NASA Astrophysics Data System (ADS)
Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.
2016-07-01
This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results indicated teachers used a one-to-one student-to-computer ratio most often either during class-wide individual computer use or during a rotating station structure. Worksheets, general support, and peer collaboration were the most common forms of instructional support. The least common instructional support forms included lesson pacing, initial play, and a closure discussion. Students' simulation use was supported in the fewest ways during a rotating station structure. Results suggest that simulation professional development with elementary teachers needs to explicitly focus on implementation structures and instructional support to enhance participants' pedagogical knowledge and improve instructional simulation use. In addition, research is needed to provide theoretical explanations for the observed patterns that should subsequently be addressed in supporting teachers' instructional simulation use during professional development or in teacher preparation programs.
Interactive Simulations as Implicit Support for Guided-Inquiry
ERIC Educational Resources Information Center
Moore, Emily B.; Herzog, Timothy A.; Perkins, Katherine K.
2013-01-01
We present the results of a study designed to provide insight into interactive simulation use during guided-inquiry activities in chemistry classes. The PhET Interactive Simulations project at the University of Colorado develops interactive simulations that utilize implicit--rather than explicit--scaffolding to support student learning through…
2012-03-01
on the standard Navy Handgun Qualification Course. Results partially supported the hypotheses. The simulation group showed greater improvement in MPI...standard Navy Handgun Qualification Course. Results partially supported the hypotheses. The simulation group showed greater improvement in MPI than the...14 3. Navy Handgun Qualification Course Firing Sequence ..................15 F. PROCEDURES
ERIC Educational Resources Information Center
Njoo, Melanie; de Jong, Ton
This paper contains the results of a study on the importance of discovery learning using computer simulations. The purpose of the study was to identify what constitutes discovery learning and to assess the effects of instructional support measures. College students were observed working with an assignment and a computer simulation in the domain of…
Mechanism change in a simulation of peer review: from junk support to elitism.
Paolucci, Mario; Grimaldo, Francisco
2014-01-01
Peer review works as the hinge of the scientific process, mediating between research and the awareness/acceptance of its results. While it might seem obvious that science would regulate itself scientifically, the consensus on peer review is eroding; a deeper understanding of its workings and potential alternatives is sorely needed. Employing a theoretical approach supported by agent-based simulation, we examined computational models of peer review, performing what we propose to call redesign , that is, the replication of simulations using different mechanisms . Here, we show that we are able to obtain the high sensitivity to rational cheating that is present in literature. In addition, we also show how this result appears to be fragile against small variations in mechanisms. Therefore, we argue that exploration of the parameter space is not enough if we want to support theoretical statements with simulation, and that exploration at the level of mechanisms is needed. These findings also support prudence in the application of simulation results based on single mechanisms, and endorse the use of complex agent platforms that encourage experimentation of diverse mechanisms.
NASA Astrophysics Data System (ADS)
Fedulov, Boris N.; Safonov, Alexander A.; Sergeichev, Ivan V.; Ushakov, Andrey E.; Klenin, Yuri G.; Makarenko, Irina V.
2016-10-01
An application of composites for construction of subway brackets is a very effective approach to extend their lifetime. However, this approach involves the necessity to prevent process-induced distortions of the bracket due to thermal deformation and chemical shrinkage. At present study, a process simulation has been carried out to support the design of the production tooling. The simulation was based on the application of viscoelastic model for the resin. Simulation results were verified by comparison with results of manufacturing experiments. To optimize the bracket structure the strength analysis was carried out as well.
NASA Astrophysics Data System (ADS)
Schafhirt, S.; Kaufer, D.; Cheng, P. W.
2014-12-01
In recent years many advanced load simulation tools, allowing an aero-servo-hydroelastic analyses of an entire offshore wind turbine, have been developed and verified. Nowadays, even an offshore wind turbine with a complex support structure such as a jacket can be analysed. However, the computational effort rises significantly with an increasing level of details. This counts especially for offshore wind turbines with lattice support structures, since those models do naturally have a higher number of nodes and elements than simpler monopile structures. During the design process multiple load simulations are demanded to obtain an optimal solution. In the view of pre-design tasks it is crucial to apply load simulations which keep the simulation quality and the computational effort in balance. The paper will introduce a reference wind turbine model consisting of the REpower5M wind turbine and a jacket support structure with a high level of detail. In total twelve variations of this reference model are derived and presented. Main focus is to simplify the models of the support structure and the foundation. The reference model and the simplified models are simulated with the coupled simulation tool Flex5-Poseidon and analysed regarding frequencies, fatigue loads, and ultimate loads. A model has been found which reaches an adequate increase of simulation speed while holding the results in an acceptable range compared to the reference results.
Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu
2010-01-01
Purpose Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. Methods A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. Results The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. Conclusion A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users. PMID:20714933
(abstract) Generic Modeling of a Life Support System for Process Technology Comparisons
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.
1993-01-01
This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.
Sotomayor, Teresita M
2010-01-01
The effectiveness of games as instructional tools has been debated over the past several decades. This is due to the lack of empirical data to support such claims. The US ARMY developed a game-based simulation to support Tactical Combat Casualty Care (TCCC) Training. The TC3 Game based Simulation is a first person game that allows a Soldier to play the role of a combat medic during an infantry squad mission in an urban environment. This research documents results from a training effectiveness evaluation conducted at the Department of Combat Medic Training (Ft Sam Houston) in an effort to explore the capability of the game based simulation as a potential tool to support the TCCC program of instruction. Reaction to training, as well as, acquisition of knowledge and transfer of skills were explored using Kirkpatrick's Model of Training Effectiveness Evaluation. Results from the evaluation are discussed.
NASA Technical Reports Server (NTRS)
Haakensen, Erik Edward
1998-01-01
The desire for low-cost reliable computing is increasing. Most current fault tolerant computing solutions are not very flexible, i.e., they cannot adapt to reliability requirements of newly emerging applications in business, commerce, and manufacturing. It is important that users have a flexible, reliable platform to support both critical and noncritical applications. Chameleon, under development at the Center for Reliable and High-Performance Computing at the University of Illinois, is a software framework. for supporting cost-effective adaptable networked fault tolerant service. This thesis details a simulation of fault injection, detection, and recovery in Chameleon. The simulation was written in C++ using the DEPEND simulation library. The results obtained from the simulation included the amount of overhead incurred by the fault detection and recovery mechanisms supported by Chameleon. In addition, information about fault scenarios from which Chameleon cannot recover was gained. The results of the simulation showed that both critical and noncritical applications can be executed in the Chameleon environment with a fairly small amount of overhead. No single point of failure from which Chameleon could not recover was found. Chameleon was also found to be capable of recovering from several multiple failure scenarios.
System analysis for the Huntsville Operational Support Center distributed computer system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Mauldin, J.
1984-01-01
The Huntsville Operations Support Center (HOSC) is a distributed computer system used to provide real time data acquisition, analysis and display during NASA space missions and to perform simulation and study activities during non-mission times. The primary purpose is to provide a HOSC system simulation model that is used to investigate the effects of various HOSC system configurations. Such a model would be valuable in planning the future growth of HOSC and in ascertaining the effects of data rate variations, update table broadcasting and smart display terminal data requirements on the HOSC HYPERchannel network system. A simulation model was developed in PASCAL and results of the simulation model for various system configuraions were obtained. A tutorial of the model is presented and the results of simulation runs are presented. Some very high data rate situations were simulated to observe the effects of the HYPERchannel switch over from contention to priority mode under high channel loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Pratt, Annabelle; Bialek, Tom
2016-11-21
This paper reports on tools and methodologies developed to study the impact of adding rooftop photovoltaic (PV) systems, with and without the ability to provide voltage support, on the voltage profile of distribution feeders. Simulation results are provided from a study of a specific utility feeder. The simulation model of the utility distribution feeder was built in OpenDSS and verified by comparing the simulated voltages to field measurements. First, we set all PV systems to operate at unity power factor and analyzed the impact on feeder voltages. Then we conducted multiple simulations with voltage support activated for all the smartmore » PV inverters. These included different constant power factor settings and volt/VAR controls.« less
2008-03-01
Molecular Dynamics Simulations 5 Theory: Equilibrium Molecular Dynamics Simulations 6 Theory: Non...Equilibrium Molecular Dynamics Simulations 8 Carbon Nanotube Simulations : Approach and results from equilibrium and non-equilibrium molecular dynamics ...touched from the perspective of molecular dynamics simulations . However, ordered systems such as “Carbon Nanotubes” have been investigated in terms
Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.;
2009-01-01
Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.
Generic Modeling of a Life Support System for Process Technology Comparison
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.
1993-01-01
This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.
NASA Astrophysics Data System (ADS)
Schulman, Kathleen M.
This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental calculations. Students believed that having this additional instructional support would lead to increased understanding of the laboratory exercises, allowing them to complete them with less difficulty, and giving them increased access to the instructor. Recommendations for the instructors of these two courses include: increased participation in the online course environment, increased emphasis on laboratory safety, and increased emphasis on the differences between simulated and real life chemistry laboratory experiments.
Integrated corridor management analysis, modeling, and simulation results for the test corridor.
DOT National Transportation Integrated Search
2008-06-01
This report documents the Integrated Corridor Management (ICM) Analysis Modeling and Simulation (AMS) tools and strategies used on a Test Corridor, presents results and lessons-learned, and documents the relative capability of AMS to support benefit-...
Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn
2004-01-01
This paper details the results of the first phase of a project that used eLearning to support students' learning within a simulated environment. The locus was a purpose built Clinical Simulation Laboratory (CSL) where the School's newly adopted philosophy of Problem Based Learning (PBL) was challenged through lecturers reverting to traditional teaching methods. The solution, a student-centred, problem-based approach to the acquisition of clinical skills was developed using learning objects embedded within web pages that substituted for lecturers providing instruction and demonstration. This allowed lecturers to retain their facilitator role, and encouraged students to explore, analyse and make decisions within the safety of a clinical simulation. Learning was enhanced through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that an elearning approach can support PBL in delivering a student centred learning experience.
Hvitfeldt-Forsberg, Helena; Mazzocato, Pamela; Glaser, Daniel; Keller, Christina; Unbeck, Maria
2017-01-01
Objective To explore healthcare staffs’ and managers’ perceptions of how and when discrete event simulation modelling can be used as a decision support in improvement efforts. Design Two focus group discussions were performed. Setting Two settings were included: a rheumatology department and an orthopaedic section both situated in Sweden. Participants Healthcare staff and managers (n=13) from the two settings. Interventions Two workshops were performed, one at each setting. Workshops were initiated by a short introduction to simulation modelling. Results from the respective simulation model were then presented and discussed in the following focus group discussion. Results Categories from the content analysis are presented according to the following research questions: how and when simulation modelling can assist healthcare improvement? Regarding how, the participants mentioned that simulation modelling could act as a tool for support and a way to visualise problems, potential solutions and their effects. Regarding when, simulation modelling could be used both locally and by management, as well as a pedagogical tool to develop and test innovative ideas and to involve everyone in the improvement work. Conclusions Its potential as an information and communication tool and as an instrument for pedagogic work within healthcare improvement render a broader application and value of simulation modelling than previously reported. PMID:28588107
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.
van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B
2016-11-24
Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.
Optimized deformation behavior of a dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Foerster, Florentine; Schlaak, Helmut F.
2014-03-01
Dielectric elastomer generators (DEGs) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires an optimal deformation of the DEG during the energy harvesting cycle. However, the deformation resulting from an external load has to be applied to the DEG. The deformation behavior of the DEG is dependent on the type of the mechanical interconnection between the elastic DEG and a stiff support area. The maximization of the capacitance of the DEG in the deformed state leads to the maximum absolute energy gain. Therefore several configurations of mechanical interconnections between a single DEG module as well as multiple stacked DEG modules and stiff supports are investigated in order to find the optimal mechanical interconnection. The investigation is done with numerical simulations using the FEM software ANSYS. A DEG module consists of 50 active dielectric layers with a single layer thickness of 50 μm. The elastomer material is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes are included to compare simulation results to experimental investigations in the future. The numerical simulations of the several configurations are carried out as coupled electro-mechanical simulation for the first step in an energy harvesting cycle with constant external load strain. The simulation results are discussed and an optimal mechanical interconnection between DEG modules and stiff supports is derived.
Simulation of Stress-Strain State of Shovel Rotary Support Kingpin
NASA Astrophysics Data System (ADS)
Khoreshok, A. A.; Buyankin, P. V.; Vorobiev, A. V.; Dronov, A. A.
2016-04-01
The article presents the sequence of computational simulation of stress-strain state of shovel’s rotary support. Computation results are analyzed, the kingpin is specified as the most loaded element, maximum stress zones are identified. Kingpin design modification such as enhancement of fillet curvature radius to 25 mm and displacement of eyebolt holes on the diameter of 165 mm are proposed, thus diminishing impact of stress concentrators and improving reliability of the rotary support.
NASA Technical Reports Server (NTRS)
Kubat, Gregory
2016-01-01
This report addresses a deliverable to the UAS-in-the-NAS project for recommendations for integration of CNPC and ATC communications based on analysis results from modeled radio system and NAS-wide UA communication architecture simulations. For each recommendation, a brief explanation of the rationale for its consideration is provided with any supporting results obtained or observed in our simulation activity.
Simulated Consulting Experiences in Counselor Preparation
ERIC Educational Resources Information Center
Panther, Edward E.
1971-01-01
Simulation, using role playing and commercially available materials, was used to provide counselor teacher consultation experience for counselor trainees. The results of the program supported the use of simulation as a technique for counselor education. Implications for counselor education programs are discussed. (Author/CG)
DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS
The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...
Status of simulation in health care education: an international survey.
Qayumi, Karim; Pachev, George; Zheng, Bin; Ziv, Amitai; Koval, Valentyna; Badiei, Sadia; Cheng, Adam
2014-01-01
Simulation is rapidly penetrating the terrain of health care education and has gained growing acceptance as an educational method and patient safety tool. Despite this, the state of simulation in health care education has not yet been evaluated on a global scale. In this project, we studied the global status of simulation in health care education by determining the degree of financial support, infrastructure, manpower, information technology capabilities, engagement of groups of learners, and research and scholarly activities, as well as the barriers, strengths, opportunities for growth, and other aspects of simulation in health care education. We utilized a two-stage process, including an online survey and a site visit that included interviews and debriefings. Forty-two simulation centers worldwide participated in this study, the results of which show that despite enormous interest and enthusiasm in the health care community, use of simulation in health care education is limited to specific areas and is not a budgeted item in many institutions. Absence of a sustainable business model, as well as sufficient financial support in terms of budget, infrastructure, manpower, research, and scholarly activities, slows down the movement of simulation. Specific recommendations are made based on current findings to support simulation in the next developmental stages.
Detroit deicing decision support tool : description, operation, and simulation results
DOT National Transportation Integrated Search
2006-01-01
The John A. Volpe National Transportation Systems Center, sponsored by the National Aeronautics and Space Administration, : developed a deicing decision support tool, for Detroit Metropolitan Wayne County Airport (DTW).1 The deicing decision support ...
A prototype knowledge-based simulation support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, T.R.; Roberts, S.D.
1987-04-01
As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less
Simbrain 3.0: A flexible, visually-oriented neural network simulator.
Tosi, Zachary; Yoshimi, Jeffrey
2016-11-01
Simbrain 3.0 is a software package for neural network design and analysis, which emphasizes flexibility (arbitrarily complex networks can be built using a suite of basic components) and a visually rich, intuitive interface. These features support both students and professionals. Students can study all of the major classes of neural networks in a familiar graphical setting, and can easily modify simulations, experimenting with networks and immediately seeing the results of their interventions. With the 3.0 release, Simbrain supports models on the order of thousands of neurons and a million synapses. This allows the same features that support education to support research professionals, who can now use the tool to quickly design, run, and analyze the behavior of large, highly customizable simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wind Energy System Time-domain (WEST) analyzers using hybrid simulation techniques
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1979-01-01
Two stand-alone analyzers constructed for real time simulation of the complex dynamic characteristics of horizontal-axis wind energy systems are described. Mathematical models for an aeroelastic rotor, including nonlinear aerodynamic and elastic loads, are implemented with high speed digital and analog circuitry. Models for elastic supports, a power train, a control system, and a rotor gimbal system are also included. Limited correlation efforts show good comparisons between results produced by the analyzers and results produced by a large digital simulation. The digital simulation results correlate well with test data.
NASA Astrophysics Data System (ADS)
Peng, Chong; Wang, Lun; Liao, T. Warren
2015-10-01
Currently, chatter has become the critical factor in hindering machining quality and productivity in machining processes. To avoid cutting chatter, a new method based on dynamic cutting force simulation model and support vector machine (SVM) is presented for the prediction of chatter stability lobes. The cutting force is selected as the monitoring signal, and the wavelet energy entropy theory is used to extract the feature vectors. A support vector machine is constructed using the MATLAB LIBSVM toolbox for pattern classification based on the feature vectors derived from the experimental cutting data. Then combining with the dynamic cutting force simulation model, the stability lobes diagram (SLD) can be estimated. Finally, the predicted results are compared with existing methods such as zero-order analytical (ZOA) and semi-discretization (SD) method as well as actual cutting experimental results to confirm the validity of this new method.
A simulation study of Large Area Crop Inventory Experiment (LACIE) technology
NASA Technical Reports Server (NTRS)
Ziegler, L. (Principal Investigator); Potter, J.
1979-01-01
The author has identified the following significant results. The LACIE performance predictor (LPP) was used to replicate LACIE phase 2 for a 15 year period, using accuracy assessment results for phase 2 error components. Results indicated that the (LPP) simulated the LACIE phase 2 procedures reasonably well. For the 15 year simulation, only 7 of the 15 production estimates were within 10 percent of the true production. The simulations indicated that the acreage estimator, based on CAMS phase 2 procedures, has a negative bias. This bias was too large to support the 90/90 criterion with the CV observed and simulated for the phase 2 production estimator. Results of this simulation study validate the theory that the acreage variance estimator in LACIE was conservative.
Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions
NASA Astrophysics Data System (ADS)
Hammel, B. A.; Tommasini, R.; Clark, D. S.; Field, J.; Stadermann, M.; Weber, C.
2016-05-01
NIF capsules are supported in the hohlraum by two thin (∼15-110 nm) Formvar films (“tent”). Highly resolved HYDRA simulations indicate that a large (∼40% peak-average) areal density (ρR) perturbation develops on the capsule during acceleration as a consequence of this support geometry. This perturbation results in a jet of dense DT and, in some cases, CH that penetrates and cools the hot spot, significantly degrading the neutron yield (∼10-20% of 1D yield). We examine “low-foot” and “high-foot” pulse shapes, tent thicknesses, and geometries. Simulations indicate that thinner tents result in a smaller pR perturbation, however, the departure angle of the tent from the capsule surface is important, with steeper angles resulting in larger perturbations.
The determination of some requirements for a helicopter flight research simulation facility
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1977-01-01
Important requirements were defined for a flight simulation facility to support Army helicopter development. In particular requirements associated with the visual and motion subsystems of the planned simulator were studied. The method used in the motion requirements study is presented together with the underlying assumptions and a description of the supporting data. Results are given in a form suitable for use in a preliminary design. Visual requirements associated with a television camera/model concept are related. The important parameters are described together with substantiating data and assumptions. Research recommendations are given.
[Investigation and analysis of status in simulation education of anesthesiology of China].
Wang, Tian-long; Xue, Ji-xiu; Xiao, Wei; Wu, Xin-min
2010-03-09
To investigate the status of simulation education of anesthesiology in China. Five hundreds questionnaires were mailed to chairmen of department of anesthesiology in teaching hospitals in 29 provinces and autonomous regions in China. The retrieved questionnaires and data were processed and analyzed with statistics. Sixty one questionnaires were retrieved, and retrieved rate is 12.2%. The result indicated that the theory and knowledge of anesthesiology was adopted for the training of medical students and residents in 2% teaching hospitals, theory and knowledge of anesthesiology combined with problem-based learning discussion in 52% teaching hospitals, theory and knowledge of anesthesiology combined with problem-based learning discussion and simulation training in 46% teaching hospitals. The order of simulation devices possessed was as follows: Basic Life Support (BLS) (79.6%), training model for clinical anesthesia techniques (53.1%) and Advances Life Support (ALS) (51.0%). There were only six teaching hospitals utilized Human Patient Simulator for anesthesia training. The result of evaluation of simulation education showed that 91.2% anesthesiologists recognized it as applicable, 90.1% anesthesiologists recognized it as medical ethic requirement and 86.0% anesthesiologists recognized it as partly close to clinical situation. The degree of cognition of anesthesiologists to simulation education was ordered as follows: manipulation correcting ability (92.6%), procedure controllability (87.0%), training adjustability (76.0%) and patients safety (68.5%). The simulation education of anesthesiology in China is still in the preliminary period. The executive departments of education should enhance supports to the simulation education in both hard ware and in soft ware.
MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries
NASA Astrophysics Data System (ADS)
Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas
2015-11-01
The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.
Flight dynamics analysis and simulation of heavy lift airships. Volume 2: Technical manual
NASA Technical Reports Server (NTRS)
Ringland, R. F.; Tischler, M. B.; Jex, H. R.; Emmen, R. D.; Ashkenas, I. L.
1982-01-01
The mathematical models embodied in the simulation are described in considerable detail and with supporting evidence for the model forms chosen. In addition the trimming and linearization algorithms used in the simulation are described. Appendices to the manual identify reference material for estimating the needed coefficients for the input data and provide example simulation results.
Influence of single hindlimb support during simulated weightlessness in the rat
NASA Technical Reports Server (NTRS)
Stump, Craig S.; Overton, J. Michael; Tipton, Charles M.
1990-01-01
A study was carried out to develop and evaluate a hindlimb suspension model, making it possible to differentiate the effects of non-weight bearing by hindlimbs per se from the systemic influence of simulated weightlessness. A support platform was designed which allowed the animal to maintain one hindlimb in a posture similar to the hindlimbs of the control animals at rest and to maintain one hindlimb in a posture similar to the hindlimbs of the control animals, providing a support for the animal to contract or stretch hindlimb muscles against at any time during suspension. The results of this study indicated that hindlimb support during head-down suspension will maintain muscle-mass/body-mass ratios, glycogen concentration, and blood flow. However, it will not prevent the loss in citrate synthase activity associated with conditions of simulated weightlessness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong Huifeng; Yuan Hong; Tang Zhiping
When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times whichmore » show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.« less
Status of simulation in health care education: an international survey
Qayumi, Karim; Pachev, George; Zheng, Bin; Ziv, Amitai; Koval, Valentyna; Badiei, Sadia; Cheng, Adam
2014-01-01
Simulation is rapidly penetrating the terrain of health care education and has gained growing acceptance as an educational method and patient safety tool. Despite this, the state of simulation in health care education has not yet been evaluated on a global scale. In this project, we studied the global status of simulation in health care education by determining the degree of financial support, infrastructure, manpower, information technology capabilities, engagement of groups of learners, and research and scholarly activities, as well as the barriers, strengths, opportunities for growth, and other aspects of simulation in health care education. We utilized a two-stage process, including an online survey and a site visit that included interviews and debriefings. Forty-two simulation centers worldwide participated in this study, the results of which show that despite enormous interest and enthusiasm in the health care community, use of simulation in health care education is limited to specific areas and is not a budgeted item in many institutions. Absence of a sustainable business model, as well as sufficient financial support in terms of budget, infrastructure, manpower, research, and scholarly activities, slows down the movement of simulation. Specific recommendations are made based on current findings to support simulation in the next developmental stages. PMID:25489254
Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu
2011-07-01
Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.
SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation
NASA Technical Reports Server (NTRS)
Steinman, Jeff S.
1992-01-01
Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.
NASA Astrophysics Data System (ADS)
Aydogan, Selen
This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.
NASA Technical Reports Server (NTRS)
Hall, Laverne
1995-01-01
Modeling of the Multi-mission Image Processing System (MIPS) will be described as an example of the use of a modeling tool to design a distributed system that supports multiple application scenarios. This paper examines: (a) modeling tool selection, capabilities, and operation (namely NETWORK 2.5 by CACl), (b) pointers for building or constructing a model and how the MIPS model was developed, (c) the importance of benchmarking or testing the performance of equipment/subsystems being considered for incorporation the design/architecture, (d) the essential step of model validation and/or calibration using the benchmark results, (e) sample simulation results from the MIPS model, and (f) how modeling and simulation analysis affected the MIPS design process by having a supportive and informative impact.
eLearning techniques supporting problem based learning in clinical simulation.
Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn
2005-08-01
This paper details the results of the first phase of a project using eLearning to support students' learning within a simulated environment. The locus was a purpose built clinical simulation laboratory (CSL) where the School's philosophy of problem based learning (PBL) was challenged through lecturers using traditional teaching methods. a student-centred, problem based approach to the acquisition of clinical skills that used high quality learning objects embedded within web pages, substituting for lecturers providing instruction and demonstration. This encouraged student nurses to explore, analyse and make decisions within the safety of a clinical simulation. Learning was facilitated through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that eLearning techniques can help students acquire clinical skills in the safety of a simulated environment within the context of a problem based learning curriculum.
Multiresolution modeling with a JMASS-JWARS HLA Federation
NASA Astrophysics Data System (ADS)
Prince, John D.; Painter, Ron D.; Pendell, Brian; Richert, Walt; Wolcott, Christopher
2002-07-01
CACI, Inc.-Federal has built, tested, and demonstrated the use of a JMASS-JWARS HLA Federation that supports multi- resolution modeling of a weapon system and its subsystems in a JMASS engineering and engagement model environment, while providing a realistic JWARS theater campaign-level synthetic battle space and operational context to assess the weapon system's value added and deployment/employment supportability in a multi-day, combined force-on-force scenario. Traditionally, acquisition analyses require a hierarchical suite of simulation models to address engineering, engagement, mission and theater/campaign measures of performance, measures of effectiveness and measures of merit. Configuring and running this suite of simulations and transferring the appropriate data between each model is both time consuming and error prone. The ideal solution would be a single simulation with the requisite resolution and fidelity to perform all four levels of acquisition analysis. However, current computer hardware technologies cannot deliver the runtime performance necessary to support the resulting extremely large simulation. One viable alternative is to integrate the current hierarchical suite of simulation models using the DoD's High Level Architecture in order to support multi- resolution modeling. An HLA integration eliminates the extremely large model problem, provides a well-defined and manageable mixed resolution simulation and minimizes VV&A issues.
NASA Astrophysics Data System (ADS)
Damiano, E.; Mercogliano, P.; Netti, N.; Olivares, L.
2012-04-01
This paper proposes a Multidisciplinary Decision Support System (MDSS) as an approach to manage rainfall-induced shallow landslides of the flow type (flowslides) in pyroclastic deposits. We stress the need to combine information from the fields of meteorology, geology, hydrology, geotechnics and economics to support the agencies engaged in land monitoring and management. The MDSS consists of a "simulation chain" to link rainfall to effects in terms of infiltration, slope stability and vulnerability. This "simulation chain" was developed at the Euro-Mediterranean Centre for Climate Change (CMCC) (meteorological aspects), at the Geotechnical Laboratory of the Second University of Naples (hydrological and geotechnical aspects) and at the Department of Economics of the University of Naples "Federico II" (economic aspects). The results obtained from the application of this simulation chain in the Cervinara area during eleven years of research allowed in-depth analysis of the mechanisms underlying a flowslide in pyroclastic soil.
Gravity and thermal deformation of large primary mirror in space telescope
NASA Astrophysics Data System (ADS)
Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong
2016-10-01
The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.
Support for stroke patients in resumption of driving: patient survey and driving simulator trial
Hitosugi, Masahito; Takehara, Itaru; Watanabe, Shu; Hayashi, Yasufumi; Tokudome, Shogo
2011-01-01
Background: Encouragement of stroke patients to resume driving is important to promote their reintegration into the community. Limited rehabilitation has been performed in this regard, owing to lack of specific knowledge on the part of medical staff. To establish an effective support program for stroke patients who wish to resume driving, we propose comprehensive training by medical staff using a driving simulator. Methods: A survey of stroke patients admitted to the Tokyo Metropolitan Rehabilitation Hospital was first performed. A questionnaire was sent to 525 patients. Of 218 responses, the answers of 118 patients who had been driving before their stroke were analyzed. More than 80% of stroke patients did not obtain enough information about resuming driving during their hospital stay, and 38.1% of patients would have liked to have had driving training with a simulator. From these results, we set out to determine the effect of driving training using a realistic and technically advanced driving simulator. Twenty-four stroke patients and 20 healthy controls were included in the study. Results: Repeat training with the simulator resulted in an increased ability to perform braking and an improvement in driving ability. The majority of stroke patients who had the mental and physical ability to drive a car were likely to be assessed as being able to resume driving as a result of the training program. Conclusion: This study indicates that comprehensive support by medical staff and provision of adequate information about resumption of driving and the opportunity for training on a driving simulator are likely to aid resumption of driving by stroke patients, thus enhancing their rehabilitation and social reintegration. PMID:21475633
Supporting observation campaigns with high resolution modeling
NASA Astrophysics Data System (ADS)
Klocke, Daniel; Brueck, Matthias; Voigt, Aiko
2017-04-01
High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.
2013-09-01
which utilizes FTA and then loads it into a DES engine to generate simulation results. .......44 Figure 21. This simulation architecture is...While Discrete Event Simulation ( DES ) can provide accurate time estimation and fast simulation speed, models utilizing it often suffer...C4ISR progress in MDW is developed in this research to demonstrate the feasibility of AEMF- DES and explore its potential. The simulation (MDSIM
Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling
NASA Astrophysics Data System (ADS)
Schum, William K.; Doolittle, Christina M.; Boyarko, George A.
2006-05-01
During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.
On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics
Calcagno, Cristina; Coppo, Mario
2014-01-01
The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed. PMID:25050327
On designing multicore-aware simulators for systems biology endowed with OnLine statistics.
Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo
2014-01-01
The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.
MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler
NASA Astrophysics Data System (ADS)
Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre
This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.
Assessment of the Impacts of ACLS on the ISS Life Support System Using Dynamic Simulations in V-HAB
NASA Technical Reports Server (NTRS)
Putz, Daniel; Olthoff, Claas; Ewert, Michael; Anderson, Molly
2016-01-01
The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is the Virtual Habitat (V-HAB). Based on MATLAB, V-HAB has been under development at the Institute of Astronautics of the Technical University of Munich (TUM) since 2004 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large, ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside individual modules of the ISS by splitting it into twelve distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS Simulation and several different operating modes for both ACLS and the existing ISS life support systems are studied and the impacts of ACLS on the rest of the system are determined. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to a achieve a very low CO2 concentration in the cabin atmosphere.
Assessment of the Impacts of ACLS on the ISS Life Support System using Dynamic Simulations in V-HAB
NASA Technical Reports Server (NTRS)
Puetz, Daniel; Olthoff, Claas; Ewert, Michael K.; Anderson, Molly S.
2016-01-01
The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is Virtual Habitat (V-HAB). Based on Matlab (Registered Trademark) V-HAB has been under development at the Institute of Astronautics of the Technical University Munich (TUM) since 2006 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside the individual modules of the ISS by splitting it into ten distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS simulation and different operating modes for both ACLS and the existing ISS life support systems are studied to determine the impacts of ACLS on the rest of the system. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to achieve the highest possible CO2 recycling together with a low CO2 concentration.
Integrated Simulation Design Challenges to Support TPS Repair Operations
NASA Technical Reports Server (NTRS)
Quiocho, Leslie J.; Crues, Edwin Z.; Huynh, An; Nguyen, Hung T.; MacLean, John
2005-01-01
During the Orbiter Repair Maneuver (ORM) operations planned for Return to Flight (RTF), the Shuttle Remote Manipulator System (SRMS) must grapple the International Space Station (ISS), undock the Orbiter, maneuver it through a long duration trajectory, and orient it to an EVA crewman poised at the end of the Space Station Remote Manipulator System (SSRMS) to facilitate the repair of the Thermal Protection System (TPS). Once repair has been completed and confirmed, then the SRMS proceeds back through the trajectory to dock the Orbiter to the Orbiter Docking System. In order to support analysis of the complex dynamic interactions of the integrated system formed by the Orbiter, ISS, SRMS, and SSRMS during the ORM, simulation tools used for previous 'nominal' mission support required substantial enhancements. These upgrades were necessary to provide analysts with the capabilities needed to study integrated system performance. This paper discusses the simulation design challenges encountered while developing simulation capabilities to mirror the ORM operations. The paper also describes the incremental build approach that was utilized, starting with the subsystem simulation elements and integration into increasing more complex simulations until the resulting ORM worksite dynamics simulation had been assembled. Furthermore, the paper presents an overall integrated simulation V&V methodology based upon a subsystem level testing, integrated comparisons, and phased checkout.
Niswonger, Richard G.; Allander, Kip K.; Jeton, Anne E.
2014-01-01
A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.
Computer-aided operations engineering with integrated models of systems and operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.
Longitudinal train dynamics model for a rail transit simulation system
Wang, Jinghui; Rakha, Hesham A.
2018-01-01
The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less
Bruen, Catherine; Kreiter, Clarence; Wade, Vincent; Pawlikowska, Teresa
2017-01-01
Experience with simulated patients supports undergraduate learning of medical consultation skills. Adaptive simulations are being introduced into this environment. The authors investigate whether it can underpin valid and reliable assessment by conducting a generalizability analysis using IT data analytics from the interaction of medical students (in psychiatry) with adaptive simulations to explore the feasibility of adaptive simulations for supporting automated learning and assessment. The generalizability (G) study was focused on two clinically relevant variables: clinical decision points and communication skills. While the G study on the communication skills score yielded low levels of true score variance, the results produced by the decision points, indicating clinical decision-making and confirming user knowledge of the process of the Calgary-Cambridge model of consultation, produced reliability levels similar to what might be expected with rater-based scoring. The findings indicate that adaptive simulations have potential as a teaching and assessment tool for medical consultations.
Longitudinal train dynamics model for a rail transit simulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jinghui; Rakha, Hesham A.
The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less
Operating system for a real-time multiprocessor propulsion system simulator. User's manual
NASA Technical Reports Server (NTRS)
Cole, G. L.
1985-01-01
The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.
A Toolbox to Improve Algorithms for Insulin-Dosing Decision Support
Donsa, K.; Plank, J.; Schaupp, L.; Mader, J. K.; Truskaller, T.; Tschapeller, B.; Höll, B.; Spat, S.; Pieber, T. R.
2014-01-01
Summary Background Standardized insulin order sets for subcutaneous basal-bolus insulin therapy are recommended by clinical guidelines for the inpatient management of diabetes. The algorithm based GlucoTab system electronically assists health care personnel by supporting clinical workflow and providing insulin-dose suggestions. Objective To develop a toolbox for improving clinical decision-support algorithms. Methods The toolbox has three main components. 1) Data preparation: Data from several heterogeneous sources is extracted, cleaned and stored in a uniform data format. 2) Simulation: The effects of algorithm modifications are estimated by simulating treatment workflows based on real data from clinical trials. 3) Analysis: Algorithm performance is measured, analyzed and simulated by using data from three clinical trials with a total of 166 patients. Results Use of the toolbox led to algorithm improvements as well as the detection of potential individualized subgroup-specific algorithms. Conclusion These results are a first step towards individualized algorithm modifications for specific patient subgroups. PMID:25024768
NASA Astrophysics Data System (ADS)
Saitou, K.; Noda, N.-A.; Sano, Y.; Takase, Y.; Murai, K.; Wang, Z. F.; Li, S. Q.; Liu, X.; Tanaka, H.; Kubo, Y.
2018-06-01
In this paper, special sliding door is designed in order to support senior and handicapped persons to walk by themselves in hospitals and nursing facilities. This semiautomatic lifting equipment is utilized for the storable handrail to make sure the bad health persons are able to open the door by using a weak force. In this study, to design the equipment of the handrail, the theoretical formula of opening force is derived. Then the simulation is performed by varying geometrical conditions. The simulation results are compared with the experiment results.
ERIC Educational Resources Information Center
Otamendi, Francisco Javier; Doncel, Luis Miguel
2013-01-01
Experimental teaching in general, and simulation in particular, have primarily been used in lecture rooms but in the future must also be adapted to e-learning. The integration of web simulators into virtual learning environments, coupled with specific supporting video documentation and the use of videoconference tools, results in robust…
Application of wildfire simulation models for risk analysis
Alan A. Ager; Mark A. Finney
2009-01-01
Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of...
Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise
NASA Astrophysics Data System (ADS)
Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej
2010-11-01
The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.
Software for Brain Network Simulations: A Comparative Study
Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.
2017-01-01
Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models. PMID:28775687
Wake Vortex Prediction Models for Decay and Transport Within Stratified Environments
NASA Astrophysics Data System (ADS)
Switzer, George F.; Proctor, Fred H.
2002-01-01
This paper proposes two simple models to predict vortex transport and decay. The models are determined empirically from results of three-dimensional large eddy simulations, and are applicable to wake vortices out of ground effect and not subjected to environmental winds. The results, from the large eddy simulations assume a range of ambient turbulence and stratification levels. The models and the results from the large eddy simulations support the hypothesis that the decay of the vortex hazard is decoupled from its change in descent rate.
Status of the Correlation Process of the V-HAB Simulation with Ground Tests and ISS Telemetry Data
NASA Technical Reports Server (NTRS)
Ploetner, P.; Roth, C.; Zhukov, A.; Czupalla, M.; Anderson, M.; Ewert, M.
2013-01-01
The Virtual Habitat (V-HAB) is a dynamic Life Support System (LSS) simulation, created for investigation of future human spaceflight missions. It provides the capability to optimize LSS during early design phases. The focal point of the paper is the correlation and validation of V-HAB against ground test and flight data. In order to utilize V-HAB to design an Environmental Control and Life Support System (ECLSS) it is important to know the accuracy of simulations, strengths and weaknesses. Therefore, simulations of real systems are essential. The modeling of the International Space Station (ISS) ECLSS in terms of single technologies as well as an integrated system and correlation against ground and flight test data is described. The results of the simulations make it possible to prove the approach taken by V-HAB.
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1992-01-01
This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.
2009-06-01
simulation is the campaign-level Peace Support Operations Model (PSOM). This thesis provides a quantitative analysis of PSOM. The results are based ...multiple potential outcomes , further development and analysis is required before the model is used for large scale analysis . 15. NUMBER OF PAGES 159...multiple potential outcomes , further development and analysis is required before the model is used for large scale analysis . vi THIS PAGE
Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.
Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana
2016-01-01
The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.
Dynamic Model of the BIO-Plex Air Revitalization System
NASA Technical Reports Server (NTRS)
Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)
2000-01-01
The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.
