AIM being prepared for integrated testing and flight simulation
2007-03-24
Flight simulation No. 3 is on the schedule for the Pegasus XL launch vehicle, seen here in Building 1555 on North Vandenberg Air Force Base in California. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Improving the result of forcasting using reservoir and surface network simulation
NASA Astrophysics Data System (ADS)
Hendri, R. S.; Winarta, J.
2018-01-01
This study was aimed to get more representative results in production forcasting using integrated simulation in pipeline gathering system of X field. There are 5 main scenarios which consist of the production forecast of the existing condition, work over, and infill drilling. Then, it’s determined the best development scenario. The methods of this study is Integrated Reservoir Simulator and Pipeline Simulator so-calle as Integrated Reservoir and Surface Network Simulation. After well data result from reservoir simulator was then integrated with pipeline networking simulator’s to construct a new schedule, which was input for all simulation procedure. The well design result was done by well modeling simulator then exported into pipeline simulator. Reservoir prediction depends on the minimum value of Tubing Head Pressure (THP) for each well, where the pressure drop on the Gathering Network is not necessary calculated. The same scenario was done also for the single-reservoir simulation. Integration Simulation produces results approaching the actual condition of the reservoir and was confirmed by the THP profile, which difference between those two methods. The difference between integrated simulation compared to single-modeling simulation is 6-9%. The aimed of solving back-pressure problem in pipeline gathering system of X field is achieved.
ERIC Educational Resources Information Center
Riley, Jason M.; Ellegood, William A.; Solomon, Stanislaus; Baker, Jerrine
2017-01-01
Purpose: This study aims to understand how mode of delivery, online versus face-to-face, affects comprehension when teaching operations management concepts via a simulation. Conceptually, the aim is to identify factors that influence the students' ability to learn and retain new concepts. Design/methodology/approach: Leveraging Littlefield…
ERIC Educational Resources Information Center
Prihadi, Kususanto; Cheow, Damien Z. Y.; Yong, Jonathan H. E.; Sundrasagran, Megaanesh
2018-01-01
This study aims to evaluate the effect of the frequency of playing a board game that simulates entrepreneurial experience called "Traders" on the university students' resilience and self-esteem. Traders Board Game (TBG) was developed in 2015 with an aim to improve several entrepreneurship skills among young adults, and resilience being…
ERIC Educational Resources Information Center
Jaakkola, Tomi; Nurmi, Sami; Veermans, Koen
2011-01-01
The aim of this experimental study was to compare learning outcomes of students using a simulation alone (simulation environment) with outcomes of those using a simulation in parallel with real circuits (combination environment) in the domain of electricity, and to explore how learning outcomes in these environments are mediated by implicit (only…
Impact of Simulation Based Education on Biology Student's Academic Achievement in DNA Replication
ERIC Educational Resources Information Center
Reddy, M. Vijaya Bhaskara; Mint, Phyu Phyu
2017-01-01
The aim of this study is to determine the effect of simulation methods in teaching Science on education students' academic achievement. 70 students (35 control, 35 experimental) who studied at Srinivasa College of education, SV University in the Department of Education. 2015-2016 academic year students were participated in this simulation based…
ERIC Educational Resources Information Center
Baker, David Scott; Underwood, James, III; Thakur, Ramendra
2017-01-01
This study aimed to establish a pedagogical positioning of a business marketing simulation as a grounded learning teaching tool and empirically assess the dimensions of cognitive absorption related to grounded learning effectiveness in an iterative business simulation environment. The method/design and sample consisted of a field study survey…
ERIC Educational Resources Information Center
Bello, Sulaiman; Ibi, Mustapha Baba; Bukar, Ibrahim Bulama
2016-01-01
The study examined the effect of simulation technique and lecture method on students' academic performance in Mafoni Day Secondary School, Maiduguri. The study used both simulation technique and lecture methods of teaching at the basic level of education in the teaching/learning environment. The study aimed at determining the best predictor among…
Hinde, Theresa; Gale, Thomas; Anderson, Ian; Roberts, Martin; Sice, Paul
2016-01-01
Interprofessional point of care or in situ simulation is used as a training tool in our operating theatre directorate with the aim of improving crisis behaviours. This study aimed to assess the impact of interprofessional point of care simulation on the safety culture of operating theatres. A validated Safety Attitude Questionnaire was administered to staff members before each simulation scenario and then re-administered to the same staff members after 6-12 months. Pre- and post-training Safety Attitude Questionnaire-Operating Room (SAQ-OR) scores were compared using paired sample t-tests. Analysis revealed a statistically significant perceived improvement in both safety (p < 0.001) and teamwork (p = 0.013) climate scores (components of safety culture) 6-12 months after interprofessional simulation training. A growing body of literature suggests that a positive safety culture is associated with improved patient outcomes. Our study supports the implementation of point of care simulation as a useful intervention to improve safety culture in theatres.
Does virtual reality simulation have a role in training trauma and orthopaedic surgeons?
Bartlett, J D; Lawrence, J E; Stewart, M E; Nakano, N; Khanduja, V
2018-05-01
Aims The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research. Materials and Methods A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results' titles, abstracts, and references were examined for relevance. Results A total of 31 articles published between 2004 and 2016 and relating to the objective validity and efficacy of specific virtual reality orthopaedic surgical simulators were identified. We found 18 studies demonstrating the construct validity of 16 different orthopaedic virtual reality simulators by comparing expert and novice performance. Eight studies have demonstrated skill acquisition on a simulator by showing improvements in performance with repeated use. A further five studies have demonstrated measurable improvements in operating theatre performance following a period of virtual reality simulator training. Conclusion The demonstration of 'real-world' benefits from the use of VR simulation in knee and shoulder arthroscopy is promising. However, evidence supporting its utility in other forms of orthopaedic surgery is lacking. Further studies of validity and utility should be combined with robust analyses of the cost efficiency of validated simulators to justify the financial investment required for their use in orthopaedic training. Cite this article: Bone Joint J 2018;100-B:559-65.
ERIC Educational Resources Information Center
Lin, Che-Hung; Yen, Yu-Ren; Wu, Pai-Lu
2015-01-01
The aim of this study was to develop a store service operations practice course based on simulation-based training of video clip instruction. The action research of problem-solving strategies employed for teaching are by simulated store operations. The counter operations course unit used as an example, this study developed 4 weeks of subunits for…
ERIC Educational Resources Information Center
Saied, Hala
2017-01-01
The simulation technology is rapidly expanding and has been used in several nursing programs around the world and in Saudi Arabia too. The aim of this study was to evaluate the effect of using a simulation based scenarios on the pediatric nursing students' students' knowledge, self-efficacy, satisfaction, and confidence. This study used Bandura's…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, D.; Haryanto, F.; Male, S.
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file ismore » used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.« less
Discourse Comprehension and Simulation of Positive Emotions
ERIC Educational Resources Information Center
Horchak, Oleksandr V.; Giger, Jean-Christophe; Pochwatko, Grzegorz
2014-01-01
Recent research has suggested that emotional sentences are understood by constructing an emotion simulation of the events being described. The present study aims to investigate whether emotion simulation is also involved in online and offline comprehension of larger language segments such as discourse. Participants read a target text describing…
Mixed virtual reality simulation--taking endoscopic simulation one step further.
Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U
2011-01-01
This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.
The simulated clinical environment: Cognitive and emotional impact among undergraduates.
Tremblay, Marie-Laurence; Lafleur, Alexandre; Leppink, Jimmie; Dolmans, Diana H J M
2017-02-01
Simulated clinical immersion (SCI) is used in undergraduate healthcare programs to expose the learner to real-life situations in authentic simulated clinical environments. For novices, the environment in which the simulation occurs can be distracting and stressful, hence potentially compromising learning. This study aims to determine whether SCI (with environment) imposes greater extraneous cognitive load and stress on undergraduate pharmacy students than simulated patients (SP) (without environment). It also aims to explore how features of the simulated environment influence students' perception of learning. In this mixed-methods study, 143 undergraduate pharmacy students experienced both SCI and SP in a crossover design. After the simulations, participants rated their cognitive load and emotions. Thirty-five students met in focus groups to explore their perception of learning in simulation. Intrinsic and extraneous cognitive load and stress scores in SCI were significantly but modestly higher compared to SP. Qualitative findings reveal that the physical environment in SCI generated more stress and affected students? focus. In SP, students concentrated on clinical reasoning. SCI stimulated a focus on data collection but impeded in-depth problem solving processes. The physical environment in simulation influences what and how students learn. SCI was reported as more cognitively demanding than SP. Our findings emphasize the need for the development of adapted instructional design guidelines in simulation for novices.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians prepare the AIM spacecraft for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Lung assist devices influence cardio-energetic parameters: Numerical simulation study.
De Lazzari, C; Quatember, B; Recheis, W; Mayr, M; Demertzis, S; Allasia, G; De Rossi, A; Cavoretto, R; Venturino, E; Genuini, I
2015-08-01
We aim at an analysis of the effects mechanical ventilators (MVs) and thoracic artificial lungs (TALs) will have on the cardiovascular system, especially on important quantities, such as left and right ventricular external work (EW), pressure-volume area (PVA) and cardiac mechanical efficiency (CME). Our analyses are based on simulation studies which were carried out by using our CARDIOSIM(©) software simulator. At first, we carried out simulation studies of patients undergoing mechanical ventilation (MV) without a thoracic artificial lung (TAL). Subsequently, we conducted simulation studies of patients who had been provided with a TAL, but did not undergo MV. We aimed at describing the patient's physiological characteristics and their variations with time, such as EW, PVA, CME, cardiac output (CO) and mean pulmonary arterial/venous pressure (PAP/PVP). We were starting with a simulation run under well-defined initial conditions which was followed by simulation runs for a wide range of mean intrathoracic pressure settings. Our simulations of MV without TAL showed that for mean intrathoracic pressure settings from negative (-4 mmHg) to positive (+5 mmHg) values, the left and right ventricular EW and PVA, right ventricular CME and CO decreased, whereas left ventricular CME and the PAP increased. The simulation studies of patients with a TAL, comprised all the usual TAL arrangements, viz. configurations "in series" and in parallel with the natural lung and, moreover, hybrid configurations. The main objective of the simulation studies was, as before, the assessment of the hemodynamic response to the application of a TAL. We could for instance show that, in case of an "in series" configuration, a reduction (an increase) in left (right) ventricular EW and PVA values occurred, whereas the best performance in terms of CO can be achieved in the case of an in parallel configuration.
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2012-01-01
Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…
USDA-ARS?s Scientific Manuscript database
Simulation models can be used to make management decisions when properly parameterized. This study aimed to parameterize the ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment Criteria) crop simulation model for dry bean in the semi-arid temperate areas of Mexico. The par...
ERIC Educational Resources Information Center
Nyström, Sofia; Dahlberg, Johanna; Edelbring, Samuel; Hult, Håkan; Abrandt Dahlgren, Madeleine
2017-01-01
The increasing complexity of health care practice makes continuing professional development (CPD) essential for health care professionals. Simulation-based training is a CPD activity that is often applied to improve interprofessional collaboration and the quality of care. The aim of this study is to explore simulation as a pedagogical practice for…
Enhancing Higher Order Thinking Skills through Clinical Simulation
ERIC Educational Resources Information Center
Varutharaju, Elengovan; Ratnavadivel, Nagendralingan
2014-01-01
Purpose: The study aimed to explore, describe and analyse the design and implementation of clinical simulation as a pedagogical tool in bridging the deficiency of higher order thinking skills among para-medical students, and to make recommendations on incorporating clinical simulation as a pedagogical tool to enhance thinking skills and align the…
AIM being prepared for integrated testing and flight simulation
2007-03-24
At North Vandenberg Air Force Base in California, the AIM spacecraft has been rotated to horizontal prior to its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians carry the separation system, at left, toward the AIM spacecraft hovering above the stand at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians look over the spacecraft handling fixture that will be used to lift the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft, hovering above it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians lift the AIM spacecraft via the spacecraft handling fixture attached to it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians roll the AIM spacecraft back under the protective clean tent. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians maneuver the spacecraft handling fixture toward the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the AIM spacecraft onto a moveable stand. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
At North Vandenberg Air Force Base in California, the AIM spacecraft is moved into a clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians move a mobile stand toward the AIM spacecraft suspended via a crane at left. . AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
The Role of Simulation Case Studies in Enterprise Education
ERIC Educational Resources Information Center
Tunstall, Richard; Lynch, Martin
2010-01-01
Purpose: This paper aims to explore the role of electronic simulation case studies in enterprise education, their effectiveness, and their relationship to traditional forms of classroom-based approaches to experiential learning. The paper seeks to build on previous work within the field of enterprise and management education, specifically in…
Motor Execution Affects Action Prediction
ERIC Educational Resources Information Center
Springer, Anne; Brandstadter, Simone; Liepelt, Roman; Birngruber, Teresa; Giese, Martin; Mechsner, Franz; Prinz, Wolfgang
2011-01-01
Previous studies provided evidence of the claim that the prediction of occluded action involves real-time simulation. We report two experiments that aimed to study how real-time simulation is affected by simultaneous action execution under conditions of full, partial or no overlap between observed and executed actions. This overlap was analysed by…
2011-09-30
simulation provides boundary condition to the SPH simulation in a sub- domain. For the test with surface wave propagation, the free surface and the...This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that can be used to study the fundamental physics...of horizontal velocity(normalized by wave phase speed c) obtained from SPH simulation and the corresponding free surface obtained from LSM
Interprofessional simulation of birth in a non-maternity setting for pre-professional students.
McLelland, Gayle; Perera, Chantal; Morphet, Julia; McKenna, Lisa; Hall, Helen; Williams, Brett; Cant, Robyn; Stow, Jill
2017-11-01
Simulation-based learning is an approach recommended for teaching undergraduate health professionals. There is a scarcity of research around interprofessional simulation training for pre-professional students in obstetric emergencies that occur prior to arrival at the maternity ward. The primary aims of the study were to examine whether an interprofessional team-based simulated birth scenario would improve undergraduate paramedic, nursing, and midwifery students' self-efficacy scores and clinical knowledge when managing birth in an unplanned location. The secondary aim was to assess students' satisfaction with the newly developed interprofessional simulation. Quasi-experimental descriptive study with repeated measures. Simulated hospital emergency department. Final year undergraduate paramedic, nursing, and midwifery students. Interprofessional teams of five students managed a simulated unplanned vaginal birth, followed by debriefing. Students completed a satisfaction with simulation survey. Serial surveys of clinical knowledge and self-efficacy were conducted at three time points. Twenty-four students participated in one of five simulation scenarios. Overall, students' self-efficacy and confidence in ability to achieve a successful birth outcome was significantly improved at one month (p<0.001) with a magnitude of increase (effect) of 40% (r=0.71) and remained so after a further three months. Clinical knowledge was significantly increased in only one of three student groups: nursing (p=0.04; r=0.311). Students' satisfaction with the simulation experience was high (M=4.65/5). Results from this study indicate that an interprofessional simulation of a birth in an unplanned setting can improve undergraduate paramedic, nursing and midwifery students' confidence working in an interprofessional team. There was a significant improvement in clinical knowledge of the nursing students (who had least content about managing birth in their program). All students were highly satisfied with the interprofessional simulation experience simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-01-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…
ERIC Educational Resources Information Center
Jaakkola, T.; Nurmi, S.
2008-01-01
Computer simulations and laboratory activities have been traditionally treated as substitute or competing methods in science teaching. The aim of this experimental study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Based…
ERIC Educational Resources Information Center
de Koning, Björn B.; Bos, Lisanne T.; Wassenburg, Stephanie I.; van der Schoot, Menno
2017-01-01
This study investigated the effects of a mental simulation training targeted at improving children's reading comprehension. In a 4-week period, one group of third and fourth graders (n = 75) learned to draw upon their sensorimotor memories and experiences to mentally simulate text (experimental training group), whereas another group (n = 51)…
ERIC Educational Resources Information Center
Liaw, S. Y.; Chen, F. G.; Klainin, P.; Brammer, J.; O'Brien, A.; Samarasekera, D. D.
2010-01-01
This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session…
Computer Simulation as an Aid for Management of an Information System.
ERIC Educational Resources Information Center
Simmonds, W. H.; And Others
The aim of this study was to develop methods, based upon computer simulation, of designing information systems and illustrate the use of these methods by application to an information service. The method developed is based upon Monte Carlo and discrete event simulation techniques and is described in an earlier report - Sira report R412 Organizing…
Statistical evaluation of rainfall-simulator and erosion testing procedure : final report.
DOT National Transportation Integrated Search
1977-01-01
The specific aims of this study were (1) to supply documentation of statistical repeatability and precision of the rainfall-simulator and to document the statistical repeatabiity of the soil-loss data when using the previously recommended tentative l...
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
A framework of knowledge creation processes in participatory simulation of hospital work systems.
Andersen, Simone Nyholm; Broberg, Ole
2017-04-01
Participatory simulation (PS) is a method to involve workers in simulating and designing their own future work system. Existing PS studies have focused on analysing the outcome, and minimal attention has been devoted to the process of creating this outcome. In order to study this process, we suggest applying a knowledge creation perspective. The aim of this study was to develop a framework describing the process of how ergonomics knowledge is created in PS. Video recordings from three projects applying PS of hospital work systems constituted the foundation of process mining analysis. The analysis resulted in a framework revealing the sources of ergonomics knowledge creation as sequential relationships between the activities of simulation participants sharing work experiences; experimenting with scenarios; and reflecting on ergonomics consequences. We argue that this framework reveals the hidden steps of PS that are essential when planning and facilitating PS that aims at designing work systems. Practitioner Summary: When facilitating participatory simulation (PS) in work system design, achieving an understanding of the PS process is essential. By applying a knowledge creation perspective and process mining, we investigated the knowledge-creating activities constituting the PS process. The analysis resulted in a framework of the knowledge-creating process in PS.
Why Don't They Catch the Baby? A Study of a Simulation of a Critical Incident in Police Education
ERIC Educational Resources Information Center
Sjöberg, David
2014-01-01
Vocational education should prepare students for the professional demands of the work. In police education, one way to accomplish this is to simulate specific situations so that students may develop professional knowledge. This article aims to increase the understanding of how simulations support learning of knowledge and skills by investigating…
Simulated Sustainable Societies: Students' Reflections on Creating Future Cities in Computer Games
ERIC Educational Resources Information Center
Nilsson, Elisabet M.; Jakobsson, Anders
2011-01-01
The empirical study, in this article, involved 42 students (ages 14-15), who used the urban simulation computer game SimCity 4 to create models of sustainable future cities. The aim was to explore in what ways the simulated "real" worlds provided by this game could be a potential facilitator for science learning contexts. The topic investigated is…
ERIC Educational Resources Information Center
de Araújo Setin, Raíza; Fortes Cirimbelli, Carolina; Mazeto Ercolin, Anna Carolina; Pires, Sâmara Turbay; Disselli, Tamiris; Ferrarini Nunes Soares Hage, Maria Cristina
2018-01-01
The present study aimed to evaluate the applicability of artisanal simulators to teach veterinary and medical students the ultrasound-guided percutaneous biopsy using a tru-cut needle. The artisanal simulators consisted of bovine liver between two layers of commercially available grape gelatin. Students were paired, with one doing the biopsy and…
NASA Astrophysics Data System (ADS)
Al-Senan, Rani Mohammed
Recent epidemiologic studies have shown a strong association between the relatively high doses of pediatric CT and the risk of cancer. Quantifying organ doses, as a measure of the risk, is commonly based on either direct anthropomorphic phantom measurements or Monte Carlo simulation. The major disadvantage in the phantom approach is its high cost especially that, for pediatric CT dosimetry, various phantom sizes are required to represent different age groups of children. On the other hand, Monte Carlo simulation, although not considered costly, requires validation by anthropomorphic phantom measurements. The aim of this project was to develop two methods of organ dose estimation in pediatric CT: 1) from the measured surface dose using optically stimulated luminescence dosimeters (OSLDs) and 2) by measuring the circumference of the body part being scanned as well as knowing the scan parameters. The project was based on a study proposed by the surgery department to monitor radiation exposure to children during their CT examination in the ER. A total of 200 pediatric patients were enrolled in this study which used OSLDs to monitor the doses. Specific aim 1 of this project was to characterize the OSLDs in the diagnostic energy range. Specific aim 2(a) was to find relationships between the patients' doses from OSLDs and both scan CTDI and the measured circumference. In specific aim 2(b) we carried out measurements using CTDI phantoms to investigate the relationships studied in specific aim 2(a). Specific aim 3 was to come up with models to estimate select organ doses from measuring surface dose or by using the circumference of the body part. To do this, pediatric examinations were simulated using a set of pediatric anthropomorphic phantoms in which doses of select organs were measured.
ERIC Educational Resources Information Center
Wibowo, Firmanul Catur; Suhandi, Andi; Nahadi; Samsudin, Achmad; Darman, Dina Rahmi; Suherli, Zulmiswal; Hasani, Aceng; Leksono, Sroso Mukti; Hendrayana, Aan; Suherman; Hidayat, Soleh; Hamdani, Dede; Costu, Bayram
2017-01-01
Most students cannot understand the concepts of science concepts. The abstract concepts that require visualization help students to promote to the understanding about the concept. The aim of this study was to develop Virtual Microscopic Simulation (VMS) in terms of encouraging conceptual change and to promote its effectiveness connected to…
In Silico Simulation of a Clinical Trial Concerning Tumour Response to Radiotherapy
NASA Astrophysics Data System (ADS)
Dionysiou, Dimitra D.; Stamatakos, Georgios S.; Athanaileas, Theodoras E.; Merrychtas, Andreas; Kaklamani, Dimitra; Varvarigou, Theodora; Uzunoglu, Nikolaos
2008-11-01
The aim of this paper is to demonstrate how multilevel tumour growth and response to therapeutic treatment models can be used in order to simulate clinical trials, with the long-term intention of both better designing clinical studies and understanding their outcome based on basic biological science. For this purpose, an already developed computer simulation model of glioblastoma multiforme response to radiotherapy has been used and a clinical study concerning glioblastoma multiforme response to radiotherapy has been simulated. In order to facilitate the simulation of such virtual trials, a toolkit enabling the user-friendly execution of the simulations on grid infrastructures has been designed and developed. The results of the conducted virtual trial are in agreement with the outcome of the real clinical study.
Manufacturing of ArF chromeless hard shifter for 65-nm technology
NASA Astrophysics Data System (ADS)
Park, Keun-Taek; Dieu, Laurent; Hughes, Greg P.; Green, Kent G.; Croffie, Ebo H.; Taravade, Kunal N.
2003-12-01
For logic design, Chrome-less Phase Shift Mask is one of the possible solutions for defining small geometry with low MEF (mask enhancement factor) for the 65nm node. There have been lots of dedicated studies on the PCO (Phase Chrome Off-axis) mask technology and several design approaches have been proposed including grating background, chrome patches (or chrome shield) for applying PCO on line/space and contact pattern. In this paper, we studied the feasibility of grating design for line and contact pattern. The design of the grating pattern was provided from the EM simulation software (TEMPEST) and the aerial image simulation software. AIMS measurements with high NA annular illumination were done. Resist images were taken on designed pattern in different focus. Simulations, AIMS are compared to verify the consistency of the process with wafer printed performance.
Efficacy of Low-Cost PC-Based Aviation Training Devices
ERIC Educational Resources Information Center
Reweti, Savern; Gilbey, Andrew; Jeffrey, Lynn
2017-01-01
Aim/Purpose: The aim of this study was to explore whether a full cost flight training device (FTD) was significantly better for simulator training than a low cost PC-Based Aviation Training Device (PCATD). Background: A quasi-transfer study was undertaken to ascertain whether a Civil Aviation Authority certified Flight Training Device (FTD) was…
Pilot estimates of glidepath and aim point during simulated landing approaches
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
1981-01-01
Pilot perceptions of glidepath angle and aim point were measured during simulated landings. A fixed-base cockpit simulator was used with video recordings of simulated landing approaches shown on a video projector. Pilots estimated the magnitudes of approach errors during observation without attempting to make corrections. Pilots estimated glidepath angular errors well, but had difficulty estimating aim-point errors. The data make plausible the hypothesis that pilots are little concerned with aim point during most of an approach, concentrating instead on keeping close to the nominal glidepath and trusting this technique to guide them to the proper touchdown point.
Managing numerical errors in random sequential adsorption
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Nowak, Aleksandra
2016-09-01
Aim of this study is to examine the influence of a finite surface size and a finite simulation time on a packing fraction estimated using random sequential adsorption simulations. The goal of particular interest is providing hints on simulation setup to achieve desired level of accuracy. The analysis is based on properties of saturated random packing of disks on continuous and flat surfaces of different sizes.
Human-simulation-based learning to prevent medication error: A systematic review.
Sarfati, Laura; Ranchon, Florence; Vantard, Nicolas; Schwiertz, Vérane; Larbre, Virginie; Parat, Stéphanie; Faudel, Amélie; Rioufol, Catherine
2018-01-31
In the past 2 decades, there has been an increasing interest in simulation-based learning programs to prevent medication error (ME). To improve knowledge, skills, and attitudes in prescribers, nurses, and pharmaceutical staff, these methods enable training without directly involving patients. However, best practices for simulation for healthcare providers are as yet undefined. By analysing the current state of experience in the field, the present review aims to assess whether human simulation in healthcare helps to reduce ME. A systematic review was conducted on Medline from 2000 to June 2015, associating the terms "Patient Simulation," "Medication Errors," and "Simulation Healthcare." Reports of technology-based simulation were excluded, to focus exclusively on human simulation in nontechnical skills learning. Twenty-one studies assessing simulation-based learning programs were selected, focusing on pharmacy, medicine or nursing students, or concerning programs aimed at reducing administration or preparation errors, managing crises, or learning communication skills for healthcare professionals. The studies varied in design, methodology, and assessment criteria. Few demonstrated that simulation was more effective than didactic learning in reducing ME. This review highlights a lack of long-term assessment and real-life extrapolation, with limited scenarios and participant samples. These various experiences, however, help in identifying the key elements required for an effective human simulation-based learning program for ME prevention: ie, scenario design, debriefing, and perception assessment. The performance of these programs depends on their ability to reflect reality and on professional guidance. Properly regulated simulation is a good way to train staff in events that happen only exceptionally, as well as in standard daily activities. By integrating human factors, simulation seems to be effective in preventing iatrogenic risk related to ME, if the program is well designed. © 2018 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelin, Timothy J; Ho, Clifford K.; Horstman, Luke
This paper presents a study of alternative heliostat standby aiming strategies and their impact on avian flux hazards and operational performance of a concentrating solar power plant. A mathematical model was developed that predicts the bird-feather temperature as a function of solar irradiance, thermal emittance, convection, and thermal properties of the feather. The irradiance distribution in the airspace above the Ivanpah Unit 2 heliostat field was simulated using a ray-trace model for two different times of the day, four days of the year, and nine different standby aiming strategies. The impact of the alternative aiming strategies on operational performance wasmore » assessed by comparing the heliostat slew times from standby position to the receiver for the different aiming strategies. Increased slew times increased a proxy start-up time that reduced the simulated annual energy production. Results showed that spreading the radial aim points around the receiver to a distance of ~150 m or greater reduced the hazardous exposure times that the feather temperature exceeded the hazard metric of 160 degrees C. The hazardous exposure times were reduced by ~23% and 90% at a radial spread of aim points extending to 150 m and 250 m, respectively, but the simulated annual energy production decreased as a result of increased slew times. Single point-focus aiming strategies were also evaluated, but these strategies increased the exposure hazard relative to other aiming strategies.« less
USDA-ARS?s Scientific Manuscript database
The aim of this study was to investigate whether in vitro fertilization and preimplantation embryos exposed to a simulated microgravity environment in vitro would improve, or be deleterious to, their fertilization and embryonic development. A Rotating Cell Culture System™ (RCCS) bioreactor with a Hi...
Students' Experiences of Learning Manual Clinical Skills through Simulation
ERIC Educational Resources Information Center
Johannesson, Eva; Silen, Charlotte; Kvist, Joanna; Hult, Hakan
2013-01-01
Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and…
Students' Emotions in Simulation-Based Medical Education
ERIC Educational Resources Information Center
Keskitalo, Tuulikki; Ruokamo, Heli
2017-01-01
Medical education is emotionally charged for many reasons, especially the fact that simulation-based learning is designed to generate emotional experiences. However, there are very few studies that concentrate on learning and emotions, despite widespread interest in the topic, especially within healthcare education. The aim of this research is to…
Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) hel...
Numerical simulation support to the ESA/THOR mission
NASA Astrophysics Data System (ADS)
Valentini, F.; Servidio, S.; Perri, S.; Perrone, D.; De Marco, R.; Marcucci, M. F.; Daniele, B.; Bruno, R.; Camporeale, E.
2016-12-01
THOR is a spacecraft concept currently undergoing study phase as acandidate for the next ESA medium size mission M4. THOR has been designedto solve the longstanding physical problems of particle heating andenergization in turbulent plasmas. It will provide high resolutionmeasurements of electromagnetic fields and particle distribution functionswith unprecedented resolution, with the aim of exploring the so-calledkinetic scales. We present the numerical simulation framework which is supporting the THOR mission during the study phase. The THOR teamincludes many scientists developing and running different simulation codes(Eulerian-Vlasov, Particle-In-Cell, Gyrokinetics, Two-fluid, MHD, etc.),addressing the physics of plasma turbulence, shocks, magnetic reconnectionand so on.These numerical codes are being used during the study phase, mainly withthe aim of addressing the following points:(i) to simulate the response of real particle instruments on board THOR, byemploying an electrostatic analyser simulator which mimics the response ofthe CSW, IMS and TEA instruments to the particle velocity distributions ofprotons, alpha particle and electrons, as obtained from kinetic numericalsimulations of plasma turbulence.(ii) to compare multi-spacecraft with single-spacecraft configurations inmeasuring current density, by making use of both numerical models ofsynthetic turbulence and real data from MMS spacecraft.(iii) to investigate the validity of the Taylor hypothesis indifferent configurations of plasma turbulence
ERIC Educational Resources Information Center
Astra, I Made; Nasbey, Hadi; Nugraha, Aditiya
2015-01-01
The aim of this research is to create learning media for senior high school students through an android application in the form of a simulation lab. The method employed in the study is research and development. A simulation lab which has been made subsequently validated by concept and media experts, further empirical testing by teachers and…
Orbital Sciences Pegasus XL Flight Simulation
2007-02-28
At Vandenberg Air Force Base in California, workers monitor the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Orbital Sciences Pegasus XL Flight Simulation
2007-02-28
At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket undergoes its second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Orbital Sciences Pegasus XL Flight Simulation
2007-02-28
At Vandenberg Air Force Base in California, a worker monitors the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Orbital Sciences Pegasus XL Flight Simulation
2007-02-28
At Vandenberg Air Force Base in California, a worker monitors the Orbital Sciences Pegasus XL rocket after a second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
NASA Astrophysics Data System (ADS)
Talebi, Hassan; Asghari, Omid; Emery, Xavier
2013-12-01
An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.
NASA Astrophysics Data System (ADS)
Mavelli, Fabio; Ruiz-Mirazo, Kepa
2010-09-01
'ENVIRONMENT' is a computational platform that has been developed in the last few years with the aim to simulate stochastically the dynamics and stability of chemically reacting protocellular systems. Here we present and describe some of its main features, showing how the stochastic kinetics approach can be applied to study the time evolution of reaction networks in heterogeneous conditions, particularly when supramolecular lipid structures (micelles, vesicles, etc) coexist with aqueous domains. These conditions are of special relevance to understand the origins of cellular, self-reproducing compartments, in the context of prebiotic chemistry and evolution. We contrast our simulation results with real lab experiments, with the aim to bring together theoretical and experimental research on protocell and minimal artificial cell systems.
Summary of Research Adaptions of Visceral and Cerebral Resistance Arteries to Simulated Microgravity
NASA Technical Reports Server (NTRS)
Delp, Michael
2003-01-01
The proposed studies were designed address the effects of simulated microgravity on vascular smooth muscle and endothelial cell function in resistance arteries isolated from visceral tissues (spleen, mesentery and kidneys) and cerebrum. Alterations in vascular function induced by microgravity are particularly relevant to the problems of orthostatic intolerance and reduced exercise capacity experienced by astronauts upon re-entry into the earth's gravitational field. Decrements in contractile function or enhanced vasodilatory responsiveness of peripheral resistance arteries could lead to decreased peripheral resistance and orthostatic hypotension. Alternatively, augmentation of contractile function in cerebral resistance arteries could lead to increased cerebral vascular resistance and diminished perfusion of the brain. The Specific Aims and hypotheses were proposed in this grant. Following each of the Specific Aims, progress toward addressing that specific aim is presented. With the exception of Specific Aim VI (see aim for details), all aims have been experimentally addressed as proposed. The final six months of the granting period will be used for manuscript preparation; manuscripts in preparation will contain results from Specific Aims I-IV. Results from Specific Aims V and VI have been published.
Kable, Ashley K; Levett-Jones, Tracy L; Arthur, Carol; Reid-Searl, Kerry; Humphreys, Melanie; Morris, Sara; Walsh, Pauline; Witton, Nicola J
2018-01-01
The aim of this paper is to report the results of a cross-national study that evaluated a range of simulation sessions using an observation schedule developed from evidence-based quality indicators. Observational data were collected from 17 simulation sessions conducted for undergraduate nursing students at three universities in Australia and the United Kingdom. The observation schedule contained 27 questions that rated simulation quality. Data were collected by direct observation and from video recordings of the simulation sessions. Results indicated that the highest quality scores were for provision of learning objectives prior to the simulation session (90%) and debriefing (72%). Student preparatiosn and orientation (67%) and perceived realism and fidelity (67%) were scored lower than other components of the simulation sessions. This observational study proved to be an effective strategy to identify areas of strength and those needing further development to improve simulation sessions. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Fagan, Mary; Kilmon, Carol; Pandey, Vivek
2012-01-01
Purpose: This study aims to explore students' perceptions of a virtual reality simulation that enable nursing students to learn how to use a medical emergency crash cart. Design/methodology/approach: The study was designed to explore how students' perceptions of ease of use and perceived usefulness from the technology acceptance model and the…
Benoit, Julia S; Chan, Wenyaw; Doody, Rachelle S
2015-01-01
Parameter dependency within data sets in simulation studies is common, especially in models such as Continuous-Time Markov Chains (CTMC). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: 1) to develop a multivariate approach for assessing accuracy and precision for simulation studies 2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.
Automated Knowledge Discovery from Simulators
NASA Technical Reports Server (NTRS)
Burl, Michael C.; DeCoste, D.; Enke, B. L.; Mazzoni, D.; Merline, W. J.; Scharenbroich, L.
2006-01-01
In this paper, we explore one aspect of knowledge discovery from simulators, the landscape characterization problem, where the aim is to identify regions in the input/ parameter/model space that lead to a particular output behavior. Large-scale numerical simulators are in widespread use by scientists and engineers across a range of government agencies, academia, and industry; in many cases, simulators provide the only means to examine processes that are infeasible or impossible to study otherwise. However, the cost of simulation studies can be quite high, both in terms of the time and computational resources required to conduct the trials and the manpower needed to sift through the resulting output. Thus, there is strong motivation to develop automated methods that enable more efficient knowledge extraction.
ERIC Educational Resources Information Center
Gunn, Therese; Jones, Lee; Bridge, Pete; Rowntree, Pam; Nissen, Lisa
2018-01-01
In recent years, simulation has increasingly underpinned the acquisition of pre-clinical skills by undergraduate medical imaging (diagnostic radiography) students. This project aimed to evaluate the impact of an innovative virtual reality (VR) learning environment on the development of technical proficiency by students. The study assessed the…
ERIC Educational Resources Information Center
Kogar, Hakan
2018-01-01
The aim of the present research study was to compare the findings from the nonparametric MSA, DIMTEST and DETECT and the parametric dimensionality determining methods in various simulation conditions by utilizing exploratory and confirmatory methods. For this purpose, various simulation conditions were established based on number of dimensions,…
Team-Based Simulations: Learning Ethical Conduct in Teacher Trainee Programs
ERIC Educational Resources Information Center
Shapira-Lishchinsky, Orly
2013-01-01
This study aimed to identify the learning aspects of team-based simulations (TBS) through the analysis of ethical incidents experienced by 50 teacher trainees. A four-dimensional model emerged: learning to make decisions in a "supportive-forgiving" environment; learning to develop standards of care; learning to reduce misconduct; and learning to…
Dynamic Simulation and Static Matching for Action Prediction: Evidence from Body Part Priming
ERIC Educational Resources Information Center
Springer, Anne; Brandstadter, Simone; Prinz, Wolfgang
2013-01-01
Accurately predicting other people's actions may involve two processes: internal real-time simulation (dynamic updating) and matching recently perceived action images (static matching). Using a priming of body parts, this study aimed to differentiate the two processes. Specifically, participants played a motion-controlled video game with…
Collaborative Approach in Software Engineering Education: An Interdisciplinary Case
ERIC Educational Resources Information Center
Vicente, Aileen Joan; Tan, Tiffany Adelaine; Yu, Alvin Ray
2018-01-01
Aim/Purpose: This study was aimed at enhancing students' learning of software engineering methods. A collaboration between the Computer Science, Business Management, and Product Design programs was formed to work on actual projects with real clients. This interdisciplinary form of collaboration simulates the realities of a diverse Software…
Large-eddy simulation of the urban boundary layer in the MEGAPOLI Paris Plume experiment
NASA Astrophysics Data System (ADS)
Esau, Igor
2010-05-01
This study presents results from the specific large-eddy simulation study of the urban boundary layer in the MEGAPOLI Paris Plume field campaign. We used LESNIC and PALM codes, MEGAPOLI city morphology database, nudging to the observed meteorological conditions during the Paris Plume campaign and some concentration measurements from that campaign to simulate and better understand the nature of the urban boundary layer on scales larger then the street canyon scales. The primary attention was paid to turbulence self-organization and structure-to-surface interaction. The study has been aimed to demonstrate feasibility and estimate required resources for such research. Therefore, at this stage we do not compare the simulation with other relevant studies as well as we do not formulate the theoretical conclusions.
Numerical Simulations of SCR DeNOx System for a 660MW coal-fired power station
NASA Astrophysics Data System (ADS)
Yongqiang, Deng; Zhongming, Mei; Yijun, Mao; Nianping, Liu; Guoming, Yin
2018-06-01
Aimed at the selective catalytic reduction (SCR) DeNOx system of a 660 MW coal-fired power station, which is limited by low denitrification efficiency, large ammonia consumption and over-high ammonia escape rate, numerical simulations were conducted by employing STAR-CCM+ (CFD tool). The simulations results revealed the problems existed in the SCR DeNOx system. Aimed at limitations of the target SCR DeNOx system, factors affecting the denitrification performance of SCR, including the structural parameters and ammonia injected by the ammonia nozzles, were optimized. Under the optimized operational conditions, the denitrification efficiency of the SCR system was enhanced, while the ammonia escape rate was reduced below 3ppm. This study serves as references for optimization and modification of SCR systems.
Modeling and simulation of queuing system for customer service improvement: A case study
NASA Astrophysics Data System (ADS)
Xian, Tan Chai; Hong, Chai Weng; Hawari, Nurul Nazihah
2016-10-01
This study aims to develop a queuing model at UniMall by using discrete event simulation approach in analyzing the service performance that affects customer satisfaction. The performance measures that considered in this model are such as the average time in system, the total number of student served, the number of student in waiting queue, the waiting time in queue as well as the maximum length of buffer. ARENA simulation software is used to develop a simulation model and the output is analyzed. Based on the analysis of output, it is recommended that management of UniMall consider introducing shifts and adding another payment counter in the morning.
Validity of a Simulation Game as a Method for History Teaching
ERIC Educational Resources Information Center
Corbeil, Pierre; Laveault, Dany
2011-01-01
The aim of this research is, first, to determine the validity of a simulation game as a method of teaching and an instrument for the development of reasoning and, second, to study the relationship between learning and students' behavior toward games. The participants were college students in a History of International Relations course, with two…
ERIC Educational Resources Information Center
Olympiou, Georgios; Zacharias, Zacharia; deJong, Ton
2013-01-01
This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students' conceptual understanding as they use a simulation to experiment in the domain of "Light and Color". Moreover, we investigated whether students' prior knowledge is a factor that must be considered in deciding…
NASA Astrophysics Data System (ADS)
Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo
2018-05-01
Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.
Simulation of the effect of incline incident angle in DMD Maskless Lithography
NASA Astrophysics Data System (ADS)
Liang, L. W.; Zhou, J. Y.; Xiang, L. L.; Wang, B.; Wen, K. H.; Lei, L.
2017-06-01
The aim of this study is to provide a simulation method for investigation of the intensity fluctuation caused by the inclined incident angle in DMD (digital micromirror device) maskless lithography. The simulation consists of eight main processes involving the simplification of the DMD aperture function and light propagation utilizing the non-parallel angular spectrum method. These processes provide a possibility of co-simulation in the spatial frequency domain, which combines the microlens array and DMD in the maskless lithography system. The simulation provided the spot shape and illumination distribution. These two parameters are crucial in determining the exposure dose in the existing maskless lithography system.
JSC Mars-1 Martian Soil Simulant: Melting Experiments and Electron Microprobe Studies
NASA Technical Reports Server (NTRS)
Carpenter, P.; Sebille, L.; Boles, W.; Chadwell, M.; Schwarz, L.
2003-01-01
JSC Mars-1 has been developed as a Martian regolith simulant, and is the <1 mm size fraction of a palagonitic tephra (a glassy volcanic ash altered at low temperatures) from Pu'u Nene cinder cone on the Island of Hawaii. The Mars-1 simulant forms the basis for numerous terrestrial studies which aim to evaluate the suitability of Martian soil for materials processing. Martian soil may be sintered to form building materials for construction, and also melted or reacted to extract metals for various uses, as well as oxygen for life support.
CVO driver fatigue and complex in-vehicle systems
DOT National Transportation Integrated Search
1997-10-01
As one of a series of studies aimed at gathering data to develop human factors design guidelines for Advanced Traveler Information Systems (ATIS) and Commercial Vehicle Operations (CVO), the present study utilized a driving simulator to study CVO dri...
Study on Roadheader Cutting Load at Different Properties of Coal and Rock
2013-01-01
The mechanism of cutting process of roadheader with cutting head was researched, and the influences of properties of coal and rock on cutting load were deeply analyzed. Aimed at the defects of traditional calculation method of cutting load on fully expressing the complex cutting process of cutting head, the method of finite element simulation was proposed to simulate the dynamic cutting process. Aimed at the characteristics of coal and rock which affect the cutting load, several simulations with different firmness coefficient were taken repeatedly, and the relationship between three-axis force and firmness coefficient was derived. A comparative analysis of cutting pick load between simulation results and theoretical formula was carried out, and a consistency was achieved. Then cutting process with a total cutting head was carried out on this basis. The results show that the simulation analysis not only provides a reliable guarantee for the accurate calculation of the cutting head load and improves the efficiency of the cutting head cutting test but also offers a basis for selection of cutting head with different geological conditions of coal or rock. PMID:24302866
Exploring Biomolecular Recognition by Modeling and Simulation
NASA Astrophysics Data System (ADS)
Wade, Rebecca
2007-12-01
Biomolecular recognition is complex. The balance between the different molecular properties that contribute to molecular recognition, such as shape, electrostatics, dynamics and entropy, varies from case to case. This, along with the extent of experimental characterization, influences the choice of appropriate computational approaches to study biomolecular interactions. I will present computational studies in which we aim to make concerted use of bioinformatics, biochemical network modeling and molecular simulation techniques to study protein-protein and protein-small molecule interactions and to facilitate computer-aided drug design.
Yokohama, Noriya
2013-07-01
This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.
Martin, Kevin D; Amendola, Annunziato; Phisitkul, Phinit
2016-01-01
Abstract Purpose Orthopedic education continues to move towards evidence-based curriculum in order to comply with new residency accreditation mandates. There are currently three high fidelity arthroscopic virtual reality (VR) simulators available, each with multiple instructional modules and simulated arthroscopic procedures. The aim of the current study is to assess face validity, defined as the degree to which a procedure appears effective in terms of its stated aims, of three available VR simulators. Methods Thirty subjects were recruited from a single orthopedic residency training program. Each subject completed one training session on each of the three leading VR arthroscopic simulators (ARTHRO mentor-Symbionix, ArthroS-Virtamed, and ArthroSim-Toltech). Each arthroscopic session involved simulator-specific modules. After training sessions, subjects completed a previously validated simulator questionnaire for face validity. Results The median external appearances for the ARTHRO Mentor (9.3, range 6.7-10.0; p=0.0036) and ArthroS (9.3, range 7.3-10.0; p=0.0003) were statistically higher than for Arthro- Sim (6.7, range 3.3-9.7). There was no statistical difference in intraarticular appearance, instrument appearance, or user friendliness between the three groups. Most simulators reached an appropriate level of proportion of sufficient scores for each categor y (≥70%), except for ARTHRO Mentor (intraarticular appearance-50%; instrument appearance- 61.1%) and ArthroSim (external appearance- 50%; user friendliness-68.8%). Conclusion These results demonstrate that ArthroS has the highest overall face validity of the three current arthroscopic VR simulators. However, only external appearance for ArthroS reached statistical significance when compared to the other simulators. Additionally, each simulator had satisfactory intraarticular quality. This study helps further the understanding of VR simulation and necessary features for accurate arthroscopic representation. This data also provides objective data for educators when selecting equipment that will best facilitate residency training. PMID:27528830
Gene Expression and Structural Skeletal Responses to Long-Duration Simulated Microgravity in Rats
NASA Technical Reports Server (NTRS)
Shirazi-Fard, Yasaman; Rael, Victoria E.; Torres, Samantha; Steczina, Sonette; Bryant, Sheenah; Tahimic, Candice; Globus, Ruth K.
