model are compared with experimental data over a range of wave conditions to verify a capability to predict the sea-keeping performance of practical hull forms. CFD simulations are conducted using WISDAM-X code which is capable of unsteady RANS calculations in arbitrary wave conditions. Comparisons are made of unsteady surface pressures, added resistance and ship motions in regular waves for cases of fully-loaded and ballast conditions of a large tanker model. It is shown that the simulation results agree fairly well with the experimental data, and that WISDAM-X code can predict sea-keeping performance of practical hull forms.
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.; Moder, Jeffrey P.
2016-01-01
This paper presents ANSYS Fluent simulation results and analysis for self-pressurization of a flightweight, cryogenic, liquid hydrogen tank in 1-g. These results are compared with experimental data, in particular, pressure evolution and temperature measurements at a set of sensors. The simulations can be analyzed to identify and quantify heat flows in the tank. Heat flows change over time and influence the self-pressurization process. The initial rate of self-pressurization is sensitive to the initial temperature profile near the interface. Uncertainty in saturation pressure data and the accuracy of experimental measurements complicate simulation of self-pressurization. Numerical issues encountered, and their resolution, are also explained.
NASA Astrophysics Data System (ADS)
Spies, M.; Rieder, H.; Orth, Th.; Maack, S.
2012-05-01
In this contribution we address the beam field simulation of 2D ultrasonic arrays using the Generalized Point Source Synthesis technique. Aiming at the inspection of cylindrical components (e.g. pipes) the influence of concave and convex surface curvatures, respectively, has been evaluated for a commercial probe. We have compared these results with those obtained using a commercial simulation tool. In civil engineering, the ultrasonic inspection of highly attenuating concrete structures has been advanced by the development of dry contact point transducers, mainly applied in array arrangements. Our respective simulations for a widely used commercial probe are validated using experimental results acquired on concrete half-spheres with diameters from 200 mm up to 650 mm.
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.
NASA Astrophysics Data System (ADS)
Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn
2015-03-01
Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.
2-dimensional simulations of electrically asymmetric capacitively coupled RF-discharges
NASA Astrophysics Data System (ADS)
Mohr, Sebastian; Schulze, Julian; Schuengel, Edmund; Czarnetzki, Uwe
2011-10-01
Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we succeeded in simulating electrically asymmetric discharges with a 2-dimensional simulation. Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we succeeded in simulating electrically asymmetric discharges with a 2-dimensional simulation. Funding: German Ministry for the Environment (0325210B).
Simulating maize yield and biomass with spatial variability of soil field capacity
USDA-ARS?s Scientific Manuscript database
Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...
Paper Moon: Simulating a Total Solar Eclipse
ERIC Educational Resources Information Center
Madden, Sean P.; Downing, James P.; Comstock, Jocelyne M.
2006-01-01
This article describes a classroom activity in which a solar eclipse is simulated and a mathematical model is developed to explain the data. Students use manipulative devices and graphing calculators to carry out the experiment and then compare their results to those collected in Koolymilka, Australia, during the 2002 eclipse.
Interpreting Predictions from the SAPRC07 Mechanism Based on Regional and Continental Simulations
The SAPRC07T mechanism is implemented and evaluated in the CMAQ air quality model. The implementation is described and tested with simulations over the United States for two periods. The evaluation compares results against observations for ozone and particulate matter as well as ...
A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
Ling, Hong; Luo, Ercang; Dai, Wei
2006-12-22
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.
NASA Astrophysics Data System (ADS)
Luty, W.
2016-09-01
- A description of the tire Basic Relaxation Model (BRM) is presented in this paper. Simulation research of the tire BRM model in conditions of oscillatory changes of the wheel cornering angle were performed. During the simulation tests the courses of changes in the value of lateral reaction force, transmitted by the wheel, as a response to the sinusoidal changes in the value of the wheel cornering angle have been presented. There have been compared the simulation results obtained for the model of tire-road interaction in two modes: including and not including the BRM. The simulation results allowed to verify prepared BRM and also to determine the influence of the tire relaxation process on the tire behavior in conditions of dynamic changes of the wheel cornering angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Brunner, Thomas A.; Gentile, Nicholas A.
2013-10-15
We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. Parallel Monte Carlo, both domain replicated and decomposed simulations, will run their particles in a different order during different runs of the same simulation because the non-reproducibility of communication between processors. In addition, runs of the same simulation using different domain decompositionsmore » will also result in particles being simulated in a different order. In [1], a way of eliminating non-associative accumulations using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended and reduced precision reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. Non-arbitrary precision approaches require a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step.« less
Solymos, Orsolya; O'Kelly, Patrick; Walshe, Criona M
2015-10-21
Simulation-based medical education has rapidly evolved over the past two decades, despite this, there are few published reports of its use in critical care teaching. We hypothesised that simulation-based teaching of a critical care topic to final-year medical students is superior to lecture-based teaching. Thirty-nine final-year medical students were randomly assigned to either simulation-based or lecture-based teaching in the chosen critical care topic. The study was conducted over a 6-week period. Efficacy of each teaching method was compared through use of multiple choice questionnaires (MCQ) - baseline, post-teaching and 2 week follow-up. Student satisfaction was evaluated by means of a questionnaire. Feasibility and resource requirements were documented by teachers. Eighteen students were randomised to simulation-based, and 21 to lecture-based teaching. There were no differences in age and gender between groups (p > 0.05). Simulation proved more resource intensive requiring specialised equipment, two instructors, and increased duration of teaching sessions (126.7 min (SD = 4.71) vs 68.3 min (SD = 2.36)). Students ranked simulation-based teaching higher with regard to enjoyment (p = 0.0044), interest (p = 0.0068), relevance to taught subject (p = 0.0313), ease of understanding (p = 0.0476) and accessibility to posing questions (p = 0.001). Both groups demonstrated improvement in post-teaching MCQ from baseline (p = 0.0002), with greater improvement seen among the simulation group (p = 0.0387), however, baseline scores were higher among the lecture group. The results of the 2-week follow-up MCQ and post-teaching MCQ were not statistically significant when each modality were compared. Simulation was perceived as more enjoyable by students. Although there was a greater improvement in post-teaching MCQ among the simulator group, baseline scores were higher among lecture group which limits interpretation of efficacy. Simulation is more resource intensive, as demonstrated by increased duration and personnel required, and this may have affected our results. The current pilot may be of use in informing future studies in this area.
