ERIC Educational Resources Information Center
Tecnica Education Corp., San Carlos, CA.
This book is one of a series in Course II of the Relevant Educational Applications of Computer Technology (REACT) Project. It is designed to point out to teachers two of the major applications of computers in the social sciences: simulation and data analysis. The first section contains a variety of simulation units organized under the following…
Full cycle trigonometric function on Intel Quartus II Verilog
NASA Astrophysics Data System (ADS)
Mustapha, Muhazam; Zulkarnain, Nur Antasha
2018-02-01
This paper discusses about an improvement of a previous research on hardware based trigonometric calculations. Tangent function will also be implemented to get a complete set. The functions have been simulated using Quartus II where the result will be compared to the previous work. The number of bits has also been extended for each trigonometric function. The design is based on RTL due to its resource efficient nature. At earlier stage, a technology independent test bench simulation was conducted on ModelSim due to its convenience in capturing simulation data so that accuracy information can be obtained. On second stage, Intel/Altera Quartus II will be used to simulate on technology dependent platform, particularly on the one belonging to Intel/Altera itself. Real data on no. logic elements used and propagation delay have also been obtained.
2015-03-13
A. Lee. “A Programming Model for Time - Synchronized Distributed Real- Time Systems”. In: Proceedings of Real Time and Em- bedded Technology and Applications Symposium. 2007, pp. 259–268. ...From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
Expendable Air Vehicles/High Altitude Balloon Technology. Phase 1.
1991-08-02
CHR/91 -2750 I I I I I THIS PAGE INTENTIONALLY LEFT BLANK 3 I I U I I I I I I I I I CHR/91 -2750 PREFACE The work described in this Phase II SBIR...Final Technical Report is the implementation of a capability which Coleman Research Corporation demon- strated during a Phase I SBIR (contract number...CRC) has developed a Balloon Drift Pattern Simulation 1BDPS). CRC developed this simulation software for digital computers as a product of a Phase II
Technical Reliability Studies. EOS/ESD Technology Abstracts
1982-01-01
RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR 15786 SOME...T.M. 16476 STATIC DISCHARGE MODELING TECHNIQUES FOR EVALUATION OF INTEGRATED (FET) CIRCUIT DESTRUCTION 16145 MODULE ELECTAOSTATIC DISCHARGE SIMULATOR...PLASTIC LSI CIRCUITS PRklE, L.A., II 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR PRICE, R.D. 13455 EVALUATION OF PLASTIC LSI CIRCUITS PSHAENICH, A
Haptic interface of the KAIST-Ewha colonoscopy simulator II.
Woo, Hyun Soo; Kim, Woo Seok; Ahn, Woojin; Lee, Doo Yong; Yi, Sun Young
2008-11-01
This paper presents an improved haptic interface for the Korea Advanced Institute of Science and Technology Ewha Colonoscopy Simulator II. The haptic interface enables the distal portion of the colonoscope to be freely bent while guaranteeing sufficient workspace and reflective forces for colonoscopy simulation. Its force-torque sensor measures the profiles of the user. Manipulation of the colonoscope tip is monitored by four deflection sensors and triggers computations to render accurate graphic images corresponding to the rotation of the angle knob. Tack sensors are attached to the valve-actuation buttons of the colonoscope to simulate air injection or suction as well as the corresponding deformation of the colon. A survey study for face validation was conducted, and the result shows that the developed haptic interface provides realistic haptic feedback for colonoscopy simulations.
ERIC Educational Resources Information Center
Matrundola, Deborah La Torre; Chang, Sandy; Herman, Joan
2012-01-01
The purpose of these case studies was to examine the ways technology and professional development supported the use of the SimScientists assessment systems. Qualitative research methodology was used to provide narrative descriptions of six classes implementing simulation-based assessments for either the topic of Ecosystems or Atoms and Molecules.…
NASA Technical Reports Server (NTRS)
Fisher, Jody l.; Striepe, Scott A.
2007-01-01
The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.
Cooperative Collision Avoidance Technology Demonstration Data Analysis Report
NASA Technical Reports Server (NTRS)
2007-01-01
This report details the National Aeronautics and Space Administration (NASA) Access 5 Project Office Cooperative Collision Avoidance (CCA) Technology Demonstration for unmanned aircraft systems (UAS) conducted from 21 to 28 September 2005. The test platform chosen for the demonstration was the Proteus Optionally Piloted Vehicle operated by Scaled Composites, LLC, flown out of the Mojave Airport, Mojave, CA. A single intruder aircraft, a NASA Gulf stream III, was used during the demonstration to execute a series of near-collision encounter scenarios. Both aircraft were equipped with Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B) systems. The objective of this demonstration was to collect flight data to support validation efforts for the Access 5 CCA Work Package Performance Simulation and Systems Integration Laboratory (SIL). Correlation of the flight data with results obtained from the performance simulation serves as the basis for the simulation validation. A similar effort uses the flight data to validate the SIL architecture that contains the same sensor hardware that was used during the flight demonstration.
NASA Technical Reports Server (NTRS)
Greenberg, J. S.
1986-01-01
An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.
Acoustic detection of roller bearing defects. Phase II, Field test.
DOT National Transportation Integrated Search
2000-08-01
The Transportation Technology Center, Inc. (TTCI), a subsidiary of the Association of American Railroads (AAR) Research and Test Department, conducted a series of simulated revenue service tests with a train of eight cars containing wheel sets with s...
1997-12-19
Resource Consultants Inc. (RCI) Science Applications InternatT Corp (SAIC) Veda Inc. Virtual Space Devices (VSD) 1.1 Background The Land Warrior...network. The VICs included: • VIC Alpha - a fully immersive Dismounted Soldier System developed by Veda under a STRICOM applied research effort...consists of the Dismounted Soldier System (DSS), which is characterized as follows: • Developed by Veda under a STRICOM applied research effort
Transit signal priority project, phase II : field and simulation evaluation results.
DOT National Transportation Integrated Search
2006-01-01
Transit Signal Priority (TSP) is recognized as an emerging technology that is capable of enhancing traditional transit services. Basic green-extension TSP was implemented on U.S. Route 1 in the Northern Virginia Area (or Washington, DC metropolitan a...
SimCenter Hawaii Technology Enabled Learning and Intervention Systems
2008-01-01
manikin training in acquiring triage skills and self -efficacy. Phase II includes the development of the VR training scenarios, which includes iterative...Task A5. Skills acquisition relative to self -efficacy study See Appendix F, Mass Casualty Triage Training using Human Patient Simulators Improves...relative to self -efficacy study • See Appendix F, Mass Casualty Triage Training using Human Patient Simulators Improves Speed and Accuracy of First
NASA Astrophysics Data System (ADS)
Riecken, Mark; Lessmann, Kurt; Schillero, David
2016-05-01
The Data Distribution Service (DDS) was started by the Object Management Group (OMG) in 2004. Currently, DDS is one of the contenders to support the Internet of Things (IoT) and the Industrial IOT (IIoT). DDS has also been used as a distributed simulation architecture. Given the anticipated proliferation of IoT and II devices, along with the explosive growth of sensor technology, can we expect this to have an impact on the broader community of distributed simulation? If it does, what is the impact and which distributed simulation domains will be most affected? DDS shares many of the same goals and characteristics of distributed simulation such as the need to support scale and an emphasis on Quality of Service (QoS) that can be tailored to meet the end user's needs. In addition, DDS has some built-in features such as security that are not present in traditional distributed simulation protocols. If the IoT and II realize their potential application, we predict a large base of technology to be built around this distributed data paradigm, much of which could be directly beneficial to the distributed M&S community. In this paper we compare some of the perceived gaps and shortfalls of current distributed M&S technology to the emerging capabilities of DDS built around the IoT. Although some trial work has been conducted in this area, we propose a more focused examination of the potential of these new technologies and their applicability to current and future problems in distributed M&S. The Internet of Things (IoT) and its data communications mechanisms such as the Data Distribution System (DDS) share properties in common with distributed modeling and simulation (M&S) and its protocols such as the High Level Architecture (HLA) and the Test and Training Enabling Architecture (TENA). This paper proposes a framework based on the sensor use case for how the two communities of practice (CoP) can benefit from one another and achieve greater capability in practical distributed computing.
Rigid Polyurethane Foam (RPF) Technology for Countermines (Sea) Program Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
WOODFIN,RONALD L.; FAUCETT,DAVID L.; HANCE,BRADLEY G.
This Phase II report documents the results of one subtask initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of Rigid Polyurethane Foams for neutralization of mines and barriers in amphibious assault was the objective of the tasking. This phase of the program concentrated on formation of RPF in water, explosive mine simulations, and development of foam and fabric pontoons. Field experimentation was done primarily at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM between February 1996 andmore » September 1998.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Sumner, Tyler S.
2016-04-17
An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulationmore » results are also included for a code-to-code comparison.« less
Technology programs and related policies - Impacts on communications satellite business ventures
NASA Technical Reports Server (NTRS)
Greenberg, J. S.
1985-01-01
The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.
Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors
Hallbert, Bruce P
2015-01-01
Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less
1997-01-17
SHOWDirect Control Systems (6) Betacam SP Players (Video Backup) (6) Betacam SP Recorders (Show Record) (2) CRV Laser Disc Rec/Players (GoTo) (14) Multi...IK Scoops (3)lKDP’s (1) Schedule 40 Light Pole (Flown) Control Console Dimming Cables & Distribution PRODUCTION HARDWARE (1) Sony Betacam SP...Shooters Package (1) Folsom Hi-Res Video Scan Converter (20) Betacam SP VideoTapes STAGING HARDWARE (1) Custom Screen Divider / Support 44 This
Earth System Grid II (ESG): Turning Climate Model Datasets Into Community Resources
NASA Astrophysics Data System (ADS)
Williams, D.; Middleton, D.; Foster, I.; Nevedova, V.; Kesselman, C.; Chervenak, A.; Bharathi, S.; Drach, B.; Cinquni, L.; Brown, D.; Strand, G.; Fox, P.; Garcia, J.; Bernholdte, D.; Chanchio, K.; Pouchard, L.; Chen, M.; Shoshani, A.; Sim, A.
2003-12-01
High-resolution, long-duration simulations performed with advanced DOE SciDAC/NCAR climate models will produce tens of petabytes of output. To be useful, this output must be made available to global change impacts researchers nationwide, both at national laboratories and at universities, other research laboratories, and other institutions. To this end, we propose to create a new Earth System Grid, ESG-II - a virtual collaborative environment that links distributed centers, users, models, and data. ESG-II will provide scientists with virtual proximity to the distributed data and resources that they require to perform their research. The creation of this environment will significantly increase the scientific productivity of U.S. climate researchers by turning climate datasets into community resources. In creating ESG-II, we will integrate and extend a range of Grid and collaboratory technologies, including the DODS remote access protocols for environmental data, Globus Toolkit technologies for authentication, resource discovery, and resource access, and Data Grid technologies developed in other projects. We will develop new technologies for (1) creating and operating "filtering servers" capable of performing sophisticated analyses, and (2) delivering results to users. In so doing, we will simultaneously contribute to climate science and advance the state of the art in collaboratory technology. We expect our results to be useful to numerous other DOE projects. The three-year R&D program will be undertaken by a talented and experienced team of computer scientists at five laboratories (ANL, LBNL, LLNL, NCAR, ORNL) and one university (ISI), working in close collaboration with climate scientists at several sites.
Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project
NASA Technical Reports Server (NTRS)
Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.;
2008-01-01
Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2010-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The appendices to the original report are contained in this document.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2011-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 1
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2010-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The findings of the assessment are contained in this report.
Duan, Qiangde; Lee, Kuo Hao; Nandre, Rahul M; Garcia, Carolina; Chen, Jianhan; Zhang, Weiping
2017-01-01
Vaccine development often encounters the challenge of virulence heterogeneity. Enterotoxigenic Escherichia coli (ETEC) bacteria producing immunologically heterogeneous virulence factors are a leading cause of children’s diarrhea and travelers’ diarrhea. Currently, we do not have licensed vaccines against ETEC bacteria. While conventional methods continue to make progress but encounter challenge, new computational and structure-based approaches are explored to accelerate ETEC vaccine development. In this study, we applied a structural vaccinology concept to construct a structure-based multiepitope fusion antigen (MEFA) to carry representing epitopes of the seven most important ETEC adhesins [CFA/I, CFA/II (CS1–CS3), CFA/IV (CS4–CS6)], simulated antigenic structure of the CFA/I/II/IV MEFA with computational atomistic modeling and simulation, characterized immunogenicity in mouse immunization, and examined the potential of structure-informed vaccine design for ETEC vaccine development. A tag-less recombinant MEFA protein (CFA/I/II/IV MEFA) was effectively expressed and extracted. Molecular dynamics simulations indicated that this MEFA immunogen maintained a stable secondary structure and presented epitopes on the protein surface. Empirical data showed that mice immunized with the tagless CFA/I/II/IV MEFA developed strong antigen-specific antibody responses, and mouse serum antibodies significantly inhibited in vitro adherence of bacteria expressing these seven adhesins. These results revealed congruence of antigen immunogenicity between computational simulation and empirical mouse immunization and indicated this tag-less CFA/I/II/IV MEFA potentially an antigen for a broadly protective ETEC vaccine, suggesting a potential application of MEFA-based structural vaccinology for vaccine design against ETEC and likely other pathogens. PMID:28944092
Spray Forming Aluminum - Final Report (Phase II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Leon
1999-07-08
The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Incmore » developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.« less
Bioinstrumentation for evaluation of workload in payload specialists: results of ASSESS II
NASA Astrophysics Data System (ADS)
Wegmann, Hans M.; Herrmann, Reinhold; Winget, Charles M.
1980-11-01
ASSESS II‡Acronym for Airborne Science/Spacelab Experiments System Simulation. was a cooperative NASA-ESA project which consisted of a detailed simulation of Spacelab operations using the NASA Ames Research Center CV-990 aircraft laboratory. The Medical Experiment reported on in this paper was part of the complex payload consisting of 11 different experiments. Its general purpose was to develop a technology, possibly flown on board of Spacelab, and enabling the assessment of workload through evaluating changes of circadian rhythmicity, sleep disturbances and episodical or cumulative stress. As parameters the following variables were measured: Rectal temperature, ECG, sleep-EEG and -EOG, the urinary excretion of hormones and electrolytes. The results revealed evidence that a Spacelab environment, as simulated in ASSESS II, will lead to internal dissociation of circadian rhythms, to sleep disturbances and to highly stressful working conditions. Altogether these effects will impose considerable workload upon Payload Specialists. It is suggested that an intensive pre-mission system simulation will reduce these impairments to a reasonable degree. The bioinstrumentation applied in this experiment proved to be a practical and reliable tool in assessing the objectives of the study.
Advancing Blade Concept (ABC) Technology Demonstrator
1981-04-01
simulated 40-knot full-scale speed were conducted in Phase 0 on the Princeton dynamic model tract (Reference 7). Forward flight tests to a...laterally and longitudinally but also to control the thrust sharing between the rotors are presented in Figure 28. Phase II Tests : This model test phase...were rigged to the required values. Control system linearity and hysteresis tests were conducted to determine
Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis
NASA Technical Reports Server (NTRS)
Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo
2010-01-01
The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.
Modern Scientific Visualization is more than Just Pretty Pictures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E Wes; Rubel, Oliver; Wu, Kesheng
2008-12-05
While the primary product of scientific visualization is images and movies, its primary objective is really scientific insight. Too often, the focus of visualization research is on the product, not the mission. This paper presents two case studies, both that appear in previous publications, that focus on using visualization technology to produce insight. The first applies"Query-Driven Visualization" concepts to laser wakefield simulation data to help identify and analyze the process of beam formation. The second uses topological analysis to provide a quantitative basis for (i) understanding the mixing process in hydrodynamic simulations, and (ii) performing comparative analysis of data frommore » two different types of simulations that model hydrodynamic instability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudkevich, Aleksandr; Goldis, Evgeniy
This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnershipsmore » and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs. - Competitive pricing structure, which will make high-volume usage of simulation services affordable. - Availability and affordability of high quality power simulators, which presently only large corporate clients can afford, will level the playing field in developing regional energy policies, determining prudent cost recovery mechanisms and assuring just and reasonable rates to consumers. - Users that presently do not have the resources to internally maintain modeling capabilities will now be able to run simulations. This will invite more players into the industry, ultimately leading to more transparent and liquid power markets.« less
Stirling convertor performance mapping test results
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Peterson, Allen A.; White, Maurice A.; Faultersack, Franklyn; Redinger, Darin L.; Petersen, Stephen L.
2002-01-01
The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. Recent TDC performance data are provided in this paper, together with predictions from Stirling simulation models. .
Face and construct validation of a next generation virtual reality (Gen2-VR) surgical simulator.
Sankaranarayanan, Ganesh; Li, Baichun; Manser, Kelly; Jones, Stephanie B; Jones, Daniel B; Schwaitzberg, Steven; Cao, Caroline G L; De, Suvranu
2016-03-01
Surgical performance is affected by distractors and interruptions to surgical workflow that exist in the operating room. However, traditional surgical simulators are used to train surgeons in a skills laboratory that does not recreate these conditions. To overcome this limitation, we have developed a novel, immersive virtual reality (Gen2-VR) system to train surgeons in these environments. This study was to establish face and construct validity of our system. The study was a within-subjects design, with subjects repeating a virtual peg transfer task under three different conditions: Case I: traditional VR; Case II: Gen2-VR with no distractions and Case III: Gen2-VR with distractions and interruptions. In Case III, to simulate the effects of distractions and interruptions, music was played intermittently, the camera lens was fogged for 10 s and tools malfunctioned for 15 s at random points in time during the simulation. At the completion of the study subjects filled in a 5-point Likert scale feedback questionnaire. A total of sixteen subjects participated in this study. Friedman test showed significant difference in scores between the three conditions (p < 0.0001). Post hoc analysis using Wilcoxon signed-rank tests with Bonferroni correction further showed that all the three conditions were significantly different from each other (Case I, Case II, p < 0.0001), (Case I, Case III, p < 0.0001) and (Case II, Case III, p = 0.009). Subjects rated that fog (mean 4.18) and tool malfunction (median 4.56) significantly hindered their performance. The results showed that Gen2-VR simulator has both face and construct validity and that it can accurately and realistically present distractions and interruptions in a simulated OR, in spite of limitations of the current HMD hardware technology.
Face and Construct Validation of a Next Generation Virtual Reality (Gen2-VR©) Surgical Simulator
Sankaranarayanan, Ganesh; Li, Baichun; Manser, Kelly; Jones, Stephanie B.; Jones, Daniel B.; Schwaitzberg, Steven; Cao, Caroline G. L.; De, Suvranu
2015-01-01
Introduction Surgical performance is affected by distractors and interruptions to surgical workflow that exist in the operating room. However, traditional surgical simulators are used to train surgeons in a skills lab that does not recreate these conditions. To overcome this limitation, we have developed a novel, immersive virtual reality (Gen2-VR©) system to train surgeons in these environments. This study was to establish face and construct validity of our system. Methods and Procedures The study was a within-subjects design, with subjects repeating a virtual peg transfer task under three different conditions: CASE I: traditional VR; CASE II: Gen2-VR© with no distractions and CASE III: Gen2-VR© with distractions and interruptions.. In Case III, to simulate the effects of distractions and interruptions, music was played intermittently, the camera lens was fogged for 10 seconds and tools malfunctioned for 15 seconds at random points in time during the simulation. At the completion of the study subjects filled in a 5-point Likert scale feedback questionnaire. A total of sixteen subjects participated in this study. Results Friedman test showed significant difference in scores between the three conditions (p < 0.0001). Post hoc analysis using Wilcoxon Signed Rank tests with Bonferroni correction further showed that all the three conditions were significantly different from each other (Case I, Case II, p < 0.001), (Case I, Case III, p < 0.001) and (Case II, Case III, p = 0.009). Subjects rated that fog (mean= 4.18) and tool malfunction (median = 4.56) significantly hindered their performance. Conclusion The results showed that Gen2-VR© simulator has both face and construct validity and it can accurately and realistically present distractions and interruptions in a simulated OR, in spite of limitations of the current HMD hardware technology. PMID:26092010
Integration of scheduling and discrete event simulation systems to improve production flow planning
NASA Astrophysics Data System (ADS)
Krenczyk, D.; Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.
2016-08-01
The increased availability of data and computer-aided technologies such as MRPI/II, ERP and MES system, allowing producers to be more adaptive to market dynamics and to improve production scheduling. Integration of production scheduling and computer modelling, simulation and visualization systems can be useful in the analysis of production system constraints related to the efficiency of manufacturing systems. A integration methodology based on semi-automatic model generation method for eliminating problems associated with complexity of the model and labour-intensive and time-consuming process of simulation model creation is proposed. Data mapping and data transformation techniques for the proposed method have been applied. This approach has been illustrated through examples of practical implementation of the proposed method using KbRS scheduling system and Enterprise Dynamics simulation system.
MHD simulation of the shock wave event on October 24, 2003
NASA Astrophysics Data System (ADS)
Ogino, T.; Kajiwara, Y.; Nakao, M.; Park, K. S.; Fukazawa, K.; Yi, Y.
2007-11-01
A three-dimensional global MHD simulation of the interaction between the solar wind and the Earth's magnetosphere has been executed to study the shock wave event on space weather problem on October 24, 2003, when an abnormal operation happened in a satellite for Environment Observation Technology, ADEOS-II (Midori-II). Characteristic features of the event are the long duration of southward IMF, arrival of a strong shock wave, then large variation of IMF By from negative to positive for about 15 min duration. In the simulation, the shock wave compresses the magnetosphere for southward IMF and a hot plasma was injected around the geosynchronous orbit from plasma sheet. During the interval when IMF By changes from negative to positive, the magnitude of IMF extremely decreases to bring attenuation of magnetic reconnection. The open-closed boundary shrinks in the polar cap and the transient expansion of the magnetic field lines occurs to imply enhancement of particle precipitation. The reconnection site moves from dawn to dusk in the dayside magnetopause and a narrow cockscomb closed field region is formed in the high latitude tail.
iCrowd: agent-based behavior modeling and crowd simulator
NASA Astrophysics Data System (ADS)
Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.
2016-05-01
Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.
NASA Technical Reports Server (NTRS)
Raiszadeh, Ben; Queen, Eric M.
2002-01-01
A capability to simulate trajectories Of Multiple interacting rigid bodies has been developed. This capability uses the Program to Optimize Simulated Trajectories II (POST II). Previously, POST II had the ability to simulate multiple bodies without interacting forces. The current implementation is used for the Simulation of parachute trajectories, in which the parachute and suspended bodies can be treated as rigid bodies. An arbitrary set of connecting lines can be included in the model and are treated as massless spring-dampers. This paper discusses details of the connection line modeling and results of several test cases used to validate the capability.
NASA Technical Reports Server (NTRS)
2000-01-01
The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.
Schmitt, Paul J; Agarwal, Nitin; Prestigiacomo, Charles J
2012-01-01
Military explorations of the practical role of simulators have served as a driving force for much of the virtual reality technology that we have today. The evolution of 3-dimensional and virtual environments from the early flight simulators used during World War II to the sophisticated training simulators in the modern military followed a path that virtual surgical and neurosurgical devices have already begun to parallel. By understanding the evolution of military simulators as well as comparing and contrasting that evolution with current and future surgical simulators, it may be possible to expedite the development of appropriate devices and establish their validity as effective training tools. As such, this article presents a historical perspective examining the progression of neurosurgical simulators, the establishment of effective and appropriate curricula for using them, and the contributions that the military has made during the ongoing maturation of this exciting treatment and training modality. Copyright © 2012. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickieson, J.L.; Thode, W.F.; Newbury, K.
1988-12-01
Over the last several years, Navy Personnel Research and Development has produced a prototype simulation of a 1200-psi steam plant. This simulation, called Steamer, is installed on an expensive Symbolics minicomputer at the Surface Warfare Officers School, Pacific Coronado, California. The fundamental research goal of the Steamer prototype system was to evaluate the potential of, what was then, new artificial intelligence (AI) hardware and software technology for supporting the construction of computer-based training systems using graphic representations of complex, dynamic systems. The area of propulsion engineering was chosen for a number of reasons. This document describes the Steamer prototype systemmore » components and user interface commands and establishes a starting point for designing, developing, and implementing Steamer II. Careful examination of the actual program code produced an inventory that describes the hardware, system software, application software, and documentation for the Steamer prototype system. Exercising all menu options systematically produced an inventory of all Steamer prototype user interface commands.« less
NASA Astrophysics Data System (ADS)
Fontaras, Georgios; Pistikopoulos, Panayotis; Samaras, Zissis
2008-06-01
The reduction of transport-generated CO2 emissions is currently a problem of global interest. Hybrid electric vehicles (HEVs) are considered as one promising technological solution for limiting transport-generated greenhouse gas emissions. Currently, the number of HEVs in the market remains limited, but this picture will change in the years to come as HEVs are expected to pave the way for cleaner technologies in transport. In this paper, results are presented regarding fuel economy and pollutant emissions measurements of two hybrid electric production vehicles. The measurements were conducted on a Prius II and a Honda Civic IMA using both the European legislated driving cycle (New European Driving Cycle, NEDC) and real-world simulation driving cycles (Artemis). In addition to the emissions measurements, other vehicle-operating parameters were studied in an effort to better quantify the maximum CO2 reduction potential. Data from real-world operation of a Prius II vehicle were also used in the evaluation. Results indicate that in most cases both vehicles present improved energy efficiency and pollutant emissions compared to conventional cars. The fuel economy benefit of the two HEVs peaked under urban driving conditions where reductions of 60% and 40% were observed, respectively. Over higher speeds the difference in fuel economy was lower, reaching that of conventional diesel at 95 km h-1. The effect of ambient temperature on fuel consumption was also quantified. It is concluded that urban operation benefits the most of hybrid technology, leading to important fuel savings and urban air quality improvement.
Gong, H; Pishgar, R; Tay, J H
2018-04-27
Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R 2 ) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R 2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.
Simulation of a Congress at the Chair of Biology II in Bioengineering
NASA Astrophysics Data System (ADS)
Naranjo, A. V.; Reznichenco, V.; López, N.; Hernández, R.; Bajinay, S.
2007-11-01
This work has been developed in the Chair of Biology II, the curricular contents of which correspond to Human Anatomy. This subject is taught in the second semester of the second year of studies in Bioengineering. Our main objective is that the students attending the course may integrate the syllabus contents of Anatomy with those of other subjects in the career. Ever since 1998 we have organized a congress named Congreso Intracátedra de Biología II (Intra Chair Congress on Biology II). This is the last assignment in the semester and is compulsory for regular students of the subject. It consists in simulating a scientific congress with international characteristics. The guidelines for the congress are made known to the students at the beginning of the semester. In groups of up to three members, the students must undertake a work that relates aspects of Anatomy with Bioengineering. Students are expected to investigate on diagnostic and/or therapeutic technology in order to write a paper that must be accepted in advance of the event. The presentation of the work must be made through PowerPoint. The originality of the research work done and the wide range of topics selected are surprising. Problems are tackled from the standpoints both of the various medical fields and of bioengineering despite the fact that they are just students of the second year in Bioengineering.
An Operationally Based Vision Assessment Simulator for Domes
NASA Technical Reports Server (NTRS)
Archdeacon, John; Gaska, James; Timoner, Samson
2012-01-01
The Operational Based Vision Assessment (OBVA) simulator was designed and built by NASA and the United States Air Force (USAF) to provide the Air Force School of Aerospace Medicine (USAFSAM) with a scientific testing laboratory to study human vision and testing standards in an operationally relevant environment. This paper describes the general design objectives and implementation characteristics of the simulator visual system being created to meet these requirements. A key design objective for the OBVA research simulator is to develop a real-time computer image generator (IG) and display subsystem that can display and update at 120 frame s per second (design target), or at a minimum, 60 frames per second, with minimal transport delay using commercial off-the-shelf (COTS) technology. There are three key parts of the OBVA simulator that are described in this paper: i) the real-time computer image generator, ii) the various COTS technology used to construct the simulator, and iii) the spherical dome display and real-time distortion correction subsystem. We describe the various issues, possible COTS solutions, and remaining problem areas identified by NASA and the USAF while designing and building the simulator for future vision research. We also describe the critically important relationship of the physical display components including distortion correction for the dome consistent with an objective of minimizing latency in the system. The performance of the automatic calibration system used in the dome is also described. Various recommendations for possible future implementations shall also be discussed.
1984-06-01
Co ,u’arataor, Gr 7- / ’ . c ; / , caae.ic >ar. ’ ’# d:.i II ’ ..... .. . . .. .. . ... . , rV ABSTRACT A great d-al of research has been conducted an...9 2. Continuous Voice -%ecoait.ior, ....... 11 B. VERBEX 3000 SPEECH APPLiCATION DEVELOP !ENT SYSTEM! ( SPADS ...13 C . NAVAL IAR FARE INT7EACTI7E S:AIULATIC"N SYSTEM (NWISS) ....... .................. 14 D. PURPOSE .................... 16 1. A Past
Software for Engineering Simulations of a Spacecraft
NASA Technical Reports Server (NTRS)
Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis
2005-01-01
Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.
Advanced Distributed Simulation Technology II (ADST-II) Extended Air Defense Testbed Final Report.
1997-12-19
dg1044 IDOIM /CUITN Bldg 044 UITN ATM Switch F/O PATCH Mea 3 (e)To IM 1Mb FI SM Meta VR Slave Alt. 1082 lOMb Link ModSAF 3.0 (Pent) Cisco 7200 Router...MoSF .I(et CiscoModSAF 3.0 (Indy) LightStream 1010 100Mb F/O-MM iuBldgy 082aterI n ae ta(ftin ure) on d 1082 p A HJ 155Mb F/O-MM 155Mb F/O-MM T lg 18...STOW BB L 10/100Mb Cat5 1-12 Rpae B S/S Hb SBE-TMI-I T-Net1 - -- Bldg 1082 alternative to allow access to the 10B2 network. This supports continuity
Technology II: Implementation Planning Guide.
ERIC Educational Resources Information Center
California Community Colleges, Sacramento. Office of the Chancellor.
The California Community Colleges (CCC) are facing a number of challenges, including the explosive use of the Internet, the digital divide, the need for integrating technology into teaching and learning, the impact of Tidal Wave II, and the need to ensure that technology is accessible to persons with disabilities. The CCCs' Technology II Strategic…
Spectrum simulation in DTSA-II.
Ritchie, Nicholas W M
2009-10-01
Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Kenneth David; Hallbert, Bruce Perry
2016-11-01
This report describes an External Review conducted by the LWRS Program Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway to solicit feedback on the topics and results of the ongoing II&C research program. This review was held in conjunction with the Nuclear Energy Institute (NEI) Digital I&C Working Group meeting that was held at Idaho National Laboratory (INL) on August 9-10, 2016. Given the opportunity to visit INL and see the pathway research projects, NEI agreed that the Working Group would serve as the External Review panel for the purpose of obtaining expert input on the value and timingmore » of the research projects. This consisted of demonstrations in the Human Systems Simulation Laboratory followed by presentations on the II&C research program in general as well as the five technology development areas. Following the meeting, the presentations were sent to each of the attendees so they could review them in more detail and refer to them in completing the feedback form. Follow-up activities were conducted with the attendees following the meeting to obtain the completed feedback forms. A total of 13 forms were returned. The feedback forms were reviewed by the pathway to compile the data and comments received, which are documented in the report. In all, the feedback provided by the External Review participants is taken to be a strong endorsement of the types of projects being conducted by the pathway, the value they hold for the nuclear plants, and the general timing of need. The feedback aligns well with the priorities, levels of efforts allocated for the research projects, and project schedules. The feedback also represents realistic observations on the practicality of some aspects of implementing these technologies. In some cases, the participants provided thoughtful challenges to certain assumptions in the formulation of the technologies or in deployment plans. These deserve further review and revision of plans if warranted. The pathway will take all of the feedback and address the open issues that have been identified by the participants. This includes 11 actionable items for follow up by the II&C Pathway.« less
1995-12-01
34 Environmental Science and Technology, 26:1404-1410 (July 1992). 4. Atlas , Ronald M. and Richard Bartha . Microbial Ecology , Fundamentals and Applica...the impact of physical factors on microbial activity. They cite research by Atlas and Bartha observing that low temperatures inhibit microbial activity...mixture. Atlas and Bartha (4:393-394) explain that a typical petroleum mixture includes aliphatics, alicyclics, aromatics and other organics. The
1995-12-01
Technology, 26:1404-1410 (July 1992). 4. Atlas , Ronald M. and Richard Bartha . Microbial Ecology , Fundamentals and Applica- tions (3rd Edition). Redwood... microbial metabolic activity. Leahy and Colwell (35:307) note the impact of physical factors on microbial activity. They cite research by Atlas and... Bartha observing that low temperatures inhibit microbial activity and research by Bossert and Bartha observing that higher temperatures increase activity
Advanced rotary engine components utilizing fiber reinforced Mg castings
NASA Technical Reports Server (NTRS)
Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.
1986-01-01
Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.
Basic Studies on Electro-Energetic Physics (EEP) Weapons Technologies
2015-01-15
Po\\\\ered Microwa\\e. High Energ) Laser. Charged Particle Beams. and II) pcrsonic Rail guns . Using these representations. wargame simulations of’ arious...Projectile length = 30 in (76 cm) • Barrel length = 10 m • Muzzle velocity = 2,100 m/s To understand how such an advanced weapon compares with conventional...weaponry, it is illustrating to compare these figures with the M-1 Abrams M256 120mm gun firing a M829A1 kinetic energy round Page 5 • Muzzle
Robert M. Scheller; James B. Domingo; Brian R. Sturtevant; Jeremy S. Williams; Arnold Rudy; Eric J. Gustafson; David J. Mladenoff
2007-01-01
We introduce LANDIS-II, a landscape model designed to simulate forest succession and disturbances. LANDIS-II builds upon and preserves the functionality of previous LANDIS forest landscape simulation models. LANDIS-II is distinguished by the inclusion of variable time steps for different ecological processes; our use of a rigorous development and testing process used...