2017-01-01
In this study, we aim to examine skeletal responses to simulated long-duration spaceflight (90 days) and weight-bearing recovery on bone loss using the ground-based hindlimb unloading (HU) model in adolescent (3-month old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative defense genes and pro-bone resorption factors, where there is a progression and eventual plateau; furthermore, early transient changes in these pathways precede skeletal adaptations.
Neutron streaming studies along JET shielding penetrations
NASA Astrophysics Data System (ADS)
Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan
2017-09-01
Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.
Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Clarke, Lauren; Gillanders, Elizabeth; Feuer, Eric J.
2013-01-01
Summary: Many simulation methods and programs have been developed to simulate genetic data of the human genome. These data have been widely used, for example, to predict properties of populations retrospectively or prospectively according to mathematically intractable genetic models, and to assist the validation, statistical inference and power analysis of a variety of statistical models. However, owing to the differences in type of genetic data of interest, simulation methods, evolutionary features, input and output formats, terminologies and assumptions for different applications, choosing the right tool for a particular study can be a resource-intensive process that usually involves searching, downloading and testing many different simulation programs. Genetic Simulation Resources (GSR) is a website provided by the National Cancer Institute (NCI) that aims to help researchers compare and choose the appropriate simulation tools for their studies. This website allows authors of simulation software to register their applications and describe them with well-defined attributes, thus allowing site users to search and compare simulators according to specified features. Availability: http://popmodels.cancercontrol.cancer.gov/gsr. Contact: gsr@mail.nih.gov PMID:23435068
NASA Astrophysics Data System (ADS)
Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.
2008-12-01
The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.
ERIC Educational Resources Information Center
Teke, Huseyin; Dogan, Bekir; Duran, Ahmet
2015-01-01
This study aimed to make a comparative analysis of seventh-grade (the second level of the primary education) students' achievement in "Systems of The Human Body" unit in Science and Technology lesson which was taught using both the simulation method and the traditional method along with the influence of these methods on students'…
ERIC Educational Resources Information Center
Pagnotti, John; Russell, William B., III
2015-01-01
The purpose of this article is to empower those interested in teaching students powerful and engaging social studies. Through the lens of Supreme Court simulations, this article provides educators with a viable, classroom-tested lesson plan to bring Problem-Based Learning into their classrooms. The specific aim of the lesson is to provide students…
ERIC Educational Resources Information Center
Neumann, David L.; Neumann, Michelle M.; Hood, Michelle
2011-01-01
The discipline of statistics seems well suited to the integration of technology in a lecture as a means to enhance student learning and engagement. Technology can be used to simulate statistical concepts, create interactive learning exercises, and illustrate real world applications of statistics. The present study aimed to better understand the…
Developing iPad-Based Physics Simulations That Can Help People Learn Newtonian Physics Concepts
ERIC Educational Resources Information Center
Lee, Young-Jin
2015-01-01
The aims of this study are: (1) to develop iPad-based computer simulations called iSimPhysics that can help people learn Newtonian physics concepts; and (2) to assess its educational benefits and pedagogical usefulness. To facilitate learning, iSimPhysics visualizes abstract physics concepts, and allows for conducting a series of computer…
Comparing the Impact of Dynamic and Static Media on Students' Learning of One-Dimensional Kinematics
ERIC Educational Resources Information Center
Mešic, Vanes; Dervic, Dževdeta; Gazibegovic-Busuladžic, Azra; Salibašic, Džana; Erceg, Nataša
2015-01-01
In our study, we aimed to compare the impact of simulations, sequences of printed simulation frames and conventional static diagrams on the understanding of students with regard to the one-dimensional kinematics. Our student sample consisted of three classes of middle years students (N = 63; mostly 15 year-olds). These three classes served as…
Lippe, Megan Pfitzinger; Becker, Heather
2015-01-01
The aim of this study was to assess learning outcomes from a simulation on providing care to a critically ill patient from whom care is ultimately withdrawn. Nursing students have anxiety and low perceived competence for caring for dying patients. Effective strategies for teaching communication, assessment, and basic nursing skills are needed. A pretest-posttest design compared perceived competence and attitudes in caring for dying patients with three separate cohorts of undergraduate nursing students performing the simulation. The cohorts had significantly improved scores on the perceived competence (p < .001) and attitude (p < .01) measures following the simulation. Reliability for a new instrument to assess perceived competence in caring for dying patients was also established. This study's simulation offers a robust teaching strategy for improving nursing students' attitudes and perceived competence in caring for dying patients.
The Role of Simulation in Microsurgical Training.
Evgeniou, Evgenios; Walker, Harriet; Gujral, Sameer
Simulation has been established as an integral part of microsurgical training. The aim of this study was to assess and categorize the various simulation models in relation to the complexity of the microsurgical skill being taught and analyze the assessment methods commonly employed in microsurgical simulation training. Numerous courses have been established using simulation models. These models can be categorized, according to the level of complexity of the skill being taught, into basic, intermediate, and advanced. Microsurgical simulation training should be assessed using validated assessment methods. Assessment methods vary significantly from subjective expert opinions to self-assessment questionnaires and validated global rating scales. The appropriate assessment method should carefully be chosen based on the simulation modality. Simulation models should be validated, and a model with appropriate fidelity should be chosen according to the microsurgical skill being taught. Assessment should move from traditional simple subjective evaluations of trainee performance to validated tools. Future studies should assess the transferability of skills gained during simulation training to the real-life setting. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Conformation switching of AIM2 PYD domain revealed by NMR relaxation and MD simulation.
Wang, Haobo; Yang, Lijiang; Niu, Xiaogang
2016-04-29
Protein absent in melanoma 2 (AIM2) is a double-strand DNA (ds DNA) sensor mainly located in cytoplasm of cell. It includes one N terminal PYD domain and one C terminal HIN domain. When the ds DNA such as DNA viruses and bacteria entered cytoplasm, the HIN domain of AIM2 will recognize and bind to DNA, and the PYD domain will bind to ASC protein which will result in the formation of AIM2 inflammasome. Three AIM2 PYD domain structures have been solved, but every structure yields a unique conformation around the α3 helix region. To understand why different AIM2 PYD structures show different conformations in this region, we use NMR relaxation techniques to study the backbone dynamics of mouse AIM2 PYD domain and perform molecular dynamics (MD) simulations on both mouse and human AIM2 PYD structures. Our results indicate that this region is highly flexible in both mouse and human AIM2 PYD domains, and the PYD domain may exist as a conformation ensemble in solution. Different environment makes the population vary among pre-existing conformational substrates of the ensemble, which may be the reason why different AIM2 PYD structures were observed under different conditions. Further docking analysis reveals that the conformation switching may be important for the autoinhibition of the AIM2 protein. Copyright © 2016 Elsevier Inc. All rights reserved.
Andersen, Simone Nyholm; Broberg, Ole
2015-11-01
Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Discovering mental models and frames in learning of nursing ethics through simulations.
Díaz Agea, J L; Martín Robles, M R; Jiménez Rodríguez, D; Morales Moreno, I; Viedma Viedma, I; Leal Costa, C
2018-05-15
The acquisition of ethical competence is necessary in nursing. The aims of the study were to analyse students' perceptions of the process of learning ethics through simulations and to describe the underlying frames that inform the decision making process of nursing students. A qualitative study based on the analysis of simulated experiences and debriefings of six simulated scenarios with ethical content in three different groups of fourth-year nursing students (n = 30), was performed. The simulated situations were designed to contain ethical dilemmas. The students' perspective regarding their learning and acquisition of ethical competence through simulations was positive. A total of 15 mental models were identified that underlie the ethical decision making of the students. The student's opinions reinforce the use of simulations as a tool for learning ethics. Thus, the putting into practice the knowledge regarding the frames that guide ethical actions is a suitable pedagogical strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Devos, Hannes; Akinwuntan, Abiodun Emmanuel; Nieuwboer, Alice; Ringoot, Isabelle; Van Berghen, Karen; Tant, Mark; Kiekens, Carlotte; De Weerdt, Willy
2010-01-01
No long-term studies have been reported on the effect of training programs on driving after stroke. The authors' primary aim was to determine the effect of simulator versus cognitive rehabilitation therapy on fitness-to-drive at 5 years poststroke. A second aim was to investigate differences in clinical characteristics between stroke survivors who resumed and stopped driving. In a previously reported randomized controlled trial, 83 stroke survivors received 15 hours of simulator training (n = 42) or cognitive therapy (n = 41). In this 5-year follow-up study, 61 participants were reassessed. Fitness-to-drive decisions were obtained from medical, visual, neuropsychological, and on-road tests; 44 participants (simulator group, n = 21; cognitive group, n = 23) completed all assessments. The primary outcome measures were fitness-to-drive decision and current driving status. The authors found that 5 years after stroke, 18 of 30 participants (60%) in the simulator group were considered fit to drive, compared with 15 of 31 (48%) in the cognitive group (P = .36); 34 of 61 (56%) participants were driving. Current drivers were younger (P = .04), had higher Barthel scores (P = .008), had less comorbidity (P = .01), and were less severely depressed (P = .02) than those who gave up driving. The advantage of simulator-based driving training over cognitive rehabilitation therapy, evident at 6 months poststroke, had faded 5 years later. Poststroke drivers were younger and less severely affected and depressed than nondrivers.
Simulation studies for the evaluation of health information technologies: experiences and results.
Ammenwerth, Elske; Hackl, Werner O; Binzer, Kristine; Christoffersen, Tue E H; Jensen, Sanne; Lawton, Kitta; Skjoet, Peter; Nohr, Christian
It is essential for new health information technologies (IT) to undergo rigorous evaluations to ensure they are effective and safe for use in real-world situations. However, evaluation of new health IT is challenging, as field studies are often not feasible when the technology being evaluated is not sufficiently mature. Laboratory-based evaluations have also been shown to have insufficient external validity. Simulation studies seem to be a way to bridge this gap. The aim of this study was to evaluate, using a simulation methodology, the impact of a new prototype of an electronic medication management system on the appropriateness of prescriptions and drug-related activities, including laboratory test ordering or medication changes. This article presents the results of a controlled simulation study with 50 simulation runs, including ten doctors and five simulation patients, and discusses experiences and lessons learnt while conducting the study. Although the new electronic medication management system showed tendencies to improve medication safety when compared with the standard system, this tendency was not significant. Altogether, five distinct situations were identified where the new medication management system did help to improve medication safety. This simulation study provided a good compromise between internal validity and external validity. However, several challenges need to be addressed when undertaking simulation evaluations including: preparation of adequate test cases; training of participants before using unfamiliar applications; consideration of time, effort and costs of conducting the simulation; technical maturity of the evaluated system; and allowing adequate preparation of simulation scenarios and simulation setting. Simulation studies are an interesting but time-consuming approach, which can be used to evaluate newly developed health IT systems, particularly those systems that are not yet sufficiently mature to undergo field evaluation studies.
Auerbach, Marc; Roney, Linda; Aysseh, April; Gawel, Marcie; Koziel, Jeannette; Barre, Kimberly; Caty, Michael G; Santucci, Karen
2014-12-01
This study aimed to evaluate the feasibility and measure the impact of an in situ interdisciplinary pediatric trauma quality improvement simulation program. Twenty-two monthly simulations were conducted in a tertiary care pediatric emergency department with the aim of improving the quality of pediatric trauma (February 2010 to November 2012). Each session included 20 minutes of simulated patient care, followed by 30 minutes of debriefing that focused on teamwork, communication, and the identification of gaps in care. A single rater scored the performance of the team in real time using a validated assessment instrument for 6 subcomponents of care (teamwork, airway, intubation, breathing, circulation, and disability). Participants completed a survey and written feedback forms. A trend analysis of the 22 simulations found statistically significant positive trends for overall performance, teamwork, and intubation subcomponents; the strength of the upward trend was the strongest for the teamwork (τ = 0.512), followed by overall performance (τ = 0.488) and intubation (τ = 0.433). Two hundred fifty-one of 398 participants completed the participant feedback form (response rate, 63%), reporting that debriefing was the most valuable aspect of the simulation. An in situ interdisciplinary pediatric trauma simulation quality improvement program resulted in improved validated trauma simulation assessment scores for overall performance, teamwork, and intubation. Participants reported high levels of satisfaction with the program, and debriefing was reported as the most valuable component of the program.
Cheng, Adam; Auerbach, Marc; Calhoun, Aaron; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay; Hunt, Elizabeth A; Duval-Arnould, Jordan; Peiris, Nicola; Kessler, David
2018-06-01
The scope and breadth of simulation-based research is growing rapidly; however, few mechanisms exist for conducting multicenter, collaborative research. Failure to foster collaborative research efforts is a critical gap that lies in the path of advancing healthcare simulation. The 2017 Research Summit hosted by the Society for Simulation in Healthcare highlighted how simulation-based research networks can produce studies that positively impact the delivery of healthcare. In 2011, the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) was formed to facilitate multicenter, collaborative simulation-based research with the aim of developing a community of practice for simulation researchers. Since its formation, the network has successfully completed and published numerous collaborative research projects. In this article, we describe INSPIRE's history, structure, and internal processes with the goal of highlighting the community of practice model for other groups seeking to form a simulation-based research network.
Designing a SCADA system simulator for fast breeder reactor
NASA Astrophysics Data System (ADS)
Nugraha, E.; Abdullah, A. G.; Hakim, D. L.
2016-04-01
SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.
Practical aspects in surface biopotential electrode placement for smart clothing: A simulation study
NASA Astrophysics Data System (ADS)
Mulyadi, Indra H.; Haueisen, Jens; Supriyanto, Eko
2017-02-01
In addition to physiological aspects, placement of surface biopotential electrodes for smart clothing should consider practical aspects due to their dynamic application environment. This study is aimed at finding the best places to put the electrode on areas where the measurement is practically reliable. Calculation was performed by using three practical aspects: 1) skin-shirt gap; 2) shirt movement, and 4) regional sweat rate. We employed 3DS Max software to simulate shirt behavior. The simulation result showed that generally practical satisfaction degrees are higher in the posterior. The quantitative approach may help smart clothing designers to choose the locations to place electrodes.
Numerical study of rotating detonation engine with an array of injection holes
NASA Astrophysics Data System (ADS)
Yao, S.; Han, X.; Liu, Y.; Wang, J.
2017-05-01
This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen-air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.
Methods to estimate the between‐study variance and its uncertainty in meta‐analysis†
Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian PT; Langan, Dean; Salanti, Georgia
2015-01-01
Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:26332144
Harris, Catriona M; Thomas, Len; Sadykova, Dina; DeRuiter, Stacy L; Tyack, Peter L; Southall, Brandon L; Read, Andrew J; Miller, Patrick J O
2016-01-01
This paper describes the MOCHA project which aims to develop novel approaches for the analysis of data collected during Behavioral Response Studies (BRSs). BRSs are experiments aimed at directly quantifying the effects of controlled dosages of natural or anthropogenic stimuli (typically sound) on marine mammal behavior. These experiments typically result in low sample size, relative to variability, and so we are looking at a number of studies in combination to maximize the gain from each one. We describe a suite of analytical tools applied to BRS data on beaked whales, including a simulation study aimed at informing future experimental design.
ERIC Educational Resources Information Center
Wenk, Manuel; Waurick, Rene; Schotes, David; Wenk, Melanie; Gerdes, Christina; Van Aken, Hugo K.; Popping, Daniel M.
2009-01-01
Simulation-based teaching (SBT) is increasingly used in medical education. As an alternative to other teaching methods there is a lack of evidence concerning its efficacy. The aim of this study was to evaluate the potency of SBT in anesthesia in comparison to problem-based discussion (PBD) with students in a randomized controlled setting.…
ERIC Educational Resources Information Center
De Jong, Terry; Lane, Jeniffer; Sharp, Sue
2012-01-01
This study was undertaken in response to the imperative of teacher education courses incorporating National Professional Standards for Teachers, in particular Standard 7, which deals with the professional engagement of teachers (AITSL, 2011). It aimed to evaluate the efficacy of simulation and active recall as a learner-centred pedagogy in…
Online Stereo 3D Simulation in Studying the Spherical Pendulum in Conservative Force Field
ERIC Educational Resources Information Center
Zabunov, Svetoslav S.
2013-01-01
The current paper aims at presenting a modern e-learning method and tool that is utilized in teaching physics in the universities. An online stereo 3D simulation is used for e-learning mechanics and specifically the teaching of spherical pendulum as part of the General Physics course for students in the universities. This approach was realized on…
Vandyk, Amanda D; Lalonde, Michelle; Merali, Sabrina; Wright, Erica; Bajnok, Irmajean; Davies, Barbara
2018-04-01
Evidence on the use of simulation to teach psychiatry and mental health (including addiction) content is emerging, yet no summary of the implementation processes or associated outcomes exists. The aim of this study was to systematically search and review empirical literature on the use of psychiatry-focused simulation in undergraduate nursing education. Objectives were to (i) assess the methodological quality of existing evidence on the use of simulation to teach mental health content to undergraduate nursing students, (ii) describe the operationalization of the simulations, and (iii) summarize the associated quantitative and qualitative outcomes. We conducted online database (MEDLINE, Embase, ERIC, CINAHL, PsycINFO from January 2004 to October 2015) and grey literature searches. Thirty-two simulation studies were identified describing and evaluating six types of simulations (standardized patients, audio simulations, high-fidelity simulators, virtual world, multimodal, and tabletop). Overall, 2724 participants were included in the studies. Studies reflected a limited number of intervention designs, and outcomes were evaluated with qualitative and quantitative methods incorporating a variety of tools. Results indicated that simulation was effective in reducing student anxiety and improving their knowledge, empathy, communication, and confidence. The summarized qualitative findings all supported the benefit of simulation; however, more research is needed to assess the comparative effectiveness of the types of simulations. Recommendations from the findings include the development of guidelines for educators to deliver each simulation component (briefing, active simulation, debriefing). Finally, consensus around appropriate training of facilitators is needed, as is consistent and agreed upon simulation terminology. © 2017 Australian College of Mental Health Nurses Inc.
Use of simulation-based education to reduce catheter-related bloodstream infections.
Barsuk, Jeffrey H; Cohen, Elaine R; Feinglass, Joe; McGaghie, William C; Wayne, Diane B
2009-08-10
Simulation-based education improves procedural competence in central venous catheter (CVC) insertion. The effect of simulation-based education in CVC insertion on the incidence of catheter-related bloodstream infection (CRBSI) is unknown. The aim of this study was to determine if simulation-based training in CVC insertion reduces CRBSI. This was an observational education cohort study set in an adult intensive care unit (ICU) in an urban teaching hospital. Ninety-two internal medicine and emergency medicine residents completed a simulation-based mastery learning program in CVC insertion skills. Rates of CRBSI from CVCs inserted by residents in the ICU before and after the simulation-based educational intervention were compared over a 32-month period. There were fewer CRBSIs after the simulator-trained residents entered the intervention ICU (0.50 infections per 1000 catheter-days) compared with both the same unit prior to the intervention (3.20 per 1000 catheter-days) (P = .001) and with another ICU in the same hospital throughout the study period (5.03 per 1000 catheter-days) (P = .001). An educational intervention in CVC insertion significantly improved patient outcomes. Simulation-based education is a valuable adjunct in residency education.
NASA Astrophysics Data System (ADS)
Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.
2017-04-01
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
Validation of the self-assessment teamwork tool (SATT) in a cohort of nursing and medical students.
Roper, Lucinda; Shulruf, Boaz; Jorm, Christine; Currie, Jane; Gordon, Christopher J
2018-02-09
Poor teamwork has been implicated in medical error and teamwork training has been shown to improve patient care. Simulation is an effective educational method for teamwork training. Post-simulation reflection aims to promote learning and we have previously developed a self-assessment teamwork tool (SATT) for health students to measure teamwork performance. This study aimed to evaluate the psychometric properties of a revised self-assessment teamwork tool. The tool was tested in 257 medical and nursing students after their participation in one of several mass casualty simulations. Using exploratory and confirmatory factor analysis, the revised self-assessment teamwork tool was shown to have strong construct validity, high reliability, and the construct demonstrated invariance across groups (Medicine & Nursing). The modified SATT was shown to be a reliable and valid student self-assessment tool. The SATT is a quick and practical method of guiding students' reflection on important teamwork skills.
Zapko, Karen A; Ferranto, Mary Lou Gemma; Blasiman, Rachael; Shelestak, Debra
2018-01-01
The National League for Nursing (NLN) has endorsed simulation as a necessary teaching approach to prepare students for the demanding role of professional nursing. Questions arise about the suitability of simulation experiences to educate students. Empirical support for the effect of simulation on patient outcomes is sparse. Most studies on simulation report only anecdotal results rather than data obtained using evaluative tools. The aim of this study was to examine student perception of best educational practices in simulation and to evaluate their satisfaction and self-confidence in simulation. This study was a descriptive study designed to explore students' perceptions of the simulation experience over a two-year period. Using the Jeffries framework, a Simulation Day was designed consisting of serial patient simulations using high and medium fidelity simulators and live patient actors. The setting for the study was a regional campus of a large Midwestern Research 2 university. The convenience sample consisted of 199 participants and included sophomore, junior, and senior nursing students enrolled in the baccalaureate nursing program. The Simulation Days consisted of serial patient simulations using high and medium fidelity simulators and live patient actors. Participants rotated through four scenarios that corresponded to their level in the nursing program. Data was collected in two consecutive years. Participants completed both the Educational Practices Questionnaire (Student Version) and the Student Satisfaction and Self-Confidence in Learning Scale. Results provide strong support for using serial simulation as a learning tool. Students were satisfied with the experience, felt confident in their performance, and felt the simulations were based on sound educational practices and were important for learning. Serial simulations and having students experience simulations more than once in consecutive years is a valuable method of clinical instruction. When conducted well, simulations can lead to increased student satisfaction and self-confidence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of articulation simulation system using artificial maxillectomy models.
Elbashti, M E; Hattori, M; Sumita, Y I; Taniguchi, H
2015-09-01
Acoustic evaluation is valuable for guiding the treatment of maxillofacial defects and determining the effectiveness of rehabilitation with an obturator prosthesis. Model simulations are important in terms of pre-surgical planning and pre- and post-operative speech function. This study aimed to evaluate the acoustic characteristics of voice generated by an articulation simulation system using a vocal tract model with or without artificial maxillectomy defects. More specifically, we aimed to establish a speech simulation system for maxillectomy defect models that both surgeons and maxillofacial prosthodontists can use in guiding treatment planning. Artificially simulated maxillectomy defects were prepared according to Aramany's classification (Classes I-VI) in a three-dimensional vocal tract plaster model of a subject uttering the vowel /a/. Formant and nasalance acoustic data were analysed using Computerized Speech Lab and the Nasometer, respectively. Formants and nasalance of simulated /a/ sounds were successfully detected and analysed. Values of Formants 1 and 2 for the non-defect model were 675.43 and 976.64 Hz, respectively. Median values of Formants 1 and 2 for the defect models were 634.36 and 1026.84 Hz, respectively. Nasalance was 11% in the non-defect model, whereas median nasalance was 28% in the defect models. The results suggest that an articulation simulation system can be used to help surgeons and maxillofacial prosthodontists to plan post-surgical defects that will be facilitate maxillofacial rehabilitation. © 2015 John Wiley & Sons Ltd.
Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.
Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R
Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
[Simulator sickness and its measurement with Simulator Sickness Questionnaire (SSQ)].
Biernacki, Marcin P; Kennedy, Robert S; Dziuda, Łukasz
One of the most common methods for studying the simulator sickness issue is the Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993). Despite the undoubted popularity of the SSQ, this questionnaire has not as yet been standardized and translated, which could allow us to use it in Poland for research purposes. The aim of our article is to introduce the SSQ to Polish readers, both researchers and practitioners. In the first part of this paper, the studies using the SSQ are discussed, whereas the second part consists of the description of the SSQ test procedure and the calculation method of sample results. Med Pr 2016;67(4):545-555. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Theory and Simulations of Solar System Plasmas
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.
2011-01-01
"Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.
ERIC Educational Resources Information Center
Haley, Stephen M.; Coster, Wendy J.; Dumas, Helene M.; Fragala-Pinkham, Maria A.; Kramer, Jessica; Ni, Pengsheng; Tian, Feng; Kao, Ying-Chia; Moed, Rich; Ludlow, Larry H.
2011-01-01
Aim: The aims of the study were to: (1) build new item banks for a revised version of the Pediatric Evaluation of Disability Inventory (PEDI) with four content domains: daily activities, mobility, social/cognitive, and responsibility; and (2) use post-hoc simulations based on the combined normative and disability calibration samples to assess the…
Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.
Idkaidek, Ashraf; Jasiuk, Iwona
2015-12-01
We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.
Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M
2016-01-01
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. PMID:27160559
Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M
2016-05-01
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. © IMechE 2016.
Fung, Lillia; Boet, Sylvain; Bould, M Dylan; Qosa, Haytham; Perrier, Laure; Tricco, Andrea; Tavares, Walter; Reeves, Scott
2015-01-01
Crisis resource management (CRM) abilities are important for different healthcare providers to effectively manage critical clinical events. This study aims to review the effectiveness of simulation-based CRM training for interprofessional and interdisciplinary teams compared to other instructional methods (e.g., didactics). Interprofessional teams are composed of several professions (e.g., nurse, physician, midwife) while interdisciplinary teams are composed of several disciplines from the same profession (e.g., cardiologist, anaesthesiologist, orthopaedist). Medline, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were searched using terms related to CRM, crisis management, crew resource management, teamwork, and simulation. Trials comparing simulation-based CRM team training versus any other methods of education were included. The educational interventions involved interprofessional or interdisciplinary healthcare teams. The initial search identified 7456 publications; 12 studies were included. Simulation-based CRM team training was associated with significant improvements in CRM skill acquisition in all but two studies when compared to didactic case-based CRM training or simulation without CRM training. Of the 12 included studies, one showed significant improvements in team behaviours in the workplace, while two studies demonstrated sustained reductions in adverse patient outcomes after a single simulation-based CRM team intervention. In conclusion, CRM simulation-based training for interprofessional and interdisciplinary teams show promise in teaching CRM in the simulator when compared to didactic case-based CRM education or simulation without CRM teaching. More research, however, is required to demonstrate transfer of learning to workplaces and potential impact on patient outcomes.
Ultrasound-Guided Regional Anesthesia Simulation Training: A Systematic Review.
Chen, Xiao Xu; Trivedi, Vatsal; AlSaflan, AbdulHadi A; Todd, Suzanne Clare; Tricco, Andrea C; McCartney, Colin J L; Boet, Sylvain
Ultrasound-guided regional anesthesia (UGRA) has become the criterion standard of regional anesthesia practice. Ultrasound-guided regional anesthesia teaching programs often use simulation, and guidelines have been published to help guide URGA education. This systematic review aimed to examine the effectiveness of simulation-based education for the acquisition and maintenance of competence in UGRA. Studies identified in MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were included if they assessed simulation-based UGRA teaching with outcomes measured at Kirkpatrick level 2 (knowledge and skills), 3 (transfer of learning to the workplace), or 4 (patient outcomes). Two authors independently reviewed all identified references for eligibility, abstracted data, and appraised quality. After screening 176 citations and 45 full-text articles, 12 studies were included. Simulation-enhanced training improved knowledge acquisition (Kirkpatrick level 2) when compared with nonsimulation training. Seven studies measuring skill acquisition (Kirkpatrick level 2) found that simulation-enhanced UGRA training was significantly more effective than alternative teaching methods or no intervention. One study measuring transfer of learning into the clinical setting (Kirkpatrick level 3) found no difference between simulation-enhanced UGRA training and non-simulation-based training. However, this study was discontinued early because of technical challenges. Two studies examined patient outcomes (Kirkpatrick level 4), and one of these found that simulation-based UGRA training improved patient outcomes compared with didactic teaching. Ultrasound-guided regional anesthesia knowledge and skills significantly improved with simulation training. The acquired UGRA skills may be transferred to the clinical setting; however, further studies are required to confirm these changes translate to improved patient outcomes.
Simulated ward round: reducing costs, not outcomes.
Ford, Helen; Cleland, Jennifer; Thomas, Ian
2017-02-01
Distractions and interruptions on the ward pose substantial patient safety risks, but medical students receive little training on their management. Although there is some evidence that medical students can be taught how to manage distractions and interruptions in a simulated ward environment, the only model to date is based on individual feedback, which is resource-expensive, mitigating curricular integration. Our aim was to assess the educational utility of a cost-efficient approach to a patient safety-focused simulated ward round. Twenty-three of 55 final-year medical students took part in a cost-reduced simulated ward round. Costs were minimised by providing group rather than individualised feedback, thereby shortening the duration of each simulation and reducing the number of interruptions. The utility of the simulation was assessed via student evaluation and performance on a patient safety station of an objective structured clinical examination (OSCE). The direct costs of the simulation were more than 50 per cent lower per student compared with the original study, mostly as a result of a reduction in the time that faculty members took to give feedback. Students managed distractions better and received higher scores in the OSCE station than those who had not undergone the ward round. Group feedback was evaluated positively by most participants: 94 per cent of those who provided feedback agreed or strongly agreed that the simulation would make them a safer doctor and would improve their handling of distractions. Our aim was to assess the educational utility of a cost-efficient approach to a patient safety-focused simulated ward round DISCUSSION: The costs of a simulated ward round can be significantly reduced whilst maintaining educational utility. These findings should encourage medical schools to integrate ward simulation into curricula. © 2016 John Wiley & Sons Ltd.
Simulation in Occupational Therapy Curricula: A literature review.
Bennett, Sally; Rodger, Sylvia; Fitzgerald, Cate; Gibson, Libby
2017-08-01
Simulated learning experiences are increasingly being used in health-care education to enhance student engagement and provide experiences that reflect clinical practice; however, simulation has not been widely investigated in occupational therapy curricula. The aim of this paper was to: (i) describe the existing research about the use and evaluation of simulation over the last three decades in occupational therapy curricula and (ii) consider how simulation has been used to develop competence in students. A literature review was undertaken with searches of MEDLINE, CINAHL and ERIC to locate articles that described or evaluated the use of simulation in occupational therapy curricula. Fifty-seven papers were identified. Occupational therapy educators have used the full scope of simulation modalities, including written case studies (22), standardised patients (13), video case studies (15), computer-based and virtual reality cases (7), role-play (8) and mannequins and part-task trainers (4). Ten studies used combinations of these modalities and two papers compared modalities. Most papers described the use of simulation for foundational courses, as for preparation for fieldwork, and to address competencies necessary for newly graduating therapists. The majority of studies were descriptive, used pre-post design, or were student's perceptions of the value of simulation. Simulation-based education has been used for a wide range of purposes in occupational therapy curricula and appears to be well received. Randomised controlled trials are needed to more accurately understand the effects of simulation not just for occupational therapy students but for longer term outcomes in clinical practice. © 2017 Occupational Therapy Australia.
Adaptive smart simulator for characterization and MPPT construction of PV array
NASA Astrophysics Data System (ADS)
Ouada, Mehdi; Meridjet, Mohamed Salah; Dib, Djalel
2016-07-01
Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and has a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.
Dosimetric investigation of proton therapy on CT-based patient data using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Chongsan, T.; Liamsuwan, T.; Tangboonduangjit, P.
2016-03-01
The aim of radiotherapy is to deliver high radiation dose to the tumor with low radiation dose to healthy tissues. Protons have Bragg peaks that give high radiation dose to the tumor but low exit dose or dose tail. Therefore, proton therapy is promising for treating deep- seated tumors and tumors locating close to organs at risk. Moreover, the physical characteristic of protons is suitable for treating cancer in pediatric patients. This work developed a computational platform for calculating proton dose distribution using the Monte Carlo (MC) technique and patient's anatomical data. The studied case is a pediatric patient with a primary brain tumor. PHITS will be used for MC simulation. Therefore, patient-specific CT-DICOM files were converted to the PHITS input. A MATLAB optimization program was developed to create a beam delivery control file for this study. The optimization program requires the proton beam data. All these data were calculated in this work using analytical formulas and the calculation accuracy was tested, before the beam delivery control file is used for MC simulation. This study will be useful for researchers aiming to investigate proton dose distribution in patients but do not have access to proton therapy machines.
Kumar, Gundampati Ravi; Chikati, Rajasekhar; Pandrangi, Santhi Latha; Kandapal, Manoj; Sonkar, Kirti; Gupta, Neeraj; Mulakayala, Chaitanya; Jagannadham, Medicherla V; Kumar, Chitta Suresh; Saxena, Sunita; Das, Mira Debnath
2013-02-01
The aim of the present research was to study the anticancer effects of Aspergillus niger (A.niger) RNase. We found that RNase (A.niger RNase) significantly and dose dependently inhibited invasiveness of breast cancer cell line MDA MB 231 by 55 % (P<0.01) at 1 μM concentration. At a concentration of 2 μM, the anti invasive effect of the enzyme increased to 90 % (P<0.002). Keeping the aim to determine molecular level interactions (molecular simulations and protein docking) of human actin with A.niger RNase we extended our work in-vitro to in-silico studies. To gain better relaxation and accurate arrangement of atoms, refinement was done on the human actin and A.niger RNase by energy minimization (EM) and molecular dynamics (MD) simulations using 43A(2) force field of Gromacs96 implemented in the Gromacs 4.0.5 package, finally the interaction energies were calculated by protein-protein docking using the HEX. These in vitro and in-silico structural studies prove the effective inhibition of actin activity by A.niger RNase in neoplastic cells and thereby provide new insights for the development of novel anti cancer drugs.
Grieger, Jessica A; Johnson, Brittany J; Wycherley, Thomas P; Golley, Rebecca K
2017-05-01
Background: Dietary simulation modeling can predict dietary strategies that may improve nutritional or health outcomes. Objectives: The study aims were to undertake a systematic review of simulation studies that model dietary strategies aiming to improve nutritional intake, body weight, and related chronic disease, and to assess the methodologic and reporting quality of these models. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guided the search strategy with studies located through electronic searches [Cochrane Library, Ovid (MEDLINE and Embase), EBSCOhost (CINAHL), and Scopus]. Study findings were described and dietary modeling methodology and reporting quality were critiqued by using a set of quality criteria adapted for dietary modeling from general modeling guidelines. Results: Forty-five studies were included and categorized as modeling moderation, substitution, reformulation, or promotion dietary strategies. Moderation and reformulation strategies targeted individual nutrients or foods to theoretically improve one particular nutrient or health outcome, estimating small to modest improvements. Substituting unhealthy foods with healthier choices was estimated to be effective across a range of nutrients, including an estimated reduction in intake of saturated fatty acids, sodium, and added sugar. Promotion of fruits and vegetables predicted marginal changes in intake. Overall, the quality of the studies was moderate to high, with certain features of the quality criteria consistently reported. Conclusions: Based on the results of reviewed simulation dietary modeling studies, targeting a variety of foods rather than individual foods or nutrients theoretically appears most effective in estimating improvements in nutritional intake, particularly reducing intake of nutrients commonly consumed in excess. A combination of strategies could theoretically be used to deliver the best improvement in outcomes. Study quality was moderate to high. However, given the lack of dietary simulation reporting guidelines, future work could refine the quality tool to harmonize consistency in the reporting of subsequent dietary modeling studies. © 2017 American Society for Nutrition.
Hamilton Wilson, Jane E; Azzopardi, Wendy; Sager, Shelley; Gould, Brian; Conroy, Sherrill; Deegan, Patricia; Archie, Suzanne
2009-01-01
The aim of this study was to provide nursing students with an experiential learning opportunity which simulated living with the challenge of voice hearing. The purpose was to access understanding and insights of nursing students who completed "Hearing Voices that are Distressing: A Training Experience and Simulation for Students" (Deegan, 1996). Using a narrative research design and a convenience sample of 27 nursing students, participants were asked to respond in written format to three open ended prompts immediately following their participation in the simulation. Data generated was subjected to a thematic content analysis using a manual cut and paste approach to inductively find meanings and insights elicited from the respondents' actual words. Affirmed in this study was the use of this teaching tool to assist the students in their understanding of the challenges posed by voice hearing.
Ozdemir, F B; Selcuk, A B; Ozkorucuklu, S; Alpat, A B; Ozdemir, T; Ӧzek, N
2018-05-01
In this study, high-precision radiation detector (HIPRAD), a new-generation semiconductor microstrip detector, was used for detecting radon (Rn-222) activity. The aim of this study was to detect radon (Rn-222) activity experimentally by measuring the energy of particles in this detector. Count-ADC channel, eta-charge, and dose-response values were experimentally obtained using HIPRAD. The radon simulation in the radiation detector was theoretically performed using the Geant4 software package. The obtained radioactive decay, energy generation, energy values, and efficiency values of the simulation were plotted using the root program. The new-generation radiation detector proved to have 95% reliability according to the obtained dose-response graphs. The experimental and simulation results were found to be compatible with each other and with the radon decays and literature studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasheva, E. A.
2015-12-01
For decades, role-play and simulation exercises have been utilized for learning and policy decision making. While the power of Model UN simulations in building first-person experience and understanding of complex international issues is well known, the effectiveness of simulations for inspiring citizen engagement in scientific public-policy issues is little studied. My work hypothesizes that climate-change negotiation simulations can enhance students' scientific literacy and policy advocacy. It aims to determine how age and gender influence the responsiveness of students to such simulations. During the 2015 fall semester, I am conducting World Climate exercises for fellow graduate and undergraduate students at San Francisco State University. At the end of the exercise, I will have collected the responses to an anonymous questionnaire in which the participants indicate age and gender. The questionnaire asks participants to describe their hopes and fears for the future and to propose public and personal actions for achieving a strong climate change agreement. I am tracking differences to determine whether participants' age and gender correlate with particular patterns of feeling and thinking. My future research will aim to determine whether and how strongly the World Climate Exercise has affected participants' actual policy engagement. This work will also reflect on my experiences as a World Climate facilitator. I will describe the facilitation process and then discuss some of my observations from the sessions. I will specify the challenges I have encountered and suggest strategies that can strengthen the learning process. World Climate is a computer-simulation-based climate change negotiations role-playing exercise developed by Climate Interactive in partnership with the System Dynamics Group at the MIT Sloan School of Management.
Numerical Simulation on Smoke Spread and Temperature Distribution in a Corn Starch Explosion
NASA Astrophysics Data System (ADS)
Lin, CherngShing; Hsu, JuiPei
2018-01-01
It is discovered from dust explosion accidents in recent years that deep causes of the accidents lies in insufficient cognition of dust explosion danger, and no understanding on danger and information of the dust explosion. In the study, Fire Dynamics Simulator (FDS) evaluation tool is used aiming at Taiwan Formosa Fun Coast explosion accidents. The calculator is used for rebuilding the explosion situation. The factors affecting casualties under explosion are studied. The injured personnel participating in the party are evaluated according to smoke diffusion and temperature distribution for numerical simulation results. Some problems noted in the fire disaster after actual explosion are proposed, rational site analysis is given, thereby reducing dust explosion risk grade.
dos Santos, Mateus Casanova; Leite, Maria Cecília Lorea; Heck, Rita Maria
2010-12-01
This is an investigative case study with descriptive and participative character, based on an educational experience with the Simulation in Nursing learning trigger. It was carried out during the second semester of the first cycle of Faculdade de Enfermagem (FEN), Universidade Federal de Pelotas (UFPel). The aim is to study the recontextualization of pedagogic practice of simulation-based theories developed by Basil Bernstein, an education sociologist, and to contribute with the improvement process of education planning, and especially the evaluation of learning trigger. The research shows that Bernstein's theory is a powerful tool semiotic pedagogical of practices which contributes to the planning and analysis of curricular educational device.
NASA Astrophysics Data System (ADS)
Bera, Anupam; Ghosh, Jayanta; Bhattacharya, Atanu
2017-07-01
Conical intersections are now firmly established to be the key features in the excited electronic state processes of polyatomic energetic molecules. In the present work, we have explored conical intersection-mediated nonadiabatic chemical dynamics of a simple analogue nitramine molecule, dimethylnitramine (DMNA, containing one N-NO2 energetic group), and its complex with an iron atom (DMNA-Fe). For this task, we have used the ab initio multiple spawning (AIMS) dynamics simulation at the state averaged-complete active space self-consistent field(8,5)/6-31G(d) level of theory. We have found that DMNA relaxes back to the ground (S0) state following electronic excitation to the S1 excited state [which is an (n,π*) excited state] with a time constant of approximately 40 fs. This AIMS result is in very good agreement with the previous surface hopping-result and femtosecond laser spectroscopy result. DMNA does not dissociate during this fast internal conversion from the S1 to the S0 state. DMNA-Fe also undergoes extremely fast relaxation from the upper S1 state to the S0 state; however, this relaxation pathway is dissociative in nature. DMNA-Fe undergoes initial Fe-O, N-O, and N-N bond dissociations during relaxation from the upper S1 state to the ground S0 state through the respective conical intersection. The AIMS simulation reveals the branching ratio of these three channels as N-N:Fe-O:N-O = 6:3:1 (based on 100 independent simulations). Furthermore, the AIMS simulation reveals that the Fe-O bond dissociation channel exhibits the fastest (time constant 24 fs) relaxation, while the N-N bond dissociation pathway features the slowest (time constant 128 fs) relaxation. An intermediate time constant (30 fs) is found for the N-O bond dissociation channel. This is the first nonadiabatic chemical dynamics study of metal-contained energetic molecules through conical intersections.
Current status of endoscopic simulation in gastroenterology fellowship training programs.
Jirapinyo, Pichamol; Thompson, Christopher C
2015-07-01
Recent guidelines have encouraged gastroenterology and surgical training programs to integrate simulation into their core endoscopic curricula. However, the role that simulation currently has within training programs is unknown. This study aims to assess the current status of simulation among gastroenterology fellowship programs. This questionnaire study consisted of 38 fields divided into two sections. The first section queried program directors' experience on simulation and assessed the current status of simulation at their institution. The second portion surveyed their opinion on the potential role of simulation on the training curriculum. The study was conducted at the 2013 American Gastroenterological Association Training Directors' Workshop in Phoenix, Arizona. The participants were program directors from Accreditation Council for Graduate Medical Education accredited gastroenterology training programs, who attended the workshop. The questionnaire was returned by 69 of 97 program directors (response rate of 71%). 42% of programs had an endoscopic simulator. Computerized simulators (61.5%) were the most common, followed by mechanical (30.8%) and animal tissue (7.7%) simulators, respectively. Eleven programs (15%) required fellows to use simulation prior to clinical cases. Only one program has a minimum number of hours fellows have to participate in simulation training. Current simulators are deemed as easy to use (76%) and good educational tools (65%). Problems are cost (72%) and accessibility (69%). The majority of program directors believe that there is a need for endoscopic simulator training, with only 8% disagreeing. Additionally, a majority believe there is a role for simulation prior to initiation of clinical cases with 15% disagreeing. Gastroenterology fellowship program directors widely recognize the importance of simulation. Nevertheless, simulation is used by only 42% of programs and only 15% of programs require that trainees use simulation prior to clinical cases. No programs currently use simulation as part of the evaluation process.
A Study of Imaging Interferometer Simulators
NASA Technical Reports Server (NTRS)
Allen, Ronald J.
2002-01-01
Several new space science mission concepts under development at NASA-GSFC for astronomy are intended to carry out synthetic imaging using Michelson interferometers or direct (Fizeau) imaging with sparse apertures. Examples of these mission concepts include the Stellar Imager (SI), the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Fourier-Kelvin Stellar Interferometer (FKSI). We have been developing computer-based simulators for these missions. These simulators are aimed at providing a quantitative evaluation of the imaging capabilities of the mission by modelling the performance on different realistic targets in terms of sensitivity, angular resolution, and dynamic range. Both Fizeau and Michelson modes of operation can be considered. Our work is based on adapting a computer simulator called imSIM, which was initially written for the Space Interferometer Mission in order to simulate the imaging mode of new missions such as those listed. In a recent GSFC-funded study we have successfully written a preliminary version of a simulator SISIM for the Stellar Imager and carried out some preliminary studies with it. In a separately funded study we have also been applying these methods to SPECS/SPIRIT.