Andersen, Simone Nyholm; Broberg, Ole
2015-11-01
Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Weber, C. R.; Milovich, J. L.
In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Weber, C. R.; Milovich, J. L.
In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less
Clark, D. S.; Weber, C. R.; Milovich, J. L.; ...
2016-03-14
In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less
NASA Technical Reports Server (NTRS)
Dayman, B., Jr.; Fiore, A. W.
1974-01-01
The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.
Washburn, Micki; Bordnick, Patrick; Rizzo, Albert Skip
2016-10-01
This study presents preliminary feasibility and acceptability data on the use of virtual patient (VP) simulations to develop brief assessment skills within an interdisciplinary care setting. Results support the acceptability of technology-enhanced simulations and offer preliminary evidence for an association between engagement in VP practice simulations and improvements in diagnostic accuracy and clinical interviewing skills. Recommendations and next steps for research on technology-enhanced simulations within social work are discussed.
A Lunar Surface Operations Simulator
NASA Technical Reports Server (NTRS)
Nayar, H.; Balaram, J.; Cameron, J.; Jain, A.; Lim, C.; Mukherjee, R.; Peters, S.; Pomerantz, M.; Reder, L.; Shakkottai, P.;
2008-01-01
The Lunar Surface Operations Simulator (LSOS) is being developed to support planning and design of space missions to return astronauts to the moon. Vehicles, habitats, dynamic and physical processes and related environment systems are modeled and simulated in LSOS to assist in the visualization and design optimization of systems for lunar surface operations. A parametric analysis tool and a data browser were also implemented to provide an intuitive interface to run multiple simulations and review their results. The simulator and parametric analysis capability are described in this paper.
NASA Technical Reports Server (NTRS)
Venketeswaran, S.
1987-01-01
Experiments to determine whether plant tissue cultures can be grown in the presence of simulated lunar soil (SLS) and the effect of simulated lunar soil on the growth and morphogenesis of such cultures, as well as the effect upon the germination of seeds and the development of seedlings were carried out . Preliminary results on seed germination and seedling growth of rice and calli growth of winged bean and soybean indicate that there is no toxicity or inhibition caused by SLS. SLS can be used as a support medium with supplements of certain major and micro elements.
Acceleration techniques for dependability simulation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Barnette, James David
1995-01-01
As computer systems increase in complexity, the need to project system performance from the earliest design and development stages increases. We have to employ simulation for detailed dependability studies of large systems. However, as the complexity of the simulation model increases, the time required to obtain statistically significant results also increases. This paper discusses an approach that is application independent and can be readily applied to any process-based simulation model. Topics include background on classical discrete event simulation and techniques for random variate generation and statistics gathering to support simulation.
Developing a Theory-Based Simulation Educator Resource.
Thomas, Christine M; Sievers, Lisa D; Kellgren, Molly; Manning, Sara J; Rojas, Deborah E; Gamblian, Vivian C
2015-01-01
The NLN Leadership Development Program for Simulation Educators 2014 faculty development group identified a lack of a common language/terminology to outline the progression of expertise of simulation educators. The group analyzed Benner's novice-to-expert model and applied its levels of experience to simulation educator growth. It established common operational categories of faculty development and used them to organize resources that support progression toward expertise. The resulting theory-based Simulator Educator Toolkit outlines levels of ability and provides quality resources to meet the diverse needs of simulation educators and team members.
Thakral, Preston P.; Benoit, Roland G.; Schacter, Daniel L.
2017-01-01
Neuroimaging data indicate that episodic memory (i.e., remembering specific past experiences) and episodic simulation (i.e., imagining specific future experiences) are associated with enhanced activity in a common set of neural regions, often referred to as the core network. This network comprises the hippocampus, parahippocampal cortex, lateral and medial parietal cortex, lateral temporal cortex, and medial prefrontal cortex. Evidence for a core network has been taken as support for the idea that episodic memory and episodic simulation are supported by common processes. Much remains to be learned about how specific core network regions contribute to specific aspects of episodic simulation. Prior neuroimaging studies of episodic memory indicate that certain regions within the core network are differentially sensitive to the amount of information recollected (e.g., the left lateral parietal cortex). In addition, certain core network regions dissociate as a function of their timecourse of engagement during episodic memory (e.g., transient activity in the posterior hippocampus and sustained activity in the left lateral parietal cortex). In the current study, we assessed whether similar dissociations could be observed during episodic simulation. We found that the left lateral parietal cortex modulates as a function of the amount of simulated details. Of particular interest, while the hippocampus was insensitive to the amount of simulated details, we observed a temporal dissociation within the hippocampus: transient activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. Because the posterior hippocampal and lateral parietal findings parallel those observed previously during episodic memory, the present results add to the evidence that episodic memory and episodic simulation are supported by common processes. Critically, the present study also provides evidence that regions within the core network support dissociable processes. PMID:28324695
Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments
NASA Technical Reports Server (NTRS)
Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet
2004-01-01
This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.
2017-06-01
cases have the most significant impact on reducing the number of lethal shots fired in the simulation. Table 10 shows the reduction in the average...Figure ES-2 was developed to show the results of the focused study on maximum effective range. After analyzing the results of the 1,700 simulated...toward other agents based on whose side they are on at that time. This attribute is critical to this study as the sidedness of the local population is
Tissue simulating gel for medical research
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor)
1991-01-01
A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.
Tissue simulating gel for medical research
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor)
1989-01-01
A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene gylcol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances were injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.
Residents’ perceptions of simulation as a clinical learning approach
Walsh, Catharine M.; Garg, Ankit; Ng, Stella L.; Goyal, Fenny; Grover, Samir C.
2017-01-01
Background Simulation is increasingly being integrated into medical education; however, there is little research into trainees’ perceptions of this learning modality. We elicited trainees’ perceptions of simulation-based learning, to inform how simulation is developed and applied to support training. Methods We conducted an instrumental qualitative case study entailing 36 semi-structured one-hour interviews with 12 residents enrolled in an introductory simulation-based course. Trainees were interviewed at three time points: pre-course, post-course, and 4–6 weeks later. Interview transcripts were analyzed using a qualitative descriptive analytic approach. Results Residents’ perceptions of simulation included: 1) simulation serves pragmatic purposes; 2) simulation provides a safe space; 3) simulation presents perils and pitfalls; and 4) optimal design for simulation: integration and tension. Key findings included residents’ markedly narrow perception of simulation’s capacity to support non-technical skills development or its use beyond introductory learning. Conclusion Trainees’ learning expectations of simulation were restricted. Educators should critically attend to the way they present simulation to learners as, based on theories of problem-framing, trainees’ a priori perceptions may delimit the focus of their learning experiences. If they view simulation as merely a replica of real cases for the purpose of practicing basic skills, they may fail to benefit from the full scope of learning opportunities afforded by simulation. PMID:28344719
Molecular-dynamics simulations of thin films with a free surface
NASA Astrophysics Data System (ADS)
Peter, Simone; Meyer, Hendrik; Baschnagel, Joerg
2007-03-01
We present results [1,2] from molecular-dynamics simulations for a model of non-entangled short polymer chains in a free standing and a supported film geometry. We investigate the influence of confinement on static and dynamic properties of the melt. We find that the relaxation at the surfaces is faster in comparison to the bulk. We perform a layer-resolved analysis of the dynamics and show that it is possible to associate a gradient in critical temperatures Tc(y) with the gradient in the relaxation dynamics. This finding is in qualitative agreement with experimental results on supported polystyrene (PS) films [Ellison et al, Nat. Mater. 2, 695 (2003)]. Furthermore we show that the y-dependence of Tc(y) can be expressed in terms of the depression of Tc(h), the global Tc for a film of thickness h, if we assume that Tc(h) is the arithmetic mean of Tc(y) and parameterize the depression of Tc(h) by Tc(h)=Tc/(1+h0/h), a formula suggested by Herminghaus et al [Eur. Phys. J E 5, 531 (2001)] for the reduction of the glass transition temperature in supported PS films. We demonstrate the validity of this formula by comparing our simulation results to results from other simulations and experiments. [1] S. Peter, H. Meyer and J. Baschnagel, J. Polym. Sci. B, 44, 2951 (2006) [2] S. Peter, H. Meyer, J. Baschnagel and R, Seemann, J. Phys: Condens. Matter (2007)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, S; Rotman, D; Schwegler, E
The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources.more » Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO petabyte-class storage facility on the green network for use in data intensive external collaborations; and (6) continued support for visualization and other methods for analyzing large simulations. We also recommend that M and IC begin planning in FY07 for the next upgrade of its parallel clusters. LLNL investments in M and IC have resulted in a world-class simulation capability leading to innovative science. We thank the LLNL management for its continued support and thank the M and IC staff for its vision and dedicated efforts to make it all happen.« less
NASA Technical Reports Server (NTRS)
Shields, N. L., Jr.; Martin, M. F.; Paulukaitis, K. R.; Haslam, J. W., Jr.; Henderson, D. E.
1986-01-01
The teleoperator and Robotics Evaluation Facility (TOREF) is composed of a 4,000 square foot precision air bearing floor, the Teleoperator Motion Base, the Target Motion and Support Simulator, the mock-ups of the Hubble Space Telescope, Multi-mission Modular Spacecraft, and the Orbital Maneuvering Vehicle (OMV). The TOREF and its general capabilities to support the OMV and other remote system simulations; the facility operating procedures and requirements; and the results of generic OMV investigations are summarized.
CSM digital autopilot testing in support of ASTP experiments control requirements
NASA Technical Reports Server (NTRS)
Rue, D. L.
1975-01-01
Results are presented of CSM digital autopilot (DAP) testing. The testing was performed to demonstrate and evaluate control modes which are currently planned or could be considered for use in support of experiments on the ASTP mission. The testing was performed on the Lockheed Guidance, Navigation, and Control System Functional Simulator (GNCFS). This simulator, which was designed to test the Apollo and Skylab DAP control system, has been used extensively and is a proven tool for CSM DAP analysis.
A Numerical Simulation of the Energy Conversion Process in Microwave Rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya
2008-04-28
In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.
Assessment of simulation fidelity using measurements of piloting technique in flight
NASA Technical Reports Server (NTRS)
Clement, W. F.; Cleveland, W. B.; Key, D. L.
1984-01-01
The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.
Simulation of effect of anti-radar stealth principle
NASA Astrophysics Data System (ADS)
Zhao, Borao; Xing, Shuchen; Li, Chunyi
1988-02-01
The paper presents simulation methods and results of the anti-radar stealth principle, proving that anti-radar stealth aircraft can drastically reduce the combat efficiency of an air defense radar system. In particular, when anti-radar stealth aircraft are coordinated with jamming as a self-defense soft weapon, the discovery probability, response time and hit rate of the air defense radar system are much lower, with extensive reduction in jamming power and maximum exposure distance of self-defense and long-range support. The paper describes an assumed combat situation and construction of a calculation model for the aircraft survival rate, as well as simulation results and analysis. Four figures show an enemy bomber attacking an airfield, as well as the effects of the radar effective reflecting surface on discovery probability, guidance radius, aircraft survival and exposure distance (for long-range support and jamming).
Moazami, Hamid Reza; Nojavan, Saeed; Zahedi, Pegah; Davarani, Saied Saeed Hosseiny
2014-09-02
In order to understand the limitations of electromebrane extraction procedure better, a simple equivalent circuit has been proposed for a supported liquid membrane consisting of a resistor and a low leakage capacitor in series. To verify the equivalent circuit, it was subjected to a simulated periodical polarity changing potential and the resulting time variation of the current was compared with that of a real electromembrane extraction system. The results showed a good agreement between the simulated current patterns and those of the real ones. In order to investigate the impact of various limiting factors, the corresponding values of the equivalent circuit were estimated for a real electromembrane extraction system and were attributed to the physical parameters of the extraction system. A dual charge transfer mechanism was proposed for electromembrane extraction by combining general migration equation and fundamental aspects derived from the simulation. Dual mechanism comprises a current dependent contribution of analyte in total current and could support the possibility of an improvement in performance of an electromembrane extraction by application of an asymmetric polarity changing potential. The optimization of frequency and duty cycle of the asymmetric polarity exchanging potential resulted in a higher recovery (2.17 times greater) in comparison with the conventional electromebrane extraction. The simulation also provided more quantitative approaches toward the investigation of the mechanism of extraction and contribution of different limiting factors in electromembrane extraction. Results showed that the buildup of the double layer is the main limiting factor and the Joule heating has lesser impact on the performance of an electromebrane extraction system. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Arneson, Heather; Evans, Antony D.; Li, Jinhua; Wei, Mei Yueh
2017-01-01
Integrated Demand Management (IDM) is a near- to mid-term NASA concept that proposes to address mismatches in air traffic system demand and capacity by using strategic flow management capabilities to pre-condition demand into the more tactical Time-Based Flow Management System (TBFM). This paper describes an automated simulation capability to support IDM concept development. The capability closely mimics existing human-in-the-loop (HITL) capabilities, automating both the human components and collaboration between operational systems, and speeding up the real-time aircraft simulations. Such a capability allows for parametric studies that will inform the HITL simulations, identifying breaking points and parameter values at which significant changes in system behavior occur. This paper also describes the initial validation of individual components of the automated simulation capability, and an example application comparing the performance of the IDM concept under two TBFM scheduling paradigms. The results and conclusions from this simulation compare closely to those from previous HITL simulations using similar scenarios, providing an initial validation of the automated simulation capability.
Computer Simulation for Emergency Incident Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D L
2004-12-03
This report describes the findings and recommendations resulting from the Department of Homeland Security (DHS) Incident Management Simulation Workshop held by the DHS Advanced Scientific Computing Program in May 2004. This workshop brought senior representatives of the emergency response and incident-management communities together with modeling and simulation technologists from Department of Energy laboratories. The workshop provided an opportunity for incident responders to describe the nature and substance of the primary personnel roles in an incident response, to identify current and anticipated roles of modeling and simulation in support of incident response, and to begin a dialog between the incident responsemore » and simulation technology communities that will guide and inform planned modeling and simulation development for incident response. This report provides a summary of the discussions at the workshop as well as a summary of simulation capabilities that are relevant to incident-management training, and recommendations for the use of simulation in both incident management and in incident management training, based on the discussions at the workshop. In addition, the report discusses areas where further research and development will be required to support future needs in this area.« less
Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows
NASA Astrophysics Data System (ADS)
Zwick, David; Hackl, Jason; Balachandar, S.
2017-11-01
Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.
Simulation and experimental research of heat leakage of cryogenic transfer lines
NASA Astrophysics Data System (ADS)
Deng, B. C.; Xie, X. J.; Pan, W.; Jiang, R. X.; Li, J.; Yang, S. Q.; Li, Q.
2017-12-01
The heat leakage of cryogenic transfer lines directly influences the performance of large-scale helium refrigerator. In this paper, a thermal model of cryogenic transfer line considering numerical simulation of support coupled with MLI was established. To validate the model, test platform of cryogenic transfer lines with the merits of disassembly outer pipe and changeable easily multi-layer insulation has been built. The experimental results of heat leakage through overall length of cryogenic transfer lines, support and multi-layer insulation were obtained. The heat leakages of multi-layer insulation, a support and the overall leakage are 1.02 W/m, 0.44 W and 1.46 W/m from experimental data, respectively. The difference of heat leakage of MLI between experiment and simulation were less than 5%. The temperature distribution of support and MLI obtained in presented model in good agreement with experimental data. It is expected to reduce the overall heat leakage of cryogenic transfer lines further by optimizing structure of support based on the above thermal model and test platform in this paper.
Simulating advanced life support systems to test integrated control approaches
NASA Astrophysics Data System (ADS)
Kortenkamp, D.; Bell, S.
Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.
Nevin, M; Neill, F; Mulkerrins, J
2014-03-01
This paper aims to explore the development and evaluation results of a simulated skills package designed using a problem based learning approach with general nursing students. Internationally, the use of high fidelity simulated learning environments has escalated. This has occurred as a result of growing concerns relating to patient safety, patient litigation, lack of clinical opportunities for student nurses to gain experience and integration of new teaching methods into nursing curricula. There are however both proponents and opponents to the value of simulation and high fidelity simulation within nursing education. This study was conducted in an Irish school of nursing. A simulated learning support package was developed by nurse educators and piloted with 134 third year nursing students. This was evaluated using a questionnaire in which 87 students responded. Students generally found the simulation sessions realistic and useful in developing clinical skills, knowledge and confidence for clinical practice. However student issues regarding support with preparation for the session were highlighted. Also, the need for a more formalised structure for debriefing following the simulation sessions were identified. It is hoped that this paper will provide nurse educators with some guidance to aid future development of innovative and interactive teaching and learning strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Program For Parallel Discrete-Event Simulation
NASA Technical Reports Server (NTRS)
Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.
1991-01-01
User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.
Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.
NASA Astrophysics Data System (ADS)
O'Steen, Lance B.
2000-11-01
Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.
Performance characteristics of three-phase induction motors
NASA Technical Reports Server (NTRS)
Wood, M. E.
1977-01-01
An investigation into the characteristics of three phase, 400 Hz, induction motors of the general type used on aircraft and spacecraft is summarized. Results of laboratory tests are presented and compared with results from a computer program. Representative motors were both tested and simulated under nominal conditions as well as off nominal conditions of temperature, frequency, voltage magnitude, and voltage balance. Good correlation was achieved between simulated and laboratory results. The primary purpose of the program was to verify the simulation accuracy of the computer program, which in turn will be used as an analytical tool to support the shuttle orbiter.
Mesoscale acid deposition modeling studies
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.
1989-01-01
The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.
NASA Technical Reports Server (NTRS)
Arneson, Heather; Evans, Antony D.; Li, Jinhua; Wei, Mei Yueh
2017-01-01
Integrated Demand Management (IDM) is a near- to mid-term NASA concept that proposes to address mismatches in air traffic system demand and capacity by using strategic flow management capabilities to pre-condition demand into the more tactical Time-Based Flow Management System (TBFM). This paper describes an automated simulation capability to support IDM concept development. The capability closely mimics existing human-in-the-loop (HITL) capabilities, while automating both the human components and collaboration between operational systems, and speeding up the real-time aircraft simulations. Such a capability allows for parametric studies to be carried out that can inform the HITL simulations, identifying breaking points and parameter values at which significant changes in system behavior occur. The paper describes the initial validation of the automated simulation capability against results from previous IDM HITL experiments, quantifying the differences. The simulator is then used to explore the performance of the IDM concept under the simple scenario of a capacity constrained airport under a wide range of wind conditions.
Zhang, Qi; Gao, Bin; Chang, Yu
2017-02-27
BACKGROUND Partial support, as a novel support mode, has been widely applied in clinical practice and widely studied. However, the precise mechanism of partial support of LVAD in the intra-ventricular flow pattern is unclear. MATERIAL AND METHODS In this study, a patient-specific left ventricular geometric model was reconstructed based on CT data. The intra-ventricular flow pattern under 3 simulated conditions - "heart failure", "partial support", and "full support" - were simulated by using fluid-structure interaction (FSI). The blood flow pattern, wall shear stress (WSS), time-average wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated to evaluate the hemodynamic effects. RESULTS The results demonstrate that the intra-ventricular flow pattern is significantly changed by the support level of BJUT-II VAD. The intra-ventricular vortex was enhanced under partial support and was eliminated under full support, and the high OSI and RRT regions changed from the septum wall to the cardiac apex. CONCLUSIONS In brief, the support level of the BJUT-II VAD has significant effects on the intra-ventricular flow pattern. The partial support mode of BJUT-II VAD can enhance the intra-ventricular vortex, while the distribution of high OSI and RRT moved from the septum wall to the cardiac apex. Hence, the partial support mode of BJUT-II VAD can provide more benefit for intra-ventricular flow pattern.
Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W
2013-01-01
The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.
Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.
2012-01-01
The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771
Portable Life Support Subsystem Thermal Hydraulic Performance Analysis
NASA Technical Reports Server (NTRS)
Barnes, Bruce; Pinckney, John; Conger, Bruce
2010-01-01
This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.
Simulation Experiment Description Markup Language (SED-ML) Level 1 Version 3 (L1V3).
Bergmann, Frank T; Cooper, Jonathan; König, Matthias; Moraru, Ion; Nickerson, David; Le Novère, Nicolas; Olivier, Brett G; Sahle, Sven; Smith, Lucian; Waltemath, Dagmar
2018-03-19
The creation of computational simulation experiments to inform modern biological research poses challenges to reproduce, annotate, archive, and share such experiments. Efforts such as SBML or CellML standardize the formal representation of computational models in various areas of biology. The Simulation Experiment Description Markup Language (SED-ML) describes what procedures the models are subjected to, and the details of those procedures. These standards, together with further COMBINE standards, describe models sufficiently well for the reproduction of simulation studies among users and software tools. The Simulation Experiment Description Markup Language (SED-ML) is an XML-based format that encodes, for a given simulation experiment, (i) which models to use; (ii) which modifications to apply to models before simulation; (iii) which simulation procedures to run on each model; (iv) how to post-process the data; and (v) how these results should be plotted and reported. SED-ML Level 1 Version 1 (L1V1) implemented support for the encoding of basic time course simulations. SED-ML L1V2 added support for more complex types of simulations, specifically repeated tasks and chained simulation procedures. SED-ML L1V3 extends L1V2 by means to describe which datasets and subsets thereof to use within a simulation experiment.
Load index model: An advanced tool to support decision making during mass-casualty incidents.
Adini, Bruria; Aharonson-Daniel, Limor; Israeli, Avi
2015-03-01
In mass-casualty events, accessing information concerning hospital congestion levels is crucial to improving patient distribution and optimizing care. The study aimed to develop a decision support tool for distributing casualties to hospitals in an emergency scenario involving multiple casualties. A comprehensive literature review and structured interviews with 20 content experts produced a shortlist of relevant criteria for inclusion in the model. A "load index model" was prepared, incorporating results of a modified Delphi survey of 100 emergency response experts. The model was tested in three simulation exercises in which an emergency scenario was presented to six groups of senior emergency managers. Information was provided regarding capacities of 11 simulated admitting hospitals in the region, and evacuation destinations were requested for 600 simulated casualties. Of the three simulation rounds, two were performed without the model and one after its presentation. Following simulation experiments and implementation during a real-life security threat, the efficacy of the model was assessed. Variability between experts concerning casualties' evacuation destinations decreased significantly following the model's introduction. Most responders (92%) supported the need for standardized data, and 85% found that the model improved policy setting regarding casualty evacuation in an emergency situation. These findings were reaffirmed in a real-life emergency scenario. The proposed model improved capacity to ensure evacuation of patients to less congested medical facilities in emergency situations, thereby enhancing lifesaving medical services. The model supported decision-making processes in both simulation exercises and an actual emergency situation.
Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre, Janis; Seraidarian, Paulo Isaías
2009-01-01
Objectives: This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. Material and Methods: A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the intermental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks® software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. Results: The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. Conclusion: The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture. PMID:19936535
Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model
2016-01-01
The omnipresent need for optimisation requires constant improvements of companies’ business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and “what-if” scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results. PMID:26871694
Defining the Simulation Technician Role: Results of a Survey-Based Study.
Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L
2015-10-01
In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.
Assessment of Emerging Networks to Support Future NASA Space Operations
NASA Technical Reports Server (NTRS)
Younes, Badri; Chang, Susan; Berman, Ted; Burns, Mark; LaFontaine, Richard; Lease, Robert
1998-01-01
Various issues associated with assessing emerging networks to support future NASA space operations are presented in viewgraph form. Specific topics include: 1) Emerging commercial satellite systems; 2) NASA LEO satellite support through commercial systems; 3) Communications coverage, user terminal assessment and regulatory assessment; 4) NASA LEO missions overview; and 5) Simulation assumptions and results.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo
2018-05-01
Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.
Khalid, Ruzelan; Nawawi, Mohd Kamal M; Kawsar, Luthful A; Ghani, Noraida A; Kamil, Anton A; Mustafa, Adli
2013-01-01
M/G/C/C state dependent queuing networks consider service rates as a function of the number of residing entities (e.g., pedestrians, vehicles, and products). However, modeling such dynamic rates is not supported in modern Discrete Simulation System (DES) software. We designed an approach to cater this limitation and used it to construct the M/G/C/C state-dependent queuing model in Arena software. Using the model, we have evaluated and analyzed the impacts of various arrival rates to the throughput, the blocking probability, the expected service time and the expected number of entities in a complex network topology. Results indicated that there is a range of arrival rates for each network where the simulation results fluctuate drastically across replications and this causes the simulation results and analytical results exhibit discrepancies. Detail results that show how tally the simulation results and the analytical results in both abstract and graphical forms and some scientific justifications for these have been documented and discussed.
The Application of Modeling and Simulation in Capacity Management within the ITIL Framework
NASA Technical Reports Server (NTRS)
Rahmani, Sonya; vonderHoff, Otto
2010-01-01
Tightly integrating modeling and simulation techniques into Information Technology Infrastructure Library (ITIL) practices can be one of the driving factors behind a successful and cost-effective capacity management effort for any Information Technology (IT) system. ITIL is a best practices framework for managing IT infrastructure, development and operations. Translating ITIL theory into operational reality can be a challenge. This paper aims to highlight how to best integrate modeling and simulation into an ITIL implementation. For cases where the project team initially has difficulty gaining consensus on investing in modeling and simulation resources, a clear definition for M&S implementation into the ITIL framework, specifically its role in supporting Capacity Management, is critical to gaining the support required to garner these resources. This implementation should also help to clearly define M&S support to the overall system mission. This paper will describe the development of an integrated modeling approach and how best to tie M&S to definitive goals for evaluating system capacity and performance requirements. Specifically the paper will discuss best practices for implementing modeling and simulation into ITIL. These practices hinge on implementing integrated M&S methods that 1) encompass at least two or more predictive modeling techniques, 2) complement each one's respective strengths and weaknesses to support the validation of predicted results, and 3) are tied to the system's performance and workload monitoring efforts. How to structure two forms of modeling: statistical and simUlation in the development of "As Is" and "To Be" efforts will be used to exemplify the integrated M&S methods. The paper will show how these methods can better support the project's overall capacity management efforts.
Zapko, Karen A; Ferranto, Mary Lou Gemma; Blasiman, Rachael; Shelestak, Debra
2018-01-01
The National League for Nursing (NLN) has endorsed simulation as a necessary teaching approach to prepare students for the demanding role of professional nursing. Questions arise about the suitability of simulation experiences to educate students. Empirical support for the effect of simulation on patient outcomes is sparse. Most studies on simulation report only anecdotal results rather than data obtained using evaluative tools. The aim of this study was to examine student perception of best educational practices in simulation and to evaluate their satisfaction and self-confidence in simulation. This study was a descriptive study designed to explore students' perceptions of the simulation experience over a two-year period. Using the Jeffries framework, a Simulation Day was designed consisting of serial patient simulations using high and medium fidelity simulators and live patient actors. The setting for the study was a regional campus of a large Midwestern Research 2 university. The convenience sample consisted of 199 participants and included sophomore, junior, and senior nursing students enrolled in the baccalaureate nursing program. The Simulation Days consisted of serial patient simulations using high and medium fidelity simulators and live patient actors. Participants rotated through four scenarios that corresponded to their level in the nursing program. Data was collected in two consecutive years. Participants completed both the Educational Practices Questionnaire (Student Version) and the Student Satisfaction and Self-Confidence in Learning Scale. Results provide strong support for using serial simulation as a learning tool. Students were satisfied with the experience, felt confident in their performance, and felt the simulations were based on sound educational practices and were important for learning. Serial simulations and having students experience simulations more than once in consecutive years is a valuable method of clinical instruction. When conducted well, simulations can lead to increased student satisfaction and self-confidence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation Test Of Descent Advisor
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Green, Steven M.
1991-01-01
Report describes piloted-simulation test of Descent Advisor (DA), subsystem of larger automation system being developed to assist human air-traffic controllers and pilots. Focuses on results of piloted simulation, in which airline crews executed controller-issued descent advisories along standard curved-path arrival routes. Crews able to achieve arrival-time precision of plus or minus 20 seconds at metering fix. Analysis of errors generated in turns resulted in further enhancements of algorithm to increase accuracies of its predicted trajectories. Evaluations by pilots indicate general support for DA concept and provide specific recommendations for improvement.
System Dynamics Modeling for Supply Chain Information Sharing
NASA Astrophysics Data System (ADS)
Feng, Yang
In this paper, we try to use the method of system dynamics to model supply chain information sharing. Firstly, we determine the model boundaries, establish system dynamics model of supply chain before information sharing, analyze the model's simulation results under different changed parameters and suggest improvement proposal. Then, we establish system dynamics model of supply chain information sharing and make comparison and analysis on the two model's simulation results, to show the importance of information sharing in supply chain management. We wish that all these simulations would provide scientific supports for enterprise decision-making.
RFI in hybrid loops - Simulation and experimental results.
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.
1972-01-01
A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.
Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1992-01-01
This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.
Spacecraft Guidance, Navigation, and Control Visualization Tool
NASA Technical Reports Server (NTRS)
Mandic, Milan; Acikmese, Behcet; Blackmore, Lars
2011-01-01
G-View is a 3D visualization tool for supporting spacecraft guidance, navigation, and control (GN&C) simulations relevant to small-body exploration and sampling (see figure). The tool is developed in MATLAB using Virtual Reality Toolbox and provides users with the ability to visualize the behavior of their simulations, regardless of which programming language (or machine) is used to generate simulation results. The only requirement is that multi-body simulation data is generated and placed in the proper format before applying G-View.
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.
2011-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.
SIMSAT: An object oriented architecture for real-time satellite simulation
NASA Technical Reports Server (NTRS)
Williams, Adam P.
1993-01-01
Real-time satellite simulators are vital tools in the support of satellite missions. They are used in the testing of ground control systems, the training of operators, the validation of operational procedures, and the development of contingency plans. The simulators must provide high-fidelity modeling of the satellite, which requires detailed system information, much of which is not available until relatively near launch. The short time-scales and resulting high productivity required of such simulator developments culminates in the need for a reusable infrastructure which can be used as a basis for each simulator. This paper describes a major new simulation infrastructure package, the Software Infrastructure for Modelling Satellites (SIMSAT). It outlines the object oriented design methodology used, describes the resulting design, and discusses the advantages and disadvantages experienced in applying the methodology.
The Distributed Space Exploration Simulation (DSES)
NASA Technical Reports Server (NTRS)
Crues, Edwin Z.; Chung, Victoria I.; Blum, Mike G.; Bowman, James D.
2007-01-01
The paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which focuses on the investigation and development of technologies, processes and integrated simulations related to the collaborative distributed simulation of complex space systems in support of NASA's Exploration Initiative. This paper describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. In the network work area, DSES is developing a Distributed Simulation Network that will provide agency wide support for distributed simulation between all NASA centers. In the software work area, DSES is developing a collection of software models, tool and procedures that ease the burden of developing distributed simulations and provides a consistent interoperability infrastructure for agency wide participation in integrated simulation. Finally, for simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper will present current status and plans for each of these work areas with specific examples of simulations that support NASA's exploration initiatives.
QuVis interactive simulations: tools to support quantum mechanics instruction
NASA Astrophysics Data System (ADS)
Kohnle, Antje
2015-04-01
Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.
Towards a supported common NEAMS software stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormac Garvey
2012-04-01
The NEAMS IPSC's are developing multidimensional, multiphysics, multiscale simulation codes based on first principles that will be capable of predicting all aspects of current and future nuclear reactor systems. These new breeds of simulation codes will include rigorous verification, validation and uncertainty quantification checks to quantify the accuracy and quality of the simulation results. The resulting NEAMS IPSC simulation codes will be an invaluable tool in designing the next generation of Nuclear Reactors and also contribute to a more speedy process in the acquisition of licenses from the NRC for new Reactor designs. Due to the high resolution of themore » models, the complexity of the physics and the added computational resources to quantify the accuracy/quality of the results, the NEAMS IPSC codes will require large HPC resources to carry out the production simulation runs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Signe K.; Purohit, Sumit; Boyd, Lauren W.
The Geothermal Technologies Office Code Comparison Study (GTO-CCS) aims to support the DOE Geothermal Technologies Office in organizing and executing a model comparison activity. This project is directed at testing, diagnosing differences, and demonstrating modeling capabilities of a worldwide collection of numerical simulators for evaluating geothermal technologies. Teams of researchers are collaborating in this code comparison effort, and it is important to be able to share results in a forum where technical discussions can easily take place without requiring teams to travel to a common location. Pacific Northwest National Laboratory has developed an open-source, flexible framework called Velo that providesmore » a knowledge management infrastructure and tools to support modeling and simulation for a variety of types of projects in a number of scientific domains. GTO-Velo is a customized version of the Velo Framework that is being used as the collaborative tool in support of the GTO-CCS project. Velo is designed around a novel integration of a collaborative Web-based environment and a scalable enterprise Content Management System (CMS). The underlying framework provides a flexible and unstructured data storage system that allows for easy upload of files that can be in any format. Data files are organized in hierarchical folders and each folder and each file has a corresponding wiki page for metadata. The user interacts with Velo through a web browser based wiki technology, providing the benefit of familiarity and ease of use. High-level folders have been defined in GTO-Velo for the benchmark problem descriptions, descriptions of simulator/code capabilities, a project notebook, and folders for participating teams. Each team has a subfolder with write access limited only to the team members, where they can upload their simulation results. The GTO-CCS participants are charged with defining the benchmark problems for the study, and as each GTO-CCS Benchmark problem is defined, the problem creator can provide a description using a template on the metadata page corresponding to the benchmark problem folder. Project documents, references and videos of the weekly online meetings are shared via GTO-Velo. A results comparison tool allows users to plot their uploaded simulation results on the fly, along with those of other teams, to facilitate weekly discussions of the benchmark problem results being generated by the teams. GTO-Velo is an invaluable tool providing the project coordinators and team members with a framework for collaboration among geographically dispersed organizations.« less
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin; Anderson, Molly
2011-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
GRECO, Gustavo Diniz; de LAS CASAS, Estevam Barbosa; CORNACCHIA, Tulimar P. Machado; de MAGALHÃES, Cláudia Silami; MOREIRA, Allyson Nogueira
2012-01-01
Objective The occlusal patterns are key requirements for the clinical success of oral rehabilitation supported by implants. This study compared the stresses generated by the disocclusion in the canine guide occlusion (CGO) and bilateral balanced occlusion (BBO) on the implants and metallic infrastructure of a complete Brånemark protocol-type denture modified with the inclusion of one posterior short implant on each side. Material and Methods A three-dimensional model simulated a mandible with seven titanium implants as pillars, five of them installed between the mental foramen and the two posterior implants, located at the midpoint of the occlusal surface of the first molar. A load of 15 N with an angle of 45º was applied to a tooth or distributed across three teeth to simulate the CGO or BBO, respectively. The commercial program ABAQUS® was used for the model development, before and after the processing of the data. The results were based on a linear static analysis and were used to compare the magnitude of the equivalent stress for each of the simulations. Results The results showed that the disocclusion in CGO generated higher stresses concentrated on the working side in the region of the short implant. In BBO, the stresses were less intense and more evenly distributed on the prosthesis. The maximum stress found in the simulation of the disocclusion in CGO was two times higher than that found in the simulation of the BBO. The point of maximum stress was located in the neck of the short implant on the working side. Conclusions Under the conditions of this study, it was concluded that the BBO pattern was more suitable than CGO for the lower complete denture supported by implants without free distal ends. PMID:22437680
Computer image generation: Reconfigurability as a strategy in high fidelity space applications
NASA Technical Reports Server (NTRS)
Bartholomew, Michael J.
1989-01-01
The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.
V-SUIT Model Validation Using PLSS 1.0 Test Results
NASA Technical Reports Server (NTRS)
Olthoff, Claas
2015-01-01
The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.
NASA Astrophysics Data System (ADS)
Clark, Daniel
2015-11-01
In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3-D) character of the flow, accurately modeling NIF implosions remains at the edge of current radiation hydrodynamics simulation capabilities. This talk describes the current state of progress of 3-D, high-resolution, capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Most importantly, it is found that a single, standard simulation methodology appears adequate to model both implosion types and gives confidence that such a model can be used to guide future implosion designs toward ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Ikuma, Laura H; Babski-Reeves, Kari; Nussbaum, Maury A
2009-05-01
The objectives of this study were to determine the efficacy of experimental manipulations of psychosocial exposures and to evaluate the sensitivity of a psychosocial questionnaire by determining the factors perceived. A 50-item questionnaire was developed from the job content questionnaire (JCQ) and the quality of worklife survey (QWL). The experiment involved simulated work at different physical and psychosocial levels. Forty-eight participants were exposed to two levels of one psychosocial manipulation (job control, job demands, social support, or time pressure). Significantly different questionnaire responses supported the effectiveness of psychosocial manipulations. Exploratory factor analysis revealed five factors: skill discretion and decision authority, stress level and supervisor support, physical demands, quality of coworker support, and decision-making support. These results suggest that psychosocial factors can be manipulated experimentally, and that questionnaires can distinguish perceptions of these factors. These questionnaires may be used to assess perceptions of psychosocial factors in experimental settings.
Symposium on Business and Management and Dynamic Simulation Models Supporting Management Strategies
NASA Astrophysics Data System (ADS)
Seimenis, Ioannis; Sakas, Damianos P.
2009-08-01
This preface presents the purpose, content and results of one of the ICCMSE 2008 symposiums organized by Prof. Ioannis Seimenis and Dr. Damianos P. Sakas. The present symposium aims at investigating Business and Management disciplines, as well as the prospect of strategic decision analysis by means of dynamic simulation models.
Simulation and Gaming to Promote Health Education: Results of a Usability Test
ERIC Educational Resources Information Center
Albu, Mihai; Atack, Lynda; Srivastava, Ishaan
2015-01-01
Objective: Motivating clients to change the health behaviour, and maintaining an interest in exercise programmes, is an ongoing challenge for health educators. With new developments in technology, simulation and gaming are increasingly being considered as ways to motivate users, support learning and promote positive health behaviours. The purpose…
Auberry, Kathy; Wills, Katherine; Shaver, Carrie
2017-01-01
Direct support professionals (DSPs) are increasingly active in medication administration for people with intellectual and developmental disabilities, thus supplementing nursing and family caretakers. Providing workplace training for DSPs is often the duty of nursing personnel. This article presents empirical data and design suggestions for including simulations, debriefing, and written reflective practice during in-service training for DSPs in order to improve DSPs' skills and confidence related to medication administration. Quantitative study results demonstrate that DSPs acknowledge that their skill level and confidence rose significantly after hands-on simulations. The skill-level effect was statistically significant for general medication management -4.5 ( p < 0.001) and gastrointestinal medication management -4.4 ( p < 0.001). Qualitative findings show a deep desire by DSPs to not just be "pill poppers" but to understand the medical processes, causalities, and consequences of their medication administration. On the basis of our results, the authors make recommendations regarding how to combine DSP workplace simulations and debriefing with written reflective practice in DSP continuing education.