Two inviscid computational simulations of separated flow about airfoils
NASA Technical Reports Server (NTRS)
Barnwell, R. W.
1976-01-01
Two inviscid computational simulations of separated flow about airfoils are described. The basic computational method is the line relaxation finite-difference method. Viscous separation is approximated with inviscid free-streamline separation. The point of separation is specified, and the pressure in the separation region is calculated. In the first simulation, the empiricism of constant pressure in the separation region is employed. This empiricism is easier to implement with the present method than with singularity methods. In the second simulation, acoustic theory is used to determine the pressure in the separation region. The results of both simulations are compared with experiment.
Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production
NASA Astrophysics Data System (ADS)
Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne
2018-05-01
A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.
NASA Technical Reports Server (NTRS)
Stanfield, Ryan E.; Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Del Genio, Anthony D.; Minnia, Patrick; Jiang, Jonathan H.
2014-01-01
Although many improvements have been made in phase 5 of the Coupled Model Intercomparison Project (CMIP5), clouds remain a significant source of uncertainty in general circulation models (GCMs) because their structural and optical properties are strongly dependent upon interactions between aerosol/cloud microphysics and dynamics that are unresolved in such models. Recent changes to the planetary boundary layer (PBL) turbulence and moist convection parameterizations in the NASA GISS Model E2 atmospheric GCM(post-CMIP5, hereafter P5) have improved cloud simulations significantly compared to its CMIP5 (hereafter C5) predecessor. A study has been performed to evaluate these changes between the P5 and C5 versions of the GCM, both of which used prescribed sea surface temperatures. P5 and C5 simulated cloud fraction (CF), liquid water path (LWP), ice water path (IWP), cloud water path (CWP), precipitable water vapor (PWV), and relative humidity (RH) have been compared to multiple satellite observations including the Clouds and the Earth's Radiant Energy System-Moderate Resolution Imaging Spectroradiometer (CERES-MODIS, hereafter CM), CloudSat- Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; hereafter CC), Atmospheric Infrared Sounder (AIRS), and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Although some improvements are observed in the P5 simulation on a global scale, large improvements have been found over the southern midlatitudes (SMLs), where correlations increased and both bias and root-mean-square error (RMSE) significantly decreased, in relation to the previous C5 simulation, when compared to observations. Changes to the PBL scheme have resulted in improved total column CFs, particularly over the SMLs where marine boundary layer (MBL) CFs have increased by nearly 20% relative to the previous C5 simulation. Globally, the P5 simulated CWPs are 25 gm22 lower than the previous C5 results. The P5 version of the GCM simulates PWV and RH higher than its C5 counterpart and agrees well with the AMSR-E and AIRS observations. The moister atmospheric conditions simulated by P5 are consistent with the CF comparison and provide a strong support for the increase in MBL clouds over the SMLs. Over the tropics, the P5 version of the GCM simulated total column CFs and CWPs are slightly lower than the previous C5 results, primarily as a result of the shallower tropical boundary layer in P5 relative to C5 in regions outside the marine stratocumulus decks.
Larson-Williams, Linnea M; Youngblood, Amber Q; Peterson, Dawn Taylor; Zinkan, J Lynn; White, Marjorie L; Abdul-Latif, Hussein; Matalka, Leen; Epps, Stephen N; Tofil, Nancy M
2016-01-01
AIM To investigate the use of a multidisciplinary, longitudinal simulation to educate pediatric residents and nurses on management of pediatric diabetic ketoacidosis. METHODS A multidisciplinary, multiple step simulation course was developed by faculty and staff using a modified Delphi method from the Pediatric Simulation Center and pediatric endocrinology department. Effectiveness of the simulation for the residents was measured with a pre- and post-test and a reference group not exposed to simulation. A follow up post-test was completed 3-6 mo after the simulation. Nurses completed a survey regarding the education activity. RESULTS Pediatric and medicine-pediatric residents (n = 20) and pediatric nurses (n = 25) completed the simulation course. Graduating residents (n = 16) were used as reference group. Pretest results were similar in the control and intervention group (74% ± 10% vs 76% ± 15%, P = 0.658). After completing the intervention, participants improved in the immediate post-test in comparison to themselves and the control group (84% ± 12% post study; P < 0.05). The 3-6 mo follow up post-test results demonstrated knowledge decay when compared to their immediate post-test results (78% ± 14%, P = 0.761). Residents and nurses felt the interdisciplinary and longitudinal nature of the simulation helped with learning. CONCLUSION Results suggest a multidisciplinary, longitudinal simulation improves immediate post-intervention knowledge but important knowledge decay occurs, future studies are needed to determine ways to decrease this decay. PMID:27896145
Mercury's plasma belt: hybrid simulations results compared to in-situ measurements
NASA Astrophysics Data System (ADS)
Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.
2012-12-01
The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.
Reduction of oxygen concentration by heater design during Czochralski Si growth
NASA Astrophysics Data System (ADS)
Zhou, Bing; Chen, Wenliang; Li, Zhihui; Yue, Ruicun; Liu, Guowei; Huang, Xinming
2018-02-01
Oxygen is one of the highest-concentration impurities in single crystals grown by the Czochralski (CZ) process, and seriously impairs the quality of the Si wafer. In this study, computer simulations were applied to design a new CZ system. A more appropriate thermal field was acquired by optimization of the heater structure. The simulation results showed that, compared with the conventional system, the oxygen concentration in the newly designed CZ system was reduced significantly throughout the entire CZ process because of the lower crucible wall temperature and optimized convection. To verify the simulation results, experiments were conducted on an industrial single-crystal furnace. The experimental results showed that the oxygen concentration was reduced significantly, especially at the top of the CZ-Si ingot. Specifically, the oxygen concentration was 6.19 × 1017 atom/cm3 at the top of the CZ-Si ingot with the newly designed CZ system, compared with 9.22 × 1017 atom/cm3 with the conventional system. Corresponding light-induced degradation of solar cells based on the top of crystals from the newly designed CZ system was 1.62%, a reduction of 0.64% compared with crystals from the conventional system (2.26%).