Ganesan, Prasanth; Shillieto, Kristina E.; Ghoraani, Behnaz
2018-01-01
Cardiac simulations play an important role in studies involving understanding and investigating the mechanisms of cardiac arrhythmias. Today, studies of arrhythmogenesis and maintenance are largely being performed by creating simulations of a particular arrhythmia with high accuracy comparable to the results of clinical experiments. Atrial fibrillation (AF), the most common arrhythmia in the United States and many other parts of the world, is one of the major field where simulation and modeling is largely used. AF simulations not only assist in understanding its mechanisms but also help to develop, evaluate and improve the computer algorithms used in electrophysiology (EP) systems for ablation therapies. In this paper, we begin with a brief overeview of some common techniques used in simulations to simulate two major AF mechanisms – spiral waves (or rotors) and point (or focal) sources. We particularly focus on 2D simulations using Nygren et al.’s mathematical model of human atrial cell. Then, we elucidate an application of the developed AF simulation to an algorithm designed for localizing AF rotors for improving current AF ablation therapies. Our simulation methods and results, along with the other discussions presented in this paper is aimed to provide engineers and professionals with a working-knowledge of application-specific simulations of spirals and foci. PMID:29629398
NASA Astrophysics Data System (ADS)
Welch, Tre Raymond
Advancements in processing biomaterials have lead to the development of bioresorbable PLLA drug-loaded stents with different geometric configurations. To further advance the technology, systematic studies have been carried out. This dissertation consists of five specific aims: (1) To characterize the effects of thermal annealing on the mechanical characteristics of PLLA helical stent, (2) To characterize the mechanical characteristics of a PLLA double helix stent, (3) To characterize the physical and chemical properties of PLLA films impregnated with niacin and curcumin, (4) To characterize the mechanical interaction of expanded stent and vascular wall with both model simulation and experimental studies using PDMS phantom arteries, (5) To simulate the stent-plaque-artery interactions using computer models. Results and their significances in bioresorbable PLLA drug-loaded stents technology as well as clinical prospects will be presented. For Aim1, thermal annealing is shown to improve mechanical characteristics of the helical stent, including pressure-diameter response curves, incremental stiffness, and collapse pressure. Differential scanning calorimetric analysis of stent fiber reveals that thermal annealing contribute to increased percent crystallinity, thus enhanced mechanical characteristics of the stent. For Aim 2, the new double helix design was shown to leads to improved mechanical characteristics of stent, including pressure-diameter response curves, incremental stiffness, and collapse pressure. Further, it was found to lead to an increased percent crystallinity and reduced degradation rate. For Aim 3, the changes in mechanical properties, crystallinity in PLLA polymer loaded with curcumin, or niacin, or both from that of control are clearly delineated. Results from Aim 4 shed lights on the mechanical disturbance in the vicinity of deployed stent and vascular wall as well as the abnormal shear stresses on the vascular endothelium. Their implications in triggering thrombi formation are discussed. Results from Aim 5 provided insights on the stent-plaque-artery mechanical interaction and how the altered mechanical environment after stent deployment could affect vascular remodeling and factors lead to re-stenosis. The significances of this work in advancing the bioresorbable PLLA drug-loaded stents technology as well as its clinical prospects are presented.
Students' Development of Representational Competence Through the Sense of Touch
NASA Astrophysics Data System (ADS)
Magana, Alejandra J.; Balachandran, Sadhana
2017-06-01
Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims to identify novel forms of "hands-on" instruction that can result in representational competence and conceptual gain. Specifically, this study aimed to identify if the use of visuohaptic simulations can have an effect on student representations of electromagnetic-related concepts. The guiding questions is How do visuohaptic simulations influence undergraduate students' representations of electric forces? Participants included nine undergraduate students from science, technology, or engineering backgrounds who participated in a think-aloud procedure while interacting with a visuohaptic simulation. The think-aloud procedure was divided in three stages, a prediction stage, a minimally visual haptic stage, and a visually enhanced haptic stage. The results of this study suggest that students' accurately characterized and represented the forces felt around a particle, line, and ring charges either in the prediction stage, a minimally visual haptic stage or the visually enhanced haptic stage. Also, some students accurately depicted the three-dimensional nature of the field for each configuration in the two stages that included a tactile mode, where the point charge was the most challenging one.
Engineering of a multi-station shoulder simulator.
Smith, Simon L; Li, Lisa; Joyce, Thomas J
2016-05-01
This work aimed to engineer a multi-station shoulder simulator in order to wear test shoulder prostheses using recognized shoulder activities of daily living. A bespoke simulator was designed, built and subject to commissioning trials before a first wear test was conducted. Five JRI Orthopaedics Reverse Shoulder VAIOS 42 mm prostheses were tested for 2.0 million cycles and a mean wear rate and standard deviation of 14.2 ± 2.1 mm(3)/10(6) cycles measured for the polymeric glenoid components. This result when adjusted for prostheses diameters and test conditions showed excellent agreement with results from hip simulator studies of similar materials in a lubricant of bovine serum. The Newcastle Shoulder Simulator is the first multi-station shoulder simulator capable of applying physiological motion and loading for typical activities of daily living. © IMechE 2016.
On a simulation study for reliable and secured smart grid communications
NASA Astrophysics Data System (ADS)
Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei
2015-05-01
Demand response is one of key smart grid applications that aims to reduce power generation at peak hours and maintain a balance between supply and demand. With the support of communication networks, energy consumers can become active actors in the energy management process by adjusting or rescheduling their electricity usage during peak hours based on utilities pricing incentives. Nonetheless, the integration of communication networks expose the smart grid to cyber-attacks. In this paper, we developed a smart grid simulation test-bed and designed evaluation scenarios. By leveraging the capabilities of Matlab and ns-3 simulation tools, we conducted a simulation study to evaluate the impact of cyber-attacks on demand response application. Our data shows that cyber-attacks could seriously disrupt smart grid operations, thus confirming the need of secure and resilient communication networks for supporting smart grid operations.
Development of a PC-based diabetes simulator in collaboration with teenagers with type 1 diabetes.
Nordfeldt, S; Hanberger, L; Malm, F; Ludvigsson, J
2007-02-01
The main aim of this study was to develop and test in a pilot study a PC-based interactive diabetes simulator prototype as a part of future Internet-based support systems for young teenagers and their families. A second aim was to gain experience in user-centered design (UCD) methods applied to such subjects. Using UCD methods, a computer scientist participated in iterative user group sessions involving teenagers with Type 1 diabetes 13-17 years old and parents. Input was transformed into a requirements specification by the computer scientist and advisors. This was followed by gradual prototype development based on a previously developed mathematical core. Individual test sessions were followed by a pilot study with five subjects testing a prototype. The process was evaluated by registration of flow and content of input and opinions from expert advisors. It was initially difficult to motivate teenagers to participate. User group discussion topics ranged from concrete to more academic matters. The issue of a simulator created active discussions among parents and teenagers. A large amount of input was generated from discussions among the teenagers. Individual test runs generated useful input. A pilot study suggested that the gradually elaborated software was functional. A PC-based diabetes simulator may create substantial interest among teenagers and parents, and the prototype seems worthy of further development and studies. UCD methods may generate significant input for computer support system design work and contribute to a functional design. Teenager involvement in design work may require time, patience, and flexibility.
Computer Based Simulation of Laboratory Experiments.
ERIC Educational Resources Information Center
Edward, Norrie S.
1997-01-01
Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…
NASA Astrophysics Data System (ADS)
Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.
2012-02-01
In the context of high energy density laboratory astrophysics, we aim to produce and study a rotating plasma relevant to accretion discs physics. We devised an experimental setup based on a modified cylindrical wire array and we studied it numerically with the three-dimensional, resistive magneto-hydrodynamic code GORGON. The simulations show that a rotating plasma cylinder is formed, with typical rotation velocity ~35 km/s and Mach number ~5. In addition, the plasma ring is differentially rotating and strongly radiatively cooled. The introduction of external magnetic fields is discussed.
Laparoscopic skills acquisition: a study of simulation and traditional training.
Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy J
2014-12-01
Training in basic laparoscopic skills can be undertaken using traditional methods, where trainees are educated by experienced surgeons through a process of graduated responsibility or by simulation-based training. This study aimed to assess whether simulation trained individuals reach the same level of proficiency in basic laparoscopic skills as traditional trained participants when assessed in a simulated environment. A prospective study was undertaken. Participants were allocated to one of two cohorts according to surgical experience. Participants from the inexperienced cohort were randomized to receive training in basic laparoscopic skills on either a box trainer or a virtual reality simulator. They were then assessed on the simulator on which they did not receive training. Participants from the experienced cohort, considered to have received traditional training in basic laparoscopic skills, did not receive simulation training and were randomized to either the box trainer or virtual reality simulator for skills assessment. The assessment scores from different cohorts on either simulator were then compared. A total of 138 participants completed the assessment session, 101 in the inexperienced simulation-trained cohort and 37 on the experienced traditionally trained cohort. There was no statistically significant difference between the training outcomes of simulation and traditionally trained participants, irrespective of the simulator type used. The results demonstrated that participants trained on either a box trainer or virtual reality simulator achieved a level of basic laparoscopic skills assessed in a simulated environment that was not significantly different from participants who had been traditionally trained in basic laparoscopic skills. © 2013 Royal Australasian College of Surgeons.
[Existing laparoscopic simulators and their benefit for the surgeon].
Kalvach, J; Ryska, O; Ryska, M
2016-01-01
Nowadays, laparoscopic operations are a common part of surgical practice. However, they have their own characteristics and require a specific method of preparation. Recently, simulation techniques have been increasingly used for the training of skills. The aim of this review is to provide a summary of available literature on the topic of laparoscopic simulators, to assess their contribution to the training of surgeons, and to identify the most effective type of simulation. PubMed database, Web of Science and Cochrane Library were used to search for relevant publications. The keywords "laparoscopy, simulator, surgery, assessment" were used in the search. The search was limited to prospective studies published in the last 5 years in the English language. From a total of 354 studies found, we included in the survey 26 that matched our criteria. Nine studies compared individual simulators to one another. Five studies evaluated "high and low fidelity" (a virtual box simulator) as equally effective (EBM 2a). In three cases the "low fidelity" box simulator was found to be more efficient (EBM 2a3b). Only one study preferred the virtual simulator (VR) (EBM2b).Thirteen studies evaluated the benefits of simulators for practice. Twelve found training on a simulator to be an effective method of preparation (EBM 1b3b). In contrast, one study did not find any difference between the training simulator and traditional preparation (EBM 3b). Nine studies evaluated directly one of the methods of evaluating laparoscopic skills. Three studies evaluated VR simulator as a useful assessment tool. Other studies evaluated as successful the scoring system GOALS-GH. The hand motion analysis model was successful in one case. Most studies were observational (EBM 3b) and only 2 studies were of higher quality (EBM 2b). Simulators are an effective tool for practicing laparoscopic techniques (EBM: 1b). It cannot be determined based on available data which of the simulators is most effective. The virtual simulator, however, still remains the most self-sufficient unit suitable for teaching as well as evaluation of laparoscopic techniques (EBM 2b3b). Further studies are needed to find an effective system and parameters for an objective evaluation of skills. laparoscopy - simulator - surgery assessment.
Drones at the service for training on mass casualty incident: A simulation study.
Fernandez-Pacheco, Antonio Nieto; Rodriguez, Laura Juguera; Price, Mariana Ferrandini; Perez, Ana Belen Garcia; Alonso, Nuria Perez; Rios, Manuel Pardo
2017-06-01
Mass casualty incidents (MCI) are characterized by a large number of victims with respect to the resources available. In this study, we aimed to analyze the changes produced in the self-perception of students who were able to visualize aerial views of a simulation of a MCI. A simulation study, mixed method, was performed to compare the results from an ad hoc questionnaire. The 35 students from the Emergency Nursing Master from the UCAM completed a questionnaire before and after watching an MCI video with 40 victims in which they had participated. The main variable measured was the change in self-perception (CSP). The CSP occurred in 80% (28/35) of the students (P = .001). Students improved their individual (P = .001) and group (P = .006) scores. They also described that their personal performance had better results than the group performance (P = .047). The main conclusion of this study is that drones could lead to CSP and appraisal of the MCI simulation participants.
Molecular Dynamics Simulation Study of the Selectivity of a Silica Polymer for Ibuprofen
Concu, Riccardo; Cordeiro, M. Natalia D. S.
2016-01-01
In the past few years, the sol-gel polycondensation technique has been increasingly employed with great success as an alternative approach to the preparation of molecularly imprinted materials (MIMs). The main aim of this study was to study, through a series of molecular dynamics (MD) simulations, the selectivity of an imprinted silica xerogel towards a new template—the (±)-2-(P-Isobutylphenyl) propionic acid (Ibuprofen, IBU). We have previously demonstrated the affinity of this silica xerogel toward a similar molecule. In the present study, we simulated the imprinting process occurring in a sol-gel mixture using the Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA) force field, in order to evaluate the selectivity of this xerogel for a template molecule. In addition, for the first time, we have developed and verified a new parameterisation for the Ibuprofen® based on the OPLS-AA framework. To evaluate the selectivity of the polymer, we have employed both the radial distribution functions, interaction energies and cluster analyses. PMID:27399685
Molecular Dynamics Simulation Study of the Selectivity of a Silica Polymer for Ibuprofen.
Concu, Riccardo; Cordeiro, M Natalia D S
2016-07-07
In the past few years, the sol-gel polycondensation technique has been increasingly employed with great success as an alternative approach to the preparation of molecularly imprinted materials (MIMs). The main aim of this study was to study, through a series of molecular dynamics (MD) simulations, the selectivity of an imprinted silica xerogel towards a new template-the (±)-2-(P-Isobutylphenyl) propionic acid (Ibuprofen, IBU). We have previously demonstrated the affinity of this silica xerogel toward a similar molecule. In the present study, we simulated the imprinting process occurring in a sol-gel mixture using the Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA) force field, in order to evaluate the selectivity of this xerogel for a template molecule. In addition, for the first time, we have developed and verified a new parameterisation for the Ibuprofen(®) based on the OPLS-AA framework. To evaluate the selectivity of the polymer, we have employed both the radial distribution functions, interaction energies and cluster analyses.
Generating strain signals under consideration of road surface profiles
NASA Astrophysics Data System (ADS)
Putra, T. E.; Abdullah, S.; Schramm, D.; Nuawi, M. Z.; Bruckmann, T.
2015-08-01
The current study aimed to develop the mechanism for generating strain signal utilising computer-based simulation. The strain data, caused by the acceleration, were undertaken from a fatigue data acquisition involving car movements. Using a mathematical model, the measured strain signals yielded to acceleration data used to describe the bumpiness of road surfaces. The acceleration signals were considered as an external disturbance on generating strain signals. Based on this comparison, both the actual and simulated strain data have similar pattern. The results are expected to provide new knowledge to generate a strain signal via a simulation.
NASA Astrophysics Data System (ADS)
Trinci, G.; Massari, R.; Scandellari, M.; Boccalini, S.; Costantini, S.; Di Sero, R.; Basso, A.; Sala, R.; Scopinaro, F.; Soluri, A.
2010-09-01
The aim of this work is to show a new scintigraphic device able to change automatically the length of its collimator in order to adapt the spatial resolution value to gamma source distance. This patented technique replaces the need for collimator change that standard gamma cameras still feature. Monte Carlo simulations represent the best tool in searching new technological solutions for such an innovative collimation structure. They also provide a valid analysis on response of gamma cameras performances as well as on advantages and limits of this new solution. Specifically, Monte Carlo simulations are realized with GEANT4 (GEometry ANd Tracking) framework and the specific simulation object is a collimation method based on separate blocks that can be brought closer and farther, in order to reach and maintain specific spatial resolution values for all source-detector distances. To verify the accuracy and the faithfulness of these simulations, we have realized experimental measurements with identical setup and conditions. This confirms the power of the simulation as an extremely useful tool, especially where new technological solutions need to be studied, tested and analyzed before their practical realization. The final aim of this new collimation system is the improvement of the SPECT techniques, with the real control of the spatial resolution value during tomographic acquisitions. This principle did allow us to simulate a tomographic acquisition of two capillaries of radioactive solution, in order to verify the possibility to clearly distinguish them.
Nursing students' perceptions of high- and low-fidelity simulation used as learning methods.
Tosterud, Randi; Hedelin, Birgitta; Hall-Lord, Marie Louise
2013-07-01
Due to the increasing focus on simulation used in nursing education, there is a need to examine how the scenarios and different simulation methods used are perceived by students. The aim of this study was to examine nursing students' perceptions of scenarios played out in different simulation methods, and whether their educational level influenced their perception. The study had a quantitative, evaluative and comparative design. The sample consisted of baccalaureate nursing students (n = 86) within various educational levels. The students were randomly divided into groups. They solved a patient case adapted to their educational level by using a high-fidelity patient simulator, a static mannequin or a paper/pencil case study. Data were collected by three instruments developed by the National League for Nursing. The results showed that the nursing students reported satisfaction with the implementation of the scenarios regardless of the simulation methods used. The findings indicated that the students who used the paper/pencil case study were the most satisfied. Moreover, educational level did not seem to influence their perceptions. Independent of educational level, the findings indicated that simulation with various degrees of fidelity could be used in nursing education. There is a need for further research to examine more closely the rationale behind the students' perception of the simulation methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Responses of Cardiac Tissue to Simulated Weightlessness
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Steczina, Sonette; Terada, Masahiro; Shirazi-Fard, Yasaman; Schreurs, Ann-Sofie; Goukassian, David; Globus, Ruth
2017-01-01
Our current study aims to determine the molecular mechanisms that underlie these cardiac changes in response to spaceflight. The central hypothesis of our study is that long duration simulated weightlessness and subsequent recovery causes select and persistent changes in gene expression and oxidative defense-related pathways. In this study, we will first conduct general analyses of three-month old male and female animals, focusing on two key long-duration time points, (i.e. after 90 days of simulated weightlessness (HU) and after 90 days recovery from 90 days of HU. Both rat-specific gene arrays and qPCR will be performed focusing on genes already implicated in oxidative stress responses and cardiac disease. Gene expression analyses will be complemented by biochemical tests of frozen tissue lysates for select markers of oxidative damage.
Adaptive smart simulator for characterization and MPPT construction of PV array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouada, Mehdi, E-mail: mehdi.ouada@univ-annaba.org; Meridjet, Mohamed Salah; Dib, Djalel
2016-07-25
Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and hasmore » a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.« less
Development of a device to simulate tooth mobility.
Erdelt, Kurt-Jürgen; Lamper, Timea
2010-10-01
The testing of new materials under simulation of oral conditions is essential in medicine. For simulation of fracture strength different simulation devices are used for test set-up. The results of these in vitro tests differ because there is no standardization of tooth mobility in simulation devices. The aim of this study is to develop a simulation device that depicts the tooth mobility curve as accurately as possible and creates reproducible and scalable mobility curves. With the aid of published literature and with the help of dentists, average forms of tooth classes were generated. Based on these tooth data, different abutment tooth shapes and different simulation devices were designed with a CAD system and were generated with a Rapid Prototyping system. Then, for all simulation devices the displacement curves were created with a universal testing machine and compared with the tooth mobility curve. With this new information, an improved adapted simulation device was constructed. A simulations device that is able to simulate the mobility curve of natural teeth with high accuracy and where mobility is reproducible and scalable was developed.
Simulation and curriculum design: a global survey in dental education.
Perry, S; Burrow, M F; Leung, W K; Bridges, S M
2017-12-01
Curriculum reforms are being driven by globalization and international standardization. Although new information technologies such as dental haptic virtual reality (VR) simulation systems have provided potential new possibilities for clinical learning in dental curricula, infusion into curricula requires careful planning. This study aimed to identify current patterns in the role and integration of simulation in dental degree curricula internationally. An original internet survey was distributed by invitation to clinical curriculum leaders in dental schools in Asia, Europe, North America, and Oceania (Australia and New Zealand). The results (N = 62) showed Asia, Europe and Oceania tended towards integrated curriculum designs with North America having a higher proportion of traditional curricula. North America had limited implementation of haptic VR simulation technology but reported the highest number of scheduled simulation hours. Australia and New Zealand were the most likely regions to incorporate haptic VR simulation technology. This survey indicated considerable variation in curriculum structure with regionally-specific preferences being evident in terms of curriculum structure, teaching philosophies and motivation for incorporation of VR haptic simulation into curricula. This study illustrates the need for an improved evidence base on dental simulations to inform curriculum designs and psychomotor skill learning in dentistry. © 2017 Australian Dental Association.
NASA Astrophysics Data System (ADS)
Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian
2018-03-01
An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.
ERIC Educational Resources Information Center
Piu, Angela; Fregola, Cesare; Santoro, Anna
2016-01-01
As indicated in numerous research studies, schoolchildren encounter many difficulties and obstacles in learning the multifaceted concept of the angle. In order to explore the possibility of enhancing schoolchildren's understanding of such a concept, the authors present a study that aims at investigating some structural characteristics of…
Hosny, Shady G; Johnston, Maximilian J; Pucher, Philip H; Erridge, Simon; Darzi, Ara
2017-12-01
Despite evidence demonstrating the advantages of simulation training in general surgery, it is not widely integrated into surgical training programs worldwide. The aim of this study was to identify barriers and facilitators to the implementation and uptake of surgical simulation training programs. A multinational qualitative study was conducted using semi-structured interviews of general surgical residents and experts. Each interview was audio recorded, transcribed verbatim, and underwent emergent theme analysis. All data were anonymized and results pooled. A total of 37 individuals participated in the study. Seventeen experts (Program Directors and Surgical Attendings with an interest in surgical education) and 20 residents drawn from the United States, Canada, United Kingdom, France, and Japan were interviewed. Barriers to simulation-based training were identified based on key themes including financial cost, access, and translational benefit. Participants described cost (89%) and access (76%) as principal barriers to uptake. Common facilitators included a mandatory requirement to complete simulation training (78%) and on-going assessment of skills (78%). Participants felt that simulation training could improve patient outcomes (76%) but identified a lack of evidence to demonstrate benefit (38%). There was a consensus that simulation training has not been widely implemented (70%). There are multiple barriers to the implementation of surgical simulation training programs, however, there is agreement that these programs could potentially improve patient outcomes. Identifying these barriers enable the targeted use of facilitators to deliver simulation training programs. Copyright © 2017 Elsevier Inc. All rights reserved.
Bootstrapping Methods Applied for Simulating Laboratory Works
ERIC Educational Resources Information Center
Prodan, Augustin; Campean, Remus
2005-01-01
Purpose: The aim of this work is to implement bootstrapping methods into software tools, based on Java. Design/methodology/approach: This paper presents a category of software e-tools aimed at simulating laboratory works and experiments. Findings: Both students and teaching staff use traditional statistical methods to infer the truth from sample…
NASA Astrophysics Data System (ADS)
Zagorska, A.; Bliznakova, K.; Buchakliev, Z.
2015-09-01
In 2012, the International Commission on Radiological Protection has recommended a reduction of the dose limits to the eye lens for occupational exposure. Recent studies showed that in interventional rooms is possible to reach these limits especially without using protective equipment. The aim of this study was to calculate the scattered energy spectra distribution at the level of the operator's head. For this purpose, an in-house developed Monte Carlo-based computer application was used to design computational phantoms (patient and operator), the acquisition geometry as well as to simulate the photon transport through the designed system. The initial spectra from 70 kV tube voltage and 8 different filtrations were calculated according to the IPEM Report 78. An experimental study was carried out to verify the results from the simulations. The calculated scattered radiation distributions were compared to the initial incident on the patient spectra. Results showed that there is no large difference between the effective energies of the scattered spectra registered in front of the operator's head obtained from simulations of all 8 incident spectra. The results from the experimental study agreed well to simulations as well.
The transesophageal echocardiography simulator based on computed tomography images.
Piórkowski, Adam; Kempny, Aleksander
2013-02-01
Simulators are a new tool in education in many fields, including medicine, where they greatly improve familiarity with medical procedures, reduce costs, and, importantly, cause no harm to patients. This is so in the case of transesophageal echocardiography (TEE), in which the use of a simulator facilitates spatial orientation and helps in case studies. The aim of the project described in this paper is to simulate an examination by TEE. This research makes use of available computed tomography data to simulate the corresponding echocardiographic view. This paper describes the essential characteristics that distinguish these two modalities and the key principles of the wave phenomena that should be considered in the simulation process, taking into account the conditions specific to the echocardiography. The construction of the CT2TEE (Web-based TEE simulator) is also presented. The considerations include ray-tracing and ray-casting techniques in the context of ultrasound beam and artifact simulation. An important aspect of the interaction with the user is raised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Notz, Dirk; Jahn, Alexandra; Holland, Marika
A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less
Notz, Dirk; Jahn, Alexandra; Holland, Marika; ...
2016-09-23
A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less
Business process study simulation for resource management in an emergency department.
Poomkothammal, Velusamy
2006-01-01
Alexandra Hospital conducted a business process reengineering exercise for all its main processes in order to further improve on their efficiencies with the ultimate aim to provide a higher level of services to patients. The goal of the DEM is to manage an anticipated increase in the volume of patients without much increase in resources. As a start, the Department of Emergency (DEM) medicine studied its AS-IS process and has designed and implemented the new TO-BE process. As part of this continuous improvement effort, staff from Nanyang Polytechnic (NYP) has been assigned the task of applying engineering and analytical techniques to simulate the new process. The simulations were conducted to show on process management and resource planning.
Tzeferacos, Petros; Rigby, A.; Bott, A.; ...
2017-03-22
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputermore » at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. As a result, we validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.« less
Observer roles that optimise learning in healthcare simulation education: a systematic review.
O'Regan, Stephanie; Molloy, Elizabeth; Watterson, Leonie; Nestel, Debra
2016-01-01
Simulation is widely used in health professional education. The convention that learners are actively involved may limit access to this educational method. The aim of this paper is to review the evidence for learning methods that employ directed observation as an alternative to hands-on participation in scenario-based simulation training. We sought studies that included either direct comparison of the learning outcomes of observers with those of active participants or identified factors important for the engagement of observers in simulation. We systematically searched health and education databases and reviewed journals and bibliographies for studies investigating or referring to observer roles in simulation using mannequins, simulated patients or role play simulations. A quality framework was used to rate the studies. We sought studies that included either direct comparison of the learning outcomes of observers with those of active participants or identified factors important for the engagement of observers in simulation. We systematically searched health and education databases and reviewed journals and bibliographies for studies investigating or referring to observer roles in simulation using mannequins, simulated patients or role play simulations. A quality framework was used to rate the studies. Nine studies met the inclusion criteria. Five studies suggest learning outcomes in observer roles are as good or better than hands-on roles in simulation. Four studies document learner satisfaction in observer roles. Five studies used a tool to guide observers. Eight studies involved observers in the debrief. Learning and satisfaction in observer roles is closely associated with observer tools, learner engagement, role clarity and contribution to the debrief. Learners that valued observer roles described them as affording an overarching view, examination of details from a distance, and meaningful feedback during the debrief. Learners who did not value observer roles described them as passive, or boring when compared to hands-on engagement in the simulation encounter. Learning outcomes and role satisfaction for observers is improved through learner engagement and the use of observer tools. The value that students attach to observer roles appear contingent on role clarity, use of observer tools, and inclusion of observers' perspectives in the debrief.
Comparing Pedagogies for Plastic Waste Management at University Level
ERIC Educational Resources Information Center
Yeung, Siu-Kit; So, Wing-Mui Winnie; Cheng, Nga-Yee Irene; Cheung, Tsz-Yan; Chow, Cheuk-Fai
2017-01-01
Purpose: This paper aims to compare the learning outcomes of gaming simulation and guided inquiry in sustainability education on plastic waste management. The current study targets the identification of success factors in these teaching approaches. Design/methodology/approach: This study used a quasi-experimental design with undergraduate…
The present study is aimed at seeking a better understanding of the thermodynamics involved with the air distribution strategies associated with UFAD systems and its impact on the energy saving dynamics.
Thus objectives are:
How Do Raters Judge Spoken Vocabulary?
ERIC Educational Resources Information Center
Li, Hui
2016-01-01
The aim of the study was to investigate how raters come to their decisions when judging spoken vocabulary. Segmental rating was introduced to quantify raters' decision-making process. It is hoped that this simulated study brings fresh insight to future methodological considerations with spoken data. Twenty trainee raters assessed five Chinese…
A novel approach to simulate gene-environment interactions in complex diseases.
Amato, Roberto; Pinelli, Michele; D'Andrea, Daniel; Miele, Gennaro; Nicodemi, Mario; Raiconi, Giancarlo; Cocozza, Sergio
2010-01-05
Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.
Occupational exposure of personnel operating military radio equipment: measurements and simulation.
Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin
2015-09-01
Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards.
Gutiérrez, Fátima; Pierce, Jennifer; Vergara, Víctor M; Coulter, Robert; Saland, Linda; Caudell, Thomas P; Goldsmith, Timothy E; Alverson, Dale C
2007-01-01
Simulations are being used in education and training to enhance understanding, improve performance, and assess competence. However, it is important to measure the performance of these simulations as learning and training tools. This study examined and compared knowledge acquisition using a knowledge structure design. The subjects were first-year medical students at The University of New Mexico School of Medicine. One group used a fully immersed virtual reality (VR) environment using a head mounted display (HMD) and another group used a partially immersed (computer screen) VR environment. The study aims were to determine whether there were significant differences between the two groups as measured by changes in knowledge structure before and after the VR simulation experience. The results showed that both groups benefited from the VR simulation training as measured by the significant increased similarity to the expert knowledge network after the training experience. However, the immersed group showed a significantly higher gain than the partially immersed group. This study demonstrated a positive effect of VR simulation on learning as reflected by improvements in knowledge structure but an enhanced effect of full-immersion using a HMD vs. a screen-based VR system.
Simulation-Based Assessment of ECMO Clinical Specialists.
Fehr, James J; Shepard, Mark; McBride, Mary E; Mehegan, Mary; Reddy, Kavya; Murray, David J; Boulet, John R
2016-06-01
The aims of the study were (1) to create multiple scenarios that simulate a range of urgent and emergent extracorporeal membrane oxygenation (ECMO) events and (2) to determine whether these scenarios can provide reliable and valid measures of a specialist's advanced skill in managing ECMO emergencies. Multiscenario simulation-based performance assessment was performed. The study was conducted in the Saigh Pediatric Simulation Center at St. Louis Children's Hospital. ECMO clinical specialists participated in the study. Twenty-five ECMO specialists completed 8 scenarios presenting acute events in simulated ECMO patients. Participants were evaluated by 2 separate reviewers for completion of key actions and for global performance. The scores were highest for the hemodilution scenario, whereas the air entrainment scenario had the lowest scores. Psychometric analysis demonstrated that ECMO specialists with more than 1 year of experience outperformed the specialists with less than 1 year of experience. Participants endorsed these sessions as important and representative of events that might be encountered in practice. The scenarios could serve as a component of an ECMO education curriculum and be used to assess clinical specialists' readiness to manage ECMO emergencies.
Monte Carlo simulations in Nuclear Medicine
NASA Astrophysics Data System (ADS)
Loudos, George K.
2007-11-01
Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.
Benefits of simulation based training for neonatal resuscitation education: a systematic review.
Rakshasbhuvankar, A A; Patole, S K
2014-10-01
Simulation-based training (SBT) is being more frequently recommended for neonatal resuscitation education (NRE). It is important to assess if SBT improves clinical outcomes as neonatal resuscitation aims to improve survival without long-term neurodevelopmental impairment. We aimed to assess the evidence supporting benefits of SBT in NRE. A systematic review was conducted using the Cochrane methodology. PubMed, Embase, PsycInfo and Cochrane databases were searched. Related abstracts were scanned and full texts of the potentially relevant articles were studied. Randomised controlled trials (RCT) and quasi-experimental studies with controls (non-RCT) assessing SBT for NRE were eligible for inclusion in the review. Four small studies [three RCT (n=126) and one non-RCT (n=60)] evaluated SBT for NRE. Participants included medical students (one RCT and one non-RCT), residents (one RCT) and nursing staff (one RCT). Outcomes included performance in a simulation scenario, theoretical knowledge, and confidence in leading a resuscitation scenario. One RCT favoured simulation [improved resuscitation score (p=0.016), 2.31 more number of critical actions (p=0.017) and decreased time to achieve resuscitation steps (p=<0.001)]. The remaining two RCTs and the non-RCT did not find any difference between SBT and alternate methods of instruction. None of the four studies reported clinical outcomes. Evidence regarding benefits of SBT for NRE is limited. There are no data on clinical outcomes following SBT for NRE. Large RCTs assessing clinically important outcomes are required before SBT can be recommended widely for NRE. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Kanasan Moorthy, Shangkari K.
2013-06-01
The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENTTM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.
Improving the performance of surgery-based clinical pathways: a simulation-optimization approach.
Ozcan, Yasar A; Tànfani, Elena; Testi, Angela
2017-03-01
This paper aims to improve the performance of clinical processes using clinical pathways (CPs). The specific goal of this research is to develop a decision support tool, based on a simulation-optimization approach, which identify the proper adjustment and alignment of resources to achieve better performance for both the patients and the health-care facility. When multiple perspectives are present in a decision problem, critical issues arise and often require the balancing of goals. In our approach, meeting patients' clinical needs in a timely manner, and to avoid worsening of clinical conditions, we assess the level of appropriate resources. The simulation-optimization model seeks and evaluates alternative resource configurations aimed at balancing the two main objectives-meeting patient needs and optimal utilization of beds and operating rooms.Using primary data collected at a Department of Surgery of a public hospital located in Genoa, Italy. The simulation-optimization modelling approach in this study has been applied to evaluate the thyroid surgical treatment together with the other surgery-based CPs. The low rate of bed utilization and the long elective waiting lists of the specialty under study indicates that the wards were oversized while the operating room capacity was the bottleneck of the system. The model enables hospital managers determine which objective has to be given priority, as well as the corresponding opportunity costs.
S.A.M., the Italian Martian Simulation Chamber
NASA Astrophysics Data System (ADS)
Galletta, G.; Ferri, F.; Fanti, G.; D'Alessandro, M.; Bertoloni, G.; Pavarin, D.; Bettanini, C.; Cozza, P.; Pretto, P.; Bianchini, G.; Debei, S.
2006-12-01
The Martian Environment Simulator (SAM “Simulatore di Ambiente Marziano”) is a interdisciplinary project of Astrobiology done at University of Padua. The research is aimed to the study of the survival of the microorganisms exposed to the “extreme” planetary environment. The facility has been designed in order to simulate Mars’ environmental conditions in terms of atmospheric pressure, temperature cycles and UV radiation dose. The bacterial cells, contained into dedicated capsules, will be exposed to thermal cycles simulating diurnal and seasonal Martian cycles. The metabolism of the different biological samples will be analysed at different phases of the experiment, to study their survival and eventual activity of protein synthesis (mortality, mutations and capability of DNA reparing). We describe the experimental facility and provide the perspectives of the biological experiments we will perform in order to provide hints on the possibility of life on Mars either autochthonous or imported from Earth.
Flipped Learning With Simulation in Undergraduate Nursing Education.
Kim, HeaRan; Jang, YounKyoung
2017-06-01
Flipped learning has proliferated in various educational environments. This study aimed to verify the effects of flipped learning on the academic achievement, teamwork skills, and satisfaction levels of undergraduate nursing students. For the flipped learning group, simulation-based education via the flipped learning method was provided, whereas traditional, simulation-based education was provided for the control group. After completion of the program, academic achievement, teamwork skills, and satisfaction levels were assessed and analyzed. The flipped learning group received higher scores on academic achievement, teamwork skills, and satisfaction levels than the control group, including the areas of content knowledge and clinical nursing practice competency. In addition, this difference gradually increased between the two groups throughout the trial. The results of this study demonstrated the positive, statistically significant effects of the flipped learning method on simulation-based nursing education. [J Nurs Educ. 2017;56(6):329-336.]. Copyright 2017, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ming; Wang, Yongchun; Yang, Min
Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cellmore » cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1.« less
NASA Astrophysics Data System (ADS)
Destyanto, A. R.; Putri, O. A.; Hidayatno, A.
2017-11-01
Due to the advantages that serious simulation game offered, many areas of studies, including energy, have used serious simulation games as their instruments. However, serious simulation games in the field of energy transition still have few attentions. In this study, serious simulation game is developed and tested as the activity of public education about energy transition which is a conversion from oil to natural gas program. The aim of the game development is to create understanding and awareness about the importance of energy transition for society in accelerating the process of energy transition in Indonesia since 1987 the energy transition program has not achieved the conversion target yet due to the lack of education about energy transition for society. Developed as a digital serious simulation game following the framework of integrated game design, the Transergy game has been tested to 15 users and then analysed. The result of verification and validation of the game shows that Transergy gives significance to the users for understanding and triggering the needs of oil to natural gas conversion.
Everson, Naleya; Levett-Jones, Tracy; Pitt, Victoria; Lapkin, Samuel; Van Der Riet, Pamela; Rossiter, Rachel; Jones, Donovan; Gilligan, Conor; Courtney Pratt, Helen
2018-04-25
Abstract Background Empathic concern has been found to decline in health professional students. Few effective educational programs and a lack of validated scales are reported. Previous analysis of the Empathic Concern scale of the Emotional Response Questionnaire has reported both one and two latent constructs. Aim To evaluate the impact of simulation on nursing students' empathic concern and test the psychometric properties of the Empathic Concern scale. Methods The study used a one group pre-test post-test design with a convenience sample of 460 nursing students. Empathic concern was measured pre-post simulation with the Empathic Concern scale. Factor Analysis was undertaken to investigate the structure of the scale. Results There was a statistically significant increase in Empathic Concern scores between pre-simulation 5.57 (SD = 1.04) and post-simulation 6.10 (SD = 0.95). Factor analysis of the Empathic Concern scale identified one latent dimension. Conclusion Immersive simulation may promote empathic concern. The Empathic Concern scale measured a single latent construct in this cohort.
NASA Astrophysics Data System (ADS)
Zeng, Xiaozheng; Mitchell, Stuart; Miller, Matthew; Barnes, Stephen; Hopple, Jerry; Kook, John; Moreau-Gobard, Romain; Hsu, Stephen; Ahiekpor-Dravi, Alexis; Crum, Lawrence A.; Eaton, John; Wong, Keith; Sekins, K. Michael
2012-10-01
In-vivo focused ultrasound studies were computationally simulated and conducted experimentally with the aim of occluding porcine superficial femoral arteries (SFA) via thermal coagulation. A multi-array HIFU applicator was used which electronically scanned multiple beam foci around the target point. The spatio-temporally averaged acoustic and temperature fields were simulated in a fluid dynamics and acousto-thermal finite element model with representative tissue fields, including muscle, vessel and blood. Simulations showed that with an acoustic power of 200W and a dose time of 60s, perivascular tissue reached 91°C; and yet blood reached a maximum 59°C, below the coagulation objective for this dose regime (75°C). Per simulations, acoustic-streaming induced velocity in blood reached 6.1cm/s. In in-vivo experiments, several arteries were treated. As simulated, thermal lesions were observed in muscle surrounding SFA in all cases. In dosing limited to 30 to 60 seconds, it required 257W to provide occlusion (one complete and one partial occlusion). Angiography and histology showed evidence of thrombogenesis and collagen shrinkage-based vessel constriction at these doses.
Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer
van Dijk, Ludger; van der Sluis, Corry K.; van Dijk, Hylke W.; Bongers, Raoul M.
2016-01-01
Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154
Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.
van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M
2016-01-01
Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.
Influences of chemical sympathectomy and simulated weightlessness on male and female rats
NASA Technical Reports Server (NTRS)
Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Sebastian, Lisa A.; Rahman, Z.; Tipton, Charles M.
1991-01-01
Consideration is given to a study aimed at determining whether the sympathetic nervous system is associated with the changes in maximum oxygen consumption (VO2max), run time, and mechanical efficiency observed during simulated weightlessness in male and female rats. Female and male rats were compared for food consumption, body mass, and body composition in conditions of simulated weightlessness to provide an insight into how these parameters may influence aerobic capacity and exercise performance. It is concluded that chemical sympathectomy and/or a weight-bearing stimulus will attenuate the loss in VO2max associated with simulated weightlessness in rats despite similar changes in body mass and composition. It is noted that the mechanisms remain unclear at this time.
Flare particle acceleration in the interaction of twisted coronal flux ropes
NASA Astrophysics Data System (ADS)
Threlfall, J.; Hood, A. W.; Browning, P. K.
2018-03-01
Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Binbin; Liu, Lihong; Cui, Ganglong
2015-11-21
In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N{sub 2}CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N{sub 2}CO photodissociation at λ > 335 nm is an ultrafast process and the two C—N bonds are broken in a stepwise way, giving birth to CO and N{sub 2} as themore » final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C—N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes.« less
NASA Astrophysics Data System (ADS)
Phan, Khoi A.; Spence, Chris A.; Dakshina-Murthy, S.; Bala, Vidya; Williams, Alvina M.; Strener, Steve; Eandi, Richard D.; Li, Junling; Karklin, Linard
1999-12-01
As advanced process technologies in the wafer fabs push the patterning processes toward lower k1 factor for sub-wavelength resolution printing, reticles are required to use optical proximity correction (OPC) and phase-shifted mask (PSM) for resolution enhancement. For OPC/PSM mask technology, defect printability is one of the major concerns. Current reticle inspection tools available on the market sometimes are not capable of consistently differentiating between an OPC feature and a true random defect. Due to the process complexity and high cost associated with the making of OPC/PSM reticles, it is important for both mask shops and lithography engineers to understand the impact of different defect types and sizes to the printability. Aerial Image Measurement System (AIMS) has been used in the mask shops for a number of years for reticle applications such as aerial image simulation and transmission measurement of repaired defects. The Virtual Stepper System (VSS) provides an alternative method to do defect printability simulation and analysis using reticle images captured by an optical inspection or review system. In this paper, pre- programmed defects and repairs from a Defect Sensitivity Monitor (DSM) reticle with 200 nm minimum features (at 1x) will be studied for printability. The simulated resist lines by AIMS and VSS are both compared to SEM images of resist wafers qualitatively and quantitatively using CD verification.Process window comparison between unrepaired and repaired defects for both good and bad repair cases will be shown. The effect of mask repairs to resist pattern images for the binary mask case will be discussed. AIMS simulation was done at the International Sematech, Virtual stepper simulation at Zygo and resist wafers were processed at AMD-Submicron Development Center using a DUV lithographic process for 0.18 micrometer Logic process technology.
Simulation Modelling in Healthcare: An Umbrella Review of Systematic Literature Reviews.
Salleh, Syed; Thokala, Praveen; Brennan, Alan; Hughes, Ruby; Booth, Andrew
2017-09-01
Numerous studies examine simulation modelling in healthcare. These studies present a bewildering array of simulation techniques and applications, making it challenging to characterise the literature. The aim of this paper is to provide an overview of the level of activity of simulation modelling in healthcare and the key themes. We performed an umbrella review of systematic literature reviews of simulation modelling in healthcare. Searches were conducted of academic databases (JSTOR, Scopus, PubMed, IEEE, SAGE, ACM, Wiley Online Library, ScienceDirect) and grey literature sources, enhanced by citation searches. The articles were included if they performed a systematic review of simulation modelling techniques in healthcare. After quality assessment of all included articles, data were extracted on numbers of studies included in each review, types of applications, techniques used for simulation modelling, data sources and simulation software. The search strategy yielded a total of 117 potential articles. Following sifting, 37 heterogeneous reviews were included. Most reviews achieved moderate quality rating on a modified AMSTAR (A Measurement Tool used to Assess systematic Reviews) checklist. All the review articles described the types of applications used for simulation modelling; 15 reviews described techniques used for simulation modelling; three reviews described data sources used for simulation modelling; and six reviews described software used for simulation modelling. The remaining reviews either did not report or did not provide enough detail for the data to be extracted. Simulation modelling techniques have been used for a wide range of applications in healthcare, with a variety of software tools and data sources. The number of reviews published in recent years suggest an increased interest in simulation modelling in healthcare.
NASA Astrophysics Data System (ADS)
Krarouch, M.; Hamdi, H.; Lamghari, S.; Outzourhit, A.
2018-05-01
This study was conducted in the framework of the HYBRID-BATH project aiming at improving the energy efficiency of traditional Hammams (Turkish baths) and the reduction of the use of wood energy and therefore of greenhouse gases emissions. The present work focuses on the energetic performance of a two-room Hammam located in Marrakech. The rooms were heated by the ground using a hybrid system Micro-CSP/biomass boiler. The dynamic simulation of the system (Hammam coupled with the hybrid system Micro-CSP/biomass boiler) was conducted using TRNSYS18 software. The parametric study was performed on a Typical Meteorological Year data (TMY). This study is devoted to presenting the results of the dynamic simulation of a part of the Hammam investigated, in order to optimize the underfloor heating system. The models and the results of the simulations will be validated by comparisons with experimental results. The main objective is to optimize the operation of such system and to improve its performance.
Sánchez Expósito, Judit; Leal Costa, César; Díaz Agea, José Luis; Carrillo Izquierdo, María Dolores; Jiménez Rodríguez, Diana
2018-02-01
The aim of this study was to analyse the communication skills of students in interactions with simulated critically-ill patients using a new assessment tool to study the relationships between communication skills, teamwork and clinical skills and to analyse the psychometric properties of the tool. A cross-sectional study was conducted to assess the communications skills of 52 students with critically-ill patients through the use of a new measurement tool to score video recordings of simulated clinical scenarios. The 52 students obtained low scores on their skills in communicating with patients. The reliability of the measuring instrument showed good inter-observer agreement (ICC between 0.71 and 0.90) and the validity yielded a positive correlation (p<0.01). The results provide evidence that nursing students lack skills when communicating with critically ill patients in simulated scenarios. The measuring instrument used is therefore deemed valid and reliable for assessing nursing students through a clinical simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A
2016-01-01
Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC.
Godde, Cécile M.; Thorburn, Peter J.; Biggs, Jody S.; Meier, Elizabeth A.