Efficient Simulation of Secondary Fluorescence Via NIST DTSA-II Monte Carlo.
Ritchie, Nicholas W M
2017-06-01
Secondary fluorescence, the final term in the familiar matrix correction triumvirate Z·A·F, is the most challenging for Monte Carlo models to simulate. In fact, only two implementations of Monte Carlo models commonly used to simulate electron probe X-ray spectra can calculate secondary fluorescence-PENEPMA and NIST DTSA-II a (DTSA-II is discussed herein). These two models share many physical models but there are some important differences in the way each implements X-ray emission including secondary fluorescence. PENEPMA is based on PENELOPE, a general purpose software package for simulation of both relativistic and subrelativistic electron/positron interactions with matter. On the other hand, NIST DTSA-II was designed exclusively for simulation of X-ray spectra generated by subrelativistic electrons. NIST DTSA-II uses variance reduction techniques unsuited to general purpose code. These optimizations help NIST DTSA-II to be orders of magnitude more computationally efficient while retaining detector position sensitivity. Simulations execute in minutes rather than hours and can model differences that result from detector position. Both PENEPMA and NIST DTSA-II are capable of handling complex sample geometries and we will demonstrate that both are of similar accuracy when modeling experimental secondary fluorescence data from the literature.
Functionalized dithiocarbamate chelating resin for the removal of Co2+ from simulated wastewater
NASA Astrophysics Data System (ADS)
Shi, Xuewei; Fu, Linwei; Wu, Yanyang; Zhao, Huiling; Zhao, Shuangliang; Xu, Shouhong
2017-12-01
Industrial wastewater that contains trace amounts of heavy metal ions is often seen in petrochemical industry. While this wastewater can not be directly discharged, it is difficult to treat due to the low concentration of metal ions. Introducing chelating reagents into this wastewater for selective ion adsorption, followed by a mechanical separation process, provides an appealing solution. Toward the success of this technology, the development of effective chelating resins is of key importance. In the present work, a chelating resin containing amino and dithiocarbamate groups was reported for the removal of Co(II) metal ions in trace concentrations from simulated wastewater. By investigating the adsorption performance of the chelating resin at different solution pH values, adsorbent dosages, contact time, initial ion concentrations, and adsorption temperatures, the maximum adsorption capacity of the resin for Co(II) was identified to be 24.89 mg g-1 for a 2 g L-1 adsorbent dosage and a pH value of 5. After four adsorption-desorption cycles, 97% of the adsorption capacity of the resin was maintained. The adsorption kinetics and thermodynamics were analyzed and discussed as well.
Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases
Amos, Christopher I.; Bafna, Vineet; Hauser, Elizabeth R.; Hernandez, Ryan D.; Li, Chun; Liberles, David A.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Papanicolaou, George J.; Peng, Bo; Ritchie, Marylyn D.; Rosenfeld, Gabriel; Witte, John S.
2014-01-01
Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation. PMID:25371374
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report outlines the 2015 Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Phase I, Phase II, and Post-Phase II opportunity contract award results associated with NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD) for NASA Glenn Research Center. The report also highlights the number of Phase I, Phase II, and Post-Phase II contracts awarded by mission directorate. The 2015 Phase I contract awards to companies in Ohio and their corresponding technologies are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2007-03-31
The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.« less
Science& Technology Review March 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D H
2004-01-23
This month's issue has the following articles: (1) ''Rethinking Atoms for Peace and the Future of Nuclear Technology'' a commentary by Ronald F. Lehman II; (2) ''Rich Legacy from Atoms for Peace'' In 1953, President Eisenhower encouraged world leaders to pursue peaceful uses of nuclear technology. Many of Livermore's contributions in the spirit of this initiative continue to benefit society today. (3) ''Tropopause Height Becomes Another Climate-Change Fingerprint'' Simulations and observational data show that human activities are largely responsible for the steady elevation of the tropopause, the boundary between the troposphere and the stratosphere. (4) ''A Better Method for Certifyingmore » the Nuclear Stockpile'' Livermore and Los Alamos are developing a common framework for evaluating the reliability and safety of nuclear weapons. (5) ''Observing How Proteins Loop the Loop'' A new experimental method developed at Livermore allows scientists to monitor the folding processes of proteins, one molecule at a time.« less
A First Look at the Upcoming SISO Space Reference FOM
NASA Technical Reports Server (NTRS)
Mueller, Bjorn; Crues, Edwin Z.; Dexter, Dan; Garro, Alfredo; Skuratovskiy, Anton; Vankov, Alexander
2016-01-01
Spaceflight is difficult, dangerous and expensive; human spaceflight even more so. In order to mitigate some of the danger and expense, professionals in the space domain have relied, and continue to rely, on computer simulation. Simulation is used at every level including concept, design, analysis, construction, testing, training and ultimately flight. As space systems have grown more complex, new simulation technologies have been developed, adopted and applied. Distributed simulation is one those technologies. Distributed simulation provides a base technology for segmenting these complex space systems into smaller, and usually simpler, component systems or subsystems. This segmentation also supports the separation of responsibilities between participating organizations. This segmentation is particularly useful for complex space systems like the International Space Station (ISS), which is composed of many elements from many nations along with visiting vehicles from many nations. This is likely to be the case for future human space exploration activities. Over the years, a number of distributed simulations have been built within the space domain. While many use the High Level Architecture (HLA) to provide the infrastructure for interoperability, HLA without a Federation Object Model (FOM) is insufficient by itself to insure interoperability. As a result, the Simulation Interoperability Standards Organization (SISO) is developing a Space Reference FOM. The Space Reference FOM Product Development Group is composed of members from several countries. They contribute experiences from projects within NASA, ESA and other organizations and represent government, academia and industry. The initial version of the Space Reference FOM is focusing on time and space and will provide the following: (i) a flexible positioning system using reference frames for arbitrary bodies in space, (ii) a naming conventions for well-known reference frames, (iii) definitions of common time scales, (iv) federation agreements for common types of time management with focus on time stepped simulation, and (v) support for physical entities, such as space vehicles and astronauts. The Space Reference FOM is expected to make collaboration politically, contractually and technically easier. It is also expected to make collaboration easier to manage and extend.
Improved importance sampling technique for efficient simulation of digital communication systems
NASA Technical Reports Server (NTRS)
Lu, Dingqing; Yao, Kung
1988-01-01
A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.
NASA Astrophysics Data System (ADS)
Shen, Ming-Yi
The improvement of wafer equipment productivity has been a continuous effort of the semiconductor industry. Higher productivity implies lower product price, which economically drives more demand from the market. This is desired by the semiconductor manufacturing industry. By raising the ion beam current of the ion implanter for 300/450mm platforms, it is possible to increase the throughput of the ion implanter. The resulting dose rate can be comparable to the performance of conventional ion implanters or higher, depending on beam current and beam size. Thus, effects caused by higher dose rate must be investigated further. One of the major applications of ion implantation (I/I) is source-drain extension (SDE) I/I for the silicon FinFET device. This study investigated the dose rate effects on the material properties and device performance of the 10-nm node silicon FinFET. In order to gain better understanding of the dose rate effects, the dose rate study is based on Synopsys Technology CAD (TCAD) process and device simulations that are calibrated and validated using available structural silicon fin samples. We have successfully shown that the kinetic monte carlo (KMC) I/I simulation can precisely model both the silicon amorphization and the arsenic distribution in the fin by comparing the KMC simulation results with TEM images. The results of the KMC I/I simulation show that at high dose rate more activated arsenic dopants were in the source-drain extension (SDE) region. This finding matches with the increased silicon amorphization caused by the high dose-rate I/I, given that the arsenic atoms could be more easily activated by the solid phase epitaxial regrowth process. This increased silicon amorphization led to not only higher arsenic activation near the spacer edge, but also less arsenic atoms straggling into the channel. Hence, it is possible to improve the throughput of the ion implanter when the dopants are implanted at high dose rate if the same doping level with a lower wafer dose can be achieved. In addition, the leakage current might also be reduced due to less undesired dopants in the channel. However, the twin defects from the problematic Si{111} recrystallization is well-known to cause excessive leakage current to the FinFET. This drawback can offset the benefits of the high dose rate I/I mentioned above. This work produced the first attempt at simulating the electrical impact of twin defects on advanced-node (10 nm) FinFET device performance. It was found that the high dose-rate I/I causes more twin defects in the silicon fin, and the physical locations of these defects were close to the channel. The defects undesirably induced trap-assisted band-to-band tunneling near the drain, which increased the leakage current. This issue could be mitigated by using asymmetrical gate overlap/underlap design or thicker spacer for SDE I/I so that the twin defects are not located in the depletion region near the drain.
PHISICS/RELAP5-3D RESULTS FOR EXERCISES II-1 AND II-2 OF THE OECD/NEA MHTGR-350 BENCHMARK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, Gerhard
2016-03-01
The Idaho National Laboratory (INL) Advanced Reactor Technologies (ART) High-Temperature Gas-Cooled Reactor (HTGR) Methods group currently leads the Modular High-Temperature Gas-Cooled Reactor (MHTGR) 350 benchmark. The benchmark consists of a set of lattice-depletion, steady-state, and transient problems that can be used by HTGR simulation groups to assess the performance of their code suites. The paper summarizes the results obtained for the first two transient exercises defined for Phase II of the benchmark. The Parallel and Highly Innovative Simulation for INL Code System (PHISICS), coupled with the INL system code RELAP5-3D, was used to generate the results for the Depressurized Conductionmore » Cooldown (DCC) (exercise II-1a) and Pressurized Conduction Cooldown (PCC) (exercise II-2) transients. These exercises require the time-dependent simulation of coupled neutronics and thermal-hydraulics phenomena, and utilize the steady-state solution previously obtained for exercise I-3 of Phase I. This paper also includes a comparison of the benchmark results obtained with a traditional system code “ring” model against a more detailed “block” model that include kinetics feedback on an individual block level and thermal feedbacks on a triangular sub-mesh. The higher spatial fidelity that can be obtained by the block model is illustrated with comparisons of the maximum fuel temperatures, especially in the case of natural convection conditions that dominate the DCC and PCC events. Differences up to 125 K (or 10%) were observed between the ring and block model predictions of the DCC transient, mostly due to the block model’s capability of tracking individual block decay powers and more detailed helium flow distributions. In general, the block model only required DCC and PCC calculation times twice as long as the ring models, and it therefore seems that the additional development and calculation time required for the block model could be worth the gain that can be obtained in the spatial resolution« less
NASA Technical Reports Server (NTRS)
1990-01-01
RAPIDS II is a simulation-based intelligent tutoring system environment. It is a system for producing computer-based training courses that are built on the foundation of graphical simulations. RAPIDS II simulations can be animated and they can have continuously updating elements.
Application of the GERTS II simulator in the industrial environment.
NASA Technical Reports Server (NTRS)
Whitehouse, G. E.; Klein, K. I.
1971-01-01
GERT was originally developed to aid in the analysis of stochastic networks. GERT can be used to graphically model and analyze complex systems. Recently a simulator model, GERTS II, has been developed to solve GERT Networks. The simulator language used in the development of this model was GASP II A. This paper discusses the possible application of GERTS II to model and analyze (1) assembly line operations, (2) project management networks, (3) conveyor systems and (4) inventory systems. Finally, an actual application dealing with a job shop loading problem is presented.
Molecular dynamics growth modeling of InAs1-xSbx-based type-II superlattice
NASA Astrophysics Data System (ADS)
Ciani, Anthony J.; Grein, Christoph H.; Irick, Barry; Miao, Maosheng; Kioussis, Nicholas
2017-09-01
Type-II strained-layer superlattices (T2SL) based on InAs1-xSbx are a promising photovoltaic detector material technology for thermal imaging; however, Shockley-Read-Hall recombination and generation rates are still too high for thermal imagers based on InAs1-xSbx T2SL to reach their ideal performance. Molecular dynamics simulations using the Stillinger-Weber (SW) empirical potentials are a useful tool to study the growth of tetrahedral coordinated crystals and the nonequilibrium formation of defects within them, including the long-range effects of strain. SW potentials for the possible atomic interactions among {Ga, In, As, Sb} were developed by fitting to ab initio calculations of elastically distorted zinc blende and diamond unit cells. The SW potentials were tested against experimental observations of molecular beam epitaxial (MBE) growth and then used to simulate the MBE growth of InAs/InAs0.5Sb0.5 T2SL on GaSb substrates over a range of processes parameters. The simulations showed and helped to explain Sb cross-incorporation into the InAs T2SL layers, Sb segregation within the InAsSb layers, and identified medium-range defect clusters involving interstitials and their induction of interstitial-vacancy pairs. Defect formation was also found to be affected by growth temperature and flux stoichiometry.
Verification of high resolution simulation of precipitation and wind in Portugal
NASA Astrophysics Data System (ADS)
Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João
2017-04-01
Demand of energy and freshwater continues to grow as the global population and demands increase. Precipitation feed the freshwater ecosystems which provides a wealth of goods and services for society and river flow to sustain native species and natural ecosystem functions. The adoption of the wind and hydro-electric power supplies will sustain energy demands/services without restricting the economic growth and accelerated policies scenarios. However, the international meteorological observation network is not sufficiently dense to directly support high resolution climatic research. In this sense, coupled global and regional atmospheric models constitute the most appropriate physical and numerical tool for weather forecasting and downscaling in high resolution grids with the capacity to solve problems resulting from the lack of observed data and measuring errors. Thus, this study aims to calibrate and validate of the WRF regional model from precipitation and wind fields simulation, in high spatial resolution grid cover in Portugal. The simulations were performed in two-way nesting with three grids of increasing resolution (60 km, 20 km and 5 km) and the model performance assessed for the summer and winter months (January and July), using input variables from two different reanalyses and forecasted databases (ERA-Interim and NCEP-FNL) and different forcing schemes. The verification procedure included: (i) the use of several statistics error estimators, correlation based measures and relative errors descriptors; and, (ii) an observed dataset composed by time series of hourly precipitation, wind speed and direction provided by the Portuguese meteorological institute for a comprehensive set of weather stations. Main results suggested the good ability of the WRF to: (i) reproduce the spatial patterns of the mean and total observed fields; (ii) with relatively small values of bias and other errors; and, (iii) and good temporal correlation. These findings are in good agreements with the conclusions of other previous studies with WRF. It is also important to underline the relative independence of the simulations with the datasets used to feed the model and a relatively better performance with one of the tested forced scheme. These findings suggest the skill and robustness of the WRF to produce high resolution simulations of both precipitation and wind. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033.
Simulations of the Mg II K and Ca II 8542 Lines From an Alfvén Wave-Heated Flare Chromosphere
NASA Technical Reports Server (NTRS)
Kerr, Graham S.; Fletcher, Lyndsay; Russell, Alexander J. B.; Allred, Joel C.
2016-01-01
We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfven wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542 A profiles that are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with Interface Region Imaging Spectrograph observations. The predicted differences between the Ca II 8542 A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating inflares.
Precision machining of advanced materials with waterjets
NASA Astrophysics Data System (ADS)
Liu, H. T.
2017-01-01
Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.
Modeling of Army Research Laboratory EMP simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miletta, J.R.; Chase, R.J.; Luu, B.B.
1993-12-01
Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).
Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi, Ahmad
The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less
MATSIM -The Development and Validation of a Numerical Voxel Model based on the MATROSHKA Phantom
NASA Astrophysics Data System (ADS)
Beck, Peter; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Latocha, Marcin; Vana, Norbert; Zechner, Andrea; Reitz, Guenther
The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center. The aim of the project is to develop a voxel-based model of the MATROSHKA anthro-pomorphic torso used at the International Space Station (ISS) as foundation to perform Monte Carlo high-energy particle transport simulations for different irradiation conditions. Funded by the Austrian Space Applications Programme (ASAP), MATSIM is a co-investigation with the European Space Agency (ESA) ELIPS project MATROSHKA, an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. The MATROSHKA facility is designed to determine the radiation exposure of an astronaut onboard ISS and especially during an ex-travehicular activity. The numerical model developed in the frame of MATSIM is validated by reference measurements. In this report we give on overview of the model development and compare photon and neutron irradiations of the detector-equipped phantom torso with Monte Carlo simulations using FLUKA. Exposure to Co-60 photons was realized in the standard ir-radiation laboratory at Seibersdorf, while investigations with neutrons were performed at the thermal column of the Vienna TRIGA Mark-II reactor. The phantom was loaded with passive thermoluminescence dosimeters. In addition, first results of the calculated dose distribution within the torso are presented for a simulated exposure in low-Earth orbit.
Multi-Rate Digital Control Systems with Simulation Applications. Volume II. Computer Algorithms
1980-09-01
OREWORD The research described in this report was performed by Systems Technology, Inc., Hawthorne, California, under Air Force Contract F33615-79-C-3601...zero to plus infinity . - K ST(t) = 6(t) + 5(t - T) + 6(t - 2T) + .... J 6(t - kT) (4) k=O The Laplace transform of 6 T(t) is given in closed form as...The definition of the z-transform stems from the infinite summation cT(t) = • c( kfc ) 6(t - kT) k = 0, 1, 2, ... (16) k=0 where cT(t), the sampled
Scale-invariance underlying the logistic equation and its social applications
NASA Astrophysics Data System (ADS)
Hernando, A.; Plastino, A.
2013-01-01
On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
Relaxation dynamics of internal segments of DNA chains in nanochannels
NASA Astrophysics Data System (ADS)
Jain, Aashish; Muralidhar, Abhiram; Dorfman, Kevin; Dorfman Group Team
We will present relaxation dynamics of internal segments of a DNA chain confined in nanochannel. The results have direct application in genome mapping technology, where long DNA molecules containing sequence-specific fluorescent probes are passed through an array of nanochannels to linearize them, and then the distances between these probes (the so-called ``DNA barcode'') are measured. The relaxation dynamics of internal segments set the experimental error due to dynamic fluctuations. We developed a multi-scale simulation algorithm, combining a Pruned-Enriched Rosenbluth Method (PERM) simulation of a discrete wormlike chain model with hard spheres with Brownian dynamics (BD) simulations of a bead-spring chain. Realistic parameters such as the bead friction coefficient and spring force law parameters are obtained from PERM simulations and then mapped onto the bead-spring model. The BD simulations are carried out to obtain the extension autocorrelation functions of various segments, which furnish their relaxation times. Interestingly, we find that (i) corner segments relax faster than the center segments and (ii) relaxation times of corner segments do not depend on the contour length of DNA chain, whereas the relaxation times of center segments increase linearly with DNA chain size.
Computer Simulations of Polytetrafluoroethylene in the Solid State
NASA Astrophysics Data System (ADS)
Holt, D. B.; Farmer, B. L.; Eby, R. K.; Macturk, K. S.
1996-03-01
Force field parameters (Set I) for fluoropolymers were previously derived from MOPAC AM1 semiempirical data on model molecules. A second set (Set II) was derived from the AM1 results augmented by ab initio calculations. Both sets yield reasonable helical and phase II packing structures for polytetrafluoroethylene (PTFE) chains. However, Set I and Set II differ in the strength of van der Waals interactions, with Set II having deeper potential wells (order of magnitude). To differentiate which parameter set provides a better description of PTFE behavior, molecular dynamics simulations have been performed with Biosym Discover on clusters of PTFE chains which begin in a phase II packing environment. Added to the model are artificial constraints which allow the simulation of thermal expansion without having to define periodic boundary conditions for each specific temperature of interest. The preliminary dynamics simulations indicate that the intra- and intermolecular interactions provided by Set I are too weak. The degree of helical disorder and chain motion are high even at temperatures well below the phase II-phase IV transition temperature (19 C). Set II appears to yield a better description of PTFE in the solid state.
Software Quality Control at Belle II
NASA Astrophysics Data System (ADS)
Ritter, M.; Kuhr, T.; Hauth, T.; Gebard, T.; Kristof, M.; Pulvermacher, C.;
2017-10-01
Over the last seven years the software stack of the next generation B factory experiment Belle II has grown to over one million lines of C++ and Python code, counting only the part included in offline software releases. There are several thousand commits to the central repository by about 100 individual developers per year. To keep a coherent software stack of high quality that it can be sustained and used efficiently for data acquisition, simulation, reconstruction, and analysis over the lifetime of the Belle II experiment is a challenge. A set of tools is employed to monitor the quality of the software and provide fast feedback to the developers. They are integrated in a machinery that is controlled by a buildbot master and automates the quality checks. The tools include different compilers, cppcheck, the clang static analyzer, valgrind memcheck, doxygen, a geometry overlap checker, a check for missing or extra library links, unit tests, steering file level tests, a sophisticated high-level validation suite, and an issue tracker. The technological development infrastructure is complemented by organizational means to coordinate the development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.
The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less
Java-based Graphical User Interface for MAVERIC-II
NASA Technical Reports Server (NTRS)
Seo, Suk Jai
2005-01-01
A computer program entitled "Marshall Aerospace Vehicle Representation in C II, (MAVERIC-II)" is a vehicle flight simulation program written primarily in the C programming language. It is written by James W. McCarter at NASA/Marshall Space Flight Center. The goal of the MAVERIC-II development effort is to provide a simulation tool that facilitates the rapid development of high-fidelity flight simulations for launch, orbital, and reentry vehicles of any user-defined configuration for all phases of flight. MAVERIC-II has been found invaluable in performing flight simulations for various Space Transportation Systems. The flexibility provided by MAVERIC-II has allowed several different launch vehicles, including the Saturn V, a Space Launch Initiative Two-Stage-to-Orbit concept and a Shuttle-derived launch vehicle, to be simulated during ascent and portions of on-orbit flight in an extremely efficient manner. It was found that MAVERIC-II provided the high fidelity vehicle and flight environment models as well as the program modularity to allow efficient integration, modification and testing of advanced guidance and control algorithms. In addition to serving as an analysis tool for techno logy development, many researchers have found MAVERIC-II to be an efficient, powerful analysis tool that evaluates guidance, navigation, and control designs, vehicle robustness, and requirements. MAVERIC-II is currently designed to execute in a UNIX environment. The input to the program is composed of three segments: 1) the vehicle models such as propulsion, aerodynamics, and guidance, navigation, and control 2) the environment models such as atmosphere and gravity, and 3) a simulation framework which is responsible for executing the vehicle and environment models and propagating the vehicle s states forward in time and handling user input/output. MAVERIC users prepare data files for the above models and run the simulation program. They can see the output on screen and/or store in files and examine the output data later. Users can also view the output stored in output files by calling a plotting program such as gnuplot. A typical scenario of the use of MAVERIC consists of three-steps; editing existing input data files, running MAVERIC, and plotting output results.
NASA Astrophysics Data System (ADS)
Davies, Frederick
2017-08-01
The epoch of helium reionization was a major milestone in the history of the Universe, a direct consequence of supermassive black hole growth and the cumulative output of hard ionizing photons by quasars. Our observations of the He II Ly-alpha forest with HST/COS in 26 quasar sightlines show strong fluctuations at z 3, consistent with our state-of-the-art simulations of the He II reionization epoch. However, our detection of transmission at z > 3.5 is inconsistent with all He II reionization models. Resolving this puzzle requires an extensive parameter study of He II reionization, which we propose to carry out using our fast, efficient simulations. The He II Ly-alpha forest is also sensitive to the effect of quasar radiation illuminating the intergalactic medium, known as the proximity effect. We have performed an ambitious ground-based imaging and spectroscopic survey for z 3 quasars in the foreground of HeII sightlines observed with HST/COS, and statistically detected the transverse proximity effect for the first time. The strength of this effect depends on both the quasar lifetime and the opening angle of quasar emission (or the fraction of obscured quasars), and we propose to use our He II reionization simulations to interpret this new measurement. Finally, the line-of-sight proximity effect due to the background quasar provides an independent constraint on the quasar lifetime. Our preliminary comparison of He II spectra to our radiative transfer simulations suggests a quasar lifetime > 10 Myr. We propose to use our He II reionization simulations to model this diverse set of observations and fully capitalize on the far-UV legacy of HST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert
This report covers the technical work in Phase I of this DOE-Nuclear Program STTR Fast Track project. All key tasks were successfully performed, new tasks were added to utilize DOD-AFRL’s 95 GigaHertz (GHz) gyrotron in Phase II, while other lesser tasks were left for Phase II efforts or were requested to be made optional. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future testing in Phase II. This work built upon a prior DOE project DE-EE0005504 that developed the basic waveguide setup, process and instruments. Inmore » this project we were investigating the use of MMW to form rock melt and steel plugs in deep wells to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This technology also has potential for deep well drilling for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled. This allows for higher levels of safety and protection of the environment during deep drilling operations. The larger purpose of this project was to find answers to key questions in progressing MMW technology for these applications. Phase I of this project continued bench testing using the MIT 10 kilo-Watt (kW), 28 GHz frequency laboratory gyrotron, literature searches, planning and design of equipment for Phase II efforts. Furnace melting and rock testing (Tasks 4 and 5) were deferred to Phase II due to lack of concurrent availability of the furnace and personnel at MIT. That delay and lower temperature furnace (limited to 1650oC) caused rethinking of Task 4 to utilize coordinated rock selection with the DOD testing in Phase II. The high pressure and high power window design work (moved to Phase I Task 3 from Phase II Task 20) and Additive materials and methods (Tasks 7 & 8) performed in Phase I may become patentable and thus little detail can be provided in this public report. A version of that new high pressure, high MMW power window may be built for possible Phase II testing at the DOD site. Most significantly, additional tasks were added for planning the use of the Department of Defense, Air Force Research Laboratory’s (DOD-AFRL’s) System 0 gyrotron in Phase II. Specifically added and accomplished were multiple discussions on DOD and DOE-MIT-Impact goals, timing between ongoing DOD testing, outlining the required equipment and instruments for rock testing, and terms for an agreement. That addition required a visit to Kirtland AFB in Albuquerque, New Mexico to talk to key DOD-AFRL personnel and management. A DOD-Impact-MIT charter (i.e., contract) is now being circulated for signatures. Also added task to Phase I, MIT designed the critical path reflected power isolator screen for Phase II testing. To ensure compatibility, that design was computer simulated for the expected heat load distribution and the resulting temperature increase. Advancing the MMW testing up to the optimum 95 GHz and 100kW (5X higher) power levels was stated in the original proposal to be a key required development step for this technology to achieve prototype drilling, lining, and rock melting/ vaporization for creating sealing plugs.« less
TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phifer, M.A.
1999-04-15
This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004
Betancourt Galeano, Wendy; Castrillón Muñoz, Eduardo; Godoy Jaimes, Kristy Alejandra; Matheus Lamus, Johanna; Ramírez Rivera, Sandra Milena; Ríos Castañeda, Sandra Viviana
2016-01-01
Simulation has been used as a learning tool in different disciplines and professions, including medicine and its specialties. Its usefulness is directly related to the integration of objectives, contents, methodologies and specific resources in each area of knowledge. To describe the development of an educational experience implemented in the Pontificia Universidad Javeriana Cali (Cali, Colombia) with medical students of Human Behavior II program, between 2012 and 2013. This experience was performed with simulated patients played by actors of the Altergesto theater group, that were interviewed by students under the supervision of psychiatrists and teachers of the subject, using the Simulated Hospital of the University. A historical development recall of the teaching sequence was made from the first half of 2012 to the second half of 2013, a statement of pedagogical objectives, and a description of the teaching-learning strategies. 158 interviews were conducted over a period of two years during which it was necessary to raise methodological solutions to adapt this teaching sequence to the content and objectives of the subject. The high-fidelity simulation, integrating actors who represent psychiatric patients mixed with the technology of a Simulated Hospital was useful to achieve compliance with the objectives proposed in the course of Human Behavior II, as a part of the program of Medicine at the Pontificia Universidad Javeriana Cali. In parallel, the construction of experience as an interdisciplinary project and the practical approach of this strategy may impact on cognitive, emotional, behavioral dimensions of the participants, encouraging meaningful learning. An easy access database for the collected material and the study of the effects of this strategy in the formation of long-term students is needed. Copyright © 2015 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Tindall, J.A.; Friedel, M.J.; Szmajter, R.J.; Cuffin, S.M.
2005-01-01
The objectives of the laboratory study described in this paper were (1) to determine the effectiveness of four nutrient solutions and a control in stimulating the microbial degradation of toluene in the unsaturated zone as an alternative to bioremediation methodologies such as air sparging, in situ vitrification, or others (Part I), and (2) to compare the effectiveness of the addition of the most effective nutrient solution from Part I (modified Hoagland type, nitrate-rich) and hydrogen peroxide (H2O2) on microbial degradation of toluene for repeated, simulated spills in the unsaturated zone (Part II). For Part 1, fifteen columns (30-cm diameter by 150-cm height), packed with air-dried, 0.25-mm, medium-fine sand, were prepared to simulate shallow unconfined aquifer conditions. Toluene (10 mL) was added to the surface of each column, and soil solution and soil gas samples were collected from the columns every third day for 21 days. On day 21, a second application of toluene (10 mL) was made, and the experiment was run for another 21 days. Solution 4 was the most effective for microbial degradation in Part I. For Part II, three columns were designated nutrient-rich 3-day toluene columns and received toluene injections every 3 days; three columns were designated as nutrient-rich 7-day columns and received toluene injections every 7 days; and two columns were used as controls to which no nutrient was added. As measured by CO2 respiration, the initial benefits for aerobic organisms from the O2 enhancement were sustained by the bacteria for only a short period of time (about 8 days). Degradation benefits from the nutrient solution were sustained throughout the experiment. The O2 and nutrient-enhanced columns degraded significantly more toluene than the control columns when simulating repeated spills onto the unsaturated zone, and demonstrated a potentially effective in situ bioremediation technology when used immediately or within days after a spill. The combined usage of H 2O2 and nitrate-rich nutrients served to effectively maximize natural aerobic and anaerobic metabolic processes that biodegrade hydrocarbons in petroleum-contaminated media. Applications of this technology in the field may offer economical advantages to other, more intrusive abatement technologies. ?? Springer 2005.
Caring communications: how technology enhances interpersonal relations, Part II.
Simpson, Roy L
2008-01-01
Part I of this 2-part series about technology's role in interpersonal communications examined how humans interact; proposed a caring theory of communication, collaboration, and conflict resolution; and delineated ways that technology--in general--supports this carative model of interpersonal relations. Part II will examine the barriers to adoption of carative technologies, describe the core capabilities required to overcome them, and discuss specific technologies that can support carative interpersonal relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2001-08-08
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less
ERIC Educational Resources Information Center
Hartmann, Heidi I., Ed.; And Others
This volume contains 12 papers commissioned by the Panel on Technology and Women's Employment. "Technology, Women, and Work: Policy Perspectives" (Eli Ginzberg) is an overview that provides a context for the volume. The four case studies in Part II describe the impact of information technology in the insurance industry, among bookkeepers, among…
ERIC Educational Resources Information Center
McDonald, Jason K.; Gibbons, Andrew S.
2009-01-01
In this paper we describe the criteria of "Technology I, II, and III," which some instructional theorists have proposed to describe the differences between a formulaic and a reflective approach to solving educational problems. In a recent study, we applied these criteria to find evidence of a "technological gravity" that pulls practitioners away…
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This report, the second in a series of six, presents the findings of evaluative studies of six Level I Model Technology School sites which were conducted as part of Phase II of the California Educational Technology Assessment Program. The project sites are: Alhambra City School District (two schools); Cupertino Union Elementary District and…
Hofmann, Bjørn
2009-07-23
It is important to demonstrate learning outcomes of simulation in technology based practices, such as in advanced health care. Although many studies show skills improvement and self-reported change to practice, there are few studies demonstrating patient outcome and societal efficiency. The objective of the study is to investigate if and why simulation can be effective and efficient in a hi-tech health care setting. This is important in order to decide whether and how to design simulation scenarios and outcome studies. Core theoretical insights in Science and Technology Studies (STS) are applied to analyze the field of simulation in hi-tech health care education. In particular, a process-oriented framework where technology is characterized by its devices, methods and its organizational setting is applied. The analysis shows how advanced simulation can address core characteristics of technology beyond the knowledge of technology's functions. Simulation's ability to address skilful device handling as well as purposive aspects of technology provides a potential for effective and efficient learning. However, as technology is also constituted by organizational aspects, such as technology status, disease status, and resource constraints, the success of simulation depends on whether these aspects can be integrated in the simulation setting as well. This represents a challenge for future development of simulation and for demonstrating its effectiveness and efficiency. Assessing the outcome of simulation in education in hi-tech health care settings is worthwhile if core characteristics of medical technology are addressed. This challenges the traditional technical versus non-technical divide in simulation, as organizational aspects appear to be part of technology's core characteristics.