Simulated distribution and ecotoxicity-based assessment of chemically-dispersed oil in Tokyo Bay.
Koyama, Jiro; Imakado, Chie; Uno, Seiichi; Kuroda, Takako; Hara, Shouichi; Majima, Takahiro; Shirota, Hideyuki; Añasco, Nathaniel C
2014-08-30
To assess risks of chemically-dispersed oil to marine organisms, oil concentrations in the water were simulated using a hypothetical spill accident in Tokyo Bay. Simulated oil concentrations were then compared with the short-term no-observed effect concentration (NOEC), 0.01 mg/L, obtained through toxicity tests using marine diatoms, amphipod and fish. Area of oil concentrations higher than the NOEC were compared with respect to use and non-use of dispersant. Results of the simulation show relatively faster dispersion near the mouth of the bay compared to its inner sections which is basically related to its stronger water currents. Interestingly, in the inner bay, a large area of chemically-dispersed oil has concentrations higher than the NOEC. It seems emulsifying oil by dispersant increases oil concentrations, which could lead to higher toxicity to aquatic organisms. When stronger winds occur, however, the difference in toxic areas between use and non-use of dispersant is quite small. Copyright © 2014 Elsevier Ltd. All rights reserved.
Computer model to simulate testing at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Owens, Lewis R., Jr.; Wahls, Richard A.; Hannon, Judith A.
1995-01-01
A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.
NASA Astrophysics Data System (ADS)
Hirose, Misa; Toyota, Saori; Tsumura, Norimichi
2018-02-01
In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.
NASA Astrophysics Data System (ADS)
Happel, T.; Navarro, A. Bañón; Conway, G. D.; Angioni, C.; Bernert, M.; Dunne, M.; Fable, E.; Geiger, B.; Görler, T.; Jenko, F.; McDermott, R. M.; Ryter, F.; Stroth, U.
2015-03-01
Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R / L Te in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R / L Te . Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4-18 cm-1 (k⊥ρs = 0.7-4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence level profiles. However, the turbulence intensity is increasing with additional heating in the experiment, while gyrokinetic simulations show a decrease.
Zero dimensional model of atmospheric SMD discharge and afterglow in humid air
NASA Astrophysics Data System (ADS)
Smith, Ryan; Kemaneci, Efe; Offerhaus, Bjoern; Stapelmann, Katharina; Peter Brinkmann, Ralph
2016-09-01
A novel mesh-like Surface Micro Discharge (SMD) device designed for surface wound treatment is simulated by multiple time-scaled zero-dimensional models. The chemical dynamics of the discharge are resolved in time at atmospheric pressure in humid conditions. Simulated are the particle densities of electrons, 26 ionic species, and 26 reactive neutral species including: O3, NO, and HNO3. The total of 53 described species are constrained by 624 reactions within the simulated plasma discharge volume. The neutral species are allowed to diffuse into a diffusive gas regime which is of primary interest. Two interdependent zero-dimensional models separated by nine orders of magnitude in temporal resolution are used to accomplish this; thereby reducing the computational load. Through variation of control parameters such as: ignition frequency, deposited power density, duty cycle, humidity level, and N2 content, the ideal operation conditions for the SMD device can be predicted. The described model has been verified by matching simulation parameters and comparing results to that of previous works. Current operating conditions of the experimental mesh-like SMD were matched and results are compared to the simulations. Work supported by SFB TR 87.
Simulations on the Influence of Myelin Water in Diffusion-Weighted Imaging
Harkins, Kevin D.; Does, Mark D.
2016-01-01
While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (Dapp) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (Dm), but exhibited important differences compared to Dapp values simulated that neglect Dm (=0). Compared to Dapp, the apparent diffusion kurtosis (Kapp) was generally more sensitive to Dm. Simulations also tested the sensitivity of Dapp and Kapp to the amount of myelin present. Unique variations in Dapp and Kapp caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in Dapp and Kapp with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter. PMID:27271991
Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques.
Teutonico, D; Musuamba, F; Maas, H J; Facius, A; Yang, S; Danhof, M; Della Pasqua, O
2015-10-01
Clinical Trial Simulations (CTS) are a valuable tool for decision-making during drug development. However, to obtain realistic simulation scenarios, the patients included in the CTS must be representative of the target population. This is particularly important when covariate effects exist that may affect the outcome of a trial. The objective of our investigation was to evaluate and compare CTS results using re-sampling from a population pool and multivariate distributions to simulate patient covariates. COPD was selected as paradigm disease for the purposes of our analysis, FEV1 was used as response measure and the effects of a hypothetical intervention were evaluated in different populations in order to assess the predictive performance of the two methods. Our results show that the multivariate distribution method produces realistic covariate correlations, comparable to the real population. Moreover, it allows simulation of patient characteristics beyond the limits of inclusion and exclusion criteria in historical protocols. Both methods, discrete resampling and multivariate distribution generate realistic pools of virtual patients. However the use of a multivariate distribution enable more flexible simulation scenarios since it is not necessarily bound to the existing covariate combinations in the available clinical data sets.
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Zhen, T.; Kadir, A. K.
2013-06-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Simulating the effects of upstream turbulence on dispersion around a building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.Q.; Arya, S.P.S.; Huber, A.H.
The effects of high turbulence versus no turbulence in a sheared boundary-layer flow approaching a building are being investigated by a turbulent kinetic energy/dissipation model (TEMPEST). The effects on both the mean flow and the concentration field around a cubical building are presented. The numerical simulations demonstrate significant effects due to the differences in the incident flow. The addition of upstream turbulence results in a reduced size of the cavity directly behind the building. The velocity deficits in the wake strongly depend on the upstream turbulence intensities. The accuracy of numerical simulations is verified by comparing the predicted mean flowmore » and concentration fields with the wind tunnel measurements of Castro and Robins (1977) and Robins and Castro (1977, 1975). Comparing the results with experimental data, the authors show that the TEMPEST model can reasonably simulate the mean flow. The numerical simulations of the concentration fields due to a source on the roof-top of the building are presented. Both the value and the position of the maximum ground-level concentration are changed dramatically due to the effects of the upstream level of turblence.« less
Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere
NASA Technical Reports Server (NTRS)
Toth, Gabor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.;
2016-01-01
We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHO-EPIC) algorithm Is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the Interaction between Jupiter's magnetospherlc plasma and Ganymede's magnetosphere. We compare the MHO-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the Importance of kinetic effects In controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHO-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular. the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHO-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-0 structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHO-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
NASA Astrophysics Data System (ADS)
Yan, Y.-Y.; Lin, J.-T.; Kuang, Y.; Yang, D.; Zhang, L.