2016-01-01
Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil–climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat–chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC. PMID:27242862
Creation and Validation of a Simulator for Neonatal Brain Ultrasonography: A Pilot Study.
Tsai, Andy; Barnewolt, Carol E; Prahbu, Sanjay P; Yonekura, Reimi; Hosmer, Andrew; Schulz, Noah E; Weinstock, Peter H
2017-01-01
Historically, skills training in performing brain ultrasonography has been limited to hours of scanning infants for lack of adequate synthetic models or alternatives. The aim of this study was to create a simulator and determine its utility as an educational tool in teaching the skills that can be used in performing brain ultrasonography on infants. A brain ultrasonography simulator was created using a combination of multi-modality imaging, three-dimensional printing, material and acoustic engineering, and sculpting and molding. Radiology residents participated prior to their pediatric rotation. The study included (1) an initial questionnaire and resident creation of three coronal images using the simulator; (2) brain ultrasonography lecture; (3) hands-on simulator practice; and (4) a follow-up questionnaire and re-creation of the same three coronal images on the simulator. A blinded radiologist scored the quality of the pre- and post-training images using metrics including symmetry of the images and inclusion of predetermined landmarks. Wilcoxon rank-sum test was used to compare pre- and post-training questionnaire rankings and image quality scores. Ten residents participated in the study. Analysis of pre- and post-training rankings showed improvements in technical knowledge and confidence, and reduction in anxiety in performing brain ultrasonography. Objective measures of image quality likewise improved. Mean reported value score for simulator training was high across participants who reported perceived improvements in scanning skills and enjoyment from simulator use, with interest in additional practice on the simulator and recommendations for its use. This pilot study supports the use of a simulator in teaching radiology residents the skills that can be used to perform brain ultrasonography. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Bates, Nathaniel A.; Myer, Gregory D.; Shearn, Jason T.; Hewett, Timothy E.
2014-01-01
Investigators use in vitro joint simulations to invasively study the biomechanical behaviors of the anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, but multiple mechanisms can be used to drive in vitro motions, which may influence biomechanical outcomes. The objective of this review was to examine, summarize, and compare biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of knee motion. A systematic review was conducted (2004 to 2013) in Scopus, PubMed/Medline, and SPORTDiscus to identify peer-reviewed studies that reported kinematic and kinetic outcomes from in vitro simulations of physiologic or clinical tasks at the knee. Inclusion criteria for relevant studies were articles published in English that reported on whole-ligament anterior cruciate ligament mechanics during the in vitro simulation of physiologic or clinical motions on cadaveric knees that were unaltered outside of the anterior-cruciate-ligament-intact, -deficient, and -reconstructed conditions. A meta-analysis was performed to synthesize biomechanical differences between the anterior-cruciate-ligament-intact and reconstructed conditions. 77 studies met our inclusion/exclusion criteria and were reviewed. Combined joint rotations have the greatest impact on anterior cruciate ligament loads, but the magnitude by which individual kinematic degrees of freedom contribute to ligament loading during in vitro simulations is technique-dependent. Biomechanical data collected in prospective, longitudinal studies corresponds better with robotic-manipulator simulations than mechanical-impact simulations. Robotic simulation indicated that the ability to restore intact anterior cruciate ligament mechanics with anterior cruciate ligament reconstructions was dependent on loading condition and degree of freedom examined. PMID:25547070
The Development of Dispatcher Training Simulator in a Thermal Energy Generation System
NASA Astrophysics Data System (ADS)
Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.
2018-01-01
A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.
Ren, Shenghan; Chen, Xueli; Wang, Hailong; Qu, Xiaochao; Wang, Ge; Liang, Jimin; Tian, Jie
2013-01-01
The study of light propagation in turbid media has attracted extensive attention in the field of biomedical optical molecular imaging. In this paper, we present a software platform for the simulation of light propagation in turbid media named the “Molecular Optical Simulation Environment (MOSE)”. Based on the gold standard of the Monte Carlo method, MOSE simulates light propagation both in tissues with complicated structures and through free-space. In particular, MOSE synthesizes realistic data for bioluminescence tomography (BLT), fluorescence molecular tomography (FMT), and diffuse optical tomography (DOT). The user-friendly interface and powerful visualization tools facilitate data analysis and system evaluation. As a major measure for resource sharing and reproducible research, MOSE aims to provide freeware for research and educational institutions, which can be downloaded at http://www.mosetm.net. PMID:23577215
Wulff, Jorg; Keil, Boris; Auvanis, Diyala; Heverhagen, Johannes T; Klose, Klaus Jochen; Zink, Klemens
2008-01-01
The present study aims at the investigation of eye lens shielding of different composition for the use in computed tomography examinations. Measurements with thermo-luminescent dosimeters and a simple cylindrical waterfilled phantom were performed as well as Monte Carlo simulations with an equivalent geometry. Besides conventional shielding made of Bismuth coated latex, a new shielding with a mixture of metallic components was analyzed. This new material leads to an increased dose reduction compared to the Bismuth shielding. Measured and Monte Carlo simulated dose reductions are in good agreement and amount to 34% for the Bismuth shielding and 46% for the new material. For simulations the EGSnrc code system was used and a new application CTDOSPP was developed for the simulation of the computed tomography examination. The investigations show that a satisfying agreement between simulation and measurement with the chosen geometries of this study could only be achieved, when transport of secondary electrons was accounted for in the simulation. The amount of scattered radiation due to the protector by fluorescent photons was analyzed and is larger for the new material due to the smaller atomic number of the metallic components.
Virtual reality simulators: valuable surgical skills trainers or video games?
Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R
2014-01-01
Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.
Wang, Jian-Li; Yuan, Zi-Gang; Qian, Guo-Liang; Bao, Wu-Qiao; Jin, Guo-Liang
2018-06-01
The study aimed to develop simulation models including intracranial aneurysmal and parent vessel geometries, as well as vascular branches, through 3D printing technology. The simulation models focused on the benefits of aneurysmal treatments and clinical education. This prospective study included 13 consecutive patients who suffered from intracranial aneurysms confirmed by digital subtraction angiography (DSA) in the Neurosurgery Department of Shaoxing People's Hospital. The original 3D-DSA image data were extracted through the picture archiving and communication system and imported into Mimics. After reconstructing and transforming to Binary STL format, the simulation models of the hollow vascular tree were printed using 3D devices. The intracranial aneurysm 3D printing simulation model was developed based on DSA to assist neurosurgeons in aneurysmal treatments and residency training. Seven neurosurgical residents and 15 standardization training residents received their simulation model training and gave high assessments for the educational course with the follow-up qualitative questionnaire. 3D printed simulation models based on DSA can perfectly reveal target aneurysms and help neurosurgeons select therapeutic strategies precisely. As an educational tool, the 3D aneurysm vascular simulation model is useful for training residents.
Unver, Vesile; Başak, Tülay; İyigün, Emine; Taştan, Sevinç; Demiralp, Meral; Yıldız, Dilek; Ayhan, Hatice; Köse, Gülşah; Yüksel, Çiğdem; Çelikel, Ayşegül Soydan; Hatipoglu, Sevgi
2013-11-01
The objectives of educational instruction on the rational use of medication are to teach students about frequent pharmaceutical applications, dosage calculations, observation of adverse side effects and patient training. A simulation project was used in nursing education/medical staff education to effectively gain knowledge and skills. In this study, our first aim was to investigate the effect of using a simulated patient as a teaching method on the performance of students in medication administration. Our second aim was to explore the students' views on the simulated patient teaching method in terms of the skills acquired in administering medication. The study was designed and carried out as a quasi-experimental investigation in Turkey between September 2011 and December 2011. The participants in the study were senior nursing students at a nursing school in Turkey. The data from eighty-five nursing students were obtained both at pretest and posttest. The views of all eighty-two students regarding a course on the rational use of medications were taken into consideration. Simulated patients were used throughout the entire course. An objectively constructed evaluation form (OCEF) was administered both at pretest and posttest to obtain participant feedback on a course on the rational use of medication. Descriptive statistics and a paired sample t-test were used in the data analyses. The mean pre-test score on the evaluation form was 24.02 ± 16.06, whereas the mean post-test score was 54.28 ± 14.54. Therefore, there was a statistically significant difference between the mean pre- and post-test scores (p<0.01; t=14.35). The use of a simulated patient in a course on the rational use of medication proved effective. Furthermore, the students gave positive feedback regarding the use of the simulated patient as a teaching method. Copyright © 2012 Elsevier Ltd. All rights reserved.
Foothill Transit Electric Bus Testing | Transportation Research | NREL
, this study aims to improve understanding of the overall usage and effectiveness of fast-charge electric well. The electric buses under study were Proterra EcoRide BE35 transit buses with eight 368V lithium Systems Technology Simulator, or FASTSim, to study the impact of route selection and other vehicle
NASA Astrophysics Data System (ADS)
Guidi, Giovanni; Scannapieco, Cecilia; Walcher, Jakob; Gallazzi, Anna
2016-10-01
We study the effects of applying observational techniques to derive the properties of simulated galaxies, with the aim of making an unbiased comparison between observations and simulations. For our study, we used 15 galaxies simulated in a cosmological context using three different feedback and chemical enrichment models, and compared their z = 0 properties with data from the Sloan Digital Sky Survey (SDSS). We show that the physical properties obtained directly from the simulations without post-processing can be very different from those obtained mimicking observational techniques. In order to provide simulators a way to reliably compare their galaxies with SDSS data, for each physical property that we studied - colours, magnitudes, gas and stellar metallicities, mean stellar ages and star formation rates - we give scaling relations that can be easily applied to the values extracted from the simulations; these scalings have in general a high correlation, except for the gas oxygen metallicities. Our simulated galaxies are photometrically similar to galaxies in the blue sequence/green valley, but in general they appear older, passive and with lower metal content compared to most of the spirals in SDSS. As a careful assessment of the agreement/disagreement with observations is the primary test of the baryonic physics implemented in hydrodynamical codes, our study shows that considering the observational biases in the derivation of the galaxies' properties is of fundamental importance to decide on the failure/success of a galaxy formation model.
Comparative study of beam losses and heat loads reduction methods in MITICA beam source
NASA Astrophysics Data System (ADS)
Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.
2014-02-01
In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan
2009-01-01
This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.
DSMC Simulations in Support of the Columbia Shuttle Orbiter Accident Investigation
NASA Technical Reports Server (NTRS)
Boyles, Katie; LeBeau, Gerald J.; Gallis, Michael A.
2004-01-01
Three-dimensional Direct Simulation Monte Carlo simulations of Columbia Shuttle Orbiter flight STS-107 are presented. The aim of this work is to determine the aerodynamic and heating behavior of the Orbiter during aerobraking maneuvers and to provide piecewise integration of key scenario events to assess the plausibility of the candidate failure scenarios. The flight of the Orbiter is examined at two altitudes: 350-kft and 300-kft. The flowfield around the Orbiter and the heat transfer to it are calculated for the undamaged configuration. The flow inside the wing for an assumed damage to the leading edge in the form of a 10- inch hole is studied.
Simbol-X Formation Flight and Image Reconstruction
NASA Astrophysics Data System (ADS)
Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.
2009-05-01
Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.
Survey of student attitudes towards digital simulation technologies at a dental school in China.
Ren, Q; Wang, Y; Zheng, Q; Ye, L; Zhou, X D; Zhang, L L
2017-08-01
Digital simulation technologies have become widespread in healthcare education, especially in dentistry; these technologies include digital X-ray images, digital microscopes, virtual pathology slides and other types of simulation. This study aimed to assess students' attitudes towards digital simulation technologies at a large, top-ranked dental school in China, as well as find out how students compare the digital technologies with traditional training methods. In April 2015, a custom-designed questionnaire was distributed to a total of 389 students who had received digital technology and simulation-based training in West China Dental School during 2012-2014. Results of a cross-sectional survey show that most students accept digital simulation technology; they report that the technology is stimulating and facilitates self-directed and self-paced learning. These findings, together with the objective advantages of digital technology, suggest that digital simulation training offers significant potential for dental education, highlighting the need for further research and more widespread implementation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of tocopherol recovery through simulation of molecular distillation process.
Moraes, E B; Batistella, C B; Alvarez, M E Torres; Filho, Rubens Maciel; Maciel, M R Wolf
2004-01-01
DISMOL simulator was used to determine the best possible operating conditions to guide, in future studies, experimental works. This simulator needs several physical-chemical properties and often it is very difficult to determine them because of the complexity of the involved components. Their determinations must be made through correlations and/or predictions, in order to characterize the system and calculate it. The first try is to have simulation results of a system that later can be validated with experimental data. To implement, in the simulator, the necessary parameters of complex systems is a difficult task. In this work, we aimed to determe these properties in order to evaluate the tocopherol (vitamin E) recovery using a DISMOL simulator. The raw material used was the crude deodorizer distillate of soya oil. With this procedure, it is possible to determine the best operating conditions for experimental works and to evaluate the process in the separation of new systems, analyzing the profiles obtained from these simulations for the falling film molecular distillator.
A comparison of the accuracy of intraoral scanners using an intraoral environment simulator.
Park, Hye-Nan; Lim, Young-Jun; Yi, Won-Jin; Han, Jung-Suk; Lee, Seung-Pyo
2018-02-01
The aim of this study was to design an intraoral environment simulator and to assess the accuracy of two intraoral scanners using the simulator. A box-shaped intraoral environment simulator was designed to simulate two specific intraoral environments. The cast was scanned 10 times by Identica Blue (MEDIT, Seoul, South Korea), TRIOS (3Shape, Copenhagen, Denmark), and CS3500 (Carestream Dental, Georgia, USA) scanners in the two simulated groups. The distances between the left and right canines (D3), first molars (D6), second molars (D7), and the left canine and left second molar (D37) were measured. The distance data were analyzed by the Kruskal-Wallis test. The differences in intraoral environments were not statistically significant ( P >.05). Between intraoral scanners, statistically significant differences ( P <.05) were revealed by the Kruskal-Wallis test with regard to D3 and D6. No difference due to the intraoral environment was revealed. The simulator will contribute to the higher accuracy of intraoral scanners in the future.
da Silva, Robson Rodrigues; Bissaco, Marcia Aparecida Silva; Goroso, Daniel Gustavo
2015-12-01
Understanding the basic concepts of physiology and biophysics of cardiac cells can be improved by virtual experiments that illustrate the complex excitation-contraction coupling process in cardiac cells. The aim of this study is to propose a rat cardiac myocyte simulator, with which calcium dynamics in excitation-contraction coupling of an isolated cell can be observed. This model has been used in the course "Mathematical Modeling and Simulation of Biological Systems". In this paper we present the didactic utility of the simulator MioLab(®). The simulator enables virtual experiments that can help studying inhibitors and activators in the sarcoplasmic reticulum sodium-calcium exchanger, thus corroborating a better understanding of the effects of medications, which are used to treat arrhythmias, on these compartments. The graphical interfaces were developed not only to facilitate the use of the simulator, but also to promote a constructive learning on the subject, since there are animations and videos for each stage of the simulation. The effectiveness of the simulator was tested by a group of graduate students. Some examples of simulations were presented in order to describe the overall structure of the simulator. Part of these virtual experiments became an activity for Biomedical Engineering graduate students, who evaluated the simulator based on its didactic quality. As a result, students answered a questionnaire on the usability and functionality of the simulator as a teaching tool. All students performed the proposed activities and classified the simulator as an optimal or good learning tool. In their written questions, students indicated as negative characteristics some problems with visualizing graphs; as positive characteristics, they indicated the simulator's didactic function, especially tutorials and videos on the topic of this study. The results show that the simulator complements the study of the physiology and biophysics of the cardiac cell. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Numerical Simulations of a 96-rod Polysilicon CVD Reactor
NASA Astrophysics Data System (ADS)
Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang
2018-05-01
With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.
NASA Astrophysics Data System (ADS)
Scifoni, S.; Coltelli, M.; Marsella, M.; Proietti, C.; Napoleoni, Q.; Vicari, A.; Del Negro, C.
2010-04-01
Lava flow spreading along the flanks of Etna volcano often produces damages to the land and proprieties. The impact of these eruptions could be mitigated by building artificial barriers for controlling and slowing down the lava, as recently experienced in 1983, 1991-1993, 2001 and 2002. This study investigates how numerical simulations can be adopted for evaluating the effectiveness of barrier construction and for optimizing their geometry, considering as test case the lava flows emplaced on Etna's south flank during 2001. The flow temporal evolutions were reconstructed deriving the effusion rate trends, together with the pre-eruption topography were adopted as input data of the MAGFLOW simulation code. Three simulations were then conducted to simulate lava flow with and without barriers. The first aimed at verifying the reconstruction of the effusion rate trends, while the others at assessing the performance of the barrier system realized during the eruption in comparison with an alternative solution here proposed. A quantitative analysis carried out on the first simulation confirms the suitability of the selected test case. The comparison of the three simulated thickness distributions showed both the effectiveness of the barriers in slowing down the lava flow and the sensitivity of the MAGFLOW code to the topographical variations represented by the barriers. Finally, for reducing both the time necessary to erect the barrier and the barrier environmental impact, the gabion's barrier construction was analyzed. The implemented and tested procedure enforces the capability of using numerical simulations for designing optimized lava flow barriers aimed at making swifter mitigatory actions upon lava flows and improving the effectiveness of civil protection interventions during emergencies.
Simulation-based training for nurses: Systematic review and meta-analysis.
Hegland, Pål A; Aarlie, Hege; Strømme, Hilde; Jamtvedt, Gro
2017-07-01
Simulation-based training is a widespread strategy to improve health-care quality. However, its effect on registered nurses has previously not been established in systematic reviews. The aim of this systematic review is to evaluate effect of simulation-based training on nurses' skills and knowledge. We searched CDSR, DARE, HTA, CENTRAL, CINAHL, MEDLINE, Embase, ERIC, and SveMed+ for randomised controlled trials (RCT) evaluating effect of simulation-based training among nurses. Searches were completed in December 2016. Two reviewers independently screened abstracts and full-text, extracted data, and assessed risk of bias. We compared simulation-based training to other learning strategies, high-fidelity simulation to other simulation strategies, and different organisation of simulation training. Data were analysed through meta-analysis and narrative syntheses. GRADE was used to assess the quality of evidence. Fifteen RCTs met the inclusion criteria. For the comparison of simulation-based training to other learning strategies on nurses' skills, six studies in the meta-analysis showed a significant, but small effect in favour of simulation (SMD -1.09, CI -1.72 to -0.47). There was large heterogeneity (I 2 85%). For the other comparisons, there was large between-study variation in results. The quality of evidence for all comparisons was graded as low. The effect of simulation-based training varies substantially between studies. Our meta-analysis showed a significant effect of simulation training compared to other learning strategies, but the quality of evidence was low indicating uncertainty. Other comparisons showed inconsistency in results. Based on our findings simulation training appears to be an effective strategy to improve nurses' skills, but further good-quality RCTs with adequate sample sizes are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Kun; Gu, Boqin; Zhu, Wanfu
2017-03-01
A molecular dynamics (MD) simulations study is performed on multiwalled carbon nanotubes (MWNTs)/acrylonitrile-butadiene rubber (NBR) composites. The physisorption and interfacial characteristics between the various MWNTs and polymer macromolecular chains are identified. The effects of nanotube layers on the nanotubes/polymer interactions are examined. Each of the situation result and surface features is characterized by binding energy (Eb). It is shown that the binding energy (Eb) increase with the number of layers.
Investigating Test Equating Methods in Small Samples through Various Factors
ERIC Educational Resources Information Center
Asiret, Semih; Sünbül, Seçil Ömür
2016-01-01
In this study, equating methods for random group design using small samples through factors such as sample size, difference in difficulty between forms, and guessing parameter was aimed for comparison. Moreover, which method gives better results under which conditions was also investigated. In this study, 5,000 dichotomous simulated data…
Thought Experiments in Physics Problem-solving: On Intuition and Imagistic Simulation
ERIC Educational Resources Information Center
Georgiou, Andreas
2005-01-01
This study is part of a larger research agenda, which includes future doctoral study, aiming to investigate the psychological processes of thought experiments. How do thought-experimenters establish relations between their imaginary worlds and the physical one? How does a technique devoid of new sensory input result to new empirical knowledge? In…
ERIC Educational Resources Information Center
Nichols, Kim; Hanan, Jim; Ranasinghe, Muditha
2013-01-01
This study used an interactive dynamic simulation of action potential to explore social practices of learning among first year undergraduate biology students. It aimed to create a learning environment that fosters knowledge building discourse through working with multiple concept-specific representations. Three hundred and eighty-nine students and…
Chung, Tae Nyoung; Kim, Sun Wook; You, Je Sung; Chung, Hyun Soo
2016-01-01
Objective Tube thoracostomy (TT) is a commonly performed intensive care procedure. Simulator training may be a good alternative method for TT training, compared with conventional methods such as apprenticeship and animal skills laboratory. However, there is insufficient evidence supporting use of a simulator. The aim of this study is to determine whether training with medical simulator is associated with faster TT process, compared to conventional training without simulator. Methods This is a simulation study. Eligible participants were emergency medicine residents with very few (≤3 times) TT experience. Participants were randomized to two groups: the conventional training group, and the simulator training group. While the simulator training group used the simulator to train TT, the conventional training group watched the instructor performing TT on a cadaver. After training, all participants performed a TT on a cadaver. The performance quality was measured as correct placement and time delay. Subjects were graded if they had difficulty on process. Results Estimated median procedure time was 228 seconds in the conventional training group and 75 seconds in the simulator training group, with statistical significance (P=0.040). The difficulty grading did not show any significant difference among groups (overall performance scale, 2 vs. 3; P=0.094). Conclusion Tube thoracostomy training with a medical simulator, when compared to no simulator training, is associated with a significantly faster procedure, when performed on a human cadaver. PMID:27752610
Validation of a Novel Laparoscopic Adjustable Gastric Band Simulator
Sankaranarayanan, Ganesh; Adair, James D.; Halic, Tansel; Gromski, Mark A.; Lu, Zhonghua; Ahn, Woojin; Jones, Daniel B.; De, Suvranu
2011-01-01
Background Morbid obesity accounts for more than 90,000 deaths per year in the United States. Laparoscopic adjustable gastric banding (LAGB) is the second most common weight loss procedure performed in the US and the most common in Europe and Australia. Simulation in surgical training is a rapidly advancing field that has been adopted by many to prepare surgeons for surgical techniques and procedures. Study Aim The aim of our study was to determine face, construct and content validity for a novel virtual reality laparoscopic adjustable gastric band simulator. Methods Twenty-eight subjects were categorized into two groups (Expert and Novice), determined by their skill level in laparoscopic surgery. Experts consisted of subjects who had at least four years of laparoscopic training and operative experience. Novices consisted of subjects with medical training, but with less than four years of laparoscopic training. The subjects performed the virtual reality laparoscopic adjustable band surgery simulator. They were automatically scored, according to various tasks. The subjects then completed a questionnaire to evaluate face and content validity. Results On a 5-point Likert scale (1 – lowest score, 5 – highest score), the mean score for visual realism was 4.00 ± 0.67 and the mean score for realism of the interface and tool movements was 4.07 ± 0.77 [Face Validity]. There were significant differences in the performance of the two subject groups (Expert and Novice), based on total scores (p<0.001) [Construct Validity]. Mean scores for utility of the simulator, as addressed by the Expert group, was 4.50 ± 0.71 [Content Validity]. Conclusion We created a virtual reality laparoscopic adjustable gastric band simulator. Our initial results demonstrate excellent face, construct and content validity findings. To our knowledge, this is the first virtual reality simulator with haptic feedback for training residents and surgeons in the laparoscopic adjustable gastric banding procedure. PMID:20734069
The mated Pegasus XL rocket - AIM spacecraft leaves Building 165
2007-04-16
The mated Pegasus XL rocket - AIM spacecraft is secured onto a transporter at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.
2007-03-27
KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, the AIM spacecraft is moved into a clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
The mated Pegasus XL rocket - AIM spacecraft leaves Building 165
2007-04-16
The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California. The launch vehicle will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.
The mated Pegasus XL rocket - AIM spacecraft leaves Building 165
2007-04-16
The mated Pegasus XL rocket - AIM spacecraft leaves Building 1655 at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.
Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo
2013-01-01
Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation. PMID:23966804
ERIC Educational Resources Information Center
Bider, Ilia; Henkel, Martin; Kowalski, Stewart; Perjons, Erik
2015-01-01
Purpose: This paper aims to report on a project aimed at using simulation for improving the quality of teaching and learning modeling skills. More specifically, the project goal was to facilitate the students to acquire skills of building models of organizational structure and behavior through analysis of internal and external documents, and…
Investigation of roughing machining simulation by using visual basic programming in NX CAM system
NASA Astrophysics Data System (ADS)
Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed
2018-03-01
This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.
2010-09-30
simulating violent free - surface flows , and show the importance of wave breaking in energy transport...using Eulerian simulation . 3 IMPACT/APPLICATION This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that...several Eulerian and Lagrangian methods for free - surface turbulence and wave simulation . The WIND–SNOW is used to simulate 1 Report
Enhancement of CFD validation exercise along the roof profile of a low-rise building
NASA Astrophysics Data System (ADS)
Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.
2018-04-01
The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.
Kim, Hyun K; Park, Jaehyun; Choi, Yeongcheol; Choe, Mungyeong
2018-05-01
This study aims to develop a motion sickness measurement index in a virtual reality (VR) environment. The VR market is in an early stage of market formation and technological development, and thus, research on the side effects of VR devices such as simulator motion sickness is lacking. In this study, we used the simulator sickness questionnaire (SSQ), which has been traditionally used for simulator motion sickness measurement. To measure the motion sickness in a VR environment, 24 users performed target selection tasks using a VR device. The SSQ was administered immediately after each task, and the order of work was determined using the Latin square design. The existing SSQ was revised to develop a VR sickness questionnaire, which is used as the measurement index in a VR environment. In addition, the target selection method and button size were found to be significant factors that affect motion sickness in a VR environment. The results of this study are expected to be used for measuring and designing simulator sickness using VR devices in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gravity, an Regulation Factor in BMSCs Differentiation to osteoblasts
NASA Astrophysics Data System (ADS)
Yan, Huang; Yinghui, Li; Fen, Yang; Zhongquan, Dai
PURPOSE Most studies of regulatory mechanisms of adult stem cell differentiation are concentrated in chemical factors but few efforts are put into physical factors Recent space life science studies indicate mechanical factors participate in the differentiation of cells The aim of this study is to investigate the effects of simulated microgravity or hypergravity on the osteogenic differentiation of rat bone marrow mesenchymal stem cells BMSCs METHODOLOGY The BMSCs at day 7 were added osteogenic inducer 10nM dexamethasone 10mM beta -glycerophosphate and 50 mu M asorbic acid-2-phosphate for 7 days and cultured under simulated microgravity or hypergravity 2g for 1 day 3 days 5 days or 7 days RESULTS After treating BMSCs with osteogenic inducer and hypergravity the cells expressed more ColIA1 Cbfa1 and ALP than in single steogenic inducer treatment Reversely the cells treated with osteogenic inducer and simulated microgravity expressed less ColIA1 Cbfa1 and ALP CONCLUSIONS Our study suggests that hypergravity promotes the osteogenic differentiation of BMSCs and simulated microgravity inhibits this process Gravity is an important regulation factor in BMSCs differentiation to osteoblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian F; Damiani, Rick R
This poster summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between two modeling approaches (fully coupled and sequentially coupled) through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.
Nondestructive evaluation of pavement structural condition for rehabilitation design : final report.
DOT National Transportation Integrated Search
2016-05-31
Falling Weight Deflectometer (FWD) is the common non-destructive testing method for in-situ evaluation of pavement condition. : This study aims to develop finite element (FE) models that can simulate FWD loading on pavement system and capture the : c...
Long-Term, Non-Computer, Communication Simulations as Course Integration Activities
ERIC Educational Resources Information Center
Hamilton, James P.
2008-01-01
This article offers a few guidelines for constructing effective simulations. It presents a sample class activity called simulated public hearing which aims to integrate the various elements of a public speaking course into a more comprehensive whole. Properly designed, simulated hearings have elements of persuasive, informative, and impromptu…
NASA Astrophysics Data System (ADS)
Guda, Venkata Subba Sai Satish
There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.
The Reactive-Causal Architecture: Introducing an Emotion Model along with Theories of Needs
NASA Astrophysics Data System (ADS)
Aydin, Ali Orhan; Orgun, Mehmet Ali
In the entertainment application area, one of the major aims is to develop believable agents. To achieve this aim, agents should be highly autonomous, situated, flexible, and display affect. The Reactive-Causal Architecture (ReCau) is proposed to simulate these core attributes. In its current form, ReCau cannot explain the effects of emotions on intelligent behaviour. This study aims is to further improve the emotion model of ReCau to explain the effects of emotions on intelligent behaviour. This improvement allows ReCau to be emotional to support the development of believable agents.
Lee, Jong-Sun; You, Sungeun; Choi, Yun-Kyeung; Youn, Hyae-Young; Shin, Hye Sook
2017-01-01
The present study aimed to examine the training effects of a didactic and simulation-based psychological first aid (PFA) program. Based on the competency-based model, the study sought to examine whether the PFA training would enhance knowledge, skills, and attitudes. Study 1 examined the training effects of the PFA program in a sample of undergraduate and graduate students in psychology. Study 2 was conducted with school counselors. In both studies, all participants completed a one-day PFA workshop with a 3-hour didactic lecture and a 3-hour simulation-based practice. Assessments were conducted prior to the didactic lecture and upon completion of the simulation-based practice. In study 1, an examination of pre- and posttest comparisons indicated that the training significantly improved students' PFA knowledge and perceived competence in PFA skill. In study 2, the same PFA training significantly improved school counselors' PFA knowledge, perceived competence in PFA skill, perceived preparedness and confidence to provide psychological assistance for future disasters, but their perceived willingness to participate in psychological assistance did not significantly change after the training. This study provides preliminary evidence supporting the effectiveness of the PFA training program using a combined method of didactic and simulation-based practice for disaster mental health providers in Korea.
Lee, Jong-Sun; Choi, Yun-Kyeung; Youn, Hyae-young; Shin, Hye Sook
2017-01-01
The present study aimed to examine the training effects of a didactic and simulation-based psychological first aid (PFA) program. Based on the competency-based model, the study sought to examine whether the PFA training would enhance knowledge, skills, and attitudes. Study 1 examined the training effects of the PFA program in a sample of undergraduate and graduate students in psychology. Study 2 was conducted with school counselors. In both studies, all participants completed a one-day PFA workshop with a 3-hour didactic lecture and a 3-hour simulation-based practice. Assessments were conducted prior to the didactic lecture and upon completion of the simulation-based practice. In study 1, an examination of pre- and posttest comparisons indicated that the training significantly improved students’ PFA knowledge and perceived competence in PFA skill. In study 2, the same PFA training significantly improved school counselors’ PFA knowledge, perceived competence in PFA skill, perceived preparedness and confidence to provide psychological assistance for future disasters, but their perceived willingness to participate in psychological assistance did not significantly change after the training. This study provides preliminary evidence supporting the effectiveness of the PFA training program using a combined method of didactic and simulation-based practice for disaster mental health providers in Korea. PMID:28715481
Analyzing Strategic Business Rules through Simulation Modeling
NASA Astrophysics Data System (ADS)
Orta, Elena; Ruiz, Mercedes; Toro, Miguel
Service Oriented Architecture (SOA) holds promise for business agility since it allows business process to change to meet new customer demands or market needs without causing a cascade effect of changes in the underlying IT systems. Business rules are the instrument chosen to help business and IT to collaborate. In this paper, we propose the utilization of simulation models to model and simulate strategic business rules that are then disaggregated at different levels of an SOA architecture. Our proposal is aimed to help find a good configuration for strategic business objectives and IT parameters. The paper includes a case study where a simulation model is built to help business decision-making in a context where finding a good configuration for different business parameters and performance is too complex to analyze by trial and error.
Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.
Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy
2016-01-01
This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.
Weiler, Dustin T; Gibson, Andrea L; Saleem, Jason J
2018-04-01
Previous studies have evaluated the effectiveness of high fidelity patient simulators (HFPS) on nursing training; however, a gap exists on the effects of role assignment on critical thinking, self-efficacy, and situation awareness skills in team-based simulation scenarios. This study aims to determine if role assignment and the involvement level related to the roles yields significant effects and differences in critical thinking, situation awareness and self-efficacy scores in team-based high-fidelity simulation scenarios. A single factorial design with five levels and random assignment was utilized. A public university-sponsored simulation center in the United States of America. A convenience sample of 69 junior-level baccalaureate nursing students was recruited for participation. Participants were randomly assigned one of five possible roles and completed pre-simulation critical thinking and self-efficacy assessments prior to the simulation beginning. Playing within their assigned roles, participants experienced post-partum hemorrhaging scenario using an HFPS. After completing the simulation, participants completed a situation awareness assessment and a post-simulation critical thinking and self-efficacy assessment. Role assignment was found to have a statistically significant effect on critical thinking skills and a statistically significant difference in various areas of self-efficacy was also noted. However, no statistical significance in situation awareness abilities was found. Results support the notion that certain roles required the participant to be more involved with the simulation scenario, which may have yielded higher critical thinking and self-efficacy scores than roles that required a lesser level of involvement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Validation of the Monte Carlo simulator GATE for indium-111 imaging.
Assié, K; Gardin, I; Véra, P; Buvat, I
2005-07-07
Monte Carlo simulations are useful for optimizing and assessing single photon emission computed tomography (SPECT) protocols, especially when aiming at measuring quantitative parameters from SPECT images. Before Monte Carlo simulated data can be trusted, the simulation model must be validated. The purpose of this work was to validate the use of GATE, a new Monte Carlo simulation platform based on GEANT4, for modelling indium-111 SPECT data, the quantification of which is of foremost importance for dosimetric studies. To that end, acquisitions of (111)In line sources in air and in water and of a cylindrical phantom were performed, together with the corresponding simulations. The simulation model included Monte Carlo modelling of the camera collimator and of a back-compartment accounting for photomultiplier tubes and associated electronics. Energy spectra, spatial resolution, sensitivity values, images and count profiles obtained for experimental and simulated data were compared. An excellent agreement was found between experimental and simulated energy spectra. For source-to-collimator distances varying from 0 to 20 cm, simulated and experimental spatial resolution differed by less than 2% in air, while the simulated sensitivity values were within 4% of the experimental values. The simulation of the cylindrical phantom closely reproduced the experimental data. These results suggest that GATE enables accurate simulation of (111)In SPECT acquisitions.
Gandjour, Afschin; Tschulena, Ulrich; Steppan, Sonja; Gatti, Emanuele
2015-04-01
The aim of this paper is to develop a simulation model that analyzes cost-offsets of a hypothetical disease management program (DMP) for patients with chronic kidney disease (CKD) in Germany compared to no such program. A lifetime Markov model with simulated 65-year-old patients with CKD was developed using published data on costs and health status and simulating the progression to end-stage renal disease (ESRD), cardiovascular disease and death. A statutory health insurance perspective was adopted. This modeling study shows considerable potential for cost-offsets from a DMP for patients with CKD. The potential for cost-offsets increases with relative risk reduction by the DMP and baseline glomerular filtration rate. Results are most sensitive to the cost of dialysis treatment. This paper presents a general 'prototype' simulation model for the prevention of ESRD. The model allows for further modification and adaptation in future applications.
Tutorial: Parallel Computing of Simulation Models for Risk Analysis.
Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D
2016-10-01
Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.
Bahreyni Toossi, Mohammad Taghi; Momennezhad, Mehdi; Hashemi, Seyed Mohammad
2012-01-01
Aim Exact knowledge of dosimetric parameters is an essential pre-requisite of an effective treatment in radiotherapy. In order to fulfill this consideration, different techniques have been used, one of which is Monte Carlo simulation. Materials and methods This study used the MCNP-4Cb to simulate electron beams from Neptun 10 PC medical linear accelerator. Output factors for 6, 8 and 10 MeV electrons applied to eleven different conventional fields were both measured and calculated. Results The measurements were carried out by a Wellhofler-Scanditronix dose scanning system. Our findings revealed that output factors acquired by MCNP-4C simulation and the corresponding values obtained by direct measurements are in a very good agreement. Conclusion In general, very good consistency of simulated and measured results is a good proof that the goal of this work has been accomplished. PMID:24377010
Status of the Simbol-X Background Simulation Activities
NASA Astrophysics Data System (ADS)
Tenzer, C.; Briel, U.; Bulgarelli, A.; Chipaux, R.; Claret, A.; Cusumano, G.; Dell'Orto, E.; Fioretti, V.; Foschini, L.; Hauf, S.; Kendziorra, E.; Kuster, M.; Laurent, P.; Tiengo, A.
2009-05-01
The Simbol-X background simulation group is working towards a simulation based background and mass model which can be used before and during the mission. Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Achieving an overall low instrument background has direct impact on the sensitivity of Simbol-X and thus will be crucial for the success of the mission. We present results of recent simulation studies concerning the shielding of the detectors with respect to the diffuse cosmic hard X-ray background and to the cosmic-ray proton induced background. Besides estimates of the level and spectral shape of the remaining background expected in the low and high energy detector, also anti-coincidence rates and resulting detector dead time predictions are discussed.
Monte Carlo simulation of Ray-Scan 64 PET system and performance evaluation using GATE toolkit
NASA Astrophysics Data System (ADS)
Li, Suying; Zhang, Qiushi; Vuletic, Ivan; Xie, Zhaoheng; Yang, Kun; Ren, Qiushi
2017-02-01
In this study, we aimed to develop a GATE model for the simulation of Ray-Scan 64 PET scanner and model its performance characteristics. A detailed implementation of system geometry and physical process were included in the simulation model. Then we modeled the performance characteristics of Ray-Scan 64 PET system for the first time, based on National Electrical Manufacturers Association (NEMA) NU-2 2007 protocols and validated the model against experimental measurement, including spatial resolution, sensitivity, counting rates and noise equivalent count rate (NECR). Moreover, an accurate dead time module was investigated to simulate the counting rate performance. Overall results showed reasonable agreement between simulation and experimental data. The validation results showed the reliability and feasibility of the GATE model to evaluate major performance of Ray-Scan 64 PET system. It provided a useful tool for a wide range of research applications.
The effects of solar radiation on thermal comfort.
Hodder, Simon G; Parsons, Ken
2007-01-01
The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm(-2). In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm(-2) on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm(-2) of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0+/-0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (t(sk)) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm(-2). The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.
Open surgical simulation--a review.
Davies, Jennifer; Khatib, Manaf; Bello, Fernando
2013-01-01
Surgical simulation has benefited from a surge in interest over the last decade as a result of the increasing need for a change in the traditional apprentice model of teaching surgery. However, despite the recent interest in surgical simulation as an adjunct to surgical training, most of the literature focuses on laparoscopic, endovascular, and endoscopic surgical simulation with very few studies scrutinizing open surgical simulation and its benefit to surgical trainees. The aim of this review is to summarize the current standard of available open surgical simulators and to review the literature on the benefits of open surgical simulation. Open surgical simulators currently used include live animals, cadavers, bench models, virtual reality, and software-based computer simulators. In the current literature, there are 18 different studies (including 6 randomized controlled trials and 12 cohort studies) investigating the efficacy of open surgical simulation using live animal, bench, and cadaveric models in many surgical specialties including general, cardiac, trauma, vascular, urologic, and gynecologic surgery. The current open surgical simulation studies show, in general, a significant benefit of open surgical simulation in developing the surgical skills of surgical trainees. However, these studies have their limitations including a low number of participants, variable assessment standards, and a focus on short-term results often with no follow-up assessment. The skills needed for open surgical procedures are the essential basis that a surgical trainee needs to grasp before attempting more technical procedures such as laparoscopic procedures. In this current climate of medical practice with reduced hours of surgical exposure for trainees and where the patient's safety and outcome is key, open surgical simulation is a promising adjunct to modern surgical training, filling the void between surgeons being trained in a technique and a surgeon achieving fluency in that open surgical procedure. Better quality research is needed into the benefits of open surgical simulation, and this would hopefully stimulate further development of simulators with more accurate and objective assessment tools. © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Application of the rapid update cycle (RUC) to aircraft flight simulation.
DOT National Transportation Integrated Search
2008-01-01
An aircraft flight simulation model under development aims : to provide a computer simulation tool to investigate aircraft flight : performance during en route flight and landing under various : atmospherical conditions [1]. Within this model, the ai...
Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R
2017-10-01
Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.
A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study
Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott
2016-01-01
Objective The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134
A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study.
Ahmed, Rami; Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott
2016-03-16
OBJECTIVE : The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. CONCLUSIONS : A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent.
Assessment potential of a new suture simulator in laparoscopic surgical skills training.
Takeoka, Tomohira; Takiguchi, Shuji; Uemura, Munenori; Miyazaki, Yasuhiro; Takahashi, Tsuyoshi; Kurokawa, Yukinori; Makino, Tomoki; Yamasaki, Makoto; Mori, Masaki; Yuichiro Doki, And
2017-12-01
The skills necessary for performing effective laparoscopic suturing are difficult to acquire; as a result, simulators for learning these skills are rapidly becoming integrated into surgical training. The aim of the study was to verify whether a new hybrid simulator has the potential to measure skill improvement in young, less experienced gastroenterological surgeons. The study included 12 surgeons (median age, 29 (27-38)] years; 11 men (91.7%), one woman (8.3%)) who participated in a two-day laparoscopic training seminar. We used the new simulator before and after the program to evaluate individual performance. Skills were evaluated using five criteria: volume of air pressure leakage, number of full-thickness sutures, suture tension, wound area, and performance time. Air pressure leakage was significantly higher after than before the training (p = .027). The number of full-thickness sutures was significantly higher post-training (p < .01). Suture tension was significantly less post-training (p = .011). Wound opening areas were significantly smaller post-training (p = .018). Performance time was significantly shorter post-training (p = .032). Our study demonstrated the assessment quality of this new laparoscopic suture simulator.
Effect of computer game playing on baseline laparoscopic simulator skills.
Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd
2013-08-01
Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.
Flynn, Fiona M; Sandaker, Kjersti; Ballangrud, Randi
2017-01-01
There is increasing focus on building safety into anaesthesia practice, with excellence in anaesthesia as an aspirational goal. Non-technical skills are an important factor in excellence and improved patient safety, though there have been few systematic attempts at integrating them into anaesthesia nursing education. This study aimed to test the reliability of NANTS-no, a specially adapted behavioural marker system for nurse anaesthetists in Norway, and explore the development of non-technical skills in student nurse anaesthetists. The pre-test post-test design incorporated a 10-week simulation-based programme, where non-technical skills in 14 student nurse anaesthetists were rated on three different occasions during high-fidelity simulation, before and after taking part in a training course. NANTS-no demonstrated high overall inter-rater reliability (ICC = 0.91), high test-retest reliability (ICC = 0.94) and good internal consistency (Cronbach's α of 0.85-0.92). A significant improvement was demonstrated across all categories of non-technical skills, with greatest improvements between the first and third and second and third sessions. There was also a significant improvement in two categories between the first and second sessions. NANTS-no is therefore suitable for assessing non-technical skills during simulation training in anaesthesia nursing education. More research is needed to validate its use in clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulation of optical interstellar scintillation
NASA Astrophysics Data System (ADS)
Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.
2013-04-01
Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected on a longer time scale when the light of remote stars crosses an interstellar turbulent molecular cloud, but it has never been observed at optical wavelengths. The aim of the study described in this paper is to fully simulate the scintillation process, starting from the molecular cloud description as a fractal object, ending with the simulations of fluctuating stellar light curves. Methods: Fast Fourier transforms are first used to simulate fractal clouds. Then, the illumination pattern resulting from the crossing of background star light through these refractive clouds is calculated from a Fresnel integral that also uses fast Fourier transform techniques. Regularisation procedure and computing limitations are discussed, along with the effect of spatial and temporal coherency (source size and wavelength passband). Results: We quantify the expected modulation index of stellar light curves as a function of the turbulence strength - characterised by the diffraction radius Rdiff - and the projected source size, introduce the timing aspects, and establish connections between the light curve observables and the refractive cloud. We extend our discussion to clouds with different structure functions from Kolmogorov-type turbulence. Conclusions: Our study confirms that current telescopes of ~4 m with fast-readout, wide-field detectors have the capability of discovering the first interstellar optical scintillation effects. We also show that this effect should be unambiguously distinguished from any other type of variability through the observation of desynchronised light curves, simultaneously measured by two distant telescopes.
The third stage of the Orbital Sciences Pegasus XL rocket is bei
2007-04-03
At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket is ready for mating to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.
2007-04-04
KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.
Validity of Cognitive Load Measures in Simulation-Based Training: A Systematic Review.