An evaluation of the hybrid car technology for the Mexico Mega City
NASA Astrophysics Data System (ADS)
Jazcilevich, Aron D.; Reynoso, Agustin Garcia; Grutter, Michel; Delgado, Javier; Ayala, Ulises Diego; Lastra, Manuel Suarez; Zuk, Miriam; Oropeza, Rogelio Gonzalez; Lents, Jim; Davis, Nicole
The introduction of hybrid electric vehicle (HEV) technology in the private car fleet of Mexico City is evaluated in terms of private costs, energy, public health and CO 2 emission benefits. In addition to constructing plausible scenarios for urban expansion, emission, car fleet, and fuel consumption for year 2026 and comparing them with a 2004 base case, a time series is built to obtain accumulated economic benefits. Experimental techniques were used to build a vehicle library for a car simulator that included a Prius 2002, chosen as the HEV technology representative for this work. The simulator is used to estimate the emissions and fuel consumption of the car fleet scenarios. In the context of an urban scenario for year 2026, a complex air quality model obtains the concentrations of criterion pollutants corresponding to these scenarios. Using a technology penetration model, the hybridized fleet starts unfolding in year 2009 reaching to 20% in 2026. In this year, the hybridized fleet resulted in reductions of about 10% of CO 2 emissions, and yielded reductions in daytime mean concentrations of up to 7% in ozone and 3.4% in PM 2.5 compared to the 2004 base case. These reductions are concentrated in the densely populated areas of Mexico City. By building a time series of costs and benefits it is shown that, depending on fuel prices and using a 5% return rate, positive accumulated benefits (CO 2 benefits + energy benefits + public health benefits - private costs) will start generating in year 2015 reaching between 2.8 and 4.5 billion US Dlls in 2026. Another modernized private fleet consisting exclusively of Tier I and II cars did not yield appreciable results, signaling that a change in private car technology towards HEV's is needed to obtain significant accumulated benefits.
The Environmental Technology Verification report discusses the technology and performance of the Static Pac System, Phase II, natural gas reciprocating compressor rod packing manufactured by the C. Lee Cook Division, Dover Corporation. The Static Pac System is designed to seal th...
Information Technology: Making It All Fit. Track II: Managing Technologies Integration.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Nine papers from the 1988 CAUSE conference's Track II, Managing Technologies Integration, are presented. They include: "Computing in the '90s--Will We Be Ready for the Applications Needed?" (Stephen Patrick); "Glasnost, The Era of 'Openness'" (Bernard W. Gleason); "Academic and Administrative Computing: Are They Really…
Survey of student attitudes towards digital simulation technologies at a dental school in China.
Ren, Q; Wang, Y; Zheng, Q; Ye, L; Zhou, X D; Zhang, L L
2017-08-01
Digital simulation technologies have become widespread in healthcare education, especially in dentistry; these technologies include digital X-ray images, digital microscopes, virtual pathology slides and other types of simulation. This study aimed to assess students' attitudes towards digital simulation technologies at a large, top-ranked dental school in China, as well as find out how students compare the digital technologies with traditional training methods. In April 2015, a custom-designed questionnaire was distributed to a total of 389 students who had received digital technology and simulation-based training in West China Dental School during 2012-2014. Results of a cross-sectional survey show that most students accept digital simulation technology; they report that the technology is stimulating and facilitates self-directed and self-paced learning. These findings, together with the objective advantages of digital technology, suggest that digital simulation training offers significant potential for dental education, highlighting the need for further research and more widespread implementation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaylock, Myra L.; LaFleur, Chris Bensdotter; Muna, Alice Baca
Safety standards development for maintenance facilities of liquid and compressed natural gas fueled vehicles is required to ensure proper facility design and operating procedures. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase II work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest using risk ranking. Detailed simulations and modeling were performed to estimate the location and behaviormore » of natural gas releases based on these scenarios. Specific code conflicts were identified, and ineffective code requirements were highlighted and resolutions proposed. These include ventilation rate basis on area or volume, as well as a ceiling offset which seems ineffective at protecting against flammable gas concentrations. ACKNOWLEDGEMENTS The authors gratefully acknowledge Bill Houf (SNL -- Retired) for his assistance with the set-up and post-processing of the numerical simulations. The authors also acknowledge Doug Horne (retired) for his helpful discussions. We would also like to acknowledge the support from the Clean Cities program of DOE's Vehicle Technology Office.« less
Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater
Hansard, S.P.; Easter, H.D.; Voelker, Bettina M.
2011-01-01
Superoxide radical (O2-) has been proposed to be an important participant in oxidation-reduction reactions of metal ions in natural waters. Here, we studied the reaction of nanomolar Mn(II) with O 2- in seawater and simulated freshwater, using chemiluminescence detection of O2- to quantify the effect of Mn(II) on the decay kinetics of O2-. With 3-24 nM added [Mn(II)] and <0.7 nM [O2-], we observed effective second-order rate constants for the reaction of Mn(II) with O2- of 6 ?? 106 to 1 ?? 107 M -1???s-1 in various seawater samples. In simulated freshwater (pH 8.6), the effective rate constant of Mn(II) reaction with O 2- was somewhat lower, 1.6 ?? 106 M -1???s-1. With higher initial [O2-], in excess of added [Mn(II)], catalytic decay of O 2- by Mn was observed, implying that a Mn(II/III) redox cycle occurred. Our results show that reactions with nanomolar Mn(II) could be an important sink of O2- in natural waters. In addition, reaction of Mn(II) with superoxide could maintain a significant fraction of dissolved Mn in the +III oxidation state. ?? 2011 American Chemical Society.
Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C
2015-01-01
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice.
Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.
2015-01-01
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice. PMID:26331717
Flexible Display and Integrated Communication Devices (FDICD) Technology. Volume 2
2008-06-01
AFRL-RH-WP-TR-2008-0072 Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II David Huffman Keith Tognoni...14 April 2004 – 20 June 2008 4. TITLE AND SUBTITLE Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II 5a...14. ABSTRACT This flexible display and integrated communication devices (FDICD) technology program sought to create a family of powerful
Polymer translocation under a pulling force: Scaling arguments and threshold forces
NASA Astrophysics Data System (ADS)
Menais, Timothée
2018-02-01
DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .
Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II
DOE Office of Scientific and Technical Information (OSTI.GOV)
George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg
2009-06-01
This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2more » storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.« less
Managing Information Technology: Facing the Issues. Track II: Funding and Accountability Issues.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Eight papers making up Track II of the 1989 conference of the Professional Association for the Management of Information Technology in Higher Education (known as CAUSE, an acronym for the association's former name) are presented in this document. The focus of Track II is on funding and accountability issues, and the papers include: "A…
ERIC Educational Resources Information Center
Bitter, Gary G., Ed.
1989-01-01
Reviews three software packages: (1) "Physics," tutorial, grades 11-12, Macintosh; (2) "Hands On Math: Volume I," interactive math exploration/simulation of manipulatives use, grades K-7, Apple II; and (3) "A.I.: An Experience with Artificial Intelligence," simulation, grades 5-12, Apple II. (MVL)
Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
William J. Schroeder
2011-11-13
This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannotmore » be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem important to the nations scientific progress as described shortly. Further, SLAC researchers routinely generate massive amounts of data, and frequently collaborate with other researchers located around the world. Thus SLAC is an ideal teammate through which to develop, test and deploy this technology. The nature of the datasets generated by simulations performed at SLAC presented unique visualization challenges especially when dealing with higher-order elements that were addressed during this Phase II. During this Phase II, we have developed a strong platform for collaborative visualization based on ParaView. We have developed and deployed a ParaView Web Visualization framework that can be used for effective collaboration over the Web. Collaborating and visualizing over the Web presents the community with unique opportunities for sharing and accessing visualization and HPC resources that hitherto with either inaccessible or difficult to use. The technology we developed in here will alleviate both these issues as it becomes widely deployed and adopted.« less
SETDA's National Trends Report 2007
ERIC Educational Resources Information Center
State Educational Technology Directors Association, 2007
2007-01-01
The State Educational Technology Directors Association (SETDA) is pleased to release its fourth annual National Trends Report on the use of federal funds to support educational technology. This report documents findings from Round 4 (FY 05) of the No Child Left Behind, Title II Part D, Enhancing Education Through Technology (NCLB II D) program.…
The Rigaku ZSX Mini II (ZSX Mini II) XRF Services x-ray fluorescence (XRF) analyzer was demon-strated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2...
Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture
NASA Technical Reports Server (NTRS)
Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.
2003-01-01
This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.
The simulation library of the Belle II software system
NASA Astrophysics Data System (ADS)
Kim, D. Y.; Ritter, M.; Bilka, T.; Bobrov, A.; Casarosa, G.; Chilikin, K.; Ferber, T.; Godang, R.; Jaegle, I.; Kandra, J.; Kodys, P.; Kuhr, T.; Kvasnicka, P.; Nakayama, H.; Piilonen, L.; Pulvermacher, C.; Santelj, L.; Schwenker, B.; Sibidanov, A.; Soloviev, Y.; Starič, M.; Uglov, T.
2017-10-01
SuperKEKB, the next generation B factory, has been constructed in Japan as an upgrade of KEKB. This brand new e+ e- collider is expected to deliver a very large data set for the Belle II experiment, which will be 50 times larger than the previous Belle sample. Both the triggered physics event rate and the background event rate will be increased by at least 10 times than the previous ones, and will create a challenging data taking environment for the Belle II detector. The software system of the Belle II experiment is designed to execute this ambitious plan. A full detector simulation library, which is a part of the Belle II software system, is created based on Geant4 and has been tested thoroughly. Recently the library has been upgraded with Geant4 version 10.1. The library is behaving as expected and it is utilized actively in producing Monte Carlo data sets for various studies. In this paper, we will explain the structure of the simulation library and the various interfaces to other packages including geometry and beam background simulation.
Current Trends in Higher Education Technology: Simulation
ERIC Educational Resources Information Center
Damewood, Andrea M.
2016-01-01
This paper is focused on how technology in use changes over time, and the current trend of simulation technology as a supported classroom technology. Simulation-based training as a learning tool is discussed within the context of adult learning theories, as is the technology used and how today's higher education technology administrators support…
Indocyanine green fluorescence in second near-infrared (NIR-II) window
Bhavane, Rohan; Ghaghada, Ketan B.; Vasudevan, Sanjeev A.; Kaay, Alexander; Annapragada, Ananth
2017-01-01
Indocyanine green (ICG), a FDA approved near infrared (NIR) fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called “NIR-I” window (700–900 nm). Recently, imaging in the “NIR-II” window (1000–1700 nm) has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol) for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels) embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR) were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile) is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology. PMID:29121078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.
2011-06-08
Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less
Application of computer virtual simulation technology in 3D animation production
NASA Astrophysics Data System (ADS)
Mo, Can
2017-11-01
In the continuous development of computer technology, the application system of virtual simulation technology has been further optimized and improved. It also has been widely used in various fields of social development, such as city construction, interior design, industrial simulation and tourism teaching etc. This paper mainly introduces the virtual simulation technology used in 3D animation. Based on analyzing the characteristics of virtual simulation technology, the application ways and means of this technology in 3D animation are researched. The purpose is to provide certain reference for the 3D effect promotion days after.
Installation Restoration Program. Phase II--Confirmation/Quantification. Stage 1.
1985-03-01
four phases. Phase I, Initial Assessment/ Records Search, is designed to identify possible hazardous waste contami- nated sites and potential...7 71 -. - - IL’ -, 1% 33 AihlIII Is 33 n~iL t iiC UII! ii CL C LU 1-3, Phase II, Confirmation and Quantification, is designed to confirm the...additional monitoring data upon which design of mitigative actions are based. In Phase III, Technology Base Development, appropriate technology is selected and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Luis
Coal Direct Chemical Looping (CDCL) is an advanced oxy-combustion technology that has potential to enable substantial reductions in the cost and energy penalty associated with carbon dioxide (CO2) capture from coal-fired power plants. Through collaborative efforts, the Babcock & Wilcox Power Generation Group (B&W) and The Ohio State University (OSU) developed a conceptual design for a 550 MWe (net) supercritical CDCL power plant with greater than 90% CO2 capture and compression. Process simulations were completed to enable an initial assessment of its technical performance. A cost estimate was developed following DOE’s guidelines as outlined in NETL’s report “Quality Guidelines formore » Energy System Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance”, (2011/1455). The cost of electricity for the CDCL plant without CO2 Transportation and Storage cost resulted in $ $102.67 per MWh, which corresponds to a 26.8 % increase in cost of electricity (COE) when compared to an air-fired pulverized-coal supercritical power plant. The cost of electricity is strongly depending on the total plant cost and cost of the oxygen carrier particles. The CDCL process could capture further potential savings by increasing the performance of the particles and reducing the plant size. During the techno-economic analysis, the team identified technology and engineering gaps that need to be closed to bring the technology to commercialization. The technology gaps were focused in five critical areas: (i) moving bed reducer reactor, (ii) fluidized bed combustor, (iii) particle riser, (iv) oxygen-carrier particle properties, and (v) process operation. The key technology gaps are related to particle performance, particle manufacturing cost, and the operation of the reducer reactor. These technology gaps are to be addressed during Phase II of project. The project team is proposing additional lab testing to be completed on the particle and a 3MWth pilot facility be built to evaluate the reducer reactor performance among other aspects of the technology. A Phase II proposal was prepared and submitted to DOE. The project team proposed a three year program in Phase II. Year 1 includes lab testing and particle development work aimed at improving the chemical and mechanical properties of the oxygen carrier particle. In parallel, B&W will design the 3MWt pilot plant. Any improvements to the particle performance discovered in year 1 that would impact the design of the pilot will be incorporated into the final design. Year 2 will focus on procurement of materials and equipment, and construction of the pilot plant. Year 3 will include, commissioning, start-up, and testing in the pilot. Phase I work was successfully completed and a design and operating philosophy for a 550 MWe commercial scale coal-direct chemical looping power plant was developed. Based on the results of the techno-economic evaluation, B&W projects that the CDCL process can achieve 96.5% CO2 capture with a« less
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.
2009-01-01
A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.
Railroad Classification Yard Technology Manual: Volume II : Yard Computer Systems
DOT National Transportation Integrated Search
1981-08-01
This volume (Volume II) of the Railroad Classification Yard Technology Manual documents the railroad classification yard computer systems methodology. The subjects covered are: functional description of process control and inventory computer systems,...
Vehicle Technology Simulation and Analysis Tools | Transportation Research
| NREL Vehicle Technology Simulation and Analysis Tools Vehicle Technology Simulation and vehicle technologies with the potential to achieve significant fuel savings and emission reductions. NREL : Automotive Deployment Options Projection Tool The ADOPT modeling tool estimates vehicle technology
1991-09-27
AD-A241 692 II I] II I11 ANNUAL REPORT VOLUME 1 PART 2 TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATOIRY REPORT NO. AR-0142-91-001 September 27, 1991... DIGITAL EMULATION TECHNOLOGY LABORATORY Contract No. DASG60-89-C-0142 Sponsored By The United States Army ? trategic Defense Command COMPUTER...ANNUAL REPORT VOLUME 1 PART 2 TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATORY September 27, 1991 Authors Thomas R. Collins and Stephen R. Wachtel
Information Technology, Type II Classroom Integration, and the Limited Infrastructure in Schools
ERIC Educational Resources Information Center
Maddux, Cleborne D.; Johnson D. Lamont
2006-01-01
In this second special issue on Type II applications of information technology in education, the focus is on classroom integration. This editorial explores some possible explanations for the fact that information technology in schools has not fulfilled its considerable potential. One reason may be that individualized instruction is not part of the…
New Editions for the Apple II of the Chelsea Science Simulations.
ERIC Educational Resources Information Center
Pipeline, 1983
1983-01-01
Ten computer simulations for the Apple II are described. Subject areas of programs include: population dynamics, plant competition, enzyme kinetics, evolution and natural selection, genetic mapping, ammonia synthesis, reaction kinetics, wave interference/diffraction, satellite orbits, and particle scattering. (JN)
2000-12-01
Numerical Simulations ..... ................. .... 42 1.4.1. Impact of a rod on a rigid wall ..... ................. .... 42 1.4.2. Impact of two...dissipative properties of the proposed scheme . . . . 81 II.4. Representative Numerical Simulations ...... ................. ... 84 11.4.1. Forging of...Representative numerical simulations ...... ............. .. 123 111.3. Model Problem II: a Simplified Model of Thin Beams ... ......... ... 127 III
Small Business Innovation Research, Post-Phase II Opportunity Assessment
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report outlines current Small Business Innovation Research (SBIR) Post-Phase II opportunity contract award results for the SBIR technology program from 2007 to 2011 for NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD). The report provides guidelines for incorporating SBIR technology into NASA programs and projects and provides a quantitative overview of the post-Phase II award patterns that correspond with each mission directorate at NASA Glenn Research Center (GRC). In recent years, one of NASA's goals has been to not only transfer SBIR technologies to commercial industries, but to ensure that NASA mission directorates incorporate SBIR technologies into their program and project activities. Before incorporating technologies into MD programs, it is important to understand each mission directorate structure because each directorate has different objectives and needs. The directorate program structures follow.
Computer Science Techniques Applied to Parallel Atomistic Simulation
NASA Astrophysics Data System (ADS)
Nakano, Aiichiro
1998-03-01
Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.
Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
Surasani, V.; Li, L.
2011-12-01
Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.
Taravati, Siavash
2018-05-28
Detecting drywood termites in structures is very challenging. Microwaves technology (Termatrac T3i) is a nondestructive method for detecting drywood termites in structures. Termatrac device and its mobile application provide a bar as well as a line graph when detecting insect movements, but interpreting these graphs is very subjective. In this paper, Termatrac's output signal is quantified using a new method to study the effect of wall layers, wood type, and termite density on signal strength measured as area under curve in a simulated drywall system in laboratory. Two experiments were conducted on Termatrac T3i at its maximum sensitivity (Gain: 10). In experiment I, HEXBUG Nano was used as a source of movement/vibration and two wood types were used in which the wall layers significantly predicted signal strength, but wood type did not. In experiment II, two different densities of live western drywood termites, Incisitermes minor (Hagen) (Isoptera: Kalotermitidae), were used to study the effect of termite density on signal strength. Interestingly, termite density did not significantly predict signal strength. The maximum reliable wood depth for detecting termites was 5 cm. Microwaves produced by Termatrac also showed good penetration into drywall and produced detectable signals even on a single drywood termite which confirms manufacturer's claim. Suggestions on using and improving microwaves technology for detecting termites is provided which can potentially be applied to other types of insects and noninsect animals.
77 FR 59339 - Cross Waivers of Liability Clauses
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... facilities and services; and (ii) All activities related to ground support, test, training, simulation, or... develop further a Payload's product or process for use other than for ISS-related activities in... (ii) All activities related to ground support, test, training, simulation, or guidance and control...
CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.
Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah
2018-04-01
This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.
Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II
NASA Astrophysics Data System (ADS)
Liu, Fang; Wang, Yan-hui; Wu, Zhi-liang; Wang, Shu-xin
2017-03-01
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.
SATA II - Stochastic Algebraic Topology and Applications
2017-01-30
AFRL-AFOSR-UK-TR-2017-0018 SATA II - Stochastic Algebraic Topology and Applications 150032 Robert Adler TECHNION ISRAEL INSTITUTE OF TECHNOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Dec 2014 to 14 Dec 2016 4. TITLE AND SUBTITLE SATA II - Stochastic Algebraic Topology and Applications ...has recently been submitted to AFOSR. 15. SUBJECT TERMS Network Theory, Sensor Technology, Mathematical Modeling, EOARD 16. SECURITY CLASSIFICATION OF
High-Power, High-Thrust Ion Thruster (HPHTion)
NASA Technical Reports Server (NTRS)
Peterson, Peter Y.
2015-01-01
Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.
Kim, Sunwook; Nussbaum, Maury A; Mokhlespour Esfahani, Mohammad Iman; Alemi, Mohammad Mehdi; Jia, Bochen; Rashedi, Ehsan
2018-03-07
Adopting a new technology (exoskeletal vest designed to support overhead work) in the workplace can be challenging since the technology may pose unexpected safety and health consequences. A prototype exoskeletal vest was evaluated for potential unexpected consequences with a set of evaluation tests for: usability (especially, donning & doffing), shoulder range of motion (ROM), postural control, slip & trip risks, and spine loading during overhead work simulations. Donning/doffing the vest was easily done by a wearer alone. The vest reduced the max. shoulder abduction ROM by ∼10%, and increased the mean center of pressure velocity in the anteroposterior direction by ∼12%. However, vest use had minimal influences on trip-/slip-related fall risks during level walking, and significantly reduced spine loadings (up to ∼30%) especially during the drilling task. Use of an exoskeletal vest can be beneficial, yet the current evaluation tests should be expanded for more comprehensiveness, to enable the safe adoption of the technology. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Y. J.; Zhu, J. G.; Yang, X. Y.; Ye, S. H.
2006-10-01
The Virtex-II Pro FPGA is applied to the vision sensor tracking system of IRB2400 robot. The hardware platform, which undertakes the task of improving SNR and compressing data, is constructed by using the high-speed image processing of FPGA. The lower level image-processing algorithm is realized by combining the FPGA frame and the embedded CPU. The velocity of image processing is accelerated due to the introduction of FPGA and CPU. The usage of the embedded CPU makes it easily to realize the logic design of interface. Some key techniques are presented in the text, such as read-write process, template matching, convolution, and some modules are simulated too. In the end, the compare among the modules using this design, using the PC computer and using the DSP, is carried out. Because the high-speed image processing system core is a chip of FPGA, the function of which can renew conveniently, therefore, to a degree, the measure system is intelligent.
1987-05-04
FTIILE COP’ AD-A196 840 EMERGING TECHNOLOGIES PROGRAM INTEGRATION REPORT VOLUME II BACKGROUND, DELPHI AND WORKSHOP DATA, APPENDICES . -- PREPARED...Security Classification) Emerging Technologies Program Integration Report Volume II: Background, Delphi and Workshop Data; Appendices (U) 12 PERSONAL...volumes of this integration report assess and synthesize information gathered through a Delphi survey, defense needs prioritization workshops, and
ERIC Educational Resources Information Center
Lemke, Cheryl; Vandersall, Kirk; Ravden, Daran
2004-01-01
In the fall of 2003, the State Educational Technology Directors Association (SETDA) commissioned the Metiri Group to conduct a national survey on the first year of implementation of the No Child Left Behind, Title II, Part D, Enhancing Education through Technology program. The findings in this report represent 46 states and the District of…
The Environmental Technology Verification report discusses the technology and performance of the Predator II, Model 8VADTP123C23CC000 air filter for dust and bioaerosol filtration manufactured by Tri-Dim Filter Corporation. The pressure drop across the filter was 138 Pa clean and...
Use of Simulation Technology in Dental Education.
ERIC Educational Resources Information Center
Buchanan, Judith Ann
2001-01-01
Discusses the impact of current simulation laboratories on dental education and reviews advanced technology simulation that has recently become available or is in the developmental stage. Addresses the abilities of advanced technology simulation, its advantages and disadvantages, and its potential to affect dental education. (EV)
NASA Astrophysics Data System (ADS)
Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman
2012-06-01
Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.
Effect of Accessory Power Take-off Variation on a Turbofan Engine Performance
2012-09-26
amount of energy from the low pressure spool shaft. A high bypass turbofan engine was modeled using the Numerical Propulsion System Simulation ( NPSS ...4 II.2 Power Extraction Techniques ..........................................................................8 II.3 NPSS ...Methodology and Simulation Setup ...........................................................................25 III.1 Engine NPSS Model
NASA Astrophysics Data System (ADS)
Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João
2017-04-01
Air temperature and relative humidity are two of the atmospheric variables with higher impact on human and natural systems, contributing to define the stress/comfortable conditions, affecting the productivity and health of the individuals as well as diminishing the resilience to other environmental hazards. Atmospheric regional models, driven by large scale forecasts from global circulation models, are the best way to reproduce such environmental conditions in high space-time resolution. This study is focused on the performance assessment of the WRF mesoscale model to perform high resolution dynamical downscaling for Portugal with three two-way nested grids, at 60 km, 20 km and 5 km horizontal resolution. The simulations of WRF models were produced with different initial and boundary forcing conditions. The NCEP-FNL Operational Global Analysis data available on 1-degree by 1-degree grid every six hours and ERA-Interim reanalyses dataset were used to drive the models. Two alternative configurations of the WRF model, including planetary boundary, layer schemes, microphysics, land-surface models, radiation schemes, were used and tested within the 5 km spatial resolution domain. Simulations of air temperature and relative humidity were produced for January and July of 2016 and compared with the observed datasets provided by the Instituto Português do Mar e da Atmosfera (IPMA) for 83 weather stations. Different performance measures of bias, precision, and accuracy were used, namely normalized bias, standard deviation, mean absolute error, root mean square error, bias of root mean square error as well as correlation based measures (e.g., coefficient of determination) and goodness of fit measures (index of agreement). Main conclusions from the obtained results reveal: (i) great similarity between the spatial patterns of the simulated and observed fields; (ii) only small differences between simulations produced with ERA-Interim and NCEP-FNL, in spite of some differences between the input variables; (iii) the tested parametrizations do not force significantly different simulation patterns; (iv) observed and simulated hourly air temperature are very well correlated (91%), presenting similar variance and a low bias over the country. Obtained results are also in good agreement with other dynamical downscaling studies for Portugal supporting the use of WRF as a regional forecast model. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033.
NASA Astrophysics Data System (ADS)
Yan, Fang; Winijkul, Ekbordin; Bond, Tami C.; Streets, David G.
2014-04-01
Estimates of future emissions are necessary for understanding the future health of the atmosphere, designing national and international strategies for air quality control, and evaluating mitigation policies. Emission inventories are uncertain and future projections even more so, thus it is important to quantify the uncertainty inherent in emission projections. This paper is the second in a series that seeks to establish a more mechanistic understanding of future air pollutant emissions based on changes in technology. The first paper in this series (Yan et al., 2011) described a model that projects emissions based on dynamic changes of vehicle fleet, Speciated Pollutant Emission Wizard-Trend, or SPEW-Trend. In this paper, we explore the underlying uncertainties of global and regional exhaust PM emission projections from on-road vehicles in the coming decades using sensitivity analysis and Monte Carlo simulation. This work examines the emission sensitivities due to uncertainties in retirement rate, timing of emission standards, transition rate of high-emitting vehicles called “superemitters”, and emission factor degradation rate. It is concluded that global emissions are most sensitive to parameters in the retirement rate function. Monte Carlo simulations show that emission uncertainty caused by lack of knowledge about technology composition is comparable to the uncertainty demonstrated by alternative economic scenarios, especially during the period 2010-2030.
Prospects of second generation artificial intelligence tools in calibration of chemical sensors.
Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala
2005-05-01
Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.
Shamim Khan, Mohammad; Ahmed, Kamran; Gavazzi, Andrea; Gohil, Rishma; Thomas, Libby; Poulsen, Johan; Ahmed, Munir; Jaye, Peter; Dasgupta, Prokar
2013-03-01
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: A competent urologist should not only have effective technical skills, but also other attributes that would make him/her a complete surgeon. These include team-working, communication and decision-making skills. Although evidence for effectiveness of simulation exists for individual simulators, there is a paucity of evidence for utility and effectiveness of these simulators in training programmes that aims to combine technical and non-technical skills training. This article explains the process of development and validation of a centrally coordinated simulation program (Participants - South-East Region Specialist Registrars) under the umbrella of the British Association for Urological Surgeons (BAUS) and the London Deanery. This program incorporated training of both technical (synthetic, animal and virtual reality models) and non-technical skills (simulated operating theatres). To establish the feasibility and acceptability of a centralized, simulation-based training-programme. Simulation is increasingly establishing its role in urological training, with two areas that are relevant to urologists: (i) technical skills and (ii) non-technical skills. For this London Deanery supported pilot Simulation and Technology enhanced Learning Initiative (STeLI) project, we developed a structured multimodal simulation training programme. The programme incorporated: (i) technical skills training using virtual-reality simulators (Uro-mentor and Perc-mentor [Symbionix, Cleveland, OH, USA], Procedicus MIST-Nephrectomy [Mentice, Gothenburg, Sweden] and SEP Robotic simulator [Sim Surgery, Oslo, Norway]); bench-top models (synthetic models for cystocopy, transurethral resection of the prostate, transurethral resection of bladder tumour, ureteroscopy); and a European (Aalborg, Denmark) wet-lab training facility; as well as (ii) non-technical skills/crisis resource management (CRM), using SimMan (Laerdal Medical Ltd, Orpington, UK) to teach team-working, decision-making and communication skills. The feasibility, acceptability and construct validity of these training modules were assessed using validated questionnaires, as well as global and procedure/task-specific rating scales. In total 33, three specialist registrars of different grades and five urological nurses participated in the present study. Construct-validity between junior and senior trainees was significant. Of the participants, 90% rated the training models as being realistic and easy to use. In total 95% of the participants recommended the use of simulation during surgical training, 95% approved the format of the teaching by the faculty and 90% rated the sessions as well organized. A significant number of trainees (60%) would like to have easy access to a simulation facility to allow more practice and enhancement of their skills. A centralized simulation programme that provides training in both technical and non-technical skills is feasible. It is expected to improve the performance of future surgeons in a simulated environment and thus improve patient safety. © 2012 BJU International.
1984-10-01
8 iii "i t-. Table of Contents (cont.) Section Title Page -APPENDIX A Acronyms, Definitions, Nomenclature and Units of Measure B Scope of Work, Task...Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective Action Only...Problem Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective
Clathrate structure-type recognition: Application to hydrate nucleation and crystallisation
NASA Astrophysics Data System (ADS)
Lauricella, Marco; Meloni, Simone; Liang, Shuai; English, Niall J.; Kusalik, Peter G.; Ciccotti, Giovanni
2015-06-01
For clathrate-hydrate polymorphic structure-type (sI versus sII), geometric recognition criteria have been developed and validated. These are applied to the study of the rich interplay and development of both sI and sII motifs in a variety of hydrate-nucleation events for methane and H2S hydrate studied by direct and enhanced-sampling molecular dynamics (MD) simulations. In the case of nucleation of methane hydrate from enhanced-sampling simulation, we notice that already at the transition state, ˜80% of the enclathrated CH4 molecules are contained in a well-structured (sII) clathrate-like crystallite. For direct MD simulation of nucleation of H2S hydrate, some sI/sII polymorphic diversity was encountered, and it was found that a realistic dissipation of the nucleation energy (in view of non-equilibrium relaxation to either microcanonical (NVE) or isothermal-isobaric (NPT) distributions) is important to determine the relative propensity to form sI versus sII motifs.
Atomistic simulations of the optical absorption of type-II CdSe/ZnTe superlattices
2012-01-01
We perform accurate tight binding simulations to design type-II short-period CdSe/ZnTe superlattices suited for photovoltaic applications. Absorption calculations demonstrate a very good agreement with optical results with threshold strongly depending on the chemical species near interfaces. PMID:23031315
NASA Technical Reports Server (NTRS)
Lugo, Rafael A.; Shidner, Jeremy D.; Powell, Richard W.; Marsh, Steven M.; Hoffman, James A.; Litton, Daniel K.; Schmitt, Terri L.
2017-01-01
The Program to Optimize Simulated Trajectories II (POST2) has been continuously developed for over 40 years and has been used in many flight and research projects. Recently, there has been an effort to improve the POST2 architecture by promoting modularity, flexibility, and ability to support multiple simultaneous projects. The purpose of this paper is to provide insight into the development of trajectory simulation in POST2 by describing methods and examples of various improved models for a launch vehicle liftoff and ascent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallbert, Bruce Perry; Thomas, Kenneth David
2015-10-01
Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.
Multiphase flow models for hydraulic fracturing technology
NASA Astrophysics Data System (ADS)
Osiptsov, Andrei A.
2017-10-01
The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.
Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre
2015-06-19
Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar(1),Ile(8)]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre
2015-01-01
Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar1,Ile8]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. PMID:25934394
Sulaymon, Abbas H; Faisal, Ayad A H; Khaliefa, Qusey M
2015-10-30
The hydraulic conductivity and breakthrough curves of copper and zinc contaminants were measured in a set of continuous column experiments for 99 days using cement kiln dust (CKD)-filter sand as the permeable reactive barrier. The results of these experiments proved that the weight ratios of the cement kiln dust-filter sand (10:90 and 20:80) are adequate in preventing the loss of reactivity and hydraulic conductivity and, in turn, avoiding reduction in the groundwater flow. These results reveal a decrease in the hydraulic conductivity, which can be attributed to an accumulation of most of the quantity of the contaminant masses in the first sections of the column bed. Breakthrough curves for the description of the temporal contaminant transport within the barrier were found to be more representative by the Belter-Cussler-Hu and Yan models based on the coefficient of determination and Nash-Sutcliffe efficiency. The longevity of the barrier was simulated for the field scale, based on the laboratory column tests and the values verified that cement kiln dust can be effectively used in the future, as the reactive material in permeable reactive barrier technology. These results signify that the longevity of the barrier is directly proportional to its thickness and inversely to the percentage of the CKD used. Copyright © 2015 Elsevier B.V. All rights reserved.
Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results
NASA Technical Reports Server (NTRS)
Burken, John J.; Larson, Richard R.
2009-01-01
F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.
Detailed validation of the bidirectional effect in various Case I and Case II waters.
Gleason, Arthur C R; Voss, Kenneth J; Gordon, Howard R; Twardowski, Michael; Sullivan, James; Trees, Charles; Weidemann, Alan; Berthon, Jean-François; Clark, Dennis; Lee, Zhong-Ping
2012-03-26
Simulated bidirectional reflectance distribution functions (BRDF) were compared with measurements made just beneath the water's surface. In Case I water, the set of simulations that varied the particle scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models. In Case II water, however, the simulations using fixed phase functions agreed well with the data and were nearly indistinguishable from each other, on average. The results suggest that BRDF corrections in Case II water are feasible using single, average, particle scattering phase functions, but that the existing approach using variable particle scattering phase functions is still warranted in Case I water.