Note: Design and capability verification of fillet triangle flexible support
NASA Astrophysics Data System (ADS)
Wang, Tao; San, Xiao-Gang; Gao, Shi-Jie; Wang, Jing; Ni, Ying-Xue; Sang, Zhi-Xin
2017-12-01
By increasing the section thickness of a triangular flexible hinge, this study focuses on optimal selection of parameters of fillet triangle flexible hinges and flexible support. Based on Castigliano's second theorem, the flexibility expression of the fillet triangle flexible hinge was derived. Then, the case design is performed, and the comparison of three types of flexible hinges with this type of flexible hinge was carried out. The finite element models of fillet triangle flexible hinges and flexible support were built, and then the simulation results of performance parameters were calculated. Finally, the experiment platform was established to validate analysis results. The maximum error is less than 8%, which verifies the accuracy of the simulation process and equations derived; also the fundamental frequency fits the requirements of the system. The fillet triangle flexible hinge is proved to have the advantages of high precision and low flexibility.
Note: Design and capability verification of fillet triangle flexible support.
Wang, Tao; San, Xiao-Gang; Gao, Shi-Jie; Wang, Jing; Ni, Ying-Xue; Sang, Zhi-Xin
2017-12-01
By increasing the section thickness of a triangular flexible hinge, this study focuses on optimal selection of parameters of fillet triangle flexible hinges and flexible support. Based on Castigliano's second theorem, the flexibility expression of the fillet triangle flexible hinge was derived. Then, the case design is performed, and the comparison of three types of flexible hinges with this type of flexible hinge was carried out. The finite element models of fillet triangle flexible hinges and flexible support were built, and then the simulation results of performance parameters were calculated. Finally, the experiment platform was established to validate analysis results. The maximum error is less than 8%, which verifies the accuracy of the simulation process and equations derived; also the fundamental frequency fits the requirements of the system. The fillet triangle flexible hinge is proved to have the advantages of high precision and low flexibility.
Modeling And Simulation Of Multimedia Communication Networks
NASA Astrophysics Data System (ADS)
Vallee, Richard; Orozco-Barbosa, Luis; Georganas, Nicolas D.
1989-05-01
In this paper, we present a simulation study of a browsing system involving radiological image servers. The proposed IEEE 802.6 DQDB MAN standard is designated as the computer network to transfer radiological images from file servers to medical workstations, and to simultaneously support real time voice communications. Storage and transmission of original raster scanned images and images compressed according to pyramid data structures are considered. Different types of browsing as well as various image sizes and bit rates in the DQDB MAN are also compared. The elapsed time, measured from the time an image request is issued until the image is displayed on the monitor, is the parameter considered to evaluate the system performance. Simulation results show that image browsing can be supported by the DQDB MAN.
Incorporating discrete event simulation into quality improvement efforts in health care systems.
Rutberg, Matthew Harris; Wenczel, Sharon; Devaney, John; Goldlust, Eric Jonathan; Day, Theodore Eugene
2015-01-01
Quality improvement (QI) efforts are an indispensable aspect of health care delivery, particularly in an environment of increasing financial and regulatory pressures. The ability to test predictions of proposed changes to flow, policy, staffing, and other process-level changes using discrete event simulation (DES) has shown significant promise and is well reported in the literature. This article describes how to incorporate DES into QI departments and programs in order to support QI efforts, develop high-fidelity simulation models, conduct experiments, make recommendations, and support adoption of results. The authors describe how DES-enabled QI teams can partner with clinical services and administration to plan, conduct, and sustain QI investigations. © 2013 by the American College of Medical Quality.
Inconsistency as a diagnostic tool in a society of intelligent agents.
McShane, Marjorie; Beale, Stephen; Nirenburg, Sergei; Jarrell, Bruce; Fantry, George
2012-07-01
To use the detection of clinically relevant inconsistencies to support the reasoning capabilities of intelligent agents acting as physicians and tutors in the realm of clinical medicine. We are developing a cognitive architecture, OntoAgent, that supports the creation and deployment of intelligent agents capable of simulating human-like abilities. The agents, which have a simulated mind and, if applicable, a simulated body, are intended to operate as members of multi-agent teams featuring both artificial and human agents. The agent architecture and its underlying knowledge resources and processors are being developed in a sufficiently generic way to support a variety of applications. We show how several types of inconsistency can be detected and leveraged by intelligent agents in the setting of clinical medicine. The types of inconsistencies discussed include: test results not supporting the doctor's hypothesis; the results of a treatment trial not supporting a clinical diagnosis; and information reported by the patient not being consistent with observations. We show the opportunities afforded by detecting each inconsistency, such as rethinking a hypothesis, reevaluating evidence, and motivating or teaching a patient. Inconsistency is not always the absence of the goal of consistency; rather, it can be a valuable trigger for further exploration in the realm of clinical medicine. The OntoAgent cognitive architecture, along with its extensive suite of knowledge resources an processors, is sufficient to support sophisticated agent functioning such as detecting clinically relevant inconsistencies and using them to benefit patient-centered medical training and practice. Copyright © 2012 Elsevier B.V. All rights reserved.
A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research
NASA Technical Reports Server (NTRS)
Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)
1995-01-01
A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.
NASA Astrophysics Data System (ADS)
Nishimura, Tomoaki
2016-03-01
A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.
Numerical Propulsion System Simulation Architecture
NASA Technical Reports Server (NTRS)
Naiman, Cynthia G.
2004-01-01
The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.
A web platform for integrated surface water - groundwater modeling and data management
NASA Astrophysics Data System (ADS)
Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf
2016-04-01
Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.
Interleaved concatenated codes: new perspectives on approaching the Shannon limit.
Viterbi, A J; Viterbi, A M; Sindhushayana, N T
1997-09-02
The last few years have witnessed a significant decrease in the gap between the Shannon channel capacity limit and what is practically achievable. Progress has resulted from novel extensions of previously known coding techniques involving interleaved concatenated codes. A considerable body of simulation results is now available, supported by an important but limited theoretical basis. This paper presents a computational technique which further ties simulation results to the known theory and reveals a considerable reduction in the complexity required to approach the Shannon limit.
Tight swimming trunks to prevent post scrotal surgery: an experimental justification.
Al-Abed, Yahya A; Carr, Thomas W
2013-01-01
To conduct a study to measure the pressure effects of the different scrotal supports applied on a simulated expanding scrotal hematoma. We created a model of an expanding hematoma with simultaneous pressure recording using a urodynamics system. Pressures were recorded independently first without application of any support. Then, three types of scrotal supports were tested, including Euron Net Knickers, scrotal suspensory bandage, and tight swimming trunks brand Speedo® brief and shorts. Subsequent pressures were recorded using the model created, which was applied inside the supports worn by two male volunteers A and B. Without any external compression, the pressure inside the simulated expanding hematoma "balloon" reached a maximum of 15 cmH2O. The pressures measured whilst wearing "Netelast knickers" in both subjects A and B reached a maximum of 15 cmH2O suggesting that this garment exerted no measurable compression. The suspensory scrotal support was then tested in both subjects. As the balloon started to fill with saline, the simulated hematoma pushed the scrotal support forward resulting in falling of the balloon outside the scrotal support. Subsequently, Speedo® briefs and shorts were tested. With Speedo® briefs, maximum filling pressures of 49 cmH2O and 40 cmH2O were reached in subjects A and B, respectively. When using Speedo® shorts, however, maximum pressures of 55 cmH2O in subject A and 54 cmH2O in subject B were reached at the end of the balloon filling to 300 mL of saline. The use of tight swimming trunks (Speedo®) has led to satisfactory results in the prevention of hematoma post scrotal surgery.
Constructive Engineering of Simulations
NASA Technical Reports Server (NTRS)
Snyder, Daniel R.; Barsness, Brendan
2011-01-01
Joint experimentation that investigates sensor optimization, re-tasking and management has far reaching implications for Department of Defense, Interagency and multinational partners. An adaption of traditional human in the loop (HITL) Modeling and Simulation (M&S) was one approach used to generate the findings necessary to derive and support these implications. Here an entity-based simulation was re-engineered to run on USJFCOM's High Performance Computer (HPC). The HPC was used to support the vast number of constructive runs necessary to produce statistically significant data in a timely manner. Then from the resulting sensitivity analysis, event designers blended the necessary visualization and decision making components into a synthetic environment for the HITL simulations trials. These trials focused on areas where human decision making had the greatest impact on the sensor investigations. Thus, this paper discusses how re-engineering existing M&S for constructive applications can positively influence the design of an associated HITL experiment.
Reconstructing a Large-Scale Population for Social Simulation
NASA Astrophysics Data System (ADS)
Fan, Zongchen; Meng, Rongqing; Ge, Yuanzheng; Qiu, Xiaogang
The advent of social simulation has provided an opportunity to research on social systems. More and more researchers tend to describe the components of social systems in a more detailed level. Any simulation needs the support of population data to initialize and implement the simulation systems. However, it's impossible to get the data which provide full information about individuals and households. We propose a two-step method to reconstruct a large-scale population for a Chinese city according to Chinese culture. Firstly, a baseline population is generated through gathering individuals into households one by one; secondly, social relationships such as friendship are assigned to the baseline population. Through a case study, a population of 3,112,559 individuals gathered in 1,133,835 households is reconstructed for Urumqi city, and the results show that the generated data can respect the real data quite well. The generated data can be applied to support modeling of some social phenomenon.
NASA Astrophysics Data System (ADS)
Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon
2017-11-01
We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.
Estimation of wear in total hip replacement using a ten station hip simulator.
Brummitt, K; Hardaker, C S
1996-01-01
The results of hip simulator tests on a total of 16 total hip joints, all of them 22.25 mm Charnley designs, are presented. Wear at up to 6.75 million cycles was assessed by using a coordinate measuring machine. The results gave good agreement with clinical estimates of wear rate on the same design of joint replacement from a number of sources. Good agreement was also obtained when comparison was made with the published results from more sophisticated simulators. The major source of variation in the results was found to occur in the first million cycles where creep predominates. The results of this study support the use of this type of simplified simulator for estimating wear in a total hip prosthesis. The capability to test a significant number of joints simultaneously may make this mechanism preferable to more complex machines in many cases.
Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver
NASA Astrophysics Data System (ADS)
Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab
2017-03-01
This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Boyd, Iain; Haas, Brian L.
1994-01-01
Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.
NASA Astrophysics Data System (ADS)
Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji
Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.
Bambini, Deborah; Emery, Matthew; de Voest, Margaret; Meny, Lisa; Shoemaker, Michael J.
2016-01-01
There are significant limitations among the few prior studies that have examined the development and implementation of interprofessional education (IPE) experiences to accommodate a high volume of students from several disciplines and from different institutions. The present study addressed these gaps by seeking to determine the extent to which a single, large, inter-institutional, and IPE simulation event improves student perceptions of the importance and relevance of IPE and simulation as a learning modality, whether there is a difference in students’ perceptions among disciplines, and whether the results are reproducible. A total of 290 medical, nursing, pharmacy, and physical therapy students participated in one of two large, inter-institutional, IPE simulation events. Measurements included student perceptions about their simulation experience using the Attitude Towards Teamwork in Training Undergoing Designed Educational Simulation (ATTITUDES) Questionnaire and open-ended questions related to teamwork and communication. Results demonstrated a statistically significant improvement across all ATTITUDES subscales, while time management, role confusion, collaboration, and mutual support emerged as significant themes. Results of the present study indicate that a single IPE simulation event can reproducibly result in significant and educationally meaningful improvements in student perceptions towards teamwork, IPE, and simulation as a learning modality. PMID:28970407
CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection
NASA Astrophysics Data System (ADS)
Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.
2016-09-01
An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.
Hvitfeldt-Forsberg, Helena; Mazzocato, Pamela; Glaser, Daniel; Keller, Christina; Unbeck, Maria
2017-06-06
To explore healthcare staffs' and managers' perceptions of how and when discrete event simulation modelling can be used as a decision support in improvement efforts. Two focus group discussions were performed. Two settings were included: a rheumatology department and an orthopaedic section both situated in Sweden. Healthcare staff and managers (n=13) from the two settings. Two workshops were performed, one at each setting. Workshops were initiated by a short introduction to simulation modelling. Results from the respective simulation model were then presented and discussed in the following focus group discussion. Categories from the content analysis are presented according to the following research questions: how and when simulation modelling can assist healthcare improvement? Regarding how, the participants mentioned that simulation modelling could act as a tool for support and a way to visualise problems, potential solutions and their effects. Regarding when, simulation modelling could be used both locally and by management, as well as a pedagogical tool to develop and test innovative ideas and to involve everyone in the improvement work. Its potential as an information and communication tool and as an instrument for pedagogic work within healthcare improvement render a broader application and value of simulation modelling than previously reported. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy; Busto, Juan
2007-01-01
This paper describes the architecture and implementation of a distributed launch and ascent simulation of NASA's Orion spacecraft and Ares I launch vehicle. This simulation is one segment of the Distributed Space Exploration Simulation (DSES) Project. The DSES project is a research and development collaboration between NASA centers which investigates technologies and processes for distributed simulation of complex space systems in support of NASA's Exploration Initiative. DSES is developing an integrated end-to-end simulation capability to support NASA development and deployment of new exploration spacecraft and missions. This paper describes the first in a collection of simulation capabilities that DSES will support.
Khalid, Ruzelan; M. Nawawi, Mohd Kamal; Kawsar, Luthful A.; Ghani, Noraida A.; Kamil, Anton A.; Mustafa, Adli
2013-01-01
M/G/C/C state dependent queuing networks consider service rates as a function of the number of residing entities (e.g., pedestrians, vehicles, and products). However, modeling such dynamic rates is not supported in modern Discrete Simulation System (DES) software. We designed an approach to cater this limitation and used it to construct the M/G/C/C state-dependent queuing model in Arena software. Using the model, we have evaluated and analyzed the impacts of various arrival rates to the throughput, the blocking probability, the expected service time and the expected number of entities in a complex network topology. Results indicated that there is a range of arrival rates for each network where the simulation results fluctuate drastically across replications and this causes the simulation results and analytical results exhibit discrepancies. Detail results that show how tally the simulation results and the analytical results in both abstract and graphical forms and some scientific justifications for these have been documented and discussed. PMID:23560037
Static load simulation of steering knuckle for a formula student race car
NASA Astrophysics Data System (ADS)
Saputro, Bagus Aulia; Ubaidillah, Triono, Dicky Agus; Pratama, Dzaky Roja; Cahyono, Sukmaji Indro; Imaduddin, Fitrian
2018-02-01
This research aims to determine the stress distribution which occurs on the steering knuckle and to define its safety factor number. Steering knuckle is the most critical part of a car's steering system. Steering knuckle supports the tie rod, brake caliper, and the wheels to provide stability. Steering knuckle withstands the load which given on the front wheels and functions as the wheel's axis. Balljoint and king support the rotation of the suspension arm. When the car is in idle position, knuckle hold the weight of the car, it gets braking force when it's braking and cornering. Knuckle is designed to have the strength that could withstand load and to have a good safety factor value. Knuckle is designed using Fusion software then simulated using Fusion simulation software with a static load, moment braking force, and cornering force as the loads in this simulation. The simulation works in ideal condition. The result of this simulation is satisfying. This simulation produces a maximum displacement of 0.01281mm, the maximum shear stress is 3.707 MPa on the stub hole, and the safety factor is 5.24. The material used for this product is mild steel AISI 1018.
Plasma Processing of Lunar Regolith Simulant for Diverse Applications
NASA Technical Reports Server (NTRS)
Schofield, Elizabeth C.; Sen, Subhayu; O'Dell, J. Scott
2008-01-01
Versatile manufacturing technologies for extracting resources from the moon are needed to support future space missions. Of particular interest is the production of gases and metals from lunar resources for life support, propulsion, and in-space fabrication. Deposits made from lunar regolith could yield highly emissive coatings and near-net shaped parts for replacement or repair of critical components. Equally important is development of high fidelity lunar simulants for ground based validation of potential lunar surface operations. Described herein is an innovative plasma processing technique for insitu production of gases, metals, coatings, and deposits from lunar regolith, and synthesis of high fidelity lunar simulant from NASA issued lunar simulant JSC-1. Initial plasma reduction trials of JSC-1 lunar simulant have indicated production of metallic iron and magnesium. Evolution of carbon monoxide has been detected subsequent to reduction of the simulant using the plasma process. Plasma processing of the simulant has also resulted in glassy phases resembling the volcanic glass and agglutinates found in lunar regolith. Complete and partial glassy phase deposits have been obtained by varying the plasma process variables. Experimental techniques, product characterization, and process gas analysis will be discussed.
ERIC Educational Resources Information Center
deNoyelles, Aimee; Raider-Roth, Miriam
2016-01-01
This article details the results of an action research study which investigated how teachers used online learning community spaces to develop and support their teaching and learning of the Jewish Court of All Time (JCAT), a web-mediated, character-playing, simulation game that engages participants with social, historical and cultural curricula.…
Definition of avionics concepts for a heavy lift cargo vehicle, appendix A
NASA Technical Reports Server (NTRS)
1989-01-01
The major objective of the study task was to define a cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles. This volume provides the results of the main simulation processor selection study and describes some proof-of-concept demonstrations for the avionics test bed facility.
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Rhodes, Marvin D.
1994-01-01
Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.
NASA Astrophysics Data System (ADS)
Ren, Lei; Zhang, Lin; Tao, Fei; (Luke) Zhang, Xiaolong; Luo, Yongliang; Zhang, Yabin
2012-08-01
Multidisciplinary design of complex products leads to an increasing demand for high performance simulation (HPS) platforms. One great challenge is how to achieve high efficient utilisation of large-scale simulation resources in distributed and heterogeneous environments. This article reports a virtualisation-based methodology to realise a HPS platform. This research is driven by the issues concerning large-scale simulation resources deployment and complex simulation environment construction, efficient and transparent utilisation of fine-grained simulation resources and high reliable simulation with fault tolerance. A framework of virtualisation-based simulation platform (VSIM) is first proposed. Then the article investigates and discusses key approaches in VSIM, including simulation resources modelling, a method to automatically deploying simulation resources for dynamic construction of system environment, and a live migration mechanism in case of faults in run-time simulation. Furthermore, the proposed methodology is applied to a multidisciplinary design system for aircraft virtual prototyping and some experiments are conducted. The experimental results show that the proposed methodology can (1) significantly improve the utilisation of fine-grained simulation resources, (2) result in a great reduction in deployment time and an increased flexibility for simulation environment construction and (3)achieve fault tolerant simulation.
How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study
Johansen, Ayna; Brendryen, Håvar
2016-01-01
Background eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. Objective We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist’s support of a working alliance, internalization of motivation, and managing lapses. Methods We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several “counseling sessions” about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. Results The program supports the user’s working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. Conclusions A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective. PMID:27354373
Investigation of Models and Estimation Techniques for GPS Attitude Determination
NASA Technical Reports Server (NTRS)
Garrick, J.
1996-01-01
Much work has been done in the Flight Dynamics Analysis Branch (FDAB) in developing algorithms to met the new and growing field of attitude determination using the Global Positioning SYstem (GPS) constellation of satellites. Flight Dynamics has the responsibility to investigate any new technology and incorporate the innovations in the attitude ground support systems developed to support future missions. The work presented here is an investigative analysis that will produce the needed adaptation to allow the Flight Dynamics Support System (FDSS) to incorporate GPS phase measurements and produce observation measurements compatible with the FDSS. A simulator was developed to produce the necessary measurement data to test the models developed for the different estimation techniques used by FDAB. This paper gives an overview of the current modeling capabilities of the simulator models and algorithms for the adaptation of GPS measurement data and results from each of the estimation techniques. Future analysis efforts to evaluate the simulator and models against inflight GPS measurement data are also outlined.
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Allan, Brian G.; Lienard, Caroline; LePape, Arnaud
2010-01-01
A combined computational and experimental effort has been undertaken to study fuselage drag reduction on a generic, non-proprietary rotorcraft fuselage by the application of active ow control. Fuselage drag reduction is an area of research interest to both the United States and France and this area is being worked collaboratively as a task under the United States/France Memorandum of Agreement on Helicopter Aeromechanics. In the first half of this task, emphasis is placed on the US generic fuselage, the ROBIN-mod7, with the experimental work being conducted on the US side and complementary US and French CFD analysis of the baseline and controlled cases. Fuselage simulations were made using Reynolds-averaged Navier-Stokes ow solvers and with multiple turbulence models. Comparisons were made to experimental data for numerical simulations of the isolated fuselage and for the fuselage as installed in the tunnel, which includes modeling of the tunnel contraction, walls, and support fairing. The numerical simulations show that comparisons to the experimental data are in good agreement when the tunnel and model support are included. The isolated fuselage simulations compare well to each other, however, there is a positive shift in the centerline pressure when compared to the experiment. The computed flow separation locations on the rear ramp region had only slight differences with and without the tunnel walls and model support. For the simulations, the flow control slots were placed at several locations around the flow separation lines as a series of eight slots that formed a nearly continuous U-shape. Results from the numerical simulations resulted in an estimated 35% fuselage drag reduction from a steady blowing flow control configuration and a 26% drag reduction for unsteady zero-net-mass flow control configuration. Simulations with steady blowing show a delayed flow separation at the rear ramp of the fuselage that increases the surface pressure acting on the ramp, thus decreasing the overall fuselage pressure drag.
Design of teleoperation system with a force-reflecting real-time simulator
NASA Technical Reports Server (NTRS)
Hirata, Mitsunori; Sato, Yuichi; Nagashima, Fumio; Maruyama, Tsugito
1994-01-01
We developed a force-reflecting teleoperation system that uses a real-time graphic simulator. This system eliminates the effects of communication time delays in remote robot manipulation. The simulator provides the operator with predictive display and feedback of computed contact forces through a six-degree of freedom (6-DOF) master arm on a real-time basis. With this system, peg-in-hole tasks involving round-trip communication time delays of up to a few seconds were performed at three support levels: a real image alone, a predictive display with a real image, and a real-time graphic simulator with computed-contact-force reflection and a predictive display. The experimental results indicate the best teleoperation efficiency was achieved by using the force-reflecting simulator with two images. The shortest work time, lowest sensor maximum, and a 100 percent success rate were obtained. These results demonstrate the effectiveness of simulated-force-reflecting teleoperation efficiency.
Computation of Unsteady Flow in Flame Trench For Prediction of Ignition Overpressure Waves
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kris, Cetin
2010-01-01
Computational processes/issues for supporting mission tasks are discussed using an example from launch environment simulation. Entire CFD process has been discussed using an existing code; STS-124 conditions were revisited to support wall repair effort for STS-125 flight; when water bags were not included, computed results indicate that IOP waves with the peak values have been reflected from SRB s own exhaust hole; ARES-1X simulations show that there is a shock wave going through the unused exhaust hole, however, it plays a secondary role; all three ARES-1X cases and STS-1 simulations showed very similar IOP magnitudes and patters on the vehicle; with the addition of water bags and water injection, it will further diminish the IOP effects.
morphforge: a toolbox for simulating small networks of biologically detailed neurons in Python
Hull, Michael J.; Willshaw, David J.
2014-01-01
The broad structure of a modeling study can often be explained over a cup of coffee, but converting this high-level conceptual idea into graphs of the final simulation results may require many weeks of sitting at a computer. Although models themselves can be complex, often many mental resources are wasted working around complexities of the software ecosystem such as fighting to manage files, interfacing between tools and data formats, finding mistakes in code or working out the units of variables. morphforge is a high-level, Python toolbox for building and managing simulations of small populations of multicompartmental biophysical model neurons. An entire in silico experiment, including the definition of neuronal morphologies, channel descriptions, stimuli, visualization and analysis of results can be written within a single short Python script using high-level objects. Multiple independent simulations can be created and run from a single script, allowing parameter spaces to be investigated. Consideration has been given to the reuse of both algorithmic and parameterizable components to allow both specific and stochastic parameter variations. Some other features of the toolbox include: the automatic generation of human-readable documentation (e.g., PDF files) about a simulation; the transparent handling of different biophysical units; a novel mechanism for plotting simulation results based on a system of tags; and an architecture that supports both the use of established formats for defining channels and synapses (e.g., MODL files), and the possibility to support other libraries and standards easily. We hope that this toolbox will allow scientists to quickly build simulations of multicompartmental model neurons for research and serve as a platform for further tool development. PMID:24478690
NASA Technical Reports Server (NTRS)
On, F. J.
1975-01-01
Test methods were evaluated to ascertain whether a spacecraft, properly tested within its shroud, could be vibroacoustic tested without the shroud, with adjustments made in the acoustic input spectra to simulate the acoustic response of the missing shroud. The evaluation was based on vibroacoustic test results obtained from a baseline model composed (1) of a spacecraft with adapter, lower support structure, and shroud; (2) of the spacecraft, adapter, and lower structure, but without the shroud; and (3) of the spacecraft and adapter only. Emphasis was placed on the magnitude of the acoustic input changes required to substitute for the shroud and the difficulty of making such input changes, and the degree of missimulation which can result from the performance of a particular, less-than optimum test. Conclusions are drawn on the advantages and disadvantages derived from the use of input spectra adjustment methods and lower support structure simulations. Test guidelines were also developed for planning and performing a launch acoustic-environmental test.
Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter
NASA Technical Reports Server (NTRS)
Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)
2000-01-01
We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2008-01-01
The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the ARES I-X Upper Stage Simulator (USS) common shell segment. The structural analysis effort for the NESC assessment had three thrusts: shell buckling analyses, detailed stress analyses of the single-bolt joint test; and stress analyses of two-segment 10 degree-wedge models for the peak axial tensile running load. Elasto-plastic, large-deformation simulations were performed. Stress analysis results indicated that the stress levels were well below the material yield stress for the bounding axial tensile design load. This report also summarizes the analyses and results from parametric studies on modeling the shell-to-gusset weld, flange-surface mismatch, bolt preload, and washer-bearing-surface modeling. These analyses models were used to generate the stress levels specified for the fatigue crack growth assessment using the design load with a factor of safety.
Herdes, Carmelo; Valente, Anabela; Lin, Zhi; Rocha, João; Coutinho, João A P; Medina, Francisco; Vega, Lourdes F
2007-06-19
Results concerning the adsorption capacity of aluminum methylphosphonate polymorph alpha (AlMePO-alpha) for pure ethyl chloride and vinyl chloride by measured individual adsorption isotherms of these pure compounds are presented and discussed here. The experimental data supports the idea of using these materials as selective adsorbents for separating these compounds in mixtures. To explore this possibility further, we have performed grand canonical Monte Carlo simulations using a recently proposed molecular simulation framework for gas adsorption on AlMePO, and the results are presented here. The molecular model of the material was used in a purely transferable manner from a previous work (Herdes, C.; Lin, Z.; Valente, A.; Coutinho, J. A. P.; Vega, L. F. Langmuir 2006, 22, 3097). Regarding the molecular model of the fluids, an existing model for ethyl chloride was improved to capture the experimental dipole value better; an equivalent force field for the vinyl chloride molecule was also developed for simulation purposes. Simulations of the pure compounds were found to be in excellent agreement with the measured experimental data at the three studied temperatures. Simulations were also carried out in a purely predictive manner as a tool to find the optimal conditions for the selective adsorption of these compounds prior experimental measurements are carried out. The influence of the temperature and the bulk composition on the adsorption selectivity was also investigated. Results support the use of AlMePO-alpha as an appropriate adsorbent for the purification process of vinyl chloride, upholding the selective adsorption of ethyl chloride.
NASA Astrophysics Data System (ADS)
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Timin, A. V.; Boichenko, S. N.
2017-09-01
Examples of using the method developed for the earlier proposed concept of the monitoring system of the technical condition of a turbounit are presented. The solution methods of the inverse problem—the calculation of misalignments of supports based on the measurement results of positions of rotor pins in the borings of bearings during the operation of a turbounit—are demonstrated. The results of determination of static responses of supports at operation misalignments are presented. The examples of simulation and calculation of misalignments of supports are made for the three-bearing "high-pressure rotor-middle-pressure rotor" (HPR-MPR) system of a turbounit with 250 MW capacity and for 14-supporting shafting of a turbounit with 1000 MW capacity. The calculation results of coefficients of the stiffness matrix of shaftings and testing of methods for solving the inverse problem by modeling are presented. The high accuracy of the solution of the inverse problem at the inversion of the stiffness matrix of shafting used for determining the correcting centerings of rotors of multisupporting shafting is revealed. The stiffness matrix can be recommended to analyze the influence of displacements of one or several supports on changing the support responses of shafting of the turbounit during adjustment after assembling or repair. It is proposed to use the considered methods of evaluation of misalignments in the monitoring systems of changing the mutual position of supports and centerings of rotors by half-couplings of turbounits, especially for seismically dangerous regions and regions with increased sagging of foundations due to watering of soils.
Study of CFB Simulation Model with Coincidence at Multi-Working Condition
NASA Astrophysics Data System (ADS)
Wang, Z.; He, F.; Yang, Z. W.; Li, Z.; Ni, W. D.
A circulating fluidized bed (CFB) two-stage simulation model was developed. To realize the model results coincident with the design value or real operation value at specified multi-working conditions and with capability of real-time calculation, only the main key processes were taken into account and the dominant factors were further abstracted out of these key processes. The simulation results showed a sound accordance at multi-working conditions, and confirmed the advantage of the two-stage model over the original single-stage simulation model. The combustion-support effect of secondary air was investigated using the two-stage model. This model provides a solid platform for investigating the pant-leg structured CFB furnace, which is now under design for a supercritical power plant.
Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H I observations
NASA Astrophysics Data System (ADS)
El-Badry, Kareem; Bradford, Jeremy; Quataert, Eliot; Geha, Marla; Boylan-Kolchin, Michael; Weisz, Daniel R.; Wetzel, Andrew; Hopkins, Philip F.; Chan, T. K.; Fitts, Alex; Kereš, Dušan; Faucher-Giguère, Claude-André
2018-06-01
The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotationally supported gas discs produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σ and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of ˜2000 low-redshift, H I-detected galaxies with Mstar = 107-11 M⊙ and compare to the simulated galaxies. At Mstar ≳ 1010 M⊙, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotationally supported discs. Both the observed and simulated line profiles become more Gaussian like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotational to dispersion support more strongly: at Mstar = 108-10 M⊙, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion supported. Most of the lower-mass-simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotational versus dispersion support.
Dynamic Evaluation of Two Decades of CMAQ Simulations ...
This presentation focuses on the dynamic evaluation of the CMAQ model over the continental United States using multi-decadal simulations for the period from 1990 to 2010 to examine how well the changes in observed ozone air quality induced by variations in meteorology and/or emissions are simulated by the model. We applied spectral decomposition of the ozone time-series using the KZ filter to assess the variations in the strengths of synoptic (weather-induced variations) and baseline (long-term variation) forcings, embedded in the simulated and observed concentrations. The results reveal that CMAQ captured the year-to-year variability (more so in the later years than the earlier years) and the synoptic forcing in accordance with what the observations are showing. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
Applying Service-Oriented Architecture on The Development of Groundwater Modeling Support System
NASA Astrophysics Data System (ADS)
Li, C. Y.; WANG, Y.; Chang, L. C.; Tsai, J. P.; Hsiao, C. T.
2016-12-01
Groundwater simulation has become an essential step on the groundwater resources management and assessment. There are many stand-alone pre- and post-processing software packages to alleviate the model simulation loading, but the stand-alone software do not consider centralized management of data and simulation results neither do they provide network sharing functions. Hence, it is difficult to share and reuse the data and knowledge (simulation cases) systematically within or across companies. Therefore, this study develops a centralized and network based groundwater modeling support system to assist model construction. The system is based on service-oriented architecture and allows remote user to develop their modeling cases on internet. The data and cases (knowledge) are thus easy to manage centralized. MODFLOW is the modeling engine of the system, which is the most popular groundwater model in the world. The system provides a data warehouse to restore groundwater observations, MODFLOW Support Service, MODFLOW Input File & Shapefile Convert Service, MODFLOW Service, and Expert System Service to assist researchers to build models. Since the system architecture is service-oriented, it is scalable and flexible. The system can be easily extended to include the scenarios analysis and knowledge management to facilitate the reuse of groundwater modeling knowledge.
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
NASA Technical Reports Server (NTRS)
Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.
2012-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
Enhancing Job-Site Training of Supported Workers with Autism: A Reemphasis on Simulation
ERIC Educational Resources Information Center
Lattimore, L. Perry; Parsons, Marsha B.; Reid, Dennis H.
2006-01-01
Currently recommended practice in supported work emphasizes training job skills to workers with severe disabilities while on the job. Early behavioral research indicated that skills needed in natural environments could also be trained in simulated settings. We compared job-site plus simulation training for teaching job skills to supported workers…
Towards a Credibility Assessment of Models and Simulations
NASA Technical Reports Server (NTRS)
Blattnig, Steve R.; Green, Lawrence L.; Luckring, James M.; Morrison, Joseph H.; Tripathi, Ram K.; Zang, Thomas A.
2008-01-01
A scale is presented to evaluate the rigor of modeling and simulation (M&S) practices for the purpose of supporting a credibility assessment of the M&S results. The scale distinguishes required and achieved levels of rigor for a set of M&S elements that contribute to credibility including both technical and process measures. The work has its origins in an interest within NASA to include a Credibility Assessment Scale in development of a NASA standard for models and simulations.
Smith-Jentsch, K A; Salas, E; Brannick, M T
2001-04-01
Eighty pilots participated in a study of variables influencing the transfer process. Posttraining performance was assessed in a flight simulation under 1 of 2 conditions. Those in the maximum performance condition were made aware of the skill to be assessed and the fact that their teammates were confederates, whereas those in the typical performance condition were not. The results indicated that (a) simulator ratings correlated with a measure of transfer to the cockpit for those in the typical condition only; (b) team leader support, manipulated in a pretask brief, moderated the disparity between maximum and typical performance; (c) team climate mediated the impact of support on performance in the typical condition; (d) those with a stronger predisposition toward the trained skill viewed their climate as more supportive; and (e) perceptions of team climate were better predictors of performance for those with a more external locus of control.
NASA Astrophysics Data System (ADS)
Horváth, Denis; Maliková, Zuzana; Lučkaničová, Martina
2015-09-01
We present a simulation model of the technological innovations based on the former Guardiola's concept which relies on the notion of technological barriers. The central, novel feature of our proposal is the assumption that barriers can be reduced allowing public support to R&D. However, this can be applied under the different policies. The statistical treatment of the simulation results demonstrated that support of the elitist (super-threshold) innovating units yields higher innovation rate, but more profound variation of the technological levels. On the other hand, the favoring of innovators with sub-threshold technological levels may lead to the more integrated technological world. Simultaneously, we use the same model to study the effects of supporting knowledge sharing (that is to say, lowering sharing barriers) on average organizational knowledge. An interesting aspect of the model represents self-organized adjustment of the probabilistic parameters related to the social linkages.
Interleaved concatenated codes: New perspectives on approaching the Shannon limit
Viterbi, A. J.; Viterbi, A. M.; Sindhushayana, N. T.
1997-01-01
The last few years have witnessed a significant decrease in the gap between the Shannon channel capacity limit and what is practically achievable. Progress has resulted from novel extensions of previously known coding techniques involving interleaved concatenated codes. A considerable body of simulation results is now available, supported by an important but limited theoretical basis. This paper presents a computational technique which further ties simulation results to the known theory and reveals a considerable reduction in the complexity required to approach the Shannon limit. PMID:11038568
Virtual commissioning of automated micro-optical assembly
NASA Astrophysics Data System (ADS)
Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian
2015-02-01
In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping
Multiagent intelligent systems
NASA Astrophysics Data System (ADS)
Krause, Lee S.; Dean, Christopher; Lehman, Lynn A.
2003-09-01
This paper will discuss a simulation approach based upon a family of agent-based models. As the demands placed upon simulation technology by such applications as Effects Based Operations (EBO), evaluations of indicators and warnings surrounding homeland defense and commercial demands such financial risk management current single thread based simulations will continue to show serious deficiencies. The types of "what if" analysis required to support these types of applications, demand rapidly re-configurable approaches capable of aggregating large models incorporating multiple viewpoints. The use of agent technology promises to provide a broad spectrum of models incorporating differing viewpoints through a synthesis of a collection of models. Each model would provide estimates to the overall scenario based upon their particular measure or aspect. An agent framework, denoted as the "family" would provide a common ontology in support of differing aspects of the scenario. This approach permits the future of modeling to change from viewing the problem as a single thread simulation, to take into account multiple viewpoints from different models. Even as models are updated or replaced the agent approach permits rapid inclusion in new or modified simulations. In this approach a variety of low and high-resolution information and its synthesis requires a family of models. Each agent "publishes" its support for a given measure and each model provides their own estimates on the scenario based upon their particular measure or aspect. If more than one agent provides the same measure (e.g. cognitive) then the results from these agents are combined to form an aggregate measure response. The objective would be to inform and help calibrate a qualitative model, rather than merely to present highly aggregated statistical information. As each result is processed, the next action can then be determined. This is done by a top-level decision system that communicates to the family at the ontology level without any specific understanding of the processes (or model) behind each agent. The increasingly complex demands upon simulation for the necessity to incorporate the breadth and depth of influencing factors makes a family of agent based models a promising solution. This paper will discuss that solution with syntax and semantics necessary to support the approach.
Wind energy system time-domain (WEST) analyzers
NASA Technical Reports Server (NTRS)
Dreier, M. E.; Hoffman, J. A.
1981-01-01
A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data.
NASA Constellation Distributed Simulation Middleware Trade Study
NASA Technical Reports Server (NTRS)
Hasan, David; Bowman, James D.; Fisher, Nancy; Cutts, Dannie; Cures, Edwin Z.
2008-01-01
This paper presents the results of a trade study designed to assess three distributed simulation middleware technologies for support of the NASA Constellation Distributed Space Exploration Simulation (DSES) project and Test and Verification Distributed System Integration Laboratory (DSIL). The technologies are the High Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and an XML-based variant of Distributed Interactive Simulation (DIS-XML) coupled with the Extensible Messaging and Presence Protocol (XMPP). According to the criteria and weights determined in this study, HLA scores better than the other two for DSES as well as the DSIL.