2014-07-01
Global chemical transport models (CTMs) are used extensively to study air pollution and transport at a global scale. These models are limited by coarse horizontal resolutions, not allowing for detailed representation of small-scale nonlinear processes over the pollutant source regions. Here we couple the global GEOS-Chem CTM and its three high-resolution nested models to simulate the tropospheric carbon monoxide (CO) over the Pacific Ocean during five HIAPER Pole-to-Pole Observations (HIPPO) campaigns between 2009 and 2011. We develop a two-way coupler, PKUCPL, to integrate simulation results for chemical constituents from the global model (at 2.5° long. × 2° lat.) and the three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. The coupler obtains nested model results to modify the global model simulation within the respective nested domains, and simultaneously acquires global model results to provide lateral boundary conditions for the nested models. Compared to the global model alone, the two-way coupled simulation results in enhanced CO concentrations in the nested domains. Sensitivity tests suggest the enhancement to be a result of improved representation of the spatial distributions of CO, nitrogen oxides and non-methane volatile organic compounds, the meteorological dependence of natural emissions, and other resolution-dependent processes. The relatively long lifetime of CO allows for the enhancement to be accumulated and carried across the globe. We find that the two-way coupled simulation increases the global tropospheric mean CO concentrations in 2009 by 10.4%, with a greater enhancement at 13.3% in the Northern Hemisphere. Coincidently, the global tropospheric mean hydroxyl radical (OH) is reduced by 4.2% (as compared to the interannual variability of OH at 2.3%), resulting in a 4.2% enhancement in the methyl chloroform lifetime (MCF, via reaction with tropospheric OH). The resulting CO and OH contents and MCF lifetime are closer to observation-based estimates. Both the global and the two-way coupled models capture the general spatiotemporal patterns of HIPPO CO over the Pacific. The two-way coupled simulation is much closer to HIPPO CO, with a mean bias of 1.1 ppb (1.4%) below 9 km compared to the bias at -7.2 ppb (-9.2%) for the global model. The improvement is most apparent over the North Pacific. Our test simulations show that the global model could resemble the two-way coupled simulation (especially below 4 km) by increasing its global CO emissions by 15% for HIPPO-1 and HIPPO-3, by 25% for HIPPO-2 and HIPPO-4, and by 35% for HIPPO-5. This has important implications for using the global model to constrain CO emissions. Thus, the two-way coupled simulation is a significantly improved model tool to studying the global impacts of air pollutants from major anthropogenic source regions.
Numerical Simulation of Regional Circulation in the Monterey Bay Region
NASA Technical Reports Server (NTRS)
Tseng, Y. H.; Dietrich, D. E.; Ferziger, J. H.
2003-01-01
The objective of this study is to produce a high-resolution numerical model of Mon- terey Bay area in which the dynamics are determined by the complex geometry of the coastline, steep bathymetry, and the in uence of the water masses that constitute the CCS. Our goal is to simulate the regional-scale ocean response with realistic dynamics (annual cycle), forcing, and domain. In particular, we focus on non-hydrostatic e ects (by comparing the results of hydrostatic and non-hydrostatic models) and the role of complex geometry, i.e. the bay and submarine canyon, on the nearshore circulation. To the best of our knowledge, the current study is the rst to simulate the regional circulation in the vicinity of Monterey Bay using a non-hydrostatic model. Section 2 introduces the high resolution Monterey Bay area regional model (MBARM). Section 3 provides the results and veri cation with mooring and satellite data. Section 4 compares the results of hydrostatic and non-hydrostatic models.
MEASUREMENTS OF NEUTRON SPECTRA IN 0.8-GEV AND 1.6-GEV PROTON-IRRADIATED<2 OF 2>NA THICK TARGETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titarenko, Y. E.; Batyaev, V. F.; Zhivun, V. M.
2001-01-01
Measurements of neutron spectra in W, and Na targets irradiated by 0.8 GeV and 1.6 GeV protons are presented. Measurements were made by the TOF techniques using the proton beam from ITEP U-10 synchrotron. Neutrons were detected with BICRON-511 liquid scintillator-based detectors. The neutron detection efficiency was calculated via the SCINFUL and CECIL codes. The W results are compared with the similar data obtained elsewhere. The measured neutron spectra are compared with the LAHET and CEM2k code simulations results. Attempt is made to explain some observed disagreements between experiments and simulations. The presented results are of interest both in termsmore » of nuclear data buildup and as a benchmark of the up-to-date predictive power of the simulation codes used in designing the hybrid accelerator-driven system (ADS) facilities with sodium-cooled tungsten targets.« less
Measurement of Cyclic Flows in Trachea Using PIV and Numerical simulation
NASA Astrophysics Data System (ADS)
Bělka, Miloslav; Elcner, Jakub; Jedelský, Jan; Boiron, Olivier; Knapp, Yannick; Bailly, Lucie
2015-05-01
Inhalation of pharmaceutical aerosols is a convenient way to treat lung or even systemic diseases. For effective treatment it is very important to understand air flow characteristics within respiratory airways and determine deposition hot spots. In this paper the air flow in trachea was investigated by numerical simulations. To validate these results we carried out particle image velocimetry experiments and compared resulting velocity fields. Simplified geometry of respiratory airways from oral cavity to 4th generation of branching was employed. Air flow characteristics were analysed during sinusoidal breathing pattern for light activity conditions (period 4 s and tidal volume 1 l). The observed flow fields indicated that the flow in trachea is turbulent during the sinusoidal flow except phases of flow turnarounds. The flow was skewed to front side of the trachea during inspiration and had twin-peak profile during expiration because of the mixing from daughter branches. The methods were compared and good agreement was found. This validation of CFD simulation can result into its further usage in respiratory airflow studies.