Naismith, Laura M; Cavalcanti, Rodrigo B
2015-11-01
Cognitive load theory (CLT) provides a rich framework to inform instructional design. Despite the applicability of CLT to simulation-based medical training, findings from multimedia learning have not been consistently replicated in this context. This lack of transferability may be related to issues in measuring cognitive load (CL) during simulation. The authors conducted a review of CLT studies across simulation training contexts to assess the validity evidence for different CL measures. PRISMA standards were followed. For 48 studies selected from a search of MEDLINE, EMBASE, PsycInfo, CINAHL, and ERIC databases, information was extracted about study aims, methods, validity evidence of measures, and findings. Studies were categorized on the basis of findings and prevalence of validity evidence collected, and statistical comparisons between measurement types and research domains were pursued. CL during simulation training has been measured in diverse populations including medical trainees, pilots, and university students. Most studies (71%; 34) used self-report measures; others included secondary task performance, physiological indices, and observer ratings. Correlations between CL and learning varied from positive to negative. Overall validity evidence for CL measures was low (mean score 1.55/5). Studies reporting greater validity evidence were more likely to report that high CL impaired learning. The authors found evidence that inconsistent correlations between CL and learning may be related to issues of validity in CL measures. Further research would benefit from rigorous documentation of validity and from triangulating measures of CL. This can better inform CLT instructional design for simulation-based medical training.
Simulation study of impacts of evacuating traffic on en-route metropolitan highway network.
DOT National Transportation Integrated Search
2009-08-31
In response to both natural and man-made disasters, more and more emergency evacuation plans have been put forward and consistently aims to move a large disaster affected population through a multimodal transportation network towards safer areas as q...
Integrated Case Learning: Teaching Clinical Reasoning
ERIC Educational Resources Information Center
Radomski, Natalie; Russell, John
2010-01-01
Learning how to "think like doctors" can be difficult for undergraduate medical students in their early clinical years. Our model of collaborative Integrated Case Learning (ICL) and simulated clinical reasoning aims to address these issues. Taking a socio-cultural perspective, this study investigates the reflective learning interactions…
ZERO-VALENT IRON FOR HIGH-LEVEL ARSENITE REMOVAL
This study conducted by flow through column systems was aimed at investigating the feasibility of using zero-valent iron for arsenic remediation in groundwater. A high concentration arsenic solution (50 mg l-1) was prepared by using sodium arsenite (arsenic (III)) to simulate gr...
Application of multi-objective nonlinear optimization technique for coordinated ramp-metering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick, E-mail: abib.haj-salem@ifsttar.fr, E-mail: nadir.frahi@ifsttar.fr, E-mail: jean-patrick.lebacque@ifsttar.fr
2015-03-10
This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.
Accelerated Adaptive Integration Method
2015-01-01
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083
Main, Luana C; Wolkow, Alexander; Chambers, Timothy P
2017-11-01
The aim of this study was to quantify the stress associated with performing maritime pilotage tasks in a high-fidelity simulator. Eight trainee and 13 maritime pilots completed two simulated pilotage tasks of varying complexity. Salivary cortisol samples were collected pre- and post-simulation for both trials. Heart rate was measured continuously throughout the study. Significant changes in salivary cortisol (P = 0.000, η = 0.139), average (P = 0.006, η = 0.087), and peak heart rate (P = 0.013, η = 0.077) from pre- to postsimulation were found. Varying task complexity did partially influence stress response; average (P = 0.016, η = 0.026) and peak heart rate (P = 0.034, η = 0.020) were higher in the experimental condition. Trainees also recorded higher average (P = 0.000, η = 0.054) and peak heart rates (P = 0.027, η = 0.022). Performing simulated pilotage tasks evoked a measurable stress response in both trainee and expert maritime pilots.
Comparing volume of fluid and level set methods for evaporating liquid-gas flows
NASA Astrophysics Data System (ADS)
Palmore, John; Desjardins, Olivier
2016-11-01
This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.
Climate Modeling and Causal Identification for Sea Ice Predictability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark
This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.« less
Taplay, Karyn; Jack, Susan M; Baxter, Pamela; Eva, Kevin; Martin, Lynn
2015-01-01
The aim of this study is to explain the process of adopting and incorporating simulation as a teaching strategy in undergraduate nursing programs, define uptake, and discuss potential outcomes. In many countries, simulation is increasingly adopted as a common teaching strategy. However, there is a dearth of knowledge related to the process of adoption and incorporation. We used an interpretive, constructivist approach to grounded theory to guide this research study. We conducted the study was in Ontario, Canada, during 2011-2012. Using multiple data sources, we informed the development of this theory including in-depth interviews (n = 43) and a review of key organizational documents, such as mission and vision statements (n = 67) from multiple nursing programs (n = 13). The adoption and uptake of mid- to high-fidelity simulation equipment is a multistep iterative process involving various organizational levels within the institution that entails a seven-phase process: (a) securing resources, (b) nursing leaders working in tandem, (c) getting it out of the box, (d) learning about simulation and its potential for teaching, (e) finding a fit, (f) trialing the equipment, and (g) integrating into the curriculum. These findings could assist nursing programs in Canada and internationally that wish to adopt or further incorporate simulation into their curricula and highlight potential organizational and program level outcomes. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Simulation of cryolipolysis as a novel method for noninvasive fat layer reduction.
Majdabadi, Abbas; Abazari, Mohammad
2016-12-20
Regarding previous problems in conventional liposuction methods, the need for development of new fat removal operations was appreciated. In this study we are going to simulate one of the novel methods, cryolipolysis, aimed to tackle those drawbacks. We think that simulation of clinical procedures contributes considerably in efficacious performance of the operations. To do this we have attempted to simulate temperature distribution in a sample fat of the human body. Using Abaqus software we have presented the graphical display of temperature-time variations within the medium. Findings of our simulation indicate that tissue temperature decreases after cold exposure of about 30 min. It can be seen that the minimum temperature of tissue occurs in shallow layers of the sample and the temperature in deeper layers of the sample remains nearly unchanged. It is clear that cold exposure time of more than the specific time (t > 30 min) does not result in considerable changes. Numerous clinical studies have proved the efficacy of cryolipolysis. This noninvasive technique has eliminated some of drawbacks of conventional methods. Findings of our simulation clearly prove the efficiency of this method, especially for superficial fat layers.
Johnsson, A Christina E; Kjellberg, Anders; Lagerström, Monica I
2006-05-01
The aim of this study was to investigate if nursing students improved their work technique when assisting a simulated patient from bed to wheelchair after proficiency training, and to investigate whether there was a correlation between the nursing students' work technique and the simulated patients' perceptions of the transfer. 71 students participated in the study, 35 in the intervention group and 36 in the comparison group. The students assisted a simulated patient to move from a bed to a wheelchair. In the intervention group the students made one transfer before and one after training, and in the comparison group they made two transfers before training. Six variables were evaluated: work technique score; nursing students' ratings of comfort, work technique and exertion, and the simulated patients' perceptions of comfort and safety during the transfer. The result showed that nursing students improved their work technique, and that there was a correlation between the work technique and the simulated patients' subjective ratings of the transfer. In conclusion, nursing students improved their work technique after training in patient transfer methods, and the work technique affected the simulated patients' perceptions of the transfer.
Simulation methods to estimate design power: an overview for applied research.
Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E
2011-06-20
Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.
Simulation methods to estimate design power: an overview for applied research
2011-01-01
Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447
Gutiérrez-Sevillano, Juan José; Caro-Pérez, Alejandro; Dubbeldam, David; Calero, Sofía
2011-12-07
We report a molecular simulation study for Cu-BTC metal-organic frameworks as carbon dioxide-methane separation devices. For this study we have computed adsorption and diffusion of methane and carbon dioxide in the structure, both as pure components and mixtures over the full range of bulk gas compositions. From the single component isotherms, mixture adsorption is predicted using the ideal adsorbed solution theory. These predictions are in very good agreement with our computed mixture isotherms and with previously reported data. Adsorption and diffusion selectivities and preferential sitings are also discussed with the aim to provide new molecular level information for all studied systems.
Low cost, high yield: simulation of obstetric emergencies for family medicine training.
Magee, Susanna R; Shields, Robin; Nothnagle, Melissa
2013-01-01
Simulation is now the educational standard for emergency training in residency and is particularly useful on a labor and delivery unit, which is often a stressful environment for learners given the frequency of emergencies. However, simulation can be costly. This study aimed to assess the feasibility and effectiveness of low-cost simulated obstetrical emergencies in training family medicine residents. The study took place in a community hospital in an urban underserved setting in the northeast United States. Low-cost simulations were developed for postpartum hemorrhage (PPH) and preeclampsia/eclampsia (PEC). Twenty residents were randomly assigned to the intervention (simulated PPH or PEC followed by debriefing) or control (lecture on PPH or PEC) group, and equal numbers of residents were assigned to each scenario. All participants completed a written test at baseline and an oral exam 6 months later on the respective scenario to which they were assigned. The participants provided written feedback on their respective teaching interventions. We compared performance on pretests and posttests by group using Wilcoxon Rank Sum. Twenty residents completed the study. Both groups performed similarly on baseline tests for both scenarios. Compared to controls, intervention residents scored significantly higher on the examination on the management of PPH but not for PEC. All intervention group participants reported that the simulation training was "extremely useful," and most found it "enjoyable." We demonstrated the feasibility and acceptability of two low-cost obstetric emergency simulations and found that they may result in persistent increases in trainee knowledge.
Text messaging during simulated driving.
Drews, Frank A; Yazdani, Hina; Godfrey, Celeste N; Cooper, Joel M; Strayer, David L
2009-10-01
This research aims to identify the impact of text messaging on simulated driving performance. In the past decade, a number of on-road, epidemiological, and simulator-based studies reported the negative impact of talking on a cell phone on driving behavior. However, the impact of text messaging on simulated driving performance is still not fully understood. Forty participants engaged in both a single task (driving) and a dual task (driving and text messaging) in a high-fidelity driving simulator. Analysis of driving performance revealed that participants in the dual-task condition responded more slowly to the onset of braking lights and showed impairments in forward and lateral control compared with a driving-only condition. Moreover, text-messaging drivers were involved in more crashes than drivers not engaged in text messaging. Text messaging while driving has a negative impact on simulated driving performance. This negative impact appears to exceed the impact of conversing on a cell phone while driving. The results increase our understanding of driver distraction and have potential implications for public safety and device development.
NASA Astrophysics Data System (ADS)
Lee, Kang Il
2018-06-01
The present study aims to predict the temperature rise induced by high intensity focused ultrasound (HIFU) in soft tissues to assess tissue damage during HIFU thermal therapies. With the help of a MATLAB-based software package developed for HIFU simulation, the HIFU field was simulated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective, and the HIFU-induced temperature rise in a tissue-mimicking phantom was simulated by solving Pennes' bioheat transfer (BHT) equation. In order to verify the simulation results, we performed in-vitro heating experiments on a tissue-mimicking phantom by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The temperature rise near the focal spot obtained from the HIFU simulator was in good agreement with that from the in-vitro experiments. This confirms that the HIFU simulator based on the KZK and the BHT equations captures the HIFU-induced temperature rise in soft tissues well enough to make it suitable for HIFU treatment planning.
Effect of Cardiac Arrhythmia Simulation on Nursing Students' Knowledge Acquisition and Retention.
Tubaishat, Ahmad; Tawalbeh, Loai I
2015-09-01
The realistic and practical environment that simulation provides is an extremely useful part of the teaching process. Simulation is widely used in health and nursing education today. This study aims to evaluate the effect of simulation-based teaching on the acquisition and retention of arrhythmia-related knowledge among nursing students. A randomized controlled design involving a pretest-posttest was used. Nursing students were allocated randomly either to the experimental group (n = 47), who attended simulation scenarios on cardiac arrhythmia, or to the control group (n = 44) who received a traditional lecture on the same topic. A paired t test showed that the mean knowledge score at the posttest was significantly higher than at the pretest for both groups. However, participants in the experimental group demonstrated significantly increased knowledge of cardiac arrhythmia in the first and the second posttest compared with those in the control group. Thus, simulation is superior and significantly improves students' arrhythmia knowledge. © The Author(s) 2014.
The Impact of Different Missing Data Handling Methods on DINA Model
ERIC Educational Resources Information Center
Sünbül, Seçil Ömür
2018-01-01
In this study, it was aimed to investigate the impact of different missing data handling methods on DINA model parameter estimation and classification accuracy. In the study, simulated data were used and the data were generated by manipulating the number of items and sample size. In the generated data, two different missing data mechanisms…
ERIC Educational Resources Information Center
Chang, Chiung-Sui; Huang, Ya-Ping; Chien, Fei-Ling
2014-01-01
This study aimed to explore the attitude and learning effectiveness in game based simulations from college students' perspective. The participants included 189 business college students in Taiwan. The main instrument employed in this study was McDonald's video game. Additionally, participant selection, data collection and analysis, and results…
Is There Bias against Simulation in Microsurgery Training?
Theman, Todd A; Labow, Brian I
2016-09-01
Background While other surgical specialties have embraced virtual reality simulation for training and recertification, microsurgery has lagged. This study aims to assess the opinions of microsurgeons on the role of simulation in microsurgery assessment and training. Methods We surveyed faculty members of the American Society of Reconstructive Microsurgery to ascertain opinions on their use of simulation in training and opinions about the utility of simulation for skills acquisition, teaching, and skills assessment. The 21-question survey was disseminated online to 675 members. Results Eighty-nine members completed the survey for a 13.2% response rate. Few microsurgeons have experience with high-fidelity simulation, and opinions on its utility are internally inconsistent. Although 84% of respondents could not identify a reason why simulation would not be useful, only 24% believed simulation is a useful measure of clinical performance. Nearly three-fourths of respondents were skeptical that simulation would improve their skills. Ninety-four percent had no experience with simulator-based assessment. Conclusion Simulation has been shown to improve skills acquisition in microsurgery, but our survey suggests that unfamiliarity may foster bias against the technology. Failure to incorporate simulation may adversely affect training and may put surgeons at a disadvantage should these technologies be adopted for recertification by regulatory agencies. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Munaretto, Joseph M; McNitt-Gray, Jill L; Flashner, Henryk; Requejo, Philip S
2013-08-01
Repetitive loading during manual wheelchair propulsion (WCP) is associated with overuse injury to the upper extremity (UE). The aim of this study was to determine how RF redirection and load distribution are affected by changes upper extremity kinematic modifications associated with modifications in seat positions during a WCP task. The aim of this study was to determine how RF redirection and load distribution are affected by upper extremity kinematic changes associated with seat position adjustment during a WCP task. Dynamic simulations using an experiment-based multi-link inverse dynamics model were used to generate solutions for redistributing UE mechanical load in different seating positions without decrements in WCP task performance. Experimental RF and kinematic data were collected for one subject propelling at a self-selected speed and used as input into the model. Shoulder/axle distance, wrist angular position, and RF direction were systematically modified to simulate how the mechanical demand imposed on the upper extremity (elbow and shoulder net joint moments (NJMs) and net joint forces) may vary. Load distribution depended on UE orientation relative to the wheel. At peak force, lower shoulder/axle distances and more anterior wrist positions on the pushrim allowed for more extended elbow positions and reduced total NJM load. Simulation results incorporating subject-specific data may provide mechanically based information to guide clinical interventions that aim to maintain WCP performance and redistribute load by modifying RF direction, seat configuration and hand/rim interaction. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Thickness Measurement of Surface Attachment on Plate with Lamb Wave
NASA Astrophysics Data System (ADS)
Ma, Xianglong; Zhang, Yinghong; Wen, Lichao; He, Yehu
2017-12-01
Aiming at the thickness detection of the plate surface attachment, a nondestructive testing method based on the Lamb wave is presented. This method utilizes Lamb wave propagation characteristics of signals in a bi-layer medium to measure the surface attachment plate thickness. Propagation of Lamb wave in bi-layer elastic is modeled and analyzed. The two-dimensional simulation model of electromagnetic ultrasonic plate - scale is established. The simulation is conducted by software COMSOL for simulation analysis under different boiler scale thickness wave form curve. Through this study, the thickness of the attached material can be judged by analyzing the characteristics of the received signal when the thickness of the surface of the plate is measured.
NASA Astrophysics Data System (ADS)
Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.
2017-07-01
Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.
Final Report: Closeout of the Award NO. DE-FG02-98ER62618 (M.S. Fox-Rabinovitz, P.I.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox-Rabinovitz, M. S.
The final report describes the study aimed at exploring the variable-resolution stretched-grid (SG) approach to decadal regional climate modeling using advanced numerical techniques. The obtained results have shown that variable-resolution SG-GCMs using stretched grids with fine resolution over the area(s) of interest, is a viable established approach to regional climate modeling. The developed SG-GCMs have been extensively used for regional climate experimentation. The SG-GCM simulations are aimed at studying the U.S. regional climate variability with an emphasis on studying anomalous summer climate events, the U.S. droughts and floods.
Burton, Brett M; Aras, Kedar K; Good, Wilson W; Tate, Jess D; Zenger, Brian; MacLeod, Rob S
2018-05-21
The biophysical basis for electrocardiographic evaluation of myocardial ischemia stems from the notion that ischemic tissues develop, with relative uniformity, along the endocardial aspects of the heart. These injured regions of subendocardial tissue give rise to intramural currents that lead to ST segment deflections within electrocardiogram (ECG) recordings. The concept of subendocardial ischemic regions is often used in clinical practice, providing a simple and intuitive description of ischemic injury; however, such a model grossly oversimplifies the presentation of ischemic disease-inadvertently leading to errors in ECG-based diagnoses. Furthermore, recent experimental studies have brought into question the subendocardial ischemia paradigm suggesting instead a more distributed pattern of tissue injury. These findings come from experiments and so have both the impact and the limitations of measurements from living organisms. Computer models have often been employed to overcome the constraints of experimental approaches and have a robust history in cardiac simulation. To this end, we have developed a computational simulation framework aimed at elucidating the effects of ischemia on measurable cardiac potentials. To validate our framework, we simulated, visualized, and analyzed 226 experimentally derived acute myocardial ischemic events. Simulation outcomes agreed both qualitatively (feature comparison) and quantitatively (correlation, average error, and significance) with experimentally obtained epicardial measurements, particularly under conditions of elevated ischemic stress. Our simulation framework introduces a novel approach to incorporating subject-specific, geometric models and experimental results that are highly resolved in space and time into computational models. We propose this framework as a means to advance the understanding of the underlying mechanisms of ischemic disease while simultaneously putting in place the computational infrastructure necessary to study and improve ischemia models aimed at reducing diagnostic errors in the clinic.
Rasmussen's model of human behavior in laparoscopy training.
Wentink, M; Stassen, L P S; Alwayn, I; Hosman, R J A W; Stassen, H G
2003-08-01
Compared to aviation, where virtual reality (VR) training has been standardized and simulators have proven their benefits, the objectives, needs, and means of VR training in minimally invasive surgery (MIS) still have to be established. The aim of the study presented is to introduce Rasmussen's model of human behavior as a practical framework for the definition of the training objectives, needs, and means in MIS. Rasmussen distinguishes three levels of human behavior: skill-, rule-, and knowledge-based behaviour. The training needs of a laparoscopic novice can be determined by identifying the specific skill-, rule-, and knowledge-based behavior that is required for performing safe laparoscopy. Future objectives of VR laparoscopy trainers should address all three levels of behavior. Although most commercially available simulators for laparoscopy aim at training skill-based behavior, especially the training of knowledge-based behavior during complications in surgery will improve safety levels. However, the cost and complexity of a training means increases when the training objectives proceed from the training of skill-based behavior to the training of complex knowledge-based behavior. In aviation, human behavior models have been used successfully to integrate the training of skill-, rule-, and knowledge-based behavior in a full flight simulator. Understanding surgeon behavior is one of the first steps towards a future full-scale laparoscopy simulator.
Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine.
Mizeranschi, Alexandru; Groen, Derek; Borgdorff, Joris; Hoekstra, Alfons G; Chopard, Bastien; Dubitzky, Werner
2016-01-01
Systems medicine is the application of systems biology concepts, methods, and tools to medical research and practice. It aims to integrate data and knowledge from different disciplines into biomedical models and simulations for the understanding, prevention, cure, and management of complex diseases. Complex diseases arise from the interactions among disease-influencing factors across multiple levels of biological organization from the environment to molecules. To tackle the enormous challenges posed by complex diseases, we need a modeling and simulation framework capable of capturing and integrating information originating from multiple spatiotemporal and organizational scales. Multiscale modeling and simulation in systems medicine is an emerging methodology and discipline that has already demonstrated its potential in becoming this framework. The aim of this chapter is to present some of the main concepts, requirements, and challenges of multiscale modeling and simulation in systems medicine.
2013-01-01
Background The validity of studies describing clinicians’ judgements based on their responses to paper cases is questionable, because - commonly used - paper case simulations only partly reflect real clinical environments. In this study we test whether paper case simulations evoke similar risk assessment judgements to the more realistic simulated patients used in high fidelity physical simulations. Methods 97 nurses (34 experienced nurses and 63 student nurses) made dichotomous assessments of risk of acute deterioration on the same 25 simulated scenarios in both paper case and physical simulation settings. Scenarios were generated from real patient cases. Measures of judgement ‘ecology’ were derived from the same case records. The relationship between nurses’ judgements, actual patient outcomes (i.e. ecological criteria), and patient characteristics were described using the methodology of judgement analysis. Logistic regression models were constructed to calculate Lens Model Equation parameters. Parameters were then compared between the modeled paper-case and physical-simulation judgements. Results Participants had significantly less achievement (ra) judging physical simulations than when judging paper cases. They used less modelable knowledge (G) with physical simulations than with paper cases, while retaining similar cognitive control and consistency on repeated patients. Respiration rate, the most important cue for predicting patient risk in the ecological model, was weighted most heavily by participants. Conclusions To the extent that accuracy in judgement analysis studies is a function of task representativeness, improving task representativeness via high fidelity physical simulations resulted in lower judgement performance in risk assessments amongst nurses when compared to paper case simulations. Lens Model statistics could prove useful when comparing different options for the design of simulations used in clinical judgement analysis. The approach outlined may be of value to those designing and evaluating clinical simulations as part of education and training strategies aimed at improving clinical judgement and reasoning. PMID:23718556
Rasmussen, Sebastian R; Konge, Lars; Mikkelsen, Peter T; Sørensen, Mads S; Andersen, Steven A W
2016-03-01
Cognitive load (CL) theory suggests that working memory can be overloaded in complex learning tasks such as surgical technical skills training, which can impair learning. Valid and feasible methods for estimating the CL in specific learning contexts are necessary before the efficacy of CL-lowering instructional interventions can be established. This study aims to explore secondary task precision for the estimation of CL in virtual reality (VR) surgical simulation and also investigate the effects of CL-modifying factors such as simulator-integrated tutoring and repeated practice. Twenty-four participants were randomized for visual assistance by a simulator-integrated tutor function during the first 5 of 12 repeated mastoidectomy procedures on a VR temporal bone simulator. Secondary task precision was found to be significantly lower during simulation compared with nonsimulation baseline, p < .001. Contrary to expectations, simulator-integrated tutoring and repeated practice did not have an impact on secondary task precision. This finding suggests that even though considerable changes in CL are reflected in secondary task precision, it lacks sensitivity. In contrast, secondary task reaction time could be more sensitive, but requires substantial postprocessing of data. Therefore, future studies on the effect of CL modifying interventions should weigh the pros and cons of the various secondary task measurements. © The Author(s) 2015.
Review of numerical methods for simulation of the aortic root: Present and future directions
NASA Astrophysics Data System (ADS)
Mohammadi, Hossein; Cartier, Raymond; Mongrain, Rosaire
2016-05-01
Heart valvular disease is still one of the main causes of mortality and morbidity in develop countries. Numerical modeling has gained considerable attention in studying hemodynamic conditions associated with valve abnormalities. Simulating the large displacement of the valve in the course of the cardiac cycle needs a well-suited numerical method to capture the natural biomechanical phenomena which happens in the valve. The paper aims to review the principal progress of the numerical approaches for studying the hemodynamic of the aortic valve. In addition, the future directions of the current approaches as well as their potential clinical applications are discussed.
Vega roll and attitude control system algorithms trade-off study
NASA Astrophysics Data System (ADS)
Paulino, N.; Cuciniello, G.; Cruciani, I.; Corraro, F.; Spallotta, D.; Nebula, F.
2013-12-01
This paper describes the trade-off study for the selection of the most suitable algorithms for the Roll and Attitude Control System (RACS) within the FPS-A program, aimed at developing the new Flight Program Software of VEGA Launcher. Two algorithms were analyzed: Switching Lines (SL) and Quaternion Feedback Regulation. Using a development simulation tool that models two critical flight phases (Long Coasting Phase (LCP) and Payload Release (PLR) Phase), both algorithms were assessed with Monte Carlo batch simulations for both of the phases. The statistical outcomes of the results demonstrate a 100 percent success rate for Quaternion Feedback Regulation, and support the choice of this method.
Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study
NASA Technical Reports Server (NTRS)
Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.
1984-01-01
A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.
NASA Astrophysics Data System (ADS)
Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.
2012-01-01
This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.
Reis, Shmuel; Sagi, Doron; Eisenberg, Orit; Kuchnir, Yosi; Azuri, Joseph; Shalev, Varda; Ziv, Amitai
2013-12-01
Even though Electronic Medical Records (EMRs) are increasingly used in healthcare organizations there is surprisingly little theoretical work or educational programs in this field. This study is aimed at comparing two training programs for doctor-patient-computer communication (DPCC). 36 Family Medicine Residents (FMRs) participated in this study. All FMRs went through twelve identical simulated encounters, six pre and six post training. The experiment group received simulation based training (SBT) while the control group received traditional lecture based training. Performance, attitude and sense of competence of all FMRs improved, but no difference was found between the experiment and control groups. FMRs from the experiment group evaluated the contribution of the training phase higher than control group, and showed higher satisfaction. We assume that the mere exposure to simulation served as a learning experience and enabled deliberate practice that was more powerful than training. Because DPCC is a new field, all participants in such studies, including instructors and raters, should receive basic training of DPCC skills. Simulation enhances DPCC skills. Future studies of this kind should control the exposure to simulation prior to the training phase. Training and assessment of clinical communication should include EMR related skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Larson-Williams, Linnea M; Youngblood, Amber Q; Peterson, Dawn Taylor; Zinkan, J Lynn; White, Marjorie L; Abdul-Latif, Hussein; Matalka, Leen; Epps, Stephen N; Tofil, Nancy M
2016-01-01
AIM To investigate the use of a multidisciplinary, longitudinal simulation to educate pediatric residents and nurses on management of pediatric diabetic ketoacidosis. METHODS A multidisciplinary, multiple step simulation course was developed by faculty and staff using a modified Delphi method from the Pediatric Simulation Center and pediatric endocrinology department. Effectiveness of the simulation for the residents was measured with a pre- and post-test and a reference group not exposed to simulation. A follow up post-test was completed 3-6 mo after the simulation. Nurses completed a survey regarding the education activity. RESULTS Pediatric and medicine-pediatric residents (n = 20) and pediatric nurses (n = 25) completed the simulation course. Graduating residents (n = 16) were used as reference group. Pretest results were similar in the control and intervention group (74% ± 10% vs 76% ± 15%, P = 0.658). After completing the intervention, participants improved in the immediate post-test in comparison to themselves and the control group (84% ± 12% post study; P < 0.05). The 3-6 mo follow up post-test results demonstrated knowledge decay when compared to their immediate post-test results (78% ± 14%, P = 0.761). Residents and nurses felt the interdisciplinary and longitudinal nature of the simulation helped with learning. CONCLUSION Results suggest a multidisciplinary, longitudinal simulation improves immediate post-intervention knowledge but important knowledge decay occurs, future studies are needed to determine ways to decrease this decay. PMID:27896145
Cohen, Elaine R; Feinglass, Joe; Barsuk, Jeffrey H; Barnard, Cynthia; O'Donnell, Anna; McGaghie, William C; Wayne, Diane B
2010-04-01
Interventions to reduce preventable complications such as catheter-related bloodstream infections (CRBSI) can also decrease hospital costs. However, little is known about the cost-effectiveness of simulation-based education. The aim of this study was to estimate hospital cost savings related to a reduction in CRBSI after simulation training for residents. This was an intervention evaluation study estimating cost savings related to a simulation-based intervention in central venous catheter (CVC) insertion in the Medical Intensive Care Unit (MICU) at an urban teaching hospital. After residents completed a simulation-based mastery learning program in CVC insertion, CRBSI rates declined sharply. Case-control and regression analysis methods were used to estimate savings by comparing CRBSI rates in the year before and after the intervention. Annual savings from reduced CRBSIs were compared with the annual cost of simulation training. Approximately 9.95 CRBSIs were prevented among MICU patients with CVCs in the year after the intervention. Incremental costs attributed to each CRBSI were approximately $82,000 in 2008 dollars and 14 additional hospital days (including 12 MICU days). The annual cost of the simulation-based education was approximately $112,000. Net annual savings were thus greater than $700,000, a 7 to 1 rate of return on the simulation training intervention. A simulation-based educational intervention in CVC insertion was highly cost-effective. These results suggest that investment in simulation training can produce significant medical care cost savings.
NASA Astrophysics Data System (ADS)
Ruiz-Rocha, Krystal; Montes, Gabriela; Ramirez-Ruiz, Enrico
2017-01-01
Studies of galaxy evolution and formation through simulations and observations have yielded valuable insight into the life of stars. Abundance gradients, in particular, provide useful information about the element assembly history in the Milky Way. To study these gradients we use data from a simulation titled Eris which has been constructed with the goal of reproducing the properties of the Milky Way, to find the gradients of stars located in the disk that have been enriched by Supernovae and Neutron Star Mergers. We compare these gradients to the observations acquired from looking at Cepheids and field stars in the disk of our Milky Way. We also aim to understand whether radial metallicity gradients can be used to differentiate between Neutron Star Merger versus Type II Supernovae enrichment.
NASA Astrophysics Data System (ADS)
Kaniawati, I.; Samsudin, A.; Hasopa, Y.; Sutrisno, A. D.; Suhendi, E.
2016-08-01
This research is based on students’ lack of mastery of physics abstract concepts. Thus, this study aims to improve senior high school students’ mastery of momentum and impulse concepts with the use of computer simulation. To achieve these objectives, the research method employed was pre experimental design with one group pre-test post-test. A total of 36 science students of grade 11 in one of public senior high school in Bandung became the sample in this study. The instruments utilized to determine the increase of students’ concept mastery were pretest and posttest in the form of multiple choices. After using computer simulations in physics learning, students’ mastery of momentum and impulse concept has increased as indicated by the normalized gain
NASA Astrophysics Data System (ADS)
Kaddour, A.; Benyoucef, B.
Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Then, we study the operation of cells statement by the digital simulation with an aim of optimizing the output of the parabolic concentrator of Stirling engine type. The Greenius software makes it possible to carry out the digital simulation in 2D and 3D and to study the influence of the various parameters on the characteristic voltage under illumination of the cell. The results obtained enabled us to determine the extrinsic factors which depend on the environment and the intrinsic factors which result from the properties of materials used.
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
Numerical analysis of wet separation of particles by density differences
NASA Astrophysics Data System (ADS)
Markauskas, D.; Kruggel-Emden, H.
2017-07-01
Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.
Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility
NASA Astrophysics Data System (ADS)
Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.
2017-05-01
The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.
Vallance, Aaron K.; Hemani, Ashish; Fernandez, Victoria; Livingstone, Daniel; McCusker, Kerri; Toro-Troconis, Maria
2014-01-01
Aims and method To develop and evaluate a novel teaching session on clinical assessment using role play simulation. Teaching and research sessions occurred sequentially in computer laboratories. Ten medical students were divided into two online small-group teaching sessions. Students role-played as clinician avatars and the teacher played a suicidal adolescent avatar. Questionnaire and focus-group methodology evaluated participants’ attitudes to the learning experience. Quantitative data were analysed using SPSS, qualitative data through nominal-group and thematic analyses. Results Participants reported improvements in psychiatric skills/knowledge, expressing less anxiety and more enjoyment than role-playing face to face. Data demonstrated a positive relationship between simulator fidelity and perceived utility. Some participants expressed concern about added value over other learning methods and non-verbal communication. Clinical implications The study shows that virtual worlds can successfully host role play simulation, valued by students as a useful learning method. The potential for distance learning would allow delivery irrespective of geographical distance and boundaries. PMID:25285217
The Role of Transfer in Designing Games and Simulations for Health: Systematic Review
Terlouw, Gijs; Wartena, Bard O; van 't Veer, Job TB; Prins, Jelle T; Pierie, Jean Pierre EN
2017-01-01
Background The usefulness and importance of serious games and simulations in learning and behavior change for health and health-related issues are widely recognized. Studies have addressed games and simulations as interventions, mostly in comparison with their analog counterparts. Numerous complex design choices have to be made with serious games and simulations for health, including choices that directly contribute to the effects of the intervention. One of these decisions is the way an intervention is expected to lead to desirable transfer effects. Most designs adopt a first-class transfer rationale, whereas the second class of transfer types seems a rarity in serious games and simulations for health. Objective This study sought to review the literature specifically on the second class of transfer types in the design of serious games and simulations. Focusing on game-like interventions for health and health care, this study aimed to (1) determine whether the second class of transfer is recognized as a road for transfer in game-like interventions, (2) review the application of the second class of transfer type in designing game-like interventions, and (3) assess studies that include second-class transfer types reporting transfer outcomes. Methods A total of 6 Web-based databases were systematically searched by titles, abstracts, and keywords using the search strategy (video games OR game OR games OR gaming OR computer simulation*) AND (software design OR design) AND (fidelity OR fidelities OR transfer* OR behaviour OR behavior). The databases searched were identified as relevant to health, education, and social science. Results A total of 15 relevant studies were included, covering a range of game-like interventions, all more or less mentioning design parameters aimed at transfer. We found 9 studies where first-class transfer was part of the design of the intervention. In total, 8 studies dealt with transfer concepts and fidelity types in game-like intervention design in general; 3 studies dealt with the concept of second-class transfer types and reported effects, and 2 of those recognized transfer as a design parameter. Conclusions In studies on game-like interventions for health and health care, transfer is regarded as a desirable effect but not as a basic principle for design. None of the studies determined the second class of transfer or instances thereof, although in 3 cases a nonliteral transfer type was present. We also found that studies on game-like interventions for health do not elucidate design choices made and rarely provide design principles for future work. Games and simulations for health abundantly build upon the principles of first-class transfer, but the adoption of second-class transfer types proves scarce. It is likely to be worthwhile to explore the possibilities of second-class transfer types, as they may considerably influence educational objectives in terms of future serious game design for health. PMID:29175812
Li, Ting; Petrini, Marcia A; Stone, Teresa E
2018-02-01
The study aim was to identify the perceived perspectives of baccalaureate nursing students toward the peer tutoring in the simulation laboratory. Insight into the nursing students' experiences and baseline data related to their perception of peer tutoring will assist to improve nursing education. Q methodology was applied to explore the students' perspectives of peer tutoring in the simulation laboratory. A convenience P-sample of 40 baccalaureate nursing students was used. Fifty-eight selected Q statements from each participant were classified into the shape of a normal distribution using an 11-point bipolar scale form with a range from -5 to +5. PQ Method software analyzed the collected data. Three discrete factors emerged: Factor I ("Facilitate or empower" knowledge acquisition), Factor II ("Safety Net" Support environment), and Factor III ("Mentoring" learn how to learn). The findings of this study support and indicate that peer tutoring is an effective supplementary strategy to promote baccalaureate students' knowledge acquisition, establishing a supportive safety net and facilitating their abilities to learn in the simulation laboratory. Copyright © 2017 Elsevier Ltd. All rights reserved.
Studies of asymmetric propeller structures in the Saturnian ring system
NASA Astrophysics Data System (ADS)
Seiler, M.; Seiß, M.; Spahn, F.
2017-09-01
In this work, we analyze the formation of an asymmetric propeller structure, assuming that the central moonlet is librating around its mean position in a certain mode. For this aim, we perform hydrodynamic simulations, where we test if the asymmetry is observable in Cassini images.
Fialho, André S; Oliveira, Mónica D; Sá, Armando B
2011-10-15
Recent reforms in Portugal aimed at strengthening the role of the primary care system, in order to improve the quality of the health care system. Since 2006 new policies aiming to change the organization, incentive structures and funding of the primary health care sector were designed, promoting the evolution of traditional primary health care centres (PHCCs) into a new type of organizational unit--family health units (FHUs). This study aimed to compare performances of PHCC and FHU organizational models and to assess the potential gains from converting PHCCs into FHUs. Stochastic discrete event simulation models for the two types of organizational models were designed and implemented using Simul8 software. These models were applied to data from nineteen primary care units in three municipalities of the Greater Lisbon area. The conversion of PHCCs into FHUs seems to have the potential to generate substantial improvements in productivity and accessibility, while not having a significant impact on costs. This conversion might entail a 45% reduction in the average number of days required to obtain a medical appointment and a 7% and 9% increase in the average number of medical and nursing consultations, respectively. Reorganization of PHCC into FHUs might increase accessibility of patients to services and efficiency in the provision of primary care services.
A Simulation of X-Linked Inheritance.
ERIC Educational Resources Information Center
Harrell, Pamela Esprivalo
1997-01-01
Describes how to lead students through a classroom-based simulation to teach a variety of concepts such as X-linked traits, sex determination, and sex anomalies. The simulation utilizes inexpensive materials such as plastic eggs that twist apart to represent human eggs and sperm. (AIM)
Dynamic Simulation over Long Time Periods with 100% Solar Generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Concepcion, Ricky James; Elliott, Ryan Thomas
2015-12-01
This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.
Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng
2015-12-21
This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com; Suprijadi; Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132
Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic imagesmore » and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.« less
Yang, Kyeongra; Woomer, Gail Ratliff; Agbemenu, Kafuli; Williams, Lynne
2014-11-01
The study aim was to evaluate the effectiveness of a poverty simulation in increasing understanding of and attitudes toward poverty and resulting in changes in clinical practice among nursing seniors. A poverty simulation was conducted using a diverse group of nursing professors and staff from local community agencies assuming the role of community resource providers. Students were assigned roles as members of low-income families and were required to complete tasks during a simulated month. A debriefing was held after the simulation to explore students' experiences in a simulated poverty environment. Students' understanding of and attitude toward poverty pre- and post-simulation were examined. Changes in the students' clinical experiences following the simulation were summarized into identified categories and themes. The poverty simulation led to a greater empathy for the possible experiences of low income individuals and families, understanding of barriers to health care, change in attitudes towards poverty and to those living in poverty, and changes in the students' nursing practice. Use of poverty simulation is an effective means to teach nursing students about the experience of living in poverty. The simulation experience changed nursing students' clinical practice, with students providing community referrals and initiating inter-professional collaborations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Adam; Hunt, Elizabeth A; Donoghue, Aaron; Nelson, Kristen; Leflore, Judy; Anderson, JoDee; Eppich, Walter; Simon, Robert; Rudolph, Jenny; Nadkarni, Vinay
2011-02-01
Over the past decade, medical simulation has evolved into an essential component of pediatric resuscitation education and team training. Evidence to support its value as an adjunct to traditional methods of education is expanding; however, large multicenter studies are very rare. Simulation-based researchers currently face many challenges related to small sample sizes, poor generalizability, and paucity of clinically proven and relevant outcome measures. The Examining Pediatric Resuscitation Education Using Simulation and Scripting (EXPRESS) pediatric simulation research collaborative was formed in an attempt to directly address and overcome these challenges. The primary mission of the EXPRESS collaborative is to improve the delivery of medical care to critically ill children by answering important research questions pertaining to pediatric resuscitation and education and is focused on using simulation either as a key intervention of interest or as the outcome measurement tool. Going forward, the collaborative aims to expand its membership internationally and collectively identify pediatric resuscitation and simulation-based research priorities and use these to guide future projects. Ultimately, we hope that with innovative and high-quality research, the EXPRESS pediatric simulation research collaborative will help to build momentum for simulation-based research on an international level. Copyright © 2011 Society for Simulation in Healthcare
A comparison of the accuracy of intraoral scanners using an intraoral environment simulator
Park, Hye-Nan; Lim, Young-Jun; Yi, Won-Jin
2018-01-01
PURPOSE The aim of this study was to design an intraoral environment simulator and to assess the accuracy of two intraoral scanners using the simulator. MATERIALS AND METHODS A box-shaped intraoral environment simulator was designed to simulate two specific intraoral environments. The cast was scanned 10 times by Identica Blue (MEDIT, Seoul, South Korea), TRIOS (3Shape, Copenhagen, Denmark), and CS3500 (Carestream Dental, Georgia, USA) scanners in the two simulated groups. The distances between the left and right canines (D3), first molars (D6), second molars (D7), and the left canine and left second molar (D37) were measured. The distance data were analyzed by the Kruskal-Wallis test. RESULTS The differences in intraoral environments were not statistically significant (P>.05). Between intraoral scanners, statistically significant differences (P<.05) were revealed by the Kruskal-Wallis test with regard to D3 and D6. CONCLUSION No difference due to the intraoral environment was revealed. The simulator will contribute to the higher accuracy of intraoral scanners in the future. PMID:29503715
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-01-01
The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy. A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities. The national Danish temporal bone course. A total of 40 novice otorhinolaryngology residents. Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001). VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Lin, Weiqin; Lee, Glenn K; Loh, Joshua P; Tay, Edgar L; Sia, Winnie; Lau, Tang-Ching; Hooi, Shing-Chuan; Poh, Kian-Keong
2015-01-01
INTRODUCTION This study aimed to assess the effectiveness of the use of a cardiopulmonary patient simulator in the teaching of second-year medical students. Effectiveness was measured in terms of the extent of knowledge retention and students’ ability to apply the skills learned in subsequent real-life patient contact. METHODS In this study, ten third-year medical students who had previously undergone simulator training as part of their second-year curriculum underwent an objective structured clinical examination (OSCE) and a multiple-choice question (MCQ) test to assess their ability to apply the knowledge gained during the simulator training when dealing with real patients. The performance of this group of students was compared with that of a group of ten fourth-year medical students who did not undergo simulation training. RESULTS Although the third-year medical students performed well in the OSCE, they were outperformed by the group of fourth-year medical students, who had an extra year of clinical exposure. The MCQ scores of the two groups of students were similar. Post-simulation training survey revealed that students were generally in favour of incorporating cardiopulmonary simulator training in the preclinical curriculum. CONCLUSION Cardiopulmonary simulator training is a useful tool for the education of preclinical medical students. It aids the translation of preclinical knowledge into real-life clinical skills. PMID:25715855
Constrained Local UniversE Simulations: a Local Group factory
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan; Yepes, Gustavo; Libeskind, Noam I.; Pilipenko, Sergey V.; Knebe, Alexander; Courtois, Hélène; Tully, R. Brent; Steinmetz, Matthias
2016-05-01
Near-field cosmology is practised by studying the Local Group (LG) and its neighbourhood. This paper describes a framework for simulating the `near field' on the computer. Assuming the Λ cold dark matter (ΛCDM) model as a prior and applying the Bayesian tools of the Wiener filter and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the ΛCDMscenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of haloes must obey specific isolation, mass and separation criteria. At the second level, the orbital angular momentum and energy are constrained, and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations, 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG `factory' enables the construction of a large ensemble of simulated LGs. Suitable candidates for high-resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG.
Modelling and experimental study of temperature profiles in cw laser diode bars
NASA Astrophysics Data System (ADS)
Bezotosnyi, V. V.; Gordeev, V. P.; Krokhin, O. N.; Mikaelyan, G. T.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu M.; Cheshev, E. A.
2018-02-01
Three-dimensional simulation is used to theoretically assess temperature profiles in proposed 10-mm-wide cw laser diode bars packaged in a standard heat spreader of the C - S mount type with the aim of raising their reliable cw output power. We obtain calculated temperature differences across the emitting aperture and along the cavity. Using experimental laser bar samples with up to 60 W of cw output power, the emission spectra of individual clusters are measured at different pump currents. We compare and discuss the simulation results and experimental data.
Czerwiński, M; Mroczka, J; Girasole, T; Gouesbet, G; Gréhan, G
2001-03-20
Our aim is to present a method of predicting light transmittances through dense three-dimensional layered media. A hybrid method is introduced as a combination of the four-flux method with coefficients predicted from a Monte Carlo statistical model to take into account the actual three-dimensional geometry of the problem under study. We present the principles of the hybrid method, some exemplifying results of numerical simulations, and their comparison with results obtained from Bouguer-Lambert-Beer law and from Monte Carlo simulations.
Numerical Model of Transitory Flood Flow in 2005 on River Timis
NASA Astrophysics Data System (ADS)
Ghitescu, Marie-Alice; Lazar, Gheorghe; Titus Constantin, Albert; Nicoara, Serban-Vlad
2017-10-01
The paper presents numerical modelling of fluid flow transiting on the Timis River, downstream Lugoj section - N.H. COSTEIU, the occurrence of accidental flood waves from 4 April to 11 April 2005. Numerical simulation aims to estimate water levels on the route pattern on some areas and areas associated respectively floodplain adjacent construction site on the right bank of Timis river, on existing conditions in 2005. The model simulation from 2005 flood event shows that the model can be used for future inundation studies in this locality.
Soapy: an adaptive optics simulation written purely in Python for rapid concept development
NASA Astrophysics Data System (ADS)
Reeves, Andrew
2016-07-01
Soapy is a newly developed Adaptive Optics (AO) simulation which aims be a flexible and fast to use tool-kit for many applications in the field of AO. It is written purely in the Python language, adding to and taking advantage of the already rich ecosystem of scientific libraries and programs. The simulation has been designed to be extremely modular, such that each component can be used stand-alone for projects which do not require a full end-to-end simulation. Ease of use, modularity and code clarity have been prioritised at the expense of computational performance. Though this means the code is not yet suitable for large studies of Extremely Large Telescope AO systems, it is well suited to education, exploration of new AO concepts and investigations of current generation telescopes.