SMI Compatible Simulation Scheduler Design for Reuse of Model Complying with Smp Standard
NASA Astrophysics Data System (ADS)
Koo, Cheol-Hea; Lee, Hoon-Hee; Cheon, Yee-Jin
2010-12-01
Software reusability is one of key factors which impacts cost and schedule on a software development project. It is very crucial also in satellite simulator development since there are many commercial simulator models related to satellite and dynamics. If these models can be used in another simulator platform, great deal of confidence and cost/schedule reduction would be achieved. Simulation model portability (SMP) is maintained by European Space Agency and many models compatible with SMP/simulation model interface (SMI) are available. Korea Aerospace Research Institute (KARI) is developing hardware abstraction layer (HAL) supported satellite simulator to verify on-board software of satellite. From above reasons, KARI wants to port these SMI compatible models to the HAL supported satellite simulator. To port these SMI compatible models to the HAL supported satellite simulator, simulation scheduler is preliminary designed according to the SMI standard.
Advanced Thermal Simulator Testing: Thermal Analysis and Test Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe
2008-01-01
Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
Structural relaxation in supercooled orthoterphenyl.
Chong, S-H; Sciortino, F
2004-05-01
We report molecular-dynamics simulation results performed for a model of molecular liquid orthoterphenyl in supercooled states, which we then compare with both experimental data and mode-coupling-theory (MCT) predictions, aiming at a better understanding of structural relaxation in orthoterphenyl. We pay special attention to the wave number dependence of the collective dynamics. It is shown that the simulation results for the model share many features with experimental data for real system, and that MCT captures the simulation results at the semiquantitative level except for intermediate wave numbers connected to the overall size of the molecule. Theoretical results at the intermediate wave number region are found to be improved by taking into account the spatial correlation of the molecule's geometrical center. This supports the idea that unusual dynamical properties at the intermediate wave numbers, reported previously in simulation studies for the model and discernible in coherent neutron-scattering experimental data, are basically due to the coupling of the rotational motion to the geometrical-center dynamics. However, there still remain qualitative as well as quantitative discrepancies between theoretical prediction and corresponding simulation results at the intermediate wave numbers, which call for further theoretical investigation.
Moving Force Identification: a Time Domain Method
NASA Astrophysics Data System (ADS)
Law, S. S.; Chan, T. H. T.; Zeng, Q. H.
1997-03-01
The solution for the vertical dynamic interaction forces between a moving vehicle and the bridge deck is analytically derived and experimentally verified. The deck is modelled as a simply supported beam with viscous damping, and the vehicle/bridge interaction force is modelled as one-point or two-point loads with fixed axle spacing, moving at constant speed. The method is based on modal superposition and is developed to identify the forces in the time domain. Both cases of one-point and two-point forces moving on a simply supported beam are simulated. Results of laboratory tests on the identification of the vehicle/bridge interaction forces are presented. Computation simulations and laboratory tests show that the method is effective, and acceptable results can be obtained by combining the use of bending moment and acceleration measurements.
Land Cover Applications, Landscape Dynamics, and Global Change
Tieszen, Larry L.
2007-01-01
The Land Cover Applications, Landscape Dynamics, and Global Change project at U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) seeks to integrate remote sensing and simulation models to better understand and seek solutions to national and global issues. Modeling processes related to population impacts, natural resource management, climate change, invasive species, land use changes, energy development, and climate mitigation all pose significant scientific opportunities. The project activities use remotely sensed data to support spatial monitoring, provide sensitivity analyses across landscapes and large regions, and make the data and results available on the Internet with data access and distribution, decision support systems, and on-line modeling. Applications support sustainable natural resource use, carbon cycle science, biodiversity conservation, climate change mitigation, and robust simulation modeling approaches that evaluate ecosystem and landscape dynamics.
WEST-3 wind turbine simulator development. Volume 2: Verification
NASA Technical Reports Server (NTRS)
Sridhar, S.
1985-01-01
The details of a study to validate WEST-3, a new time wind turbine simulator developed by Paragib Pacific Inc., are presented in this report. For the validation, the MOD-0 wind turbine was simulated on WEST-3. The simulation results were compared with those obtained from previous MOD-0 simulations, and with test data measured during MOD-0 operations. The study was successful in achieving the major objective of proving that WEST-3 yields results which can be used to support a wind turbine development process. The blade bending moments, peak and cyclic, from the WEST-3 simulation correlated reasonably well with the available MOD-0 data. The simulation was also able to predict the resonance phenomena observed during MOD-0 operations. Also presented in the report is a description and solution of a serious numerical instability problem encountered during the study. The problem was caused by the coupling of the rotor and the power train models. The results of the study indicate that some parts of the existing WEST-3 simulation model may have to be refined for future work; specifically, the aerodynamics and procedure used to couple the rotor model with the tower and the power train models.
NASA Technical Reports Server (NTRS)
Wu, Gilbert; Santiago, Confesor
2017-01-01
RTCA Special Committee (SC) 228 has initiated a second phase for the development of minimum operational performance standards (MOPS) for UAS detect and avoid (DAA) systems. Technologies to enable UAS with less available Size, Weight, and Power (SWaP) will be considered. RTCA SC-228 has established sub-working groups and one of the sub-working groups is focused on aligning modeling and simulations activities across all participating committee members. This briefing will describe NASAs modeling and simulation plans for the development of performance standards for low cost, size, weight, and power (C-SWaP) surveillance systems that detect and track non-cooperative aircraft. The briefing will also describe the simulation platform NASA intends to use to support end-to-end verification and validation for these DAA systems. Lastly, the briefing will highlight the experiment plan for our first simulation study, and provide a high-level description of our future flight test plans. This briefing does not contain any results or data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environmentmore » and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
Voelz, David G; Roggemann, Michael C
2009-11-10
Accurate simulation of scalar optical diffraction requires consideration of the sampling requirement for the phase chirp function that appears in the Fresnel diffraction expression. We describe three sampling regimes for FFT-based propagation approaches: ideally sampled, oversampled, and undersampled. Ideal sampling, where the chirp and its FFT both have values that match analytic chirp expressions, usually provides the most accurate results but can be difficult to realize in practical simulations. Under- or oversampling leads to a reduction in the available source plane support size, the available source bandwidth, or the available observation support size, depending on the approach and simulation scenario. We discuss three Fresnel propagation approaches: the impulse response/transfer function (angular spectrum) method, the single FFT (direct) method, and the two-step method. With illustrations and simulation examples we show the form of the sampled chirp functions and their discrete transforms, common relationships between the three methods under ideal sampling conditions, and define conditions and consequences to be considered when using nonideal sampling. The analysis is extended to describe the sampling limitations for the more exact Rayleigh-Sommerfeld diffraction solution.
Small Wind Research Turbine: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbus, D.; Meadors, M.
2005-10-01
The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.
Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, Douglas J.; Stern, Abraham C.; Baer, Marcel D.
2013-04-01
Chemistry occurring at or near the surfaces of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface, and recent advancesmore » in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory that is capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces. MDB and CJM acknowledge support from the US Department of Energy's Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is supported by the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.« less
Lunar Outpost Life Support Architecture Study Based on a High-Mobility Exploration Scenario
NASA Technical Reports Server (NTRS)
Lange, Kevin E.; Anderson, Molly S.
2010-01-01
This paper presents results of a life support architecture study based on a 2009 NASA lunar surface exploration scenario known as Scenario 12. The study focuses on the assembly complete outpost configuration and includes pressurized rovers as part of a distributed outpost architecture in both stand-alone and integrated configurations. A range of life support architectures are examined reflecting different levels of closure and distributed functionality. Monte Carlo simulations are used to assess the sensitivity of results to volatile high-impact mission variables, including the quantity of residual Lander oxygen and hydrogen propellants available for scavenging, the fraction of crew time away from the outpost on excursions, total extravehicular activity hours, and habitat leakage. Surpluses or deficits of water and oxygen are reported for each architecture, along with fixed and 10-year total equivalent system mass estimates relative to a reference case. System robustness is discussed in terms of the probability of no water or oxygen resupply as determined from the Monte Carlo simulations.
Fifteenth Space Simulation Conference: Support the Highway to Space Through Testing
NASA Technical Reports Server (NTRS)
Stecher, Joseph (Editor)
1988-01-01
The Institute of Environmental Sciences Fifteenth Space Simulation Conference, Support the Highway to Space Through Testing, provided participants a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, thermal simulation and protection, contamination, and techniques of test measurements.
Effects of Learning Support in Simulation-Based Physics Learning
ERIC Educational Resources Information Center
Chang, Kuo-En; Chen, Yu-Lung; Lin, He-Yan; Sung, Yao-Ting
2008-01-01
This paper describes the effects of learning support on simulation-based learning in three learning models: experiment prompting, a hypothesis menu, and step guidance. A simulation learning system was implemented based on these three models, and the differences between simulation-based learning and traditional laboratory learning were explored in…
Assessing problem-solving skills in construction education with the virtual construction simulator
NASA Astrophysics Data System (ADS)
Castronovo, Fadi
The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on problem-solving skills, a new version of the VCS(4) was developed, with new building modules and assessment framework. The design and development of the VCS4 leveraged research in educational psychology, multimedia learning, human-computer interaction, and Building Information Modeling. In this dissertation the researcher aimed to evaluate the pedagogical value of the VCS4 in fostering problem-solving skills. To answer the research questions, a crossover repeated measures quasi-experiment was designed to assess the educational gains that the VCS can provide to construction education. A group of 34 students, attending a fourth-year construction course at a university in the United States was chosen to participate in the experiment. The three learning modules of the VCS were used, which challenged the students to plan and manage the construction process of a wooden pavilion, the steel erection of a dormitory, and the concrete placement of the same dormitory. Based on the results the researcher was able to provide evidence supporting the hypothesis that the chosen sample of construction students were able to gain and retain problem-solving skills necessary to solve complex construction simulation problems, no matter what the sequence with which these modules were played. In conclusion, the presented results provide evidence supporting the theory that educational simulation games can help the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems.
Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques
2010-09-01
panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical
DOA Finding with Support Vector Regression Based Forward-Backward Linear Prediction.
Pan, Jingjing; Wang, Yide; Le Bastard, Cédric; Wang, Tianzhen
2017-05-27
Direction-of-arrival (DOA) estimation has drawn considerable attention in array signal processing, particularly with coherent signals and a limited number of snapshots. Forward-backward linear prediction (FBLP) is able to directly deal with coherent signals. Support vector regression (SVR) is robust with small samples. This paper proposes the combination of the advantages of FBLP and SVR in the estimation of DOAs of coherent incoming signals with low snapshots. The performance of the proposed method is validated with numerical simulations in coherent scenarios, in terms of different angle separations, numbers of snapshots, and signal-to-noise ratios (SNRs). Simulation results show the effectiveness of the proposed method.
Mathematical Model Development and Simulation Support
NASA Technical Reports Server (NTRS)
Francis, Ronald C.; Tobbe, Patrick A.
2000-01-01
This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.
Kamnik, Roman; Bajd, Tadej
2007-11-01
The paper presents a novel control approach for the robot-assisted motion augmentation of disabled subjects during the standing-up manoeuvre. The main goal of the proposal is to integrate the voluntary activity of a person in the control scheme of the rehabilitation robot. The algorithm determines the supportive force to be tracked by a robot force controller. The basic idea behind the calculation of supportive force is to quantify the deficit in the dynamic equilibrium of the trunk. The proposed algorithm was implemented as a Kalman filter procedure and evaluated in a simulation environment. The simulation results proved the adequate and robust performance of "patient-driven" robot-assisted standing-up training. In addition, the possibility of varying the training conditions with different degrees of the subject's initiative is demonstrated.
High fidelity case-based simulation debriefing: everything you need to know.
Hart, Danielle; McNeil, Mary Ann; Griswold-Theodorson, Sharon; Bhatia, Kriti; Joing, Scott
2012-09-01
In this 30-minute talk, the authors take an in-depth look at how to debrief high-fidelity case-based simulation sessions, including discussion on debriefing theory, goals, approaches, and structure, as well as ways to create a supportive and safe learning environment, resulting in successful small group learning and self-reflection. Emphasis is placed on the "debriefing with good judgment" approach. Video clips of sample debriefing attempts, highlighting the "dos and don'ts" of simulation debriefing, are included. The goal of this talk is to provide you with the necessary tools and information to develop a successful and effective debriefing approach. There is a bibliography and a quick reference guide in Data Supplements S1 and S2 (available as supporting information in the online version of this paper). © 2012 by the Society for Academic Emergency Medicine.
Multi-Agent-Based Simulation of a Complex Ecosystem of Mental Health Care.
Kalton, Alan; Falconer, Erin; Docherty, John; Alevras, Dimitris; Brann, David; Johnson, Kyle
2016-02-01
This paper discusses the creation of an Agent-Based Simulation that modeled the introduction of care coordination capabilities into a complex system of care for patients with Serious and Persistent Mental Illness. The model describes the engagement between patients and the medical, social and criminal justice services they interact with in a complex ecosystem of care. We outline the challenges involved in developing the model, including process mapping and the collection and synthesis of data to support parametric estimates, and describe the controls built into the model to support analysis of potential changes to the system. We also describe the approach taken to calibrate the model to an observable level of system performance. Preliminary results from application of the simulation are provided to demonstrate how it can provide insights into potential improvements deriving from introduction of care coordination technology.
NASA Technical Reports Server (NTRS)
West, Jeff S.; Richardson, Brian R.; Schmauch, Preston; Kenny, Robert J.
2011-01-01
Marshall Space Flight Center (MSFC) has been heavily involved in developing the J2-X engine. The Center has been testing a Work Horse Gas Generator (WHGG) to supply gas products to J2-X turbine components at realistic flight-like operating conditions. Three-dimensional time accurate CFD simulations and analytical fluid analysis have been performed to support WHGG tests at MSFC. The general purpose CFD program LOCI/Chem was utilized to simulate flow of products from the WHGG through a turbine manifold, a stationary row of turbine vanes, into a Can and orifice assembly used to control the back pressure at the turbine vane row and finally through an aspirator plate and flame bucket. Simulations showed that supersonic swirling flow downstream of the turbine imparted a much higher pressure on the Can wall than expected for a non-swirling flow. This result was verified by developing an analytical model that predicts wall pressure due to swirling flow. The CFD simulations predicted that the higher downstream pressure would cause the pressure drop across the nozzle row to be approximately half the value of the test objective. With CFD support, a redesign of the Can orifice and aspirator plate was performed. WHGG experimental results and observations compared well with pre-test and post-test CFD simulations. CFD simulations for both quasi-static and transient test conditions correctly predicted the pressure environment downstream of the turbine row and the behavior of the gas generator product plume as it exited the WHGG test article, impacted the flame bucket and interacted with the external environment.
Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers
NASA Astrophysics Data System (ADS)
Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus
2015-11-01
Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.
Addressing Control Research Issues Leading to Piloted Simulations in Support of the IFCS F-15
NASA Technical Reports Server (NTRS)
Napolitano, Marcello; Perhinschi, Mario; Campa, Giampiero; Seanor, Brad
2004-01-01
This report summarizes the research effort by a team of researchers at West Virginia University in support of the NASA Intelligent Flight Control System (IFCS) F-15 program. In particular, WVU researchers assisted NASA Dryden researchers in the following technical tasks leading to piloted simulation of the 'Gen_2' IFCS control laws. Task #1- Performance comparison of different neural network (NN) augmentation for the Dynamic Inversion (DI) -based VCAS 'Gen_2' control laws. Task #2- Development of safety monitor criteria for transition to research control laws with and without failure during flight test. Task #3- Fine-tuning of the 'Gen_2' control laws for cross-coupling reduction at post-failure conditions. Matlab/Simulink-based simulation codes were provided to the technical monitor on a regular basis throughout the duration of the project. Additional deliverables for the project were Power Point-based slides prepared for different project meetings. This document provides a description of the methodology and discusses the general conclusions from the simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J; Micka, J; Culberson, W
Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well-loading variability results in minimal variations in the in-water dose distribution according to MC simulations. This work was partially supported by CivaTech Oncology, Inc. through an educational grant for Joshua Reed, John Micka, Wesley Culberson, and Larry DeWerd and through research support for Mark Rivard.« less
Numerical Simulation of Screech Tones from Supersonic Jets: Physics and Prediction
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Zaman, Khairul Q. (Technical Monitor)
2002-01-01
The objectives of this project are to: (1) perform a numerical simulation of the jet screech phenomenon; and (2) use the data of the simulations to obtain a better understanding of the physics of jet screech. The original grant period was for three years. This was extended at no cost for an extra year to allow the principal investigator time to publish the results. We would like to report that our research work and results (supported by this grant) have fulfilled both objectives of the grant. The following is a summary of the important accomplishments: (1) We have now demonstrated that it is possible to perform accurate numerical simulations of the jet screech phenomenon. Both the axisymmetric case and the fully three-dimensional case were carried out successfully. It is worthwhile to note that this is the first time the screech tone phenomenon has been successfully simulated numerically; (2) All four screech modes were reproduced in the simulation. The computed screech frequencies and intensities were in good agreement with the NASA Langley Research Center data; (3) The staging phenomenon was reproduced in the simulation; (4) The effects of nozzle lip thickness and jet temperature were studied. Simulated tone frequencies at various nozzle lip thickness and jet temperature were found to agree well with experiments; (5) The simulated data were used to explain, for the first time, why there are two axisymmetric screech modes and two helical/flapping screech modes; (6) The simulated data were used to show that when two tones are observed, they co-exist rather than switching from one mode to the other, back and forth, as some previous investigators have suggested; and (7) Some resources of the grant were used to support the development of new computational aeroacoustics (CAA) methodology. (Our screech tone simulations have benefited because of the availability of these improved methods.)
NASA Technical Reports Server (NTRS)
Moller, Bjorn; Garro, Alfredo; Falcone, Alberto; Crues, Edwin Z.; Dexter, Daniel E.
2016-01-01
Distributed and Real-Time Simulation plays a key-role in the Space domain being exploited for missions and systems analysis and engineering as well as for crew training and operational support. One of the most popular standards is the 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA). HLA supports the implementation of distributed simulations (called Federations) in which a set of simulation entities (called Federates) can interact using a Run-Time Infrastructure (RTI). In a given Federation, a Federate can publish and/or subscribes objects and interactions on the RTI only in accordance with their structures as defined in a FOM (Federation Object Model). Currently, the Space domain is characterized by a set of incompatible FOMs that, although meet the specific needs of different organizations and projects, increases the long-term cost for interoperability. In this context, the availability of a reference FOM for the Space domain will enable the development of interoperable HLA-based simulators for related joint projects and collaborations among worldwide organizations involved in the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA). The paper presents a first set of results achieved by a SISO standardization effort that aims at providing a Space Reference FOM for international collaboration on Space systems simulations.
Learning from avatars: Learning assistants practice physics pedagogy in a classroom simulator
NASA Astrophysics Data System (ADS)
Chini, Jacquelyn J.; Straub, Carrie L.; Thomas, Kevin H.
2016-06-01
[This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] Undergraduate students are increasingly being used to support course transformations that incorporate research-based instructional strategies. While such students are typically selected based on strong content knowledge and possible interest in teaching, they often do not have previous pedagogical training. The current training models make use of real students or classmates role playing as students as the test subjects. We present a new environment for facilitating the practice of physics pedagogy skills, a highly immersive mixed-reality classroom simulator, and assess its effectiveness for undergraduate physics learning assistants (LAs). LAs prepared, taught, and reflected on a lesson about motion graphs for five highly interactive computer generated student avatars in the mixed-reality classroom simulator. To assess the effectiveness of the simulator for this population, we analyzed the pedagogical skills LAs intended to practice and exhibited during their lessons and explored LAs' descriptions of their experiences with the simulator. Our results indicate that the classroom simulator created a safe, effective environment for LAs to practice a variety of skills, such as questioning styles and wait time. Additionally, our analysis revealed areas for improvement in our preparation of LAs and use of the simulator. We conclude with a summary of research questions this environment could facilitate.
Social cognitive theory, metacognition, and simulation learning in nursing education.
Burke, Helen; Mancuso, Lorraine
2012-10-01
Simulation learning encompasses simple, introductory scenarios requiring response to patients' needs during basic hygienic care and during situations demanding complex decision making. Simulation integrates principles of social cognitive theory (SCT) into an interactive approach to learning that encompasses the core principles of intentionality, forethought, self-reactiveness, and self-reflectiveness. Effective simulation requires an environment conducive to learning and introduces activities that foster symbolic coding operations and mastery of new skills; debriefing builds self-efficacy and supports self-regulation of behavior. Tailoring the level of difficulty to students' mastery level supports successful outcomes and motivation to set higher standards. Mindful selection of simulation complexity and structure matches course learning objectives and supports progressive development of metacognition. Theory-based facilitation of simulated learning optimizes efficacy of this learning method to foster maturation of cognitive processes of SCT, metacognition, and self-directedness. Examples of metacognition that are supported through mindful, theory-based implementation of simulation learning are provided. Copyright 2012, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Puccetti, S.; Fiore, F.; Giommi, P.
2009-05-01
The ASI Science Data Center (ASDC) has developed an X-ray event simulator to support users (and team members) in simulation of data taken with the two cameras on board the Simbol-X X-Ray Telescope. The Simbol-X simulator is very fast and flexible, compared to ray-tracing simulator. These properties make our simulator advantageous to support the user in planning proposals and comparing real data with the theoretical expectations and for a quick detection of unexpected features. We present here the simulator outline and a few examples of simulated data.
Strom, Suzanne L; Anderson, Craig L; Yang, Luanna; Canales, Cecilia; Amin, Alpesh; Lotfipour, Shahram; McCoy, C Eric; Osborn, Megan Boysen; Langdorf, Mark I
2015-11-01
Traditional Advanced Cardiac Life Support (ACLS) courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. We performed a prospective cohort study to determine the correlation between simulation-based evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. The composite average score on the written evaluation was substantially higher (93.6%) than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6-14.0%], p<0.00005). We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04), validating the new evaluation method. Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation.
NASA Technical Reports Server (NTRS)
Gates, R. M.; Williams, J. E.
1974-01-01
Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.
Linking MODFLOW with an agent-based land-use model to support decision making
Reeves, H.W.; Zellner, M.L.
2010-01-01
The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.
CPAS Preflight Drop Test Analysis Process
NASA Technical Reports Server (NTRS)
Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.
2015-01-01
Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.
Integrated Simulation Design Challenges to Support TPS Repair Operations
NASA Technical Reports Server (NTRS)
Quiocho, Leslie J.; Crues, Edwin Z.; Huynh, An; Nguyen, Hung T.; MacLean, John
2006-01-01
During the Orbiter Repair Maneuver (OM) operations planned for Return to Flight (RTF), the Shuttle Remote Manipulator System (SRMS) must grapple the International Space Station (ISS), undock the Orbiter, maneuver it through a long duration trajectory, and orient it to an EVA crewman poised at the end of the Space Station Remote Manipulator System (SSRMS) to facilitate the repair of the Thermal Protection System (TPS). Once repair has been completed and confirmed, then the SRMS proceeds back through the trajectory to dock the Orbiter to the Orbiter Docking System. In order to support analysis of the complex dynamic interactions of the integrated system formed by the Orbiter, ISS, SRMS, and SSMS during the ORM, simulation tools used for previous nominal mission support required substantial enhancements. These upgrades were necessary to provide analysts with the capabilities needed to study integrated system performance. Prevalent throughout this ORM operation is a dynamically varying topology. In other words, the ORM starts with the SRMS grappled to the mated Shuttle/ISS stack (closed loop topology), moves to an open loop chain topology consisting of the Shuttle, SRMS, and ISS, and then, at the repair configuration, extends the chain topology to one consisting of the Shuttle, SMS, ISS, and SSRMS/EVA crewman. The resulting long dynamic chain of vehicles and manipulators may exhibit significant motion between the Shuttle worksite and the EVA crewman due to the system flexibility throughout the topology (particularly within the SRMS/SSRMS joints and links). Since the attachment points of both manipulators span the flexible structure of the ISS, simulation analysis may also need to take that into consideration. Moreover, due to the lengthy time duration associated with the maneuver and repair, orbital effects become a factor and require the ISS vehicle control system to maintain active attitude control. Several facets of the ORM operation make the associated analytical efforts different from previous mission support, including: (1) the magnitude of the SRMS handled payload (Le., Orbiter class), (2) the orbital effects induced on the integrated system consisting of the large Shuttle and ISS masses connected by a light flexible SRMS, (3) long duration environmental consequences due to the lengthy operational times associated with the maneuver and repair of the TPS, (4) active attitude control (as opposed to free drift) interacting with the SRMS and SSRMS manipulators (also due to the length of the maneuver and repair), (5) relative dynamics between the EVA crewman and thc worksite influenced by the extended flexible topology. In order to meet these analysis challenges, an O Msi mulation architecture was developed leveraging upon numerous pre-existing simulation elements to analyze the various subsystems individually. For example, core manipulator subsystem simulations for both the SRMS and SSRMS were originally combined to provide the dual-arm dynamics topology simulation (in the absence of orbital dynamics and vehicle control). This capability was later merged with the simulation used to analyze SRMS loading with a heavy payload in the orbital environment with an active payload control system (in this case, the ISS Attitude Control System (ACS)), configured for the ORM. The resulting worksite dynamics simulation, based off of the modified ORM simulation, provided the extended topological chain of vehicles and manipulators, while taking into account the orbital effects of both the Shuttle and ISS (as well as its ACS). Verification and validation (V&V) of these integrated simulations became a challenge in itself. A systematic approach needed to be developed such that integration simulation results could be tested against previous constituent simulations upon which these simulations were built. General V&V categories included: (1) core orbital state propagation, (2), stand-alone SRMS, (3) stand-alone SSRMS, (4) stand-alone ISS ACS, (5)ntegrated Shuttle, SRMS, ISS (with active ACS) in the orbital environment, and (5) dual-arm SRMS/SSRMS dynamics topology. Integrated simulation V&V run suites were created and correlated to verification runs from subsystem simulations, in order to establish the validity of the results. This paper discusses the simulation design challenges encountered while developing simulation capabilities to mirror the ORM operations. The paper also describes the incremental build approach that was utilized, starting with the subsystem simulation elements and integration into increasing more complex simulations until the resulting ORM worksite dynamics simulation had been assembled. Furthermore, the paper presents an overall integrated simulation V&V methodology based upon a subsystem level testing, integrated comparisons, and phased checkout.
NASA Astrophysics Data System (ADS)
Gilligan, J. M.; Corey, B.; Camp, J. V.; John, N. J.; Sengupta, P.
2015-12-01
The complex interactions between land use and natural hazards pose serious challenges in education, research, and public policy. Where complex nonlinear interactions produce unintuitive results, interactive computer simulations can be useful tools for education and decision support. Emotions play important roles in cognition and learning, especially where risks are concerned. Interactive simulations have the potential to harness emotional engagement to enhance learning and understanding of risks in coupled human-natural systems. We developed a participatory agent-based simulation of cities at risk of river flooding. Participants play the role of managers of neighboring cities along a flood-prone river and make choices about building flood walls to protect their inhabitants. Simulated agents participate in dynamic real estate markets in which demand for property, and thus values and decisions to build, respond to experience with flooding over time. By reducing high-frequency low-magnitude flooding, flood walls may stimulate development, thus increasing tax revenues but also increasing vulnerability to uncommon floods that overtop the walls. Flood waves are launched stochastically and propagate downstream. Flood walls that restrict overbank flow at one city can increase the amplitude of a flood wave at neighboring cities, both up and downstream. We conducted a pilot experiment with a group of three pre-service teachers. The subjects successfully learned key concepts of risk tradeoffs and unintended consequences that can accompany flood-control measures. We also observed strong emotional responses, including hope, fear, and sense of loss. This emotional engagement with a model of coupled human-natural systems was very different from previous experiments on participatory simulations of purely natural systems for physics pedagogy. We conducted a second session in which the participants were expert engineers. We will present the results of these experiments and the prospects for using such models for middle-school, high-school, and post-secondary environmental science pedagogy, for improving public understanding of flood risks, and as decision support tools for planners.
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaylock, Myra L.; Maniaci, David Charles; Resor, Brian R.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence inmore » their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.« less
Lobjois, Régis; Dagonneau, Virginie; Isableu, Brice
2016-11-01
Compared with driving or flight simulation, little is known about self-motion perception in riding simulation. The goal of this study was to examine whether or not continuous roll motion supports the sensation of leaning into bends in dynamic motorcycle simulation. To this end, riders were able to freely tune the visual scene and/or motorcycle simulator roll angle to find a pattern that matched their prior knowledge. Our results revealed idiosyncrasy in the combination of visual and proprioceptive information. Some subjects relied more on the visual dimension, but reported increased sickness symptoms with the visual roll angle. Others relied more on proprioceptive information, tuning the direction of the visual scenery to match three possible patterns. Our findings also showed that these two subgroups tuned the motorcycle simulator roll angle in a similar way. This suggests that sustained inertially specified roll motion have contributed to the sensation of leaning in spite of the occurrence of unexpected gravito-inertial stimulation during the tilt. Several hypotheses are discussed. Practitioner Summary: Self-motion perception in motorcycle simulation is a relatively new research area. We examined how participants combined visual and proprioceptive information. Findings revealed individual differences in the visual dimension. However, participants tuned the simulator roll angle similarly, supporting the hypothesis that sustained inertially specified roll motion contributes to a leaning sensation.
Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang
2014-09-05
The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.
Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang
2014-01-01
The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686
Simulation of the oscillation regimes of bowed bars: a non-linear modal approach
NASA Astrophysics Data System (ADS)
Inácio, Octávio; Henrique, Luís.; Antunes, José
2003-06-01
It is still a challenge to properly simulate the complex stick-slip behavior of multi-degree-of-freedom systems. In the present paper we investigate the self-excited non-linear responses of bowed bars, using a time-domain modal approach, coupled with an explicit model for the frictional forces, which is able to emulate stick-slip behavior. This computational approach can provide very detailed simulations and is well suited to deal with systems presenting a dispersive behavior. The effects of the bar supporting fixture are included in the model, as well as a velocity-dependent friction coefficient. We present the results of numerical simulations, for representative ranges of the bowing velocity and normal force. Computations have been performed for constant-section aluminum bars, as well as for real vibraphone bars, which display a central undercutting, intended to help tuning the first modes. Our results show limiting values for the normal force FN and bowing velocity ẏbow for which the "musical" self-sustained solutions exist. Beyond this "playability space", double period and even chaotic regimes were found for specific ranges of the input parameters FN and ẏbow. As also displayed by bowed strings, the vibration amplitudes of bowed bars also increase with the bow velocity. However, in contrast to string instruments, bowed bars "slip" during most of the motion cycle. Another important difference is that, in bowed bars, the self-excited motions are dominated by the system's first mode. Our numerical results are qualitatively supported by preliminary experimental results.
Micromagnetic studies of Full Huesler alloy, Co2FeAl, nanostructures
NASA Astrophysics Data System (ADS)
Yoritomo, Patricia; Mecholsky, Nicholas; Gyawali, Parshu; Sapkota, Keshab; Pegg, I. L.; Philip, John
2013-03-01
Co2FeAl (CFA) is a full Huesler alloy with interesting magnetic behavior and very high Curie temperature. We have carried out micromagnetic simulations on CFA nanopillars using a program, NMAG, with various dimensions and spacing. The micromagnetic simulations are compared with the experimental results that we have obtained. Nanopillars are produced using the liftoff technique after electron beam lithography. The CFA nanopillars are grown using electron beam deposition of Co, Fe and Al in the stoichiometric ratio and by further annealing at 850 K for one hour. We have simulated the magnetic behavior of CFA nanopillars ranging from 30 to 90 nm in diameter and with a height of about 115 nm. Preliminary results show the simulated coercivities are 700 Oe and 2400 Oe for 60 and 30 nm pillars. These are comparable to the experimental results that we have obtained. Magnetic behavior of polycrystalline nanowires of varying diameters is also simulated using NMAG. We will present the simulation and experimental results of nanopillars and polycrystalline nanowires in detail. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.
Implementing optimal thinning strategies
Kurt H. Riitters; J. Douglas Brodie
1984-01-01
Optimal thinning regimes for achieving several management objectives were derived from two stand-growth simulators by dynamic programming. Residual mean tree volumes were then plotted against stand density management diagrams. The results supported the use of density management diagrams for comparing, checking, and implementing the results of optimization analyses....
Base Camp Design Simulation Training
2011-07-01
States Military Academy undertook a project to bring base camp design and development simulation support into the classrooms of the US Army Engineer...endeavor was to bring simulation support to Army classrooms . Initial discussions between the ORCEN and the Manuever Support Center of Excellence... classrooms . MSCoE acts as TRADOC’s proponent for base camps, subsequently delegated to the Engineer School (one of three branch schools overseen by
Vibration modelling and verifications for whole aero-engine
NASA Astrophysics Data System (ADS)
Chen, G.
2015-08-01
In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.
Continuation of advanced crew procedures development techniques
NASA Technical Reports Server (NTRS)
Arbet, J. D.; Benbow, R. L.; Evans, M. E.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.
1976-01-01
An operational computer program, the Procedures and Performance Program (PPP) which operates in conjunction with the Phase I Shuttle Procedures Simulator to provide a procedures recording and crew/vehicle performance monitoring capability was developed. A technical synopsis of each task resulting in the development of the Procedures and Performance Program is provided. Conclusions and recommendations for action leading to the improvements in production of crew procedures development and crew training support are included. The PPP provides real-time CRT displays and post-run hardcopy output of procedures, difference procedures, performance data, parametric analysis data, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data and via transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP. Interface is provided with the all digital trajectory program, the Space Vehicle Dynamics Simulator (SVDS) to support initial procedures timeline development.
The control system of synchronous movement of the gantry crane supports
NASA Astrophysics Data System (ADS)
Odnokopylov, I. G.; Gneushev, V. V.; Galtseva, O. V.; Natalinova, N. M.; Li, J.; Serebryakov, D. I.
2017-01-01
The paper presents study findings on synchronization of the gantry crane support movement. Asynchrony moving speed bearings may lead to an emergency mode at the natural rate of deformed metal structure alignment. The use of separate control of asynchronous motors with the vector control method allows synchronizing the movement speed of crane supports and achieving a balance between the motors. Simulation results of various control systems are described. Recommendations regarding the system further application are given.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv
2002-01-01
A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center
Numerical simulations of crystal growth in a transdermal drug delivery system
NASA Astrophysics Data System (ADS)
Zeng, Jianming; Jacob, Karl I.; Tikare, Veena
2004-02-01
Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.
Lunar Regolith Characterization for Simulant Design and Evaluation using Figure of Merit Algorithms
NASA Technical Reports Server (NTRS)
Schrader, Christian M.; Rickman, Douglas L.; Melemore, Carole A.; Fikes, John C.; Stoeser, Douglas B.; Wentworth, Susan J.; McKay, David S.
2009-01-01
NASA's Marshall Space Flight Center (MSFC), in conjunction with the United States Geological Survey (USGS) and aided by personnel from the Astromaterials Research and Exploration Science group at Johnson Space Center (ARES-JSC), is implementing a new data acquisition strategy to support the development and evaluation of lunar regolith simulants. The first analyses of lunar regolith samples by the simulant group were carried out in early 2008 on samples from Apollo 16 core 64001/64002. The results of these analyses are combined with data compiled from the literature to generate a reference composition and particle size distribution (PSD)) for lunar highlands regolith. In this paper we present the specifics of particle type composition and PSD for this reference composition. Furthermore. we use Figure-of-Merit (FoM) routines to measure the characteristics of a number of lunar regolith simulants against this reference composition. The lunar highlands regolith reference composition and the FoM results are presented to guide simulant producers and simulant users in their research and development processes.
Middleware Trade Study for NASA Domain
NASA Technical Reports Server (NTRS)
Bowman, Dan
2007-01-01
This presentation presents preliminary results of a trade study designed to assess three distributed simulation middleware technologies for support of the NASA Constellation Distributed Space Exploration Simulation (DSES) project and Test and Verification Distributed System Integration Laboratory (DSIL). The technologies are: the High Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and an XML-based variant of Distributed Interactive Simulation (DIS-XML) coupled with the Extensible Messaging and Presence Protocol (XMPP). According to the criteria and weights determined in this study, HLA scores better than the other two for DSES as well as the DSIL
Some VTOL head-up display drive-law problems and solutions
NASA Technical Reports Server (NTRS)
Merrick, Vernon K.
1993-01-01
A piloted simulation test was conducted on the Ames Research Center's vertical motion simulator (VMS) in support of the Phase 2A flight test of NASA's V/STOL systems research aircraft (VSRA). During the simulation several problems were found with the head-up display (HUD) symbol drive laws and the flightpath synthesis. These problems and the solutions devised to solve them are described. Most of the resulting HUD drive-law changes were implemented during the simulation and their effectiveness was verified. Subsequently both the HUD symbol drive-law and flightpath-synthesis changes were implemented in the VSRA and tested successfully in the Phase 2A flight tests.
NASA Technical Reports Server (NTRS)
Lawen, James, Jr.; Flowers, George T.
1992-01-01
This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective of the work is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified. The results are presented and discussed.
DspaceOgreTerrain 3D Terrain Visualization Tool
NASA Technical Reports Server (NTRS)
Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.
2012-01-01
DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.
Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre Junior, Janis; Seraidarian, Paulo Isaías
2009-01-01
This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the inter-mental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture.
Behaviors of printed circuit boards due to microwave supported curing process of coating materials.
Bremerkamp, Felix; Nowottnick, Mathias; Seehase, Dirk; Bui, Trinh Dung
2012-01-01
The Application of a microwave supported curing process for coatings in the field of electronic industry poses a challenge. Here the implementation of this technology is represented. Within the scope of the investigation special PCB Test Layouts were designed and the polymer curing process examined by the method of dielectric analysis. Furthermore the coupling of microwave radiation with conductive PCB structures was analyzed experimentally by means of special test boards. The formation of standing waves and regular heating distribution along the conductive wires on the PCB could be observed. The experimental results were compared with numerical simulation. In this context the numerical analysis of microwave PCB interaction led to important findings concerning wave propagation on wired PCB. The final valuation demonstrated a substantial similarity between numerical simulations and experimental results.
Simulation as a learning strategy: supporting undergraduate nursing students with disabilities.