LES of Temporally Evolving Mixing Layers by Three High Order Schemes
NASA Astrophysics Data System (ADS)
Yee, H.; Sjögreen, B.; Hadjadj, A.
2011-10-01
The performance of three high order shock-capturing schemes is compared for large eddy simulations (LES) of temporally evolving mixing layers for different convective Mach number (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7), and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (Yee & Sjögreen 2009) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) by Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.
NASA Technical Reports Server (NTRS)
Liu, Jian; Kim, Junghwan; Kwatra, S. C.; Stevens, Grady H.
1991-01-01
Aspects of error performance of various power and bandwidth efficient modulations for the land mobile satellite systems (LMSS) were investigated under multipath fading and interferences by using Monte-Carlo simulation. A differential detection for 16QAM (quadrature amplitude modulation) was proposed to cope with Ricean fading and Doppler shift. Computer simulation results show that the performance of 16QAM with differential detection is as good as that of 16PSK with coherent detection and 3 dB better than that of 16PSK with differential detection, although it degrades by about 4.5 dB as compared to 16QAM with coherent detection under an additive white Gaussian noise (AWGN) channel. For the nonlinear channels, 16QAM with modified signal constellations is introduced and analyzed. The simulation results show that the modified 16QAM exhibits a gain of 2.5 dB over 16PSK under traveling-wave tube nonlinearity, and about 4 dB gain over 16PSK at the bit error rate of 10 exp -5 under AWGN. Computer simulation results for modified 16 QAM under cochannel interference and adjacent-channel interference are also presented.
NASA Astrophysics Data System (ADS)
Prasad, K.
2017-12-01
Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.
Experimental and numerical studies of natural convection in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viney, C.E.; Hickox, C.E.; Montoya, P.C.
1982-12-01
The results of an experimental study are reported in which a Hele-Shaw cell was used to simulate natural convection flow in a homogeneous porous region subjected to a horizonal temperature gradient. Measured velocities and photographs of streamline patterns are compared with numerical predictions produced with the finite element computer program, MARIAH. Results of numerical simulations are also reported for Rayleigh-Benard convection in a bottom-heated, horizontal, prous layer. The numerical results are compared with the experimental Hele-Shaw cell results of Hartline and Lister. The comparison between these experimental and numerical studies provides some support for the qualification of MARIAH as amore » general purpose code for the description of natural convection in porous media at low Rayleigh numbers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prusator, M; Jin, H; Ahmad, S
2016-06-15
Purpose: To evaluate the Monte Carlo simulated beam data with the measured commissioning data for the Mevion S250 proton therapy system. Method: The Mevion S250 proton therapy system utilizes a passive double scattering technique with a unique gantry mounted superconducting accelerator and offers effective proton therapy in a compact design concept. The field shaping system (FSS) includes first scattering foil, range modulator wheel (RMW), second scattering foil and post absorber and offers two field sizes and a total of 24 treatment options from proton range of 5 cm to 32 cm. The treatment nozzle was modeled in detail using TOPASmore » (TOolkit for PArticle Simulation) Monte Carlo code. The timing feathers of the moving modulator wheels were also implemented to generate the Spread Out Bragg Peak (SOBP). The simulation results including pristine Bragg Peak, SOBP and dose profiles were compared with the data measured during beam commissioning. Results: The comparison between the measured data and the simulation data show excellent agreement. For pristine proton Bragg Peaks, the simulated proton range (depth of distal 90%) values agreed well with the measured range values within 1 mm accuracy. The differences of the distal falloffs (depth from distal 80% to 20%) were also found to be less than 1 mm between the simulations and measurements. For the SOBP, the widths of modulation (depth of proximal 95% to distal 90%) were also found to agree with the measurement within 1 mm. The flatness of the simulated and measured lateral profiles was found to be 0.6 % and 1.1 %, respectively. Conclusion: The agreement between simulations and measurements demonstrate that TOPAS could be used as a viable platform to proton therapy applications. The matched simulation results offer a great tool and open opportunity for variety of applications.« less
Maritime Search and Rescue via Multiple Coordinated UAS
2017-06-12
performed by a set of UAS. Our investigation covers the detection of multiple mobile objects by a heterogeneous collection of UAS. Three methods (two...account for contingencies such as airspace deconfliction. Results are produced using simulation to verify the capability of the proposed method and to...compare the various par- titioning methods . Results from this simulation show that great gains in search efficiency can be made when the search space is
Preliminary Study of Image Reconstruction Algorithm on a Digital Signal Processor
2014-03-01
5.2 Comparison of CPU-GPU, CPU-FPGA, and CPU-DSP Designs The work for implementing VHDL description of the back-projection algorithm on a physical...FPGA was not complete. Hence, the DSP implementation results are compared with the simulated results for the VHDL design. Simulating VHDL provides an...rather than at the software level. Depending on an application’s characteristics, FPGA implementations can provide a significant performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id
Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment.more » We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.« less
Molecular simulation of disjoining-pressure isotherms for free liquid , Lennard-Jones thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Divesh; Newman, John; Radke, C.J.
2001-10-01
We present canonical-ensemble molecular-dynamics simulations of disjoining-pressure isotherms in Lennard-Jones free liquid films. Thermodynamics demands that the disjoining pressure is determined uniquely as a function of the chemical potential purely from the phase diagram of the fluid. Our results from molecular dynamics validate this argument. The inverse-sixth-power distance term in the Lennard-Jones intermolecular potential represents van der Waals dispersion forces. Hence, we compare our results with classical Hamaker theory that is based on dispersion forces but assumes a slab geometry for the density profile and completely neglects fluid structure and entropy. We find that the Hamaker constant obtained from ourmore » simulations is about an order of magnitude larger than that from classical theory. To investigate the origin of this discrepancy, we calculate the disjoining-pressure isotherm using a density-functional theory relaxing the inherent assumptions in the Hamaker theory and imparting to the fluid an approximate structure. For disjoining pressure as a function of chemical potential, the results of density-functional theory and molecular dynamics are very close. Even for disjoining-pressure isotherms, and the subsequently calculated Hamaker constant, results of the density-functional theory are closer to the molecular-dynamics simulations by about a factor of 4 compared to Hamaker theory. [References: 44]« less
Validation of GATE Monte Carlo simulations of the GE Advance/Discovery LS PET scanners.