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
FIELD IMPLEMENTATION PLAN FOR A WILLISTON BASIN BRINE EXTRACTION AND STORAGE TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamling, John; Klapperich, Ryan; Stepan, Daniel
2016-03-31
The Energy & Environmental Research Center (EERC) successfully completed all technical work of Phase I, including development of a field implementation plan (FIP) for a brine extraction and storage test (BEST) in the North Dakota portion of the Williston Basin. This implementation plan was commissioned by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) as a proxy for managing formation pressure plumes and measuring/monitoring the movement of differential pressure and CO2 plumes in the subsurface for future saline CO2 storage projects. BEST comprises the demonstration and validation of active reservoir management (ARM) strategies and extracted brine treatmentmore » technologies. Two prospective commercial brine injection sites were evaluated for BEST to satisfy DOE’s goals. Ultimately, an active saltwater disposal (SWD) site, Johnsons Corner, was selected because it possesses an ideal combination of key factors making it uniquely suited to host BEST. This site is located in western North Dakota and operated by Nuverra Environmental Solutions (Nuverra), a national leader in brine handling, treatment, and injection. An integrated management approach was used to incorporate local and regional geologic characterization activities with geologic and simulation models, inform a monitoring, verification, and accounting (MVA) plan, and to conduct a risk assessment. This approach was used to design a FIP for an ARM schema and an extracted brine treatment technology test bed facility. The FIP leverages an existing pressure plume generated by two commercial SWD wells. These wells, in conjunction with a new brine extraction well, will be used to conduct the ARM schema. Results of these tests will be quantified based on their impact on the performance of the existing SWD wells and the surrounding reservoir system. Extracted brine will be injected into an underlying deep saline formation through a new injection well. The locations of proposed extraction and injection wells were selected during the Phase I efforts. These wells will be permitted as North Dakota Administrative Code Underground Injection Control Class II wells and will yield additional characterization data which will further refine the FIP in Phase II. An array of surface and downhole monitoring techniques will validate ARM performance against predictive simulation results. Infrastructure will be constructed to manage extracted fluids at the surface and provide brine to a treatment test bed facility. Treatment of extracted brine can provide a means of reducing extracted brine disposal volumes, an alternate source of water, and/or salable products for beneficial use. A test bed facility will be constructed to provide a means of demonstrating these technologies on a wide range of brine concentrations. Screening criteria based on a techno-economic and life cycle assessment were developed to select high-salinity brine treatment technologies for extended duration treatment (30–60 days) in Phase II. A detailed cost assessment determined total implementation costs for BEST of $19,901,065 million (DOE share $15,680,505). These costs are inclusive of all necessary equipment, infrastructure construction, operations and project closeout costs required to implement BEST. An ideal combination of key factors makes the Johnsons Corner site uniquely suited to be the BEST demonstration.« less
Litou, Chara; Vertzoni, Maria; Xu, Wei; Kesisoglou, Filippos; Reppas, Christos
2017-06-01
To propose media for simulating the intragastric environment under reduced gastric acid secretion in the fasted state at three levels of simulation of the gastric environment and evaluate their usefulness in evaluating the intragastric dissolution of salts of weak bases. To evaluate the importance of bicarbonate buffer in biorelevant in vitro dissolution testing when using Level II biorelevant media simulating the environment in the fasted upper small intestine, regardless of gastric acid secretions. Media for simulating the hypochlorhydric and achlorhydric conditions in stomach were proposed using phosphates, maleates and bicarbonates buffers. The impact of bicarbonates in Level II biorelevant media simulating the environment in upper small intestine was evaluated so that pH and bulk buffer capacity were maintained. Dissolution data were collected using two model compounds, pioglitazone hydrochloride and semifumarate cocrystal of Compound B, and the mini-paddle dissolution apparatus in biorelevant media and in human aspirates. Simulated gastric fluids proposed in this study were in line with pH, buffer capacity, pepsin content, total bile salt/lecithin content and osmolality of the fasted stomach under partial and under complete inhibition of gastric acid secretion. Fluids simulating the conditions under partial inhibition of acid secretion were useful in simulating concentrations of both model compounds in gastric aspirates. Bicarbonates in Level III biorelevant gastric media and in Level II biorelevant media simulating the composition in the upper intestinal lumen did not improve simulation of concentrations in human aspirates. Level III biorelevant media for simulating the intragastric environment under hypochlorhydric conditions were proposed and their usefulness in the evaluation of concentrations of two model salts of weak bases in gastric aspirates was shown. Level II biorelevant media for simulating the environment in upper intestinal lumen led to underestimation of concentrations in aspirates, even when bicarbonate buffer was used. Copyright © 2017 Elsevier B.V. All rights reserved.
High performance real-time flight simulation at NASA Langley
NASA Technical Reports Server (NTRS)
Cleveland, Jeff I., II
1994-01-01
In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.
[New simulation technologies in neurosurgery].
Byvaltsev, V A; Belykh, E G; Konovalov, N A
2016-01-01
The article presents a literature review on the current state of simulation technologies in neurosurgery, a brief description of the basic technology and the classification of simulation models, and examples of simulation models and skills simulators used in neurosurgery. Basic models for the development of physical skills, the spectrum of available computer virtual simulators, and their main characteristics are described. It would be instructive to include microneurosurgical training and a cadaver course of neurosurgical approaches in neurosurgery training programs and to extend the use of three-dimensional imaging. Technologies for producing three-dimensional anatomical models and patient-specific computer simulators as well as improvement of tactile feedback systems and display quality of virtual models are promising areas. Continued professional education necessitates further research for assessing the validity and practical use of simulators and physical models.
A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well
NASA Astrophysics Data System (ADS)
Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun
2017-11-01
Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.
Hayakawa, Daichi; Nishiyama, Yoshiharu; Mazeau, Karim; Ueda, Kazuyoshi
2017-09-08
Crystal models of cellulose Iβ and II, which contain various hydrogen bonding (HB) networks, were analyzed using density functional theory and Car-Parrinello molecular dynamics (CPMD) simulations. From the CPMD trajectories, the power spectra of the velocity correlation functions of hydroxyl groups involved in hydrogen bonds were calculated. For the Iβ allomorph, HB network A, which is dominant according to the neutron diffraction data, was stable, and the power spectrum represented the essential features of the experimental IR spectra. In contrast, network B, which is a minor structure, was unstable because its hydroxymethyl groups reoriented during the CPMD simulation, yielding a different crystal structure to that determined by experiments. For the II allomorph, a HB network A is proposed based on diffraction data, whereas molecular modeling identifies an alternative network B. Our simulations showed that the interaction energies of the cellulose II (B) model are slightly more favorable than model II(A). However, the evaluation of the free energy should be waited for the accurate determination from the energy point of view. For the IR calculation, cellulose II (B) model reproduces the spectra better than model II (A). Copyright © 2017 Elsevier Ltd. All rights reserved.
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...
2016-12-21
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
Focus on Games & Simulations: Trends+Technologies+Case Studies
ERIC Educational Resources Information Center
Weinstein, Margery
2011-01-01
A changing mindset combined with changing technology is driving the use of games and simulations. People are becoming more open to using games and simulations for learning, and, at the same time, the technologies are making the development of games and simulations easier and faster than a mere five years ago. Together, the changing mindset and the…
Simulation in International Relations Education.
ERIC Educational Resources Information Center
Starkey, Brigid A.; Blake, Elizabeth L.
2001-01-01
Discusses the educational implications of simulations in international relations. Highlights include the development of international relations simulations; the role of technology; the International Communication and Negotiation Simulations (ICONS) project at the University of Maryland; evolving information technology; and simulating real-world…
2015-04-22
This simulated image shows how a cloud of glitter in geostationary orbit would be illuminated and controlled by two laser beams. As the cloud orbits Earth, grains scatter the sun's light at different angles like many tiny prisms, similar to how rainbows are produced from light being dispersed by water droplets. That is why the project concept is called "Orbiting Rainbows." The cloud functions like a reflective surface, allowing the exoplanet (displayed in the bottom right) to be imaged. The orbit path is shown in the top right. On the bottom left, Earth's image is seen behind the cloud. To image an exoplanet, the cloud would need to have a diameter of nearly 98 feet (30 meters). This simulation confines the cloud to a 3.3 x 3.3 x 3.3 foot volume (1 x 1 x 1 meter volume) to simplify the computations. The elements of the orbiting telescope are not to scale. Orbiting Rainbows is currently in Phase II development through the NASA Innovative Advanced Concepts (NIAC) Program. It was one of five technology proposals chosen for continued study in 2014. In the current phase, Orbiting Rainbows researchers are conducting small-scale ground experiments to demonstrate how granular materials can be manipulated using lasers and simulations of how the imaging system would behave in orbit. http://photojournal.jpl.nasa.gov/catalog/PIA19318
NASA Astrophysics Data System (ADS)
Sadeghi-Goughari, M.; Mojra, A.; Sadeghi, S.
2016-02-01
Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors.
Simulation results of corkscrew motion in DARHT-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.
2003-01-01
DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignmentsmore » of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.« less
NASA Astrophysics Data System (ADS)
Gonzalez, D.
2017-12-01
Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins to better reflect human lung fluids.
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
Beam-Dynamics Analysis of Long-Range Wakefield Effects on the SCRF Cavities at the Fast Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Young-Min; Bishofberger, Kip; Carlsten, Bruce
Long-range wakefields in superconducting RF (SCRF) cavities create complicated effects on beam dynamics in SCRF-based FEL beamlines. The driving bunch excites effectively an infinite number of structure modes (including HOMs) which oscillate within the SCRF cavity. Couplers with loads are used to damp the HOMs. However, these HOMs can persist for long periods of time in superconducting structures, which leads to long-range wakefields. Clear understanding of the long-range wakefield effects is a critical element for risk mitigation of future SCRF accelerators such as XFEL at DESY, LCLS-II XFEL, and MaRIE XFEL. We are currently developing numerical tools for simulating long-rangemore » wakefields in SCRF accelerators and plan to experimentally verify the tools by measuring these wakefields at the Fermilab Accelerator Science and Technology (FAST) facility. This paper previews the experimental conditions at the FAST 50 MeV beamline based on the simulation results.« less
Hashem, Joseph; Schneider, Erich; Pryor, Mitch; ...
2017-01-01
Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashem, Joseph; Schneider, Erich; Pryor, Mitch
Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less
Simulation of lung alveolar epithelial wound healing in vitro.
Kim, Sean H J; Matthay, Michael A; Mostov, Keith; Hunt, C Anthony
2010-08-06
The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing 'cells' a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated 'cell' migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration.
Comparison of simulated and measured nonlinear ultrasound fields
NASA Astrophysics Data System (ADS)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-03-01
In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are first compared with the linear simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound field is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both fundamental and second harmonic fields. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II and measurements are illustrated. The FWHM (full width at half maximum) values are 1.96 mm for the measurement and 1.84 mm for the Field II simulation. The fundamental and second harmonic components of the experimental results are plotted compared with the AS simulations. The RMS (root mean square) errors of the AS simulations are 7.19% and 10.3% compared with the fundamental and second harmonic components of the measurements.
Teoh, Chai Lean; Pham, Chi L L; Todorova, Nevena; Hung, Andrew; Lincoln, Craig N; Lees, Emma; Lam, Yuen Han; Binger, Katrina J; Thomson, Neil H; Radford, Sheena E; Smith, Trevor A; Müller, Shirley A; Engel, Andreas; Griffin, Michael D W; Yarovsky, Irene; Gooley, Paul R; Howlett, Geoffrey J
2011-02-04
The self-assembly of specific proteins to form insoluble amyloid fibrils is a characteristic feature of a number of age-related and debilitating diseases. Lipid-free human apolipoprotein C-II (apoC-II) forms characteristic amyloid fibrils and is one of several apolipoproteins that accumulate in amyloid deposits located within atherosclerotic plaques. X-ray diffraction analysis of aligned apoC-II fibrils indicated a simple cross-β-structure composed of two parallel β-sheets. Examination of apoC-II fibrils using transmission electron microscopy, scanning transmission electron microscopy, and atomic force microscopy indicated that the fibrils are flat ribbons composed of one apoC-II molecule per 4.7-Å rise of the cross-β-structure. Cross-linking results using single-cysteine substitution mutants are consistent with a parallel in-register structural model for apoC-II fibrils. Fluorescence resonance energy transfer analysis of apoC-II fibrils labeled with specific fluorophores provided distance constraints for selected donor-acceptor pairs located within the fibrils. These findings were used to develop a simple 'letter-G-like' β-strand-loop-β-strand model for apoC-II fibrils. Fully solvated all-atom molecular dynamics (MD) simulations showed that the model contained a stable cross-β-core with a flexible connecting loop devoid of persistent secondary structure. The time course of the MD simulations revealed that charge clusters in the fibril rearrange to minimize the effects of same-charge interactions inherent in parallel in-register models. Our structural model for apoC-II fibrils suggests that apoC-II monomers fold and self-assemble to form a stable cross-β-scaffold containing relatively unstructured connecting loops. Copyright © 2010 Elsevier Ltd. All rights reserved.
Impact of Type II Spicules in the Corona: Simulations and Synthetic Observables
NASA Astrophysics Data System (ADS)
Martínez-Sykora, Juan; De Pontieu, Bart; De Moortel, Ineke; Hansteen, Viggo H.; Carlsson, Mats
2018-06-01
The role of type II spicules in the corona has been a much debated topic in recent years. This paper aims to shed light on the impact of type II spicules in the corona using novel 2.5D radiative MHD simulations, including ion–neutral interaction effects with the Bifrost code. We find that the formation of simulated type II spicules, driven by the release of magnetic tension, impacts the corona in various manners. Associated with the formation of spicules, the corona exhibits (1) magneto-acoustic shocks and flows, which supply mass to coronal loops, and (2) transversal magnetic waves and electric currents that propagate at Alfvén speeds. The transversal waves and electric currents, generated by the spicule’s driver and lasting for many minutes, are dissipated and heat the associated loop. These complex interactions in the corona can be connected with blueshifted secondary components in coronal spectral lines (red–blue asymmetries) observed with Hinode/EIS and SOHO/SUMER, as well as the EUV counterpart of type II spicules and propagating coronal disturbances observed with the 171 Å and 193 Å SDO/AIA channels.
Chen, Gong; Kong, Xian; Lu, Diannan; Wu, Jianzhong; Liu, Zheng
2017-05-10
Molecular dynamics (MD) simulations, in combination with the Markov-state model (MSM), were applied to probe CO 2 diffusion from an aqueous solution into the active site of human carbonic anhydrase II (hCA-II), an enzyme useful for enhanced CO 2 capture and utilization. The diffusion process in the hydrophobic pocket of hCA-II was illustrated in terms of a two-dimensional free-energy landscape. We found that CO 2 diffusion in hCA-II is a rate-limiting step in the CO 2 diffusion-binding-reaction process. The equilibrium distribution of CO 2 shows its preferential accumulation within a hydrophobic domain in the protein core region. An analysis of the committors and reactive fluxes indicates that the main pathway for CO 2 diffusion into the active site of hCA-II is through a binding pocket where residue Gln 136 contributes to the maximal flux. The simulation results offer a new perspective on the CO 2 hydration kinetics and useful insights toward the development of novel biochemical processes for more efficient CO 2 sequestration and utilization.
Force Measurement on the GLAST Delta II Flight
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Daniel
2009-01-01
This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.
Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II
Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard
2009-01-01
Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...
NASA Astrophysics Data System (ADS)
Gherghel-Lascu, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertania, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2017-06-01
The charged particle densities obtained from CORSIKA simulated EAS, using the QGSJet-II.04 hadronic interaction model are used for primary energy reconstruction. Simulated data are reconstructed by using Lateral Energy Correction Functions computed with a new realistic model of the Grande stations implemented in Geant4.10.
ERIC Educational Resources Information Center
Keane, Michael P.; Wolpin, Kenneth I.
2002-01-01
Part I uses simulations of a model of welfare participation and women's fertility decisions, showing that increases in per-child payments have substantial impact on fertility. Part II uses estimations of decision rules of forward-looking women regarding welfare participation, fertility, marriage, work, and schooling. (SK)
The Virtual Genetics Lab II: Improvements to a Freely Available Software Simulation of Genetics
ERIC Educational Resources Information Center
White, Brian T.
2012-01-01
The Virtual Genetics Lab II (VGLII) is an improved version of the highly successful genetics simulation software, the Virtual Genetics Lab (VGL). The software allows students to use the techniques of genetic analysis to design crosses and interpret data to solve realistic genetics problems involving a hypothetical diploid insect. This is a brief…
Assessment of Clinical Skills Using Simulator Technologies
ERIC Educational Resources Information Center
Srinivasan, Malathi; Hwang, Judith C.; West, Daniel; Yellowlees, Peter M.
2006-01-01
Objective: Simulation technologies are used to assess and teach competencies through the provision of reproducible stimuli. They have exceptional utility in assessing responses to clinical stimuli that occur sporadically or infrequently. In this article, the authors describe the utility of emerging simulation technologies, and discuss critical…
Poikela, Paula; Ruokamo, Heli; Teräs, Marianne
2015-02-01
Nursing educators must ensure that nursing students acquire the necessary competencies; finding the most purposeful teaching methods and encouraging learning through meaningful learning opportunities is necessary to meet this goal. We investigated student learning in a simulated nursing practice using videography. The purpose of this paper is to examine how two different teaching methods presented students' meaningful learning in a simulated nursing experience. The 6-hour study was divided into three parts: part I, general information; part II, training; and part III, simulated nursing practice. Part II was delivered by two different methods: a computer-based simulation and a lecture. The study was carried out in the simulated nursing practice in two universities of applied sciences, in Northern Finland. The participants in parts II and I were 40 first year nursing students; 12 student volunteers continued to part III. Qualitative analysis method was used. The data were collected using video recordings and analyzed by videography. The students who used a computer-based simulation program were more likely to report meaningful learning themes than those who were first exposed to lecture method. Educators should be encouraged to use computer-based simulation teaching in conjunction with other teaching methods to ensure that nursing students are able to receive the greatest educational benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Incorporating engine health monitoring capability into the SSME Block II controller
NASA Astrophysics Data System (ADS)
Clarke, James W.; Copa, Roderick J.
An account is given of the architecture of the SSME's Block II controller's architecture, its incorporation of smart input electronics (SIE), and the potential benefits of this technology in SSME health-monitoring capabilities. SIE allows the Block II controller to conduct its control functions while simultaneously furnishing the computational capabilities and sensor input interface for any newly defined health-monitoring functions. It is expected that the SIE technology may be directly transferred to any follow-on engine design.
Campbell, Patrick; Zhang, Yang; Yan, Fang; Lu, Zifeng; Streets, David
2018-07-01
Emissions from the transportation sector are rapidly changing worldwide; however, the interplay of such emission changes in the face of climate change are not as well understood. This two-part study examines the impact of projected emissions from the U.S. transportation sector (Part I) on ambient air quality in the face of climate change (Part II). In Part I of this study, we describe the methodology and results of a novel Technology Driver Model (see graphical abstract) that includes 1) transportation emission projections (including on-road vehicles, non-road engines, aircraft, rail, and ship) derived from a dynamic technology model that accounts for various technology and policy options under an IPCC emission scenario, and 2) the configuration/evaluation of a dynamically downscaled Weather Research and Forecasting/Community Multiscale Air Quality modeling system. By 2046-2050, the annual domain-average transportation emissions of carbon monoxide (CO), nitrogen oxides (NO x ), volatile organic compounds (VOCs), ammonia (NH 3 ), and sulfur dioxide (SO 2 ) are projected to decrease over the continental U.S. The decreases in gaseous emissions are mainly due to reduced emissions from on-road vehicles and non-road engines, which exhibit spatial and seasonal variations across the U.S. Although particulate matter (PM) emissions widely decrease, some areas in the U.S. experience relatively large increases due to increases in ship emissions. The on-road vehicle emissions dominate the emission changes for CO, NO x , VOC, and NH 3 , while emissions from both the on-road and non-road modes have strong contributions to PM and SO 2 emission changes. The evaluation of the baseline 2005 WRF simulation indicates that annual biases are close to or within the acceptable criteria for meteorological performance in the literature, and there is an overall good agreement in the 2005 CMAQ simulations of chemical variables against both surface and satellite observations. Copyright © 2018 Elsevier Ltd. All rights reserved.
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; Ng, Cho-Kuen; Rivetta, Claudio
2017-10-01
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.
75 FR 35689 - System Personnel Training Reliability Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... using realistic simulations.\\14\\ \\13\\ Id. P 1331. \\14\\ Reliability Standard PER-002-0. 9. In Order No... development process to: (1) Include formal training requirements for reliability coordinators similar to those... simulation technology such as a simulator, virtual technology, or other technology in their emergency...
The State of Simulations: Soft-Skill Simulations Emerge as a Powerful New Form of E-Learning.
ERIC Educational Resources Information Center
Aldrich, Clark
2001-01-01
Presents responses of leaders from six simulation companies about challenges and opportunities of soft-skills simulations in e-learning. Discussion includes: evaluation metrics; role of subject matter experts in developing simulations; video versus computer graphics; technology needed to run simulations; technology breakthroughs; pricing;…
1975-05-01
Waste-to-energy systems Recycling of materials from refuse Desulfurization of flue gases from electric power plants Sattelle Specialists...High-Temperature Gas -Turbine Engines for Automotive Applications Initiation of Task II and Task III (Task II: Description of Technologies and...3 - • Mining and Minerals Processing • Ocean Engineering • Transportation • Waste Treatment and Environmental Control The technologies
Long-Wave Type-II Superlattice Detectors with Unipolar Electron and Hole Barriers
2012-12-01
technologies are readily deployed for the visible, short- wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared ( LWIR ) spectral bands.1 These... LWIR band, sensor technologies include Hg1−xCdxTe (MCT), microbolometers, and Type-II superlattices (SLS).3 In addition to the aforementioned materials...well infrared photodetector (QWIP) was born,6 and has since become well-positioned as a mainstream technology for LWIR sen- sors. In recognition of the
Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.
Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi
2017-07-01
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, James P; Patchett, John M; Lo, Li - Ta
2011-01-24
This report provides documentation for the completion of the Los Alamos portion of the ASC Level II 'Visualization on the Supercomputing Platform' milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratory and Los Alamos National Laboratory. The milestone text is shown in Figure 1 with the Los Alamos portions highlighted in boldfaced text. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is the most computationally intensive portion of the visualization process. Formore » terascale platforms, commodity clusters with graphics processors (GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the perfromance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. In conclusion, we improved CPU-based rendering performance by a a factor of 2-10 times on our tests. In addition, we evaluated CPU and CPU-based rendering performance. We encourage production visualization experts to consider using CPU-based rendering solutions when it is appropriate. For example, on remote supercomputers CPU-based rendering can offer a means of viewing data without having to offload the data or geometry onto a CPU-based visualization system. In terms of comparative performance of the CPU and CPU we believe that further optimizations of the performance of both CPU or CPU-based rendering are possible. The simulation community is currently confronting this reality as they work to port their simulations to different hardware architectures. What is interesting about CPU rendering of massive datasets is that for part two decades CPU performance has significantly outperformed CPU-based systems. Based on our advancements, evaluations and explorations we believe that CPU-based rendering has returned as one viable option for the visualization of massive datasets.« less
Mr. Vetro: A Collective Simulation for Teaching Health Science
ERIC Educational Resources Information Center
Ioannidou, Andri; Repenning, Alexander; Webb, David; Keyser, Diane; Luhn, Lisa; Daetwyler, Christof
2010-01-01
Why has technology become prevalent in science education without fundamentally improving test scores or student attitudes? We claim that the core of the problem is "how" technology is being used. Technologies such as simulations are currently not used to their full potential. For instance, physiology simulations often follow textbooks by…
LANL receiver system development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laubscher, B.; Cooke, B.; Cafferty, M.
1997-08-01
The CALIOPE receiver system development at LANL is the story of two technologies. The first of these technologies consists of off-the-shelf mercury-cadmium-telluride (MCT) detectors and amplifiers. The vendor for this system is Kolmar Technologies. This system was fielded in the Tan Trailer I (TTI) in 1995 and will be referred to in this paper as GEN I. The second system consists of a MCT detector procured from Santa Barbara Research Center (SBRC) and an amplifier designed and built by LANL. This system was fielded in the Tan Trailer II (TTII) system at the NTS tests in 1996 and will bemore » referred to as GEN II. The LANL CALIOPE experimental plan for 1996 was to improve the lidar system by progressing to a higher rep rate laser to perform many shots in a much shorter period of time. In keeping with this plan, the receiver team set a goal of developing a detector system that was background limited for the projected 100 nanosecond (ns) laser pulse. A set of detailed simulations of the DIAL lidar experiment was performed. From these runs, parameters such as optimal detector size, field of view of the receiver system, nominal laser return power, etc. were extracted. With this information, detector physics and amplifier electronic models were developed to obtain the required specifications for each of these components. These derived specs indicated that a substantial improvement over commercially available, off-the-shelf, amplifier and detector technologies would be needed to obtain the goals. To determine if the original GEN I detector was usable, the authors performed tests on a 100 micron square detector at cryogenic temperatures. The results of this test and others convinced them that an advanced detector was required. Eventually, a suitable detector was identified and a number of these single element detectors were procured from SBRC. These single element detectors were witness for the detector arrays built for another DOE project.« less
Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment Update
Lee, Christine; Tu, Hong Anh; Wells, David; Holubowich, Corinne
2017-01-01
Background Retinitis pigmentosa is a group of inherited disorders characterized by the degeneration of the photoreceptors in the retina, resulting in progressive vision loss. The Argus II system is designed to restore partial functional vision in patients with profound vision loss from advanced retinitis pigmentosa. At present, it is the only treatment option approved by Health Canada for this patient population. In June 2016, Health Quality Ontario published a health technology assessment of the Argus II retinal prosthesis system for patients with advanced retinitis pigmentosa. Based on that assessment, the Ontario Health Technology Advisory Committee recommended against publicly funding the Argus II system for this population. It also recommended that Health Quality Ontario re-evaluate the evidence in 1 year. The objective of this report was to examine new evidence published since the 2016 health technology assessment. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences related to the Argus II system. We performed a systematic literature search for studies published since the 2016 Argus II health technology assessment. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care, and we calculated incremental cost-effectiveness ratios over a 20-year time horizon. We also conducted a five-year budget impact analysis. Finally, we interviewed people with retinitis pigmentosa about their lived experience with vision loss, and with the Argus II system. Results Four publications from one multicentre international study were included in the clinical review. Patients showed significant improvements in visual function and functional outcomes with the Argus II system, and these outcomes were sustained up to a 5-year follow-up (moderate quality of evidence). The safety profile was generally acceptable. In the base case economic analysis, the Argus II system was cost-effective compared with standard care if the willingness to pay was more than $97,429 per quality-adjusted life-year. We estimated that funding the Argus II system would cost the province $0.71 to $0.78 million per year over 5 years, assuming 4 implants per year. People with lived experience spoke about the challenges of retinitis pigmentosa, including the gradual but persistent progression of the disease; its impact on their quality of life and their families; and the accessibility challenges they faced. Those who used the Argus II system spoke about its positive impact on their quality of life. Conclusions Based on evidence of moderate quality, the Argus II retinal prosthesis system improved visual function, real-life functional outcomes, and quality of life in patients with advanced retinitis pigmentosa. The Argus II system is expensive, but the cost to publicly fund it would be low, because of the small number of eligible patients. The Argus II system can only enable perception of light/dark and shapes/objects, but these advancements represent important gains for people with retinitis pigmentosa in terms of mobility and quality of life. PMID:29201260
McGaghie, William C; Siddall, Viva J; Mazmanian, Paul E; Myers, Janet
2009-03-01
Simulation technology is widely used in undergraduate and graduate medical education as well as for personnel training and evaluation in other healthcare professions. Simulation provides safe and effective opportunities for learners at all levels to practice and acquire clinical skills needed for patient care. A growing body of research evidence documents the utility of simulation technology for educating healthcare professionals. However, simulation has not been widely endorsed or used for continuing medical education (CME). This article reviews and evaluates evidence from studies on simulation technology in undergraduate and graduate medical education and addresses its implications for CME. The Agency for Healthcare Research and Quality Evidence Report suggests that simulation training is effective, especially for psychomotor and communication skills, but that the strength of the evidence is low. In another review, the Best Evidence Medical Education collaboration supported the use of simulation technology, focusing on high-fidelity medical simulations under specific conditions. Other studies enumerate best practices that include mastery learning, deliberate practice, and recognition and attention to cultural barriers within the medical profession that present obstacles to wider use of this technology. Simulation technology is a powerful tool for the education of physicians and other healthcare professionals at all levels. Its educational effectiveness depends on informed use for trainees, including providing feedback, engaging learners in deliberate practice, integrating simulation into an overall curriculum, as well as on the instruction and competence of faculty in its use. Medical simulation complements, but does not replace, educational activities based on real patient-care experiences.
Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Feng; Mei, Donghai; Wang, Yilin
Active centers in Cu/SSZ-13 selective catalytic reduction (SCR) catalysts have been recently identified as isolated Cu2+ and [CuII(OH)]+ ions. A redox reaction mechanism has also been established, where Cu-ions cycle between CuI and CuII oxidation states during SCR reaction. While the mechanism for the reduction half-cycle (CuII CuI) is reasonably well understood, that for the oxidation half-cycle (CuI CuII) remains an unsettled debate. Herein we report detailed reaction kinetics on low-temperature standard NH3-SCR, supplemented by DFT calculations, as strong evidence that the low-temperature oxidation half-cycle occurs with the participation of two isolated CuI ions, via formation of a transient [CuI(NH3)2]+-O2-[CuI(NH3)2]+more » intermediate. The feasibility of this reaction mechanism is confirmed from DFT calculations, and the simulated energy barrier and rate constants are consistent with experimental findings. Significantly, the low-temperature standard SCR mechanism proposed here provides full consistency with low-temperature SCR kinetics. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
Today's Business Simulation Industry
ERIC Educational Resources Information Center
Summers, Gary J.
2004-01-01
New technologies are transforming the business simulation industry. The technologies come from research in computational fields of science, and they endow simulations with new capabilities and qualities. These capabilities and qualities include computerized behavioral simulations, online feedback and coaching, advanced interfaces, learning on…
Numerical simulation of a soft-x-ray Li laser pumped with synchrotron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozsnyai, B.; Watanabe, H.; Csonka, P.L.
1985-07-01
Results of a computer simulation are reported for a lithium soft-x-ray laser pumped by synchro- tron radiation. Coherent stimulated emission of the photons of interest occurs in Li II 1s2p..-->..Li II 1s/sup 2/ transitions. Calculated results include the dominant ion and photon densities and the laser gain.
Landscape Builder: software for the creation of initial landscapes for LANDIS from FIA data
William Dijak
2013-01-01
I developed Landscape Builder to create spatially explicit landscapes as starting conditions for LANDIS Pro 7.0 and LANDIS II landscape forest simulation models from classified satellite imagery and Forest Inventory and Analysis (FIA) data collected over multiple years. LANDIS Pro and LANDIS II models project future landscapes by simulating tree growth, tree species...
NASA Technical Reports Server (NTRS)
Manobianco, John; Uccellini, Louis W.; Brill, Keith F.; Kuo, Ying-Hwa
1992-01-01
A mesoscale numerical model is combined with a dynamic data assimilation via Newtonian relaxation, or 'nudging', to provide initial conditions for subsequent simulations of the QE II cyclone. Both the nudging technique and the inclusion of supplementary data are shown to have a large positive impact on the simulation of the QE II cyclone during the initial phase of rapid cyclone development. Within the initial development period (from 1200 to 1800 UTC 9 September 1978), the dynamic assimilation of operational and bogus data yields a coherent two-layer divergence pattern that is not well defined in the model run using only the operational data and static initialization. Diagnostic analysis based on the simulations show that the initial development of the QE II storm between 0000 UTC 9 September and 0000 UTC 10 September was embedded within an indirect circulation of an intense 300-hPa jet streak, was related to baroclinic processes extending throughout a deep portion of the troposphere, and was associated with a classic two-layer mass-divergence profile expected for an extratropical cyclone.
LANES - LOCAL AREA NETWORK EXTENSIBLE SIMULATOR
NASA Technical Reports Server (NTRS)
Gibson, J.
1994-01-01
The Local Area Network Extensible Simulator (LANES) provides a method for simulating the performance of high speed local area network (LAN) technology. LANES was developed as a design and analysis tool for networking on board the Space Station. The load, network, link and physical layers of a layered network architecture are all modeled. LANES models to different lower-layer protocols, the Fiber Distributed Data Interface (FDDI) and the Star*Bus. The load and network layers are included in the model as a means of introducing upper-layer processing delays associated with message transmission; they do not model any particular protocols. FDDI is an American National Standard and an International Organization for Standardization (ISO) draft standard for a 100 megabit-per-second fiber-optic token ring. Specifications for the LANES model of FDDI are taken from the Draft Proposed American National Standard FDDI Token Ring Media Access Control (MAC), document number X3T9.5/83-16 Rev. 10, February 28, 1986. This is a mature document describing the FDDI media-access-control protocol. Star*Bus, also known as the Fiber Optic Demonstration System, is a protocol for a 100 megabit-per-second fiber-optic star-topology LAN. This protocol, along with a hardware prototype, was developed by Sperry Corporation under contract to NASA Goddard Space Flight Center as a candidate LAN protocol for the Space Station. LANES can be used to analyze performance of a networking system based on either FDDI or Star*Bus under a variety of loading conditions. Delays due to upper-layer processing can easily be nullified, allowing analysis of FDDI or Star*Bus as stand-alone protocols. LANES is a parameter-driven simulation; it provides considerable flexibility in specifying both protocol an run-time parameters. Code has been optimized for fast execution and detailed tracing facilities have been included. LANES was written in FORTRAN 77 for implementation on a DEC VAX under VMS 4.6. It consists of two programs, a simulation program and a user-interface program. The simulation program requires the SLAM II simulation library from Pritsker and Associates, W. Lafayette IN; the user interface is implemented using the Ingres database manager from Relational Technology, Inc. Information about running the simulation program without the user-interface program is contained in the documentation. The memory requirement is 129,024 bytes. LANES was developed in 1988.