Azzopardi, Toni; Johnson, Amanda; Phillips, Kirrilee; Dickson, Cathy; Hengstberger-Sims, Cecily; Goldsmith, Mary; Allan, Trevor
2014-02-01
To promote simulation as a learning strategy to support undergraduate nursing students with disabilities. Supporting undergraduate nursing students with disabilities has gained further momentum because of amendments to the Disability Discrimination Act in 2009. Providers of higher education must now ensure proactive steps to prevent discrimination against students with a disability are implemented to assist in course progression. Simulation allows for the impact of a student's disability to be assessed and informs the determination of reasonable adjustments to be implemented. Further suitable adjustments can then be determined in a safe environment and evaluated prior to scheduled placement. Auditing in this manner, offers a risk management strategy for all while maintaining the academic integrity of the program. Discursive. Low, medium and high fidelity simulation activities critically analysed and their application to support undergraduate nursing students with disabilities assessed. With advancing technology and new pedagogical approaches simulation as a learning strategy can play a significant role. In this role, simulation supports undergraduate nursing students with disabilities to meet course requirements, while offering higher education providers an important risk management strategy. The discussion recommends simulation is used to inform the determination of reasonable adjustments for undergraduate nursing students with disabilities as an effective, contemporary curriculum practice. Adoption of simulation, in this way, will meet three imperatives: comply with current legislative requirements, embrace advances in learning technologies and embed one of the six principles of inclusive curriculum. Achieving these imperatives is likely to increase accessibility for all students and offer students with a disability a supportive learning experience. Provides capacity to systematically assess, monitor, evaluate and support students with a disability. The students' reasonable adjustments can be determined prior to attending clinical practice to minimise risks and ensure the safety of all. © 2013 Blackwell Publishing Ltd.
Python-based geometry preparation and simulation visualization toolkits for STEPS
Chen, Weiliang; De Schutter, Erik
2014-01-01
STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial extension of Gillespie's Stochastic Simulation Algorithm (SSA) in complex tetrahedral geometries. An extensive Python-based interface is provided to STEPS so that it can interact with the large number of scientific packages in Python. However, a gap existed between the interfaces of these packages and the STEPS user interface, where supporting toolkits could reduce the amount of scripting required for research projects. This paper introduces two new supporting toolkits that support geometry preparation and visualization for STEPS simulations. PMID:24782754
HL-20 operations and support requirements for the Personnel Launch System mission
NASA Technical Reports Server (NTRS)
Morris, W. D.; White, Nancy H.; Caldwell, Ronald G.
1993-01-01
The processing, mission planning, and support requirements were defined for the HL-20 lifting-body configuration that can serve as a Personnel Launch System. These requirements were based on the assumption of an operating environment that incorporates aircraft and airline support methods and techniques that are applicable to operations. The study covered the complete turnaround process for the HL-20, including landing through launch, and mission operations, but did not address the support requirements of the launch vehicle except for the integrated activities. Support is defined in terms of manpower, staffing levels, facilities, ground support equipment, maintenance/sparing requirements, and turnaround processing time. Support results were drawn from two contracted studies, plus an in-house analysis used to define the maintenance manpower. The results of the contracted studies were used as the basis for a stochastic simulation of the support environment to determine the sufficiency of support and the effect of variance on vehicle processing. Results indicate the levels of support defined for the HL-20 through this process to be sufficient to achieve the desired flight rate of eight flights per year.
The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System
NASA Technical Reports Server (NTRS)
Proctor, Fred H.
1998-01-01
Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.
Development of simulation computer complex specification
NASA Technical Reports Server (NTRS)
1973-01-01
The Training Simulation Computer Complex Study was one of three studies contracted in support of preparations for procurement of a shuttle mission simulator for shuttle crew training. The subject study was concerned with definition of the software loads to be imposed on the computer complex to be associated with the shuttle mission simulator and the development of procurement specifications based on the resulting computer requirements. These procurement specifications cover the computer hardware and system software as well as the data conversion equipment required to interface the computer to the simulator hardware. The development of the necessary hardware and software specifications required the execution of a number of related tasks which included, (1) simulation software sizing, (2) computer requirements definition, (3) data conversion equipment requirements definition, (4) system software requirements definition, (5) a simulation management plan, (6) a background survey, and (7) preparation of the specifications.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2011-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.
Robustness and Uncertainty: Applications for Policy in Climate and Hydrological Modeling
NASA Astrophysics Data System (ADS)
Fields, A. L., III
2015-12-01
Policymakers must often decide how to proceed when presented with conflicting simulation data from hydrological, climatological, and geological models. While laboratory sciences often appeal to the reproducibility of results to argue for the validity of their conclusions, simulations cannot use this strategy for a number of pragmatic and methodological reasons. However, robustness of predictions and causal structures can serve the same function for simulations as reproducibility does for laboratory experiments and field observations in either adjudicating between conflicting results or showing that there is insufficient justification to externally validate the results. Additionally, an interpretation of the argument from robustness is presented that involves appealing to the convergence of many well-built and diverse models rather than the more common version which involves appealing to the probability that one of a set of models is likely to be true. This interpretation strengthens the case for taking robustness as an additional requirement for the validation of simulation results and ultimately supports the idea that computer simulations can provide information about the world that is just as trustworthy as data from more traditional laboratory studies and field observations. Understanding the importance of robust results for the validation of simulation data is especially important for policymakers making decisions on the basis of potentially conflicting models. Applications will span climate, hydrological, and hydroclimatological models.
2012-01-01
Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated. PMID:23031537
Simulation-optimization model for production planning in the blood supply chain.
Osorio, Andres F; Brailsford, Sally C; Smith, Honora K; Forero-Matiz, Sonia P; Camacho-Rodríguez, Bernardo A
2017-12-01
Production planning in the blood supply chain is a challenging task. Many complex factors such as uncertain supply and demand, blood group proportions, shelf life constraints and different collection and production methods have to be taken into account, and thus advanced methodologies are required for decision making. This paper presents an integrated simulation-optimization model to support both strategic and operational decisions in production planning. Discrete-event simulation is used to represent the flows through the supply chain, incorporating collection, production, storing and distribution. On the other hand, an integer linear optimization model running over a rolling planning horizon is used to support daily decisions, such as the required number of donors, collection methods and production planning. This approach is evaluated using real data from a blood center in Colombia. The results show that, using the proposed model, key indicators such as shortages, outdated units, donors required and cost are improved.
Planning and simulation of medical robot tasks.
Raczkowsky, J; Bohner, P; Burghart, C; Grabowski, H
1998-01-01
Complex techniques for planning and performing surgery revolutionize medical interventions. In former times preoperative planning of interventions usually took place in the surgeons mind. Today's new computer techniques allow the surgeon to discuss various operation methods for a patient and to visualize them three-dimensionally. The use of computer assisted surgical planning helps to get better results of a treatment and supports the surgeon before and during the surgical intervention. In this paper we are presenting our planning and simulation system for operations in maxillo-facial surgery. All phases of a surgical intervention are supported. Chapter 1 gives a description of the medical motivation for our planning system and its environment. In Chapter 2 the basic components are presented. The planning system is depicted in Chapter 3 and a simulation of a robot assisted surgery can be found in Chapter 4. Chapter 5 concludes the paper and gives a survey about our future work.
Heim, Joseph A; Huang, Hao; Zabinsky, Zelda B; Dickerson, Jane; Wellner, Monica; Astion, Michael; Cruz, Doris; Vincent, Jeanne; Jack, Rhona
2015-08-01
Design and implement a concurrent campaign of influenza immunization and tuberculosis (TB) screening for health care workers (HCWs) that can reduce the number of clinic visits for each HCW. A discrete-event simulation model was developed to support issues of resource allocation decisions in planning and operations phases. The campaign was compressed to100 days in 2010 and further compressed to 75 days in 2012 and 2013. With more than 5000 HCW arrivals in 2011, 2012 and 2013, the 14-day goal of TB results was achieved for each year and reduced to about 4 days in 2012 and 2013. Implementing a concurrent campaign allows less number of visiting clinics and the compressing of campaign length allows earlier immunization. The support of simulation modelling can provide useful evaluations of different configurations. © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Ungár, Tamás; Toth, Laszlo S.
The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less
NASA Astrophysics Data System (ADS)
Ekberg, Joakim; Timpka, Toomas; Morin, Magnus; Jenvald, Johan; Nyce, James M.; Gursky, Elin A.; Eriksson, Henrik
Computer simulations have emerged as important tools in the preparation for outbreaks of infectious disease. To support the collaborative planning and responding to the outbreaks, reports from simulations need to be transparent (accessible) with regard to the underlying parametric settings. This paper presents a design for generation of simulation reports where the background settings used in the simulation models are automatically visualized. We extended the ontology-management system Protégé to tag different settings into categories, and included these in report generation in parallel to the simulation outcomes. The report generator takes advantage of an XSLT specification and collects the documentation of the particular simulation settings into abridged XMLs including also summarized results. We conclude that even though inclusion of critical background settings in reports may not increase the accuracy of infectious disease simulations, it can prevent misunderstandings and less than optimal public health decisions.
David Hulse; Allan Branscomb; Chris Enright; Bart Johnson; Cody Evers; John Bolte; Alan Ager
2016-01-01
This article offers a literature-supported conception and empirically grounded analysis of surprise by exploring the capacity of scenario-driven, agent-based simulation models to better anticipate it. Building on literature-derived definitions and typologies of surprise, and using results from a modeled 81,000 ha study area in a wildland-urban interface of western...
Lee, Tai-Sung; Wong, Kin-Yiu; Giambasu, George M.; York, Darrin M.
2016-01-01
Herein we summarize our progress toward the understanding of hammerhead ribozyme (HHR) catalysis through a multiscale simulation strategy. Simulation results collectively paint a picture of HHR catalysis: HHR first folds to form an electronegative active site pocket to recruit a threshold occupation of cationic charges, either a Mg2+ ion or multiple monovalent cations. Catalytically active conformations that have good in-line fitness are supported by specific metal ion coordination patterns that involve either a bridging Mg2+ ion or multiple Na+ ions, one of which is also in a bridging coordination pattern. In the case of a single Mg2+ ion bound in the active site, the Mg2+ ion undergoes a migration that is coupled with deprotonation of the nucleophile (C17:O2′). As the reaction proceeds, the Mg2+ ion stabilizes the accumulating charge of the leaving group and significantly increases the general acid ability of G8:O2′. Further computational mutagenesis simulations suggest that the disruptions due to mutations may severely impact HHR catalysis at different stages of the reaction. Catalytic mechanisms supported by the simulation results are consistent with available structural and biochemical experiments, and together they advance our understanding of HHR catalysis. PMID:24156941
Patient-specific blood flow simulation to improve intracranial aneurysm diagnosis
NASA Astrophysics Data System (ADS)
Fenz, Wolfgang; Dirnberger, Johannes
2011-03-01
We present a novel simulation system of blood flow through intracranial aneurysms including the interaction between blood lumen and vessel tissue. It provides the means to estimate rupture risks by calculating the distribution of pressure and shear stresses in the aneurysm, in order to support the planning of clinical interventions. So far, this has only been possible with commercial simulation packages originally targeted at industrial applications, whereas our implementation focuses on the intuitive integration into clinical workflow. Due to the time-critical nature of the application, we exploit most efficient state-of-the-art numerical methods and technologies together with high performance computing infrastructures (Austrian Grid). Our system builds a three-dimensional virtual replica of the patient's cerebrovascular system from X-ray angiography, CT or MR images. The physician can then select a region of interest which is automatically transformed into a tetrahedral mesh. The differential equations for the blood flow and the wall elasticity are discretized via the finite element method (FEM), and the resulting linear equation systems are handled by an algebraic multigrid (AMG) solver. The wall displacement caused by the blood pressure is calculated using an iterative fluid-structure interaction (FSI) algorithm, and the fluid mesh is deformed accordingly. First simulation results on measured patient geometries show good medical relevance for diagnostic decision support.
NASA Astrophysics Data System (ADS)
Pasquato, Mario; Chung, Chul
2016-05-01
Context. Machine-learning (ML) solves problems by learning patterns from data with limited or no human guidance. In astronomy, ML is mainly applied to large observational datasets, e.g. for morphological galaxy classification. Aims: We apply ML to gravitational N-body simulations of star clusters that are either formed by merging two progenitors or evolved in isolation, planning to later identify globular clusters (GCs) that may have a history of merging from observational data. Methods: We create mock-observations from simulated GCs, from which we measure a set of parameters (also called features in the machine-learning field). After carrying out dimensionality reduction on the feature space, the resulting datapoints are fed in to various classification algorithms. Using repeated random subsampling validation, we check whether the groups identified by the algorithms correspond to the underlying physical distinction between mergers and monolithically evolved simulations. Results: The three algorithms we considered (C5.0 trees, k-nearest neighbour, and support-vector machines) all achieve a test misclassification rate of about 10% without parameter tuning, with support-vector machines slightly outperforming the others. The first principal component of feature space correlates with cluster concentration. If we exclude it from the regression, the performance of the algorithms is only slightly reduced.
Comprehensive evaluation of garment assembly line with simulation
NASA Astrophysics Data System (ADS)
Xu, Y.; Thomassey, S.; Chen, Y.; Zeng, X.
2017-10-01
In this paper, a comprehensive evaluation system is established to assess the garment production performance. It is based on performance indicators and supported with the corresponding results obtained by manual calculation or computer simulation. The assembly lines of a typical men’s shirt are taken as the study objects. With the comprehensive evaluation results, garments production arrangement scenarios are better analysed and then the appropriate one is supposed to be put into actual production. This will be a guidance given to companies on quick decision-making and multi-objective optimization of garment production.
Creation of deuterium protective layer below the tungsten surface
NASA Astrophysics Data System (ADS)
Krstic, Predrag; Kaganovich, Igor; Startsev, Edward
2014-10-01
By cumulative irradiation of both pre-damaged and virgin surfaces of monocrystal tungsten by deuterium atoms of impact energy of few tens of eV, we simulate by classical molecular dynamics the creation of a deuterium protective layer. The depth and width of the layer depend on the deuterium impact energy and the diffusion rate of deuterium in tungsten, the latter being influenced by the tungsten temperature and damage. Found simulation results are in concert with the experimental results, found recently in DIFFER. Support of the PPPL LDRD project acknowledged.
H2LIFT: global navigation simulation ship tracking and WMD detection in the maritime domain
NASA Astrophysics Data System (ADS)
Wyffels, Kevin
2007-04-01
This paper presents initial results for a tracking simulation of multiple maritime vehicles for use in a data fusion program detecting Weapons of Mass Destruction (WMD). This simulation supports a fusion algorithm (H2LIFT) for collecting and analyzing data providing a heuristic analysis tool for detecting weapons of mass destruction in the maritime domain. Tools required to develop a navigational simulation fitting a set of project objectives are introduced for integration into the H2LIFT algorithm. Emphasis is placed on the specific requirements of the H2LIFT project, however the basic equations, algorithms, and methodologies can be used as tools in a variety of scenario simulations. Discussion will be focused on track modeling (e.g. position tracking of ships), navigational techniques, WMD detection, and simulation of these models using Matlab and Simulink. Initial results provide absolute ship position data for a given multi-ship maritime scenario with random generation of a given ship containing a WMD. Required coordinate systems, conversions between coordinate systems, Earth modeling techniques, and navigational conventions and techniques are introduced for development of the simulations.
NASA Astrophysics Data System (ADS)
Nelson, B. A.; Akcay, C.; Glasser, A. H.; Hansen, C. J.; Jarboe, T. R.; Marklin, G. J.; Milroy, R. D.; Morgan, K. D.; Norgaard, P. C.; Shumlak, U.; Sutherland, D. A.; Victor, B. S.; Sovinec, C. R.; O'Bryan, J. B.; Held, E. D.; Ji, J.-Y.; Lukin, V. S.
2014-10-01
The Plasma Science and Innovation Center (PSI-Center - http://www.psicenter.org) supports collaborating validation platform experiments with 3D extended MHD simulations using the NIMROD, HiFi, and PSI-TET codes. Collaborators include the Bellan Plasma Group (Caltech), CTH (Auburn U), HBT-EP (Columbia), HIT-SI (U Wash-UW), LTX (PPPL), MAST (Culham), Pegasus (U Wisc-Madison), SSX (Swarthmore College), TCSU (UW), and ZaP/ZaP-HD (UW). The PSI-Center is exploring application of validation metrics between experimental data and simulations results. Biorthogonal decomposition (BOD) is used to compare experiments with simulations. BOD separates data sets into spatial and temporal structures, giving greater weight to dominant structures. Several BOD metrics are being formulated with the goal of quantitive validation. Results from these simulation and validation studies, as well as an overview of the PSI-Center status will be presented.
Causal Effects of Language on the Exchange of Social Support in an Online Community.
Biehl, Sarah A; Kahn, Jeffrey H
2016-07-01
The provision of social support is a common function of many online communities, but a full understanding of the causal effect of emotion language on the provision of support requires experimental study. The frequency of positive- and negative-emotion words in simulated posts requesting emotional support was manipulated and presented to a sample of college students (N = 442) who were randomly assigned to read one of four simulated posts. Participants completed measures of the original poster's (OP's) distress, and they provided a response to the simulated post. These responses were subjected to a computerized text analysis, and their overall effectiveness was rated by two independent judges. Fewer positive-emotion and more negative-emotion words in the simulated post led to perceptions that the OP was distressed and unable to cope. Participant-generated responses to the post were highest in positive-emotion words when the simulated post was high in positive-emotion words, but low in negative-emotion words. Finally, simulated posts that were low in positive-emotion words received responses that were judged to be more effective than did simulated posts that were high in positive-emotion words. These findings have implications for understanding the role of emotion language on the exchange of online social support.
Development of the CELSS emulator at NASA. Johnson Space Center
NASA Technical Reports Server (NTRS)
Cullingford, Hatice S.
1990-01-01
The Closed Ecological Life Support System (CELSS) Emulator is under development. It will be used to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. Described here is Version 1.0 of the CELSS Emulator that was initiated in 1988 on the Johnson Space Center (JSC) Multi Purpose Applications Console Test Bed as the simulation framework. The run model of the simulation system now contains a CELSS model called BLSS. The CELSS simulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.
On extending parallelism to serial simulators
NASA Technical Reports Server (NTRS)
Nicol, David; Heidelberger, Philip
1994-01-01
This paper describes an approach to discrete event simulation modeling that appears to be effective for developing portable and efficient parallel execution of models of large distributed systems and communication networks. In this approach, the modeler develops submodels using an existing sequential simulation modeling tool, using the full expressive power of the tool. A set of modeling language extensions permit automatically synchronized communication between submodels; however, the automation requires that any such communication must take a nonzero amount off simulation time. Within this modeling paradigm, a variety of conservative synchronization protocols can transparently support conservative execution of submodels on potentially different processors. A specific implementation of this approach, U.P.S. (Utilitarian Parallel Simulator), is described, along with performance results on the Intel Paragon.
NASA Astrophysics Data System (ADS)
Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn
2018-04-01
Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Colby, Robert J.; Vurpillot, F.
2014-03-26
Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositionalmore » errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.« less
Modeling Advance Life Support Systems
NASA Technical Reports Server (NTRS)
Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan
1996-01-01
Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.
Regenerative life support system research and concepts
NASA Technical Reports Server (NTRS)
1988-01-01
Life support systems that involve recycling of atmospheres, water, food and waste are so complex that models incorporating all the interactions and relationships are vital to design, development, simulations, and ultimately to control of space qualified systems. During early modeling studies, FORTRAN and BASIC programs were used to obtain numerical comparisons of the performance of different regenerative concepts. Recently, models were made by combining existing capabilities with expert systems to establish an Intelligent Design Support Environment for simpliflying user interfaces and to address the need for the engineering aspects. Progress was also made toward modeling and evaluating the operational aspects of closed loop life support systems using Time-step and Dynamic simulations over a period of time. Example models are presented which show the status and potential of developed modeling techniques. For instance, closed loop systems involving algae systeMs for atmospheric purification and food supply augmentation, plus models employing high plants and solid waste electrolysis are described and results of initial evaluations are presented.
Progress with MGI and CHI Research on NSTX-U
NASA Astrophysics Data System (ADS)
Raman, R.; Lay, W.-S.; Jarboe, T. R.; Nelson, B. A.; Mueller, D.; Gerhardt, S. P.; Ebrahimi, F.; Jardin, S. C.; Taylor, G.
2016-10-01
NSTX-U experiments on Massive Gas Injection (MGI) will offer new insight to the MGI database by studying gas assimilation efficiencies for MGI gas injection from different poloidal locations. In support of this research, two ITER-type MGI valves have been successfully commissioned on NSTX-U. Results from the planned experiment `Comparison of Private Flux Region with Conventional Mid-plane MGI on NSTX-U', will be reported. In support of planned Coaxial Helicity Injection (CHI) research on NSTX-U, a new high-resolution grid has been generated for TSC simulations of CHI. This improves the resolution of the CHI injector region, and better models the closely-spaced divertor coils on NSTX-U. These new simulations support previous analysis that suggests a solenoid-free plasma current initiation capability of more than 400kA on NSTX-U. This work is supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-FG02-99ER54519 AM08, and DE-SC0006757.
Simulating PACE Global Ocean Radiances
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Rousseaux, Cecile S.
2017-01-01
The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P < 0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and a CDOC (r =0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250-800 nm. These unassimilated radiances were within 0.074 mW/sq cm/micron/sr of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of 10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PACE, ocean color, water-leaving radiances, biogeochemical model, radiative transfer model
Simulating PACE Global Ocean Radiances
Gregg, Watson W.; Rousseaux, Cécile S.
2017-01-01
The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P <0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and aCDOC (r = 0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250–800 nm. These unassimilated radiances were within −0.074 mW cm−2 μm1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of −10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PMID:29292403
PyNN: A Common Interface for Neuronal Network Simulators.
Davison, Andrew P; Brüderle, Daniel; Eppler, Jochen; Kremkow, Jens; Muller, Eilif; Pecevski, Dejan; Perrinet, Laurent; Yger, Pierre
2008-01-01
Computational neuroscience has produced a diversity of software for simulations of networks of spiking neurons, with both negative and positive consequences. On the one hand, each simulator uses its own programming or configuration language, leading to considerable difficulty in porting models from one simulator to another. This impedes communication between investigators and makes it harder to reproduce and build on the work of others. On the other hand, simulation results can be cross-checked between different simulators, giving greater confidence in their correctness, and each simulator has different optimizations, so the most appropriate simulator can be chosen for a given modelling task. A common programming interface to multiple simulators would reduce or eliminate the problems of simulator diversity while retaining the benefits. PyNN is such an interface, making it possible to write a simulation script once, using the Python programming language, and run it without modification on any supported simulator (currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN increases the productivity of neuronal network modelling by providing high-level abstraction, by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic analysis, visualization and data-management tools. PyNN increases the reliability of modelling studies by making it much easier to check results on multiple simulators. PyNN is open-source software and is available from http://neuralensemble.org/PyNN.
PyNN: A Common Interface for Neuronal Network Simulators
Davison, Andrew P.; Brüderle, Daniel; Eppler, Jochen; Kremkow, Jens; Muller, Eilif; Pecevski, Dejan; Perrinet, Laurent; Yger, Pierre
2008-01-01
Computational neuroscience has produced a diversity of software for simulations of networks of spiking neurons, with both negative and positive consequences. On the one hand, each simulator uses its own programming or configuration language, leading to considerable difficulty in porting models from one simulator to another. This impedes communication between investigators and makes it harder to reproduce and build on the work of others. On the other hand, simulation results can be cross-checked between different simulators, giving greater confidence in their correctness, and each simulator has different optimizations, so the most appropriate simulator can be chosen for a given modelling task. A common programming interface to multiple simulators would reduce or eliminate the problems of simulator diversity while retaining the benefits. PyNN is such an interface, making it possible to write a simulation script once, using the Python programming language, and run it without modification on any supported simulator (currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN increases the productivity of neuronal network modelling by providing high-level abstraction, by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic analysis, visualization and data-management tools. PyNN increases the reliability of modelling studies by making it much easier to check results on multiple simulators. PyNN is open-source software and is available from http://neuralensemble.org/PyNN. PMID:19194529
STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies
2012-01-01
Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates models of cellular reaction–diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/ PMID:22574658
Kinesthetic control simulator. [for pilot training
NASA Technical Reports Server (NTRS)
Hill, P. R.; Thomas, D. F., Jr. (Inventor)
1975-01-01
A kinesthetic control simulator is reported that has a flat base upon which rests a support structure having a lower spherical surface for rotation on the base plate with columns which support a platform above the support structure at a desired location with respect to the center of curvature of the spherical surface. A handrail is at approximately the elevation of the hips of the operator above the platform with a ring attached to the support structure which may be used to limit the angle of tilt. Five degree freedom-of-motion can be obtained by utilizing an air pad structure for support of the control simulator.
Reimplementation of the Biome-BGC model to simulate successional change.
Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E
2005-04-01
Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.
Mission Simulation Facility: Simulation Support for Autonomy Development
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael
2003-01-01
The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.
Computational Aerothermodynamic Assessment of Space Shuttle Orbiter Tile Damage: Open Cavities
NASA Technical Reports Server (NTRS)
Pulsonetti, Maria; Wood, William
2005-01-01
Computational aerothermodynamic simulations of Orbiter windside tile damage in flight were performed in support of the Space Shuttle Return-to-Flight effort. The simulations were performed for both hypervelocity flight and low-enthalpy wind tunnel conditions and contributed to the Return-to-Flight program by providing information to support a variety of damage scenario analyses. Computations at flight conditions were performed at or very near the peak heating trajectory point for multiple damage scenarios involving damage windside acreage reaction cured glass (RCG) coated silica tile(s). The cavities formed by the missing tile examined in this study were relatively short leading to flow features which indicated open cavity behavior. Results of the computations indicated elevated heating bump factor levels predicted for flight over the predictions for wind tunnel conditions. The peak heating bump factors, defined as the local heating to a reference value upstream of the cavity, on the cavity floor for flight simulation were 67% larger than the peak wind tunnel simulation value. On the downstream face of the cavity the flight simulation values were 60% larger than the wind tunnel simulation values. On the outer mold line (OML) downstream of the cavity, the flight values are about 20% larger than the wind tunnel simulation values. The higher heating bump factors observed in the flight simulations were due to the larger driving potential in terms of energy entering the cavity for the flight simulations. This is evidenced by the larger rate of increase in the total enthalpy through the boundary layer prior to the cavity for the flight simulation.
Simulation of Aircraft Deployment Support
2003-03-01
Dassault Aviation Military Customer Support Division 78, Quai Marcel Dassault Cedex 300 92552 St Cloud Cedex France Tel.: 33 147 1163 23 Fax.: 33 147...Deployment Support" (SADS) was developed by the Military Customer Support Division of Dassault Aviation to perform simulations for logistics deployment and...and support Chain Management for the management of the logistics resources (replenishment of consumables and repair of parts, inventory management
NASA Astrophysics Data System (ADS)
Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana
2012-06-01
Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.
How Effective Is Instructional Support for Learning with Computer Simulations?
ERIC Educational Resources Information Center
Eckhardt, Marc; Urhahne, Detlef; Conrad, Olaf; Harms, Ute
2013-01-01
The study examined the effects of two different instructional interventions as support for scientific discovery learning using computer simulations. In two well-known categories of difficulty, data interpretation and self-regulation, instructional interventions for learning with computer simulations on the topic "ecosystem water" were developed…
2017-06-01
designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily in...systems, simulation, discrete event simulation, design of experiments, data analysis, simplekit, nearly orthogonal and balanced designs 15. NUMBER OF... designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily
Ha, D; Bertocci, G; Deemer, E; van Roosmalen, L; Karg, P
2000-01-01
Automotive seats are tested for compliance with federal motor vehicle safety standards (FMVSS) to assure safety during impact. Many wheelchair users rely upon their wheelchairs to serve as vehicle seats. However, the crashworthiness of these wheelchairs during impact is often unknown. This study evaluated the crashworthiness of five combinations of wheelchair back support surfaces and attachment hardware using a static test procedure simulating crash loading conditions. The crashworthiness was tested by applying a simulated rearward load to each seat-back system. The magnitude of the applied load was established through computer simulation and biodynamic calculations. None of the five tested wheelchair back supports withstood the simulated crash loads. All failures were associated with attachment hardware.
NASA Technical Reports Server (NTRS)
Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.
1998-01-01
A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.
A Unique Software System For Simulation-to-Flight Research
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Hutchinson, Brian K.
2001-01-01
"Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.
Mechanisms test bed math model modification and simulation support
NASA Technical Reports Server (NTRS)
Gilchrist, Andrea C.; Tobbe, Patrick A.
1995-01-01
This report summarizes the work performed under contract NAS8-38771 in support of the Marshall Space Flight Center Six Degree of Freedom Motion Facility and Flight Robotics Laboratory. The contract activities included the development of the two flexible body and Remote Manipulator System simulations, Dynamic Overhead Target Simulator control system and operating software, Global Positioning System simulation, and Manipulator Coupled Spacecraft Controls Testbed. Technical support was also provided for the Lightning Imaging Sensor and Solar X-Ray Imaging programs. The cover sheets and introductory sections for the documentation written under this contract are provided as an appendix.
NASA Astrophysics Data System (ADS)
Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan
2015-10-01
Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.
Dshell++: A Component Based, Reusable Space System Simulation Framework
NASA Technical Reports Server (NTRS)
Lim, Christopher S.; Jain, Abhinandan
2009-01-01
This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, M.E.
1997-12-05
This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure thatmore » the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.« less
Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas
2011-12-15
The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research can be accurately described and combined.
Daniels, Stijn; Vanrie, Jan; Dreesen, An; Brijs, Tom
2010-05-01
Although speed limits are indicated by road signs, road users are not always aware, while driving, of the actual speed limit on a given road segment. The Roads and Traffic Agency developed additional road markings in order to support driver decisions on speed on 70 km/h roads in Flanders-Belgium. In this paper the results are presented of two evaluation studies, both a field study and a simulator study, on the effects of the additional road markings on speed behaviour. The results of the field study showed no substantial effect of the markings on speed behaviour. Neither did the simulator study, with slightly different stimuli. Nevertheless an effect on lateral position was noticed in the simulator study, showing at least some effect of the markings. The role of conspicuity of design elements and expectations towards traffic environments is discussed. Both studies illustrate well some strengths and weaknesses of observational field studies compared to experimental simulator studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Compensation for time delay in flight simulator visual-display systems
NASA Technical Reports Server (NTRS)
Crane, D. F.
1983-01-01
A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.
Laboratory evaluation of the pointing stability of the ASPS Vernier System
NASA Technical Reports Server (NTRS)
1980-01-01
The annular suspension and pointing system (ASPS) is an end-mount experiment pointing system designed for use in the space shuttle. The results of the ASPS Vernier System (AVS) pointing stability tests conducted in a laboratory environment are documented. A simulated zero-G suspension was used to support the test payload in the laboratory. The AVS and the suspension were modelled and incorporated into a simulation of the laboratory test. Error sources were identified and pointing stability sensitivities were determined via simulation. Statistical predictions of laboratory test performance were derived and compared to actual laboratory test results. The predicted mean pointing stability during simulated shuttle disturbances was 1.22 arc seconds; the actual mean laboratory test pointing stability was 1.36 arc seconds. The successful prediction of laboratory test results provides increased confidence in the analytical understanding of the AVS magnetic bearing technology and allows confident prediction of in-flight performance. Computer simulations of ASPS, operating in the shuttle disturbance environment, predict in-flight pointing stability errors less than 0.01 arc seconds.
Effect of Impact Location on the Response of Shuttle Wing Leading Edge Panel 9
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Spellman, Regina L.; Hardy, Robin C.; Fasanella, Edwin L.; Jackson, Karen E.
2005-01-01
The objective of this paper is to compare the results of several simulations performed to determine the worst-case location for a foam impact on the Space Shuttle wing leading edge. The simulations were performed using the commercial non-linear transient dynamic finite element code, LS-DYNA. These simulations represent the first in a series of parametric studies performed to support the selection of the worst-case impact scenario. Panel 9 was selected for this study to enable comparisons with previous simulations performed during the Columbia Accident Investigation. The projectile for this study is a 5.5-in cube of typical external tank foam weighing 0.23 lb. Seven locations spanning the panel surface were impacted with the foam cube. For each of these cases, the foam was traveling at 1000 ft/s directly aft, along the orbiter X-axis. Results compared from the parametric studies included strains, contact forces, and material energies for various simulations. The results show that the worst case impact location was on the top surface, near the apex.
Fatalla, Abdalbseet A; Song, Ke; Du, Tianfeng; Cao, Yingguang
2012-02-01
Previously, the choice of prosthetic implant-retained overdentures has depended on data from previous studies about the retention-fatigue strength of the attachment system selected. Little or no data have been available on the correlation between the attachment system selected and the overdenture support configuration. The purpose of the present study was to evaluate the retention force and fatigue resistance of three attachment systems and four support designs of overdenture prosthesis. Four lower edentulous acrylic models were prepared and eight combinations of attachments groups were investigated in the study. These included: O-Rings with mini-dental implants (MDIs), Dalbo elliptic with Dalbo Rotex and fabricated flexible acrylic attachments with both MDI and Dalbo Rotex. The study was divided into four test groups: groups A and B, controls, and groups C and D, experimental groups. Control group A contained three overdenture supports: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with Dalbo Rotex screwed in. Control group B contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with Dalbo Rotex screwed in at the same MDI position, but on the left side of the model. Experimental group C contained three overdenture support foundations: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with MDI screwed in. Experimental group D contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with MDIs screwed in at the same MDI position, but on the left side of the model. Each group was further divided into two subgroups according to attachment type used. Five samples were prepared for each group. Retention force (N) values were recorded initially (0 cycles) and after 360, 720, 1440 and 2880 insertion and removal cycles. During the tensile test a cross-head speed of 10 mm/min was applied. Values of absolute force (AF) and relative force (RF) were statistically analyzed by two-way ANOVA and multiple comparison Tukey's tests between groups and cycles periods. The results of fatigue tests showed a 50% reduction in retention force in the subgroups with flexible attachments. A triangular design of overdenture support foundations with O-Ring attachments revealed the lowest value of AF and a relatively high reduction in RF. The four overdenture support designs with flexible acrylic attachments improved the retention force and reduced the fatigue retention. Furthermore, the results of the investigation demonstrate that flexible acrylic attachments for both teeth and implant-supported overdentures offer a wide range of retention forces.
ERIC Educational Resources Information Center
Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.
2016-01-01
This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…
WRF/CMAQ AQMEII3 Simulations of US Regional-Scale ...
Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary conditions prepared from four different global models. Results indicate that the impacts of different boundary conditions are significant for ozone throughout the year and most pronounced outside the summer season. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf
2015-01-01
Background To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Methods and Results Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results. PMID:25915061
Database Driven 6-DOF Trajectory Simulation for Debris Transport Analysis
NASA Technical Reports Server (NTRS)
West, Jeff
2008-01-01
Debris mitigation and risk assessment have been carried out by NASA and its contractors supporting Space Shuttle Return-To-Flight (RTF). As a part of this assessment, analysis of transport potential for debris that may be liberated from the vehicle or from pad facilities prior to tower clear (Lift-Off Debris) is being performed by MSFC. This class of debris includes plume driven and wind driven sources for which lift as well as drag are critical for the determination of the debris trajectory. As a result, NASA MSFC has a need for a debris transport or trajectory simulation that supports the computation of lift effect in addition to drag without the computational expense of fully coupled CFD with 6-DOF. A database driven 6-DOF simulation that uses aerodynamic force and moment coefficients for the debris shape that are interpolated from a database has been developed to meet this need. The design, implementation, and verification of the database driven six degree of freedom (6-DOF) simulation addition to the Lift-Off Debris Transport Analysis (LODTA) software are discussed in this paper.
Performance of a Regional Aeronautical Telecommunications Network
NASA Technical Reports Server (NTRS)
Bretmersky, Steven C.; Ripamonti, Claudio; Konangi, Vijay K.; Kerczewski, Robert J.
2001-01-01
This paper reports the findings of the simulation of the ATN (Aeronautical Telecommunications Network) for three typical average-sized U.S. airports and their associated air traffic patterns. The models of the protocols were designed to achieve the same functionality and meet the ATN specifications. The focus of this project is on the subnetwork and routing aspects of the simulation. To maintain continuous communication between the aircrafts and the ground facilities, a model based on mobile IP is used. The results indicate that continuous communication is indeed possible. The network can support two applications of significance in the immediate future FTP and HTTP traffic. Results from this simulation prove the feasibility of development of the ATN concept for AC/ATM (Advanced Communications for Air Traffic Management).
Multi-Fluid Simulations of Field Reversed Configuration Formation
NASA Astrophysics Data System (ADS)
Sousa, Eder; Martin, Robert
2017-10-01
The use of field reversed configuration (FRC) have been studied extensively for fusion application but here we investigate them for propulsion purposes. FRCs have the potential to produce highly variable thrust and specific impulse using different gases as propellant. Aspects of the FRC formation physics, using a rotating magnetic field (RMF) at low power, are simulated using a multi-fluid plasma model. Results are compared with experimental observations with emphasis in the development of instabilities and robustness of the field reversal. The use of collisional radiative models are used to help compare experiment versus simulation results. Distribution A: Approved for public release; distribution unlimited; Clearance No. 17445. This work is supported by the Air Force Office of Scientific Research Grant Number 17RQCOR465.
High-fidelity meshes from tissue samples for diffusion MRI simulations.
Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C
2010-01-01
This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.
Simulating Social Networks of Online Communities: Simulation as a Method for Sociability Design
NASA Astrophysics Data System (ADS)
Ang, Chee Siang; Zaphiris, Panayiotis
We propose the use of social simulations to study and support the design of online communities. In this paper, we developed an Agent-Based Model (ABM) to simulate and study the formation of social networks in a Massively Multiplayer Online Role Playing Game (MMORPG) guild community. We first analyzed the activities and the social network (who-interacts-with-whom) of an existing guild community to identify its interaction patterns and characteristics. Then, based on the empirical results, we derived and formalized the interaction rules, which were implemented in our simulation. Using the simulation, we reproduced the observed social network of the guild community as a means of validation. The simulation was then used to examine how various parameters of the community (e.g. the level of activity, the number of neighbors of each agent, etc) could potentially influence the characteristic of the social networks.
New Turbulent Multiphase Flow Facilities for Simulation Benchmarking
NASA Astrophysics Data System (ADS)
Teoh, Chee Hau; Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui
2017-11-01
The Fluid Transport Lab at Penn State has devoted last few years on developing new experimental facilities to unveil the underlying physics of coupling between solid-gas and gas-liquid multiphase flow in a turbulent environment. In this poster, I will introduce one bubbly flow facility and one dusty flow facility for validating and verifying simulation results. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.
pV3-Gold Visualization Environment for Computer Simulations
NASA Technical Reports Server (NTRS)
Babrauckas, Theresa L.