Moussa, Ahmed; Loye, Nathalie; Charlin, Bernard; Audétat, Marie-Claude
2016-01-01
Background Helping trainees develop appropriate clinical reasoning abilities is a challenging goal in an environment where clinical situations are marked by high levels of complexity and unpredictability. The benefit of simulation-based education to assess clinical reasoning skills has rarely been reported. More specifically, it is unclear if clinical reasoning is better acquired if the instructor's input occurs entirely after or is integrated during the scenario. Based on educational principles of the dual-process theory of clinical reasoning, a new simulation approach called simulation with iterative discussions (SID) is introduced. The instructor interrupts the flow of the scenario at three key moments of the reasoning process (data gathering, integration, and confirmation). After each stop, the scenario is continued where it was interrupted. Finally, a brief general debriefing ends the session. System-1 process of clinical reasoning is assessed by verbalization during management of the case, and System-2 during the iterative discussions without providing feedback. Objective The aim of this study is to evaluate the effectiveness of Simulation with Iterative Discussions versus the classical approach of simulation in developing reasoning skills of General Pediatrics and Neonatal-Perinatal Medicine residents. Methods This will be a prospective exploratory, randomized study conducted at Sainte-Justine hospital in Montreal, Qc, between January and March 2016. All post-graduate year (PGY) 1 to 6 residents will be invited to complete one SID or classical simulation 30 minutes audio video-recorded complex high-fidelity simulations covering a similar neonatology topic. Pre- and post-simulation questionnaires will be completed and a semistructured interview will be conducted after each simulation. Data analyses will use SPSS and NVivo softwares. Results This study is in its preliminary stages and the results are expected to be made available by April, 2016. Conclusions This will be the first study to explore a new simulation approach designed to enhance clinical reasoning. By assessing more closely reasoning processes throughout a simulation session, we believe that Simulation with Iterative Discussions will be an interesting and more effective approach for students. The findings of the study will benefit medical educators, education programs, and medical students. PMID:26888076
Pennaforte, Thomas; Moussa, Ahmed; Loye, Nathalie; Charlin, Bernard; Audétat, Marie-Claude
2016-02-17
Helping trainees develop appropriate clinical reasoning abilities is a challenging goal in an environment where clinical situations are marked by high levels of complexity and unpredictability. The benefit of simulation-based education to assess clinical reasoning skills has rarely been reported. More specifically, it is unclear if clinical reasoning is better acquired if the instructor's input occurs entirely after or is integrated during the scenario. Based on educational principles of the dual-process theory of clinical reasoning, a new simulation approach called simulation with iterative discussions (SID) is introduced. The instructor interrupts the flow of the scenario at three key moments of the reasoning process (data gathering, integration, and confirmation). After each stop, the scenario is continued where it was interrupted. Finally, a brief general debriefing ends the session. System-1 process of clinical reasoning is assessed by verbalization during management of the case, and System-2 during the iterative discussions without providing feedback. The aim of this study is to evaluate the effectiveness of Simulation with Iterative Discussions versus the classical approach of simulation in developing reasoning skills of General Pediatrics and Neonatal-Perinatal Medicine residents. This will be a prospective exploratory, randomized study conducted at Sainte-Justine hospital in Montreal, Qc, between January and March 2016. All post-graduate year (PGY) 1 to 6 residents will be invited to complete one SID or classical simulation 30 minutes audio video-recorded complex high-fidelity simulations covering a similar neonatology topic. Pre- and post-simulation questionnaires will be completed and a semistructured interview will be conducted after each simulation. Data analyses will use SPSS and NVivo softwares. This study is in its preliminary stages and the results are expected to be made available by April, 2016. This will be the first study to explore a new simulation approach designed to enhance clinical reasoning. By assessing more closely reasoning processes throughout a simulation session, we believe that Simulation with Iterative Discussions will be an interesting and more effective approach for students. The findings of the study will benefit medical educators, education programs, and medical students.
Using cognitive architectures to study issues in team cognition in a complex task environment
NASA Astrophysics Data System (ADS)
Smart, Paul R.; Sycara, Katia; Tang, Yuqing
2014-05-01
Cognitive social simulation is a computer simulation technique that aims to improve our understanding of the dynamics of socially-situated and socially-distributed cognition. This makes cognitive social simulation techniques particularly appealing as a means to undertake experiments into team cognition. The current paper reports on the results of an ongoing effort to develop a cognitive social simulation capability that can be used to undertake studies into team cognition using the ACT-R cognitive architecture. This capability is intended to support simulation experiments using a team-based problem solving task, which has been used to explore the effect of different organizational environments on collective problem solving performance. The functionality of the ACT-R-based cognitive social simulation capability is presented and a number of areas of future development work are outlined. The paper also describes the motivation for adopting cognitive architectures in the context of social simulation experiments and presents a number of research areas where cognitive social simulation may be useful in developing a better understanding of the dynamics of team cognition. These include the use of cognitive social simulation to study the role of cognitive processes in determining aspects of communicative behavior, as well as the impact of communicative behavior on the shaping of task-relevant cognitive processes (e.g., the social shaping of individual and collective memory as a result of communicative exchanges). We suggest that the ability to perform cognitive social simulation experiments in these areas will help to elucidate some of the complex interactions that exist between cognitive, social, technological and informational factors in the context of team-based problem-solving activities.
Kim, Ji-Hoon; Kim, Young-Min; Park, Seong Heui; Ju, Eun A; Choi, Se Min; Hong, Tai Yong
2017-06-01
The aim of the study was to compare the educational impact of two postsimulation debriefing methods-focused and corrective feedback (FCF) versus Structured and Supported Debriefing (SSD)-on team dynamics in simulation-based cardiac arrest team training. This was a pilot randomized controlled study conducted at a simulation center. Fourth-year medical students were randomly assigned to the FCF or SSD group, with each team composed of six students and a confederate. Each team participated in two simulations and the assigned debriefing (FCF or SSD) sessions and then underwent a test simulation. Two trained raters blindly assessed all of the recorded simulations using checklists. The primary outcome was the improvement in team dynamics scores between baseline and test simulation. The secondary outcomes were improvements before and after training in team clinical performance scores, self-assessed comprehension of and confidence in cardiac arrest management and team dynamics, as well as evaluations of the postsimulation debriefing intervention. In total, 95 students participated [FCF (8 teams, n = 47) and SSD (8 teams, n = 48)]. The SSD team dynamics score during the test simulation was higher than at baseline [baseline: 74.5 (65.9-80.9), test: 85.0 (71.9-87.6), P = 0.035]. However, there were no differences in the improvement in the team dynamics or team clinical performance scores between the two groups (P = 0.328, respectively). There was no significant difference in improvement in team dynamics scores during the test simulation compared with baseline between the SSD and FCF groups in a simulation-based cardiac arrest team training in fourth-year Korean medical students.
Simulation Activity in Otolaryngology Residencies.
Deutsch, Ellen S; Wiet, Gregory J; Seidman, Michael; Hussey, Heather M; Malekzadeh, Sonya; Fried, Marvin P
2015-08-01
Simulation has become a valuable tool in medical education, and several specialties accept or require simulation as a resource for resident training or assessment as well as for board certification or maintenance of certification. This study investigates current simulation resources and activities in US otolaryngology residency programs and examines interest in advancing simulation training and assessment within the specialty. Web-based survey. US otolaryngology residency training programs. An electronic web-based survey was disseminated to all US otolaryngology program directors to determine their respective institutional and departmental simulation resources, existing simulation activities, and interest in further simulation initiatives. Descriptive results are reported. Responses were received from 43 of 104 (43%) residency programs. Simulation capabilities and resources are available in most respondents' institutions (78.6% report onsite resources; 73.8% report availability of models, manikins, and devices). Most respondents (61%) report limited simulation activity within otolaryngology. Areas of simulation are broad, addressing technical and nontechnical skills related to clinical training (94%). Simulation is infrequently used for research, credentialing, or systems improvement. The majority of respondents (83.8%) expressed interest in participating in multicenter trials of simulation initiatives. Most respondents from otolaryngology residency programs have incorporated some simulation into their curriculum. Interest among program directors to participate in future multicenter trials appears high. Future research efforts in this area should aim to determine optimal simulators and simulation activities for training and assessment as well as how to best incorporate simulation into otolaryngology residency training programs. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Twelve tips for a successful interprofessional team-based high-fidelity simulation education session
Bould, M. Dylan; Layat Burn, Carine; Reeves, Scott
2014-01-01
Simulation-based education allows experiential learning without risk to patients. Interprofessional education aims to provide opportunities to different professions for learning how to work effectively together. Interprofessional simulation-based education presents many challenges, including the logistics of setting up the session and providing effective feedback to participants with different backgrounds and mental models. This paper aims to provide educators with a series of practical and pedagogical tips for designing, implementing, assessing, and evaluating a successful interprofessional team-based simulation session. The paper is organized in the sequence that an educator might use in developing an interprofessional simulation-based education session. Collectively, this paper provides guidance from determining interprofessional learning objectives and curricular design to program evaluation. With a better understanding of the concepts and pedagogical methods underlying interprofessional education and simulation, educators will be able to create conditions for a unique educational experience where individuals learn with and from other specialties and professions in a controlled, safe environment. PMID:25023765
Challenges of interprofessional team training: a qualitative analysis of residents' perceptions.
van Schaik, Sandrijn; Plant, Jennifer; O'Brien, Bridget
2015-01-01
Simulation-based interprofessional team training is thought to improve patient care. Participating teams often consist of both experienced providers and trainees, which likely impacts team dynamics, particularly when a resident leads the team. Although similar team composition is found in real-life, debriefing after simulations puts a spotlight on team interactions and in particular on residents in the role of team leader. The goal of the current study was to explore residents' perceptions of simulation-based interprofessional team training. This was a secondary analysis of a study of residents in the pediatric residency training program at the University of California, San Francisco (United States) leading interprofessional teams in simulated resuscitations, followed by facilitated debriefing. Residents participated in individual, semi-structured, audio-recorded interviews within one month of the simulation. The original study aimed to examine residents' self-assessment of leadership skills, and during analysis we encountered numerous comments regarding the interprofessional nature of the simulation training. We therefore performed a secondary analysis of the interview transcripts. We followed an iterative process to create a coding scheme, and used interprofessional learning and practice as sensitizing concepts to extract relevant themes. 16 residents participated in the study. Residents felt that simulated resuscitations were helpful but anxiety provoking, largely due to interprofessional dynamics. They embraced the interprofessional training opportunity and appreciated hearing other healthcare providers' perspectives, but questioned the value of interprofessional debriefing. They identified the need to maintain positive relationships with colleagues in light of the teams' complex hierarchy as a barrier to candid feedback. Pediatric residents in our study appreciated the opportunity to participate in interprofessional team training but were conflicted about the value of feedback and debriefing in this setting. These data indicate that the optimal approach to such interprofessional education activities deserves further study.
2007-04-16
KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California. The launch vehicle will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.
The third stage of the Orbital Sciences Pegasus XL rocket is bei
2007-04-03
At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.
2007-04-03
KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.
2007-04-16
KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM spacecraft is secured onto a transporter at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.
The third stage of the Orbital Sciences Pegasus XL rocket is bei
2007-04-03
At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.
USDA-ARS?s Scientific Manuscript database
There has been a lot of interest in the use of pre and probiotics to increase growth and improve disease resistance in the catfish industry. This study aimed to evaluate a commercially available prebiotic and probiotic under conditions simulating commercial production in hybrid catfish. The dietar...
Web-Based Instruction, Learning Effectiveness and Learning Behavior: The Impact of Relatedness
ERIC Educational Resources Information Center
Shieh, Chich-Jen; Liao, Ying; Hu, Ridong
2013-01-01
This study aims to discuss the effects of Web-based Instruction and Learning Behavior on Learning Effectiveness. Web-based Instruction contains the dimensions of Active Learning, Simulation-based Learning, Interactive Learning, and Accumulative Learning; and, Learning Behavior covers Learning Approach, Learning Habit, and Learning Attitude. The…
Comprehension of Architectural Construction through Multimedia Active Learning
ERIC Educational Resources Information Center
Mas, Ángeles; Blasco, Vicente; Lerma, Carlos; Angulo, Quiteria
2013-01-01
This study presents an investigation about the use of multimedia procedures applied to architectural construction teaching. We have applied current technological resources, aiming to rationalize and optimize the active learning process. The experience presented to students is very simple and yet very effective. It has consisted in a simulation of…
USDA-ARS?s Scientific Manuscript database
Vertical flow constructed wetland (VFCW) is a promising engineering technique for removal of excess nutrients and certain pollutants from wastewater and stormwater. The aim of this study was to develop a STELLA (Structural Thinking, Experiential Learning Laboratory with Animation) model for estimati...
Curricular Deliberation about "Hamlet": An Exercise in the Practical.
ERIC Educational Resources Information Center
Siegel, Judith Susan
This study attempts to clarify and exploit Joseph Schwab's recent and current work on "practical" and "eclectic" curriculums in a simulated deliberation about a concrete curricular question, How might "Hamlet" be taught to one group of high school juniors? By exemplifying curricular deliberation, it aims to clarify…
Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) hel...
Simulation-Based Abdominal Ultrasound Training - A Systematic Review.
Østergaard, M L; Ewertsen, C; Konge, L; Albrecht-Beste, E; Bachmann Nielsen, M
2016-06-01
The aim is to provide a complete overview of the different simulation-based training options for abdominal ultrasound and to explore the evidence of their effect. This systematic review was performed according to the PRISMA guidelines and Medline, Embase, Web of Science, and the Cochrane Library was searched. Articles were divided into three categories based on study design (randomized controlled trials, before-and-after studies and descriptive studies) and assessed for level of evidence using the Oxford Centre for Evidence Based Medicine (OCEBM) system and for bias using the Cochrane Collaboration risk of bias assessment tool. Seventeen studies were included in the analysis: four randomized controlled trials, eight before-and-after studies with pre- and post-test evaluations, and five descriptive studies. No studies scored the highest level of evidence, and 14 had the lowest level. Bias was high for 11 studies, low for four, and unclear for two. No studies used a test with established evidence of validity or examined the correlation between obtained skills on the simulators and real-life clinical skills. Only one study used blinded assessors. The included studies were heterogeneous in the choice of simulator, study design, participants, and outcome measures, and the level of evidence for effect was inadequate. In all studies simulation training was equally or more beneficial than other instructions or no instructions. Study designs had significant built-in bias and confounding issues; therefore, further research should be based on randomized controlled trials using tests with validity evidence and blinded assessors. © Georg Thieme Verlag KG Stuttgart · New York.
ERIC Educational Resources Information Center
Cox, Stephany M.; Cox, Daniel J.; Kofler, Michael J.; Moncrief, Matthew A.; Johnson, Ronald J.; Lambert, Ann E.; Cain, Sarah A.; Reeve, Ronald E.
2016-01-01
Previous studies have shown that individuals with autism spectrum disorder (ASD) demonstrate poorer driving performance than their peers and are less likely to obtain a driver's license. This study aims to examine the relationship between driving performance and executive functioning for novice drivers, with and without ASD, using a driving…
The Fixed Target Experiment for Studies of Baryonic Matter at the Nuclotron (BM@N)
NASA Astrophysics Data System (ADS)
Kapishin, M. N.
2017-12-01
BM@N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the NICA-Nuclotron accelerator complex. The aim of the BM@N experiment is to study relativistic heavy ion beam interactions with fixed targets. The BM@N setup, results of Monte Carlo simulations, and the BM@N experimental program are presented.
ERIC Educational Resources Information Center
Woodward-Kron, Robyn; Elder, Catherine
2016-01-01
The aim of this paper is to investigate from a discourse analytic perspective task authenticity in the speaking component of the Occupational English Test (OET), an English language screening test for clinicians designed to reflect the language demands of health professional-patient communication. The study compares the OET speaking sub-test…
ERIC Educational Resources Information Center
Hasenekoglu, Ismet; Timucin, Melih
2007-01-01
The aim of this study is to collect and evaluate opinions of CAI experts and biology teachers about a high school level Computer Assisted Biology Instruction Material presenting computer-made modelling and simulations. It is a case study. A material covering "Nucleic Acids and Protein Synthesis" topic was developed as the…
Mirza, Shaher Bano; Ekhteiari Salmas, Ramin; Fatmi, M Qaiser; Durdagi, Serdar
2017-12-01
The Klotho is known as lifespan enhancing protein involved in antagonizing the effect of Wnt proteins. Wnt proteins are stem cell regulators, and uninterrupted exposure of Wnt proteins to the cell can cause stem and progenitor cell senescence, which may lead to aging. Keeping in mind the importance of Klotho in Wnt signaling, in silico approaches have been applied to study the important interactions between Klotho and Wnt3 and Wnt3a (wingless-type mouse mammary tumor virus (MMTV) integration site family members 3 and 3a). The main aim of the study is to identify important residues of the Klotho that help in designing peptides which can act as Wnt antagonists. For this aim, a protein engineering study is performed for Klotho, Wnt3 and Wnt3a. During the theoretical analysis of homology models, unexpected role of number of disulfide bonds and secondary structure elements has been witnessed in case of Wnt3 and Wnt3a proteins. Different in silico experiments were carried out to observe the effect of correct number of disulfide bonds on 3D protein models. For this aim, total of 10 molecular dynamics (MD) simulations were carried out for each system. Based on the protein-protein docking simulations of selected protein models of Klotho with Wnt3 and Wnt3a, different peptides derived from Klotho have been designed. Wnt3 and Wnt3a proteins have three important domains: Index finger, N-terminal domain and a patch of ∼10 residues on the solvent exposed surface of palm domain. Protein-peptide docking of designed peptides of Klotho against three important domains of palmitoylated Wnt3 and Wnt3a yields encouraging results and leads better understanding of the Wnt protein inhibition by proposed Klotho peptides. Further in vitro studies can be carried out to verify effects of novel designed peptides as Wnt antagonists.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
ERIC Educational Resources Information Center
Terzioglu, Fusun; Tuna, Zahide; Duygulu, Sergul; Boztepe, Handan; Kapucu, Sevgisun; Ozdemir, Leyla; Akdemir, Nuran; Kocoglu, Deniz; Alinier, Guillaume; Festini, Filippo
2013-01-01
Aim: The aim of this paper is to share the initial experiences on a European Union (EU) Lifelong Learning Programme Leonardo Da Vinci Transfer of Innovation Project related to the use of simulation-based learning with nursing students from Turkey. The project started at the end of the 2010 involving 7 partners from 3 different countries including…
Technicians prepare the AIM spacecraft for fairing installation
2007-04-12
At Vandenberg Air Force Base in California, technicians prepare the AIM spacecraft for fairing installation. The fairing is a molded structure that fits around the spacecraft and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch. Launch will be from a Pegasus XL rocket, carried and released by Orbital Sciences L-1011 jet aircraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.
2007-03-27
KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
2007-03-24
KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians roll the AIM spacecraft back under the protective clean tent. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
2007-03-24
KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lift the AIM spacecraft via the spacecraft handling fixture attached to it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
2007-03-24
KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft, hovering above it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
2007-03-24
KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
2007-03-24
KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the AIM spacecraft onto a moveable stand. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
2007-03-24
KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians maneuver the spacecraft handling fixture toward the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
2007-03-24
KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Effects of artificial hypolimnetic oxygenation in a shallow lake. Part 2: numerical modelling.
Toffolon, Marco; Serafini, Michele
2013-01-15
A three-dimensional numerical model is used to simulate the thermal destratification caused by hypolimnetic jets releasing oxygen-rich water for lake restoration. Focussing on the case study described in the companion paper (Toffolon et al., 2013), i.e. the small, relatively shallow Lake Serraia (Trentino, Italy), a specific simplified sub-grid model is developed in the numerical model to reproduce jet entrainment with reduced computational costs, with the aim to simulate the whole lake dynamics along several weeks. The noticeable agreement between numerical results and available measurements suggests that the model can be used to understand the main effects of the hypolimnetic oxygenation in different scenarios. Therefore, different options can be evaluated and guidelines can be proposed for lake management, with the aim to preserve the typical thermal stratification while providing sufficient oxygen mass to proceed with the restoration phase. Copyright © 2012 Elsevier Ltd. All rights reserved.
Students' experiences of learning manual clinical skills through simulation.
Johannesson, Eva; Silén, Charlotte; Kvist, Joanna; Hult, Håkan
2013-03-01
Learning manual skills is a fundamental part of health care education, and motor, sensory and cognitive learning processes are essential aspects of professional development. Simulator training has been shown to enhance factors that facilitate motor and cognitive learning. The present study aimed to investigate the students' experiences and thoughts about their learning through simulation skills training. The study was designed for an educational setting at a clinical skills centre. Ten third-year undergraduate nursing students performed urethral catheterisation, using the virtual reality simulator UrecathVision™, which has haptic properties. The students practised in pairs. Each session was videotaped and the video was used to stimulate recall in subsequent interviews. The interviews were analysed using qualitative content analysis. The analysis from interviews resulted in three themes: what the students learn, how the students learn, and the simulator's contribution to the students' learning. Students learned manual skills, how to perform the procedure, and professional behaviour. They learned by preparing, watching, practising and reflecting. The simulator contributed by providing opportunities for students to prepare for the skills training, to see anatomical structures, to feel resistance, and to become aware of their own performance ability. The findings show that the students related the task to previous experiences, used sensory information, tested themselves and practised techniques in a hands-on fashion, and reflected in and on action. The simulator was seen as a facilitator to learning the manual skills. The study design, with students working in pairs combined with video recording, was found to enhance opportunities for reflection.
Baker, B G; Bhalla, A; Doleman, B; Yarnold, E; Simons, S; Lund, J N; Williams, J P
2017-01-01
Simulation-based training (SBT) has become an increasingly important method by which doctors learn. Stress has an impact upon learning, performance, technical, and non-technical skills. However, there are currently no studies that compare stress in the clinical and simulated environment. We aimed to compare objective (heart rate variability, HRV) and subjective (state trait anxiety inventory, STAI) measures of stress theatre with a simulated environment. HRV recordings were obtained from eight anesthetic trainees performing an uncomplicated rapid sequence induction at pre-determined procedural steps using a wireless Polar RS800CX monitor © in an emergency theatre setting. This was repeated in the simulated environment. Participants completed an STAI before and after the procedure. Eight trainees completed the study. The theatre environment caused an increase in objective stress vs baseline (p = .004). There was no significant difference between average objective stress levels across all time points (p = .20) between environments. However, there was a significant interaction between the variables of objective stress and environment (p = .045). There was no significant difference in subjective stress (p = .27) between environments. Simulation was unable to accurately replicate the stress of the technical procedure. This is the first study that compares the stress during SBT with the theatre environment and has implications for the assessment of simulated environments for use in examinations, rating of technical and non-technical skills, and stress management training.
High-Fidelity Simulation: Preparing Dental Hygiene Students for Managing Medical Emergencies.
Bilich, Lisa A; Jackson, Sarah C; Bray, Brenda S; Willson, Megan N
2015-09-01
Medical emergencies can occur at any time in the dental office, so being prepared to properly manage the situation can be the difference between life and death. The entire dental team must be properly trained regarding all aspects of emergency management in the dental clinic. The aim of this study was to evaluate a new educational approach using a high-fidelity simulator to prepare dental hygiene students for medical emergencies. This study utilized high-fidelity simulation (HFS) to evaluate the abilities of junior dental hygiene students at Eastern Washington University to handle a medical emergency in the dental hygiene clinic. Students were given a medical emergency scenario requiring them to assess the emergency and implement life-saving protocols in a simulated "real-life" situation using a high-fidelity manikin. Retrospective data were collected for four years from the classes of 2010 through 2013 (N=114). The results indicated that learning with simulation was effective in helping the students identify the medical emergency in a timely manner, implement emergency procedures correctly, locate and correctly utilize contents of the emergency kit, administer appropriate intervention/treatment for a specific patient, and provide the patient with appropriate follow-up instructions. For dental hygiene programs seeking to enhance their curricula in the area of medical emergencies, this study suggests that HFS is an effective tool to prepare students to appropriately handle medical emergencies. Faculty calibration is essential to standardize simulation.
Medicanes in an ocean-atmosphere coupled regional climate model
NASA Astrophysics Data System (ADS)
Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B.
2014-03-01
So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°). The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.
Medicanes in an ocean-atmosphere coupled regional climate model
NASA Astrophysics Data System (ADS)
Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B.
2014-08-01
So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid spacings of 0.44, 0.22, and 0.08°; with/without spectral nudging, and an ocean grid spacing of 1/12°). The results show that at high resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.
Driving performance in a power wheelchair simulator.
Archambault, Philippe S; Tremblay, Stéphanie; Cachecho, Sarah; Routhier, François; Boissy, Patrick
2012-05-01
A power wheelchair simulator can allow users to safely experience various driving tasks. For such training to be efficient, it is important that driving performance be equivalent to that in a real wheelchair. This study aimed at comparing driving performance in a real and in a simulated environment. Two groups of healthy young adults performed different driving tasks, either in a real power wheelchair or in a simulator. Smoothness of joystick control as well as the time necessary to complete each task were recorded and compared between the two groups. Driving strategies were analysed from video recordings. The sense of presence, of really being in the virtual environment, was assessed through a questionnaire. Smoothness of joystick control was the same in the real and virtual groups. Task completion time was higher in the simulator for the more difficult tasks. Both groups showed similar strategies and difficulties. The simulator generated a good sense of presence, which is important for motivation. Performance was very similar for power wheelchair driving in the simulator or in real life. Thus, the simulator could potentially be used to complement training of individuals who require a power wheelchair and use a regular joystick. [Box: see text].
NASA Astrophysics Data System (ADS)
Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio
2017-02-01
The interstitial photodynamic therapy (iPDT) with 5-aminolevulinic acid (5-ALA) is a safe and feasible treatment modality of malignant glioblastoma. In order to cover the tumour volume, the exact position of the light diffusers within the lesion is needed to decide precisely. The aim of this study is the development of evaluation method of treatment volume with 3D Monte Carlo simulation for iPDT using 5-ALA. Monte Carlo simulations of fluence rate were performed using the optical properties of the brain tissue infiltrated by tumor cells and normal tissue. 3-D Monte Carlo simulation was used to calculate the position of the light diffusers within the lesion and light transport. The fluence rate near the diffuser was maximum and decreased exponentially with distance. The simulation can calculate the amount of singlet oxygen generated by PDT. In order to increase the accuracy of simulation results, the parameter for simulation includes the quantum yield of singlet oxygen generation, the accumulated concentration of photosensitizer within tissue, fluence rate, molar extinction coefficient at the wavelength of excitation light. The simulation is useful for evaluation of treatment region of iPDT with 5-ALA.
War and Peace in International Relations Theory: A Classroom Simulation
ERIC Educational Resources Information Center
Sears, Nathan Alexander
2018-01-01
Simulations are increasingly common pedagogical tools in political science and international relations courses. This article develops a classroom simulation that aims to facilitate students' theoretical understanding of the topic of war and peace in international relations, and accomplishes this by incorporating important theoretical concepts…
Huang, Cynthia Y; Thomas, Jonathan B; Alismail, Abdullah; Cohen, Avi; Almutairi, Waleed; Daher, Noha S; Terry, Michael H; Tan, Laren D
2018-01-01
The aim of this study was to investigate the feasibility of using augmented reality (AR) glasses in central line simulation by novice operators and compare its efficacy to standard central line simulation/teaching. This was a prospective randomized controlled study enrolling 32 novice operators. Subjects were randomized on a 1:1 basis to either simulation using the augmented virtual reality glasses or simulation using conventional instruction. The study was conducted in tertiary-care urban teaching hospital. A total of 32 adult novice central line operators with no visual or auditory impairments were enrolled. Medical doctors, respiratory therapists, and sleep technicians were recruited from the medical field. The mean time for AR placement in the AR group was 71±43 s, and the time to internal jugular (IJ) cannulation was 316±112 s. There was no significant difference in median (minimum, maximum) time (seconds) to IJ cannulation for those who were in the AR group and those who were not (339 [130, 550] vs 287 [35, 475], p =0.09), respectively. There was also no significant difference between the two groups in median total procedure time (524 [329, 792] vs 469 [198, 781], p =0.29), respectively. There was a significant difference in the adherence level between the two groups favoring the AR group ( p =0.003). AR simulation of central venous catheters in manikins is feasible and efficacious in novice operators as an educational tool. Future studies are recommended in this area as it is a promising area of medical education.
Individualized feedback during simulated laparoscopic training: a mixed methods study
Weurlander, Maria; Hedman, Leif; Nisell, Henry; Lindqvist, Pelle G.; Felländer-Tsai, Li; Enochsson, Lars
2015-01-01
Objectives This study aimed to explore the value of indi-vidualized feedback on performance, flow and self-efficacy during simulated laparoscopy. Furthermore, we wished to explore attitudes towards feedback and simulator training among medical students. Methods Sixteen medical students were included in the study and randomized to laparoscopic simulator training with or without feedback. A teacher provided individualized feedback continuously throughout the procedures to the target group. Validated questionnaires and scales were used to evaluate self-efficacy and flow. The Mann-Whitney U test was used to evaluate differences between groups regarding laparoscopic performance (instrument path length), self-efficacy and flow. Qualitative data was collected by group interviews and interpreted using inductive thematic analyses. Results Sixteen students completed the simulator training and questionnaires. Instrument path length was shorter in the feedback group (median 3.9 m; IQR: 3.3-4.9) as com-pared to the control group (median 5.9 m; IQR: 5.0-8.1), p<0.05. Self-efficacy improved in both groups. Eleven students participated in the focus interviews. Participants in the control group expressed that they had fun, whereas participants in the feedback group were more concentrated on the task and also more anxious. Both groups had high ambitions to succeed and also expressed the importance of getting feedback. The authenticity of the training scenario was important for the learning process. Conclusions This study highlights the importance of individualized feedback during simulated laparoscopy training. The next step is to further optimize feedback and to transfer standardized and individualized feedback from the simulated setting to the operating room. PMID:26223033
Software for Brain Network Simulations: A Comparative Study
Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.
2017-01-01
Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models. PMID:28775687
Saaranen, Terhi; Vaajoki, Anne; Kellomäki, Marjaana; Hyvärinen, Marja-Leena
2015-02-01
This article describes the experiences of master students of nursing science in learning interpersonal communication competence through the simulation method. The exercises reflected challenging interactive situations in the field of health care. Few studies have been published on using the simulation method in the communication education of teachers, managers, and experts in this field. The aim of this study is to produce information which can be utilised in developing the simulation method to promote the interpersonal communication competence of master-level students of health sciences. This study used the qualitative, descriptive research method. At the Department of Nursing Science, the University of Eastern Finland, students major in nursing science specialise in nursing leadership and management, preventive nursing science, or nurse teacher education. Students from all three specialties taking the Challenging Situations in Speech Communication course participated (n=47). Essays on meaningful learning experiences collected using the critical incident technique, underwent content analysis. Planning of teaching, carrying out different stages of the simulation exercise, participant roles, and students' personal factors were central to learning interpersonal communication competence. Simulation is a valuable method in developing the interpersonal communication competence of students of health sciences at the masters' level. The methods used in the simulation teaching of emergency care are not necessarily applicable as such to communication education. The role of teacher is essential to supervising students' learning in simulation exercises. In the future, it is important to construct questions that help students to reflect specifically on communication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simulation of a tethered microgravity robot pair and validation on a planar air bearing
NASA Astrophysics Data System (ADS)
Mantellato, R.; Lorenzini, E. C.; Sternberg, D.; Roascio, D.; Saenz-Otero, A.; Zachrau, H. J.
2017-09-01
A software model has been developed to simulate the on-orbit dynamics of a dual-mass tethered system where one or both of the tethered spacecraft are able to produce propulsive thrust. The software simulates translations and rotations of both spacecraft, with the visco-elastic tether being simulated as a lumped-mass model. Thanks to this last feature, tether longitudinal and lateral modes of vibration and tether tension can be accurately assessed. Also, the way the spacecraft motion responds to sudden tether tension spikes can be studied in detail. The code enables the simulation of different scenarios, including space tug missions for deorbit maneuvers in a debris mitigation context and general-purpose tethered formation flight missions. This study aims to validate the software through a representative test campaign performed with the MIT Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) planar air bearing system. Results obtained with the numerical simulator are compared with data from direct measurements in different testing setups. The studied cases take into account different initial conditions of the spacecraft velocities and relative attitudes, and thrust forces. Data analysis is presented comparing the results of the simulations with direct measurements of acceleration and Azimuth rate of the two bodies in the planar air bearing test facility using a Nylon tether. Plans for conducting a microgravity test campaign using the SPHERES satellites aboard the International Space Station are also being scheduled in the near future in order to further validate the simulation using data from the relevant operational environment of extended microgravity with full six degree of freedom (per body) motion.
Computer Simulation for Pain Management Education: A Pilot Study.
Allred, Kelly; Gerardi, Nicole
2017-10-01
Effective pain management is an elusive concept in acute care. Inadequate knowledge has been identified as a barrier to providing optimal pain management. This study aimed to determine student perceptions of an interactive computer simulation as a potential method for learning pain management, as a motivator to read and learn more about pain management, preference over traditional lecture, and its potential to change nursing practice. A post-computer simulation survey with a mixed-methods descriptive design was used in this study. A college of nursing in a large metropolitan university in the Southeast United States. A convenience sample of 30 nursing students in a Bachelor of Science nursing program. An interactive computer simulation was developed as a potential alternative method of teaching pain management to nursing students. Increases in educational gain as well as its potential to change practice were explored. Each participant was asked to complete a survey consisting of 10 standard 5-point Likert scale items and 5 open-ended questions. The survey was used to evaluate the students' perception of the simulation, specifically related to educational benefit, preference compared with traditional teaching methods, and perceived potential to change nursing practice. Data provided descriptive statistics for initial evaluation of the computer simulation. The responses on the survey suggest nursing students perceive the computer simulation to be entertaining, fun, educational, occasionally preferred over regular lecture, and with potential to change practice. Preliminary data support the use of computer simulation in educating nursing students about pain management. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background Simulation as a pedagogical approach has been used in health professional education to address the need to safely develop effective clinical skills prior to undertaking clinical practice. However, evidence for the use of simulation in midwifery is largely anecdotal, and research evaluating the effectiveness of different levels of simulation fidelity are lacking. Woman centred care is a core premise of the midwifery profession and describes the behaviours of an individual midwife who demonstrates safe and effective care of the individual woman. Woman centred care occurs when the midwife modifies the care to ensure the needs of each individual woman are respected and addressed. However, a review of the literature demonstrates an absence of a valid and reliable tool to measure the development of woman centred care behaviours. This study aims to determine which level of fidelity in simulated learning experiences provides the most effective learning outcomes in the development of woman centred clinical assessment behaviors and skills in student midwives. Methods/Design Three-arm, randomised, intervention trial. In this research we plan to: a) trial three levels of simulation fidelity - low, medium and progressive, on student midwives performing the procedure of vaginal examination; b) measure clinical assessment skills using the Global Rating Scale (GRS) and Integrated Procedural Performance Instrument (IPPI); and c) pilot the newly developed Woman Centred Care Scale (WCCS) to measure clinical behaviors related to Woman-Centredness. Discussion This project aims to enhance knowledge in relation to the appropriate levels of fidelity in simulation that yield the best educational outcomes for the development of woman centred clinical assessment in student midwives. The outcomes of this project may contribute to improved woman centred clinical assessment for student midwives, and more broadly influence decision making regarding education resource allocation for maternity simulation. PMID:23706037
End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korostelev, Maxim; Bailey, Ian; Herrod, Alexander
2016-06-01
The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay,more » collimation (with accurate representation of all apertures) and spin tracking.« less
Vehicle Modeling for Future Generation Transportation Simulation
DOT National Transportation Integrated Search
2009-05-10
Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...
Jenkins, Paul J; McDonald, David A; Van Der Meer, Robert; Morton, Alec; Nugent, Margaret; Rymaszewski, Lech A
2017-01-01
Objective Healthcare faces the continual challenge of improving outcome while aiming to reduce cost. The aim of this study was to determine the micro cost differences of the Glasgow non-operative trauma virtual pathway in comparison to a traditional pathway. Design Discrete event simulation was used to model and analyse cost and resource utilisation with an activity-based costing approach. Data for a full comparison before the process change was unavailable so we used a modelling approach, comparing a virtual fracture clinic (VFC) with a simulated traditional fracture clinic (TFC). Setting The orthopaedic unit VFC pathway pioneered at Glasgow Royal Infirmary has attracted significant attention and interest and is the focus of this cost study. Outcome measures Our study focused exclusively on patients with non-operative trauma attending emergency department or the minor injuries unit and the subsequent step in the patient pathway. Retrospective studies of patient outcomes as a result of the protocol introductions for specific injuries are presented in association with activity costs from the models. Results Patients are satisfied with the new pathway, the information provided and the outcome of their injuries (Evidence Level IV). There was a 65% reduction in the number of first outpatient face-to-face (f2f) attendances in orthopaedics. In the VFC pathway, the resources required per day were significantly lower for all staff groups (p≤0.001). The overall cost per patient of the VFC pathway was £22.84 (95% CI 21.74 to 23.92) per patient compared with £36.81 (95% CI 35.65 to 37.97) for the TFC pathway. Conclusions Our results give a clearer picture of the cost comparison of the virtual pathway over a wholly traditional f2f clinic system. The use of simulation-based stochastic costings in healthcare economic analysis has been limited to date, but this study provides evidence for adoption of this method as a basis for its application in other healthcare settings. PMID:28882905
Sleep endoscopy with simulation bite for prediction of oral appliance treatment outcome.
Vroegop, Anneclaire V M T; Vanderveken, Olivier M; Dieltjens, Marijke; Wouters, Kristien; Saldien, Vera; Braem, Marc J; Van de Heyning, Paul H
2013-06-01
The aim of this study was to assess the value of drug-induced sleep endoscopy (DISE) using a custom-made simulation bite in maximal comfortable protrusion (MCP) of the mandible, in the prediction of treatment outcome for obstructive sleep apnea (OSA) with a mandibular advancement device (MAD). Two hundred patients (74% male; age 46 ± 9 years; apnea-hypopnea index [AHI] 19 ± 13 h(-1) sleep; body mass index [BMI] 27 ± 4 kg m(-2) ) with sleep-disordered breathing underwent DISE with a simulation bite in MCP. One hundred and thirty-five patients with an established diagnosis of OSA commenced MAD treatment. The associations between the findings during DISE with simulation bite and treatment outcome were evaluated. Treatment response was defined as a reduction in AHI following MAD treatment of ≥ 50% compared to baseline. Overall MAD treatment response in the studied population was 69%. The results of this study demonstrated a statistically significant association between a positive effect of the simulation bite on the upper airway patency during DISE and treatment response with MAD (P < 0.01). The results of this study suggest that the use of a simulation bite in maximal comfortable protrusion (MCP) of the mandible, as used during DISE in patients with OSA, tends to be effective in predicting treatment response of MAD treatment. © 2012 European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Haraldsson, Hörður V.; Ólafsdóttir, Rannveig
2003-09-01
Iceland is facing severe land degradation in many parts of the country. This study aims to increase the understanding of the complex interactions and interconnectivity between the critical factors that help maintain the land degradation processes in sub-arctic environments. A holistic approach in the form of a causal loop diagram (CLD) is applied for diagnosing the influencing factors. To further study the relationship between vegetation cover and its degradation, a dynamic model that uses a long-term temperature data as the main indicator function is constructed to simulate potential vegetation cover during the Holocene. The results depict an oscillating vegetation cover. Gradual degradation in potential vegetation cover begins ca. 3000 BP and accelerates greatly after ca. 2500 BP. From the time of the Norse settlement in the latter halve of the 9th century to present time, the simulated vegetation cover retreats ca. 25% in relation to climatic cooling.
Rastija, Vesna; Agić, Dejan; Tomiš, Sanja; Nikolič, Sonja; Hranjec, Marijana; Grace, Karminski-Zamola; Abramić, Marija
2015-01-01
A molecular modeling study is performed on series of benzimidazol-based inhibitors of human dipeptidyl peptidase III (DPP III). An eight novel compounds were synthesized in excellent yields using green chemistry approach. This study is aimed to elucidate the structural features of benzimidazole derivatives required for antagonism of human DPP III activity using Quantitative Structure-Activity Relationship (QSAR) analysis, and to understand the mechanism of one of the most potent inhibitor binding into the active site of this enzyme, by molecular dynamics (MD) simulations. The best model obtained includes S3K and RDF045m descriptors which have explained 89.4 % of inhibitory activity. Depicted moiety for strong inhibition activity matches to the structure of most potent compound. MD simulation has revealed importance of imidazolinyl and phenyl groups in the mechanism of binding into the active site of human DPP III.
NASA Astrophysics Data System (ADS)
Wu, Yan; Huang, Yuan-yuan
2018-03-01
Abnormal grain growth of single phase AZ31 Mg alloy in the spatio-temporal process has been simulated by phase field models, and the influencing factors of abnormal grain growth are studied in order to find the ways to control secondary recrystallization in the microstructure. The study aims to find out the mechanisms for abnormal grain growth in real alloys. It is shown from the simulated results that the abnormal grain growth can be controlled by the strain restored energy. Secondary recrystallization after an annealing treatment can be induced if there are grains of a certain orientation in the microstructure with local high restored energy. However, if the value of the local restored energy at a certain grain orientation is not greater than 1.1E 0, there may be no abnormal grain growth in the microstructure.
Ha, Eun-Ho
2018-04-23
Standardized patients (SPs) boost self-confidence, improve problem solving, enhance critical thinking, and advance clinical judgment of nursing students. The aim of this study was to examine nursing students' experience with SPs in simulation-based learning. Q-methodology was used. Department of nursing in Seoul, South Korea. Fourth-year undergraduate nursing students (n = 47). A total of 47 fourth-year undergraduate nursing students ranked 42 Q statements about experiences with SPs into a normal distribution grid. The following three viewpoints were obtained: 1) SPs are helpful for patient care (patient-centered view), 2) SPs roles are important for nursing student learning (SPs roles-centered view), and 3) SPs can promote competency of nursing students (student-centered view). These results indicate that SPs may improve nursing students' confidence and nursing competency. Professors should reflect these three viewpoints in simulation-based learning to effectively engage SPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modelling for anchovy recruitment studies in the Gulf of Lions (Western Mediterranean Sea)
NASA Astrophysics Data System (ADS)
Nicolle, Amandine; Garreau, Pierre; Liorzou, Bernard
2009-12-01
Anchovy ( Engraulis encrasicolus) is an important commercial species and one of the most abundant pelagic fish in the Gulf of Lions and the Catalan Sea. The factors influencing its recruitment are crucial to fisheries and ecological research. Among those factors transport of larvae by hydrodynamics (currents) is important because it determines whether the organisms can reach areas favourable to recruitment or are dispersed. Therefore, the first step in anchovy recruitment modelling is to simulate North-western Mediterranean Sea circulation. Several years (2001-2008) of hydrodynamics were simulated with the MARS-3D code. The resulting simulated currents and salinity are used by Lagrangian tool, Ichthyop, to transport anchovy eggs and larvae to the Western Mediterranean Sea. The aim of this study is to understand the main hydrodynamic processes that control anchovy transport and the effects of diel vertical migration on the transport and final distribution of anchovy.
NASA Technical Reports Server (NTRS)
Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.
2016-01-01
This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.
Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun
2018-03-01
The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.
The analysis of thermal comfort requirements through the simulation of an occupied building.
Thellier, F; Cordier, A; Monchoux, F
1994-05-01
Building simulation usually focuses on the study of physical indoor parameters, but we must not forget the main aim of a house: to provide comfort to the occupants. This study was undertaken in order to build a complete tool to model thermal behaviour that will enable the prediction of thermal sensations of humans in a real environment. A human thermoregulation model was added to TRNSYS, a building simulation program. For our purposes, improvements had to be made to the original physiological model, by refining the calculation of all heat exchanges with the environment and adding a representation of clothes. This paper briefly describes the program, its modifications, and compares its results with experimental ones. An example of potential use is given, which points out the usefulness of such models in seeking the best solutions to reach optimal environmental conditions for global, and specially local comfort, of building occupants.
Hauber, Roxanne P; Cormier, Eileen; Whyte, James
2010-01-01
Increasingly, high-fidelity patient simulation (HFPS) is becoming essential to nursing education. Much remains unknown about how classroom learning is connected to student decision-making in simulation scenarios and the degree to which transference takes place between the classroom setting and actual practice. The present study was part of a larger pilot study aimed at determining the relationship between nursing students' clinical ability to prioritize their actions and the associated cognitions and physiologic outcomes of care using HFPS. In an effort to better explain the knowledge base being used by nursing students in HFPS, the investigators explored the relationship between common measures of knowledge and performance-related variables. Findings are discussed within the context of the expert performance approach and concepts from cognitive psychology, such as cognitive architecture, cognitive load, memory, and transference.
The Advanced Gamma-ray Imageing System (AGIS): Simulation Design Studies
NASA Astrophysics Data System (ADS)
Bugaev, V.; Buckley, J.; Digel, S.; Fegan, S.; Funk, S.; Konopelko, A.; Krawczynski, H.; Lebohec, S.; Maier, G.; Vassiliev, V.