Schmidtlein, C Ross; Kirov, Assen S; Nehmeh, Sadek A; Erdi, Yusuf E; Humm, John L; Amols, Howard I; Bidaut, Luc M; Ganin, Alex; Stearns, Charles W; McDaniel, David L; Hamacher, Klaus A
2006-01-01
The recently developed GATE (GEANT4 application for tomographic emission) Monte Carlo package, designed to simulate positron emission tomography (PET) and single photon emission computed tomography (SPECT) scanners, provides the ability to model and account for the effects of photon noncollinearity, off-axis detector penetration, detector size and response, positron range, photon scatter, and patient motion on the resolution and quality of PET images. The objective of this study is to validate a model within GATE of the General Electric (GE) Advance/Discovery Light Speed (LS) PET scanner. Our three-dimensional PET simulation model of the scanner consists of 12 096 detectors grouped into blocks, which are grouped into modules as per the vendor's specifications. The GATE results are compared to experimental data obtained in accordance with the National Electrical Manufactures Association/Society of Nuclear Medicine (NEMA/SNM), NEMA NU 2-1994, and NEMA NU 2-2001 protocols. The respective phantoms are also accurately modeled thus allowing us to simulate the sensitivity, scatter fraction, count rate performance, and spatial resolution. In-house software was developed to produce and analyze sinograms from the simulated data. With our model of the GE Advance/Discovery LS PET scanner, the ratio of the sensitivities with sources radially offset 0 and 10 cm from the scanner's main axis are reproduced to within 1% of measurements. Similarly, the simulated scatter fraction for the NEMA NU 2-2001 phantom agrees to within less than 3% of measured values (the measured scatter fractions are 44.8% and 40.9 +/- 1.4% and the simulated scatter fraction is 43.5 +/- 0.3%). The simulated count rate curves were made to match the experimental curves by using deadtimes as fit parameters. This resulted in deadtime values of 625 and 332 ns at the Block and Coincidence levels, respectively. The experimental peak true count rate of 139.0 kcps and the peak activity concentration of 21.5 kBq/cc were matched by the simulated results to within 0.5% and 0.1% respectively. The simulated count rate curves also resulted in a peak NECR of 35.2 kcps at 10.8 kBq/cc compared to 37.6 kcps at 10.0 kBq/cc from averaged experimental values. The spatial resolution of the simulated scanner matched the experimental results to within 0.2 mm.
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Putman, Gabriel C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.
Counterfactual Plausibility and Comparative Similarity.
Stanley, Matthew L; Stewart, Gregory W; Brigard, Felipe De
2017-05-01
Counterfactual thinking involves imagining hypothetical alternatives to reality. Philosopher David Lewis (1973, 1979) argued that people estimate the subjective plausibility that a counterfactual event might have occurred by comparing an imagined possible world in which the counterfactual statement is true against the current, actual world in which the counterfactual statement is false. Accordingly, counterfactuals considered to be true in possible worlds comparatively more similar to ours are judged as more plausible than counterfactuals deemed true in possible worlds comparatively less similar. Although Lewis did not originally develop his notion of comparative similarity to be investigated as a psychological construct, this study builds upon his idea to empirically investigate comparative similarity as a possible psychological strategy for evaluating the perceived plausibility of counterfactual events. More specifically, we evaluate judgments of comparative similarity between episodic memories and episodic counterfactual events as a factor influencing people's judgments of plausibility in counterfactual simulations, and we also compare it against other factors thought to influence judgments of counterfactual plausibility, such as ease of simulation and prior simulation. Our results suggest that the greater the perceived similarity between the original memory and the episodic counterfactual event, the greater the perceived plausibility that the counterfactual event might have occurred. While similarity between actual and counterfactual events, ease of imagining, and prior simulation of the counterfactual event were all significantly related to counterfactual plausibility, comparative similarity best captured the variance in ratings of counterfactual plausibility. Implications for existing theories on the determinants of counterfactual plausibility are discussed. Copyright © 2016 Cognitive Science Society, Inc.
Elastic guided wave propagation in electrical cables.
Mateo, Carlos; Talavera, Juan A; Muñoz, Antonio
2007-07-01
This article analyzes the propagation modes of ultrasound waves inside an electrical cable in order to assess its behavior as an acoustic transmission channel. A theoretical model for propagation of elastic waves in electric power cables is presented. The power cables are represented as viscoelastic-layered cylindrical structures with a copper core and a dielectric cover. The model equations then have been applied and numerically resolved for this and other known structures such as solid and hollow cylinders. The results are compared with available data from other models. Several experimental measures were carried out and were compared with results from the numerical simulations. Experimental and simulated results showed a significant difference between elastic wave attenuation inside standard versus bare, low-voltage power cables.
Thermodynamics of ferrofluids in applied magnetic fields.
Elfimova, Ekaterina A; Ivanov, Alexey O; Camp, Philip J
2013-10-01
The thermodynamic properties of ferrofluids in applied magnetic fields are examined using theory and computer simulation. The dipolar hard sphere model is used. The second and third virial coefficients (B(2) and B(3)) are evaluated as functions of the dipolar coupling constant λ, and the Langevin parameter α. The formula for B(3) for a system in an applied field is different from that in the zero-field case, and a derivation is presented. The formulas are compared to results from Mayer-sampling calculations, and the trends with increasing λ and α are examined. Very good agreement between theory and computation is demonstrated for the realistic values λ≤2. The analytical formulas for the virial coefficients are incorporated in to various forms of virial expansion, designed to minimize the effects of truncation. The theoretical results for the equation of state are compared against results from Monte Carlo simulations. In all cases, the so-called logarithmic free energy theory is seen to be superior. In this theory, the virial expansion of the Helmholtz free energy is re-summed in to a logarithmic function. Its success is due to the approximate representation of high-order terms in the virial expansion, while retaining the exact low-concentration behavior. The theory also yields the magnetization, and a comparison with simulation results and a competing modified mean-field theory shows excellent agreement. Finally, the putative field-dependent critical parameters for the condensation transition are obtained and compared against existing simulation results for the Stockmayer fluid. Dipolar hard spheres do not undergo the transition, but the presence of isotropic attractions, as in the Stockmayer fluid, gives rise to condensation even in zero field. A comparison of the relative changes in critical parameters with increasing field strength shows excellent agreement between theory and simulation, showing that the theoretical treatment of the dipolar interactions is robust.