1997-01-01
A new visualization environment, pV3-Gold, can be used during and after a computer simulation to extract and visualize the physical features in the results. This environment, which is an extension of the pV3 visualization environment developed at the Massachusetts Institute of Technology with guidance and support by researchers at the NASA Lewis Research Center, features many tools that allow users to display data in various ways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ronald W.; Collins, Benjamin S.; Godfrey, Andrew T.
2016-12-09
In order to support engineering analysis of Virtual Environment for Reactor Analysis (VERA) model results, the Consortium for Advanced Simulation of Light Water Reactors (CASL) needs a tool that provides visualizations of HDF5 files that adhere to the VERAOUT specification. VERAView provides an interactive graphical interface for the visualization and engineering analyses of output data from VERA. The Python-based software provides instantaneous 2D and 3D images, 1D plots, and alphanumeric data from VERA multi-physics simulations.
NASA Technical Reports Server (NTRS)
Bruce, Kevin R.
1986-01-01
A Mach/CAS control system using an elevator was designed and developed for use on the NASA TCV B737 aircraft to support research in profile descent procedures and approach energy management. The system was designed using linear analysis techniques primarily. The results were confirmed and the system validated at additional flight conditions using a nonlinear 737 aircraft simulation. All design requirements were satisfied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, David G.; Cook, Marvin A.
This report summarizes collaborative efforts between Secure Scalable Microgrid and Korean Institute of Energy Research team members . The efforts aim to advance microgrid research and development towards the efficient utilization of networked microgrids . The collaboration resulted in the identification of experimental and real time simulation capabilities that may be leveraged for networked microgrids research, development, and demonstration . Additional research was performed to support the demonstration of control techniques within real time simulation and with hardware in the loop for DC microgrids .
Stevens, Jean-Luc R.; Elver, Marco; Bednar, James A.
2013-01-01
Lancet is a new, simulator-independent Python utility for succinctly specifying, launching, and collating results from large batches of interrelated computationally demanding program runs. This paper demonstrates how to combine Lancet with IPython Notebook to provide a flexible, lightweight, and agile workflow for fully reproducible scientific research. This informal and pragmatic approach uses IPython Notebook to capture the steps in a scientific computation as it is gradually automated and made ready for publication, without mandating the use of any separate application that can constrain scientific exploration and innovation. The resulting notebook concisely records each step involved in even very complex computational processes that led to a particular figure or numerical result, allowing the complete chain of events to be replicated automatically. Lancet was originally designed to help solve problems in computational neuroscience, such as analyzing the sensitivity of a complex simulation to various parameters, or collecting the results from multiple runs with different random starting points. However, because it is never possible to know in advance what tools might be required in future tasks, Lancet has been designed to be completely general, supporting any type of program as long as it can be launched as a process and can return output in the form of files. For instance, Lancet is also heavily used by one of the authors in a separate research group for launching batches of microprocessor simulations. This general design will allow Lancet to continue supporting a given research project even as the underlying approaches and tools change. PMID:24416014
NASA Astrophysics Data System (ADS)
Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.
2017-10-01
Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.
Elastomer mounted rotors - An alternative for smoother running turbomachinery
NASA Technical Reports Server (NTRS)
Tecza, J. A.; Jones, S. W.; Smalley, A. J.; Cunningham, R. E.; Darlow, M. S.
1979-01-01
This paper describes the design of elastomeric bearing supports for a rotor built to simulate the power turbine of an advanced gas turbine engine which traverses two bending critical speeds. The elastomer dampers were constructed so as to minimize rotor dynamic response at the critical speeds. Results are presented of unbalance response tests performed with two different elastomer materials. These results showed that the resonances on the elastomer-mounted rotor were well damped for both elastomer materials and showed linear response to the unbalance weights used for response testing. Additional tests were performed using solid steel supports at either end (hand-mounted), which resulted in drastically increased sensitivity and nonlinear response, and with steel supports in one end of the rotor and the elastomer at the other, which yielded results which were between the soft- and hard-mounted cases. It is concluded that elastomeric supports are a viable alternative to other methods of mounting flexible rotors, that damping was well in excess of predictions and that elastomeric supports are tolerant of small rotor misalignments.
NASA Astrophysics Data System (ADS)
Yunfang, Jia; Cheng, Ju
2016-01-01
The graphene field effect transistor (GFET) has been widely studied and developed as sensors and functional devices. The first report about GFET sensing simulation on the device level is proposed. The GFET's characteristics, its responding for single strand DNA (ssDNA) and hybridization with the complimentary DNA (cDNA) are simulated based on Sentaurus, a popular CAD tool for electronic devices. The agreement between the simulated blank GFET feature and the reported experimental data suggests the feasibility of the presented simulation method. Then the simulations of ssDNA immobilization on GFET and hybridization with its cDNA are performed, the results are discussed based on the electron transfer (ET) mechanism between DNA and graphene. Project supported by the National Natural Science Foundation of China (No. 61371028) and the Tianjin Natural Science Foundation (No. 12JCZDJC22400).
iTOUGH2: A multiphysics simulation-optimization framework for analyzing subsurface systems
NASA Astrophysics Data System (ADS)
Finsterle, S.; Commer, M.; Edmiston, J. K.; Jung, Y.; Kowalsky, M. B.; Pau, G. S. H.; Wainwright, H. M.; Zhang, Y.
2017-11-01
iTOUGH2 is a simulation-optimization framework for the TOUGH suite of nonisothermal multiphase flow models and related simulators of geophysical, geochemical, and geomechanical processes. After appropriate parameterization of subsurface structures and their properties, iTOUGH2 runs simulations for multiple parameter sets and analyzes the resulting output for parameter estimation through automatic model calibration, local and global sensitivity analyses, data-worth analyses, and uncertainty propagation analyses. Development of iTOUGH2 is driven by scientific challenges and user needs, with new capabilities continually added to both the forward simulator and the optimization framework. This review article provides a summary description of methods and features implemented in iTOUGH2, and discusses the usefulness and limitations of an integrated simulation-optimization workflow in support of the characterization and analysis of complex multiphysics subsurface systems.
2017-10-17
Report: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB The views, opinions and...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...University - Bakersfield Title: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB Report
NASA Astrophysics Data System (ADS)
Wheeler, Coral Rose
We study dwarf satellite galaxy quenching using observations from the Geha et al. (2012) NSA/SDSS catalog together with CDM cosmological simulations to facilitate selection and interpretation. We show that fewer than 30% of dwarfs (M* ˜ 108.5-9.5 Msun ) identified as satellites within massive host halos (M host ˜ 1012.5-14 Msun) are quenched. We conclude that whatever the action triggering environmental quenching of dwarf satellites, the process must be highly inefficient. We investigate a series of simple, one-parameter quenching models in order to understand what is required to explain the low quenched fraction and conclude that either the quenching timescale is very long (> 9.5 Gyr, a "slow starvation" scenario) or that the environmental trigger is not well matched to accretion within the virial volume. We further present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies (Mvir ˜ 1010 Msun) and ultra-faint galaxies (Mvir ˜ 10 9 Msun). The resulting central galaxies lie on an extrapolated abundance matching relation from M* ˜ 106 to 104 Msun without a break. Our dwarfs with M* ˜ 106 Msun each have 1-2 well-resolved satellites with M* = 3 - 200 x 103 Msun. Even our isolated ultra-faint galaxies have star-forming subhalos. We combine our results with the ELVIS simulations to show that targeting the ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35% compared to random pointings. The well-resolved ultra-faint galaxies in our simulations (M * ˜ 3 - 30 x 103 Msun) form within Mpeak ˜ 0.5 - 3 x 109 Msun halos. Each has a uniformly ancient stellar population (> 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ˜ 5 x 109 Msun is a probable dividing line between halos hosting reionization "fossils" and those hosting dwarfs that can continue to form stars in isolation after reionization. Finally, we perform a systematic Bayesian analysis of rotation vs. dispersion support (vrot/sigma) in 40 dwarf galaxies throughout the Local Volume (LV) over a stellar mass range 103.5 M sun < M* < 108 Msun. We find that the stars in 80% of the LV dwarf galaxies studied -- both satellites and isolated systems -- are dispersion-supported. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally-supported stellar disks, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion supported stars. We apply the same Bayesian analysis to four of the FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dwarf galaxies (109 Msun < M vir < 1010 Msun) and show that the simulated isolated dIrr galaxies have stellar ellipticities and stellar vrot/sigma ratios that are consistent with the observed population of dIrrs and dSphs without the need to subject these dwarfs to any external perturbations or tidal forces. We posit that most dwarf galaxies form as puffy, dispersion-dominated systems, rather than cold, angular momentum-supported disks. If this is the case, then transforming a dIrr into a dSph may require little more than removing its gas.
Optimization of space system development resources
NASA Astrophysics Data System (ADS)
Kosmann, William J.; Sarkani, Shahram; Mazzuchi, Thomas
2013-06-01
NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level cost growths ranging from 23% to 77%. A new study of 26 historical NASA Science instrument set developments using expert judgment to reallocate key development resources has an average cost growth of 73.77%. Twice in history, a barter-based mechanism has been used to reallocate key development resources during instrument development. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to reallocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource reallocation simulation was used to perform 300 instrument development simulations, using barter to reallocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource reallocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource reallocation should work on spacecraft development as well as it has worked on instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key development resource reallocation has never been tried in a spacecraft development, no historical results exist, and a simulation of using that approach must be developed. The instrument development simulation should be modified to account for spacecraft development market participant differences. The resulting agent-based barter-based spacecraft resource reallocation simulation would then be used to determine if significant statistical evidence exists to prove a claim that using barter-based resource reallocation will result in lower expected cost growth.
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape. PMID:24778382
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture.
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape.
NASA Technical Reports Server (NTRS)
Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.
1981-01-01
Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.
Shuttle sortie simulation using a Lear jet aircraft: Mission no. 1 (assess program)
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Nell, C. B., Jr.; Mason, R. H.
1972-01-01
The shuttle sortie simulation mission of the Airborne Science/Shuttle Experiments System Simulation Program which was conducted using the CV-990 aircraft is reported. The seven flight, five day mission obtained data on experiment preparation, type of experiment components, operation and maintenance, data acquisition, crew functions, timelines and interfaces, use of support equipment and spare parts, power consumption, work cycles, influence of constraints, and schedule impacts. This report describes the experiment, the facilities, the operation, and the results analyzed from the standpoint of their possible use in aiding the planning for experiments in the Shuttle Sortie Laboratory.
CONFIG: Integrated engineering of systems and their operation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.
Ashraf, Chowdhury; Jain, Abhishek; Xuan, Yuan; van Duin, Adri C T
2017-02-15
In this paper, we present the first atomistic-scale based method for calculating ignition front propagation speed and hypothesize that this quantity is related to laminar flame speed. This method is based on atomistic-level molecular dynamics (MD) simulations with the ReaxFF reactive force field. Results reported in this study are for supercritical (P = 55 MPa and T u = 1800 K) combustion of hydrocarbons as elevated pressure and temperature are required to accelerate the dynamics for reactive MD simulations. These simulations are performed for different types of hydrocarbons, including alkyne, alkane, and aromatic, and are able to successfully reproduce the experimental trend of reactivity of these hydrocarbons. Moreover, our results indicate that the ignition front propagation speed under supercritical conditions has a strong dependence on equivalence ratio, similar to experimentally measured flame speeds at lower temperatures and pressures which supports our hypothesis that ignition front speed is a related quantity to laminar flame speed. In addition, comparisons between results obtained from ReaxFF simulation and continuum simulations performed under similar conditions show good qualitative, and reasonable quantitative agreement. This demonstrates that ReaxFF based MD-simulations are a promising tool to study flame speed/ignition front speed in supercritical hydrocarbon combustion.
The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies
NASA Astrophysics Data System (ADS)
Wheeler, Coral; Pace, Andrew B.; Bullock, James S.; Boylan-Kolchin, Michael; Oñorbe, Jose; Elbert, Oliver D.; Fitts, Alex; Hopkins, Philip F.; Kereš, Dušan
2017-02-01
We perform a systematic Bayesian analysis of rotation versus dispersion support (vrot/σ) in 40 dwarf galaxies throughout the local volume (LV) over a stellar mass range of 10^{3.5} M_{⊙}< M_{star }< 108 M_{⊙}. We find that the stars in ˜80 per cent of the LV dwarf galaxies studied - both satellites and isolated systems - are dispersion-supported. In particular, we show that 6/10 isolated dwarfs in our sample have vrot/σ ≲ 1.0, while all have vrot/σ ≲ 2.0. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally supported stellar discs, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion-supported stars. We see no clear trend between vrot/σ and distance to the closest L⋆ galaxy, nor between vrot/σ and M⋆ within our mass range. We apply the same Bayesian analysis to four FIRE hydrodynamic zoom-in simulations of isolated dwarf galaxies (10^9 M_{⊙}< M_{vir}< 10^{10} M_{⊙}) and show that the simulated isolated dIrr galaxies have stellar ellipticities and stellar vrot/σ ratios that are consistent with the observed population of dIrrs and dSphs without the need to subject these dwarfs to any external perturbations or tidal forces. We posit that most dwarf galaxies form as puffy, dispersion-dominated systems, rather than cold, angular-momentum-supported discs. If this is the case, then transforming a dIrr into a dSph may require little more than removing its gas.
Haines, Brian M.; Yi, S. A.; Olson, R. E.; ...
2017-07-10
The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. In this paper, we present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surfacemore » roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Finally and nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).« less
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Yi, S. A.; Olson, R. E.; Khan, S. F.; Kyrala, G. A.; Zylstra, A. B.; Bradley, P. A.; Peterson, R. R.; Kline, J. L.; Leeper, R. J.; Shah, R. C.
2017-07-01
The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).
A transport level approach for TCP to support differentiated services
NASA Astrophysics Data System (ADS)
Xian, Yong-Ju; Tao, Yang; Xu, Chang-Biao
2004-04-01
Recently, there is an increasing interests in providing differentiated services in Internet. However, research efforts have almost exclusively focused on routers by improving their policies of packet scheduling and queue management. There has been much less work on transport level approaches to support differentiated services. The mechanism presented by Chang-Biao Xu, DSAS-TCP and MulTCP are the only pieces of the works in this direction known to the authors. Up to now, there is no paper to discuss the interrelation between these mechanisms. Regarding throughput as TCP criteria to support proportional-differentiated-services (PDS), this paper deeply explores the variants of AIMD(a,b)-based TCP congestion control and their effect on differentiated services, and presents a transport level approach for TCP to support PDS, namely PDS_TCP which can be obtained by introducing weighted factor to a or b of AIMD(a,b)-based TCP congestion control. PDS_TCP also takes into account the influence of slow start for timeout. From the analysis, this paper draws the conclusion that the existing mechanisms are only variants of PDS_TCP. For the example of PDS_TCP, the principles, implementation and simulation results of PDS_a_TCP are discussed in detail. The theory analysis and simulation results show that the proposed mechanism PDS_TCP can be implemented with lower additional overheads and support controlled PDS very well without the loss of flexibility.
To increase controllability of a large flexible antenna by modal optimization
NASA Astrophysics Data System (ADS)
Wang, Feng; Wang, Pengpeng; Jiang, Wenjian
2017-12-01
Large deployable antennas are widely used in aerospace engineering to meet the envelop limit of rocket fairing. The high flexibility and low damping of antenna has proposed critical requirement not only for stability control of the antenna itself, but also for attitude control of the satellite. This paper aims to increase controllability of a large flexible antenna by modal optimization. Firstly, Sensitivity analysis of antenna modal frequencies to stiffness of support structure and stiffness of scanning mechanism are conducted respectively. Secondly, Modal simulation results of antenna frequencies are given, influences of scanning angles on moment of inertia and modal frequencies are evaluated, and modal test is carried out to validate the simulation results. All the simulation and test results show that, after modal optimization the modal characteristic of the large deployable antenna meets the controllability requirement well.
Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Rojahn, Josh
2011-01-01
Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.
Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime
NASA Technical Reports Server (NTRS)
Rojahn, Josh; Ruf, Joe
2011-01-01
Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state and in three dimensions with symmetric geometries, no freestream sideslip angle, and motors firing. The trajectory points at issue were in the transonic regime, at 0 and +/- 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC's Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.
2011-01-01
Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research can be accurately described and combined. PMID:22172142
JIMM: the next step for mission-level models
NASA Astrophysics Data System (ADS)
Gump, Jamieson; Kurker, Robert G.; Nalepka, Joseph P.
2001-09-01
The (Simulation Based Acquisition) SBA process is one in which the planning, design, and test of a weapon system or other product is done through the more effective use of modeling and simulation, information technology, and process improvement. This process results in a product that is produced faster, cheaper, and more reliably than its predecessors. Because the SBA process requires realistic and detailed simulation conditions, it was necessary to develop a simulation tool that would provide a simulation environment acceptable for doing SBA analysis. The Joint Integrated Mission Model (JIMM) was created to help define and meet the analysis, test and evaluation, and training requirements of a Department of Defense program utilizing SBA. Through its generic nature of representing simulation entities, its data analysis capability, and its robust configuration management process, JIMM can be used to support a wide range of simulation applications as both a constructive and a virtual simulation tool. JIMM is a Mission Level Model (MLM). A MLM is capable of evaluating the effectiveness and survivability of a composite force of air and space systems executing operational objectives in a specific scenario against an integrated air and space defense system. Because MLMs are useful for assessing a system's performance in a realistic, integrated, threat environment, they are key to implementing the SBA process. JIMM is a merger of the capabilities of one legacy model, the Suppressor MLM, into another, the Simulated Warfare Environment Generator (SWEG) MLM. By creating a more capable MLM, JIMM will not only be a tool to support the SBA initiative, but could also provide the framework for the next generation of MLMs.
Hall, Matthew; Goupee, Andrew; Jonkman, Jason
2017-08-24
Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Matthew; Goupee, Andrew; Jonkman, Jason
Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less
Aimé, Carla; André, Jean-Baptiste; Raymond, Michel
2017-07-01
Menopause, the permanent cessation of ovulation, occurs in humans well before the end of the expected lifespan, leading to an extensive post-reproductive period which remains a puzzle for evolutionary biologists. All human populations display this particularity; thus, it is difficult to empirically evaluate the conditions for its emergence. In this study, we used artificial neural networks to model the emergence and evolution of allocation decisions related to reproduction in simulated populations. When allocation decisions were allowed to freely evolve, both menopause and extensive post-reproductive life-span emerged under some ecological conditions. This result allowed us to test various hypotheses about the required conditions for the emergence of menopause and extensive post-reproductive life-span. Our findings did not support the Maternal Hypothesis (menopause has evolved to avoid the risk of dying in childbirth, which is higher in older women). In contrast, results supported a shared prediction from the Grandmother Hypothesis and the Embodied Capital Model. Indeed, we found that extensive post-reproductive lifespan allows resource reallocation to increase fertility of the children and survival of the grandchildren. Furthermore, neural capital development and the skill intensiveness of the foraging niche, rather than strength, played a major role in shaping the age profile of somatic and cognitive senescence in our simulated populations. This result supports the Embodied Capital Model rather than the Grand-Mother Hypothesis. Finally, in simulated populations where menopause had already evolved, we found that reduced post-reproductive lifespan lead to reduced children's fertility and grandchildren's survival. The results are discussed in the context of the evolutionary emergence of menopause and extensive post-reproductive life-span.
NASA Technical Reports Server (NTRS)
1974-01-01
The Stanford Watershed Model, the Kentucky Watershed Model and OPSET program, and the NASA-IBM system for simulation and analysis of watersheds are described in terms of their applications to the study of remote sensing of water resources. Specific calibration processes and input and output parameters that are instrumental in the simulations are explained for the following kinds of data: (1) hourly precipitation data; (2) daily discharge data; (3) flood hydrographs; (4) temperature and evaporation data; and (5) snowmelt data arrays. The Sensitivity Analysis Task, which provides a method for evaluation of any of the separate simulation runs in the form of performance indices, is also reported. The method is defined and a summary of results is given which indicates the values obtained in the simulation runs performed for Town Creek, Alabama; Alamosa Creek, Colorado; and Pearl River, Louisiana. The results are shown in tabular and plot graph form. For Vol. 1, see N74-27813.
A simulation exercise of a cavity-type solar receiver using the HEAP program
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program has been developed at JPL to support the advanced studies of solar receivers in high concentration solar-thermal-electric power plants. This work presents briefly the program methodology, input data required, expected output results, capabilities and limitations. The program was used to simulate an existing 5 kwt experimental receiver of a cavity type. The receiver is located at the focus of a paraboloid dish and is connected to a Stirling engine. Both steady state and transient performance simulation were given. Details about the receiver modeling were also presented to illustrate the procedure followed. Simulated temperature patterns were found in good agreement with test data obtained by high temperature thermocouples. The simulated receiver performance was extrapolated to various operating conditions not attained experimentally. The results of the parameterization study were fitted to a general performance expression to determine the receiver characteristic constraints. The latter were used to optimize the receiver operating conditions to obtain the highest overall conversion efficiency.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William J.; Moran, Robert P.; Pearson, J. Bose
2013-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator
DOT National Transportation Integrated Search
2017-07-26
The datasets in this zip file are in support of FHWA-JPO-16-379, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...
DOT National Transportation Integrated Search
2017-04-01
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
DOT National Transportation Integrated Search
2017-07-26
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
DOT National Transportation Integrated Search
2017-06-26
This zip file contains files of data to support FHWA-JPO-16-370, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...
Advective transport observations with MODPATH-OBS--documentation of the MODPATH observation process
Hanson, R.T.; Kauffman, L.K.; Hill, M.C.; Dickinson, J.E.; Mehl, S.W.
2013-01-01
The MODPATH-OBS computer program described in this report is designed to calculate simulated equivalents for observations related to advective groundwater transport that can be represented in a quantitative way by using simulated particle-tracking data. The simulated equivalents supported by MODPATH-OBS are (1) distance from a source location at a defined time, or proximity to an observed location; (2) time of travel from an initial location to defined locations, areas, or volumes of the simulated system; (3) concentrations used to simulate groundwater age; and (4) percentages of water derived from contributing source areas. Although particle tracking only simulates the advective component of conservative transport, effects of non-conservative processes such as retardation can be approximated through manipulation of the effective-porosity value used to calculate velocity based on the properties of selected conservative tracers. This program can also account for simple decay or production, but it cannot account for diffusion. Dispersion can be represented through direct simulation of subsurface heterogeneity and the use of many particles. MODPATH-OBS acts as a postprocessor to MODPATH, so that the sequence of model runs generally required is MODFLOW, MODPATH, and MODPATH-OBS. The version of MODFLOW and MODPATH that support the version of MODPATH-OBS presented in this report are MODFLOW-2005 or MODFLOW-LGR, and MODPATH-LGR. MODFLOW-LGR is derived from MODFLOW-2005, MODPATH 5, and MODPATH 6 and supports local grid refinement. MODPATH-LGR is derived from MODPATH 5. It supports the forward and backward tracking of particles through locally refined grids and provides the output needed for MODPATH_OBS. For a single grid and no observations, MODPATH-LGR results are equivalent to MODPATH 5. MODPATH-LGR and MODPATH-OBS simulations can use nearly all of the capabilities of MODFLOW-2005 and MODFLOW-LGR; for example, simulations may be steady-state, transient, or a combination. Though the program name MODPATH-OBS specifically refers to observations, the program also can be used to calculate model prediction of observations. MODPATH-OBS is primarily intended for use with separate programs that conduct sensitivity analysis, data needs assessment, parameter estimation, and uncertainty analysis, such as UCODE_2005, and PEST. In many circumstances, refined grids in selected parts of a model are important to simulated hydraulics, detailed inflows and outflows, or other system characteristics. MODFLOW-LGR and MODPATH-LGR support accurate local grid refinement in which both mass (flows) and energy (head) are conserved across the local grid boundary. MODPATH-OBS is designed to take advantage of these capabilities. For example, particles tracked between a pumping well and a nearby stream, which are simulated poorly if a river and well are located in a single large grid cell, can be simulated with improved accuracy using a locally refined grid in MODFLOW-LGR, MODPATH-LGR, and MODPATH-OBS. The locally-refined-grid approach can provide more accurate simulated equivalents to observed transport between the well and the river. The documentation presented here includes a brief discussion of previous work, description of the methods, and detailed descriptions of the required input files and how the output files are typically used.
NASA Astrophysics Data System (ADS)
Prime, M. B.; Vaughan, D. E.; Preston, D. L.; Buttler, W. T.; Chen, S. R.; Oró, D. M.; Pack, C.
2014-05-01
Experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/s using Richtmyer-Meshkov (RM) instabilities. Buttler et al. recently reported experimental results for RM instability growth in copper but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and interpretation from numerical simulations of the Buttler RM instability experiments. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data. The numerical simulations are used to examine various assumptions previously made in an analytical model and to estimate the sensitivity of such experiments to material strength.
V&V Of CFD Modeling Of The Argonne Bubble Experiment: FY15 Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, Nathaniel C.; Wardle, Kent E.; Bailey, James L.
2015-09-30
In support of the development of accelerator-driven production of the fission product Mo 99, computational fluid dynamics (CFD) simulations of an electron-beam irradiated, experimental-scale bubble chamber have been conducted in order to aid in interpretation of existing experimental results, provide additional insights into the physical phenomena, and develop predictive thermal hydraulic capabilities that can be applied to full-scale target solution vessels. Toward that end, a custom hybrid Eulerian-Eulerian-Lagrangian multiphase solver was developed, and simulations have been performed on high-resolution meshes. Good agreement between experiments and simulations has been achieved, especially with respect to the prediction of the maximum temperature ofmore » the uranyl sulfate solution in the experimental vessel. These positive results suggest that the simulation methodology that has been developed will prove to be suitable to assist in the development of full-scale production hardware.« less
Analysis and Comparison on the Flood Simulation in Typical Hilly & Semi-mountainous Region
NASA Astrophysics Data System (ADS)
Luan, Qinghua; Wang, Dong; Zhang, Xiang; Liu, Jiahong; Fu, Xiaoran; Zhang, Kun; Ma, Jun
2017-12-01
Water-logging and flood are both serious in hilly and semi-mountainous cities of China, but the related research is rare. Lincheng Economic Development Zone (EDZ) in Hebei Province as the typical city was selected and storm water management model (SWMM) was applied for flood simulation in this study. The regional model was constructed through calibrating and verifying the runoff coefficient of different flood processes. Different designed runoff processes in five-year, ten-year and twenty-year return periods in basic scenario and in the low impact development (LID) scenario, respectively, were simulated and compared. The result shows that: LID measures have effect on peak reduction in the study area, but the effectiveness is not significant; the effectiveness of lagging peak time is poor. These simulation results provide decision support for the rational construction of LID in the study area, and provide the references for regional rain flood management.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise
2012-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities
PSI-Center Simulations of Validation Platform Experiments
NASA Astrophysics Data System (ADS)
Nelson, B. A.; Akcay, C.; Glasser, A. H.; Hansen, C. J.; Jarboe, T. R.; Marklin, G. J.; Milroy, R. D.; Morgan, K. D.; Norgaard, P. C.; Shumlak, U.; Victor, B. S.; Sovinec, C. R.; O'Bryan, J. B.; Held, E. D.; Ji, J.-Y.; Lukin, V. S.
2013-10-01
The Plasma Science and Innovation Center (PSI-Center - http://www.psicenter.org) supports collaborating validation platform experiments with extended MHD simulations. Collaborators include the Bellan Plasma Group (Caltech), CTH (Auburn U), FRX-L (Los Alamos National Laboratory), HIT-SI (U Wash - UW), LTX (PPPL), MAST (Culham), Pegasus (U Wisc-Madison), PHD/ELF (UW/MSNW), SSX (Swarthmore College), TCSU (UW), and ZaP/ZaP-HD (UW). Modifications have been made to the NIMROD, HiFi, and PSI-Tet codes to specifically model these experiments, including mesh generation/refinement, non-local closures, appropriate boundary conditions (external fields, insulating BCs, etc.), and kinetic and neutral particle interactions. The PSI-Center is exploring application of validation metrics between experimental data and simulations results. Biorthogonal decomposition is proving to be a powerful method to compare global temporal and spatial structures for validation. Results from these simulation and validation studies, as well as an overview of the PSI-Center status will be presented.
Supporting strategic thinking of smallholder dairy farmers using a whole farm simulation tool.
Le Gal, Pierre-Yves; Bernard, Jennifer; Moulin, Charles-Henri
2013-06-01
This article investigates how a one-to-one support process based on the use of a whole dairy farm simulation tool helps both farmers to reflect on their production strategies and researchers to better understand the farmers' contexts of action and decision. The support process consists of a minimum of four discussion sessions with the farmer: designing the Initial Scenario and formulating a diagnosis, building and simulating the Project Scenario corresponding to the objective targeted by the farmer, building and comparing alternative scenarios proposed both by the farmer and the researcher, and evaluating the process with the farmer. The approach was tested with six smallholder farmers in Brazil. It is illustrated with the example of one farmer who aimed to develop his milk production by more than doubling his herd size on the same cultivated area. Two other examples illustrate the diversity of issues addressed with this approach. The first estimates the sensitivity of economic results to price variations of milk and concentrates. The second compares two scenarios in terms of forage supply autonomy. The discussion assesses the outcomes of the approach for farmers in terms of response to their specific issues and of knowledge acquired. The research outputs are discussed in terms of the value and limits of using simulation tools within both participatory action research and advisory processes.
Automated simulation as part of a design workstation
NASA Technical Reports Server (NTRS)
Cantwell, E.; Shenk, T.; Robinson, P.; Upadhye, R.
1990-01-01
A development project for a design workstation for advanced life-support systems incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulations, such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The paper reports on the Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components.
Frame analysis of UNNES electric bus chassis construction using finite element method
NASA Astrophysics Data System (ADS)
Nugroho, Untoro; Anis, Samsudin; Kusumawardani, Rini; Khoiron, Ahmad Mustamil; Maulana, Syahdan Sigit; Irvandi, Muhammad; Mashdiq, Zia Putra
2018-03-01
Designing the chassis needs to be done element simulation analysis to gain chassis strength on an electric bus. The purpose of this research is to get the results of chassis simulation on an electric bus when having load use FEM (Finite element method). This research was conduct in several stages of process, such as modeling chassis by Autodesk Inventor and finite element simulation software. The frame is going to be simulated with static loading by determine fixed support and then will be given the vertical force. The fixed on the frame is clamped at both the front and rear suspensions. After the simulation based on FEM it can conclude that frame is still under elastic zone, until the frame design is safe to use.
Experiential Learning Methods, Simulation Complexity and Their Effects on Different Target Groups
ERIC Educational Resources Information Center
Kluge, Annette
2007-01-01
This article empirically supports the thesis that there is no clear and unequivocal argument in favor of simulations and experiential learning. Instead the effectiveness of simulation-based learning methods depends strongly on the target group's characteristics. Two methods of supporting experiential learning are compared in two different complex…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald
2013-03-01
The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less
Nawafleh, Noor; Öchsner, Andreas; George, Roy
2018-01-01
PURPOSE The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between 5℃ and 55℃. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments. PMID:29503716
Scaling and pedotransfer in numerical simulations of flow and transport in soils
USDA-ARS?s Scientific Manuscript database
Flow and transport parameters of soils in numerical simulations need to be defined at the support scale of computational grid cells. Such support scale can substantially differ from the support scale in laboratory or field measurements of flow and transport parameters. The scale-dependence of flow a...
Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre
2009-01-01
The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.
Simulations of the impact of localized defects on ICF implosions
NASA Astrophysics Data System (ADS)
Milovich, Jose; Robey, Harry; Weber, Christopher; Sepke, Scott; Clark, Daniel; Koning, Joe; Smalyuk, Vladimir; Martinez, David
2016-10-01
Recent experiments have identified the tent membranes that support the capsule as a source of a large azimuthal perturbation at the point of departure from the surface. Highly-resolved 2D simulations have shown that vorticity generated by the interaction of the ablated capsule material and the tent allows for the penetration of cold ablator material into the burning hot-spot likely cooling the central burning plasma. These observations have motivated the search for alternative supporting methods. One of the techniques being considered uses the existing fill-tube (needed to deliver the cryogenic fuel) supported against gravity by a thin rod (cantilever) spanning the hohlraum diameter. Recent experiments have assessed the perturbation induced on the target as the rod is positioned along the fill-tube at different distances from the capsule surface and found optical-depth modulations oriented along the cantilever direction, possibly caused by laser spot shadowing or hydro-coupling. To fully understand the data we have undertaken an extensive study of highly-resolved 2D integrated simulations abled to resolve the 12 um diameter cantilever. Results of our computations and comparison with the experiments will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
A minimal model of self-sustaining turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Vaughan L.; Gayme, Dennice F.; Farrell, Brian F.
2015-10-15
In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL{sub ∞} model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL{sub ∞} dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that aremore » consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems.« less
The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California
2004-10-04
The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.
Investigations in mechanisms and strategies to enhance hearing with cochlear implants
NASA Astrophysics Data System (ADS)
Churchill, Tyler H.
Cochlear implants (CIs) produce hearing sensations by stimulating the auditory nerve (AN) with current pulses whose amplitudes are modulated by filtered acoustic temporal envelopes. While this technology has provided hearing for multitudinous CI recipients, even bilaterally-implanted listeners have more difficulty understanding speech in noise and localizing sounds than normal hearing (NH) listeners. Three studies reported here have explored ways to improve electric hearing abilities. Vocoders are often used to simulate CIs for NH listeners. Study 1 was a psychoacoustic vocoder study examining the effects of harmonic carrier phase dispersion and simulated CI current spread on speech intelligibility in noise. Results showed that simulated current spread was detrimental to speech understanding and that speech vocoded with carriers whose components' starting phases were equal was the least intelligible. Cross-correlogram analyses of AN model simulations confirmed that carrier component phase dispersion resulted in better neural envelope representation. Localization abilities rely on binaural processing mechanisms in the brainstem and mid-brain that are not fully understood. In Study 2, several potential mechanisms were evaluated based on the ability of metrics extracted from stereo AN simulations to predict azimuthal locations. Results suggest that unique across-frequency patterns of binaural cross-correlation may provide a strong cue set for lateralization and that interaural level differences alone cannot explain NH sensitivity to lateral position. While it is known that many bilateral CI users are sensitive to interaural time differences (ITDs) in low-rate pulsatile stimulation, most contemporary CI processing strategies use high-rate, constant-rate pulse trains. In Study 3, we examined the effects of pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition by bilateral CI listeners. Results showed that listeners were able to use low-rate pulse timing cues presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli even when mixed with high rates on other electrodes. These results have contributed to a better understanding of those aspects of the auditory system that support speech understanding and binaural hearing, suggested vocoder parameters that may simulate aspects of electric hearing, and shown that redundant, low-rate pulse timing supports improved spatial hearing for bilateral CI listeners.
NASA Technical Reports Server (NTRS)
Gravitz, Robert M.; Hale, Joseph
2006-01-01
NASA's Exploration Systems Mission Directorate (ESMD) is implementing a management approach for modeling and simulation (M&S) that will provide decision-makers information on the model's fidelity, credibility, and quality. This information will allow the decision-maker to understand the risks involved in using a model's results in the decision-making process. This presentation will discuss NASA's approach for verification and validation (V&V) of its models or simulations supporting space exploration. This presentation will describe NASA's V&V process and the associated M&S verification and validation (V&V) activities required to support the decision-making process. The M&S V&V Plan and V&V Report templates for ESMD will also be illustrated.
NASA's aircraft icing technology program
NASA Technical Reports Server (NTRS)
Reinmann, John J.
1991-01-01
NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.
Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith
2016-01-01
The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...
NASA Technical Reports Server (NTRS)
Draeger, B. G.; Joyner, J. A.
1976-01-01
A detailed performance evaluation of the Abort Region Determinator (ARD) module design was provided in support of OFT-1 ascent and OFT-1 intact launch aborts. The evaluation method used compared ARD results against results obtained using the full-up Space Vehicle Dynamic Simulations program under the same conditions. Results were presented for each of the three major ARD math models: (1) the ascent numerical integrator; (2) the mass model, and (3) the second stage predictor as well as the total ARD module. These results demonstrate that the baselined ARD module meets all design objectives for mission control center orbital flight test launch/abort support.
Contingency Support Simulation for the Tracking and Data Relay Satellite System (TDRSS)
NASA Technical Reports Server (NTRS)
Dykes, Andy; Dunham, Joan; Ward, Douglas T.; Robertson, Mika; Nesbit, Gary
2007-01-01
In March 2006, the Tracking and Data Relay Satellite (TDRS)-3 experienced an unexpected thrusting event, which caused significant changes to its orbit. Recovery from this anomaly was protracted, raising concerns during the Independent Review Team (IRT) investigation of the anomaly regarding the contingency response readiness. The simulations and readiness exercises discussed in this paper were part of the response to the IRT concerns. This paper explains the various levels of simulation needed to enhance the proficiency of the Flight Dynamics Facility (FDF) and supporting elements in recovery from a TDRS contingency situation. The main emergency to address is when a TDRS has experienced uncommanded, unreported, or misreported thrusting, causing a ground station to lose the ability to acquire the spacecraft, as happened in 2006. The following levels of simulation are proposed: 1) Tests that would be performed by the individual support sites to verify that internal procedures and tools are in place and up to date; 2) Tabletop simulations that would involve all of the key support sites talking through their respective operating procedures to ensure that proper notifications are made and communications links are established; and 3) Comprehensive simulations that would be infrequent, but realistic, involving data exchanges between ground sites and voice and electronic communications among the supporting elements.
NASA Astrophysics Data System (ADS)
Foswell, Stuart D.; McLaren, David; Paramanatham, Daran; Taylor, Chris; Stanton, Dai; Farrell, Stephen
2012-08-01
This paper describes the outcome of analysis and simulation of how to deploy CFDP and DTN protocol engines onboard a spacecraft, so as to support the Space Internet, and the resulting spacecraft resource utilisation, under an ESA TRP contract [1].
Assessing Procedural Competence: Validity Considerations.
Pugh, Debra M; Wood, Timothy J; Boulet, John R
2015-10-01
Simulation-based medical education (SBME) offers opportunities for trainees to learn how to perform procedures and to be assessed in a safe environment. However, SBME research studies often lack robust evidence to support the validity of the interpretation of the results obtained from tools used to assess trainees' skills. The purpose of this paper is to describe how a validity framework can be applied when reporting and interpreting the results of a simulation-based assessment of skills related to performing procedures. The authors discuss various sources of validity evidence because they relate to SBME. A case study is presented.