Research on Collaborative Technology in Distributed Virtual Reality System
NASA Astrophysics Data System (ADS)
Lei, ZhenJiang; Huang, JiJie; Li, Zhao; Wang, Lei; Cui, JiSheng; Tang, Zhi
2018-01-01
Distributed virtual reality technology applied to the joint training simulation needs the CSCW (Computer Supported Cooperative Work) terminal multicast technology to display and the HLA (high-level architecture) technology to ensure the temporal and spatial consistency of the simulation, in order to achieve collaborative display and collaborative computing. In this paper, the CSCW’s terminal multicast technology has been used to modify and expand the implementation framework of HLA. During the simulation initialization period, this paper has used the HLA statement and object management service interface to establish and manage the CSCW network topology, and used the HLA data filtering mechanism for each federal member to establish the corresponding Mesh tree. During the simulation running period, this paper has added a new thread for the RTI and the CSCW real-time multicast interactive technology into the RTI, so that the RTI can also use the window message mechanism to notify the application update the display screen. Through many applications of submerged simulation training in substation under the operation of large power grid, it is shown that this paper has achieved satisfactory training effect on the collaborative technology used in distributed virtual reality simulation.
The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC
NASA Astrophysics Data System (ADS)
Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan
2016-04-01
The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.
NASA Astrophysics Data System (ADS)
Batzias, Dimitris F.; Ifanti, Konstantina
2012-12-01
Process simulation models are usually empirical, therefore there is an inherent difficulty in serving as carriers for knowledge acquisition and technology transfer, since their parameters have no physical meaning to facilitate verification of the dependence on the production conditions; in such a case, a 'black box' regression model or a neural network might be used to simply connect input-output characteristics. In several cases, scientific/mechanismic models may be proved valid, in which case parameter identification is required to find out the independent/explanatory variables and parameters, which each parameter depends on. This is a difficult task, since the phenomenological level at which each parameter is defined is different. In this paper, we have developed a methodological framework under the form of an algorithmic procedure to solve this problem. The main parts of this procedure are: (i) stratification of relevant knowledge in discrete layers immediately adjacent to the layer that the initial model under investigation belongs to, (ii) design of the ontology corresponding to these layers, (iii) elimination of the less relevant parts of the ontology by thinning, (iv) retrieval of the stronger interrelations between the remaining nodes within the revised ontological network, and (v) parameter identification taking into account the most influential interrelations revealed in (iv). The functionality of this methodology is demonstrated by quoting two representative case examples on wastewater treatment.
On Structure and Properties of Amorphous Materials
Stachurski, Zbigniew H.
2011-01-01
Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy) materials: (i) metallic; (ii) thin films; (iii) organic and inorganic thermoplastics; and (iv) amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids. PMID:28824158
From microsystems technology to the Saenger II space transportation system
NASA Astrophysics Data System (ADS)
Vogels, Hanns Arnt
The role of space projects as drivers and catalysts of technology advances is discussed and illustrated from the perspective of the West German aerospace industry, summarizing a talk presented at the 1986 meeting of the German aerospace society DGLR. The history of space-transportation-system (STS) technology since the 1950s is traced, emphasizing the needs for greater payload weights and lower costs, and the design concept of Saenger II, a proposed two-stage ESA STS employing a hypersonic jet transport aircraft as its first stage, is outlined. It is argued that experience gained in developing the rocket-launched Hermes STS will be applicable to the second stage of Saenger II. Recent developments in microsystems (combining microelectronics, micromechanics, and microoptics), advanced materials (fiber-reinforced plastics, metals, and ceramics), and energy technology (hydrogen-based systems and solar cells) are surveyed, and their applicability to STSs is considered.
High-Energy Activation Simulation Coupling TENDL and SPACS with FISPACT-II
NASA Astrophysics Data System (ADS)
Fleming, Michael; Sublet, Jean-Christophe; Gilbert, Mark
2018-06-01
To address the needs of activation-transmutation simulation in incident-particle fields with energies above a few hundred MeV, the FISPACT-II code has been extended to splice TENDL standard ENDF-6 nuclear data with extended nuclear data forms. The JENDL-2007/HE and HEAD-2009 libraries were processed for FISPACT-II and used to demonstrate the capabilities of the new code version. Tests of the libraries and comparisons against both experimental yield data and the most recent intra-nuclear cascade model results demonstrate that there is need for improved nuclear data libraries up to and above 1 GeV. Simulations on lead targets show that important radionuclides, such as 148Gd, can vary by more than an order of magnitude where more advanced models find agreement within the experimental uncertainties.
Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter
NASA Astrophysics Data System (ADS)
Kurt, H. Hilal
2018-05-01
Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.
ERIC Educational Resources Information Center
Romeu, Jorge Luis
2008-01-01
This article discusses our teaching approach in graduate level Engineering Statistics. It is based on the use of modern technology, learning groups, contextual projects, simulation models, and statistical and simulation software to entice student motivation. The use of technology to facilitate group projects and presentations, and to generate,…
Simulation of lung alveolar epithelial wound healing in vitro
Kim, Sean H. J.; Matthay, Michael A.; Mostov, Keith; Hunt, C. Anthony
2010-01-01
The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing ‘cells’ a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated ‘cell’ migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration. PMID:20236957
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Six papers from the 1990 CAUSE conference's Track II, Challenges and Opportunities of Information Technology in the 90s are presented. The papers focus on daily funding and accountability problems, the related management of growth, and funding relationships in higher education. Papers and their authors are as follows: "Achieving Excellence in…
State-Wide Evaluation of the New Hampshire ESEA Title II, Part D Grant Program. Interim Report
ERIC Educational Resources Information Center
Knestis, Kirk; Smoke-Zur, Naomi; Higgins, Cathy
2010-01-01
The Title II-D grant program, "Enhancing Education Through Technology," (EETT) provides financial assistance to higher poverty school districts that have the greatest need for technology support or have been identified as being in need of improvement. In 2009, the American Reinvestment and Recovery Act (ARRA) provided an additional $650…
State-Wide Evaluation of the New Hampshire ESEA Title II, Part D Grant Program. Final Report
ERIC Educational Resources Information Center
Knestis, Kirk; Smoke-Zur, Naomi; Gibson, Rachel; Pike, Jessica Yusaitis; Higgins, Cathy
2011-01-01
The Title II-D grant program, "Enhancing Education Through Technology," (EETT) provides financial assistance to higher poverty school districts that have the greatest need for technology support or have been identified as being in need of improvement. In 2009, the American Reinvestment and Recovery Act (ARRA) provided an additional $650…
Concentrating Solar Power Projects - SunCan Dunhuang 100 MW Phase II |
Concentrating Solar Power | NREL 0 MW Phase II Status Date: January 11, 2017 Project Overview ): Beijing Shouhang IHW Technology: Power tower Turbine Capacity: Net: 100.0 MW Gross: 100.0 MW Status: Under construction Do you have more information, corrections, or comments? Background Technology: Power tower Status
Trade Offsets in Foreign Military Sales
1984-04-13
subcontrac- tor production, overseas investment, technology transfer, and countertrade . (See app. II for a definition of each element of offsets.) B...incorporate offsets--defined as coproduction, licensed production, countertrade , subcontracting, and technology transfer--mandated by foreiqn qovernments as a...APPENDIX II COUNTERTRADE Purchase of qoods and services from the buyer country as a condition of the offset agreement, excluding purchases under
ERIC Educational Resources Information Center
Weisburd, Melvin I.
The Field Operations and Enforcement Manual for Air Pollution Control, Volume II, explains in detail the following: technology of source control, modification of operations, particulate control equipment, sulfur dioxide removal systems for power plants, and control equipment for gases and vapors; inspection procedures for general sources, fuel…
ERIC Educational Resources Information Center
Abramovich, Sergei
2016-01-01
The paper presents the use of spreadsheets integrated with digital tools capable of symbolic computations and graphic constructions in a master's level capstone course for secondary mathematics teachers. Such use of spreadsheets is congruent with the Type II technology applications framework aimed at the development of conceptual knowledge in the…
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.
2010-01-01
Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies
TRACKING SIMULATIONS NEAR HALF-INTEGER RESONANCE AT PEP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosochkov, Yuri
2003-05-13
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and {beta} distortion after correction was investigated.
Handler, Steven M.; Sharkey, Siobhan S.; Hudak, Sandra; Ouslander, Joseph G.
2012-01-01
A substantial reduction in hospitalization rates has been associated with the implementation of the Interventions to Reduce Acute Care Transfers (INTERACT) quality improvement intervention using the accompanying paper-based clinical practice tools (INTERACT II). There is significant potential to further increase the impact of INTERACT by integrating INTERACT II tools into nursing home (NH) health information technology (HIT) via standalone or integrated clinical decision support (CDS) systems. This article highlights the process of translating INTERACT II tools from paper to NH HIT. The authors believe that widespread dissemination and integration of INTERACT II CDS tools into various NH HIT products could lead to sustainable improvement in resident and clinician process and outcome measures, including enhanced interclinician communication and a reduction in potentially avoidable hospitalizations. PMID:22267955
77 FR 24984 - Importer of Controlled Substances; Notice of Application; Rhodes Technologies
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
.... Comments and requests for hearings on applications to import narcotic raw material are not appropriate. 72... schedule II: Drug Schedule Opium, Raw (9600) II Poppy Straw Concentrate (9670) II The company plans to...
Basics of identification measurement technology
NASA Astrophysics Data System (ADS)
Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.
2018-01-01
All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.
NASA Technical Reports Server (NTRS)
Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash;
2002-01-01
A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.
Modeling and Simulation: PowerBoosting Productivity with Simulation.
ERIC Educational Resources Information Center
Riley, Suzanne
Minnesota high school students and teachers are learning the technology of simulation and integrating it into business and industrial technology courses. Modeling and simulation is the science of using software to construct a system within an organization and then running simulations of proposed changes to assess results before funds are spent. In…
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
A typology of educationally focused medical simulation tools.
Alinier, Guillaume
2007-10-01
The concept of simulation as an educational tool in healthcare is not a new idea but its use has really blossomed over the last few years. This enthusiasm is partly driven by an attempt to increase patient safety and also because the technology is becoming more affordable and advanced. Simulation is becoming more commonly used for initial training purposes as well as for continuing professional development, but people often have very different perceptions of the definition of the term simulation, especially in an educational context. This highlights the need for a clear classification of the technology available but also about the method and teaching approach employed. The aims of this paper are to discuss the current range of simulation approaches and propose a clear typology of simulation teaching aids. Commonly used simulation techniques have been identified and discussed in order to create a classification that reports simulation techniques, their usual mode of delivery, the skills they can address, the facilities required, their typical use, and their pros and cons. This paper presents a clear classification scheme of educational simulation tools and techniques with six different technological levels. They are respectively: written simulations, three-dimensional models, screen-based simulators, standardized patients, intermediate fidelity patient simulators, and interactive patient simulators. This typology allows the accurate description of the simulation technology and the teaching methods applied. Thus valid comparison of educational tools can be made as to their potential effectiveness and verisimilitude at different training stages. The proposed typology of simulation methodologies available for educational purposes provides a helpful guide for educators and participants which should help them to realise the potential learning outcomes at different technological simulation levels in relation to the training approach employed. It should also be a useful resource for simulation users who are trying to improve their educational practice.
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Richey, A.; Farrell, R.; Riecke, G.; Ernst, W.; Howarth, R.; Cronin, M.; Simetkosky, M.; Smith, G.; Meacher, J.
1985-01-01
Development test activities on Mod I engines directed toward evaluating technologies for potential inclusion in the Mod II engine are summarized. Activities covered include: test of a 12-tube combustion gas recirculation combustor; manufacture and flow-distribution test of a two-manifold annular heater head; piston rod/piston base joint; single-solid piston rings; and a digital air/fuel concept. Also summarized are results of a formal assessment of candidate technologies for the Mod II engine, and preliminary design work for the Mod II. The overall program philosophy weight is outlined, and data and test results are presented.
A trial of e-simulation of sudden patient deterioration (FIRST2ACT WEB) on student learning.
Bogossian, Fiona E; Cooper, Simon J; Cant, Robyn; Porter, Joanne; Forbes, Helen
2015-10-01
High-fidelity simulation pedagogy is of increasing importance in health professional education; however, face-to-face simulation programs are resource intensive and impractical to implement across large numbers of students. To investigate undergraduate nursing students' theoretical and applied learning in response to the e-simulation program-FIRST2ACT WEBTM, and explore predictors of virtual clinical performance. Multi-center trial of FIRST2ACT WEBTM accessible to students in five Australian universities and colleges, across 8 campuses. A population of 489 final-year nursing students in programs of study leading to license to practice. Participants proceeded through three phases: (i) pre-simulation-briefing and assessment of clinical knowledge and experience; (ii) e-simulation-three interactive e-simulation clinical scenarios which included video recordings of patients with deteriorating conditions, interactive clinical tasks, pop up responses to tasks, and timed performance; and (iii) post-simulation feedback and evaluation. Descriptive statistics were followed by bivariate analysis to detect any associations, which were further tested using standard regression analysis. Of 409 students who commenced the program (83% response rate), 367 undergraduate nursing students completed the web-based program in its entirety, yielding a completion rate of 89.7%; 38.1% of students achieved passing clinical performance across three scenarios, and the proportion achieving passing clinical knowledge increased from 78.15% pre-simulation to 91.6% post-simulation. Knowledge was the main independent predictor of clinical performance in responding to a virtual deteriorating patient R(2)=0.090, F(7, 352)=4.962, p<0.001. The use of web-based technology allows simulation activities to be accessible to a large number of participants and completion rates indicate that 'Net Generation' nursing students were highly engaged with this mode of learning. The web-based e-simulation program FIRST2ACTTM effectively enhanced knowledge, virtual clinical performance, and self-assessed knowledge, skills, confidence, and competence in final-year nursing students. Copyright © 2015 Elsevier Ltd. All rights reserved.
The accuracy of seminumerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-06-01
We have developed a modular seminumerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I), and single-ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different seminumerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the seminumerical approaches produce similar H II and He II morphologies and power spectra of the H I 21 cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double-ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our seminumerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20 per cent ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggest that constraining ionizing emissivity-sensitive parameters from seminumerical galaxy formation-reionization models are subject to photon nonconservation.
The accuracy of semi-numerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-03-01
We have developed a modular semi-numerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I) and singly ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different semi-numerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the semi-numerical approaches produce similar H II and He II morphologies and power spectra of the H I 21cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our semi-numerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20% ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggests that constraining ionizing emissivity sensitive parameters from semi-numerical galaxy formation-reionization models are subject to photon nonconservation.
Face and construct validity of a computer-based virtual reality simulator for ERCP.
Bittner, James G; Mellinger, John D; Imam, Toufic; Schade, Robert R; Macfadyen, Bruce V
2010-02-01
Currently, little evidence supports computer-based simulation for ERCP training. To determine face and construct validity of a computer-based simulator for ERCP and assess its perceived utility as a training tool. Novice and expert endoscopists completed 2 simulated ERCP cases by using the GI Mentor II. Virtual Education and Surgical Simulation Laboratory, Medical College of Georgia. Outcomes included times to complete the procedure, reach the papilla, and use fluoroscopy; attempts to cannulate the papilla, pancreatic duct, and common bile duct; and number of contrast injections and complications. Subjects assessed simulator graphics, procedural accuracy, difficulty, haptics, overall realism, and training potential. Only when performance data from cases A and B were combined did the GI Mentor II differentiate novices and experts based on times to complete the procedure, reach the papilla, and use fluoroscopy. Across skill levels, overall opinions were similar regarding graphics (moderately realistic), accuracy (similar to clinical ERCP), difficulty (similar to clinical ERCP), overall realism (moderately realistic), and haptics. Most participants (92%) claimed that the simulator has definite training potential or should be required for training. Small sample size, single institution. The GI Mentor II demonstrated construct validity for ERCP based on select metrics. Most subjects thought that the simulated graphics, procedural accuracy, and overall realism exhibit face validity. Subjects deemed it a useful training tool. Study repetition involving more participants and cases may help confirm results and establish the simulator's ability to differentiate skill levels based on ERCP-specific metrics.
Hubley, Darlene; Peacocke, Sean; Maxwell, Joanne; Parker, Kathryn
2015-01-01
Simulation has the potential to invigorate teaching practices, facilitate professional development and impact client care. However, there is little literature on using simulation at the level of organizational change in healthcare. In this paper, the authors explore Holland Bloorview Kids Rehabilitation Hospital's experience using simulation to enhance the use of technology at the point-of-care. The simulation event demonstrated documentation using technology in two typical practice environments and allowed learners to discuss the challenges and opportunities. Participant feedback was positive overall, and this article reveals important lessons to support the future use of simulation as an educational tool for organizational change.
Clinical Simulation: A Protocol for Evaluation of Mobile Technology.
Mather, Carey; Jensen, Sanne; Cummings, Elizabeth
2017-01-01
For mobile technology to be accepted at point of care in healthcare environments there is a need to demonstrate benefits whilst ameliorating the risks and challenges. To provide a standardised approach to evaluation of mobile technology a simulation protocol was developed to provide guidance for its use in healthcare environments. Simulated conditions provide the opportunity to assess intended and unintended consequences and identify potential workarounds when using technology. The protocol can also be used to demonstrate the importance of the development of digital professionalism by end-users prior to students entering the clinical practice setting. The mobile technology protocol was adapted from a health information systems protocol developed and used at the ITX Lab, Denmark for use in other simulation laboratories. Use case scenarios were developed to enable evaluation of mobile technology for mobile learning of nurses, nurse supervisors, students and patients. The scenarios can be used in a range of simulated environments including hospital bedside, outpatient clinic or community settings. A case study exemplar of a nurse and patient is included to demonstrate how the mobile technology protocol can be applied.
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.
2012-01-01
This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables automatic delineation of a simulation basin of any size (area) and having any level of stream-network complexity. WATER then automatically identifies the presence of sinkholes catchments within the simulation basin boundaries; extracts and compiles the necessary climatic, topographic, and basin characteristics datasets; and runs the SDP-TOPMODEL approach to estimate daily mean discharges (streamflow).
Surviving sepsis--a 3D integrative educational simulator.
Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka
2015-08-01
Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.
75 FR 65658 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... basic classes of controlled substances listed in schedule II: Drug Schedule Raw Opium (9600) II Concentrate of Poppy Straw (9670) II Tapentadol (9780) II The company plans to import the Raw Opium (9600) and... Technologies, 72 FR 3417 (2007), comments and requests for hearings on applications to import narcotic raw...
76 FR 35241 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
...-Piperidine (8333).. II Phenylacetone (8501) II Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The... Technologies, 72 FR 3417 (2007), comments and requests for hearings on applications to import narcotic raw material are not appropriate. Any bulk manufacturer who is presently, or is applying to be, registered with...
This study examines the feasibility and application of Advanced Oxidation Technologies (AOTs) for the treatment of chlorophenols that are included in US EPA priority pollutant list. A novel class of sulfate/hydroxyl radical-based homogeneous AOTs (Fe(II)/PS, Fe(II)/PMS, Fe(II)/H...
Learner-Adaptive Educational Technology for Simulation in Healthcare: Foundations and Opportunities.
Lineberry, Matthew; Dev, Parvati; Lane, H Chad; Talbot, Thomas B
2018-06-01
Despite evidence that learners vary greatly in their learning needs, practical constraints tend to favor ''one-size-fits-all'' educational approaches, in simulation-based education as elsewhere. Adaptive educational technologies - devices and/or software applications that capture and analyze relevant data about learners to select and present individually tailored learning stimuli - are a promising aid in learners' and educators' efforts to provide learning experiences that meet individual needs. In this article, we summarize and build upon the 2017 Society for Simulation in Healthcare Research Summit panel discussion on adaptive learning. First, we consider the role of adaptivity in learning broadly. We then outline the basic functions that adaptive learning technologies must implement and the unique affordances and challenges of technology-based approaches for those functions, sharing an illustrative example from healthcare simulation. Finally, we consider future directions for accelerating research, development, and deployment of effective adaptive educational technology and techniques in healthcare simulation.
National Educational Technology Trends: 2010. Innovation Through State Leadership
ERIC Educational Resources Information Center
State Educational Technology Directors Association, 2010
2010-01-01
This annual report provides a national perspective on Title II-D for federal fiscal year (FY) 2008 (2008-09 school year), as well as emergent trends based on data from the past seven years. Title II-D is the only federal education program with funds explicitly targeted to support state and local effective uses of educational technology in the …
Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions
NASA Astrophysics Data System (ADS)
Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.
2016-07-01
We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.
COMPUTATION OF GLOBAL PHOTOCHEMISTRY WITH SMVGEAR II (R823186)
A computer model was developed to simulate global gas-phase photochemistry. The model solves chemical equations with SMVGEAR II, a sparse-matrix, vectorized Gear-type code. To obtain SMVGEAR II, the original SMVGEAR code was modified to allow computation of different sets of chem...
Simulation model for wind energy storage systems. Volume II. Operation manual. [SIMWEST code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.
1977-08-01
The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume II, the SIMWEST operation manual, describes the usage of the SIMWEST program, the designmore » of the library components, and a number of simple example simulations intended to familiarize the user with the program's operation. Volume II also contains a listing of each SIMWEST library subroutine.« less
Huang, Xuhui; Wang, Dong; Weiss, Dahlia R.; Bushnell, David A.; Kornberg, Roger D.; Levitt, Michael
2010-01-01
A structurally conserved element, the trigger loop, has been suggested to play a key role in substrate selection and catalysis of RNA polymerase II (pol II) transcription elongation. Recently resolved X-ray structures showed that the trigger loop forms direct interactions with the β-phosphate and base of the matched nucleotide triphosphate (NTP) through residues His1085 and Leu1081, respectively. In order to understand the role of these two critical residues in stabilizing active site conformation in the dynamic complex, we performed all-atom molecular dynamics simulations of the wild-type pol II elongation complex and its mutants in explicit solvent. In the wild-type complex, we found that the trigger loop is stabilized in the “closed” conformation, and His1085 forms a stable interaction with the NTP. Simulations of point mutations of His1085 are shown to affect this interaction; simulations of alternative protonation states, which are inaccessible through experiment, indicate that only the protonated form is able to stabilize the His1085-NTP interaction. Another trigger loop residue, Leu1081, stabilizes the incoming nucleotide position through interaction with the nucleotide base. Our simulations of this Leu mutant suggest a three-component mechanism for correctly positioning the incoming NTP in which (i) hydrophobic contact through Leu1081, (ii) base stacking, and (iii) base pairing work together to minimize the motion of the incoming NTP base. These results complement experimental observations and provide insight into the role of the trigger loop on transcription fidelity. PMID:20798057
DOT National Transportation Integrated Search
2015-01-01
As mobile technology becomes widely available and affordable, transportation agencies can use this : technology to streamline operations involved within project inspection. This research, conducted in two : phases, identified opportunities for proces...
Impact of current video game playing on robotic simulation skills among medical students.
Öge, Tufan; Borahay, Mostafa A; Achjian, Tamar; Kılıç, Sami Gökhan
2015-01-01
To evaluate the impact of current and prior video game playing on initial robotic simulation skill acquisition. This cross-sectional descriptive study (Canadian Task Force Classification II-1) was conducted at a medical university training center. The study subjects were medical students who currently played video games (Group I) and those who had not played video games in the last 2 years (Group II). The robotic skills of both groups were assessed using simulation. Twenty-two students enrolled in this study; however, only 21 completed it. The median age of the participants was 23 (22-24) years and 24 (23-26) years in Groups I and II, respectively. Among the participants, 15 (71.4%) were male and 6 (28.5%) were female, and 90.4% of the students started playing video games in primary school. When the 2 groups were compared according to the completion time of each exercise, Group I finished more quickly than Group II in the Peg Board-1 exercise (p>0.05), whereas Group II had better results in 3 exercises including Pick and Place, Ring and Rail, and Thread the Rings-1. However, none of the differences were found to be statistically significant (p>.05), and according to the overall scores based on the time to complete exercises, economy of motion, instrument collision, use of excessive instrument force, instruments out of view, and master workspace range, the scores were not statistically different between Groups I and II (p>.05). According to the basic robotic simulation exercise results, there was no difference between medical students who used to play video games and those who still played video games. Studies evaluating baseline visuospatial skills with larger sample sizes are needed.
Impact of current video game playing on robotic simulation skills among medical students
Öge, Tufan; Borahay, Mostafa A.; Achjian, Tamar; Kılıç, Sami Gökhan
2015-01-01
Objective To evaluate the impact of current and prior video game playing on initial robotic simulation skill acquisition. Material and Methods This cross-sectional descriptive study (Canadian Task Force Classification II-1) was conducted at a medical university training center. The study subjects were medical students who currently played video games (Group I) and those who had not played video games in the last 2 years (Group II). The robotic skills of both groups were assessed using simulation. Results Twenty-two students enrolled in this study; however, only 21 completed it. The median age of the participants was 23 (22–24) years and 24 (23–26) years in Groups I and II, respectively. Among the participants, 15 (71.4%) were male and 6 (28.5%) were female, and 90.4% of the students started playing video games in primary school. When the 2 groups were compared according to the completion time of each exercise, Group I finished more quickly than Group II in the Peg Board-1 exercise (p>0.05), whereas Group II had better results in 3 exercises including Pick and Place, Ring and Rail, and Thread the Rings-1. However, none of the differences were found to be statistically significant (p>.05), and according to the overall scores based on the time to complete exercises, economy of motion, instrument collision, use of excessive instrument force, instruments out of view, and master workspace range, the scores were not statistically different between Groups I and II (p>.05). Conclusion According to the basic robotic simulation exercise results, there was no difference between medical students who used to play video games and those who still played video games. Studies evaluating baseline visuospatial skills with larger sample sizes are needed. PMID:25788841
[Equipment and technology in robotics].
Murphy, Declan; Challacombe, Ben; Nedas, Tim; Elhage, Oussama; Althoefer, Kaspar; Seneviratne, Lakmal; Dasgupta, Prokar
2007-05-01
We review the evolution and current status of robotic equipment and technology in urology. We also describe future developments in the key areas of virtual reality simulation, mechatronics and nanorobotics. The history of robotic technology is reviewed and put into the context of current systems. Experts in the associated fields of nanorobotics, mechatronics and virtual reality simulation simulation review the important future developments in these areas.
Simulation and Modeling Capability for Standard Modular Hydropower Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Kevin M.; Smith, Brennan T.; Witt, Adam M.
Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.
Medical simulation: Overview, and application to wound modelling and management
Pai, Dinker R.; Singh, Simerjit
2012-01-01
Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a) overall increase in the number of medical students vis-à-vis the availability of patients; b) increasing awareness among patients of their rights and consequent increase in litigations and c) tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body) and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality) simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research. PMID:23162218
Medical simulation: Overview, and application to wound modelling and management.
Pai, Dinker R; Singh, Simerjit
2012-05-01
Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a) overall increase in the number of medical students vis-à-vis the availability of patients; b) increasing awareness among patients of their rights and consequent increase in litigations and c) tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body) and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality) simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.
Study of Turbofan Engines Designed for Low Enery Consumption
NASA Technical Reports Server (NTRS)
Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.
1976-01-01
Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified.
Within the context of the Air Quality Model Evaluation International Initiative phase 2 (AQMEII2) project, this part II paper performs a multi-model assessment of major column abundances of gases, radiation, aerosol, and cloud variables for 2006 and 2010 simulations with three on...
Energy Storage (II): Developing Advanced Technologies
ERIC Educational Resources Information Center
Robinson, Arthur L
1974-01-01
Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)
Discrete-Event Simulation in Chemical Engineering.
ERIC Educational Resources Information Center
Schultheisz, Daniel; Sommerfeld, Jude T.
1988-01-01
Gives examples, descriptions, and uses for various types of simulation systems, including the Flowtran, Process, Aspen Plus, Design II, GPSS, Simula, and Simscript. Explains similarities in simulators, terminology, and a batch chemical process. Tables and diagrams are included. (RT)
Dietl, Charles A; Russell, John C
2016-01-01
The purpose of this article is to review the literature on current technology for surgical education and to evaluate the effect of technological advances on the Accreditation Council of Graduate Medical Education (ACGME) Core Competencies, American Board of Surgery In-Training Examination (ABSITE) scores, and American Board of Surgery (ABS) certification. A literature search was obtained from MEDLINE via PubMed.gov, ScienceDirect.com, and Google Scholar on all peer-reviewed studies published since 2003 using the following search queries: technology for surgical education, simulation-based surgical training, simulation-based nontechnical skills (NTS) training, ACGME Core Competencies, ABSITE scores, and ABS pass rate. Our initial search list included the following: 648 on technology for surgical education, 413 on simulation-based surgical training, 51 on simulation-based NTS training, 78 on ABSITE scores, and 33 on ABS pass rate. Further, 42 articles on technological advances for surgical education met inclusion criteria based on their effect on ACGME Core Competencies, ABSITE scores, and ABS certification. Systematic review showed that 33 of 42 and 26 of 42 publications on technological advances for surgical education showed objective improvements regarding patient care and medical knowledge, respectively, whereas only 2 of 42 publications showed improved ABSITE scores, but none showed improved ABS pass rates. Improvements in the other ACGME core competencies were documented in 14 studies, 9 of which were on simulation-based NTS training. Most of the studies on technological advances for surgical education have shown a positive effect on patient care and medical knowledge. However, the effect of simulation-based surgical training and simulation-based NTS training on ABSITE scores and ABS certification has not been assessed. Studies on technological advances in surgical education and simulation-based NTS training showing quantitative evidence that surgery residency program objectives are achieved are still needed. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
CAT/RF Simulation Lessons Learned
2003-06-11
IVSS-2003-MAS-7 CAT /RF Simulation Lessons Learned Christopher Mocnik Vetronics Technology Area, RDECOM TARDEC Tim Lee DCS Corporation...developed a re- configurable Unmanned Ground Vehicle (UGV) simulation for the Crew integration and Automation Test bed ( CAT ) and Robotics Follower (RF...Advanced Technology Demonstration (ATD) experiments. This simulation was developed as a component of the Embedded Simulation System (ESS) of the CAT
Tomasso, Maria E.; Tarver, Micheal J.; Devarajan, Deepa; Whitten, Steven T.
2016-01-01
The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PP II) structure. While intrinsic PP II propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (R h) can be predicted from experimental PP II propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that R h and chain propensity for PP II structure are linked via a simple power-law scaling relationship, which was tested using the experimental R h of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on R h were found to be generally weak when compared to PP II effects on R h. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PP II structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides. PMID:26727467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fei; Lin, Zhenhong
This paper explored factors that affect market-driven compliance with both Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) standards (together called the National Program) in the United States for phase I 2012–2016 and phase II 2017–2025. We considered a consumer-choice-based simulation approach, using the MA3T model, to estimate the market acceptance of fuel efficiency (FE) technologies and alternative fuel technologies as reflected by new sales of light-duty vehicle (LDV). Because both full and extremely low FE valuations are common in the literature, we use a moderate assumption of a 10-year perceived vehicle lifetime at a 7% annual discount ratemore » in the baseline and include both extreme views (5 years and 15 years) in the sensitivity analysis. The study focuses on market-driven compliance and therefore excludes manufacturers’ cross-subsidization. The model results suggest that the LDV industry is able to comply with both standards even without cross-subsidization and with projected high technology cost, mainly thanks to the multiple credit programs and technology advancements. The compliance robustness, while encouraging, however is based on moderate market assumptions, such as Annual Energy Outlook 2016 Reference oil price projection and moderate FE consumer valuation. Finally, sensitivity analysis results reveal two significant risk factors for compliance: low oil prices and consumers’ FE undervaluation.« less
Xie, Fei; Lin, Zhenhong
2017-06-09
This paper explored factors that affect market-driven compliance with both Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) standards (together called the National Program) in the United States for phase I 2012–2016 and phase II 2017–2025. We considered a consumer-choice-based simulation approach, using the MA3T model, to estimate the market acceptance of fuel efficiency (FE) technologies and alternative fuel technologies as reflected by new sales of light-duty vehicle (LDV). Because both full and extremely low FE valuations are common in the literature, we use a moderate assumption of a 10-year perceived vehicle lifetime at a 7% annual discount ratemore » in the baseline and include both extreme views (5 years and 15 years) in the sensitivity analysis. The study focuses on market-driven compliance and therefore excludes manufacturers’ cross-subsidization. The model results suggest that the LDV industry is able to comply with both standards even without cross-subsidization and with projected high technology cost, mainly thanks to the multiple credit programs and technology advancements. The compliance robustness, while encouraging, however is based on moderate market assumptions, such as Annual Energy Outlook 2016 Reference oil price projection and moderate FE consumer valuation. Finally, sensitivity analysis results reveal two significant risk factors for compliance: low oil prices and consumers’ FE undervaluation.« less
Simulation of an enhanced TCAS 2 system in operation
NASA Technical Reports Server (NTRS)
Rojas, R. G.; Law, P.; Burnside, W. D.
1987-01-01
Described is a computer simulation of a Boeing 737 aircraft equipped with an enhanced Traffic and Collision Avoidance System (TCAS II). In particular, an algorithm is developed which permits the computer simulation of the tracking of a target airplane by a Boeing 373 which has a TCAS II array mounted on top of its fuselage. This algorithm has four main components: namely, the target path, the noise source, the alpha-beta filter, and threat detection. The implementation of each of these four components is described. Furthermore, the areas where the present algorithm needs to be improved are also mentioned.