Simulations of DNA stretching by flow field in microchannels with complex geometry.
Huang, Chiou-De; Kang, Dun-Yen; Hsieh, Chih-Chen
2014-01-01
Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C. C. Hsieh, Biomicrofluidics 7(1), 014109 (2013)) designed specifically for the purpose of preconditioning DNA conformation for easier stretching. The experimental results do not only demonstrate the superiority of the new devices but also provides detailed observation of DNA behavior in complex flow field that was not available before. In this study, we use Brownian dynamics-finite element method (BD-FEM) to simulate DNA behavior in these microchannels, and compare the results against the experiments. Although the hydrodynamic interaction (HI) between DNA segments and between DNA and the device boundaries was not included in the simulations, the simulation results are in fairly good agreement with the experimental data from either the aspect of the single molecule behavior or from the aspect of ensemble averaged properties. The discrepancy between the simulation and the experimental results can be explained by the neglect of HI effect in the simulations. Considering the huge savings on the computational cost from neglecting HI, we conclude that BD-FEM can be used as an efficient and economic designing tool for developing new microfluidic device for DNA manipulation.
Billings, Jay Jay; Deyton, Jordan H.; Forest Hull, S.; ...
2015-07-17
Building new fission reactors in the United States presents many technical and regulatory challenges. Chief among the technical challenges is the need to share and present results from new high- fidelity, high- performance simulations in an easily consumable way. In light of the modern multi-scale, multi-physics simulations can generate petabytes of data, this will require the development of new techniques and methods to reduce the data to familiar quantities of interest with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately availablemore » in the community and need to be developed. Our paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It enables easy qualitative and quantitative comparisons between simulation results with a graphical user interface and cross-platform, multi-language input- output libraries for use by developers to work with the data. One example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented along with a detailed discussion of the system s requirements and design.« less
Generalized math model for simulation of high-altitude balloon systems
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.
1985-01-01
Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.
Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX
NASA Astrophysics Data System (ADS)
Izhar, Abu Bakar; Qureshi, Arshad Hussain; Khushnood, Shahab
2014-08-01
In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of freedom spring damper system. 2-D as well as 3-D analysis is performed using air as the fluid. Reynolds number is varied from 40 to 16000 approx., covering the laminar and turbulent regimes of flow. The experimental results of (Khalak and Williamson, 1997) and other researchers are used for validation purposes. The results obtained are comparable.
Chaudhari, Mangesh I.; You, Xinli; Pratt, Lawrence R.; ...
2015-11-24
Ethylene carbonate (EC) and propylene carbonate (PC) are widely used solvents in lithium (Li)-ion batteries and supercapacitors. Ion dissolution and diffusion in those media are correlated with solvent dielectric responses. Here, we use all-atom molecular dynamics simulations of the pure solvents to calculate dielectric constants and relaxation times, and molecular mobilities. The computed results are compared with limited available experiments to assist more exhaustive studies of these important characteristics. As a result, the observed agreement is encouraging and provides guidance for further validation of force-field simulation models for EC and PC solvents.
Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe
NASA Astrophysics Data System (ADS)
Schultze, Markus; Rockel, Burkhardt
2017-08-01
This study compares the direct and semi-direct aerosol effects of different annual cycles of tropospheric aerosol loads for Europe from 1950 to 2009 using the regional climate model COSMO-CLM, which is laterally forced by reanalysis data and run using prescribed, climatological aerosol optical properties. These properties differ with respect to the analysis strategy and the time window, and are then used for the same multi-decadal period. Five simulations with different aerosol loads and one control simulation without any tropospheric aerosols are integrated and compared. Two common limitations of our simulation strategy, to fully assess direct and semi-direct aerosol effects, are the applied observed sea surface temperatures and sea ice conditions, and the lack of short-term variations in the aerosol load. Nevertheless, the impact of different aerosol climatologies on common regional climate model simulations can be assessed. The results of all aerosol-including simulations show a distinct reduction in solar irradiance at the surface compared with that in the control simulation. This reduction is strongest in the summer season and is balanced primarily by a weakening of turbulent heat fluxes and to a lesser extent by a decrease in longwave emissions. Consequently, the seasonal mean surface cooling is modest. The temperature profile responses are characterized by a shallow near-surface cooling and a dominant warming up to the mid-troposphere caused by aerosol absorption. The resulting stabilization of stratification leads to reduced cloud cover and less precipitation. A decrease in cloud water and ice content over Central Europe in summer possibly reinforce aerosol absorption and thus strengthen the vertical warming. The resulting radiative forcings are positive. The robustness of the results was demonstrated by performing a simulation with very strong aerosol forcing, which lead to qualitatively similar results. A distinct added value over the default aerosol setup of Tanré et al. (1984) was found in the simulations with more recent aerosol data sets for solar irradiance. The improvements are largest under low cloud conditions, while overestimated cloud cover in all setups causes a common underestimation of low and medium values of solar irradiance. In addition, the prevalent cold bias in the COSMO-CLM is reduced in winter and spring when using updated aerosol data. Our results emphasize the importance of semi-direct aerosol effects, especially over Central Europe in terms of changes in turbulent fluxes and changes in cloud properties. We also suggest to replace the default Tanré et al. (1984) aerosol climatology with more recent and realistic data sets. Thereby, a better model performance in comparison to observations can be achieved, or the masking of model shortcomings due to a too strong direct aerosol forcing thus far is prevented.