Study of helicopterroll control effectiveness criteria
NASA Technical Reports Server (NTRS)
Heffley, Robert K.; Bourne, Simon M.; Curtiss, Howard C., Jr.; Hindson, William S.; Hess, Ronald A.
1986-01-01
A study of helicopter roll control effectiveness based on closed-loop task performance measurement and modeling is presented. Roll control critieria are based on task margin, the excess of vehicle task performance capability over the pilot's task performance demand. Appropriate helicopter roll axis dynamic models are defined for use with analytic models for task performance. Both near-earth and up-and-away large-amplitude maneuvering phases are considered. The results of in-flight and moving-base simulation measurements are presented to support the roll control effectiveness criteria offered. This Volume contains the theoretical analysis, simulation results and criteria development.
Support, shape and number of replicate samples for tree foliage analysis.
Luyssaert, Sebastiaan; Mertens, Jan; Raitio, Hannu
2003-06-01
Many fundamental features of a sampling program are determined by the heterogeneity of the object under study and the settings for the error (alpha), the power (beta), the effect size (ES), the number of replicate samples, and sample support, which is a feature that is often overlooked. The number of replicates, alpha, beta, ES, and sample support are interconnected. The effect of the sample support and its shape on the required number of replicate samples was investigated by means of a resampling method. The method was applied to a simulated distribution of Cd in the crown of a Salix fragilis L. tree. Increasing the dimensions of the sample support results in a decrease in the variance of the element concentration under study. Analysis of the variance is often the foundation of statistical tests, therefore, valid statistical testing requires the use of a fixed sample support during the experiment. This requirement might be difficult to meet in time-series analyses and long-term monitoring programs. Sample supports have their largest dimension in the direction with the largest heterogeneity, i.e. the direction representing the crown height, and this will give more accurate results than supports with other shapes. Taking the relationships between the sample support and the variance of the element concentrations in tree crowns into account provides guidelines for sampling efficiency in terms of precision and costs. In terms of time, the optimal support to test whether the average Cd concentration of the crown exceeds a threshold value is 0.405 m3 (alpha = 0.05, beta = 0.20, ES = 1.0 mg kg(-1) dry mass). The average weight of this support is 23 g dry mass, and 11 replicate samples need to be taken. It should be noted that in this case the optimal support applies to Cd under conditions similar to those of the simulation, but not necessarily all the examinations for this tree species, element, and hypothesis test.
Cady, R.E.; Peckenpaugh, J.M.
1985-01-01
RAQSIM, a generalized flow model of a groundwater system using finite-element methods, is documented to explain how it works and to demonstrate that it gives valid results. Three support programs that are used to compute recharge and discharge data required as input to RAQSIM are described. RAQSIM was developed to solve transient, two-dimensional, regional groundwater flow problems with isotropic or anisotropic conductance. The model can also simulate radially-symmetric flow to a well and steady-state flow. The mathematical basis, program structure, data input and output procedures, organization of data sets, and program features and options of RAQSIM are discussed. An example , containing listings of data and results and illustrating RAQSIM 's capabilities, is discussed in detail. Two test problems also are discussed comparing RAQSIM 's results with analytical procedures. The first support program described, the PET Program, uses solar radiation and other climatic data in the Jensen-Haise method to compute potential evapotranspiration. The second support program, the Soil-Water Program, uses output from the PET Program, soil characteristics, and the ratio of potential to actual evapotranspiration for each crop to compute infiltration, storage, and removal of water from the soil zone. The third program, the Recharge-Discharge Program, uses output from the Soil-Water Program together with other data to compute recharge and discharge from the groundwater flow system. For each support program, a program listing and examples of the data and results for the Twin Platte-Middle Republican study are provided. In addition, a brief discussion on how each program operates and on procedures for running and modifying these programs are presented. (Author 's abstract)
Evaluation of support loss in micro-beam resonators: A revisit
NASA Astrophysics Data System (ADS)
Chen, S. Y.; Liu, J. Z.; Guo, F. L.
2017-12-01
This paper presents an analytical study on evaluation of support loss in micromechanical resonators undergoing in-plane flexural vibrations. Two-dimensional elastic wave theory is used to determine the energy transmission from the vibrating resonator to the support. Fourier transform and Green's function technique are adopted to solve the problem of wave motions on the surface of the support excited by the forces transmitted by the resonator onto the support. Analytical expressions of support loss in terms of quality factor, taking into account distributed normal stress and shear stress in the attachment region, and coupling between the normal stress and shear stress as well as material disparity between the support and the resonator, have been derived. Effects of geometry of micro-beam resonators, and material dissimilarity between support and resonator on support loss are examined. Numerical results show that 'harder resonator' and 'softer support' combination leads to larger support loss. In addition, the Perfectly Matched Layer (PML) numerical simulation technique is employed for validation of the proposed analytical model. Comparing with results of quality factor obtained by PML technique, we find that the present model agrees well with the results of PML technique and the pure-shear model overestimates support loss noticeably, especially for resonators with small aspect ratio and large material dissimilarity between the support and resonator.
Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing
NASA Technical Reports Server (NTRS)
Harrivel, Angela R.; Stephens, Chad L.; Milletich, Robert J.; Heinich, Christina M.; Last, Mary Carolyn; Napoli, Nicholas J.; Abraham, Nijo A.; Prinzel, Lawrence J.; Motter, Mark A.; Pope, Alan T.
2017-01-01
The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents.
Future directions in flight simulation: A user perspective
NASA Technical Reports Server (NTRS)
Jackson, Bruce
1993-01-01
Langley Research Center was an early leader in simulation technology, including a special emphasis in space vehicle simulations such as the rendezvous and docking simulator for the Gemini program and the lunar landing simulator used before Apollo. In more recent times, Langley operated the first synergistic six degree of freedom motion platform (the Visual Motion Simulator, or VMS) and developed the first dual-dome air combat simulator, the Differential Maneuvering Simulator (DMS). Each Langley simulator was developed more or less independently from one another with different programming support. At present time, the various simulation cockpits, while supported by the same host computer system, run dissimilar software. The majority of recent investments in Langley's simulation facilities have been hardware procurements: host processors, visual systems, and most recently, an improved motion system. Investments in software improvements, however, have not been of the same order.
Simulation of Urban Rainfall-Runoff in Piedmont Cities: A Case Study in Jinan City, China
NASA Astrophysics Data System (ADS)
Chang, X.; Xu, Z.; Zhao, G.; Li, H.
2017-12-01
During the past decades, frequent flooding disasters in urban areas resulted in catastrophic impacts such as human life casualties and property damages especially in piedmont cities due to its specific topography. In this study, a piedmont urban flooding model was developed in the Huangtaiqiao catchment based on SWMM. The sub-catchments in this piedmont area were divided into mountainous area, plain area and main urban area according to the variations of underlying surface topography. The impact of different routing mode and channel roughness on simulation results was quantitatively analyzed under different types of scenarios, and genetic algorithm was used to optimize model parameters. Results show that the simulation is poor (with a mean Nash coefficient of 0.61) when using the traditional routing mode in SWMM model, which usually ignores terrain variance in piedmont area. However, when the difference of routing mode, percent routed and channel roughness are considered, the prediction precision of model were significantly increased (with a mean Nash coefficient of 0.86), indicating that the difference of surface topography significantly affects the simulation results in piedmont cities. The relevant results would provide the scientific basis and technical support for rainfall-runoff simulation, flood control and disaster alleviation in piedmont cities.
DOT National Transportation Integrated Search
2017-07-26
This zip file contains POSTDATA.ATT (.ATT); Print to File (.PRN); Portable Document Format (.PDF); and document (.DOCX) files of data to support FHWA-JPO-16-385, Analysis, modeling, and simulation (AMS) testbed development and evaluation to support d...
DOT National Transportation Integrated Search
2016-06-26
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
NRL 1989 Beam Propagation Studies in Support of the ATA Multi-Pulse Propagation Experiment
1990-08-31
papers presented here were all written prior to the completion of the experiment. The first of these papers presents simulation results which modeled ...beam stability and channel evolution for an entire five pulse burst. The second paper describes a new air chemistry model used in the SARLAC...Experiment: A new air chemistry model for use in the propagation codes simulating the MPPE was developed by making analytic fits to benchmark runs with
SimBRS: A University/Industry Consortium Focused on Simulation Based Solutions for Ground Vehicles
2009-07-29
plan is to use the SimBRS contract mechanism to streamline a process that applies research funds into a managed program, that is cognizant to the... designs . Therefore, the challenge for the SimBRS team is to establish an approach based on the capacity of measured data and simulations to support ...by systematically relating appropriate results from measurements and applied research in engineering and science. In turn, basic research and
Buckling Behavior of Substrate Supported Graphene Sheets
Yang, Kuijian; Chen, Yuli; Pan, Fei; Wang, Shengtao; Ma, Yong; Liu, Qijun
2016-01-01
The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm), both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems. PMID:28787831
Simulation of radioelement volatility during the vitrification of radioactive wastes by arc plasma.
Ghiloufi, Imed
2009-04-15
A computer model is used to simulate the volatility of some radioelements cesium ((137)Cs), cobalt ((60)Co), and ruthenium ((106)Ru) during the radioactive wastes vitrification by thermal plasma. This model is based on the calculation of system composition using the free enthalpy minimization method, coupled with the equation of mass transfer at the reactional interface. The model enables the determination of the effects of various parameters (e.g., temperature, plasma current, and matrix composition) on the radioelement volatility. The obtained results indicate that any increase in molten bath temperature causes an increase in the cobalt volatility; while ruthenium has a less obvious behavior. It is also found that the oxygen flux in the carrier gas supports the radioelement incorporations in the containment matrix, except in the case of the ruthenium which is more volatile under an oxidizing atmosphere. For electrolyses effects, an increase in the plasma current considerably increases both the vaporization speed and the vaporized quantities of (137)Cs and (60)Co. The increase of silicon percentage in the containment matrix supports the incorporation of (60)Co and (137)Cs in the matrix. The simulation results are compared favorably to the experimental measurements obtained by emission spectroscopy.
NASA Astrophysics Data System (ADS)
Major, Louis; Kyriacou, Theocharis; Brereton, Pearl
2014-07-01
This work investigates the effectiveness of simulated robots as tools to support the learning of programming. After the completion of a systematic review and exploratory research, a multi-case case study was undertaken. A simulator, named Kebot, was developed and used to run four 10-hour programming workshops. Twenty-three student participants (aged 16-18) in addition to 23 pre-service, and 3 in-service, teachers took part. The effectiveness of this intervention was determined by considering opinions, attitudes, and motivation as well as by analysing students' programming performance. Pre- and post-questionnaires, in- and post-workshop exercises, and interviews were used. Participants enjoyed learning using the simulator and believed the approach to be valuable and engaging. The performance of students indicates that the simulator aids learning as most completed tasks to a satisfactory standard. Evidence suggests robot simulators can offer an effective means of introducing programming. Recommendations to support the development of other simulators are provided.
Evaluation of virtual simulation in a master's-level nurse education certificate program.
Foronda, Cynthia; Lippincott, Christine; Gattamorta, Karina
2014-11-01
Master's-level, nurse education certificate students performed virtual clinical simulations as a portion of their clinical practicum. Virtual clinical simulation is an innovative pedagogy using avatars in Web-based platforms to provide simulated clinical experiences. The purpose of this mixed-methods study was to evaluate nurse educator students' experience with virtual simulation and the effect of virtual simulation on confidence in teaching ability. Aggregated quantitative results yielded no significant change in confidence in teaching ability. Individually, some students indicated change of either increased or decreased confidence, whereas others exhibited no change in confidence after engaging in virtual simulation. Qualitative findings revealed a process of precursors of anxiety and frustration with technical difficulties followed by outcomes of appreciation and learning. Instructor support was a mediating factor to decrease anxiety and technical difficulties. This study served as a starting point regarding the application of a virtual world to teach the art of instruction. As the movement toward online education continues, educators should further explore use of virtual simulation to prepare nurse educators.
The quadruped robot adaptive control in trotting gait walking on slopes
NASA Astrophysics Data System (ADS)
Zhang, Shulong; Ma, Hongxu; Yang, Yu; Wang, Jian
2017-10-01
The quadruped robot can be decomposed into a planar seven-link closed kinematic chain in the direction of supporting line and a linear inverted pendulum in normal direction of supporting line. The ground slope can be estimated by using the body attitude information and supporting legs length. The slope degree is used in feedback, to achieve the point of quadruped robot adaptive control walking on slopes. The simulation results verify that the quadruped robot can achieves steady locomotion on the slope with the control strategy proposed in this passage.
Simulation methods supporting homologation of Electronic Stability Control in vehicle variants
NASA Astrophysics Data System (ADS)
Lutz, Albert; Schick, Bernhard; Holzmann, Henning; Kochem, Michael; Meyer-Tuve, Harald; Lange, Olav; Mao, Yiqin; Tosolin, Guido
2017-10-01
Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.
Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.; ...
2017-04-24
In this study, we present the results of high-resolution simulations of the implosion of high-convergence layered indirect-drive inertial confinement fusion capsules of the type fielded on the National Ignition Facility using the xRAGE radiation-hydrodynamics code. In order to evaluate the suitability of xRAGE to model such experiments, we benchmark simulation results against available experimental data, including shock-timing, shock-velocity, and shell trajectory data, as well as hydrodynamic instability growth rates. We discuss the code improvements that were necessary in order to achieve favorable comparisons with these data. Due to its use of adaptive mesh refinement and Eulerian hydrodynamics, xRAGE is particularlymore » well suited for high-resolution study of multi-scale engineering features such as the capsule support tent and fill tube, which are known to impact the performance of high-convergence capsule implosions. High-resolution two-dimensional (2D) simulations including accurate and well-resolved models for the capsule fill tube, support tent, drive asymmetry, and capsule surface roughness are presented. These asymmetry seeds are isolated in order to study their relative importance and the resolution of the simulations enables the observation of details that have not been previously reported. We analyze simulation results to determine how the different asymmetries affect hotspot reactivity, confinement, and confinement time and how these combine to degrade yield. Yield degradation associated with the tent occurs largely through decreased reactivity due to the escape of hot fuel mass from the hotspot. Drive asymmetries and the fill tube, however, degrade yield primarily via burn truncation, as associated instability growth accelerates the disassembly of the hotspot. Finally, modeling all of these asymmetries together in 2D leads to improved agreement with experiment but falls short of explaining the experimentally observed yield degradation, consistent with previous 2D simulations of such capsules.« less
Kinnane, Nicole Anne; Waters, Trish; Aranda, Sanchia
2011-01-01
Volunteers from Peter MacCallum Cancer Centre (Peter Mac) Patient Information and Support Centre (PISC) assist the Cancer Support Nurse by helping patients and families/carers find information and provide face-to-face peer support. Benefits of shared personal experiences between volunteer and patient are clearly different from professional support. Volunteers require specific skill sets and detailed preparation for this role. Volunteers completed a 3-day training programme adapted from the Cancer Council Victoria's 'Cancer Connect Telephone Peer Support Volunteer' training programme. The focus was role expectations and boundaries for peer support volunteers, debriefing, communication skills training, support services, complementary and alternative therapies and internet information. Assessment included a quiz and observation for a range of competencies. Role-play with simulated patients developed appropriate support skills. Eight volunteers participated. Pre-training questionnaires revealed all volunteers highly self-rated existing skills supporting people affected by cancer. During training, volunteers recognised these skills were inadequate. All agreed that role-play using an actor as a 'simulated patient' helped develop communication skills; however, the experience proved challenging. Post-training all reported increased knowledge of role definition and boundaries, supportive communication skills, supports available for patients and families/carers and importance of self-care. Facilitators recommended seven of the eight participants be accredited PISC Peer Support Volunteers. One volunteer was assessed unsuitable for consistently overstepping the boundaries of the peer support role and withdrew from training. Success of the programme resulted in a trained 'face-to-face peer support volunteer' group better equipped for their role. Sixteen months following training, all who completed the programme remain active volunteers in the PISC. Planned educational updates include needs identified by the volunteers. The training programme would require adapting for future peer support volunteers.
ERIC Educational Resources Information Center
Swaak, Janine; And Others
In this study, learners worked with a simulation of harmonic oscillation. Two supportive measures were introduced: model progression and assignments. In model progression, the model underlying the simulation is not offered in its full complexity from the start, but variables are gradually introduced. Assignments are small exercises that help the…
ERIC Educational Resources Information Center
Zillesen, P. G. van Schaick; And Others
Instructional feedback given to the learners during computer simulation sessions may be greatly improved by integrating educational computer simulation programs with hypermedia-based computer-assisted learning (CAL) materials. A prototype of a learning environment of this type called BRINE PURIFICATION was developed for use in corporate training…
ERIC Educational Resources Information Center
Smetana, Lara Kathleen; Bell, Randy L.
2012-01-01
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is…
Rutherford-Hemming, Tonya; Nye, Carla; Coram, Cathy
2016-02-01
The National Organization for Nurse Practitioner Faculty (NONPF) does not allow simulation to be used in lieu of traditional clinical hours. The NONPF cites a lack of empirical evidence related to learning outcomes with simulation as rationale for its stance. The purpose of this systematic review was to search, extract, appraise, and synthesize research related to the use of simulation in Nurse Practitioner (NP) education in order to answer the two following questions: 1) What research related to simulation in NP education has emerged in the literature between 2010 and April 2015?, and 2) Of the research studies that have emerged, what level of Kirkpatrick's Training Evaluation Model (1994) is evaluated? This review was reported in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A literature search was completed in PubMed and CINAHL using a combination of medical subject headings, or Mesh terms, as well as keywords to retrieve non-indexed citations. The inclusion criteria for this review were broad in order to disseminate information on future research needed. The review considered studies related to NP education that included any form of simulation intervention, e.g. role-playing and standardized patients. The review considered studies that described original research, but no other design restrictions were imposed. The review was limited to studies published in the English language. The database search strategy yielded 198 citations. These results were narrowed down to 15 studies based on identified inclusion criteria. There is a lack of empirical evidence in the literature to support using simulation in lieu of direct patient care clinical hours in NP education. The evidence in this systematic review affirms NONPF's statement. Five years after the inception of NONPF's position statement, research to support learning outcomes with simulation in nurse practitioner education remains lacking. There is a need to produce rigorous scientific studies in the future in order to provide quantitative support to allow simulation to be counted as clinical hours in NP programs. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Zhang, Jianwei; Chen, Qi; Sun, Yanquing; Reid, David J.
2004-01-01
Learning support studies involving simulation-based scientific discovery learning have tended to adopt an ad hoc strategies-oriented approach in which the support strategies are typically pre-specified according to learners' difficulties in particular activities. This article proposes a more integrated approach, a triple scheme for learning…
NASA's Information Power Grid: Large Scale Distributed Computing and Data Management
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)
2001-01-01
Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.
Assessing the driving performance of older adult drivers: on-road versus simulated driving.
Lee, Hoe C; Cameron, Don; Lee, Andy H
2003-09-01
To validate a laboratory-based driving simulator in measuring on-road driving performance, 129 older adult drivers were assessed with both the simulator and an on-road test. The driving performance of the participants was gauged by appropriate and reliable age-specific assessment criteria, which were found to be negatively correlated with age. Using principal component analysis, two performance indices were developed from the criteria to represent the overall performance in simulated driving and the on-road assessment. There was significant positive association between the two indices, with the simulated driving performance index explaining over two-thirds of the variability of the on-road driving performance index, after adjustment for age and gender of the drivers. The results supported the validity of the driving simulator and it is a safer and more economical method than the on-road testing to assess the driving performance of older adult drivers.
CVT/PCS phase 1 integrated testing
NASA Technical Reports Server (NTRS)
Mcbrayer, R. O.; Steadman, J. D.
1973-01-01
Five breadboard experiments representing three Sortie Lab experiment disciplines were installed in a payload carrier simulator. A description of the experiments and the payload carrier simulator was provided. An assessment of the experiment interface with the simulator and an assessment of the simulator experiment support systems were presented. The results indicate that a hardware integrator for each experiment is essential; a crew chief, or mission specialist, for systems management and experimenter liaison is a vital function; a payload specialist is a practical concept for experiment integration and operation; an integration fixture for a complex experiment is required to efficiently integrate the experiment and carrier; simultaneous experiment utilization of simulator systems caused unexpected problems in meeting individual experiment requirements; experimenter traffic inside the dual-floor simulator did not hamper experiment operations; and the requirement for zero-g operation will provide a significant design challenge for some experiments.
SOA FROM ISOPRENE OXIDATION PRODUCTS: MODEL SIMULATION OF CLOUD CHEMISTRY
Recent laboratory evidence supports the hypothesis that secondary organic aerosol (SOA) is formed in the atmosphere through aqueous-phase reactions in clouds. The results of batch photochemical reactions of glyoxal, methylglyoxal and hydrogen peroxide are presented. These labor...
Snow rendering for interactive snowplow simulation : supporting safety in snowplow design.
DOT National Transportation Integrated Search
2011-02-01
During a snowfall, following a snowplow can be extremely dangerous. This danger comes from the human visual : systems inability to accurately perceive the speed and motion of the snowplow, often resulting in rear-end : collisions. For this project...
Automated simulation as part of a design workstation
NASA Technical Reports Server (NTRS)
Cantwell, Elizabeth; Shenk, T.; Robinson, P.; Upadhye, R.
1990-01-01
A development project for a design workstation for advanced life-support systems (called the DAWN Project, for Design Assistant Workstation), incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulation such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components are discussed.
Demonstration of theoretical and experimental simulations in fiber optics course
NASA Astrophysics Data System (ADS)
Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun
2017-08-01
"Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.
Xyce parallel electronic simulator : users' guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.
2011-05-01
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less
The novel support structure design of high stability for space borne primary reflector
NASA Astrophysics Data System (ADS)
Yu, Fei; Ding, Lin; Tan, Ting; Pei, Jing-yang.; Zhao, Xue-min; Bai, Shao-jun
2018-01-01
The novel support structure design of high stability for space borne primary mirror is presented. The structure is supported by a ball head support rod, for statically determinate support of reflector. The ball head assembly includes the supporting rod, nesting, bushing and other important parts. The liner bushing of the resistant material is used to fit for ball head approximated with the reflector material, and then the bad impact of thermal mismatch could be minimized to minimum. In order to ensure that the structure of the support will not be damaged, the glue spots for limitation is added around the reflector, for position stability of reflector. Through analysis and calculation, it can be seen that the novel support structure would not transfer the external stresses to the reflector, and the external stresses usually result from thermal mismatch and assembly misalignment. The novel method is useful for solving the problem of the bad influence form thermal stress and assembly force. In this paper, the supporting structure is introduced and analyzed in detail. The simulation results show that the ball head support reflector works more stably.
Development and analysis of air quality modeling simulations for hazardous air pollutants
NASA Astrophysics Data System (ADS)
Luecken, D. J.; Hutzell, W. T.; Gipson, G. L.
The concentrations of five hazardous air pollutants were simulated using the community multi-scale air quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results are shown for formaldehyde, acetaldehyde, benzene, 1,3-butadiene and acrolein. Photochemical production in the atmosphere is predicted to dominate ambient formaldehyde and acetaldehyde concentrations, and to account for a significant fraction of ambient acrolein concentrations. Spatial and temporal variations are large throughout the domain over the year. Predicted concentrations are compared with observations for formaldehyde, acetaldehyde, benzene and 1,3-butadiene. Although the modeling results indicate an overall slight tendency towards underprediction, they reproduce episodic and seasonal behavior of pollutant concentrations at many monitors with good skill.
Conflict Probe Concepts Analysis in Support of Free Flight
NASA Technical Reports Server (NTRS)
Warren, Anthony W.; Schwab, Robert W.; Geels, Timothy J.; Shakarian, Arek
1997-01-01
This study develops an operational concept and requirements for en route Free Flight using a simulation of the Cleveland Air Route Traffic Control Center, and develops requirements for an automated conflict probe for use in the Air Traffic Control (ATC) Centers. In this paper, we present the results of simulation studies and summarize implementation concepts and infrastructure requirements to transition from the current air traffic control system to mature Free Right. The transition path to Free Flight envisioned in this paper assumes an orderly development of communications, navigation, and surveillance (CNS) technologies based on results from our simulation studies. The main purpose of this study is to provide an overall context and methodology for evaluating airborne and ground-based requirements for cooperative development of the future ATC system.
Ryan, Patrick B; Schuemie, Martijn J
2013-10-01
There has been only limited evaluation of statistical methods for identifying safety risks of drug exposure in observational healthcare data. Simulations can support empirical evaluation, but have not been shown to adequately model the real-world phenomena that challenge observational analyses. To design and evaluate a probabilistic framework (OSIM2) for generating simulated observational healthcare data, and to use this data for evaluating the performance of methods in identifying associations between drug exposure and health outcomes of interest. Seven observational designs, including case-control, cohort, self-controlled case series, and self-controlled cohort design were applied to 399 drug-outcome scenarios in 6 simulated datasets with no effect and injected relative risks of 1.25, 1.5, 2, 4, and 10, respectively. Longitudinal data for 10 million simulated patients were generated using a model derived from an administrative claims database, with associated demographics, periods of drug exposure derived from pharmacy dispensings, and medical conditions derived from diagnoses on medical claims. Simulation validation was performed through descriptive comparison with real source data. Method performance was evaluated using Area Under ROC Curve (AUC), bias, and mean squared error. OSIM2 replicates prevalence and types of confounding observed in real claims data. When simulated data are injected with relative risks (RR) ≥ 2, all designs have good predictive accuracy (AUC > 0.90), but when RR < 2, no methods achieve 100 % predictions. Each method exhibits a different bias profile, which changes with the effect size. OSIM2 can support methodological research. Results from simulation suggest method operating characteristics are far from nominal properties.
Weller, Jennifer; Henderson, Robert; Webster, Craig S; Shulruf, Boaz; Torrie, Jane; Davies, Elaine; Henderson, Kaylene; Frampton, Chris; Merry, Alan F
2014-01-01
Effective teamwork is important for patient safety, and verbal communication underpins many dimensions of teamwork. The validity of the simulated environment would be supported if it elicited similar verbal communications to the real setting. The authors hypothesized that anesthesiologists would exhibit similar verbal communication patterns in routine operating room (OR) cases and routine simulated cases. The authors further hypothesized that anesthesiologists would exhibit different communication patterns in routine cases (real or simulated) and simulated cases involving a crisis. Key communications relevant to teamwork were coded from video recordings of anesthesiologists in the OR, routine simulation and crisis simulation and percentages were compared. The authors recorded comparable videos of 20 anesthesiologists in the two simulations, and 17 of these anesthesiologists in the OR, generating 400 coded events in the OR, 683 in the routine simulation, and 1,419 in the crisis simulation. The authors found no significant differences in communication patterns in the OR and the routine simulations. The authors did find significant differences in communication patterns between the crisis simulation and both the OR and the routine simulations. Participants rated team communication as realistic and considered their communications occurred with a similar frequency in the simulations as in comparable cases in the OR. The similarity of teamwork-related communications elicited from anesthesiologists in simulated cases and the real setting lends support for the ecological validity of the simulation environment and its value in teamwork training. Different communication patterns and frequencies under the challenge of a crisis support the use of simulation to assess crisis management skills.
Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Glória Chiarello; Ribeiro, Ricardo Faria
2008-01-01
This study compared the vertical misfit of 3-unit implant-supported nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloy and commercially pure titanium (cpTi) frameworks after casting as 1 piece, after sectioning and laser welding, and after simulated porcelain firings. The results on the tightened side showed no statistically significant differences. On the opposite side, statistically significant differences were found for Co-Cr alloy (118.64 microm [SD: 91.48] to 39.90 microm [SD: 27.13]) and cpTi (118.56 microm [51.35] to 27.87 microm [12.71]) when comparing 1-piece to laser-welded frameworks. With both sides tightened, only Co-Cr alloy showed statistically significant differences after laser welding. Ni-Cr alloy showed the lowest misfit values, though the differences were not statistically significantly different. Simulated porcelain firings revealed no significant differences.
Modelling of the Human Knee Joint Supported by Active Orthosis
NASA Astrophysics Data System (ADS)
Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.
2018-02-01
The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.
Simulation studies of nucleation of ferroelectric polarization reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecka, Geoffrey L.; Winchester, Benjamin Michael
2014-08-01
Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO 3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but alsomore » ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.« less
System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry
Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping
2016-01-01
The construction industry is a demanding work environment where employees’ work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee’s work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee’s work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction. PMID:27801857
System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry.
Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping
2016-10-28
The construction industry is a demanding work environment where employees' work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee's work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee's work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction.
Probabilistic Simulation of Stress Concentration in Composite Laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, D. G.
1994-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors (SCF's) in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties, whereas the finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate SCF's, such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using is to simulate the SCF's in three different composite laminates. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the SCF's are influenced by local stiffness variables, by load eccentricities, and by initial stress fields.
NASA Technical Reports Server (NTRS)
Mercer, Joey; Callantine, Todd; Martin, Lynne
2012-01-01
A recent human-in-the-loop simulation in the Airspace Operations Laboratory (AOL) at NASA's Ames Research Center investigated the robustness of Controller-Managed Spacing (CMS) operations. CMS refers to AOL-developed controller tools and procedures for enabling arrivals to conduct efficient Optimized Profile Descents with sustained high throughput. The simulation provided a rich data set for examining how a traffic management supervisor and terminal-area controller participants used the CMS tools and coordinated to respond to off-nominal events. This paper proposes quantitative measures for characterizing the participants responses. Case studies of go-around events, replicated during the simulation, provide insights into the strategies employed and the role the CMS tools played in supporting them.
Application of ICME Methods for the Development of Rapid Manufacturing Technologies
NASA Astrophysics Data System (ADS)
Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.
Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.
Development of the CELSS Emulator at NASA JSC
NASA Technical Reports Server (NTRS)
Cullingford, Hatice S.
1989-01-01
The Controlled Ecological Life Support System (CELSS) Emulator is under development at the NASA Johnson Space Center (JSC) with the purpose to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. This paper describes Version 1.0 of the CELSS Emulator that was initiated in 1988 on the JSC Multi Purpose Applications Console Test Bed as the simulation framework. The run module of the simulation system now contains a CELSS model called BLSS. The CELSS Emulator makes it possible to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.
NASA Astrophysics Data System (ADS)
Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2014-03-01
In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.
A mathematical and experimental simulation of the hematological response to weightlessness
NASA Technical Reports Server (NTRS)
Kimzey, S. L.; Leonard, J. I.; Johnson, P. C.
1979-01-01
A mathematical model of erythropoiesis control was used to simulate the effects of bedrest and zero-g on the circulating red cell mass. The model incorporates the best current understanding of the dynamics of red cell production and destruction and the associated feedback regulation. Specifically studied were the hemodynamic responses of a 28-day bedrest study devised to simulate Skylab experience. The results support the hypothesis that red cell loss during supine bedrest is a normal physiological feedback process in response to hemoconcentration enhanced tissue oxygenation and suppression of red cell production. Model simulation suggested the possibilities that this period was marked by some combination of increased oxygen-hemoglobin affinity, small reduction in mean red cell life span, ineffective erythropoiesis, or abnormal reticulocytosis.
Efficient generation of connectivity in neuronal networks from simulator-independent descriptions
Djurfeldt, Mikael; Davison, Andrew P.; Eppler, Jochen M.
2014-01-01
Simulator-independent descriptions of connectivity in neuronal networks promise greater ease of model sharing, improved reproducibility of simulation results, and reduced programming effort for computational neuroscientists. However, until now, enabling the use of such descriptions in a given simulator in a computationally efficient way has entailed considerable work for simulator developers, which must be repeated for each new connectivity-generating library that is developed. We have developed a generic connection generator interface that provides a standard way to connect a connectivity-generating library to a simulator, such that one library can easily be replaced by another, according to the modeler's needs. We have used the connection generator interface to connect C++ and Python implementations of the previously described connection-set algebra to the NEST simulator. We also demonstrate how the simulator-independent modeling framework PyNN can transparently take advantage of this, passing a connection description through to the simulator layer for rapid processing in C++ where a simulator supports the connection generator interface and falling-back to slower iteration in Python otherwise. A set of benchmarks demonstrates the good performance of the interface. PMID:24795620
Coupling sensing to crop models for closed-loop plant production in advanced life support systems
NASA Astrophysics Data System (ADS)
Cavazzoni, James; Ling, Peter P.
1999-01-01
We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.
Akca, Kivanc; Eser, Atilim; Eckert, Steven; Cavusoglu, Yeliz; Cehreli, Murat Cavit
2013-01-01
To compare biomechanical outcomes of immediately and conventionally loaded bar-retained implant-supported maxillary overdentures using finite element stress analysis. Finite element models were created to replicate the spatial positioning of four 4.1 × 12-mm implants in the completely edentulous maxillae of four cadavers to support bar-retained overdentures with 7-mm distal extension cantilevers. To simulate the bone-implant interface of immediately loaded implants, a contact situation was defined at the interface; conventional loading was simulated by "bonding" the implants to the surrounding bone. The prostheses were loaded with 100 N in the projected molar regions bilaterally, and strain magnitudes were measured at the buccal aspect of bone. The amplitude of axial and lateral strains, the overall strain magnitudes, and the strain magnitudes around anterior and posterior implants in the immediate loading group were comparable to those seen in the conventional loading group, suggesting that the loading regimens created similar stress/strain fields (P > .05). Conventional and immediate loading of maxillary implants supporting bar-retained overdentures resulted in similar bone strains.
Dual-band microstrip patch antenna based on metamaterial refractive surface
NASA Astrophysics Data System (ADS)
Salhi, Ridha; Labidi, Mondher; Boujemaa, Mohamed Ali; Choubani, Fethi
2017-06-01
In this paper, we present a new design of microstrip patch antenna based on metamaterial refractive surface (MRS). By optimizing the air gap between the MRS layer and the patch antenna to be 7 mm, the band width and the gain of the proposed antenna are significantly enhanced. The proposed prototype presents a dual band antenna. The center frequency for the first band is 2.44 GHz and the generated bandwidth is 25 MHz. The second band has a center frequency of 2.8 GHz and with a bandwidth of 50 MHz. The simulation results are analyzed and discussed in terms of return loss, gain and radiation pattern using electromagnetic simulator software. Finally, the designed dual band antenna is fabricated and different measurement results are performed and compared with simulation results in order to validate its performances. The proposed antenna supports WiBro (wireless broadband), ISM, WiFi, Bluetooth, WiMAX and radars services.
A study on the distribution of adsorbed nanoparticles
NASA Astrophysics Data System (ADS)
Li, Ding
2008-02-01
We use Monte Carlo simulation to calculate the distributions of particles under adsorption force near planar and cylindrical surfaces, respectively. Both hard sphere interaction and repulsive Yukawa (screened coulomb) interaction are employed in our simulations. We study the influence of the inter-particle potentials. The difference between the MC simulation results and the analytical results of ideal gas model shows that the interaction between particles plays an important role in the density distribution under external fields. Moreover, the 2-dimensional constructions of particles close to the surface are studied and show relations of the interaction between particles. These results may indicate us how to improve the methods of building nanoparticle coatings and nano-scale patterns. Supported by 100 Persons Project of Chinese Academy of Sciences, National Natural Science Foundation of China (10474109, 10674146) and Major State Research Development Programme of China (2006CB933000, 2006CB708612)
Simulations of Atmospheric Plasma Arcs
NASA Astrophysics Data System (ADS)
Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael
2017-10-01
We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.
Technology and medicine: the evolution of virtual reality simulation in laparoscopic training.
Bashir, Gareth
2010-01-01
Virtual reality (VR) simulation for laparoscopic surgical training is now a reality. There is increasing evidence that the use of VR simulation is a powerful adjunct to traditional surgical apprenticeship in the current climate of reduced time spent in training. This article reviews the early evidence supporting the case for VR simulation training in laparoscopic surgery. A standard literature search was conducted using the following phrases--'virtual reality in surgical training', 'surgical training', 'laparoscopic training' and 'simulation in surgical training'. This article outlines the early evidence which supports the use of VR simulation in laparoscopic training and the need for further research into this new training technique.
Simulative design and process optimization of the two-stage stretch-blow molding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-22
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development timemore » and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.« less
Simulative design and process optimization of the two-stage stretch-blow molding process
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-01
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.
Distributed support modelling for vertical track dynamic analysis
NASA Astrophysics Data System (ADS)
Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.
2018-04-01
The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.
Collaborative simulation method with spatiotemporal synchronization process control
NASA Astrophysics Data System (ADS)
Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian
2016-10-01
When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.
NASA Astrophysics Data System (ADS)
Schlegel, N.; Seroussi, H. L.; Boening, C.; Larour, E. Y.; Limonadi, D.; Schodlok, M.; Watkins, M. M.
2017-12-01
The Jet Propulsion Laboratory-University of California at Irvine Ice Sheet System Model (ISSM) is a thermo-mechanical 2D/3D parallelized finite element software used to physically model the continental-scale flow of ice at high resolutions. Embedded into ISSM are uncertainty quantification (UQ) tools, based on the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) software. ISSM-DAKOTA offers various UQ methods for the investigation of how errors in model input impact uncertainty in simulation results. We utilize these tools to regionally sample model input and key parameters, based on specified bounds of uncertainty, and run a suite of continental-scale 100-year ISSM forward simulations of the Antarctic Ice Sheet. Resulting diagnostics (e.g., spread in local mass flux and regional mass balance) inform our conclusion about which parameters and/or forcing has the greatest impact on century-scale model simulations of ice sheet evolution. The results allow us to prioritize the key datasets and measurements that are critical for the minimization of ice sheet model uncertainty. Overall, we find that Antartica's total sea level contribution is strongly affected by grounding line retreat, which is driven by the magnitude of ice shelf basal melt rates and by errors in bedrock topography. In addition, results suggest that after 100 years of simulation, Thwaites glacier is the most significant source of model uncertainty, and its drainage basin has the largest potential for future sea level contribution. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.
Reconstruction, Enhancement, Visualization, and Ergonomic Assessment for Laparoscopic Surgery
2007-02-01
support and upgrade of the REVEAL display system and tool suite in the University of Maryland Medical Center’s Simulation Center, (2) stereo video display...technology deployment, (3) stereo probe calibration benchmarks and support tools , (4) the production of research media, (5) baseline results from...endoscope can be used to generate a stereoscopic view for a surgeon, as with the DaVinci robot in use today. In order to use such an endoscope for
M3MS-16OR0401086 – Report on NEAMS Workbench Support for MOOSE Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefebvre, Robert A.; Langley, Brandon R.; Thompson, Adam B.
This report summarizes the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench from Oak Ridge National Laboratory (ORNL) and the integration of the MOOSE framework. This report marks the completion of NEAMS milestone M3MS-16OR0401086. This report documents the developed infrastructure to support the MOOSE framework applications, the applications’ results, visualization status, the collaboration that facilitated this progress, and future considerations.