1981-04-01
one 24-hour exposure to that condition may be regarded as the most complete and unbiased for determining some effects of a type of simulated SES...eliminated entirely. The ability to predict in advance the resultant effects of motion exposure thus seems to depend on the existance of a given...F• 198OF1L-0/I- =•RAI. )81 -• i . _j EFFECT OF.SIMULATED 1 S URFACE EFFECT SHIP J•OTIONS_2 ON CREW HABITABILITY 1PHASE 1J_ "I ,,OLUME 1 iI SUMMARY
78 FR 39343 - SHINE Medical Technologies, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-608; NRC-2013-0053] SHINE Medical Technologies, Inc... entering the comment submissions into ADAMS. II. Discussion SHINE Medical Technologies, Inc. (SHINE) has... sites, and alternative technologies to produce radioisotopes. This notice is being published in...
ERIC Educational Resources Information Center
Smalley, Lee, Ed.
This monograph summarizes 21 presentations from a symposium whose theme was technological literacy--an understanding of the impact of technological descisions. These presentations are divided into five categories. The six presentations in the section, The Context of Technology Education, focus on technological literacy for living in today's…
A magnesium-induced triplex pre-organizes the SAM-II riboswitch
Roy, Susmita; Lammert, Heiko; Dayie, T. Kwaku; Sanbonmatsu, Karissa Y.
2017-01-01
Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function. PMID:28248966
Chemistry for Energy Technology II. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in chemistry for energy technology is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…
A Review of Computer-Based Human Behavior Representations and Their Relation to Military Simulations
2003-08-01
described by Emery and Trist (1960), activity theory introduced by Vygotsky in the 1930s and formalized by Leont’ev (1979) and situated cognition theory by...II-6 B. Adaptive Resonance Theory (ART) .......................................................... II-6 1. Model...II-31 G. Cognitive Complexity Theory (CCT
Users' Perception of Medical Simulation Training: A Framework for Adopting Simulator Technology
ERIC Educational Resources Information Center
Green, Leili Hayati
2014-01-01
Users play a key role in many training strategies, yet some organizations often fail to understand the users' perception after a simulation training implementation, their attitude about acceptance or rejection of and integration of emerging simulation technology in medical training (Gaba, 2007, and Topol, 2012). Several factors are considered to…
Meaningful Use of Simulation as an Educational Method in Nursing Programs
ERIC Educational Resources Information Center
Thompson, Teri L.
2011-01-01
The purpose of this descriptive study was to examine the use of simulation technology within nursing programs leading to licensure as registered nurses. In preparation for this study the Use of Simulation Technology Inventory (USTI) was developed and based in the structure, processes, outcomes model and the current literature on simulation. The…
NASA Astrophysics Data System (ADS)
Yamamoto, Tetsunori; Nishikawa, Keigo; Sugiyama, Ayumu; Purqon, Acep; Mizukami, Taku; Shimahara, Hideto; Nagao, Hidemi; Nishikawa, Kiyoshi
2008-02-01
The docking structure of the Azurin-Cytochrome C551 is presented. We investigate a complex system of Azurin(II)-Cytochrome C551(II) by using molecular dynamics simulation. We estimate some physical properties, such as root-mean-square deviation (RMSD), binding energy between Azurin and Cytochrome C551, distance between Azurin(II) and Cytochrome C551(II) through center of mass and each active site. We also discuss docking stability in relation to the configuration by free energy between Azurin(II)-Cytochrome C551(II) and Azurin(I)-Cytochrome C551(III).
Jamestown II: Building a New World.
ERIC Educational Resources Information Center
Sanchez, Tony
This simulation uses a science fiction setting to capture the unparalled adventure, danger, and uncertainty of the colonization period in United States history. The simulation can be done in small groups or individually, and value judgments affect the outcome of the simulation. The premise of the simulation is that due to overpopulation,…
Diastereoselective DNA Cleavage Recognition by Ni(II)•Gly-Gly-His Derived Metallopeptides
Fang, Ya-Yin; Claussen, Craig A.; Lipkowitz, Kenny B.; Long, Eric C.
2008-01-01
Site-selective DNA cleavage by diastereoisomers of Ni(II)•Gly-Gly-His-derived metallopeptides was investigated through high-resolution gel analyses and molecular dynamics simulations. Ni(II)•L-Arg-Gly-His and Ni(II)•D-Arg-Gly-His (and their respective Lys analogues) targeted A/T-rich regions; however, the L-isomers consistently modified a sub-set of available nucleotides within a given minor groove site while the D-isomers differed in both their sites of preference and ability to target individual nucleotides within some sites. In comparison, Ni(II)•L-Pro-Gly-His and Ni(II)•D-Pro-Gly-His were unable to exhibit a similar diastereoselectivity. Simulations of the above systems, along with Ni(II)•Gly-Gly-His, indicated that the stereochemistry of the amino-terminal amino acid produces either an isohelical metallopeptide that associates stably at individual DNA sites (L-Arg or L-Lys) or, with D-Arg and D-Lys, a non-complementary metallopeptide structure that cannot fully employ its side chain nor amino-terminal amine as a positional stabilizing moiety. In contrast, amino-terminal Pro-containing metallopeptides of either stereochemistry, lacking an extended side chain directed toward the minor groove, did not exhibit a similar diastereoselectivity. While the identity and stereochemistry of amino acids located in the amino-terminal peptide position influenced DNA cleavage, metallopeptide diastereoisomers containing L- and D-Arg (or Lys) within the second peptide position did not exhibit diastereoselective DNA cleavage patterns; simulations indicated that a positively-charged amino acid in this location alters the interaction of the metallopeptide equatorial plane and the minor groove leading to an interaction similar to Ni(II)•Gly-Gly-His. PMID:16522100
2010-04-29
Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to
NAVSIM 2: A computer program for simulating aided-inertial navigation for aircraft
NASA Technical Reports Server (NTRS)
Bjorkman, William S.
1987-01-01
NAVSIM II, a computer program for analytical simulation of aided-inertial navigation for aircraft, is described. The description is supported by a discussion of the program's application to the design and analysis of aided-inertial navigation systems as well as instructions for utilizing the program and for modifying it to accommodate new models, constraints, algorithms and scenarios. NAVSIM II simulates an airborne inertial navigation system built around a strapped-down inertial measurement unit and aided in its function by GPS, Doppler radar, altimeter, airspeed, and position-fix measurements. The measurements are incorporated into the navigation estimate via a UD-form Kalman filter. The simulation was designed and implemented using structured programming techniques and with particular attention to user-friendly operation.
Interpretive computer simulator for the NASA Standard Spacecraft Computer-2 (NSSC-2)
NASA Technical Reports Server (NTRS)
Smith, R. S.; Noland, M. S.
1979-01-01
An Interpretive Computer Simulator (ICS) for the NASA Standard Spacecraft Computer-II (NSSC-II) was developed as a code verification and testing tool for the Annular Suspension and Pointing System (ASPS) project. The simulator is written in the higher level language PASCAL and implented on the CDC CYBER series computer system. It is supported by a metal assembler, a linkage loader for the NSSC-II, and a utility library to meet the application requirements. The architectural design of the NSSC-II is that of an IBM System/360 (S/360) and supports all but four instructions of the S/360 standard instruction set. The structural design of the ICS is described with emphasis on the design differences between it and the NSSC-II hardware. The program flow is diagrammed, with the function of each procedure being defined; the instruction implementation is discussed in broad terms; and the instruction timings used in the ICS are listed. An example of the steps required to process an assembly level language program on the ICS is included. The example illustrates the control cards necessary to assemble, load, and execute assembly language code; the sample program to to be executed; the executable load module produced by the loader; and the resulting output produced by the ICS.
Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S
2002-11-01
Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.
NASA Astrophysics Data System (ADS)
Shelton, Robin L.
2018-06-01
High velocity clouds (HVCs) and turbulent mixing layers (TMLs) emit light across a wide range of wavelengths. In order to aid in the detection of their ultraviolet emission, we predict the UV emission line intensities emitted by C II, C III, C IV, N II, N III, N IV, N V, O III, O IV, O V, O VI, Si II, Si III, and Si IV in a variety of simulated HVCs and TMLs. These predictions are based on detailed hydrodynamic simulations made with the FLASH code and employing non-equilibrium ionization calculations for carbon, nitrogen, oxygen, and silicon. The results are compared with FUSE and SPEAR/FIMS observations and with predictions from other models of hot/cool interfaces. We also present methods for scaling the results so that they can be applied to more or less dense environments.
Optical design and simulation of a new coherence beamline at NSLS-II
NASA Astrophysics Data System (ADS)
Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.
2017-08-01
We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.
Ireland, Aileen V
2017-01-01
Positioned within a hybrid of the human and technology, professional nursing practice has always occupied a space that is more than human. In nursing education, technology is central in providing tools with which practice knowledge is mobilized so that students can safely engage with simulated human patients without causing harm to real people. However, while there is an increased emphasis on deploying these simulated humans as emissaries from person-centred care to demonstrate what it is like to care for real humans, the nature of what is really going on in simulation-what is real and what is simulated-is very rarely discussed and poorly understood. This paper explores how elements of postcolonial critical thought can aid in understanding the challenges of educating nurses to provide person-centred care within a healthcare culture that is increasingly reliant on technology. Because nursing education is itself a hybrid of real and simulated practice, it provides an appropriate case study to explore the philosophical question of technology in healthcare discourse, particularly as it relates to the relationship between the human patient and its uncanny simulated double. Drawing on postcolonial elements such as the uncanny, diaspora, hybridity, and créolité, the hybrid conditions of nursing education are examined in order to open up new possibilities of thinking about how learning to care is entangled with this technological space to assist in shaping professional knowledge of person-centred care. Considering these issues through a postcolonial lens opens up questions about the nature of the difficulty in using simulated human technologies in clinical education, particularly with the paradoxical aim of providing person-centred care within a climate that increasingly characterized as posthuman. © 2016 John Wiley & Sons Ltd.
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; ...
2017-10-10
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we presentmore » the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. Furthermore, the simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.« less
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we presentmore » the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. Furthermore, the simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.« less
Panda, Dulal; Kunwar, Ambarish
2016-01-01
Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher binding affinities for tubulin isotypes. PMID:27227832
The Myths and Realities of Simulations in Performance Technology.
ERIC Educational Resources Information Center
Thiagarajan, Sivasailam
1998-01-01
Examines misconceptions about simulations for performance technology concerning what they reflect, varieties, uses (instruction, awareness, performance assessment, team building, transfer, research, therapy), levels of fidelity, design approaches, formats (graphic models; card, race, and cyclical games; interactive fiction; production simulations;…
Virtual reality simulator: demonstrated use in neurosurgical oncology.
Clarke, David B; D'Arcy, Ryan C N; Delorme, Sebastien; Laroche, Denis; Godin, Guy; Hajra, Sujoy Ghosh; Brooks, Rupert; DiRaddo, Robert
2013-04-01
The overriding importance of patient safety, the complexity of surgical techniques, and the challenges associated with teaching surgical trainees in the operating room are all factors driving the need for innovative surgical simulation technologies. Despite these issues, widespread use of virtual reality simulation technology in surgery has not been fully implemented, largely because of the technical complexities in developing clinically relevant and useful models. This article describes the successful use of the NeuroTouch neurosurgical simulator in the resection of a left frontal meningioma. The widespread application of surgical simulation technology has the potential to decrease surgical risk, improve operating room efficiency, and fundamentally change surgical training.
Development of a Web-Based Periscope Simulator for Submarine Officer Training
2014-09-01
31 2. The Evolution of Web-Based technology .........................................32...DEVELOPMENT ............................................................................65 A. TECHNOLOGY ...the possibility to deliver 3D simulations using the web browsers and web technology . The objective is to create an effective and efficient WBLE that
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Tevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is "SCAN Testbed," and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
Requirements for self-magnetically insulated transmission lines
VanDevender, J. Pace; Pointon, Timothy D.; Seidel, David B.; ...
2015-03-01
Self-magnetically insulated transmission lines (MITLs) connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i) electron retrapping in coupling MITLs to loads, (ii) the applicability of collisionless versus collisional electron flow, (iii) power transport efficiency as a function of the geometry at the beginning of the MITL, (iv) gap closuremore » and when gap closure can be neglected, and (v) the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses.« less
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
Advanced technologies in plastic surgery: how new innovations can improve our training and practice.
Grunwald, Tiffany; Krummel, Thomas; Sherman, Randy
2004-11-01
Over the last two decades, virtual reality, haptics, simulators, robotics, and other "advanced technologies" have emerged as important innovations in medical learning and practice. Reports on simulator applications in medicine now appear regularly in the medical, computer science, engineering, and popular literature. The goal of this article is to review the emerging intersection between advanced technologies and surgery and how new technology is being utilized in several surgical fields, particularly plastic surgery. The authors also discuss how plastic and reconstructive surgeons can benefit by working to further the development of multimedia and simulated environment technologies in surgical practice and training.
Phasor Simulator for Operator Training Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, Jim
2016-09-14
Synchrophasor systems are being deployed in power systems throughout the North American Power Grid and there are plans to integrate this technology and its associated tools into Independent System Operator (ISO)/utility control room operations. A pre-requisite to using synchrophasor technologies in control rooms is for operators to obtain training and understand how to use this technology in real-time situations. The Phasor Simulator for Operator Training (PSOT) project objective was to develop, deploy and demonstrate a pre-commercial training simulator for operators on the use of this technology and to promote acceptance of the technology in utility and ISO/Regional Transmission Owner (RTO)more » control centers.« less
DOT National Transportation Integrated Search
1982-06-01
This volume provides a general description of the Airport Landside Simulation Model. A summary of simulated passenger and vehicular processing through the landside is presented. Program operating characteristics and assumptions are documented and a c...
DOT National Transportation Integrated Search
2006-01-01
A previous study developed a procedure for microscopic simulation model calibration and validation and evaluated the procedure via two relatively simple case studies using three microscopic simulation models. Results showed that default parameters we...
NASA Astrophysics Data System (ADS)
Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.
2017-08-01
We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.
HI and Low Metal Ions at the Intersection of Galaxies and the CGM
NASA Astrophysics Data System (ADS)
Oppenheimer, Benjamin
2017-08-01
Over 1000 COS orbits have revealed a surprisingly complex picture of circumgalactic gas flows surrounding the diversity of galaxies in the evolved Universe. Cosmological hydrodynamic simulations have only begun to confront the vast amount of galaxy formation physics, chemistry, and dynamics revealed in the multi-ion CGM datasets. We propose the next generation of EAGLE zoom simulations, called EAGLE Cosmic Origins, to model HI and low metal ions (C II, Mg II, & Si II) throughout not just the CGM but also within the galaxies themselves. We will employ a novel, new chemistry solver, CHIMES, to follow time-dependent ionization, chemistry, and cooling of 157 ionic and molecular species, and include multiple ionization sources from the extra-galactic background, episodic AGN, and star formation. Our aim is to understand the complete baryon cycle of inflows, outflows, and gas recycling traced over 10 decades of HI column densities as well as the complex kinematic information encoded low ion absorption spectroscopy. This simulation project represents a pilot program for a larger suite of zoom simulations, which will be publicly released and lead to additional publications.
75 FR 57898 - NIST Blue Ribbon Commission on Management and Safety-II
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology NIST Blue Ribbon Commission... Commerce. ACTION: Notice of establishment of the NIST Blue Ribbon Commission on Management and Safety--II... NIST Blue Ribbon Commission on Management and Safety--II ``Commission''. The Commission will assess...
Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li
2017-03-01
The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.
15 CFR 740.7 - Computers (APP).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 4A003. (2) Technology and software. License Exception APP authorizes exports of technology and software... programmability. (ii) Technology and source code. Technology and source code eligible for License Exception APP..., reexports and transfers (in-country) for nuclear, chemical, biological, or missile end-users and end-uses...
34 CFR 303.13 - Early intervention services.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Assistive technology device and service are defined as follows: (i) Assistive technology device means any... device. (ii) Assistive technology service means any service that directly assists an infant or toddler with a disability in the selection, acquisition, or use of an assistive technology device. The term...
34 CFR 303.13 - Early intervention services.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Assistive technology device and service are defined as follows: (i) Assistive technology device means any... device. (ii) Assistive technology service means any service that directly assists an infant or toddler with a disability in the selection, acquisition, or use of an assistive technology device. The term...
34 CFR 303.13 - Early intervention services.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Assistive technology device and service are defined as follows: (i) Assistive technology device means any... device. (ii) Assistive technology service means any service that directly assists an infant or toddler with a disability in the selection, acquisition, or use of an assistive technology device. The term...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapusta, P.; Kisielewski, B.
In this paper the overvoltage protection modules (OVP) for the power supply (PS) system of the Belle II pixel detector (PXD) are described. The aim of the OVP is to protect the detector and associated electronics against overvoltage conditions. Most critical in the system are voltages supplying the front-end ASICs. The PXD detector consists of the DEPFET sensor modules with integrated chips like the Drain Current Digitizer, the Switcher and the Data Handling Processor. These chips, implemented in modern sub-micron technologies, are quite vulnerable to variations in the supply voltages. The PXD will be placed in the Belle II experimentmore » as close as possible to the interaction point, where access during experiment is very limited or even impossible, thus the PS and OVP systems exploit the remote-sensing method. Overvoltage conditions are due to failures of the PS itself, wrong setting of the output voltages or transient voltages coming out of hard noisy environment of the experiment. The OVP modules are parts of the PS modules. For powering the PXD 40 PS modules are placed 15 m outside the Belle II spectrometer. Each one is equipped with the OVP board. All voltages (22) are grouped in 4 domains: Analog, Digital, Steering and Gate which have independent grounds. The OVP boards are designed from integrated circuits from Linear Technology. All configurations were simulated with the Spice program. The control electronics is designed in a Xilinx CPLD. Two types of integrated circuits were used. LT4356 surge stopper protects loads from high voltage transients. The output voltages are limited to a safe value and also protect loads against over current faults. For less critical voltages, the LTC2912 voltage monitors are used that detect under-voltage and overvoltage events. It has to be noted that the OVP system is working independently of any other protection of the PS system, which increases its overall reliability. (authors)« less
Cornelius, Craig W; Heinrichs, Leroy; Youngblood, Patricia; Dev, Parvati
2007-01-01
Stanford University Medical Media and Information Technologies's technical workshop "Prototyping of Surgical Simulators using Open Source Simulation Software" was held in August 2006 at Stanford University. The objectives, program, and topics covered are presented in this short report.
Simulations & Case Studies. [SITE 2002 Section].
ERIC Educational Resources Information Center
Seymour, Cathy R., Ed.
This document contains the following papers on simulations and case studies from the SITE (Society for Information Technology & Teacher Education) 2002 conference: "3-D Virtual Classroom Technology" (Kimberly Arseneau Miller, Angela Glod); "Simulated Lesson Design Studios" (Willis Copeland); "Lights, Camera, Integration: Presentation Programs and…
Use of high performance networks and supercomputers for real-time flight simulation
NASA Technical Reports Server (NTRS)
Cleveland, Jeff I., II
1993-01-01
In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.
Benefits of full scope simulators during solar thermal power plants design and construction
NASA Astrophysics Data System (ADS)
Gallego, José F.; Gil, Elena; Rey, Pablo
2017-06-01
In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.
Preliminary Investigation of Civil Tiltrotor in NextGen Airspace
NASA Technical Reports Server (NTRS)
Young, Larry A.; Salvano, Dan; Wright, Ken; Chung, William; Young, Ray; Miller, David; Paris, Alfanso; Gao, Huina; Cheng, Victor
2010-01-01
Presentation intro: Tiltrotor aircraft have long been envisioned as being a potentially viable means of commercial aviation transport. Preliminary results from an ongoing study into the operational and technological considerations of Civil Tiltrotor (CTR) operation in the Next Generation airspace, circa the 2025 time-frame, are presented and discussed. In particular, a fleet of CTR aircraft has been conceptually designed. The performance characteristics of this CTR fleet was subsequently translated into BADA (Base of Aircraft DAta) models that could be used as input to emulate CTR aircraft operations in the ACES and AvTerminal airspace and terminal area simulation tools. A network of nine North-Eastern corridor airports is the focus of the airspace simulation effort; the results from this airport network viII then be extrapolated to provide insights into systemic impact of CTRs on the National Airspace System (NAS). Future work will also be detailed as to attempts to model the systemic effects of noise and emissions from this fleet of new aircraft as well as assess their leveraged impact on public service missions, in time of need, such as major regional/national disaster relief efforts. The ideal outcome of this study is a set of results whereby Next Gen airspace CONOPs can be refined to reflect potential CTR capabilities and, conversely, CTR technology development efforts can be better informed as to key performance requirement thresholds needed to be met in order to successfully introduce these aircraft into civilian aviation operation.
Managing Technology Resourcefully: Part II--Working with Your District's Technology
ERIC Educational Resources Information Center
Weeks, Richard
2009-01-01
A large school district may have a technology department staffed by a chief technology officer who supervises two or more directors of operations, project managers, and technicians. On the other hand, a small district may employ an information technologist who works with technicians, consultants, volunteers with a knack for technology, and…
Physical Learning Environment and its Suitability to the Objectives of Technology Education
ERIC Educational Resources Information Center
Soobik, Mart
2013-01-01
The present article focuses on Technology Education teachers' opinions on the physical learning environment of Technology Education. The study compares and analyses the changes in the physical learning environment of Technology Education. Two questionnaire surveys (Study I and Study II) were carried out among teachers of Technology Education in…
Code of Federal Regulations, 2013 CFR
2013-04-01
... information technology and information technology data? 543.20 Section 543.20 Indians NATIONAL INDIAN GAMING... § 543.20 What are the minimum internal control standards for information technology and information... prevent the concealment of fraud. (4) Information technology agents having access to Class II gaming...
Code of Federal Regulations, 2014 CFR
2014-04-01
... information technology and information technology data? 543.20 Section 543.20 Indians NATIONAL INDIAN GAMING... § 543.20 What are the minimum internal control standards for information technology and information... prevent the concealment of fraud. (4) Information technology agents having access to Class II gaming...
AGN-driven helium reionization and the incidence of extended He III regions at redshift z > 3
NASA Astrophysics Data System (ADS)
Compostella, Michele; Cantalupo, Sebastiano; Porciani, Cristiano
2014-12-01
We use hydrodynamic simulations post-processed with the radiative-transfer code RADAMESH to assess recent claims that the low He II opacity observed in z > 3 quasar spectra may be incompatible with models of He II reionization driven by the observed population of active galactic nuclei (AGNs). In particular, building upon our previous work, we consider an early population of sources and start the radiative-transfer calculation at redshifts z ≥ 5. Our model faithfully reproduces the emissivity of optically selected AGNs as inferred from measurements of their luminosity function. We find that He II reionization is very extended in redshift (Δz ≥ 2) and highly spatially inhomogeneous. In fact, mock spectra extracted from the simulations show a large variability in the evolution of the He II effective optical depth within chunks of size Δz = 0.04. Regions with low opacity (τ_ {He {II}}^eff < 3) can be found at high redshift, in agreement with the most recent observations of UV-transmitting quasars. At the highest redshift currently probed by observations (z ˜ 3.4), our updated model predicts a much lower He II effective optical depth than previous simulations in the literature relieving most of the tension with the current data, that, however, still persists at about the (Gaussian) 1σ to 2σ level. Given the very small number of observed lines of sight, our analysis indicates that current data cannot rule out a purely AGN-driven scenario with high statistical significance.
Del Val, Coral; Bondar, Ana-Nicoleta
2017-06-01
PsbO is an extrinsic subunit of photosystem II engaged in complex binding interactions within photosystem II. At the interface between PsbO, D1 and D2 subunits of photosystem II, a cluster of charged and polar groups of PsbO is part of an extended hydrogen-bond network thought to participate in proton transfer. The precise role of specific amino acid residues at this complex binding interface remains a key open question. Here, we address this question by carrying out extensive bioinformatics analyses and molecular dynamics simulations of PsbO proteins with mutations at the binding interface. We find that PsbO proteins from cyanobacteria vs. plants have specific preferences for the number and composition of charged amino acid residues that may ensure that PsbO proteins avoid aggregation and expose long unstructured loops for binding to photosystem II. A cluster of conserved charged groups with dynamic hydrogen bonds provides PsbO with structural plasticity at the binding interface with photosystem II. Copyright © 2017. Published by Elsevier B.V.
Simulation of the influence of EDTA on the sorption of heavy metals by humic acids
NASA Astrophysics Data System (ADS)
Kropacheva, T. N.; Didik, M. V.; Kornev, V. I.
2015-04-01
The results of mathematical simulation of sorption equilibria with the participation of divalent cations of heavy metals (HMs), chelant (EDTA), and insoluble forms of humic acids (HAs) are discussed. It is shown that the formation of chelates of metals with EDTA in solutions results in the decreasing sorption of the metals by humic acids. We also analyzed the effect of the acidity of the medium and the HM: EDTA: HA ratio (in a wide range) on the desorption of metals. The desorbing effect of EDTA on the metals is the highest at pH 3-5 and increases with an increase in the concentration of EDTA and a decrease in the concentration of HAs. With respect to the remobilization of metals under the impact of EDTA, the metal cations can be arranged into the following sequence: Cu(II) > Ni(II) > Pb(II) ≫ Cd(II) > Co(II) > Zn(II). The obtained data have been used to analyze the remobilization / extraction of HMs from soils with a high content of humic substances.
Mesospheric ozone measurements by SAGE II
NASA Technical Reports Server (NTRS)
Chu, D. A.; Cunnold, D. M.
1994-01-01
SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.
NASA Astrophysics Data System (ADS)
David, Laurent; Amara, Patricia; Field, Martin J.; Major, François
2002-08-01
Although techniques for the simulation of biomolecules, such as proteins and RNAs, have greatly advanced in the last decade, modeling complexes of biomolecules with metal ions remains problematic. Precise calculations can be done with quantum mechanical methods but these are prohibitive for systems the size of macromolecules. More qualitative modeling can be done with molecular mechanical potentials but the parametrization of force fields for metals is often difficult, particularly if the bonding between the metal and the groups in its coordination shell has significant covalent character. In this paper we present a method for deriving bond and bond-angle parameters for metal complexes from experimental bond and bond-angle distributions obtained from the Cambridge Structural Database. In conjunction with this method, we also introduce a non-standard energy term of gaussian form that allows us to obtain a stable description of the coordination about a metal center during a simulation. The method was evaluated on Fe(II)-porphyrin complexes, on simple Cu(II) ion complexes and a number of complexes of the Pb(II) ion.
Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2012-01-01
This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M
This brochure describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M
This presentation describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.
ORION-II: A True Formation Flying Mission in LEO
NASA Technical Reports Server (NTRS)
How, Jonathan P.
2004-01-01
The final report for the Orion-II project is taken from Chapter 5 of "CDGPS-Based Relative Navigation for Multiple Spacecraft," a thesis by Megan Mitchell submitted to the MIT Department of Aeronautics and Astronautics, June 2004. This chapter begins with a comparison of the simulation architecture for the original and current simulation setups. Next, the changes made to the individual components of the navigation system are described. Finally, tests performed with a Spirent Simulator at NASA Goddard Space Flight Center (GSFC) are discussed. In addition to the development of the testbed components described, a new clean room facility was developed in the Orion Laboratory at MIT.
Tools for Modeling & Simulation of Molecular and Nanoelectronics Devices
2012-06-14
implemented a prototype DFT simulation software using two different open source Finite Element (FE) libraries: DEALII and FENICS . These two libraries have been...ATK. In the first part of this Phase I project we investigated two different candidate finite element libraries, DEAL II and FENICS . Although both...element libraries, Deal.II and FEniCS /dolfin, for use as back-ends to a finite element DFT in ATK, Quantum Insight and QuantumWise A/S, October 2011.
Hammond, Nathan A; Kamm, Roger D
2008-07-01
The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long beta-sheets that pair together to form filaments; filaments form bundles approximately 30-60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two beta-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials.
78 FR 71785 - Passenger Train Emergency Systems II
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... in debriefing and critique sessions following emergency situations and full-scale simulations. DATES... Session Following Emergency Situations and Full-Scale Simulations V. Section-by-Section Analysis A... and simulations. As part of these amendments, FRA is incorporating by reference three American Public...
15 CFR 740.7 - Computers (APP).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 4A003. (2) Technology and software. License Exception APP authorizes exports of technology and software... License Exception. (2) Access and release restrictions. (i)[Reserved] (ii) Technology and source code. Technology and source code eligible for License Exception APP may not be released to nationals of Cuba, Iran...
Tracking Solar Type II Bursts with Space Based Radio Interferometers
NASA Astrophysics Data System (ADS)
Hegedus, Alexander M.; Kasper, Justin C.; Manchester, Ward B.
2018-06-01
The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window for the first time. One application is observing type II bursts tracking solar energetic particle acceleration in Coronal Mass Ejections (CMEs). In this work we create a simulated data processing pipeline for several space based radio interferometer (SBRI) concepts and evaluate their performance in the task of localizing these type II bursts.Traditional radio astronomy software is hard coded to assume an Earth based array. To circumvent this, we manually calculate the antenna separations and insert them along with the simulated visibilities into a CASA MS file for analysis. To create the realest possible virtual input data, we take a 2-temperature MHD simulation of a CME event, superimpose realistic radio emission models from the CME-driven shock front, and propagate the signal through simulated SBRIs. We consider both probabilistic emission models derived from plasma parameters correlated with type II bursts, and analytical emission models using plasma emission wave interaction theory.One proposed SBRI is the pathfinder mission SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input. An interferometer on the lunar surface would be a stable alternative that avoids noise sources that affect orbiting arrays, namely the phase noise from positional uncertainty and atmospheric 10s-100s kHz noise. Using Digital Elevation Models from laser altimeter data, we test different sets of locations on the lunar surface to find near optimal configurations for tracking type II bursts far from the sun. Custom software is used to model the response of different array configurations over the lunar year, combining ephemerides of the sun and moon to correlate the virtual data. We analyze the pros and cons of all approaches and offer recommendations for SRBIs that track type II bursts.
Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R
2016-04-19
We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.
Identification of adsorption sites in Cu-BTC by experimentation and molecular simulation.
García-Pérez, Elena; Gascón, Jorge; Morales-Flórez, Víctor; Castillo, Juan Manuel; Kapteijn, Freek; Calero, Sofía
2009-02-03
The adsorption of several quadrupolar and nonpolar gases on the Metal Organic Framework Cu-BTC has been studied by combining experimental measurements and Monte Carlo simulations. Four main adsorption sites for this structure have been identified: site I close to the copper atoms, site I' in the bigger cavities, site II located in the small octahedral cages, and site III at the windows of the four open faces of the octahedral cage. Our simulations identify the octahedral cages (sites II and III) and the big cages (site I') as the preferred positions for adsorption, while site I, near the copper atoms, remains empty over the entire range of pressures analyzed due to its reduced accessibility. The occupation of the different sites for ethane and propane in Cu-BTC proceeds similarly as for methane, and shows small differences for O2 and N2 that can be attributed to the quadrupole moment of these molecules. Site II is filled predominantly for methane (the nonpolar molecule), whereas for N2, the occupation of II and I' can be considered almost equivalent. The molecular sitting for O2 shows an intermediate behavior between those observed for methane and for N2. The differences between simulated and experimental data at elevated temperatures for propane are tentatively attributed to a reversible change in the lattice parameters of Cu-BTC by dehydration and by temperature, blocking the accessibility to site III and reducing that to site I'. Adsorption parameters of the investigated molecules have been determined from the simulations.
NASA Astrophysics Data System (ADS)
Kong, Xiang-Ping; Wang, Juan
2016-12-01
The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.
Stochastic dynamics and mechanosensitivity of myosin II minifilaments
NASA Astrophysics Data System (ADS)
Albert, Philipp J.; Erdmann, Thorsten; Schwarz, Ulrich S.
2014-09-01
Tissue cells are in a state of permanent mechanical tension that is maintained mainly by myosin II minifilaments, which are bipolar assemblies of tens of myosin II molecular motors contracting actin networks and bundles. Here we introduce a stochastic model for myosin II minifilaments as two small myosin II motor ensembles engaging in a stochastic tug-of-war. Each of the two ensembles is described by the parallel cluster model that allows us to use exact stochastic simulations and at the same time to keep important molecular details of the myosin II cross-bridge cycle. Our simulation and analytical results reveal a strong dependence of myosin II minifilament dynamics on environmental stiffness that is reminiscent of the cellular response to substrate stiffness. For small stiffness, minifilaments form transient crosslinks exerting short spikes of force with negligible mean. For large stiffness, minifilaments form near permanent crosslinks exerting a mean force which hardly depends on environmental elasticity. This functional switch arises because dissociation after the power stroke is suppressed by force (catch bonding) and because ensembles can no longer perform the power stroke at large forces. Symmetric myosin II minifilaments perform a random walk with an effective diffusion constant which decreases with increasing ensemble size, as demonstrated for rigid substrates with an analytical treatment.
PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, F W; Raymond, B A; Falabella, S
To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model ismore » coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach.« less
Phase I/II adaptive design for drug combination oncology trials
Wages, Nolan A.; Conaway, Mark R.