2008-04-01
We present design studies for AGIS, a proposed array of ˜100 imaging atmospheric Cherenkov telescopes for gamma-rays astronomy in the 40GeV to 100 TeV energy regime. We describe optimization studies for the array configuration, pixel size and field of view aimed at achieving the best sensitivity over the entire energy range and best angular resolution for a fixed project total cost.
Kocic, Ivana; Homsek, Irena; Dacevic, Mirjana; Grbic, Sandra; Parojcic, Jelena; Vucicevic, Katarina; Prostran, Milica; Miljkovic, Branislava
2012-04-01
The aim of this case study was to develop a drug-specific absorption model for levothyroxine (LT4) using mechanistic gastrointestinal simulation technology (GIST) implemented in the GastroPlus™ software package. The required input parameters were determined experimentally, in silico predicted and/or taken from the literature. The simulated plasma profile was similar and in a good agreement with the data observed in the in vivo bioequivalence study, indicating that the GIST model gave an accurate prediction of LT4 oral absorption. Additionally, plasma concentration-time profiles were simulated based on a set of experimental and virtual in vitro dissolution data in order to estimate the influence of different in vitro drug dissolution kinetics on the simulated plasma profiles and to identify biorelevant dissolution specification for LT4 immediate-release (IR) tablets. A set of experimental and virtual in vitro data was also used for correlation purposes. In vitro-in vivo correlation model based on the convolution approach was applied in order to assess the relationship between the in vitro and in vivo data. The obtained results suggest that dissolution specification of more than 85% LT4 dissolved in 60 min might be considered as biorelevant dissolution specification criteria for LT4 IR tablets. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Safaei, Hadi; Emami, Mohsen Davazdah; Jazi, Hamidreza Salimi; Mostaghimi, Javad
2017-12-01
Applications of hollow spherical particles in thermal spraying process have been developed in recent years, accompanied by attempts in the form of experimental and numerical studies to better understand the process of impact of a hollow droplet on a surface. During such process, volume and density of the trapped gas inside droplet change. The numerical models should be able to simulate such changes and their consequent effects. The aim of this study is to numerically simulate the impact of a hollow ZrO2 droplet on a flat surface using the volume of fluid technique for compressible flows. An open-source, finite-volume-based CFD code was used to perform the simulations, where appropriate subprograms were added to handle the studied cases. Simulation results were compared with the available experimental data. Results showed that at high impact velocities ( U 0 > 100 m/s), the compression of trapped gas inside droplet played a significant role in the impact dynamics. In such velocities, the droplet splashed explosively. Compressibility effects result in a more porous splat, compared to the corresponding incompressible model. Moreover, the compressible model predicted a higher spread factor than the incompressible model, due to planetary structure of the splat.
Ohhara, Yoshihito; Oshima, Marie; Iwai, Toshinori; Kitajima, Hiroaki; Yajima, Yasuharu; Mitsudo, Kenji; Krdy, Absy; Tohnai, Iwai
2016-02-04
Patient-specific modelling in clinical studies requires a realistic simulation to be performed within a reasonable computational time. The aim of this study was to develop simple but realistic outflow boundary conditions for patient-specific blood flow simulation which can be used to clarify the distribution of the anticancer agent in intra-arterial chemotherapy for oral cancer. In this study, the boundary conditions are expressed as a zero dimension (0D) resistance model of the peripheral vessel network based on the fractal characteristics of branching arteries combined with knowledge of the circulatory system and the energy minimization principle. This resistance model was applied to four patient-specific blood flow simulations at the region where the common carotid artery bifurcates into the internal and external carotid arteries. Results of these simulations with the proposed boundary conditions were compared with the results of ultrasound measurements for the same patients. The pressure was found to be within the physiological range. The difference in velocity in the superficial temporal artery results in an error of 5.21 ± 0.78 % between the numerical results and the measurement data. The proposed outflow boundary conditions, therefore, constitute a simple resistance-based model and can be used for performing accurate simulations with commercial fluid dynamics software.
Laser Altimeter for Flight Simulator
NASA Technical Reports Server (NTRS)
Webster, L. D.
1986-01-01
Height of flight-simulator probe above model of terrain measured by automatic laser triangulation system. Airplane simulated by probe that moves over model of terrain. Altitude of airplane scaled from height of probe above model. Height measured by triangulation of laser beam aimed at intersection of model surface with plumb line of probe.
Telecom Link--A Competitive Simulated Design Exercise.
ERIC Educational Resources Information Center
Freeman, J.; Allen, J.
1982-01-01
Telecom link is a structured design exercise concerned with building a telecommunications link between London and Amsterdam. Designed for A-level physics, the simulation requires a minimum of 10 hours. Aims of the exercise, design specifications and technical aspects, and summaries of four possible technologies used in the simulation are…
Leblanc, Fabien; Senagore, Anthony J; Ellis, Clyde N; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Delaney, Conor P
2010-01-01
The aim of this study was to compare a simulator with the human cadaver model for hand-assisted laparoscopic colorectal skills acquisition training. An observational prospective comparative study was conducted to compare the laparoscopic surgery training models. The study took place during the laparoscopic colectomy training course performed at the annual scientific meeting of the American Society of Colon and Rectal Surgeons. Thirty four practicing surgeons performed hand-assisted laparoscopic sigmoid colectomy on human cadavers (n = 7) and on an augmented reality simulator (n = 27). Prior laparoscopic colorectal experience was assessed. Trainers and trainees completed independently objective structured assessment forms. Training models were compared by trainees' technical skills scores, events scores, and satisfaction. Prior laparoscopic experience was similar in both surgeon groups. Generic and specific skills scores were similar on both training models. Generic events scores were significantly better on the cadaver model. The 2 most frequent generic events occurring on the simulator were poor hand-eye coordination and inefficient use of retraction. Specific events were scored better on the simulator and reached the significance limit (p = 0.051) for trainers. The specific events occurring on the cadaver were intestinal perforation and left ureter identification difficulties. Overall satisfaction was better for the cadaver than for the simulator model (p = 0.009). With regard to skills scores, the augmented reality simulator had adequate qualities for the hand-assisted laparoscopic colectomy training. Nevertheless, events scores highlighted weaknesses of the anatomical replication on the simulator. Although improvements likely will be required to incorporate the simulator more routinely into the colorectal training, it may be useful in its current form for more junior trainees or those early on their learning curve. Copyright 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Above-real-time training (ARTT) improves transfer to a simulated flight control task.
Donderi, D C; Niall, Keith K; Fish, Karyn; Goldstein, Benjamin
2012-06-01
The aim of this study was to measure the effects of above-real-time-training (ARTT) speed and screen resolution on a simulated flight control task. ARTT has been shown to improve transfer to the criterion task in some military simulation experiments. We tested training speed and screen resolution in a project, sponsored by Defence Research and Development Canada, to develop components for prototype air mission simulators. For this study, 54 participants used a single-screen PC-based flight simulation program to learn to chase and catch an F-18A fighter jet with another F-18A while controlling the chase aircraft with a throttle and side-stick controller. Screen resolution was varied between participants, and training speed was varied factorially across two sessions within participants. Pretest and posttest trials were at high resolution and criterion (900 knots) speed. Posttest performance was best with high screen resolution training and when one ARTT training session was followed by a session of criterion speed training. ARTT followed by criterion training improves performance on a visual-motor coordination task. We think that ARTT influences known facilitators of transfer, including similarity to the criterion task and contextual interference. Use high-screen resolution, start with ARTT, and finish with criterion speed training when preparing a mission simulation.
McAllister, Margaret; Levett-Jones, Tracy; Downer, Teresa; Harrison, Penelope; Harvey, Theresa; Reid-Searl, Kerry; Lynch, Kathy; Arthur, Carol; Layh, Janice; Calleja, Pauline
2013-11-01
Simulation in nursing is a flourishing area for nurse educators' practice. Defined as learning that amplifies, mimics or replaces real-life clinical situations, simulation aims to give students opportunity to reason through a clinical problem and make decisions, without the potential for harming actual patients. Educators in nursing are contributing to simulation learning in diverse and creative ways. Yet much of their craft is not being widely disseminated because educators are not always confident in publishing their work. This paper aims to stimulate creative development in simulation by providing short summaries, or snapshots, of diverse approaches that nurse educators are using. The objective is to inspire others to share other ideas in development or in practice that are improving learning for nursing students and practitioners, so that simulation scholarship is advanced. The snapshots presented range from approaches that: better support educators to attend to the whole process of simulation education, give students quick access to short skill-based videos, orientate students to the laboratory environment, harness the power of the group to develop documentation skills, use simulation to enrich lectures, develop multidisciplinary knowledge, and finally, which teach therapeutic communication with children in a fun and imaginative way. Copyright © 2013 Elsevier Ltd. All rights reserved.
Study of the Imaging Capabilities of SPIRIT/SPECS Concept Interferometers
NASA Technical Reports Server (NTRS)
Allen, Ronald J.
2002-01-01
Several new space science mission concepts under development at NASA-GSFC for astronomy are intended to carry out synthetic imaging using Michelson interferometers or direct (Fizeau) imaging with sparse apertures. Examples of these mission concepts include the Stellar Imager (SI), the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Fourier-Kelvin Stellar Interferometer (FKSI). We have been developing computer-based simulators for these missions. These simulators are aimed at providing a quantitative evaluation of the imaging capabilities of the mission by modeling the performance on different realistic targets in terms of sensitivity, angular resolution, and dynamic range. Both Fizeau and Michelson modes of operation can be considered. Our work is based on adapting a computer simulator called imSIM which was initially written for the Space Interferometer Mission in order to simulate the imaging mode of new missions such as those listed. This report covers the activities we have undertaken to provide a preliminary version of a simulator for the SPIRIT mission concept.
Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen
2017-11-01
Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heo, Eun Hwa; Kim, Sehyun; Park, Hye-Ja; Kil, Suk Yong
2016-11-01
This study aimed to evaluate the effects of a simulated laughter programme on mood, cortisol levels, and health-related quality of life among haemodialysis patients. Forty participants were randomly assigned to a laughter group (n = 20) or a control group (n = 20). Eleven participants completed the laughter programme after haemodialysis sessions and 18 control participants remained. The 4-week simulated laughter programme included weekly 60 min group sessions of simulated laughter, breathing, stretching exercises, and meditation, as well as daily 15 s individual laughter sessions administered via telephone. Mood, cortisol levels, and health-related quality of life were analysed using the rank analysis of covariance, and Wilcoxon's signed rank test. The laughter group exhibited improvements in mood, symptoms, social interaction quality, and role limitations due to physical health. The simulated laughter programme may help improve mood and health-related quality of life among haemodialysis patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing
NASA Astrophysics Data System (ADS)
Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias
2017-10-01
Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.
Quadrature Moments Method for the Simulation of Turbulent Reactive Flows
NASA Technical Reports Server (NTRS)
Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.
2003-01-01
A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.
Serrano, Antonio; Liebner, Jeffrey; Hines, Justin K
2016-01-01
Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.
A Multi-Stage Method for Connecting Participatory Sensing and Noise Simulations
Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui
2015-01-01
Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales. PMID:25621604
A multi-stage method for connecting participatory sensing and noise simulations.
Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui
2015-01-22
Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales.
Ramazanzadeh, Barat Ali; Ahrari, Farzaneh; Sabzevari, Berahman; Habibi, Samaneh
2014-01-01
Background and aims. This study aimed to investigate release of nickel ion from three types of nickel-titanium-based wires in the as-received state and after immersion in a simulated oral environment. Materials and methods. Forty specimens from each of the single-strand NiTi (Rematitan "Lite"), multi-strand NiTi (SPEED Supercable) and Copper NiTi (Damon Copper NiTi) were selected. Twenty specimens from each type were used in the as-received state and the others were kept in deflected state at 37ºC for 2 months followed by autoclave sterilization. The as-received and recycled wire specimens were immersed in glass bottles containing 1.8 mL of artificial saliva for 28 days and the amount of nickel ion released into the electrolyte was determined using atomic absorption spectrophotometry. Results. The single-strand NiTi released the highest quantity of nickel ion in the as-received state and the multi-strand NiTi showed the highest ion release after oral simulation. The quantity of nickelion released from Damon Copper NiTi was the lowest in both conditions. Oral simulation followed by sterilization did not have a significant influence on nickel ion release from multi-strand NiTi and Damon Copper NiTi wires, but single-strand NiTi released statistically lower quantities of nickel ion after oral simulation. Conclusion. The multi-strand nature of Supercable did not enhance the potential of corrosion after immersion in the simulated oral environment. In vitro use of nickel-titanium-based archwires followed by sterilization did not significantly increase the amount of nickel ion released from these wires. PMID:25093049
Wetmore, Douglas; Goldberg, Andrew; Gandhi, Nishant; Spivack, John; McCormick, Patrick; DeMaria, Samuel
2016-10-01
Anaesthesiologists work in a high stress, high consequence environment in which missed steps in preparation may lead to medical errors and potential patient harm. The pre-anaesthetic induction period has been identified as a time in which medical errors can occur. The Anesthesia Patient Safety Foundation has developed a Pre-Anesthetic Induction Patient Safety (PIPS) checklist. We conducted this study to test the effectiveness of this checklist, when embedded in our institutional Anesthesia Information Management System (AIMS), on resident performance in a simulated environment. Using a randomised, controlled, observer-blinded design, we compared performance of anaesthesiology residents in a simulated operating room under production pressure using a checklist in completing a thorough pre-anaesthetic induction evaluation and setup with that of residents with no checklist. The checklist was embedded in the simulated operating room's electronic medical record. Data for 38 anaesthesiology residents shows a statistically significant difference in performance in pre-anaesthetic setup and evaluation as scored by blinded raters (maximum score 22 points), with the checklist group performing better by 7.8 points (p<0.01). The effects of gender and year of residency on total score were not significant. Simulation duration (time to anaesthetic agent administration) was increased significantly by the use of the checklist. Required use of a pre-induction checklist improves anaesthesiology resident performance in a simulated environment. The PIPS checklist as an integrated part of a departmental AIMS warrant further investigation as a quality measure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J
2012-04-01
Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the simulator was successfully mastered during the course. Construct validity could be demonstrated within the course setting. The simulator's assessment system can be of value for the assessment of laparoscopic training performance within surgical skills courses. Acceptance of the simulator training is high. However, simulators are currently too expensive to be used within a large training course. © Georg Thieme Verlag KG Stuttgart · New York.
Arnold, Matthias
2017-12-02
The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.
Simulation-based local anaesthesia teaching enhances learning outcomes.
Marei, H F; Al-Jandan, B A
2013-02-01
The aim of this study was to evaluate the efficacy of simulation-based local anaesthesia teaching strategies compared to the traditional classroom lecture format on the acquisition of knowledge by students. Two groups of 10 students each were included in our study. Each of the dental students was enrolled in their third year of the programme. None of the students had ever received instructions in local anaesthesia. Group I received a 45-min instructional module that was delivered in the classroom in the traditional PowerPoint lecture format. Group II received a 45-min instructional module in the simulation laboratory as a short tutorial that was followed by an integrated practical demonstration and a hands-on practice session using local anaesthesia simulation phantoms. An identical 15-question multiple-choice test was used to test student knowledge acquisition at the end of the given session. There was a statistically significant difference between the two groups, as the participants in group II had higher score results than those of group I. In contrast to the traditional classroom lecture format, simulation-based local anaesthesia teaching is an effective tool to enhance the acquisition of theoretical knowledge by students. © 2012 John Wiley & Sons A/S.
Quantifying the Physiological Stress Response to Simulated Maritime Pilotage Tasks
Main, Luana C.; Wolkow, Alexander; Chambers, Timothy P.
2017-01-01
Objective: The aim of this study was to quantify the stress associated with performing maritime pilotage tasks in a high-fidelity simulator. Methods: Eight trainee and 13 maritime pilots completed two simulated pilotage tasks of varying complexity. Salivary cortisol samples were collected pre- and post-simulation for both trials. Heart rate was measured continuously throughout the study. Results: Significant changes in salivary cortisol (P = 0.000, η2 = 0.139), average (P = 0.006, η2 = 0.087), and peak heart rate (P = 0.013, η2 = 0.077) from pre- to postsimulation were found. Varying task complexity did partially influence stress response; average (P = 0.016, η2 = 0.026) and peak heart rate (P = 0.034, η2 = 0.020) were higher in the experimental condition. Trainees also recorded higher average (P = 0.000, η2 = 0.054) and peak heart rates (P = 0.027, η2 = 0.022). Conclusion: Performing simulated pilotage tasks evoked a measurable stress response in both trainee and expert maritime pilots. PMID:28922309
NASA Astrophysics Data System (ADS)
Kwon, Jae-Min; Ku, S.; Choi, M. J.; Chang, C. S.; Hager, R.; Yoon, E. S.; Lee, H. H.; Kim, H. S.
2018-05-01
We perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E × B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Te -driven trapped electron modes. This implies that the enhanced E × B flow can sustain a quasi-internal transport barrier for Te in an inner region neighboring the magnetic island. The enhanced E × B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.
Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate
NASA Astrophysics Data System (ADS)
Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW
2018-01-01
A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Jae-Min; Ku, S.; Choi, M. J.
Here, we perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E x B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Tmore » e-driven trapped electron modes. This implies that the enhanced E x B flow can sustain a quasi-internal transport barrier for T e in an inner region neighboring the magnetic island. The enhanced E x B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.« less
Kwon, Jae-Min; Ku, S.; Choi, M. J.; ...
2018-05-01
Here, we perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E x B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Tmore » e-driven trapped electron modes. This implies that the enhanced E x B flow can sustain a quasi-internal transport barrier for T e in an inner region neighboring the magnetic island. The enhanced E x B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.« less
Optimizing the Hydrological and Biogeochemical Simulations on a Hillslope with Stony Soil
NASA Astrophysics Data System (ADS)
Zhu, Q.
2017-12-01
Stony soils are widely distributed in the hilly area. However, traditional pedotransfer functions are not reliable in predicting the soil hydraulic parameters for these soils due to the impacts of rock fragments. Therefore, large uncertainties and errors may exist in the hillslope hydrological and biogeochemical simulations in stony soils due to poor estimations of soil hydraulic parameters. In addition, homogenous soil hydraulic parameters are usually used in traditional hillslope simulations. However, soil hydraulic parameters are spatially heterogeneous on the hillslope. This may also cause the unreliable simulations. In this study, we obtained soil hydraulic parameters using five different approaches on a tea hillslope in Taihu Lake basin, China. These five approaches included (1) Rossetta predicted and spatially homogenous, (2) Rossetta predicted and spatially heterogeneous), (3) Rossetta predicted, rock fragment corrected and spatially homogenous, (4) Rossetta predicted, rock fragment corrected and spatially heterogeneous, and (5) extracted from observed soil-water retention curves fitted by dual-pore function and spatially heterogeneous (observed). These five sets of soil hydraulic properties were then input into Hydrus-3D and DNDC to simulate the soil hydrological and biogeochemical processes. The aim of this study is testing two hypotheses. First, considering the spatial heterogeneity of soil hydraulic parameters will improve the simulations. Second, considering the impact of rock fragment on soil hydraulic parameters will improve the simulations.
SIMEDIS: a Discrete-Event Simulation Model for Testing Responses to Mass Casualty Incidents.
Debacker, Michel; Van Utterbeeck, Filip; Ullrich, Christophe; Dhondt, Erwin; Hubloue, Ives
2016-12-01
It is recognized that the study of the disaster medical response (DMR) is a relatively new field. To date, there is no evidence-based literature that clearly defines the best medical response principles, concepts, structures and processes in a disaster setting. Much of what is known about the DMR results from descriptive studies and expert opinion. No experimental studies regarding the effects of DMR interventions on the health outcomes of disaster survivors have been carried out. Traditional analytic methods cannot fully capture the flow of disaster victims through a complex disaster medical response system (DMRS). Computer modelling and simulation enable to study and test operational assumptions in a virtual but controlled experimental environment. The SIMEDIS (Simulation for the assessment and optimization of medical disaster management) simulation model consists of 3 interacting components: the victim creation model, the victim monitoring model where the health state of each victim is monitored and adapted to the evolving clinical conditions of the victims, and the medical response model, where the victims interact with the environment and the resources at the disposal of the healthcare responders. Since the main aim of the DMR is to minimize as much as possible the mortality and morbidity of the survivors, we designed a victim-centred model in which the casualties pass through the different components and processes of a DMRS. The specificity of the SIMEDIS simulation model is the fact that the victim entities evolve in parallel through both the victim monitoring model and the medical response model. The interaction between both models is ensured through a time or medical intervention trigger. At each service point, a triage is performed together with a decision on the disposition of the victims regarding treatment and/or evacuation based on a priority code assigned to the victim and on the availability of resources at the service point. The aim of the case study is to implement the SIMEDIS model to the DMRS of an international airport and to test the medical response plan to an airplane crash simulation at the airport. In order to identify good response options, the model then was used to study the effect of a number of interventional factors on the performance of the DMRS. Our study reflects the potential of SIMEDIS to model complex systems, to test different aspects of DMR, and to be used as a tool in experimental research that might make a substantial contribution to provide the evidence base for the effectiveness and efficiency of disaster medical management.
Simulating and validating coastal gradients in wind energy resources
NASA Astrophysics Data System (ADS)
Hahmann, Andrea; Floors, Rogier; Karagali, Ioanna; Vasiljevic, Nikola; Lea, Guillaume; Simon, Elliot; Courtney, Michael; Badger, Merete; Peña, Alfredo; Hasager, Charlotte
2016-04-01
The experimental campaign of the RUNE (Reducing Uncertainty of Near-shore wind resource Estimates) project took place on the western coast of Denmark during the winter 2015-2016. The campaign used onshore scanning lidar technology combined with ocean and satellite information and produced a unique dataset to study the transition in boundary layer dynamics across the coastal zone. The RUNE project aims at reducing the uncertainty of near-shore wind resource estimates produced by mesoscale modeling. With this in mind, simulations using the Weather Research and Forecasting (WRF) model were performed to identify the sensitivity in the coastal gradients of wind energy resources to various model parameters and model inputs. Among these: model horizontal grid spacing and the planetary boundary layer and surface-layer scheme. We report on the differences amongst these simulations and preliminary results on the comparison of the model simulations with the RUNE observations of lidar and satellite measurements and near coastal tall mast.
Atmosphere-ocean feedbacks in a coastal upwelling system
NASA Astrophysics Data System (ADS)
Alves, J. M. R.; Peliz, A.; Caldeira, R. M. A.; Miranda, P. M. A.
2018-03-01
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system is used in different configurations to simulate the Iberian upwelling during the 2012 summer, aiming to assess the atmosphere-ocean feedbacks in the upwelling dynamics. When model results are compared with satellite measurements and in-situ data, two-way coupling is found to have a moderate impact in data-model statistics. A significant reinforcement of atmosphere-ocean coupling coefficients is, however, observed in the two-way coupled run, and in the WRF and ROMS runs forced by previously simulated SST and wind fields, respectively. The increasing in the coupling coefficient is associated with slight, but potentially important changes in the low-level coastal jet in the atmospheric marine boundary layer. While these results do not imply the need for fully coupled simulations in many applications, they show that in seasonal numerical studies such simulations do not degrade the overall model performance, and contribute to produce better dynamical fields.
Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping
2011-03-01
Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated.
NASA Astrophysics Data System (ADS)
Chittaro, Luca; Zangrando, Nicola
Although virtual reality (VR) is a powerful simulation tool that can allow users to experience the effects of their actions in vivid and memorable ways, explorations of VR as a persuasive technology are rare. In this paper, we focus on different ways of providing negative feedback for persuasive purposes through simulated experiences in VR. The persuasive goal we consider concerns awareness of personal fire safety issues and the experiment we describe focuses on attitudes towards smoke in evacuating buildings. We test two techniques: the first technique simulates the damaging effects of smoke on the user through a visualization that should not evoke strong emotions, while the second is aimed at partially reproducing the anxiety of an emergency situation. The results of the study show that the second technique is able to increase user's anxiety as well as producing better results in attitude change.
Application of hands-on simulation games to improve classroom experience
NASA Astrophysics Data System (ADS)
Hamzeh, Farook; Theokaris, Christina; Rouhana, Carel; Abbas, Yara
2017-09-01
While many construction companies claim substantial productivity and profit gains when applying lean construction principles, it remains a challenge to teach these principles in a classroom. Lean construction emphasises collaborative processes and integrated delivery practices. Consequently, new teaching methods that nurture such values should form the basis of lean construction education. One of the proposed methods is 'hands-on team simulation games' which can be employed to replicate various real-life processes, projects, or systems for the purpose of teaching, analysing, and understanding. This study aims at assessing this simulation games and understanding their impact on students' learning and satisfaction. Surveys and tests are administered to assess changes in student's perception of their learning styles and their understanding of key lean construction concepts. Results show a positive student reaction to hands-on simulation games, provide pedagogical insights, and highlight suggestions for improvement.
Simulation of a 7.7 MW onshore wind farm with the Actuator Line Model
NASA Astrophysics Data System (ADS)
Guggeri, A.; Draper, M.; Usera, G.
2017-05-01
Recently, the Actuator Line Model (ALM) has been evaluated with coarser resolution and larger time steps than what is generally recommended, taking into account an atmospheric sheared and turbulent inflow condition. The aim of the present paper is to continue these studies, assessing the capability of the ALM to represent the wind turbines’ interactions in an onshore wind farm. The ‘Libertad’ wind farm, which consists of four 1.9MW Vestas V100 wind turbines, was simulated considering different wind directions, and the results were compared with the wind farm SCADA data, finding good agreement between them. A sensitivity analysis was performed to evaluate the influence of the spatial resolution, finding acceptable agreement, although some differences were found. It is believed that these differences are due to the characteristics of the different Atmospheric Boundary Layer (ABL) simulations taken as inflow condition (precursor simulations).
Drones at the service for training on mass casualty incident
Fernandez-Pacheco, Antonio Nieto; Rodriguez, Laura Juguera; Price, Mariana Ferrandini; Perez, Ana Belen Garcia; Alonso, Nuria Perez; Rios, Manuel Pardo
2017-01-01
Abstract Mass casualty incidents (MCI) are characterized by a large number of victims with respect to the resources available. In this study, we aimed to analyze the changes produced in the self-perception of students who were able to visualize aerial views of a simulation of a MCI. A simulation study, mixed method, was performed to compare the results from an ad hoc questionnaire. The 35 students from the Emergency Nursing Master from the UCAM completed a questionnaire before and after watching an MCI video with 40 victims in which they had participated. The main variable measured was the change in self-perception (CSP). The CSP occurred in 80% (28/35) of the students (P = .001). Students improved their individual (P = .001) and group (P = .006) scores. They also described that their personal performance had better results than the group performance (P = .047). The main conclusion of this study is that drones could lead to CSP and appraisal of the MCI simulation participants. PMID:28658106
Hauser, Katarina; Matthes, Jan
2017-04-01
Poor medication communication of physicians to patients is detrimental, e.g. for medication adherence. Reasons for physicians' deficits in medication communication may be unfavourable conditions in daily practice or already insufficient training during their (undergraduate) medical studies. We explored medical students' communication on new medications in simulated physician-patient conversations to identify actual deficits indicating apparent educational needs. Fifth year medical students attending a mandatory course at the University of Cologne had simulated physician-patient consultations aiming at drug prescription. In 2015, 21 consultations were recorded, transcribed and subjected to qualitative content analysis based on the method of inductive coding. Even essential information on drug therapy was often lacking (e.g. adverse effects, drug administration). Some aspects were addressed more frequently than others. This seemed to differ depending on the diagnosis underlying the particular treatment (acute event vs. chronic disease). The extent of information on drug treatments given in simulated physician-patient consultations varied significantly between students. Fifth year medical students showed appreciable deficits in communicating drug prescriptions to patients though there were remarkable inter-individual differences. Our findings suggest that communication on drug therapy to patients is no self-evolving skill. Thus, there is obviously a need for emphasizing medication communication in the training of medical students. Communication aids specifically aiming at medication communication might facilitate learning of adequate medication communication skills.
Hao, Tong; Li, Jun-Jie; Du, Zhi-Yan; Duan, Cui-Mi; Wang, Yan-Meng; Wang, Chang-Yong; Song, Jing-Ping; Wang, Lin-Jie; Li, Ying-Hui; Wang, Yan
2012-10-01
This study was aimed to explore the effect of cordyceps sinensis enhancing lymphocyte proliferation and surface CD marker expression in simulated microgravity environment. The splenic lymphocytes were separated from mice and cultured in the rotary cell culture system simulated microgravity environment. The cells were treated with different concentration of cordyceps sinensis solution (0, 6.25, 12.5, 25 and 50 µg/ml) for 24, 48 and 72 h respectively, then the cells were harvested, and analyzed for cell proliferation and the expression of cell surface markers (CD4 and CD8). The results showed that under simulated microgravity environment, the lymphocyte proliferation was inhibited. When the concentration of cordyceps sinensis was 25 or 50 µg/ml, the lymphocyte proliferation, CD4 and CD8 expressions all increased, but 50 µg/ml cordyceps sinensis could inhibit the proliferation ability with the time prolonging. It is concluded that the suitable concentration of cordyceps sinensis displayed the ability to enhance the lymphocyte proliferation and CD marker expression in simulated microgravity environment. These results may be valuable for screening drugs which can be potentially against immunosuppression under simulated microgravity.
Imhoff, Sarah; Lavallière, Martin; Teasdale, Normand; Fait, Philippe
2016-06-30
Due to the heterogeneity of the lesion following a traumatic brain injury (TBI) and the complexity of the driving task, driving assessment and rehabilitation in TBI individuals is challenging. Conventional driving assessment (on-road and in-clinic evaluations) has failed demonstrating effectiveness to assess fitness to drive in TBI individuals. We aimed to determine if driving simulators represent an interesting opportunity in assessing and rehabilitating driving skills in TBI individuals. We searched PubMed, CINAHL and Cochrane library databases between 27-02-2014 and 08-04-2014 for articles published since 2000 with the contents of simulator driving assessment and rehabilitation. Out of 488, eight articles with the subject of simulator driving assessment and two with the subject of simulator driving rehabilitation in individuals with TBI were reviewed. Driving simulators represent a promising avenue for the assessment and rehabilitation of driving skills in TBI individuals as it allows control of stimuli in a safe, challenging and ecologically valid environment and offer the opportunity to measure and record driving performance. Additional studies, however, are needed to document strengths and limitations of this method.
Assessing Model Data Fit of Unidimensional Item Response Theory Models in Simulated Data
ERIC Educational Resources Information Center
Kose, Ibrahim Alper
2014-01-01
The purpose of this paper is to give an example of how to assess the model-data fit of unidimensional IRT models in simulated data. Also, the present research aims to explain the importance of fit and the consequences of misfit by using simulated data sets. Responses of 1000 examinees to a dichotomously scoring 20 item test were simulated with 25…
Simulation-Based Training for Colonoscopy
Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars
2015-01-01
Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177
LeBlanc, Fabien; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Senagore, Anthony J; Ellis, Clyde N; Delaney, Conor P
2010-08-01
The aim of this study was to compare the human cadaver model with an augmented reality simulator for straight laparoscopic colorectal skills acquisition. Thirty-five sigmoid colectomies were performed on a cadaver (n = 7) or an augmented reality simulator (n = 28) during a laparoscopic training course. Prior laparoscopic colorectal experience was assessed. Objective structured technical skills assessment forms were completed by trainers and trainees independently. Groups were compared according to technical skills and events scores and satisfaction with training model. Prior laparoscopic experience was similar in both groups. For trainers and trainees, technical skills scores were considerably better on the simulator than on the cadaver. For trainers, generic events score was also considerably better on the simulator than on the cadaver. The main generic event occurring on both models was errors in the use of retraction. The main specific event occurring on both models was bowel perforation. Global satisfaction was better for the cadaver than for the simulator model (p < 0.001). The human cadaver model was more difficult but better appreciated than the simulator for laparoscopic sigmoid colectomy training. Simulator training followed by cadaver training can appropriately integrate simulators into the learning curve and maintain the benefits of both training methodologies. Published by Elsevier Inc.
Abulebda, Kamal; Lutfi, Riad; Whitfill, Travis; Abu-Sultaneh, Samer; Leeper, Kellie J; Weinstein, Elizabeth; Auerbach, Marc A
2018-02-01
More than 30 million children are cared for across 5,000 U.S. emergency departments (EDs) each year. Most of these EDs are not facilities designed and operated solely for children. A Web-based survey provided a national and state-by-state assessment of pediatric readiness and noted a national average score was 69 on a 100-point scale. This survey noted wide variations in ED readiness with scores ranging from 61 in low-pediatric-volume EDs to 90 in the high-pediatric-volume EDs. Additionally, the mean score at the state level ranged from 57 (Wyoming) to 83 (Florida) and for individual EDs ranged from 22 to 100. The majority of prior efforts made to improve pediatric readiness have involved providing Web-based resources and online toolkits. This article reports on the first year of a program that aimed to improve pediatric readiness across community hospitals in our state through in situ simulation-based assessment facilitated by our academic medical center. The primary aim was to improve the pediatric readiness scores in the 10 participating hospitals. The secondary aim was to explore the correlation of simulation-based performance of hospital teams with pediatric readiness scores. This interventional study measured the Pediatric Readiness Survey (PRS) prior to and after implementation of an improvement program. This program consisted of three components: 1) in situ simulations, 2) report-outs, and 3) access to online pediatric readiness resources and content experts. The simulations were conducted in situ (in the ED resuscitation bay) by multiprofessional teams of doctors, nurses, respiratory therapists, and technicians. Simulations and debriefings were facilitated by an expert team from a pediatric academic medical center. Three scenarios were conducted for all teams and include: a 6-month-old with respiratory failure, an 8-year-old with diabetic ketoacidosis (DKA), and a 6-month-old with supraventricular tachycardia (SVT). A performance score was calculated for each scenario. The improvement of PRS was compared before and after the simulation program. The correlation of the simulation performance of each hospital and the PRS was calculated. Forty-one multiprofessional teams from 10 EDs in Indiana participated in the study, five were of medium pediatric volume and five were medium- to high-volume EDs. The PRS significantly improved from the first to the second on-site verification assessment (58.4 ± 4.8 to 74.7 ± 2.9, p = 0.009). Total adherence scores to scenario guidelines were 54.7, 56.4, and 62.4% in the respiratory failure, DKA, and SVT scenarios, respectively. We found no correlation between simulation performance and PRS scores. Medium ED pediatric volume significantly predicted higher PRS scores compared to medium-high pediatric ED volume (β = 8.7; confidence interval = 0.72-16.8, p = 0.034). Our collaborative improvement program that involved simulation was associated with improvement in pediatric readiness scores in 10 EDs participating statewide. Future work will focus on further expanding of the network and establishing a national model for pediatric readiness improvement. © 2017 by the Society for Academic Emergency Medicine.
NASA Astrophysics Data System (ADS)
Boisson, F.; Wimberley, C. J.; Lehnert, W.; Zahra, D.; Pham, T.; Perkins, G.; Hamze, H.; Gregoire, M.-C.; Reilhac, A.
2013-10-01
Monte Carlo-based simulation of positron emission tomography (PET) data plays a key role in the design and optimization of data correction and processing methods. Our first aim was to adapt and configure the PET-SORTEO Monte Carlo simulation program for the geometry of the widely distributed Inveon PET preclinical scanner manufactured by Siemens Preclinical Solutions. The validation was carried out against actual measurements performed on the Inveon PET scanner at the Australian Nuclear Science and Technology Organisation in Australia and at the Brain & Mind Research Institute and by strictly following the NEMA NU 4-2008 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction and count rates, image quality and Derenzo phantom studies. Results showed that PET-SORTEO reliably reproduces the performances of this Inveon preclinical system. In addition, imaging studies showed that the PET-SORTEO simulation program provides raw data for the Inveon scanner that can be fully corrected and reconstructed using the same programs as for the actual data. All correction techniques (attenuation, scatter, randoms, dead-time, and normalization) can be applied on the simulated data leading to fully quantitative reconstructed images. In the second part of the study, we demonstrated its ability to generate fast and realistic biological studies. PET-SORTEO is a workable and reliable tool that can be used, in a classical way, to validate and/or optimize a single PET data processing step such as a reconstruction method. However, we demonstrated that by combining a realistic simulated biological study ([11C]Raclopride here) involving different condition groups, simulation allows one also to assess and optimize the data correction, reconstruction and data processing line flow as a whole, specifically for each biological study, which is our ultimate intent.
Bridges, Susan M; Zhu, Frank; Leung, W Keung; Burrow, Michael F; Poolton, Jamie; Masters, Rich SW
2017-01-01
Background There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. Objective The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. Methods We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students’ propensity to reinvest. Results Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, rs=.49, P=.03). Conclusions This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory. PMID:29233801
High-quality weather data for grid integration studies
NASA Astrophysics Data System (ADS)
Draxl, C.
2016-12-01
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing a seamless data set across borders for a whole continent, to simulate and analyze the impacts of potential future large wind and solar power penetrations on bulk power system operations.
The story of 520 days on a simulated flight to Mars
NASA Astrophysics Data System (ADS)
Poláčková Šolcová, Iva; Šolcová, Iva; Stuchlíková, Iva; Mazehóová, Yvona
2016-09-01
The project Mars-500 was the first long-term simulation of a manned flight to Mars. We examined the ways crew members described their experiences and their life during simulation, what they saw as key episodes and key topics in simulation, as well as key problems and key benefits. The aim of this paper is to present the Mars-500 simulation in its complexity, from beginning to end, as a one narrative story.
MacKinnon, Ralph; Humphries, Christopher
2015-01-01
Background: Technology-enhanced simulation is well-established in healthcare teaching curricula, including those regarding wilderness medicine. Compellingly, the evidence base for the value of this educational modality to improve learner competencies and patient outcomes are increasing. Aims: The aim was to systematically review the characteristics of technology-enhanced simulation presented in the wilderness medicine literature to date. Then, the secondary aim was to explore how this technology has been used and if the use of this technology has been associated with improved learner or patient outcomes. Methods: EMBASE and MEDLINE were systematically searched from 1946 to 2014, for articles on the provision of technology-enhanced simulation to teach wilderness medicine. Working independently, the team evaluated the information on the criteria of learners, setting, instructional design, content, and outcomes. Results: From a pool of 37 articles, 11 publications were eligible for systematic review. The majority of learners in the included publications were medical students, settings included both indoors and outdoors, and the main focus clinical content was initial trauma management with some including leadership skills. The most prevalent instructional design components were clinical variation and cognitive interactivity, with learner satisfaction as the main outcome. Conclusions: The results confirm that the current provision of wilderness medicine utilizing technology-enhanced simulation is aligned with instructional design characteristics that have been used to achieve effective learning. Future research should aim to demonstrate the translation of learning into the clinical field to produce improved learner outcomes and create improved patient outcomes. PMID:26824012
Kruglikova, Irina; Grantcharov, Teodor P; Drewes, Asbjorn M; Funch-Jensen, Peter
2010-02-01
Recently, virtual reality computer simulators have been used to enhance traditional endoscopy teaching. Previous studies have demonstrated construct validity of these systems and transfer of virtual skills to the operating room. However, to date no simulator-training curricula have been designed and there is very little evidence on the impact of external feedback on acquisition of endoscopic skills. The aim of the present study was to assess the impact of external feedback on the learning curves on a VR colonoscopy simulator using inexperienced trainees. 22 trainees, without colonoscopy experience were randomised to a group which received structured feedback provided by an experienced supervisor and a controlled group. All participants performed 15 repetitions of task 3 from the Introduction colonoscopy module of the Accu Touch Endoscopy simulator. Retention/transfer tests on simulator were performed 4-6 weeks after the last repetition. The proficiency levels were based on the performance of eight experienced colonoscopists. All subjects were able to complete the procedure on the simulator. There were no perforations in the feedback group versus seven in the non-feedback group. Subjects in the feedback group reached expert proficiency levels in percentage of mucosa visualised and time to reach the caecum significantly faster compared with the control group. None of the groups demonstrated significant degradation of performance in simulator retention/transfer tests. Concurrent feedback given by supervisor concur an advantage in acquisition of basic colonoscopy skills and achieving of proficiency level as compared to independent training.
Zhao, Yi Chen; Kennedy, Gregor; Yukawa, Kumiko; Pyman, Brian; O'Leary, Stephen
2011-03-01
A significant benefit of virtual reality (VR) simulation is the ability to provide self-direct learning for trainees. This study aims to determine whether there are any differences in performance of cadaver temporal bone dissections between novices who received traditional teaching methods and those who received unsupervised self-directed learning in a VR temporal bone simulator. Randomized blinded control trial. Royal Victorian Eye and Ear Hospital. Twenty novice trainees. After receiving an hour lecture, participants were randomized into 2 groups to receive an additional 2 hours of training via traditional teaching methods or self-directed learning using a VR simulator with automated guidance. The simulation environment presented participants with structured training tasks, which were accompanied by real-time computer-generated feedback as well as real operative videos and photos. After the training, trainees were asked to perform a cortical mastoidectomy on a cadaveric temporal bone. The dissection was videotaped and assessed by 3 otologists blinded to participants' teaching group. The overall performance scores of the simulator-based training group were significantly higher than those of the traditional training group (67% vs 29%; P < .001), with an intraclass correlation coefficient of 0.93, indicating excellent interrater reliability. Using other assessments of performance, such as injury size, the VR simulator-based training group also performed better than the traditional group. This study indicates that self-directed learning on VR simulators can be used to improve performance on cadaver dissection in novice trainees compared with traditional teaching methods alone.
The Role of Transfer in Designing Games and Simulations for Health: Systematic Review.
Kuipers, Derek A; Terlouw, Gijs; Wartena, Bard O; van 't Veer, Job Tb; Prins, Jelle T; Pierie, Jean Pierre En
2017-11-24
The usefulness and importance of serious games and simulations in learning and behavior change for health and health-related issues are widely recognized. Studies have addressed games and simulations as interventions, mostly in comparison with their analog counterparts. Numerous complex design choices have to be made with serious games and simulations for health, including choices that directly contribute to the effects of the intervention. One of these decisions is the way an intervention is expected to lead to desirable transfer effects. Most designs adopt a first-class transfer rationale, whereas the second class of transfer types seems a rarity in serious games and simulations for health. This study sought to review the literature specifically on the second class of transfer types in the design of serious games and simulations. Focusing on game-like interventions for health and health care, this study aimed to (1) determine whether the second class of transfer is recognized as a road for transfer in game-like interventions, (2) review the application of the second class of transfer type in designing game-like interventions, and (3) assess studies that include second-class transfer types reporting transfer outcomes. A total of 6 Web-based databases were systematically searched by titles, abstracts, and keywords using the search strategy (video games OR game OR games OR gaming OR computer simulation*) AND (software design OR design) AND (fidelity OR fidelities OR transfer* OR behaviour OR behavior). The databases searched were identified as relevant to health, education, and social science. A total of 15 relevant studies were included, covering a range of game-like interventions, all more or less mentioning design parameters aimed at transfer. We found 9 studies where first-class transfer was part of the design of the intervention. In total, 8 studies dealt with transfer concepts and fidelity types in game-like intervention design in general; 3 studies dealt with the concept of second-class transfer types and reported effects, and 2 of those recognized transfer as a design parameter. In studies on game-like interventions for health and health care, transfer is regarded as a desirable effect but not as a basic principle for design. None of the studies determined the second class of transfer or instances thereof, although in 3 cases a nonliteral transfer type was present. We also found that studies on game-like interventions for health do not elucidate design choices made and rarely provide design principles for future work. Games and simulations for health abundantly build upon the principles of first-class transfer, but the adoption of second-class transfer types proves scarce. It is likely to be worthwhile to explore the possibilities of second-class transfer types, as they may considerably influence educational objectives in terms of future serious game design for health. ©Derek A Kuipers, Gijs Terlouw, Bard O Wartena, Job TB van 't Veer, Jelle T Prins, Jean Pierre EN Pierie. Originally published in JMIR Serious Games (http://games.jmir.org), 24.11.2017.
NASA Astrophysics Data System (ADS)
Savin, D. W.; Bostick, B. C.; Domingue, D. L.; Ebel, D. S.; Harlow, G. E.; Killen, R. M.
2018-05-01
We aim to improve the interpretation of in-situ and remote-sensing data of Mercury. We will use updated exosphere and spectrophotometric models incorporating new data from lab simulations of solar wind ion irradiation of Mercury’s regolith surface.