Development of a large support surface for an air-bearing type zero-gravity simulator
NASA Technical Reports Server (NTRS)
Glover, K. E.
1976-01-01
The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.
Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.
Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann
2015-01-01
Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.
NASA Astrophysics Data System (ADS)
Parker, Jeffrey; Lodestro, Lynda; Told, Daniel; Merlo, Gabriele; Ricketson, Lee; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey
2017-10-01
Predictive whole-device simulation models will play an increasingly important role in ensuring the success of fusion experiments and accelerating the development of fusion energy. In the core of tokamak plasmas, a separation of timescales between turbulence and transport makes a single direct simulation of both processes computationally expensive. We present the first demonstration of a multiple-timescale method coupling global gyrokinetic simulations with a transport solver to calculate the self-consistent, steady-state temperature profile. Initial results are highly encouraging, with the coupling method appearing robust to the difficult problem of turbulent fluctuations. The method holds potential for integrating first-principles turbulence simulations into whole-device models and advancing the understanding of global plasma behavior. Work supported by US DOE under Contract DE-AC52-07NA27344 and the Exascale Computing Project (17-SC-20-SC).
VCSim3: a VR simulator for cardiovascular interventions.
Korzeniowski, Przemyslaw; White, Ruth J; Bello, Fernando
2018-01-01
Effective and safe performance of cardiovascular interventions requires excellent catheter/guidewire manipulation skills. These skills are currently mainly gained through an apprenticeship on real patients, which may not be safe or cost-effective. Computer simulation offers an alternative for core skills training. However, replicating the physical behaviour of real instruments navigated through blood vessels is a challenging task. We have developed VCSim3-a virtual reality simulator for cardiovascular interventions. The simulator leverages an inextensible Cosserat rod to model virtual catheters and guidewires. Their mechanical properties were optimized with respect to their real counterparts scanned in a silicone phantom using X-ray CT imaging. The instruments are manipulated via a VSP haptic device. Supporting solutions such as fluoroscopic visualization, contrast flow propagation, cardiac motion, balloon inflation, and stent deployment, enable performing a complete angioplasty procedure. We present detailed results of simulation accuracy of the virtual instruments, along with their computational performance. In addition, the results of a preliminary face and content validation study conveyed on a group of 17 interventional radiologists are given. VR simulation of cardiovascular procedure can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. VCSim3 is still a prototype, yet the initial results indicate that it provides promising foundations for further development.
Geometric optimization of microreactor chambers to increase the homogeneity of the velocity field
NASA Astrophysics Data System (ADS)
Pálovics, Péter; Ender, Ferenc; Rencz, Márta
2018-06-01
In this work microfluidic flow-through chambers are investigated. They are filled with magnetic nanoparticle (MNP) suspension in order to facilitate enzymatic reactions. The enzyme is immobilized on the surface of the MNPs. These reactions have been found to be flow rate dependent. To overcome this issue various chamber geometries have been examined and optimized geometries have been designed and tested experimentally. The investigation is supported with dedicated CFD simulations using the open source software OpenFOAM. The paper presents the theoretical background and the results of the simulations. The simulations have been verified with measurements and these too are presented in the paper.
Large-Eddy Simulation of Propeller Crashback
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Mahesh, Krishnan
2013-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in propeller crashback. Results are shown for a stand-alone open propeller, hull-attached open propeller and a ducted propeller. The simulations are compared to experiment, and used to discuss the essential physics behind the unsteady loads. This work is supported by the Office of Naval Research.
Validation of a DICE Simulation Against a Discrete Event Simulation Implemented Entirely in Code.
Möller, Jörgen; Davis, Sarah; Stevenson, Matt; Caro, J Jaime
2017-10-01
Modeling is an essential tool for health technology assessment, and various techniques for conceptualizing and implementing such models have been described. Recently, a new method has been proposed-the discretely integrated condition event or DICE simulation-that enables frequently employed approaches to be specified using a common, simple structure that can be entirely contained and executed within widely available spreadsheet software. To assess if a DICE simulation provides equivalent results to an existing discrete event simulation, a comparison was undertaken. A model of osteoporosis and its management programmed entirely in Visual Basic for Applications and made public by the National Institute for Health and Care Excellence (NICE) Decision Support Unit was downloaded and used to guide construction of its DICE version in Microsoft Excel ® . The DICE model was then run using the same inputs and settings, and the results were compared. The DICE version produced results that are nearly identical to the original ones, with differences that would not affect the decision direction of the incremental cost-effectiveness ratios (<1% discrepancy), despite the stochastic nature of the models. The main limitation of the simple DICE version is its slow execution speed. DICE simulation did not alter the results and, thus, should provide a valid way to design and implement decision-analytic models without requiring specialized software or custom programming. Additional efforts need to be made to speed up execution.
Models of Human Information Requirements: "When Reasonable Aiding Systems Disagree"
NASA Technical Reports Server (NTRS)
Corker, Kevin; Pisanich, Gregory; Shafto, Michael (Technical Monitor)
1994-01-01
Aircraft flight management and Air Traffic Control (ATC) automation are under development to maximize the economy of flight and to increase the capacity of the terminal area airspace while maintaining levels of flight safety equal to or better than current system performance. These goals are being realized by the introduction of flight management automation aiding and operations support systems on the flight deck and by new developments of ATC aiding systems that seek to optimize scheduling of aircraft while potentially reducing required separation and accounting for weather and wake vortex turbulence. Aiding systems on both the flight deck and the ground operate through algorithmic functions on models of the aircraft and of the airspace. These models may differ from each other as a result of variations in their models of the immediate environment. The resultant flight operations or ATC commands may differ in their response requirements (e.g. different preferred descent speeds or descent initiation points). The human operators in the system must then interact with the automation to reconcile differences and resolve conflicts. We have developed a model of human performance including cognitive functions (decision-making, rule-based reasoning, procedural interruption recovery and forgetting) that supports analysis of the information requirements for resolution of flight aiding and ATC conflicts. The model represents multiple individuals in the flight crew and in ATC. The model is supported in simulation on a Silicon Graphics' workstation using Allegro Lisp. Design guidelines for aviation automation aiding systems have been developed using the model's specification of information and team procedural requirements. Empirical data on flight deck operations from full-mission flight simulation are provided to support the model's predictions. The paper describes the model, its development and implementation, the simulation test of the model predictions, and the empirical validation process. The model and its supporting data provide a generalizable tool that is being expanded to include air/ground compatibility and ATC crew interactions in air traffic management.
Development of FullWave : Hot Plasma RF Simulation Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei
2017-10-01
Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.
NASA Astrophysics Data System (ADS)
Mas, E.; Takagi, H.; Adriano, B.; Hayashi, S.; Koshimura, S.
2014-12-01
The 2011 Great East Japan earthquake and tsunami reminded that nature can exceed structural countermeasures like seawalls, breakwaters or tsunami gates. In such situations it is a challenging task for people to find nearby haven. This event, as many others before, confirmed the importance of early evacuation, tsunami awareness and the need for developing much more resilient communities with effective evacuation plans. To support reconstruction activities and efforts on developing resilient communities in areas at risk, tsunami evacuation simulation can be applied to tsunami mitigation and evacuation planning. In this study, using the compiled information related to the evacuation behavior at Yuriage in Natori during the 2011 tsunami, we simulated the evacuation process and explored the reasons for the large number of fatalities in the area. It was found that residents did evacuate to nearby shelter areas, however after the tsunami warning was increased some evacuees decided to conduct a second step evacuation to a far inland shelter. Simulation results show the consequences of such decision and the outcomes when a second evacuation would not have been performed. The actual reported number of fatalities in the event and the results from simulation are compared to verify the model. The case study shows the contribution of tsunami evacuation models as tools to be applied for the analysis of evacuees' decisions and the related outcomes. In addition, future evacuation plans and activities for reconstruction process and urban planning can be supported by the results provided from this kind of tsunami evacuation models.
Wang, Baohe; Nie, Yan; Ma, Jing
2018-03-01
Combing molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulation, the effect of bioadhesive transition layer on the interfacial compatibility of the pervaporation composite membranes, and the pervaporation performance toward penetrant molecules were investigated. In our previous experimental study, the structural stability and permeability selectivity of the composite membranes were considerably enhanced by the introduction of bioadhesive carbopol (CP). In the present study, the interfacial compatibility and the interfacial energies between the chitosan (CS) separation layer, CP transition layer and the support layer were investigated, respectively. The mobility of polymer chains, free volume in bulk and interface regions were evaluated by the mean-square displacement (MSD) and free volume voids (FFV) analysis. The diffusion and sorption behavior of water/ethanol molecules in bulk and interface regions were characterized. The simulation results of membrane structure have good consistency, indicating that the introduction of CP transition layer improved the interfacial compatibility and interaction between the separation layer and the support layer. Comparing the bulk region of the separation layer, the mobility and free volume of the polymer chain in the interface region decreased and thus reduced the swelling of CS active layer, revealing the increased diffusion selectivity toward the permeated water and ethanol molecules. The strong hydrogen bonds interaction between the COOH of the CP transition layer and water molecules increased the adsorption of water molecules in the interface region. The simulation results were quite consistent with the experimental results. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Major, Louis; Kyriacou, Theocharis; Brereton, Pearl
2014-01-01
This work investigates the effectiveness of simulated robots as tools to support the learning of programming. After the completion of a systematic review and exploratory research, a multi-case case study was undertaken. A simulator, named Kebot, was developed and used to run four 10-hour programming workshops. Twenty-three student participants…
ERIC Educational Resources Information Center
Kwon, Seolim; Lara, Miguel; Enfield, Jake; Frick, Theodore
2013-01-01
Conducting an iterative usability testing, a set of prompts used as a form of instructional support was developed in order to facilitate the comprehension of the diffusion of innovations theory (Rogers, 2003) in a simulation game called the Diffusion Simulation Game (DSG) (Molenda & Rice, 1979). The six subjects who participated in the study…
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.
NASA Astrophysics Data System (ADS)
Athmer, Keith; Gaughan, Chris; McDonnell, Joseph S.; Leach, Robert; Davis, Bert; Truong, Kiet; Borum, Howard; Leslie, Richard; Ma, Lein
2012-05-01
The development of an Integrated Base Defense (IBD) is a significant challenge for the Army with many analytical gaps. The IBD problem space is complex, with evolving requirements and a large stakeholder base. In order to evaluate and analyze IBD decisions, the Training & Doctrine Command (TRADOC) Maneuver Support Center of Excellence (MSCoE) led and continues to lead a series of IBD focused experiments and wargames. Modeling and Simulation (M&S) significantly contributes to this effort. To improve IBD M&S capabilities, a collaborative demonstration with the Research, Development and Engineering Command's (RDECOM's) M&S Decision Support Environment (MSDSE) was held in September 2011. The results of this demonstration provided key input to MSCoE IBD related concepts and technologies. Moreover, it established an initial M&S toolset that will significantly improve force protection in combat zones and Army installations worldwide by providing leaders a capability to conduct analysis of defense and mission rehearsals. The demonstration was executed with a "human in the loop" Battle Captain, who was aided by mission command assets such as Base Expeditionary Targeting and Surveillance Sensors-Combined (BETSS-C). The Common Operating Picture was populated and stimulated using Science & Technology (S&T) M&S, allowing for a realistic representation of physical phenomena without the need for real systems. Novel methods were used for simulation orchestration, and for initializing the simulations and Opposing Force (OPFOR) activities. Ultimately, this demonstration showed that the MSDSE is suitable to support TRADOC IBD analyses and that S&T M&S is ready to be used in a demanding simulation environment. This paper will highlight the event's outcomes and lessons identified.
System dynamics and simulation of LSS
NASA Technical Reports Server (NTRS)
Ryan, R. F.
1978-01-01
Large Space Structures have many unique problems arising from mission objectives and the resulting configuration. Inherent in these configurations is a strong coupling among several of the designing disciplines. In particular, the coupling between structural dynamics and control is a key design consideration. The solution to these interactive problems requires efficient and accurate analysis, simulation and test techniques, and properly planned and conducted design trade studies. The discussion presented deals with these subjects and concludes with a brief look at some NASA capabilities which can support these technology studies.
1978-06-01
25 4. Nose Strake and Pitot Boom Details . . . . . . . . . . . . . . . . . . . . . . 28 5. Exhaust Nozzle Closure...actual wing through the use of simulated wing gloves (Fig. 3c) which duplicated the modification required on the wingtip supported model. The pitot ...pressure rakes located in the model plenum upstream of the nozzle throat were used to monitor the simulated jet flow. 2.2.5 Surface Pressures
Multispectral image fusion using neural networks
NASA Technical Reports Server (NTRS)
Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.
1990-01-01
A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.
Multiple frequency interference in photorefractive media
NASA Technical Reports Server (NTRS)
Cox, David E.; Welch, Sharon S.
1992-01-01
The paper describes the use of a numerical simulation to predict the dynamic behavior of a photorefractive crystal exposed to interfering light waves at two different frequencies. Unlike static recording media, photorefractive materials allow for the simultaneous diffraction from and generation of refractive index gratings. The grating properties are evaluated in terms of their effect on the performance of a dynamic distributed sensor which uses the crystal as a holographic recording medium. Experimental results are presented which support the behavior predicted by simulation.
The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning
ERIC Educational Resources Information Center
Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton
2013-01-01
Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathasivam, Saratha
New activation function is examined for its ability to accelerate the performance of doing logic programming in Hopfield network. This method has a higher capacity and upgrades the neuro symbolic integration. Computer simulations are carried out to validate the effectiveness of the new activation function. Empirical results obtained support our theory.
Ma, Ning; Morris, Saffron; Kitterick, Pádraig Thomas
2016-01-01
Objectives: This study used vocoder simulations with normal-hearing (NH) listeners to (1) measure their ability to integrate speech information from an NH ear and a simulated cochlear implant (CI), and (2) investigate whether binaural integration is disrupted by a mismatch in the delivery of spectral information between the ears arising from a misalignment in the mapping of frequency to place. Design: Eight NH volunteers participated in the study and listened to sentences embedded in background noise via headphones. Stimuli presented to the left ear were unprocessed. Stimuli presented to the right ear (referred to as the CI-simulation ear) were processed using an eight-channel noise vocoder with one of the three processing strategies. An Ideal strategy simulated a frequency-to-place map across all channels that matched the delivery of spectral information between the ears. A Realistic strategy created a misalignment in the mapping of frequency to place in the CI-simulation ear where the size of the mismatch between the ears varied across channels. Finally, a Shifted strategy imposed a similar degree of misalignment in all channels, resulting in consistent mismatch between the ears across frequency. The ability to report key words in sentences was assessed under monaural and binaural listening conditions and at signal to noise ratios (SNRs) established by estimating speech-reception thresholds in each ear alone. The SNRs ensured that the monaural performance of the left ear never exceeded that of the CI-simulation ear. The advantages of binaural integration were calculated by comparing binaural performance with monaural performance using the CI-simulation ear alone. Thus, these advantages reflected the additional use of the experimentally constrained left ear and were not attributable to better-ear listening. Results: Binaural performance was as accurate as, or more accurate than, monaural performance with the CI-simulation ear alone. When both ears supported a similar level of monaural performance (50%), binaural integration advantages were found regardless of whether a mismatch was simulated or not. When the CI-simulation ear supported a superior level of monaural performance (71%), evidence of binaural integration was absent when a mismatch was simulated using both the Realistic and the Ideal processing strategies. This absence of integration could not be accounted for by ceiling effects or by changes in SNR. Conclusions: If generalizable to unilaterally deaf CI users, the results of the current simulation study would suggest that benefits to speech perception in noise can be obtained by integrating information from an implanted ear and an NH ear. A mismatch in the delivery of spectral information between the ears due to a misalignment in the mapping of frequency to place may disrupt binaural integration in situations where both ears cannot support a similar level of monaural speech understanding. Previous studies that have measured the speech perception of unilaterally deaf individuals after CI but with nonindividualized frequency-to-electrode allocations may therefore have underestimated the potential benefits of providing binaural hearing. However, it remains unclear whether the size and nature of the potential incremental benefits from individualized allocations are sufficient to justify the time and resources required to derive them based on cochlear imaging or pitch-matching tasks. PMID:27116049
Accuracy of the lattice-Boltzmann method using the Cell processor
NASA Astrophysics Data System (ADS)
Harvey, M. J.; de Fabritiis, G.; Giupponi, G.
2008-11-01
Accelerator processors like the new Cell processor are extending the traditional platforms for scientific computation, allowing orders of magnitude more floating-point operations per second (flops) compared to standard central processing units. However, they currently lack double-precision support and support for some IEEE 754 capabilities. In this work, we develop a lattice-Boltzmann (LB) code to run on the Cell processor and test the accuracy of this lattice method on this platform. We run tests for different flow topologies, boundary conditions, and Reynolds numbers in the range Re=6 350 . In one case, simulation results show a reduced mass and momentum conservation compared to an equivalent double-precision LB implementation. All other cases demonstrate the utility of the Cell processor for fluid dynamics simulations. Benchmarks on two Cell-based platforms are performed, the Sony Playstation3 and the QS20/QS21 IBM blade, obtaining a speed-up factor of 7 and 21, respectively, compared to the original PC version of the code, and a conservative sustained performance of 28 gigaflops per single Cell processor. Our results suggest that choice of IEEE 754 rounding mode is possibly as important as double-precision support for this specific scientific application.
Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers.
Bethke, Kevin; Andrei, Virgil; Rademann, Klaus
2016-01-01
As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.
Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers
Bethke, Kevin; Andrei, Virgil; Rademann, Klaus
2016-01-01
As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes. PMID:26982458
Learning Reverse Engineering and Simulation with Design Visualization
NASA Technical Reports Server (NTRS)
Hemsworth, Paul J.
2018-01-01
The Design Visualization (DV) group supports work at the Kennedy Space Center by utilizing metrology data with Computer-Aided Design (CAD) models and simulations to provide accurate visual representations that aid in decision-making. The capability to measure and simulate objects in real time helps to predict and avoid potential problems before they become expensive in addition to facilitating the planning of operations. I had the opportunity to work on existing and new models and simulations in support of DV and NASA’s Exploration Ground Systems (EGS).
De Lazzari, Claudio; Genuini, Igino; Quatember, Bernhard; Fedele, Francesco
2014-02-01
Patients assisted with left ventricular assist device (LVAD) may require prolonged mechanical ventilatory assistance secondary to postoperative respiratory failure. The goal of this work is the study of the interdependent effects LVAD like pulsatile catheter (PUCA) pump and mechanical ventilatory support or thoracic artificial lung (TAL), by the hemodynamic point of view, using a numerical simulator of the human cardiovascular system. In the simulator, different circulatory sections are described using lumped parameter models. Lumped parameter models have been designed to describe the hydrodynamic behavior of both PUCA pump and thoracic artificial lung. Ventricular behavior atrial and septum functions were reproduced using variable elastance model. Starting from simulated pathological conditions we studied the effects produced on some hemodynamic variables by simultaneous PUCA pump, thoracic artificial lung or mechanical ventilation assistance. Thoracic artificial lung was applied in parallel or in hybrid mode. The effects of mechanical ventilation have been simulated by changing mean intrathoracic pressure value from -4 mmHg to +5 mmHg. The hemodynamic variables observed during the simulations, in different assisted conditions, were: left and right ventricular end systolic (diastolic) volume, systolic/diastolic aortic pressure, mean pulmonary arterial pressure, left and right mean atrial pressure, mean systemic venous pressure and the total blood flow. Results show that the application of PUCA (without mechanical ventilatory assistance) increases the total blood flow, reduces the left ventricular end systolic volume and increases the diastolic aortic pressure. Parallel TAL assistance increases the right ventricular end diastolic (systolic) volume reduction both when PUCA is switched "ON" and both when PUCA is switched "OFF". By switching "OFF" the PUCA pump, it seems that parallel thoracic artificial lung assistance produces a greater cardiac output (respect to hybrid TAL assistance). Results concerning PUCA and TAL interaction produced by simulations cannot be compared with "in vivo" results since they are not presented in literature. But results concerning the effects produced by LVAD and mechanical ventilation have a trend consistent with those presented in literature. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Grummer, Jared A; Bryson, Robert W; Reeder, Tod W
2014-03-01
Current molecular methods of species delimitation are limited by the types of species delimitation models and scenarios that can be tested. Bayes factors allow for more flexibility in testing non-nested species delimitation models and hypotheses of individual assignment to alternative lineages. Here, we examined the efficacy of Bayes factors in delimiting species through simulations and empirical data from the Sceloporus scalaris species group. Marginal-likelihood scores of competing species delimitation models, from which Bayes factor values were compared, were estimated with four different methods: harmonic mean estimation (HME), smoothed harmonic mean estimation (sHME), path-sampling/thermodynamic integration (PS), and stepping-stone (SS) analysis. We also performed model selection using a posterior simulation-based analog of the Akaike information criterion through Markov chain Monte Carlo analysis (AICM). Bayes factor species delimitation results from the empirical data were then compared with results from the reversible-jump MCMC (rjMCMC) coalescent-based species delimitation method Bayesian Phylogenetics and Phylogeography (BP&P). Simulation results show that HME and sHME perform poorly compared with PS and SS marginal-likelihood estimators when identifying the true species delimitation model. Furthermore, Bayes factor delimitation (BFD) of species showed improved performance when species limits are tested by reassigning individuals between species, as opposed to either lumping or splitting lineages. In the empirical data, BFD through PS and SS analyses, as well as the rjMCMC method, each provide support for the recognition of all scalaris group taxa as independent evolutionary lineages. Bayes factor species delimitation and BP&P also support the recognition of three previously undescribed lineages. In both simulated and empirical data sets, harmonic and smoothed harmonic mean marginal-likelihood estimators provided much higher marginal-likelihood estimates than PS and SS estimators. The AICM displayed poor repeatability in both simulated and empirical data sets, and produced inconsistent model rankings across replicate runs with the empirical data. Our results suggest that species delimitation through the use of Bayes factors with marginal-likelihood estimates via PS or SS analyses provide a useful and complementary alternative to existing species delimitation methods.
Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick
2016-10-01
A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
Mesh infrastructure for coupled multiprocess geophysical simulations
Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; ...
2014-01-01
We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.
2014-01-01
Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.
Simulation-based planning for theater air warfare
NASA Astrophysics Data System (ADS)
Popken, Douglas A.; Cox, Louis A., Jr.
2004-08-01
Planning for Theatre Air Warfare can be represented as a hierarchy of decisions. At the top level, surviving airframes must be assigned to roles (e.g., Air Defense, Counter Air, Close Air Support, and AAF Suppression) in each time period in response to changing enemy air defense capabilities, remaining targets, and roles of opposing aircraft. At the middle level, aircraft are allocated to specific targets to support their assigned roles. At the lowest level, routing and engagement decisions are made for individual missions. The decisions at each level form a set of time-sequenced Courses of Action taken by opposing forces. This paper introduces a set of simulation-based optimization heuristics operating within this planning hierarchy to optimize allocations of aircraft. The algorithms estimate distributions for stochastic outcomes of the pairs of Red/Blue decisions. Rather than using traditional stochastic dynamic programming to determine optimal strategies, we use an innovative combination of heuristics, simulation-optimization, and mathematical programming. Blue decisions are guided by a stochastic hill-climbing search algorithm while Red decisions are found by optimizing over a continuous representation of the decision space. Stochastic outcomes are then provided by fast, Lanchester-type attrition simulations. This paper summarizes preliminary results from top and middle level models.
3D Geovisualization & Stylization to Manage Comprehensive and Participative Local Urban Plans
NASA Astrophysics Data System (ADS)
Brasebin, M.; Christophe, S.; Jacquinod, F.; Vinesse, A.; Mahon, H.
2016-10-01
3D geo-visualization is more and more used and appreciated to support public participation, and is generally used to present predesigned planned projects. Nevertheless, other participatory processes may benefit from such technology such as the elaboration of urban planning documents. In this article, we present one of the objectives of the PLU++ project: the design of a 3D geo-visualization system that eases the participation concerning local urban plans. Through a pluridisciplinary approach, it aims at covering the different aspects of such a system: the simulation of built configurations to represent regulation information, the efficient stylization of these objects to make people understand their meanings and the interaction between 3D simulation and stylization. The system aims at being adaptive according to the participation context and to the dynamic of the participation. It will offer the possibility to modify simulation results and the rendering styles of the 3D representations to support participation. The proposed 3D rendering styles will be used in a set of practical experiments in order to test and validate some hypothesis from past researches of the project members about 3D simulation, 3D semiotics and knowledge about uses.
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
Over the years, computer modeling has been used extensively in many disciplines to solve engineering problems. A set of computer program tools is proposed to assist the engineer in the various phases of the Space Station program from technology selection through flight operations. The development and application of emulation and simulation transient performance modeling tools for life support systems are examined. The results of the development and the demonstration of the utility of three computer models are presented. The first model is a detailed computer model (emulation) of a solid amine water desorbed (SAWD) CO2 removal subsystem combined with much less detailed models (simulations) of a cabin, crew, and heat exchangers. This model was used in parallel with the hardware design and test of this CO2 removal subsystem. The second model is a simulation of an air revitalization system combined with a wastewater processing system to demonstrate the capabilities to study subsystem integration. The third model is that of a Space Station total air revitalization system. The station configuration consists of a habitat module, a lab module, two crews, and four connecting nodes.
A Hardware-in-the-Loop Simulator for Software Development for a Mars Airplane
NASA Technical Reports Server (NTRS)
Slagowski, Stefan E.; Vican, Justin E.; Kenney, P. Sean
2007-01-01
Draper Laboratory recently developed a Hardware-In-The-Loop Simulator (HILSIM) to provide a simulation of the Aerial Regional-scale Environmental Survey (ARES) airplane executing a mission in the Martian environment. The HILSIM was used to support risk mitigation activities under the Planetary Airplane Risk Reduction (PARR) program. PARR supported NASA Langley Research Center's (LaRC) ARES proposal efforts for the Mars Scout 2011 opportunity. The HILSIM software was a successful integration of two simulation frameworks, Draper's CSIM and NASA LaRC's Langley Standard Real-Time Simulation in C++ (LaSRS++).
NASA Astrophysics Data System (ADS)
Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan
2017-10-01
Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.
Using reinforcement learning to examine dynamic attention allocation during reading.
Liu, Yanping; Reichle, Erik D; Gao, Ding-Guo
2013-01-01
A fundamental question in reading research concerns whether attention is allocated strictly serially, supporting lexical processing of one word at a time, or in parallel, supporting concurrent lexical processing of two or more words (Reichle, Liversedge, Pollatsek, & Rayner, 2009). The origins of this debate are reviewed. We then report three simulations to address this question using artificial reading agents (Liu & Reichle, 2010; Reichle & Laurent, 2006) that learn to dynamically allocate attention to 1-4 words to "read" as efficiently as possible. These simulation results indicate that the agents strongly preferred serial word processing, although they occasionally attended to more than one word concurrently. The reason for this preference is discussed, along with implications for the debate about how humans allocate attention during reading. Copyright © 2013 Cognitive Science Society, Inc.
Partial gravity simulation using a pneumatic actuator with closed loop mechanical amplification
NASA Technical Reports Server (NTRS)
Ray, David M.
1994-01-01
To support future manned missions to the surface of the Moon and Mars or missions requiring manipulation of payloads and locomotion in space, a training device is required to simulate the conditions of both partial and microgravity as compared to the gravity on Earth. The focus of this paper is to present the development, construction, and testing of a partial gravity simulator which uses a pneumatic actuator with closed loop mechanical amplification. Results of the testing show that this type of simulator maintains a constant partial gravity simulation with a variation of the simulated body force between 2.2 percent and 10 percent, depending on the type of locomotion inputs. The data collected using the simulator show that mean stride frequencies at running speeds at lunar and Martian gravity levels are 12 percent less than those at Earth gravity. The data also show that foot/ground reaction forces at lunar and Martian gravity are, respectively, 62 percent and 51 percent less than those on Earth.
Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces.
Yoshida, Takero; Rheem, Chang-Kyu
2015-06-10
A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed.
WFIRST: Data/Instrument Simulation Support at IPAC
NASA Astrophysics Data System (ADS)
Laine, Seppo; Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin
2018-01-01
As part of WFIRST Science Center preparations, the IPAC Science Operations Center (ISOC) maintains a repository of 1) WFIRST data and instrument simulations, 2) tools to facilitate scientific performance and feasibility studies using the WFIRST, and 3) parameters summarizing the current design and predicted performance of the WFIRST telescope and instruments. The simulation repository provides access for the science community to simulation code, tools, and resulting analyses. Examples of simulation code with ISOC-built web-based interfaces include EXOSIMS (for estimating exoplanet yields in CGI surveys) and the Galaxy Survey Exposure Time Calculator. In the future the repository will provide an interface for users to run custom simulations of a wide range of coronagraph instrument (CGI) observations and sophisticated tools for designing microlensing experiments. We encourage those who are generating simulations or writing tools for exoplanet observations with WFIRST to contact the ISOC team so we can work with you to bring these to the attention of the broader astronomical community as we prepare for the exciting science that will be enabled by WFIRST.
Launch Site Computer Simulation and its Application to Processes
NASA Technical Reports Server (NTRS)
Sham, Michael D.
1995-01-01
This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.
Modeling target normal sheath acceleration using handoffs between multiple simulations
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard
2013-10-01
We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.
Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces
Yoshida, Takero; Rheem, Chang-Kyu
2015-01-01
A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed. PMID:26067197
Wieland, Birgit; Ropte, Sven
2017-01-01
The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results. PMID:28981458
Wieland, Birgit; Ropte, Sven
2017-10-05
The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.
Kurosawa, Hiroshi; Ikeyama, Takanari; Achuff, Patricia; Perkel, Madeline; Watson, Christine; Monachino, Annemarie; Remy, Daphne; Deutsch, Ellen; Buchanan, Newton; Anderson, Jodee; Berg, Robert A; Nadkarni, Vinay M; Nishisaki, Akira
2014-03-01
Recent evidence shows poor retention of Pediatric Advanced Life Support provider skills. Frequent refresher training and in situ simulation are promising interventions. We developed a "Pediatric Advanced Life Support-reconstructed" recertification course by deconstructing the training into six 30-minute in situ simulation scenario sessions delivered over 6 months. We hypothesized that in situ Pediatric Advanced Life Support-reconstructed implementation is feasible and as effective as standard Pediatric Advanced Life Support recertification. A prospective randomized, single-blinded trial. Single-center, large, tertiary PICU in a university-affiliated children's hospital. Nurses and respiratory therapists in PICU. Simulation-based modular Pediatric Advanced Life Support recertification training. Simulation-based pre- and postassessment sessions were conducted to evaluate participants' performance. Video-recorded sessions were rated by trained raters blinded to allocation. The primary outcome was skill performance measured by a validated Clinical Performance Tool, and secondary outcome was behavioral performance measured by a Behavioral Assessment Tool. A mixed-effect model was used to account for baseline differences. Forty participants were prospectively randomized to Pediatric Advanced Life Support reconstructed versus standard Pediatric Advanced Life Support with no significant difference in demographics. Clinical Performance Tool score was similar at baseline in both groups and improved after Pediatric Advanced Life Support reconstructed (pre, 16.3 ± 4.1 vs post, 22.4 ± 3.9; p < 0.001), but not after standard Pediatric Advanced Life Support (pre, 14.3 ± 4.7 vs post, 14.9 ± 4.4; p =0.59). Improvement of Clinical Performance Tool was significantly higher in Pediatric Advanced Life Support reconstructed compared with standard Pediatric Advanced Life Support (p = 0.006). Behavioral Assessment Tool improved in both groups: Pediatric Advanced Life Support reconstructed (pre, 33.3 ± 4.5 vs post, 35.9 ± 5.0; p = 0.008) and standard Pediatric Advanced Life Support (pre, 30.5 ± 4.7 vs post, 33.6 ± 4.9; p = 0.02), with no significant difference of improvement between both groups (p = 0.49). For PICU-based nurses and respiratory therapists, simulation-based "Pediatric Advanced Life Support-reconstructed" in situ training is feasible and more effective than standard Pediatric Advanced Life Support recertification training for skill performance. Both Pediatric Advanced Life Support recertification training courses improved behavioral performance.
Preliminary study of the space adaptation of the MELiSSA life support system
NASA Astrophysics Data System (ADS)
Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent
MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.
An Overview of the Distributed Space Exploration Simulation (DSES) Project
NASA Technical Reports Server (NTRS)
Crues, Edwin Z.; Chung, Victoria I.; Blum, Michael G.; Bowman, James D.
2007-01-01
This paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which investigates technologies, and processes related to integrated, distributed simulation of complex space systems in support of NASA's Exploration Initiative. In particular, it describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. With regard to network infrastructure, DSES is developing a Distributed Simulation Network for use by all NASA centers. With regard to software, DSES is developing software models, tools and procedures that streamline distributed simulation development and provide an interoperable infrastructure for agency-wide integrated simulation. Finally, with regard to simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper presents the current status and plans for these three areas, including examples of specific simulations.
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.
2014-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.
A novel, highly efficient cavity backshort design for far-infrared TES detectors
NASA Astrophysics Data System (ADS)
Bracken, C.; de Lange, G.; Audley, M. D.; Trappe, N.; Murphy, J. A.; Gradziel, M.; Vreeling, W.-J.; Watson, D.
2018-03-01
In this paper we present a new cavity backshort design for TES (transition edge sensor) detectors which will provide increased coupling of the incoming astronomical signal to the detectors. The increased coupling results from the improved geometry of the cavities, where the geometry is a consequence of the proposed chemical etching manufacturing technique. Using a number of modelling techniques, predicted results of the performance of the cavities for frequencies of 4.3-10 THz are presented and compared to more standard cavity designs. Excellent optical efficiency is demonstrated, with improved response flatness across the band. In order to verify the simulated results, a scaled model cavity was built for testing at the lower W-band frequencies (75-100 GHz) with a VNA system. Further testing of the scale model at THz frequencies was carried out using a globar and bolometer via an FTS measurement set-up. The experimental results are presented, and compared to the simulations. Although there is relatively poor comparison between simulation and measurement at some frequencies, the discrepancies are explained by means of higher-mode excitation in the measured cavity which are not accounted for in the single-mode simulations. To verify this assumption, a better behaved cylindrical cavity is simulated and measured, where excellent agreement is demonstrated in those results. It can be concluded that both the simulations and the supporting measurements give confidence that this novel cavity design will indeed provide much-improved optical coupling for TES detectors in the far-infrared/THz band.
Beam response analysis of moving vehicle with half car modeling
NASA Astrophysics Data System (ADS)
Badriyah, A. N.; Arifianto, D.; Susatio, Y.
2016-11-01
There were several tragedies concerning damages of bridge which seem to be sooner than the predicted period. One of hypothesis in this situation is an addition of vibration caused by long vehicle such as super long truck which has huge force transferred into the bridge and its long body causes more vibration due to phase difference of front and rear tire. The selected method which is used in this problem is using a simulation for modeling a bridge- vehicle system using half car vehicle model. The simulation is done using ANSYS Workbench 15.0 with some variation such us the thickness of beam and its supports. There are 3 kind of variation used in the thickness variety which are 2 m, 1 m, and 0.5 m. While in supports variation, we have fixed support, knife-edge support, and slider support. The results show that there is addition of vibration caused by long vehicle. It is proved by an oscillation which is showed in every response of beam's total deformation. Highest total deformation is achieved in slider support beam of 0.5 thicknesses, 1.08 mm in 1.12 second. First ripple seen in responses is at 0.84 second. Meanwhile, response of knife-edge and fixed support beam show a similarity. The ripple in this situation is caused by beat modulation from the front and rear tire.
Nadkarni, Lindsay D; Roskind, Cindy G; Auerbach, Marc A; Calhoun, Aaron W; Adler, Mark D; Kessler, David O
2018-04-01
The aim of this study was to assess the validity of a formative feedback instrument for leaders of simulated resuscitations. This is a prospective validation study with a fully crossed (person × scenario × rater) study design. The Concise Assessment of Leader Management (CALM) instrument was designed by pediatric emergency medicine and graduate medical education experts to be used off the shelf to evaluate and provide formative feedback to resuscitation leaders. Four experts reviewed 16 videos of in situ simulated pediatric resuscitations and scored resuscitation leader performance using the CALM instrument. The videos consisted of 4 pediatric emergency department resuscitation teams each performing in 4 pediatric resuscitation scenarios (cardiac arrest, respiratory arrest, seizure, and sepsis). We report on content and internal structure (reliability) validity of the CALM instrument. Content validity was supported by the instrument development process that involved professional experience, expert consensus, focused literature review, and pilot testing. Internal structure validity (reliability) was supported by the generalizability analysis. The main component that contributed to score variability was the person (33%), meaning that individual leaders performed differently. The rater component had almost zero (0%) contribution to variance, which implies that raters were in agreement and argues for high interrater reliability. These results provide initial evidence to support the validity of the CALM instrument as a reliable assessment instrument that can facilitate formative feedback to leaders of pediatric simulated resuscitations.
Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Lee, C. H.
The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To supportmore » this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.« less
Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2009-01-01
Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.
RENEW v3.2 user's manual, maintenance estimation simulation for Space Station Freedom Program
NASA Technical Reports Server (NTRS)
Bream, Bruce L.
1993-01-01
RENEW is a maintenance event estimation simulation program developed in support of the Space Station Freedom Program (SSFP). This simulation uses reliability and maintainability (R&M) and logistics data to estimate both average and time dependent maintenance demands. The simulation uses Monte Carlo techniques to generate failure and repair times as a function of the R&M and logistics parameters. The estimates are generated for a single type of orbital replacement unit (ORU). The simulation has been in use by the SSFP Work Package 4 prime contractor, Rocketdyne, since January 1991. The RENEW simulation gives closer estimates of performance since it uses a time dependent approach and depicts more factors affecting ORU failure and repair than steady state average calculations. RENEW gives both average and time dependent demand values. Graphs of failures over the mission period and yearly failure occurrences are generated. The averages demand rate for the ORU over the mission period is also calculated. While RENEW displays the results in graphs, the results are also available in a data file for further use by spreadsheets or other programs. The process of using RENEW starts with keyboard entry of the R&M and operational data. Once entered, the data may be saved in a data file for later retrieval. The parameters may be viewed and changed after entry using RENEW. The simulation program runs the number of Monte Carlo simulations requested by the operator. Plots and tables of the results can be viewed on the screen or sent to a printer. The results of the simulation are saved along with the input data. Help screens are provided with each menu and data entry screen.