2014-01-01
Existing statistical methodology on dose finding for combination chemotherapies has focused on toxicity considerations alone in finding a maximum tolerated dose combination to recommend for further testing of efficacy in a phase II setting. Recently, there has been increasing interest in integrating phase I and phase II trials in order to facilitate drug development. In this article, we propose a new adaptive phase I/II method for dual-agent combinations that takes into account both toxicity and efficacy after each cohort inclusion. The primary objective, both within and at the conclusion of the trial, becomes finding a single dose combination with an acceptable level of toxicity that maximizes efficacious response. We assume that there exist monotone dose–toxicity and dose–efficacy relationships among doses of one agent when the dose of other agent is fixed. We perform extensive simulation studies that demonstrate the operating characteristics of our proposed approach, and we compare simulated results to existing methodology in phase I/II design for combinations of agents. PMID:24470329
Mun, Sungyong; Wang, Nien-Hwa Linda
2017-03-10
One of the trustworthy processes for ternary separation is a tandem simulated moving bed (SMB) process, which consists of two subordinate four-zone SMB units (Ring I and Ring II). To take full advantage of a tandem SMB as a means of recovering all three products with high purities and high economical efficiency, it is important to understand how the separation condition in Ring II is affected by that in Ring I, and further to reflect such point in the stage of designing a tandem SMB. In regard to such issue, it was clarified in this study that the Ring I factors affecting the Ring II condition could be represented by the yield level of a key product of Ring I (Y key RingI ). As the Y key RingI level became higher, the amount of the Ring I key-product that was reloaded into Ring II was reduced, which affected favorably the Ring II separation condition. On the other hand, the higher Y key RingI level caused a larger dilution for the stream from Ring I to Ring II, which affected adversely the Ring II separation condition. As a result, a minimum in the desorbent usage of a tandem SMB occurred at the Y key RingI level where the two aforementioned factors could be balanced with each other. If such an optimal Y key RingI level was adopted, the desorbent usage could be reduced by up to 25%. It was also found that as the throughput of a tandem SMB became higher, the factor related to the migration of the Ring I key-product into Ring II was more influential in the performances of a tandem SMB than the factor related to the dilution of the stream from Ring I to Ring II. Copyright © 2016 Elsevier B.V. All rights reserved.
Hagemann, Vera; Herbstreit, Frank; Kehren, Clemens; Chittamadathil, Jilson; Wolfertz, Sandra; Dirkmann, Daniel; Kluge, Annette; Peters, Jürgen
2017-03-29
The purpose of this study is to evaluate the effects of a tailor-made, non-technical skills seminar on medical student's behaviour, attitudes, and performance during simulated patient treatment. Seventy-seven students were randomized to either a non-technical skills seminar (NTS group, n=43) or a medical seminar (control group, n=34). The human patient simulation was used as an evaluation tool. Before the seminars, all students performed the same simulated emergency scenario to provide baseline measurements. After the seminars, all students were exposed to a second scenario, and behavioural markers for evaluating their non-technical skills were rated. Furthermore, teamwork-relevant attitudes were measured before and after the scenarios, and perceived stress was measured following each simulation. All simulations were also evaluated for various medical endpoints. Non-technical skills concerning situation awareness (p<.01, r=0.5) and teamwork (p<.01, r=0.45) improved from simulation I to II in the NTS group. Decision making improved in both groups (NTS: p<.01, r=0.39; control: p<.01, r=0.46). The attitude 'handling errors' improved significantly in the NTS group (p<.05, r=0.34). Perceived stress decreased from simulation I to II in both groups. Medical endpoints and patients´ outcome did not differ significantly between the groups in simulation II. This study highlights the effectiveness of a single brief seminar on non-technical skills to improve student's non-technical skills. In a next step, to improve student's handling of emergencies and patient outcomes, non-technical skills seminars should be accompanied by exercises and more broadly embedded in the medical school curriculum.
Medical simulation technology: educational overview, industry leaders, and what's missing.
Spooner, Nicholas; Hurst, Stephen; Khadra, Mohamed
2012-01-01
Modern medical simulation technology (MST) debuted in 1960 with the development of Resusci Annie (Laerdal 2007), which assisted students in the acquisition of proper ventilation and compression techniques used during basic life support. Following a steady stream of subsequent technological advances and innovations, MST manufacturers are now able to offer training aids capable of facilitating innovative learning in such diverse areas as human patient simulators, simulated clinical environments, virtual procedure stations, virtual medical environments, electronic tutors, and performance recording. The authors list a number of the most popular MSTs presently available while citing evaluative efforts undertaken to date regarding the efficacy of MST to the medical profession. They conclude by proposing a variety of simulation innovations of prospective interest to both medical and technology personnel while offering healthcare administrators a series of recommended considerations when planning to integrate MST into existing medical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillis, D.R.
A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for amore » new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.« less
An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates
NASA Technical Reports Server (NTRS)
McElroy, Mark W.
2016-01-01
A formulation is presented for an enriched shell nite element capable of progressive damage simulation in composite laminates. The element uses a discrete adaptive splitting approach for damage representation that allows for a straightforward model creation procedure based on an initially low delity mesh. The enriched element is veri ed for Mode I, Mode II, and mixed Mode I/II delamination simulation using numerical benchmark data. Experimental validation is performed using test data from a delamination-migration experiment. Good correlation was found between the enriched shell element model results and the numerical and experimental data sets. The work presented in this paper is meant to serve as a rst milestone in the enriched element's development with an ultimate goal of simulating three-dimensional progressive damage processes in multidirectional laminates.
Optical Analysis of Transparent Polymeric Material Exposed to Simulated Space Environment
NASA Technical Reports Server (NTRS)
Edwards, David L.; Finckenor, Miria M.
2000-01-01
Many innovations in spacecraft power and propulsion have been recently tested at NASA, particularly in non-chemical propulsion. One improvement in solar array technology is solar concentration using thin polymer film Fresnel lenses. Weight and cost savings were proven with the Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET)-II array on NASA's Deep Space I spacecraft. The Fresnel lens concentrates solar energy onto high-efficiency solar cells, decreasing the area of solar cells needed for power. Continued efficiency of this power system relies on the thin film's durability in the space environment and maintaining transmission in the 300 - 1000 nm bandwidth. Various polymeric materials have been tested for use in solar concentrators, including Lexan(TM), polyethylene terephthalate (PET), several formulations of Tefzel(Tm) and Teflon(TM), and DC 93-500, the material selected for SCARLET-II. Also tested were several innovative materials including Langley Research Center's CPI and CP2 polymers and atomic oxygen- resistant polymers developed by Triton Systems, Inc. The Environmental Effects Group of the Marshall Space Flight Center's Materials, Processes, and Manufacturing Department exposed these materials to simulated space environment and evaluated them for any change in optical transmission. Samples were exposed to a minimum of 1000 equivalent Sun hours of near-UV radiation (250 - 400 nm wavelength). Materials that appeared robust after near-UV exposure were then exposed to charged particle radiation equivalent to a five-year dose in geosynchronous orbit. These exposures were performed in MSFC's Combined Environmental Effects Test Chamber, a unique facility with the capability to expose materials simultaneously or sequentially to protons, low-energy electrons, high-energy electrons, near UV radiation and vacuum UV radiation. Reflectance measurements can be made on the samples in vacuum. Prolonged exposure to the space environment will decrease the polymer film's transmission and thus reduce the conversion efficiency. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance to space environmental exposure. Spectral results and the material ranking according to transmission loss are presented.
Web-Based Simulation in Psychiatry Residency Training: A Pilot Study
ERIC Educational Resources Information Center
Gorrindo, Tristan; Baer, Lee; Sanders, Kathy M.; Birnbaum, Robert J.; Fromson, John A.; Sutton-Skinner, Kelly M.; Romeo, Sarah A.; Beresin, Eugene V.
2011-01-01
Background: Medical specialties, including surgery, obstetrics, anesthesia, critical care, and trauma, have adopted simulation technology for measuring clinical competency as a routine part of their residency training programs; yet, simulation technologies have rarely been adapted or used for psychiatry training. Objective: The authors describe…
ERIC Educational Resources Information Center
Santos-Trigo, Manuel
2004-01-01
A dynamic program for geometry called Cabri Geometry II is used to examine properties of figures like triangles and make connections with other mathematical ideas like ellipse. The technology tip includes directions for creating such a problem with technology and suggestions for exploring it.
Ultra-Sensitive Detection of Prion Protein in Blood Using Isothermal Amplification Technology
2005-12-01
cattle products are admitted into the food chain, the Western Blot or ELISA in an antigen detection format are used to test the bovine brain stems...the most sensitive fluorescent dye (SYBR Green I, SYBR Green II, or SYBR Gold) detection of transcription products using real-time technology...RNA products from ug quantities of DNA template. Figure 3 shows that SYBR Green II exhibited higher relative fluorescence units (RFU) than SYBR
Starting a hospital-based home health agency: Part II--Key success factors.
Montgomery, P
1993-09-01
In Part II of a three-part series, the financial, technological and legislative issues of a hospital-based home health-agency are discussed. Beginning a home healthcare service requires intensive research to answer key environmental and operational questions--need, competition, financial projections, initial start-up costs and the impact of delayed depreciation. Assessments involving technology, staffing, legislative and regulatory issues can help project service volume, productivity and cost-control.
Extra-terrestrial construction processes - Advancements, opportunities and challenges
NASA Astrophysics Data System (ADS)
Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.
2017-10-01
Government space agencies, including NASA and ESA, are conducting preliminary studies on building alternative space-habitat systems for deep-space exploration. Such studies include development of advanced technologies for planetary surface exploration, including an in-depth understanding of the use of local resources. Currently, NASA plans to land humans on Mars in the 2030s. Similarly, other space agencies from Europe (ESA), Canada (CSA), Russia (Roscosmos), India (ISRO), Japan (JAXA) and China (CNSA) have already initiated or announced their plans for launching a series of lunar missions over the next decade, ranging from orbiters, landers and rovers for extended stays on the lunar surface. As the Space Odyssey is one of humanity's oldest dreams, there has been a series of research works for establishing temporary or permanent settlement on other planetary bodies, including the Moon and Mars. This paper reviews current projects developing extra-terrestrial construction, broadly categorised as: (i) ISRU-based construction materials; (ii) fabrication methods; and (iii) construction processes. It also discusses four categories of challenges to developing an appropriate construction process: (i) lunar simulants; (ii) material fabrication and curing; (iii) microwave-sintering based fabrication; and (iv) fully autonomous and scaled-up construction processes.
A Local Vision on Soil Hydrology (John Dalton Medal Lecture)
NASA Astrophysics Data System (ADS)
Roth, K.
2012-04-01
After shortly looking back to some research trails of the past decades, and touching on the role of soils in our environmental machinery, a vision on the future of soil hydrology is offered. It is local in the sense of being based on limited experience as well as in the sense of focussing on local spatial scales, from 1 m to 1 km. Cornerstones of this vision are (i) rapid developments of quantitative observation technology, illustrated with the example of ground-penetrating radar (GPR), and (ii) the availability of ever more powerful compute facilities which allow to simulate increasingly complicated model representations in unprecedented detail. Together, they open a powerful and flexible approach to the quantitative understanding of soil hydrology where two lines are fitted: (i) potentially diverse measurements of the system of interest and their analysis and (ii) a comprehensive model representation, including architecture, material properties, forcings, and potentially unknown aspects, together with the same analysis as for (i). This approach pushes traditional inversion to operate on analyses, not on the underlying state variables, and to become flexible with respect to architecture and unknown aspects. The approach will be demonstrated for simple situations at test sites.
[Application of CRISPR/Cas9 mediated genome editing in farm animals].
Xing, Yu-yun; Yang, Qiang; Ren, Jun
2016-03-01
CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is an acquired immune system found in bacteria and archaea that fight against invasion of viruses or plasmids. CRISPR/Cas systems are currently classified into three main types: I, II and III, of which type II has relatively simple components. The CRISPR/Cas9 technology modified from type II CRISPR/Cas system has been developed as an efficient genome editing tool. Since the initial application of the CRISPR/Cas9 technology in mammals in 2013, the reports of this system for genomic editing has skyrocketed. Farm animals are not only economically important animals, but also ideal animal models for human diseases and biomedical studies. In this review, we summarize the applications of CRISPR/Cas9 in farm animals, briefly describe the off-target effects and the main solutions, and finally highlight the future perspectives of this technology.
Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Ken; Lawrie, Sean; Hart, Adam
The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systemsmore » of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. The Business Case Methodology (BCM) addresses the “benefit” side of the analysis—as opposed to the cost side—and how the organization evaluates discretionary projects (net present value (NPV), accounting effects of taxes, discount rates, etc.). The cost and analysis side is not particularly difficult for the organization and can usually be determined with a fair amount of precision (not withstanding implementation project cost overruns). It is in determining the "benefits" side of the analysis that utilities have more difficulty in technology projects and that is the focus of this methodology.« less
40 CFR 60.398 - Innovative technology waivers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Innovative technology waivers. 60.398... Light Duty Truck Surface Coating Operations § 60.398 Innovative technology waivers. (a) General Motors... the emission limits in paragraph (a)(1)(ii)(A) of this section. (v) A technology development report...
40 CFR 60.398 - Innovative technology waivers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Innovative technology waivers. 60.398... Light Duty Truck Surface Coating Operations § 60.398 Innovative technology waivers. (a) General Motors... the emission limits in paragraph (a)(1)(ii)(A) of this section. (v) A technology development report...
40 CFR 60.398 - Innovative technology waivers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Innovative technology waivers. 60.398... Light Duty Truck Surface Coating Operations § 60.398 Innovative technology waivers. (a) General Motors... the emission limits in paragraph (a)(1)(ii)(A) of this section. (v) A technology development report...
The role of simulation in neurosurgery.
Rehder, Roberta; Abd-El-Barr, Muhammad; Hooten, Kristopher; Weinstock, Peter; Madsen, Joseph R; Cohen, Alan R
2016-01-01
In an era of residency duty-hour restrictions, there has been a recent effort to implement simulation-based training methods in neurosurgery teaching institutions. Several surgical simulators have been developed, ranging from physical models to sophisticated virtual reality systems. To date, there is a paucity of information describing the clinical benefits of existing simulators and the assessment strategies to help implement them into neurosurgical curricula. Here, we present a systematic review of the current models of simulation and discuss the state-of-the-art and future directions for simulation in neurosurgery. Retrospective literature review. Multiple simulators have been developed for neurosurgical training, including those for minimally invasive procedures, vascular, skull base, pediatric, tumor resection, functional neurosurgery, and spine surgery. The pros and cons of existing systems are reviewed. Advances in imaging and computer technology have led to the development of different simulation models to complement traditional surgical training. Sophisticated virtual reality (VR) simulators with haptic feedback and impressive imaging technology have provided novel options for training in neurosurgery. Breakthrough training simulation using 3D printing technology holds promise for future simulation practice, proving high-fidelity patient-specific models to complement residency surgical learning.
10 CFR 431.445 - Determination of small electric motor efficiency.
Code of Federal Regulations, 2012 CFR
2012-01-01
... statistical analysis, computer simulation or modeling, or other analytic evaluation of performance data. (3... statistical analysis, computer simulation or modeling, and other analytic evaluation of performance data on.... (ii) If requested by the Department, the manufacturer shall conduct simulations to predict the...
A simulator study of the combined effects of alcohol and marihuana on driving behavior--phase II
DOT National Transportation Integrated Search
1983-02-01
Author's abstract: The study described in this report investigated the effects of alcohol and marihuana, alone and in combination, on driver performance and behavior in a fully interactive driving simulator. The simulator provided the driver a comple...
2015 Summary Report on Industrial and Regulatory Engagement Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Kenneth David
2015-09-01
The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway of the Light Water Reactor Sustainability(LWRS) Program conducts a vigorous engagement strategy with the U.S. nuclear power industry, including the nuclear operating companies, major support organizations, the Nuclear Regulatory Commission (NRC), and suppliers. The goal of this engagement strategy is to develop a shared vision and common understanding across the nuclear industry of the need for II&C modernization, the performance improvement that can be obtained, and the opportunities for collaboration to enact this vision. The primary means of engaging the nuclear operating companies is through a Utility Working Group (UWG),more » composed of utility representatives that participate in formal meetings and bi-monthly phone calls to provide input on nuclear plant needs and priorities for II&C technologies. Two working groups were initiated during FY 2015 to provide a means for UWG members to focus on particular technologies of interest. The Outage Improvement Working Group consists of eight utilities that participate in periodic conference calls and have access to a share-point web page for acccess to project materials developed in the Advanced Outage Control Center pilot project. In the area of computer-based procedures and automated work packages, the II&C Pathway has worked with the Nuclear Information Technology Strategic Leadership (NITSL) to set up a monthly conference call with interested utility members to discuss various aspects of mobile worker technologies. Twenty one technical and project reports were delivered to the UWG during FY 2015, reflecting the work of the II&C Pathway pilot projects during the year. Distribution of these reports is one of the primary means of transferring to the nuclear industry the knowledge and experience gained during the development of advanced II&C technologies in support of LWR sustainability. Site visits to discuss pilot project activities and future plans were made to Arizona Public Service, Exelon, Duke Energy, Pacific Gas & Electric, SCANA, Southern Nuclear, South Texas Project, STARS Alliance, Tennessee Valley Authority, and Xcel. Discussions were also held on the pathway goals and activities with major industry support organizations during FY 2102, including the Institute of Nuclear Power Operations (INPO), the Nuclear Information Technology Strategic Leadership (NITSL), the Nuclear Energy Institute (NEI), and the Electric Power Research Institute. The Advanced II&C Pathway work was presented at five major industry conferences and Informal discussions were held with key NRC managers at industry conferences. In addition, discussions were held with NRC senior managers on digital regulatory issues through participation on the NEI Digital I&C Working Group. Meetings were held with major industry suppliers and consultants, to explore opportunities for collaboration and to provide a means of pilot project technology transfer. In the international area, discussions were held with Electricite’ de France (EdF) concerning possible collaboration in the area NPP configuration control using intelligent wireless devices.« less
Experiences in implementing uHTS--cutting edge technology meets the real world.
Gribbon, Philip; Schaertl, Sabine; Wickenden, Malcolm; Williams, Gareth; Grimley, Rachel; Stuhmeier, Frank; Preckel, Hartwig; Eggeling, Christian; Kraemer, Joachim; Everett, Jeremy; Keighley, Wilma W; Sewing, Andreas
2004-01-01
Driven by growing corporate compound files, the demands of target biology, and attempts to cut cost, the number of solutions to HTS has spiralled. In quick succession new assay technologies and screening platforms are appearing on the market, with the promise of screening faster than ever in low volume high density formats whilst providing high quality data. Within this world of rapid change, Pfizer has applied cutting edge technology to HTS by introducing screening in 1 microl formats utilising single molecule detection technology. Instead of resource intensive in-house development, Pfizer entered into a collaboration with Evotec OAI / Evotec Technologies and introduced their Mark-II EVOscreen platform. In this article we will outline the benefits of the approach taken at Pfizer, Sandwich, and introduce the Mark-II EVOscreen platform, illustrating the potential but also possible pitfalls of HTS miniaturisation.
Simulation turbulenter Konvektion in Supernova-Explosionen massereicher Sterne.
NASA Astrophysics Data System (ADS)
Janka, H.-T.; Müller, E.; Ruffert, M.
Contents: 1. Das Projekt: Numerische Simulation von Typ-II-Supernovae. 2. Die numerischen Verfahren. 3. Die Visualisierung von dreidimensionalen Datensätzen. 4. Die Ergebnisse: Einblick in explodierende Sterne.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Anderson, L. D.; Didelon, P.; Raga, A. C.; Minier, V.; Ntormousi, E.; Pettitt, A.; Pinto, C.; Samal, M. R.; Schneider, N.; Zavagno, A.
2014-08-01
Aims: This work aims to improve the current understanding of the interaction between H ii regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of OB associations by investigating the development of their associated H ii regions in the surrounding turbulent medium. Methods: Using analytical solutions, one-dimensional (1D), and three-dimensional (3D) simulations, we constrained the expansion of the ionized bubble depending on the turbulence level of the parent molecular cloud. A grid of 1D simulations was then computed in order to build isochrone curves for H ii regions in a pressure-size diagram. This grid of models allowed us to date a large sample of OB associations that we obtained from the H ii Region Discovery Survey (HRDS). Results: Analytical solutions and numerical simulations showed that the expansion of H ii regions is slowed down by the turbulence up to the point where the pressure of the ionized gas is in a quasi-equilibrium with the turbulent ram pressure. Based on this result, we built a grid of 1D models of the expansion of H ii regions in a profile based on Larson's laws. We take the 3D turbulence into account with an effective 1D temperature profile. The ages estimated by the isochrones of this grid agree well with literature values of well known regions such as Rosette, RCW 36, RCW 79, and M 16. We thus propose that this method can be used to find ages of young OB associations through the Galaxy and also in nearby extra-galactic sources.
Prediction of CMEs and Type II Bursts from Sun to Earth
NASA Astrophysics Data System (ADS)
Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.
2017-12-01
Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.
Reconstructing Holocene climate using a climate model: Model strategy and preliminary results
NASA Astrophysics Data System (ADS)
Haberkorn, K.; Blender, R.; Lunkeit, F.; Fraedrich, K.
2009-04-01
An Earth system model of intermediate complexity (Planet Simulator; PlaSim) is used to reconstruct Holocene climate based on proxy data. The Planet Simulator is a user friendly general circulation model (GCM) suitable for palaeoclimate research. Its easy handling and the modular structure allow for fast and problem dependent simulations. The spectral model is based on the moist primitive equations conserving momentum, mass, energy and moisture. Besides the atmospheric part, a mixed layer-ocean with sea ice and a land surface with biosphere are included. The present-day climate of PlaSim, based on an AMIP II control-run (T21/10L resolution), shows reasonable agreement with ERA-40 reanalysis data. Combining PlaSim with a socio-technological model (GLUES; DFG priority project INTERDYNAMIK) provides improved knowledge on the shift from hunting-gathering to agropastoral subsistence societies. This is achieved by a data assimilation approach, incorporating proxy time series into PlaSim to initialize palaeoclimate simulations during the Holocene. For this, the following strategy is applied: The sensitivities of the terrestrial PlaSim climate are determined with respect to sea surface temperature (SST) anomalies. Here, the focus is the impact of regionally varying SST both in the tropics and the Northern Hemisphere mid-latitudes. The inverse of these sensitivities is used to determine the SST conditions necessary for the nudging of land and coastal proxy climates. Preliminary results indicate the potential, the uncertainty and the limitations of the method.
Simulating Future Histories: The NAU Solar System Simulation and Mars Settlement.
ERIC Educational Resources Information Center
Riner, Reed D.; Clodius, Jennifer A.
1995-01-01
Describes how the simulation of Mars settlement is conducted in a class at Northern Arizona University and discusses the pedagogical and anthropological premises involved. The course requires students to use both halves of their brains, to use technology creatively, and to bind creativity to technological feasibility. (MMU)
Rethinking History with Simulations.
ERIC Educational Resources Information Center
Corbeil, Pierre
1988-01-01
Suggests that simulations and new technologies present new ways to look at historical questions. Discusses approaches from basic board game simulations to the use of artificial intelligence. States that educators must accept new technologies as instructional tools and that the concept of history must be modified to work with these tools. (GEA)
Solar Occultation Retrieval Algorithm Development
NASA Technical Reports Server (NTRS)
Lumpe, Jerry D.
2004-01-01
This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.
NASA Astrophysics Data System (ADS)
Lawler, J. E.; Den Hartog, E. A.
2018-03-01
The Ar I and II branching ratio calibration method is discussed with the goal of improving the technique. This method of establishing a relative radiometric calibration is important in ongoing research to improve atomic transition probabilities for quantitative spectroscopy in astrophysics and other fields. Specific suggestions are presented along with Monte Carlo simulations of wavelength dependent effects from scattering/reflecting of photons in a hollow cathode.
Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Gordon, Bruce R; Wang, De Yun
2012-08-15
We evaluated, by CFD simulation, effects of accessory ostium (AO) on maxillary sinus ventilation. A three-dimensional nasal model was constructed from an adult CT scan with two left maxillary AOs (sinus I) and one right AO (sinus II), then compared to an identical control model with all AOs sealed (sinuses III and IV). Transient simulations of quiet inspiration and expiration at 15 L/min, and nasal blow at 48 L/min, were calculated for both models using low-Reynolds-number turbulent analysis. At low flows, ventilation rates in sinuses with AOs (I ≈ 0.46 L/min, II ≈ 0.54 L/min), were both more than a magnitude higher than sinuses without AOs (II I ≈ 0.019 L/min, IV ≈ 0.020 L/min). Absence of AO almost completely prevented sinus ventilation. Increased ventilation of sinuses with AOs is complex. Under high flow conditions mimicking nose blowing, in sinuses II, III, and IV, the sinus flow rate increased. In contrast, the airflow direction through sinus I reversed between inspiration and expiration, while it remained almost constant throughout the respiration cycle in sinus II. CFD simulation demonstrated that AOs markedly increase maxillary sinus airflow rates and alter sinus air circulation patterns. Whether these airflow changes impact maxillary sinus physiology or pathophysiology is unknown. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Hongwu; Candiotti, Jorge; Shino, Motoki; Chung, Cheng-Shiu; Grindle, Garrett G; Ding, Dan; Cooper, Rory A
2013-07-01
This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. The mobile base of PerMMA Gen II has two operating modes: "advanced driving mode" on flat and uneven terrain, and "automatic climbing mode" during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests.
Wang, Hongwu; Candiotti, Jorge; Shino, Motoki; Chung, Cheng-Shiu; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.
2013-01-01
Background This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. Findings The mobile base of PerMMA Gen II has two operating modes: “advanced driving mode” on flat and uneven terrain, and “automatic climbing mode” during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. Conclusion Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests. PMID:23820149
Connecting the Links: Narratives, Simulations and Serious Games in Prehospital Training.
Heldal, Ilona; Backlund, Per; Johannesson, Mikael; Lebram, Mikael; Lundberg, Lars
2017-01-01
Due to rapid and substantial changes in the health sector, collaboration and supporting technologies get more into focus. Changes in education and training are also required. Simulations and serious games (SSG) are often advocated as promising technologies supporting training of many and in the same manner, or increasing the skills necessary to deal with new, dangerous, complex or unexpected situations. The aim of this paper is to illustrate and discuss resources needed for planning and performing collaborative contextual training scenarios. Based on a practical study involving prehospital nurses and different simulator technologies the often-recurring activity chains in prehospital training were trained. This paper exemplifies the benefit of using narratives and SSGs for contextual training contributing to higher user experiences. The benefits of using simulation technologies aligned by processes can be easier defined by narratives from practitioners. While processes help to define more efficient and effective training, narratives and SSGs are beneficial to design scenarios with clues for higher user experiences. By discussing illustrative examples, the paper contributes to better understanding of how to plan simulation-technology rich training scenarios.
NASA Astrophysics Data System (ADS)
Oishi, Ikuo; Nishijima, Kenichi
2002-03-01
A 70 MW class superconducting model generator was designed, manufactured, and tested from 1988 to 1999 as Phase I, which was Japan's national project on applications of superconducting technologies to electric power apparatuses that was commissioned by NEDO as part of New Sunshine Program of AIST and MITI. Phase II then is now being carried out by almost same organization as Phase I. With the development of the 70 MW class superconducting model generator, technologies for a 200 MW class pilot generator were established. The world's largest output (79 MW), world's longest continuous operation (1500 h), and other sufficient characteristics were achieved on the 70 MW class superconducting model generator, and key technologies of design and manufacture required for the 200 MW class pilot generator were established. This project contributed to progress of R&D of power apparatuses. Super-GM has started the next project (Phase II), which shall develop the key technologies for larger-capacity and more-compact machine and is scheduled from 2000 to 2003. Phase II shall be the first step for commercialization of superconducting generator.
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min
2017-09-28
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.
Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.
ERIC Educational Resources Information Center
Moore, Gwendolyn B.; And Others
The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…
Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka
2016-01-01
The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding.
National Responses to Technological Innovations in Weapon Systems, 1815 to the Present
1986-01-07
CONTENTS Pane Preface Introduction 1 I. Technology of the Industrial Revolution 4 II. Innovative Technologies of the Early Twentieth Century 18 III...focuses on the period from 1815 to the present, from the beginning of the Industrial Revolution to the latest developments in military technology...TECHNOLOGY OF THE INDUSTRIAL REVOLUTION Technological innovation has influenced warfare since antiquity. But the development of new- technology and
NASA Technical Reports Server (NTRS)
Duc, M. La; Chen, F.; Kern, R.; Koukol, R.; Baker, A.; Venkateswaran, K.
2001-01-01
A study in which several surface samples, retrieved from both the Mars Odyssey Spacecraft and the Kennedy Space Center (KSC) Spacecraft Assembly and Encapsulation Facility II (SAEF-II), were prcesed and evaluated by both molecular and traditional culture-based methods for the microbial diversity.
World War II: A Technology Lesson Plan.
ERIC Educational Resources Information Center
Hagar, Suzy
1990-01-01
Presents a class activity on the history, causes, and consequences of World War II. Focuses on the development and deployment of the atomic bomb. Utilizes a Video Encyclopedia Program for historical background. Divides the class into groups that are responsible for researching and preparing a videotape on a World War II topic. (RW)
The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This bookle...
45 CFR 170.465 - Revocation of authorized testing and certification body status.
Code of Federal Regulations, 2013 CFR
2013-10-01
... INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY Temporary Certification..., if necessary, request additional information from the ONC-ATCB during this time period. (ii) If the...
45 CFR 170.465 - Revocation of authorized testing and certification body status.
Code of Federal Regulations, 2011 CFR
2011-10-01
... INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY Temporary Certification..., if necessary, request additional information from the ONC-ATCB during this time period. (ii) If the...
45 CFR 170.465 - Revocation of authorized testing and certification body status.
Code of Federal Regulations, 2014 CFR
2014-10-01
... INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY Temporary Certification..., if necessary, request additional information from the ONC-ATCB during this time period. (ii) If the...
45 CFR 170.465 - Revocation of authorized testing and certification body status.
Code of Federal Regulations, 2012 CFR
2012-10-01
... INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY Temporary Certification..., if necessary, request additional information from the ONC-ATCB during this time period. (ii) If the...
45 CFR 170.465 - Revocation of authorized testing and certification body status.
Code of Federal Regulations, 2010 CFR
2010-10-01
... INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY Temporary Certification..., if necessary, request additional information from the ONC-ATCB during this time period. (ii) If the...
NASA Astrophysics Data System (ADS)
Byun, D. W.; Rappenglueck, B.; Lefer, B.
2007-12-01
Accurate meteorological and photochemical modeling efforts are necessary to understand the measurements made during the Texas Air Quality Study (TexAQS-II). The main objective of the study is to understand the meteorological and chemical processes of high ozone and regional haze events in the Eastern Texas, including the Houston-Galveston metropolitan area. Real-time and retrospective meteorological and photochemical model simulations were performed to study key physical and chemical processes in the Houston Galveston Area. In particular, the Vertical Mixing Experiment (VME) at the University of Houston campus was performed on selected days during the TexAQS-II. Results of the MM5 meteorological model and CMAQ air quality model simulations were compared with the VME and other TexAQS-II measurements to understand the interaction of the boundary layer dynamics and photochemical evolution affecting Houston air quality.
Solar Ellerman Bombs in 1D Radiative Hydrodynamics
NASA Astrophysics Data System (ADS)
Reid, A.; Mathioudakis, M.; Kowalski, A.; Doyle, J. G.; Allred, J. C.
2017-02-01
Recent observations from the Interface Region Imaging Spectrograph appear to show impulsive brightenings in high temperature lines, which when combined with simultaneous ground-based observations in Hα, appear co-spatial to Ellerman Bombs (EBs). We use the RADYN one-dimensional radiative transfer code in an attempt to try and reproduce the observed line profiles and simulate the atmospheric conditions of these events. Combined with the MULTI/RH line synthesis codes, we compute the Hα, Ca II 8542 Å, and Mg II h and k lines for these simulated events and compare them to previous observations. Our findings hint that the presence of superheated regions in the photosphere (>10,000 K) is not a plausible explanation for the production of EB signatures. While we are able to recreate EB-like line profiles in Hα, Ca II 8542 Å, and Mg II h and k, we cannot achieve agreement with all of these simultaneously.
A new technology for manufacturing scheduling derived from space system operations
NASA Technical Reports Server (NTRS)
Hornstein, R. S.; Willoughby, J. K.
1993-01-01
A new technology for producing finite capacity schedules has been developed in response to complex requirements for operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications. This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques associated with Materials Resources Planning (MRPII) and with factory simulation are not adequate for shop-floor work planning and control. The technology has three components. The first is a set of data structures that accommodate an extremely general description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of each factory. Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows work-in-process (WIP) to be generated and used; it permits constraints to be imposed or intermediate as well as finished goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule. Applications have been successful in both discrete and process manufacturing environments. The availability of a high-quality finite capacity production planning capability enhances the data management capabilities of MRP II systems. These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent functional capabilities and/or extensibility.
NASA Astrophysics Data System (ADS)
Perama, Yasmin Mohd Idris; Siong, Khoo Kok
2018-04-01
A mathematical model comprising 8 compartments were designed to describe the kinetic dissolution of arsenic (As) from water leach purification (WLP) waste samples ingested into the gastrointestinal system. A totally reengineered software system named Simulation, Analysis and Modelling II (SAAM II) was employed to aid in the experimental design and data analysis. As a powerful tool that creates, simulate and analyze data accurately and rapidly, SAAM II computationally creates a system of ordinary differential equations according to the specified compartmental model structure and simulates the solutions based upon the parameter and model inputs provided. The experimental design of in vitro DIN approach was applied to create an artificial gastric and gastrointestinal fluids. These synthetic fluids assay were produced to determine the concentrations of As ingested into the gastrointestinal tract. The model outputs were created based upon the experimental inputs and the recommended fractional transfer rates parameter. As a result, the measured and predicted As concentrations in gastric fluids were much similar against the time of study. In contrast, the concentrations of As in the gastrointestinal fluids were only similar during the first hour and eventually started decreasing until the fifth hours of study between the measured and predicted values. This is due to the loss of As through the fractional transfer rates of q2 compartment to corresponding compartments of q3 and q5 which are involved with excretion and distribution to the whole body, respectively. The model outputs obtained after best fit to the data were influenced significantly by the fractional transfer rates between each compartment. Therefore, a series of compartmental model created with the association of fractional transfer rates parameter with the aid of SAAM II provides better estimation that simulate the kinetic behavior of As ingested into the gastrointestinal system.