Vigmond, Edward J.; Boyle, Patrick M.; Leon, L. Joshua; Plank, Gernot
2014-01-01
Simulations of cardiac bioelectric phenomena remain a significant challenge despite continual advancements in computational machinery. Spanning large temporal and spatial ranges demands millions of nodes to accurately depict geometry, and a comparable number of timesteps to capture dynamics. This study explores a new hardware computing paradigm, the graphics processing unit (GPU), to accelerate cardiac models, and analyzes results in the context of simulating a small mammalian heart in real time. The ODEs associated with membrane ionic flow were computed on traditional CPU and compared to GPU performance, for one to four parallel processing units. The scalability of solving the PDE responsible for tissue coupling was examined on a cluster using up to 128 cores. Results indicate that the GPU implementation was between 9 and 17 times faster than the CPU implementation and scaled similarly. Solving the PDE was still 160 times slower than real time. PMID:19964295
Simulation models examining the effect of Brugian filariasis on dengue epidemics.
Vaughan, Jefferson A; Focks, Dana A; Turell, Michael J
2009-01-01
Concurrent ingestion of microfilariae (mf) and arboviruses by mosquitoes can enhance the transmission of virus compared with when virus is ingested alone. We studied the effect of mf enhancement on the extrinsic incubation period (EIP) of dengue 1 virus within Aedes aegypti mosquitoes by feeding mosquitoes on blood that either contained virus plus Brugia malayi mf or virus only. Mosquitoes were sampled over time to determine viral dissemination rates. Co-ingestion of mf and virus reduced viral EIP by over half. We used the computer simulation program, DENSiM, to compare the predicted patterns of dengue incidence that would result from such a shortened EIP versus the EIP derived from the control (i.e., virus only) group of mosquitoes. Results indicated that, over the 14-year simulation period, mf-induced acceleration of the EIP would generate more frequent (but not necessarily more severe) epidemics. Potential interactions between arboviruses and hematozoans deserve closer scrutiny.
NASA Astrophysics Data System (ADS)
Zhao, Yue; Zhang, Wei; Zhu, Dianwen; Li, Changqing
2016-03-01
We performed numerical simulations and phantom experiments with a conical mirror based fluorescence molecular tomography (FMT) imaging system to optimize its performance. With phantom experiments, we have compared three measurement modes in FMT: the whole surface measurement mode, the transmission mode, and the reflection mode. Our results indicated that the whole surface measurement mode performed the best. Then, we applied two different neutral density (ND) filters to improve the measurement's dynamic range. The benefits from ND filters are not as much as predicted. Finally, with numerical simulations, we have compared two laser excitation patterns: line and point. With the same excitation position number, we found that the line laser excitation had slightly better FMT reconstruction results than the point laser excitation. In the future, we will implement Monte Carlo ray tracing simulations to calculate multiple reflection photons, and create a look-up table accordingly for calibration.
N-ROSS: The dynamics and control issues
NASA Technical Reports Server (NTRS)
Lindberg, Robert E.
1986-01-01
The Navy Remote Ocean Sensing System (N-ROSS) Dynamic Stability Study team concluded that the frozen April 1985 design was viable and contained no show stoppers, although it was also clear from the study results that the configuration required further optimization. While the frozen N-ROSS configuration used has since been superceded, and the vehicle is now under competitive procurement, several other results remain from the study that will have lasting value to the N-ROSS program. The importance of constructing an integrated simulation, to serve as a design and verification aid, has been clearly established. The two team approach to the study afforded the Navy a higher degree of confidence in the results than could have been accomplished by a single simulation, and the approach led to results that highlighted subtleties in the model and simulation development that surely would have been overlookded without the benefit of an independent companion simulation with which to compare it.
Simulation of spacecraft attitude dynamics using TREETOPS and model-specific computer Codes
NASA Technical Reports Server (NTRS)
Cochran, John E.; No, T. S.; Fitz-Coy, Norman G.
1989-01-01
The simulation of spacecraft attitude dynamics and control using the generic, multi-body code called TREETOPS and other codes written especially to simulate particular systems is discussed. Differences in the methods used to derive equations of motion--Kane's method for TREETOPS and the Lagrangian and Newton-Euler methods, respectively, for the other two codes--are considered. Simulation results from the TREETOPS code are compared with those from the other two codes for two example systems. One system is a chain of rigid bodies; the other consists of two rigid bodies attached to a flexible base body. Since the computer codes were developed independently, consistent results serve as a verification of the correctness of all the programs. Differences in the results are discussed. Results for the two-rigid-body, one-flexible-body system are useful also as information on multi-body, flexible, pointing payload dynamics.
Paliwal, Nikhil; Damiano, Robert J; Varble, Nicole A; Tutino, Vincent M; Dou, Zhongwang; Siddiqui, Adnan H; Meng, Hui
2017-12-01
Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver's modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the "true" accuracy of a CFD solver.
The path to CAM6: coupled simulations with CAM5.4 and CAM5.5
NASA Astrophysics Data System (ADS)
Bogenschutz, Peter A.; Gettelman, Andrew; Hannay, Cecile; Larson, Vincent E.; Neale, Richard B.; Craig, Cheryl; Chen, Chih-Chieh
2018-01-01
This paper documents coupled simulations of two developmental versions of the Community Atmosphere Model (CAM) towards CAM6. The configuration called CAM5.4 introduces new microphysics, aerosol, and ice nucleation changes, among others to CAM. The CAM5.5 configuration represents a more radical departure, as it uses an assumed probability density function (PDF)-based unified cloud parameterization to replace the turbulence, shallow convection, and warm cloud macrophysics in CAM. This assumed PDF method has been widely used in the last decade in atmosphere-only climate simulations but has never been documented in coupled mode. Here, we compare the simulated coupled climates of CAM5.4 and CAM5.5 and compare them to the control coupled simulation produced by CAM5.3. We find that CAM5.5 has lower cloud forcing biases when compared to the control simulations. Improvements are also seen in the simulated amplitude of the Niño-3.4 index, an improved representation of the diurnal cycle of precipitation, subtropical surface wind stresses, and double Intertropical Convergence Zone biases. Degradations are seen in Amazon precipitation as well as slightly colder sea surface temperatures and thinner Arctic sea ice. Simulation of the 20th century results in a credible simulation that ends slightly colder than the control coupled simulation. The authors find this is due to aerosol indirect effects that are slightly stronger in the new version of the model and propose a solution to ameliorate this. Overall, in these early coupled simulations, CAM5.5 produces a credible climate that is appropriate for science applications and is ready for integration into the National Center for Atmospheric Research's (NCAR's) next-generation climate model.