Decision-Making and Thought Processes among Poker Players
ERIC Educational Resources Information Center
St. Germain, Joseph; Tenenbaum, Gershon
2011-01-01
This study was aimed at delineating decision-making and thought processing among poker players who vary in skill-level. Forty-five participants, 15 in each group, comprised expert, intermediate, and novice poker players. They completed the Computer Poker Simulation Task (CPST) comprised of 60 hands of No-Limit Texas Hold 'Em. During the CPST, they…
Internalising Problems and the Effects of Peer Ostracism on Children's Primary Needs
ERIC Educational Resources Information Center
Hawes, David J.; Zadro, Lisa; Iannuzzelli, Rose; Godwin, Alexandra; MacNevin, Georgia; Dadds, Mark R.; Griffiths, Brendan; Richardson, Rick
2013-01-01
The aim of this study was to examine associations between ostracism, internalising problems, and threat to primary needs (belonging, control, self-esteem, meaningful existence) in children (N= 165, M age = 9 years). Ostracism was simulated experimentally using the Cyberball paradigm--a computer-based ball-throwing game--and threats to primary…
Power and Flow Experience in Time-Intensive Business Simulation Game
ERIC Educational Resources Information Center
Kiili, Kristian; Lainema, Timo
2010-01-01
Power is an influential component of social interaction and there are reasons for thinking that it may have important effects both on decision-making and psychological and interpersonal processes. The aim of this paper was to study the relations between the feeling of power, decision-making and flow experience in a collaborative business…
Gonzalez-Neira, Eliana Maria; Jimenez-Mendoza, Claudia Patricia; Rugeles-Quintero, Saul
2016-01-01
Objective: This study aims at determining if a collection of 16 motor tests on a physical simulator can objectively discriminate and evaluate practitioners' competency level, i.e. novice, resident, and expert. Methods: An experimental design with three study groups (novice, resident, and expert) was developed to test the evaluation power of each of the 16 simple tests. An ANOVA and a Student Newman-Keuls (SNK) test were used to analyze results of each test to determine which of them can discriminate participants' competency level. Results: Four of the 16 tests used discriminated all of the three competency levels and 15 discriminated at least two of the three groups (α= 0.05). Moreover, other two tests differentiate beginners' level from intermediate, and other seven tests differentiate intermediate level from expert. Conclusion: The competency level of a practitioner of minimally invasive surgery can be evaluated by a specific collection of basic tests in a physical surgical simulator. Reduction of the number of tests needed to discriminate the competency level of surgeons can be the aim of future research. PMID:27226664
Gonzalez-Neira, Eliana Maria; Jimenez-Mendoza, Claudia Patricia; Suarez, Daniel R; Rugeles-Quintero, Saul
2016-03-30
This study aims at determining if a collection of 16 motor tests on a physical simulator can objectively discriminate and evaluate practitioners' competency level, i.e. novice, resident, and expert. An experimental design with three study groups (novice, resident, and expert) was developed to test the evaluation power of each of the 16 simple tests. An ANOVA and a Student Newman-Keuls (SNK) test were used to analyze results of each test to determine which of them can discriminate participants' competency level. Four of the 16 tests used discriminated all of the three competency levels and 15 discriminated at least two of the three groups (α= 0.05). Moreover, other two tests differentiate beginners' level from intermediate, and other seven tests differentiate intermediate level from expert. The competency level of a practitioner of minimally invasive surgery can be evaluated by a specific collection of basic tests in a physical surgical simulator. Reduction of the number of tests needed to discriminate the competency level of surgeons can be the aim of future research.
Kirkman, Matthew A; Muirhead, William; Nandi, Dipankar; Sevdalis, Nick
2014-01-01
Neurosurgical simulation training is becoming increasingly popular. Attitudes toward simulation among residents can contribute to the effectiveness of simulation training, but such attitudes remain poorly explored in neurosurgery with no psychometrically proven measure in the literature. The aim of the present study was to evaluate prospectively a newly developed tool for this purpose: the Neurosurgical Evaluation of Attitudes towards simulation Training (NEAT). The NEAT tool was prospectively developed in 2 stages and psychometrically evaluated (validity and reliability) in 2 administrations with the same participants. The tool comprises a questionnaire with 9 Likert scale items and 2 free-text sections assessing attitudes toward simulation in neurosurgery. The evaluation was completed with 31 neurosurgery residents in London, United Kingdom, who were generally favorable toward neurosurgical simulation. The internal consistency of the questionnaire was high, as demonstrated by the overall Cronbach α values (α=0.899 and α=0.955). All but 2 questionnaire items had "substantial" or "almost perfect" test-retest reliability following repeated survey administrations (median Pearson r correlation=0.688; range, 0.248-0.841). NEAT items were well correlated with each other on both occasions, showing good validity of content within the NEAT tool. There was no significant relationship between either gender or length of neurosurgical experience and item ratings. NEAT is the first psychometrically evaluated tool for evaluating attitudes toward simulation in neurosurgery. Further implementation of NEAT is required in wider neurosurgical populations to establish whether specific population groups differ. Use of NEAT in studies of neurosurgical simulation could offer an additional outcome measure to performance metrics, permitting evaluation of the impact of neurosurgical simulation on attitudes toward simulation both between participants and within the same participants over time. Copyright © 2014 Elsevier Inc. All rights reserved.
An overview of the utility of population simulation software in molecular ecology.
Hoban, Sean
2014-05-01
Stochastic simulation software that simultaneously model genetic, population and environmental processes can inform many topics in molecular ecology. These include forecasting species and community response to environmental change, inferring dispersal ecology, revealing cryptic mating, quantifying past population dynamics, assessing in situ management options and monitoring neutral and adaptive biodiversity change. Advances in population demographic-genetic simulation software, especially with respect to individual life history, landscapes and genetic processes, are transforming and expanding the ways that molecular data can be used. The aim of this review is to explain the roles that such software can play in molecular ecology studies (whether as a principal component or a supporting function) so that researchers can decide whether, when and precisely how simulations can be incorporated into their work. First, I use seven case studies to demonstrate how simulations are employed, their specific advantage/necessity and what alternative or complementary (nonsimulation) approaches are available. I also explain how simulations can be integrated with existing spatial, environmental, historical and genetic data sets. I next describe simulation features that may be of interest to molecular ecologists, such as spatial and behavioural considerations and species' interactions, to provide guidance on how particular simulation capabilities can serve particular needs. Lastly, I discuss the prospect of simulation software in emerging challenges (climate change, biodiversity monitoring, population exploitation) and opportunities (genomics, ancient DNA), in order to emphasize that the scope of simulation-based work is expanding. I also suggest practical considerations, priorities and elements of best practice. This should accelerate the uptake of simulation approaches and firmly embed them as a versatile tool in the molecular ecologist's toolbox. © 2014 John Wiley & Sons Ltd.
Evaluation of Differentiation Strategy in Shipping Enterprises with Simulation Model
NASA Astrophysics Data System (ADS)
Vaxevanou, Anthi Z.; Ferfeli, Maria V.; Damianos, Sakas P.
2009-08-01
The present inquiring study aims at investigating the circumstances that prevail in the European Shipping Enterprises with special reference to the Greek ones. This investigation is held in order to explore the potential implementation of strategies so as to create a unique competitive advantage [1]. The Shipping sector is composed of enterprises that are mainly activated in the following three areas: the passenger, the commercial and the naval. The main target is to create a dynamic simulation model which, with reference to the STAIR strategic model, will evaluate the strategic differential choice that some of the shipping enterprises have.
Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee
2016-04-01
The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haresh, Ajmera Deepal; Pradeep, Singh; Song, Jinlin; Wang, Chao; Fan, Yubo
2018-05-11
The aim of commencing treatment in younger age is to rectify the developing dento-alveolar, skeletal and muscular imbalances. With growing dependence on arch development and expansion, the pendulum is oscillating more towards the non-extraction treatment lately, in resolving constriction and crowding issues. Since, a limited number of attempts have been made for mandibular expansion, this study aimes to evaluate the effect of different modes and sites of loading on the expansion of preadolescent mandible using biomechanics. To address the research purpose, a total of 9 Finite Element models were simulated. Biomechanical response of the mandibular bone and dentition was analyzed under different loading conditions including site and mode, using the simulated FE models. The values of displacement envisaged by the FE models, predict hybrid mode to offer substantial expansion of the mandibular bone as compared to tooth borne and bone borne. In addition, biomechanical effect of site II on mandibular expansion in terms of displacement on X-axis, was significant. In conclusion, the results of our study suggest hybrid mode at site II to be better option for true bony expansion in preadolescent mandible.
Awareness of driving disability in people with stroke tested in a simulator.
Patomella, Ann-Helen; Kottorp, Anders; Tham, Kerstin
2008-09-01
The aim of this study was to explore and describe awareness of driving disability in people with driving difficulties after stroke. The study comprised a consecutive sample of 38 participants with stroke who showed difficulties in a technically advanced, interactive driving simulator. Driving ability in the simulator was measured using Performance Analysis of Driving Ability (P-Drive). Awareness of driving disability was measured using a modified version of Assessment of Awareness of Disability (AAD), measuring the discrepancy between observed driving actions and self-reported disability after a driving evaluation in a simulator. A majority of the participants (n = 36) demonstrated driving ability that was below the cut-off criterion for P-Drive. Furthermore, a majority of the items measuring awareness of driving disability were scored low, indicating that participants with stroke who did not pass a driving evaluation also had limited awareness of driving disability. A General Linear Model analysis indicated that awareness of driving disability and cognitive screening outcome explained 74% of the variance in driving ability. This study indicated that a majority of the people with stroke who fail a driving evaluation also have limited awareness of their disability, which indicates the need to address awareness in driving evaluations.
Organ radiation exposure with EOS: GATE simulations versus TLD measurements
NASA Astrophysics Data System (ADS)
Clavel, A. H.; Thevenard-Berger, P.; Verdun, F. R.; Létang, J. M.; Darbon, A.
2016-03-01
EOS® is an innovative X-ray imaging system allowing the acquisition of two simultaneous images of a patient in the standing position, during the vertical scan of two orthogonal fan beams. This study aimed to compute organs radiation exposure to a patient, in the particular geometry of this system. Two different positions of the patient in the machine were studied, corresponding to postero-anterior plus left lateral projections (PA-LLAT) and antero-posterior plus right lateral projections (AP-RLAT). To achieve this goal, a Monte-Carlo simulation was developed based on a GATE environment. To model the physical properties of the patient, a computational phantom was produced based on computed tomography scan data of an anthropomorphic phantom. The simulations provided several organs doses, which were compared to previously published dose results measured with Thermo Luminescent Detectors (TLD) in the same conditions and with the same phantom. The simulation results showed a good agreement with measured doses at the TLD locations, for both AP-RLAT and PA-LLAT projections. This study also showed that the organ dose assessed only from a sample of locations, rather than considering the whole organ, introduced significant bias, depending on organs and projections.
A systematic review of phacoemulsification cataract surgery in virtual reality simulators.
Lam, Chee Kiang; Sundaraj, Kenneth; Sulaiman, Mohd Nazri
2013-01-01
The aim of this study was to review the capability of virtual reality simulators in the application of phacoemulsification cataract surgery training. Our review included the scientific publications on cataract surgery simulators that had been developed by different groups of researchers along with commercialized surgical training products, such as EYESI® and PhacoVision®. The review covers the simulation of the main cataract surgery procedures, i.e., corneal incision, capsulorrhexis, phacosculpting, and intraocular lens implantation in various virtual reality surgery simulators. Haptics realism and visual realism of the procedures are the main elements in imitating the actual surgical environment. The involvement of ophthalmology in research on virtual reality since the early 1990s has made a great impact on the development of surgical simulators. Most of the latest cataract surgery training systems are able to offer high fidelity in visual feedback and haptics feedback, but visual realism, such as the rotational movements of an eyeball with response to the force applied by surgical instruments, is still lacking in some of them. The assessment of the surgical tasks carried out on the simulators showed a significant difference in the performance before and after the training.
Solar wind interaction with Venus and Mars in a parallel hybrid code
NASA Astrophysics Data System (ADS)
Jarvinen, Riku; Sandroos, Arto
2013-04-01
We discuss the development and applications of a new parallel hybrid simulation, where ions are treated as particles and electrons as a charge-neutralizing fluid, for the interaction between the solar wind and Venus and Mars. The new simulation code under construction is based on the algorithm of the sequential global planetary hybrid model developed at the Finnish Meteorological Institute (FMI) and on the Corsair parallel simulation platform also developed at the FMI. The FMI's sequential hybrid model has been used for studies of plasma interactions of several unmagnetized and weakly magnetized celestial bodies for more than a decade. Especially, the model has been used to interpret in situ particle and magnetic field observations from plasma environments of Mars, Venus and Titan. Further, Corsair is an open source MPI (Message Passing Interface) particle and mesh simulation platform, mainly aimed for simulations of diffusive shock acceleration in solar corona and interplanetary space, but which is now also being extended for global planetary hybrid simulations. In this presentation we discuss challenges and strategies of parallelizing a legacy simulation code as well as possible applications and prospects of a scalable parallel hybrid model for the solar wind interactions of Venus and Mars.
ERIC Educational Resources Information Center
Edward, Norrie S.
1997-01-01
Evaluates the importance of realism in the screen presentation of the plant in computer-based laboratory simulations for part-time engineering students. Concludes that simulations are less effective than actual laboratories but that realism minimizes the disadvantages. The schematic approach was preferred for ease of use. (AIM)
YASS: A System Simulator for Operating System and Computer Architecture Teaching and Learning
ERIC Educational Resources Information Center
Mustafa, Besim
2013-01-01
A highly interactive, integrated and multi-level simulator has been developed specifically to support both the teachers and the learners of modern computer technologies at undergraduate level. The simulator provides a highly visual and user configurable environment with many pedagogical features aimed at facilitating deep understanding of concepts…
A Scoping Review: Conceptualizations and Pedagogical Models of Learning in Nursing Simulation
ERIC Educational Resources Information Center
Poikela, Paula; Teräs, Marianne
2015-01-01
Simulations have been implemented globally in nursing education for years with diverse conceptual foundations. The aim of this scoping review is to examine the literature regarding the conceptualizations of learning and pedagogical models in nursing simulations. A scoping review of peer-reviewed articles published between 2000 and 2013 was…
The Evolution of Oscillatory Behavior during Learning on a Ski Simulator
ERIC Educational Resources Information Center
Teulier, Caroline; Nourrit, Deborah; Delignieres, Didier
2006-01-01
Recent experiments on the ski simulator produced ambiguous results and raised unanswered questions concerning the true nature of "novice" behavior and the occurrence of behavioral changes during learning. The aim of the present experiment was to analyze the evolving behavior of three beginners during six practice sessions on a ski simulator. The…
ERIC Educational Resources Information Center
Nicola-Richmond, Kelli; Richards, Kieva; Britt, Kellie
2016-01-01
Student preparation for work-integrated learning using simulated learning experiences is an under researched field in occupational therapy. In 2013 the Deakin University occupational therapy degree introduced a simulated learning experience for students aimed at preparing them for work-integrated learning experiences. The session gave students an…
Onan, Arif; Simsek, Nurettin; Elcin, Melih; Turan, Sevgi; Erbil, Bülent; Deniz, Kaan Zülfikar
2017-11-01
Cardiopulmonary resuscitation training is an essential element of clinical skill development for healthcare providers. The International Liaison Committee on Resuscitation has described issues related to cardiopulmonary resuscitation and emergency cardiovascular care education. Educational interventions have been initiated to try to address these issues using a team-based approach and simulation technologies that offer a controlled, safe learning environment. The aim of the study is to review and synthesize published studies that address the primary question "What are the features and effectiveness of educational interventions related to simulation-enhanced, team-based cardiopulmonary resuscitation training?" We conducted a systematic review focused on educational interventions pertaining to cardiac arrest and emergencies that addressed this main question. The findings are presented together with a discussion of the effectiveness of various educational interventions. In conclusion, student attitudes toward interprofessional learning and simulation experiences were more positive. Research reports emphasized the importance of adherence to established guidelines, adopting a holistic approach to training, and that preliminary training, briefing, deliberate practices, and debriefing should help to overcome deficiencies in cardiopulmonary resuscitation training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation of Nitrogen and Phosphorus Losses in Loess Landforms of Northern Iran
NASA Astrophysics Data System (ADS)
Kiani, F.; Behtarinejad, B.; Najafinejad, A.; Kaboli, R.
2018-02-01
Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 < R 2 and 0.5 < NS). In the case of nitrogen loss, the model performed an almost good simulation (0.6 < R 2 and 0.47 < NS), but phosphorus simulation yielded better results (0.76 < R 2 and 0.66 < NS). The results showed that cultivated lands had higher loss of nitrogen and phosphorus than other types of land use. Among the various forms of nitrogen and phosphorus, the loss of organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.
Kleijn, Huub J; Zollinger, Daniel P; van den Heuvel, Michiel W; Kerbusch, Thomas
2011-01-01
AIMS An integrated population pharmacokinetic–pharmacodynamic model was developed with the following aims: to simultaneously describe pharmacokinetic behaviour of sugammadex and rocuronium; to establish the pharmacokinetic–pharmacodynamic model for rocuronium-induced neuromuscular blockade and reversal by sugammadex; to evaluate covariate effects; and to explore, by simulation, typical covariate effects on reversal time. METHODS Data (n = 446) from eight sugammadex clinical studies covering men, women, non-Asians, Asians, paediatrics, adults and the elderly, with various degrees of renal impairment, were used. Modelling and simulation techniques based on physiological principles were applied to capture rocuronium and sugammadex pharmacokinetics and pharmacodynamics and to identify and quantify covariate effects. RESULTS Sugammadex pharmacokinetics were affected by renal function, bodyweight and race, and rocuronium pharmacokinetics were affected by age, renal function and race. Sevoflurane potentiated rocuronium-induced neuromuscular blockade. Posterior predictive checks and bootstrapping illustrated the accuracy and robustness of the model. External validation showed concordance between observed and predicted reversal times, but interindividual variability in reversal time was pronounced. Simulated reversal times in typical adults were 0.8, 1.5 and 1.4 min upon reversal with sugammadex 16 mg kg−1 3 min after rocuronium, sugammadex 4 mg kg−1 during deep neuromuscular blockade and sugammadex 2 mg kg−1 during moderate blockade, respectively. Simulations indicated that reversal times were faster in paediatric patients and slightly slower in elderly patients compared with adults. Renal function did not affect reversal time. CONCLUSIONS Simulations of the therapeutic dosing regimens demonstrated limited impact of age, renal function and sevoflurane use, as predicted reversal time in typical subjects was always <2 min. PMID:21535448
Crewther, Blair T; Heke, Taati; Keogh, Justin W L
2011-01-01
This study examined the effects of training volume and competition on the salivary cortisol (Sal-C) concentrations of Olympic weightlifters. Male (n = 5) and female (n = 4) Olympic weightlifters provided saliva samples across a 5-week experimental = period. The first aim was to assess the weekly effects of high (≥ 200 sets) and low (≤ 100 sets) training volume on Sal-C. The second aim was to compare Sal-C concentrations and 1 repetition maximum (1RM) performance during 2 simulated and 2 actual competitions. Performance was assessed using the snatch, clean and jerk, and the Olympic total lift. Data from each competition setting were pooled before analysis. There were no significant weekly changes in Sal-C levels (p > 0.05). The actual competitions produced higher (128-130%) Sal-C concentrations (p < 0.001) and superior 1RM lifts (1.9-2.6%) for the clean and jerk, and the Olympic total, than the simulated competitions (p < 0.05). Individual Sal-C concentrations before the simulated competitions were positively correlated to all of the 1RM lifts (r = 0.48-0.49, p < 0.05). In conclusion, actual competitions produced greater Sal-C responses than simulated competitions, and this appeared to benefit the 1RM performance of Olympic weightlifters. Individuals with higher Sal-C concentrations also tended to exhibit superior 1RM lifts during the simulated competitions. Given these findings, greater emphasis should be placed upon the monitoring of C to establish normative values, training standards and to assist with performance prediction.
A laboratory rainfall simulator to study the soil erosion and runoff water
NASA Astrophysics Data System (ADS)
Cancelo González, Javier; Rial, M. E.; Díaz-Fierros, Francisco
2010-05-01
The soil erosion and the runoff water composition in some areas affected by forest fires or submitted to intensive agriculture are an important factor to keep an account, particularly in sensitive areas like estuary and rias that have a high importance in the socioeconomic development of some regions. An understanding of runoff production indicates the processes by which pollutants reach streams and also indicates the management techniques that might be uses to minimize the discharge of these materials into surface waters. One of the most methodology implemented in the soil erosion studies is a rainfall simulation. This method can reproduce the natural soil degradation processes in field or laboratory experiences. With the aim of improve the rainfall-runoff generation, a laboratory rainfall simulator which incorporates a fan-like intermittent water jet system for rainfall generation were modified. The major change made to the rainfall simulator consist in a system to coupling stainless steel boxes, whose dimensions are 12 x 20 x 45 centimeters, and it allows to place soil samples under the rainfall simulator. Previously these boxes were used to take soil samples in field with more of 20 centimeters of depth, causing the minimum disturbance in their properties and structure. These new implementations in the rainfall simulator also allow collect water samples of runoff in two ways: firstly, the rain water that constituted the overland flow or direct runoff and besides the rain water seeps into the soil by the process of infiltration and contributed to the subsurface runoff. Among main the variables controlled in the rainfall simulations were the soil slope and the intensity and duration of rainfall. With the aim of test the prototype, six soil samples were collected in the same sampling point and subjected to rainfall simulations in laboratory with the same intensity and duration. Two samples will constitute the control test, and they were fully undisturbed, and four samples were subjected to controlled burnings with different fire severity: two samples burnt to 250°C and the other two samples burnt to 450°C. Preliminary laboratory data of soil erosion and surface and subsurface runoff were obtained. The water parameters analysed were: pH, electrical conductivity, temperature (in the moment of sampling) and suspended sediments, ammonium, nitrates, total nitrogen (Kjeldahl method), within 24 hours after sampling.
Abductive networks applied to electronic combat
NASA Astrophysics Data System (ADS)
Montgomery, Gerard J.; Hess, Paul; Hwang, Jong S.
1990-08-01
A practical approach to dealing with combinatorial decision problems and uncertainties associated with electronic combat through the use of networks of high-level functional elements called abductive networks is presented. It describes the application of the Abductory Induction Mechanism (AIMTM) a supervised inductive learning tool for synthesizing polynomial abductive networks to the electronic combat problem domain. From databases of historical expert-generated or simulated combat engagements AIM can often induce compact and robust network models for making effective real-time electronic combat decisions despite significant uncertainties or a combinatorial explosion of possible situations. The feasibility of applying abductive networks to realize advanced combat decision aiding capabilities was demonstrated by applying AIM to a set of electronic combat simulations. The networks synthesized by AIM generated accurate assessments of the intent lethality and overall risk associated with a variety of simulated threats and produced reasonable estimates of the expected effectiveness of a group of electronic countermeasures for a large number of simulated combat scenarios. This paper presents the application of abductive networks to electronic combat summarizes the results of experiments performed using AIM discusses the benefits and limitations of applying abductive networks to electronic combat and indicates why abductive networks can often result in capabilities not attainable using alternative approaches. 1. ELECTRONIC COMBAT. UNCERTAINTY. AND MACHINE LEARNING Electronic combat has become an essential part of the ability to make war and has become increasingly complex since
High Fidelity Simulations of Large-Scale Wireless Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onunkwo, Uzoma; Benz, Zachary
The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulationsmore » (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.« less
Graphic and haptic simulation for transvaginal cholecystectomy training in NOTES.
Pan, Jun J; Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Li, Bai C; Sankaranarayanan, Ganesh; Roberts, Kurt; Schwaitzberg, Steven; De, Suvranu
2016-04-01
Natural Orifice Transluminal Endoscopic Surgery (NOTES) provides an emerging surgical technique which usually needs a long learning curve for surgeons. Virtual reality (VR) medical simulators with vision and haptic feedback can usually offer an efficient and cost-effective alternative without risk to the traditional training approaches. Under this motivation, we developed the first virtual reality simulator for transvaginal cholecystectomy in NOTES (VTEST™). This VR-based surgical simulator aims to simulate the hybrid NOTES of cholecystectomy. We use a 6DOF haptic device and a tracking sensor to construct the core hardware component of simulator. For software, an innovative approach based on the inner-spheres is presented to deform the organs in real time. To handle the frequent collision between soft tissue and surgical instruments, an adaptive collision detection method based on GPU is designed and implemented. To give a realistic visual performance of gallbladder fat tissue removal by cautery hook, a multi-layer hexahedral model is presented to simulate the electric dissection of fat tissue. From the experimental results, trainees can operate in real time with high degree of stability and fidelity. A preliminary study was also performed to evaluate the realism and the usefulness of this hybrid NOTES simulator. This prototyped simulation system has been verified by surgeons through a pilot study. Some items of its visual performance and the utility were rated fairly high by the participants during testing. It exhibits the potential to improve the surgical skills of trainee and effectively shorten their learning curve. Copyright © 2016 Elsevier Inc. All rights reserved.
Allaire, Joanna L
2015-09-01
Dental hygiene educators must determine which educational practices best promote critical thinking, a quality necessary to translate knowledge into sound clinical decision making. The aim of this small pilot study was to determine whether virtual patient simulation had an effect on the critical thinking of dental hygiene students. A pretest-posttest design using the Health Science Reasoning Test was used to evaluate the critical thinking skills of senior dental hygiene students at The University of Texas School of Dentistry at Houston Dental Hygiene Program before and after their experience with computer-based patient simulation cases. Additional survey questions sought to identify the students' perceptions of whether the experience had helped develop their critical thinking skills and improved their ability to provide competent patient care. A convenience sample of 31 senior dental hygiene students completed both the pretest and posttest (81.5% of total students in that class); 30 senior dental hygiene students completed the survey on perceptions of the simulation (78.9% response rate). Although the results did not show a significant increase in mean scores, the students reported feeling that the use of virtual patients was an effective teaching method to promote critical thinking, problem-solving, and confidence in the clinical realm. The results of this pilot study may have implications to support the use of virtual patient simulations in dental hygiene education. Future research could include a larger controlled study to validate findings from this study.
Modelling runoff on ceramic tile roofs using the kinematic wave equations
NASA Astrophysics Data System (ADS)
Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln
2016-04-01
Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.
Guerrin, F; Dumas, J
2001-02-01
This work aims at representing empirical knowledge of freshwater ecologists on the functioning of salmon redds (spawning areas of salmon) and its impact on mortality of early stages. For this, we use Qsim, a qualitative simulator. In this first part, we provide unfamiliar readers with the underlying qualitative differential equation (QDE) ontology of Qsim: representing quantities, qualitative variables, qualitative constraints, QDE structure. Based on a very simple example taken of the salmon redd application, we show how informal biological knowledge may be represented and simulated using an approach that was first intended to analyze qualitatively ordinary differential equations systems. A companion paper (Part II) gives the full description and simulation of the salmon redd qualitative model. This work was part of a project aimed at assessing the impact of the environment on salmon populations dynamics by the use of models of processes acting at different levels: catchment, river, and redds. Only the latter level is dealt with in this paper.
Chaibub Neto, Elias; Bare, J. Christopher; Margolin, Adam A.
2014-01-01
New algorithms are continuously proposed in computational biology. Performance evaluation of novel methods is important in practice. Nonetheless, the field experiences a lack of rigorous methodology aimed to systematically and objectively evaluate competing approaches. Simulation studies are frequently used to show that a particular method outperforms another. Often times, however, simulation studies are not well designed, and it is hard to characterize the particular conditions under which different methods perform better. In this paper we propose the adoption of well established techniques in the design of computer and physical experiments for developing effective simulation studies. By following best practices in planning of experiments we are better able to understand the strengths and weaknesses of competing algorithms leading to more informed decisions about which method to use for a particular task. We illustrate the application of our proposed simulation framework with a detailed comparison of the ridge-regression, lasso and elastic-net algorithms in a large scale study investigating the effects on predictive performance of sample size, number of features, true model sparsity, signal-to-noise ratio, and feature correlation, in situations where the number of covariates is usually much larger than sample size. Analysis of data sets containing tens of thousands of features but only a few hundred samples is nowadays routine in computational biology, where “omics” features such as gene expression, copy number variation and sequence data are frequently used in the predictive modeling of complex phenotypes such as anticancer drug response. The penalized regression approaches investigated in this study are popular choices in this setting and our simulations corroborate well established results concerning the conditions under which each one of these methods is expected to perform best while providing several novel insights. PMID:25289666
The new ATLAS Fast Calorimeter Simulation
NASA Astrophysics Data System (ADS)
Schaarschmidt, J.; ATLAS Collaboration
2017-10-01
Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.
Le Lous, M; De Chanaud, N; Bourret, A; Senat, M V; Colmant, C; Jaury, P; Tesnière, A; Tsatsaris, V
2017-01-01
Ultrasonography (US) is an essential tool for the diagnosis of acute gynecological conditions. General practice (GP) residents are involved in the first-line management of gynecologic emergencies. They are not familiar with US equipment. Initial training on simulators was conducted.The aim of this study was to evaluate the impact of simulation-based training on the quality of the sonographic images achieved by GP residents 2 months after the simulation training versus clinical training alone. Young GP residents assigned to emergency gynecology departments were invited to a one-day simulation-based US training session. A prospective controlled trial aiming to assess the impact of such training on TVS (transvaginal ultrasound scan) image quality was conducted. The first group included GP residents who attended the simulation training course. The second group included GP residents who did not attend the course. Written consent to participate was obtained from all participants. Images achieved 2 months after the training were scored using standardized quality criteria and compared in both groups. The stress generated by this examination was also assessed with a simple numeric scale. A total of 137 residents attended the simulation training, 26 consented to participate in the controlled trial. Sonographic image quality was significantly better in the simulation group for the sagittal view of the uterus (3.6 vs 2.7, p = 0.01), for the longitudinal view of the right ovary (2.8 vs 1.4, p = 0.027), and for the Morrison space (1.7 vs 0.4, p = 0.034), but the difference was not significant for the left ovary (2.9 vs 1.7, p = 0.189). The stress generated by TVS after 2 months was not different between the groups (6.0 vs 4.8, p = 0.4). Simulation-based training improved the quality of pelvic US images in GP residents assessed after 2 months of experience in gynecology compared to clinical training alone.
Huang, Cynthia Y; Thomas, Jonathan B; Alismail, Abdullah; Cohen, Avi; Almutairi, Waleed; Daher, Noha S; Terry, Michael H; Tan, Laren D
2018-01-01
Objective The aim of this study was to investigate the feasibility of using augmented reality (AR) glasses in central line simulation by novice operators and compare its efficacy to standard central line simulation/teaching. Design This was a prospective randomized controlled study enrolling 32 novice operators. Subjects were randomized on a 1:1 basis to either simulation using the augmented virtual reality glasses or simulation using conventional instruction. Setting The study was conducted in tertiary-care urban teaching hospital. Subjects A total of 32 adult novice central line operators with no visual or auditory impairments were enrolled. Medical doctors, respiratory therapists, and sleep technicians were recruited from the medical field. Measurements and main results The mean time for AR placement in the AR group was 71±43 s, and the time to internal jugular (IJ) cannulation was 316±112 s. There was no significant difference in median (minimum, maximum) time (seconds) to IJ cannulation for those who were in the AR group and those who were not (339 [130, 550] vs 287 [35, 475], p=0.09), respectively. There was also no significant difference between the two groups in median total procedure time (524 [329, 792] vs 469 [198, 781], p=0.29), respectively. There was a significant difference in the adherence level between the two groups favoring the AR group (p=0.003). Conclusion AR simulation of central venous catheters in manikins is feasible and efficacious in novice operators as an educational tool. Future studies are recommended in this area as it is a promising area of medical education. PMID:29785148
Sundler, Annelie J; Pettersson, Annika; Berglund, Mia
2015-12-01
Simulation has become a widely used and established pedagogy for teaching clinical nursing skills. Nevertheless, the evidence in favour of this pedagogical approach is weak, and more knowledge is needed in support of its use. The aim of this study was (a) to explore the experiences of undergraduate nursing students when examining knowledge, skills and competences in clinical simulation laboratories with high-fidelity patient simulators and (b) to analyse these students' learning experiences during the examination. A phenomenological approach was used, and qualitative interviews were conducted among 23 second-year undergraduate nursing students-17 women and 6 men. The findings revealed that, irrespective of whether they passed or failed the examination, it was experienced as a valuable assessment of the students' knowledge and skills. Even if the students felt that the examination was challenging, they described it as a learning opportunity. In the examination, the students were able to integrate theory with practice, and earlier established knowledge was scrutinised when reflecting on the scenarios. The examination added aspects to the students' learning that prepared them for the real world of nursing in a safe environment without risking patient safety. The study findings suggest that examinations in clinical simulation laboratories can be a useful teaching strategy in nursing education. The use of high-fidelity patient simulators made the examination authentic. The reflections and feedback on the scenario were described as significant for the students' learning. Undergraduate nursing students can improve their knowledge, understanding, competence and skills when such examinations are performed in the manner used in this study. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modal simulation analysis of novel 3D elliptical ultrasonic transducer
NASA Astrophysics Data System (ADS)
Kurniawan, R.; Ali, S.; Ko, T. J.
2018-03-01
This paper aims to present the modal simulation analysis results of a novel 3D elliptical ultrasonic transducer. This research aims to develop a novel elliptical transducer that works in ultrasonic and is able to generate a three dimensional motion in Cartesian space. The concept of the transducer design is basically to find a coupling frequency of the longitudinal-bending-bending mode. To achieve that purpose, the modal simulation analysis was performed to find a proper dimension of the transducer, thus the natural frequency of the 1st longitudinal mode is much closed with the two of natural frequency of the 3rd bending mode. The finite element modelling (FEM) was used to perform this work.
Mastoidectomy performance assessment of virtual simulation training using final-product analysis.
Andersen, Steven A W; Cayé-Thomasen, Per; Sørensen, Mads S
2015-02-01
The future development of integrated automatic assessment in temporal bone virtual surgical simulators calls for validation against currently established assessment tools. This study aimed to explore the relationship between mastoidectomy final-product performance assessment in virtual simulation and traditional dissection training. Prospective trial with blinding. A total of 34 novice residents performed a mastoidectomy on the Visible Ear Simulator and on a cadaveric temporal bone. Two blinded senior otologists assessed the final-product performance using a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures. Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator. A modified version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency in simulation has been achieved. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
See, Eugene Yong-Shun; Toh, Siew Lok; Goh, James Cho-Hong
2011-10-01
The aim of this study was to develop a tissue engineering approach in regenerating the annulus fibrosus (AF) as part of an overall strategy to produce a tissue-engineered intervertebral disc (IVD) replacement. To determine whether a rehabilitative simulation regime on bone marrow–derived mesenchymal stem cell cell-sheet is able to aid the regeneration of the AF. No previous study has used bone marrow–derived mesenchymal stem cell cell-sheets simulated by a rehabilitative regime to regenerate the AF. The approach was to use bone marrow–derived stem cells to form cell-sheets and incorporating them onto silk scaffolds to simulate the native lamellae of the AF. The in vitro experimental model used to study the efficacy of such a system was made up of the tissue engineering AF construct wrapped around a silicone disc to form a simulated IVD-like assembly. The assembly was cultured within a custom-designed bioreactor that provided a compressive mechanical stimulation onto the silicone disc. The silicone nucleus pulposus would bulge radially and compress the simulated AF to mimic the physiological conditions. The simulated IVD-like assembly was compressed using a rehabilitative regime that lasted for 4 weeks at 0.25 Hz, for 15 minutes each day. With the rehabilitative regime, the cell-sheets remained viable but showed a decrease in cell numbers and viability. Gene expression analysis showed significant upregulation of IVD-related genes and there was an increased ratio of collagen type II to collagen type I found within the extracellular matrix. The results suggested that a rehabilitative regime caused extensive remodeling to take place within the simulated IVD-like assembly, producing extracellular matrix similar to that found in the inner AF.
NASA Astrophysics Data System (ADS)
Rodrigo Comino, Jesús; Iserloh, Thomas; Morvan, Xavier; Malam Issa, Oumarou; Naisse, Christophe; Keesstra, Saskia; Cerdà, Artemi; Prosdocimi, Massimo; Arnáez, José; Lasanta, Teodoro; Concepción Ramos, María; José Marqués, María; Ruiz Colmenero, Marta; Bienes, Ramón; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.
2016-04-01
Small portable rainfall simulators are considered as a useful tool to analyze soil erosion processes in cultivated lands. European research groups of Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) or Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application)to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety in the methodologies with rainfall simulations in studying the problem of soil erosion and describing the erosion features in different climatic environments, management practices and soil types. The aim of this study is: i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; iii) to demonstrate the importance of the development a standard method for soil erosion processes in vineyards, using rainfall simulators; iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed knowing the infiltration capacity and the susceptibility of the soil to be detached and to generate sediment loads to runoff. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion and to make comparison between different locations or the influence of different soil characteristics.
Granheim, Benedikte M; Shaw, Julie M; Mansah, Martha
2018-03-01
To identify how simulation and interprofessional learning are used together in undergraduate nursing programs and undertaken in schools of nursing to address interprofessional communication and collaboration. An integrative literature review. The databases CINAHL, ProQuest, PubMed, Scopus, PsycInfo and Science Direct were searched to identify articles from 2006 to 2016 that reported on the use of IPL and simulation together in undergraduate nursing education. Whittemore and Knafl's five step process was used to guide the integrative review of quantitative and qualitative literature. Only peer reviewed articles written in English that addressed undergraduate nursing studies, were included in the review. Articles that did not aim to improve communication and collaboration were excluded. All articles selected were examined to determine their contribution to interprofessional learning and simulation in undergraduate nursing knowledge. The faculties of nursing used interprofessional learning and simulation in undergraduate nursing programs that in some cases were connected to a specific course. A total of nine articles, eight research papers and one narrative report, that focused on collaboration and communication were selected for this review. Studies predominantly used nursing and medical student participants. None of the included studies identified prior student experience with interprofessional learning and simulation. Four key themes were identified: communication, collaboration/teamwork, learning in practice and understanding of roles, and communication. This review highlights the identified research relating to the combined teaching strategy of interprofessional learning and simulation that addressed communication and collaboration in undergraduate nursing programs. Further research into the implementation of interprofessional learning and simulation may benefit the emergent challenges. Information drawn from this review can be used in informing education and educational development in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
A holistic approach for large-scale derived flood frequency analysis
NASA Astrophysics Data System (ADS)
Dung Nguyen, Viet; Apel, Heiko; Hundecha, Yeshewatesfa; Guse, Björn; Sergiy, Vorogushyn; Merz, Bruno
2017-04-01
Spatial consistency, which has been usually disregarded because of the reported methodological difficulties, is increasingly demanded in regional flood hazard (and risk) assessments. This study aims at developing a holistic approach for deriving flood frequency at large scale consistently. A large scale two-component model has been established for simulating very long-term multisite synthetic meteorological fields and flood flow at many gauged and ungauged locations hence reflecting the spatially inherent heterogeneity. The model has been applied for the region of nearly a half million km2 including Germany and parts of nearby countries. The model performance has been multi-objectively examined with a focus on extreme. By this continuous simulation approach, flood quantiles for the studied region have been derived successfully and provide useful input for a comprehensive flood risk study.
Responses of human sensory characteristics to 532 nm pulse laser stimuli.
Kim, Ji-Sun; Oh, Han-Byeol; Kim, A-Hee; Kim, Jun-Sik; Lee, Eun-Suk; Goh, Bong-Jun; Kim, Jae-Young; Jang, Kyungmin; Park, Jong-Rak; Chung, Soon-Cheol; Jun, Jae-Hoon
2016-04-29
Lasers are advantageous in some applications to stimulate a small target area and is used in various fields such as optogenetic, photoimmunological and neurophysiological studies. This study aims to implement a non-contact sense of touch without damaging biological tissues using laser. Various laser parameters were utilized in safety range to induce a sense of touch and investigate the human responses. With heat distribution simulation, the amount of changes in the temperature and the tendency in laser parameters of sensory stimulation were analyzed. The results showed the identified tactile responses in safety range with various laser parameters and temperature distribution for the laser stimulus was obtained through the simulation. This study can be applied to the areas of sensory receptor stimulation, neurophysiology and clinical medicine.
Simulation study on dynamics model of two kinds of on-orbit soft-contact mechanism
NASA Astrophysics Data System (ADS)
Ye, X.; Dong, Z. H.; Yang, F.
2018-05-01
Aiming at the problem that the operating conditions of the space manipulator is harsh and the space manipulator could not bear the large collision momentum, this paper presents a new concept and technical method, namely soft contact technology. Based on ADAMS dynamics software, this paper compares and simulates the mechanism model of on-orbit soft-contact mechanism based on the bionic model and the integrated double joint model. The main purpose is to verify the path planning ability and the momentum buffering ability based on the different design concept mechanism. The simulation results show that both the two mechanism models have the path planning function before the space target contact, and also has the momentum buffer and controllability during the space target contact process.
NASA Technical Reports Server (NTRS)
Spady, A. A., Jr.; Kurbjun, M. C.
1978-01-01
This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.
Presenting simulation results in a nested loop plot.
Rücker, Gerta; Schwarzer, Guido
2014-12-12
Statisticians investigate new methods in simulations to evaluate their properties for future real data applications. Results are often presented in a number of figures, e.g., Trellis plots. We had conducted a simulation study on six statistical methods for estimating the treatment effect in binary outcome meta-analyses, where selection bias (e.g., publication bias) was suspected because of apparent funnel plot asymmetry. We varied five simulation parameters: true treatment effect, extent of selection, event proportion in control group, heterogeneity parameter, and number of studies in meta-analysis. In combination, this yielded a total number of 768 scenarios. To present all results using Trellis plots, 12 figures were needed. Choosing bias as criterion of interest, we present a 'nested loop plot', a diagram type that aims to have all simulation results in one plot. The idea was to bring all scenarios into a lexicographical order and arrange them consecutively on the horizontal axis of a plot, whereas the treatment effect estimate is presented on the vertical axis. The plot illustrates how parameters simultaneously influenced the estimate. It can be combined with a Trellis plot in a so-called hybrid plot. Nested loop plots may also be applied to other criteria such as the variance of estimation. The nested loop plot, similar to a time series graph, summarizes all information about the results of a simulation study with respect to a chosen criterion in one picture and provides a suitable alternative or an addition to Trellis plots.
Asteroid Impact Deflection and Assessment (AIDA) mission - Properties of Impact Ejecta
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.; Fahnestock, Eugene G.; Schwartz, Stephen R.; Murdoch, Naomi; Asphaug, Erik; Cheng, Andrew F.; Housen, Kevin R.; Michel, Patrick; Miller, Paul L.; Stickle, Angela; Tancredi, Gonzalo; Vincent, Jean-Baptiste; Wuennemann, Kai; Yu, Yang; AIDA Impact Simulation Working Group
2016-10-01
The Asteroid Impact Deflection and Assessment (AIDA) mission is composed of NASA's Double Asteroid Redirection Test (DART) mission and ESA's Asteroid Impact Monitor (AIM) rendezvous mission. The DART spacecraft is designed to impact the small satellite of near-Earth asteroid 65803 Didymos in October 2022, while the in-situ AIM spacecraft observes. AIDA's Modeling and Simulation of Impact Outcomes Working Group is tasked with investigating properties of the debris ejected from the impact. The orbital evolution of this ejecta has important implications for observations that the AIM spacecraft will take as well as for the safety of the spacecraft itself. Ejecta properties including particle sizes, bulk densities, and velocities all depend on the poorly-known physical properties of Didymos' moon. The moon's density, internal strength, and especially its porosity have a strong effect on all ejecta properties. Making a range of assumptions, we perform a suite of numerical simulations to determine the fate of the ejected material; we will use simulation predictions to optimize AIM observations and safety. Ultimately, combining AIM's observations of the ejecta with detailed numerical simulations will help constrain key satellite parameters.We use distinct types of numerical tools to explore ejecta properties based on additional target parameters (different forms of friction, cohesion), e.g., the shock physics code iSALE, smoothed particle hydrodynamics codes, and the granular code PKDGRAV. Given the large discrepancy between the 6 km/s impact speed of DART and the moon's 6 cm/s escape speed, a great challenge will be to determine properties of the low-speed ejecta. Very low-speed material relevant to the safety of the AIM spacecraft and its ability to conduct its observations may loft from the crater at late stages of the impact process, or from other locations far from the impact site due to seismic energy propagation. The manner in which seismic waves manifests in asteroid regolith is extremely speculative at present. Through experiment, simulation, and observational strategies, we are working to gain insight into this and related phenomenon and will present the ongoing progress of our working group.
Judd, Belinda K; Scanlan, Justin N; Alison, Jennifer A; Waters, Donna; Gordon, Christopher J
2016-08-05
Despite the recent widespread adoption of simulation in clinical education in physiotherapy, there is a lack of validated tools for assessment in this setting. The Assessment of Physiotherapy Practice (APP) is a comprehensive tool used in clinical placement settings in Australia to measure professional competence of physiotherapy students. The aim of the study was to evaluate the validity of the APP for student assessment in simulation settings. A total of 1260 APPs were collected, 971 from students in simulation and 289 from students in clinical placements. Rasch analysis was used to examine the construct validity of the APP tool in three different simulation assessment formats: longitudinal assessment over 1 week of simulation; longitudinal assessment over 2 weeks; and a short-form (25 min) assessment of a single simulation scenario. Comparison with APPs from 5 week clinical placements in hospital and clinic-based settings were also conducted. The APP demonstrated acceptable fit to the expectations of the Rasch model for the 1 and 2 week clinical simulations, exhibiting unidimensional properties that were able to distinguish different levels of student performance. For the short-form simulation, nine of the 20 items recorded greater than 25 % of scores as 'not-assessed' by clinical educators which impacted on the suitability of the APP tool in this simulation format. The APP was a valid assessment tool when used in longitudinal simulation formats. A revised APP may be required for assessment in short-form simulation scenarios.