Simulation of water solutions of Ni 2+ at infinite dilution
NASA Astrophysics Data System (ADS)
Natália, M.; Cordeiro, D. S.; Ignaczak, Anna; Gomes, José A. N. F.
1993-10-01
A new ab initio pair potential is developed to describe the nickel—water interactions in Ni(II) aqueous solutions. Results of Monte Carlo simulations for the Ni(II)(H 2O) 200 system are presented for this pair potential with and without three-body classical polarization terms (the water—water interaction is described by the ab initio MCY potential). The structure of the solution around Ni(II) is discussed in terms of radial distribution functions, coordination numbers and thermal ellipsoids. The results show that the three-body terms have a non-negligible effect on the simulated solution. In fact, the experimental coordination number of six is reproduced with the full potential while a higher value is predicted when the simple pairwise-additive potential is used. The equilibrium NiO distance for the first hydration shell is also dependent on the use of the three-body terms. Comparison of our distribution functions with those obtained by neutron-diffraction experiments shows a reasonable quantitative agreement. Statistical pattern recognition analysis has also been applied to our simulations in order to better understand the local thermal motion of the water molecules around the metal ion. In this way, thermal ellipsoids have been computed (and graphically displayed) for each atom of the water molecules belonging to the Ni(II) first hydration shell. This analysis revealed that the twisting and bending motions are greater than the radial motion, and that the hydrogens have a higher mobility than the oxygens. In addition, a thermodynamic perturbation method has been incorporated in our Monte Carlo procedure in order to compute the free energy of hydration for the Ni(II) ion. Agreement between these results and the experimental ones is also sufficiently reasonable to demonstrate the feasibility of this new potential for the nickel—water interactions.
10 CFR 431.17 - Determination of efficiency.
Code of Federal Regulations, 2014 CFR
2014-01-01
... characteristics of that basic model, and (ii) Based on engineering or statistical analysis, computer simulation or... simulation or modeling, and other analytic evaluation of performance data on which the AEDM is based... applied. (iii) If requested by the Department, the manufacturer shall conduct simulations to predict the...
10 CFR 431.17 - Determination of efficiency.
Code of Federal Regulations, 2012 CFR
2012-01-01
... characteristics of that basic model, and (ii) Based on engineering or statistical analysis, computer simulation or... simulation or modeling, and other analytic evaluation of performance data on which the AEDM is based... applied. (iii) If requested by the Department, the manufacturer shall conduct simulations to predict the...
ERIC Educational Resources Information Center
Christy, Raymond M.
1975-01-01
Describes an unusual learning experience available to eighth-grade students in Louisiana through exposure to a World War II B-25 simulator. The flight simulator is used to motivate students in the science area, develop an awareness of flight problems and challenges and provide exposure to the electronics career field. (BR)
NASA Technical Reports Server (NTRS)
1997-01-01
The remotely-piloted Altus I aircraft climbs away after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.
Altus I aircraft landing on Edwards lakebed runway 23
NASA Technical Reports Server (NTRS)
1997-01-01
The remotely-piloted Altus I aircraft lands on Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.
JASMINE Simulator - construction of framework
NASA Astrophysics Data System (ADS)
Yamada, Yoshiyuki; Ueda, Seiji; Kuwabara, Takashi; Yano, Taihei; Gouda, Naoteru
2004-10-01
JASMINE is an abbreviation of Japan Astrometry Satellite Mission for INfrared Exploration currently planned at National Astronomical Observatory of Japan. JASMINE stands at a stage where its basic design will be determined in a few years. Then it is very important for JASMINE to simulate the data stream generated by the astrometric fields in order to support investigations of accuracy, sampling strategy, data compression, data analysis, scientific performances, etc. It is found that the new software technologies of Object Oriented methodologies with Unified Modeling Language are ideal for the simulation system of JASMINE (JASMINE Simualtor). In this paper, we briefly introduce some concepts of such technologies and explain the framework of the JASMINE Simulator which is constructed by new technologies. We believe that these technologies are useful also for other future big projects of astronomcial research.
Massively Parallel Processing for Fast and Accurate Stamping Simulations
NASA Astrophysics Data System (ADS)
Gress, Jeffrey J.; Xu, Siguang; Joshi, Ramesh; Wang, Chuan-tao; Paul, Sabu
2005-08-01
The competitive automotive market drives automotive manufacturers to speed up the vehicle development cycles and reduce the lead-time. Fast tooling development is one of the key areas to support fast and short vehicle development programs (VDP). In the past ten years, the stamping simulation has become the most effective validation tool in predicting and resolving all potential formability and quality problems before the dies are physically made. The stamping simulation and formability analysis has become an critical business segment in GM math-based die engineering process. As the simulation becomes as one of the major production tools in engineering factory, the simulation speed and accuracy are the two of the most important measures for stamping simulation technology. The speed and time-in-system of forming analysis becomes an even more critical to support the fast VDP and tooling readiness. Since 1997, General Motors Die Center has been working jointly with our software vendor to develop and implement a parallel version of simulation software for mass production analysis applications. By 2001, this technology was matured in the form of distributed memory processing (DMP) of draw die simulations in a networked distributed memory computing environment. In 2004, this technology was refined to massively parallel processing (MPP) and extended to line die forming analysis (draw, trim, flange, and associated spring-back) running on a dedicated computing environment. The evolution of this technology and the insight gained through the implementation of DM0P/MPP technology as well as performance benchmarks are discussed in this publication.
NASA Astrophysics Data System (ADS)
Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.
2017-12-01
Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification
Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.
2017-01-01
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082
Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.
Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J
2017-07-28
This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.
2017-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT EXPLORATION OF LOGISTICS INFORMATION TECHNOLOGY (IT) SOLUTIONS FOR THE...OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for... information . Send comments regarding this burden estimate or any other aspect of this collection of information , including suggestions for reducing this
Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins.
Chaballout, Basil; Molloy, Margory; Vaughn, Jacqueline; Brisson Iii, Raymond; Shaw, Ryan
2016-03-07
Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations.
NASA Astrophysics Data System (ADS)
Raygan, R.
Global collaboration in support of an International Information System (IIS) for Orbital Space Data (OSD) literally requires a global enterprise. As with many information technology enterprise initiatives attempting to coral the desires of business with the budgets and limitations of technology, Space Situational Awareness (SSA) includes many of the same challenges: 1) Adaptive / Intuitive Dash Board that facilitates User Experience Design for a variety of users. 2) Asset Management of hundreds of thousands of objects moving at thousands of miles per hour hundreds of miles in space. 3) Normalization and integration of diverse data in various languages, possibly hidden or protected from easy access. 4) Expectations of near real-time information availability coupled with predictive analysis to affect decisions before critical points of no return, such as Space Object Conjunction Assessment (CA). 5) Data Ownership, management, taxonomy, and accuracy. 6) Integrated metrics and easily modified algorithms for "what if" analysis. This paper proposes an approach to define the functional capabilities for an IIS for OSD. These functional capabilities not only address previously identified gaps in current systems but incorporate lessons learned from other big data, enterprise, and agile information technology initiatives that correlate to the space domain. Viewing the IIS as the "data service provider" allows adoption of existing information technology processes which strengthen governance and ensure service consumers certain levels of service dependability and accuracy.
Simulator technology as a tool for education in cardiac care.
Hravnak, Marilyn; Beach, Michael; Tuite, Patricia
2007-01-01
Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.
A smart grid simulation testbed using Matlab/Simulink
NASA Astrophysics Data System (ADS)
Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei
2014-06-01
The smart grid is the integration of computing and communication technologies into a power grid with a goal of enabling real time control, and a reliable, secure, and efficient energy system [1]. With the increased interest of the research community and stakeholders towards the smart grid, a number of solutions and algorithms have been developed and proposed to address issues related to smart grid operations and functions. Those technologies and solutions need to be tested and validated before implementation using software simulators. In this paper, we developed a general smart grid simulation model in the MATLAB/Simulink environment, which integrates renewable energy resources, energy storage technology, load monitoring and control capability. To demonstrate and validate the effectiveness of our simulation model, we created simulation scenarios and performed simulations using a real-world data set provided by the Pecan Street Research Institute.
Virtual reality simulation in neurosurgery: technologies and evolution.
Chan, Sonny; Conti, François; Salisbury, Kenneth; Blevins, Nikolas H
2013-01-01
Neurosurgeons are faced with the challenge of learning, planning, and performing increasingly complex surgical procedures in which there is little room for error. With improvements in computational power and advances in visual and haptic display technologies, virtual surgical environments can now offer potential benefits for surgical training, planning, and rehearsal in a safe, simulated setting. This article introduces the various classes of surgical simulators and their respective purposes through a brief survey of representative simulation systems in the context of neurosurgery. Many technical challenges currently limit the application of virtual surgical environments. Although we cannot yet expect a digital patient to be indistinguishable from reality, new developments in computational methods and related technology bring us closer every day. We recognize that the design and implementation of an immersive virtual reality surgical simulator require expert knowledge from many disciplines. This article highlights a selection of recent developments in research areas related to virtual reality simulation, including anatomic modeling, computer graphics and visualization, haptics, and physics simulation, and discusses their implication for the simulation of neurosurgery.
Probability of success for phase III after exploratory biomarker analysis in phase II.
Götte, Heiko; Kirchner, Marietta; Sailer, Martin Oliver
2017-05-01
The probability of success or average power describes the potential of a future trial by weighting the power with a probability distribution of the treatment effect. The treatment effect estimate from a previous trial can be used to define such a distribution. During the development of targeted therapies, it is common practice to look for predictive biomarkers. The consequence is that the trial population for phase III is often selected on the basis of the most extreme result from phase II biomarker subgroup analyses. In such a case, there is a tendency to overestimate the treatment effect. We investigate whether the overestimation of the treatment effect estimate from phase II is transformed into a positive bias for the probability of success for phase III. We simulate a phase II/III development program for targeted therapies. This simulation allows to investigate selection probabilities and allows to compare the estimated with the true probability of success. We consider the estimated probability of success with and without subgroup selection. Depending on the true treatment effects, there is a negative bias without selection because of the weighting by the phase II distribution. In comparison, selection increases the estimated probability of success. Thus, selection does not lead to a bias in probability of success if underestimation due to the phase II distribution and overestimation due to selection cancel each other out. We recommend to perform similar simulations in practice to get the necessary information about the risk and chances associated with such subgroup selection designs. Copyright © 2017 John Wiley & Sons, Ltd.
Ionised gas kinematics in bipolar H II regions
NASA Astrophysics Data System (ADS)
Dalgleish, Hannah S.; Longmore, Steven N.; Peters, Thomas; Henshaw, Jonathan D.; Veitch-Michaelis, Joshua L.; Urquhart, James S.
2018-05-01
Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multi-wavelength study of a young, bipolar H II region in the Galactic disc, G316.81-0.06, which lies at the centre of a massive (˜103 M⊙) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a ˜0.2 pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient (47.81 ± 3.21 km s-1 pc-1) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G316.81-0.06. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2000-02-18
The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tarmore » (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.« less
Learning from History: World War II and the Culture of High Technology.
ERIC Educational Resources Information Center
Miller, Carolyn R.
1998-01-01
Outlines some resources for understanding technology as an important aspect of the late-twentieth-century American culture. Provides helpful background that can inform and shape further studies in the rhetoric of technology. Notes implications of this history for rhetorical study, specifically for how the rhetoric of technology may be distinct…
21 CFR 1311.05 - Standards for technologies for electronic transmission of orders.
Code of Federal Regulations, 2010 CFR
2010-04-01
... technologies for electronic transmission of orders. (a) A registrant or a person with power of attorney to sign orders for Schedule I and II controlled substances may use any technology to sign and electronically... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Standards for technologies for electronic...
Krueger, Wesley W O
2011-01-01
An eyewear mounted visual display ("User-worn see-through display") projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-posttest design for patients in vestibular rehabilitation. Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales, whereas 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to posttherapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon and aligned with user movement, has demonstrated substantial benefit for individuals susceptible to motion intolerance and spatial disorientation and those undergoing vestibular rehabilitation. The technology developed has applications in any environment where motion sensitivity affects human performance.
Washburn, Micki; Bordnick, Patrick; Rizzo, Albert Skip
2016-10-01
This study presents preliminary feasibility and acceptability data on the use of virtual patient (VP) simulations to develop brief assessment skills within an interdisciplinary care setting. Results support the acceptability of technology-enhanced simulations and offer preliminary evidence for an association between engagement in VP practice simulations and improvements in diagnostic accuracy and clinical interviewing skills. Recommendations and next steps for research on technology-enhanced simulations within social work are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amerio, S.; Behari, S.; Boyd, J.
The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less
NASA Astrophysics Data System (ADS)
Binder, Claudia; Garcia-Santos, Glenda; Andreoli, Romano; Diaz, Jaime; Feola, Giuseppe; Wittensoeldner, Moritz; Yang, Jing
2016-04-01
This study presents an integrative and spatially explicit modeling approach for analyzing human and environmental exposure from pesticide application of smallholders in the potato producing Andean region in Colombia. The modeling approach fulfills the following criteria: (i) it includes environmental and human compartments; (ii) it contains a behavioral decision-making model for estimating the effect of policies on pesticide flows to humans and the environment; (iii) it is spatially explicit; and (iv) it is modular and easily expandable to include additional modules, crops or technologies. The model was calibrated and validated for the Vereda La Hoya and was used to explore the effect of different policy measures in the region. The model has moderate data requirements and can be adapted relatively easy to other regions in developing countries with similar conditions.
Biological responses to engineered nanomaterials: Needs for the next decade
Murphy, Catherine J.; Vartanian, Ariane M.; Geiger, Franz M.; ...
2015-06-09
In this study, the interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterialmore » effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.« less
Software-assisted stacking of gene modules using GoldenBraid 2.0 DNA-assembly framework.
Vazquez-Vilar, Marta; Sarrion-Perdigones, Alejandro; Ziarsolo, Peio; Blanca, Jose; Granell, Antonio; Orzaez, Diego
2015-01-01
GoldenBraid (GB) is a modular DNA assembly technology for plant multigene engineering based on type IIS restriction enzymes. GB speeds up the assembly of transcriptional units from standard genetic parts and facilitates the stacking of several genes within the same T-DNA in few days. GBcloning is software-assisted with a set of online tools. The GBDomesticator tool assists in the adaptation of DNA parts to the GBstandard. The combination of GB-adapted parts to build new transcriptional units is assisted by the GB TU Assembler tool. Finally, the assembly of multigene modules is simulated by the GB Binary Assembler. All the software tools are available at www.gbcloning.org . Here, we describe in detail the assembly methodology to create a multigene construct with three transcriptional units for polyphenol metabolic engineering in plants.
Data preservation at the Fermilab Tevatron
NASA Astrophysics Data System (ADS)
Amerio, S.; Behari, S.; Boyd, J.; Brochmann, M.; Culbertson, R.; Diesburg, M.; Freeman, J.; Garren, L.; Greenlee, H.; Herner, K.; Illingworth, R.; Jayatilaka, B.; Jonckheere, A.; Li, Q.; Naymola, S.; Oleynik, G.; Sakumoto, W.; Varnes, E.; Vellidis, C.; Watts, G.; White, S.
2017-04-01
The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.
DEFENSE TECHNOLOGY FOR ENVIRONMENTAL PROTECTION. VOLUME II. BIBLIOGRAPHY
The report condenses an effort design to identify and transfer significant technology concerned with air pollution monitoring and control from the Department of Defense (DOD) to the EPA. Included are technology profiles of each DOD laboratory involved in particular work of intere...
The U.S. Environmental Protection Agency, through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. This report documents demons...
ERIC Educational Resources Information Center
Harris, Philip R.
1985-01-01
Looks at changes in the manager's role due to technological advancement in the workplace. Discusses wider range of uses for computers (analysis, decision making, communications, planning, tracking trends), importance of supervisor training, cyberphobia (fear of new technology), cyberphrenia (addiction to new technology), and the effect of a work…
NASA Astrophysics Data System (ADS)
Aqib, M. A.; Budiarto, M. T.; Wijayanti, P.
2018-01-01
The effectiveness of learning in this era can be seen from 3 factors such as: technology, content, and pedagogy that covered in Technological Pedagogical Content Knowledge (TPCK). This research was a qualitative research which aimed to describe each domain from TPCK include Content Knowledge, Pedagogical Knowledge, Pedagogical Content Knowledge, Technological Knowledge, Technological Content Knowledge, Technological Pedagogical Knowledge and Technological, Pedagogical, and Content Knowledge. The subjects of this research were male and female mathematics college students at least 5th semester who has almost the same ability for some course like innovative learning, innovative learning II, school mathematics I, school mathematics II, computer applications and instructional media. Research began by spreading the questionnaire of subject then continued with the assignment and interview. The obtained data was validated by time triangulation.This research has result that male and female prospective teacher was relatively same for Content Knowledge and Pedagogical Knowledge domain. While it was difference in the Technological Knowledge domain. The difference in this domain certainly has an impact on other domains that has technology components on it. Although it can be minimized by familiarizing the technology.
Cheng, Lin; Wei, BingGuo; He, Ling Ling; Mao, Ling; Zhang, Jie; Ceng, JinXiang; Kong, DeRong; Chen, ChaDan; Cui, HanFeng; Hong, Nian; Fan, Hao
2017-02-01
A novel "off-On" electrogenerated chemiluminescence (ECL) biosensor has been developed for the detection of mercury(II) based on molecular recognition technology. The ECL mercury(II) biosensor comprises two main parts: an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Ruthenium(II) tris-(bipyridine)(Ru(bpy) 3 2+ )/Cyclodextrins-Au nanoparticles(CD-AuNps)/Nafion on the surface of glass carbon electrode (GCE), and the ECL intensity switch is the single hairpin DNA probe designed according to the "molecular recognition" strategy which was functionalized with ferrocene tag at one end and attached to Cyclodextrins (CD) on modified GCE through supramolecular noncovalent interaction. We demonstrated that, in the absence of Hg(II) ion, the probe keeps single hairpin structure and resulted in a quenching of ECL of Ru(bpy) 3 2+ . Whereas, in the presence of Hg(II) ion, the probe prefers to form the T-Hg(II)-T complex and lead to an obvious recovery of ECL of Ru(bpy) 3 2+ , which provided a sensing platform for the detection of Hg(II) ion. Using this sensing platform, a simple, rapid and selective "off-On" ECL biosensor for the detection of mercury(II) with a detection limit of 0.1 nM has been developed. Copyright © 2016. Published by Elsevier Inc.
14 CFR 61.65 - Instrument rating requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... authorized instructor in an aircraft, flight simulator, or flight training device that represents an airplane... appropriate to the rating sought; or (ii) A flight simulator or a flight training device appropriate to the... authorized instructor in an aircraft, or in a flight simulator or flight training device, in accordance with...
Using a Population-Ecology Simulation in College Courses.
ERIC Educational Resources Information Center
Hinze, Kenneth E.
1984-01-01
Describes instructional use of a microcomputer version of the WORLD2 global population-ecology simulation. Reactions of students and instructors are discussed and a WORLD2 simulation assignment is appended. The BASIC version used by the author runs on Apple II, DOS 3.3, with 80 column board. (MBR)
ISIM3D: AN ANSI-C THREE-DIMENSIONAL MULTIPLE INDICATOR CONDITIONAL SIMULATION PROGRAM
The indicator conditional simulation technique provides stochastic simulations of a variable that (i) honor the initial data and (ii) can feature a richer family of spatial structures not limited by Gaussianity. he data are encoded into a series of indicators which then are used ...
Concurrent Flow Lanes - Phase II
DOT National Transportation Integrated Search
2009-04-17
This report provides the findings from a research effort designed to ascertain whether or not a chosen simulation software platform, the VISSIM micro-simulation platform, provides a suitable environment for modeling and analyzing traffic operations, ...
Large Scale Traffic Simulations
DOT National Transportation Integrated Search
1997-01-01
Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computation speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated "looping" between t...
ERIC Educational Resources Information Center
Brown, Abbie Howard
1999-01-01
Describes and discusses how simulation activities can be used in teacher education to augment the traditional field-experience approach, focusing on artificial intelligence, virtual reality, and intelligent tutoring systems. Includes an overview of simulation as a teaching and learning strategy and specific examples of high-technology simulations…
ERIC Educational Resources Information Center
Johnson, Tristan E.; Clayson, Carol Anne
As technology developments seek to improve learning, researchers, developers, and educators seek to understand how technological properties impact performance. This paper delineates how a traditional science course is enhanced through the use of simulation projects directed by the students themselves as a means to increase their level of knowledge…
NASA Astrophysics Data System (ADS)
Joy, Monu; Elrashedy, Ahmed A.; Mathew, Bijo; Pillay, Ashona Singh; Mathews, Annie; Dev, Sanal; Soliman, Mahmoud E. S.; Sudarsanakumar, C.
2018-04-01
Two novel isoxazole derivatives were synthesized and characterized by NMR and single crystal X-ray crystallography techniques. The methoxy and dimethoxy functionalized variants of isoxazole were screened for its anti-inflammatory profile using cyclooxygenase fluorescent inhibitor screening assay methods along with standard drugs, Celecoxib and Diclofenac. The potent and selective nature of the two isoxazole derivatives on COX-II isoenzyme with a greater magnitude of inhibitory concentration, as compared to the standard drugs and further exploited through molecular dynamics (MD) simulation. Classical, accelerated and multiple MD simulations were performed to investigate the actual binding mode of the two non-steroidal anti-inflammatory drug candidates and addressed their functional selectivity towards COX-II enzyme inhibitory nature.
The change in critical technologies for computational physics
NASA Technical Reports Server (NTRS)
Watson, Val
1990-01-01
It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.
Weyhermüller, Thomas; Wagner, Rita; Khanra, Sumit; Chaudhuri, Phalguni
2005-08-07
Three trinuclear complexes, NiII MnIII NiII, NiII CrIII NiII and Ni(II)3 based on (pyridine-2-aldoximato)nickel(II) units are described. Two of them, and , contain metal-centers in linear arrangement, as is revealed by X-ray diffraction. Complex is a homonuclear complex in which the three nickel(II) centers are disposed in a triangular fashion. The compounds were characterized by various physical methods including cyclic voltammetric and variable-temperature (2-290 K) susceptibility measurements. Complexes and display antiferromagnetic exchange coupling of the neighbouring metal centers, while weak ferromagnetic spin exchange between the adjacent Ni II and Cr III ions in is observed. The experimental magnetic data were simulated by using appropriate models.
On the Origin of the Type II Spicules: Dynamic Three-dimensional MHD Simulations
NASA Astrophysics Data System (ADS)
Martínez-Sykora, Juan; Hansteen, Viggo; Moreno-Insertis, Fernando
2011-07-01
Recent high temporal and spatial resolution observations of the chromosphere have forced the definition of a new type of spicule, "type II's," that are characterized by rising rapidly, having short lives, and by fading away at the end of their lifetimes. Here, we report on features found in realistic three-dimensional simulations of the outer solar atmosphere that resemble the observed type II spicules. These features evolve naturally from the simulations as a consequence of the magnetohydrodynamical evolution of the model atmosphere. The simulations span from the upper layer of the convection zone to the lower corona and include the emergence of a horizontal magnetic flux. The state-of-art Oslo Staggered Code is used to solve the full MHD equations with non-gray and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We describe in detail the physics involved in a process which we consider a possible candidate for the driver mechanism that produces type II spicules. The modeled spicule is composed of material rapidly ejected from the chromosphere that rises into the corona while being heated. Its source lies in a region with large field gradients and intense electric currents, which lead to a strong Lorentz force that squeezes the chromospheric material, resulting in a vertical pressure gradient that propels the spicule along the magnetic field, as well as Joule heating, which heats the jet material, forcing it to fade.
An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities
NASA Technical Reports Server (NTRS)
Bailey, John W.
2004-01-01
The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at SSC.
ERIC Educational Resources Information Center
Redden, Martha Ross, Ed.; Stern, Virginia W., Ed.
This book is based upon group participation and presentations given at three regional workshops on science and technology for the handicapped. The first workshop focused on issues in technology for daily living. Papers presented examined such areas as daily living technology for the disabled, psychological aspects of rehabilitation engineering,…
Survey of Wastewater Discharge, Eielson AFB, Alaska, EHL(K) 73-24
1973-12-01
the Department of Defense. ii TABLE OF CONTENTS Section Page I. SUMMARY .................................................. 1 II. INTRODUCTION ...II. INTRODUCTION A. Purpose And Objectives The USAF Environmental Health Laboratories were requested to provide assistance in improving existing water...equivalent to best practicable control technology currently available as shall be defined for each industrial waste. 3. Proposed Performance Specifications
Simulating care: technology-mediated learning in twenty-first century nursing education.
Diener, Elizabeth; Hobbs, Nelda
2012-01-01
The increased reliance on simulation classrooms has proven successful in learning skills. Questions persist concerning the ability of technology-driven robotic devices to form and cultivate caring behaviors, or sufficiently develop interactive nurse-client communication necessary in the context of nursing. This article examines the disconnects created by use of simulation technology in nursing education, raising the question: "Can learning of caring-as-being, be facilitated in simulation classrooms?" We propose that unless time is spent with human beings in the earliest stages of nursing education, transpersonal caring relationships do not have space to develop. Learning, crafting, and maturation of caring behaviors threatens to become a serendipitous event or is no longer perceived as an essential characteristic of nursing. Technology does not negate caring-the isolation it fosters makes transpersonal caring all the more important. We are called to create a new paradigm for nursing education that merges Nightingale's vision with technology's promise. © 2012 Wiley Periodicals, Inc.
14 CFR 1260.12 - Choice of award instrument.
Code of Federal Regulations, 2013 CFR
2013-01-01
... improving student performance in science, mathematics, technology, or related fields; (ii) Enhancing the skill, knowledge, or ability of teachers or faculty members in science, mathematics, or technology; (iii... participation and/or to enhance performance in science, mathematics, or technology education at all levels; and...
14 CFR 1260.12 - Choice of award instrument.
Code of Federal Regulations, 2011 CFR
2011-01-01
... improving student performance in science, mathematics, technology, or related fields; (ii) Enhancing the skill, knowledge, or ability of teachers or faculty members in science, mathematics, or technology; (iii... participation and/or to enhance performance in science, mathematics, or technology education at all levels; and...
14 CFR 1260.12 - Choice of award instrument.
Code of Federal Regulations, 2010 CFR
2010-01-01
... improving student performance in science, mathematics, technology, or related fields; (ii) Enhancing the skill, knowledge, or ability of teachers or faculty members in science, mathematics, or technology; (iii... participation and/or to enhance performance in science, mathematics, or technology education at all levels; and...
40 CFR 142.16 - Special primacy requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and operating criteria for each filtration treatment technology allowed or a procedure for... technology for source waters of various qualities. (ii) For a State which does not require all public water...) (alternative filtration technologies)—Determine that a public water system has demonstrated that an alternate...
Striving for Better Medical Education: the Simulation Approach.
Sakakushev, Boris E; Marinov, Blagoi I; Stefanova, Penka P; Kostianev, Stefan St; Georgiou, Evangelos K
2017-06-01
Medical simulation is a rapidly expanding area within medical education due to advances in technology, significant reduction in training hours and increased procedural complexity. Simulation training aims to enhance patient safety through improved technical competency and eliminating human factors in a risk free environment. It is particularly applicable to a practical, procedure-orientated specialties. Simulation can be useful for novice trainees, experienced clinicians (e.g. for revalidation) and team building. It has become a cornerstone in the delivery of medical education, being a paradigm shift in how doctors are educated and trained. Simulation must take a proactive position in the development of metric-based simulation curriculum, adoption of proficiency benchmarking definitions, and should not depend on the simulation platforms used. Conversely, ingraining of poor practice may occur in the absence of adequate supervision, and equipment malfunction during the simulation can break the immersion and disrupt any learning that has occurred. Despite the presence of high technology, there is a substantial learning curve for both learners and facilitators. The technology of simulation continues to advance, offering devices capable of improved fidelity in virtual reality simulation, more sophisticated procedural practice and advanced patient simulators. Simulation-based training has also brought about paradigm shifts in the medical and surgical education arenas and ensured that the scope and impact of simulation will continue to broaden.
Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Salinari, Serenella; Colosimo, Alfredo; Bonelli, Stefano; Napoletano, Linda; Ferreira, Ana; Babiloni, Fabio
2015-01-01
In this study, we investigated the possibility to evaluate the impact of different avionic technologies on the mental workload of helicopter's pilots by measuring their brain activity with the EEG during a series of simulated missions carried out at AgustaWestland facilities in Yeovil (UK). The tested avionic technologies were: i) Head-Up Display (HUD); ii) Head-Mounted Display (HMD); iii) Full Conformal symbology (FC); iv) Flight Guidance (FG) symbology; v) Synthetic Vision System (SVS); and vi) Radar Obstacles (RO) detection system. It has been already demonstrated that in cognitive tasks, when the cerebral workload increases the EEG power spectral density (PSD) in theta band over frontal areas increases, and the EEG PSD in alpha band decreases over parietal areas. A mental workload index (MWL) has been here defined as the ratio between the frontal theta and parietal alpha EEG PSD values. Such index has been used for testing and comparing the different avionic technologies. Results suggested that the HUD provided a significant (p<;.05) workload reduction across all the flight scenarios with respect to the other technologies. In addition, the simultaneous use of FC and FG technologies (FC+FG) produced a significant decrement of the workload (p<;.01) with respect to the use of only the FC. Moreover, the use of the SVS technology provided on Head Down Display (HDD) with the simultaneous use of FC+FG and the RO seemed to produce a lower cerebral workload when compared with the use of only the FC. Interestingly, the workload estimation by means of subjective measures, provided by pilots through a NASA-TLX questionnaire, did not provide any significant differences among the different flight scenarios. These results suggested that the proposed MWL cognitive neurometrics could be used as a reliable measure of the user's mental workload, being a valid indicator for the comparison and the test of different avionic technologies.
A Rutherford Scattering Simulation with Microcomputer Graphics.
ERIC Educational Resources Information Center
Calle, Carlos I.; Wright, Lavonia F.
1989-01-01
Lists a program for a simulation of Rutherford's gold foil experiment in BASIC for both Apple II and IBM compatible computers. Compares Rutherford's model of the atom with Thompson's plum pudding model of the atom. (MVL)
Bioplume II is a two-dimensional finite difference and Method of Characteristics (MOC) model for simulating the natural attenuation of organic contaminants in ground water due to the processes of advection, dispersion, sorption and biodegradation. The transport simulation in Biop...
Teaching Microbial Growth by Simulation.
ERIC Educational Resources Information Center
Ruiz, A. Fernandez; And Others
1989-01-01
Presented is a simulation program for Apple II computer which assays the effects of a series of variables on bacterial growth and interactions between microbial populations. Results of evaluation of the program with students are summarized. (CW)
Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs.
Galia, E; Nicolaides, E; Hörter, D; Löbenberg, R; Reppas, C; Dressman, J B
1998-05-01
In this paper we seek to verify the differences in dissolution behavior between class I and class II drugs and to evaluate the suitability of two new physiologically based media, of Simulated Gastric Fluid (SGF) and of milk for their ability to forecast trends in the in vivo performance of class II compounds and their formulations. Dissolution behavior of two class I drugs, i.e. acetaminophen and metoprolol, and of three class II drugs, i.e. danazol, mefenamic acid and ketoconazole, was studied with USP Apparatus 2 in water, SGF, milk, Simulated Intestinal Fluid without pancreatin (SIFsp) and in two media simulating the small intestinal contents in the fed (FeSSIF) and fasted (FaSSIF) states, respectively. Class I powders dissolved rapidly in all media tested. Acetaminophen dissolution in milk was slow from one tablet formulation, in all other cases dissolution was more than 85% complete in 15 minutes. The dissolution rate of metoprolol was shown to be dependent on formulation and manufacturing method, and one of the three tablet formulations did not meet compendial specifications (80%/30 minutes). Dissolution behavior of class II drugs was greatly affected by choice of medium. Dissolution from a capsule formulation of danazol proved to be dependent on the concentration of solubilizing agents, with a the 30-fold increase in percentage dissolved within 90 minutes upon changing from aqueous media without surfactants to FaSSIF. Use of FeSSIF or milk as the dissolution medium resulted in an even greater increase in percentage dissolved, 100 and 180-fold respectively. Dissolution of the weak acid mefenamic acid from a capsule formulation is dependent on both pH and bile salt concentration, which leads to an offset between increased bile salt concentration and lower pH in the fed state compared to the fasted state medium. The weak base ketoconazole showed complete dissolution from a tablet formulation in Simulated Gastric Fluid without pepsin (SGFsp) within 30 minutes, 70% dissolution in 2 hours under fed state simulated upper jejunal conditions but only 6% dissolution in 2 hours under fasted state conditions. As predicted, dissolution of class II drugs proved to be in general much more dependent on the medium than class I drugs. With the array of compendial and physiological media available, it should be possible to design a suitable set of tests to predict the in vivo dissolution of both class I and II drugs from immediate release formulations.
Von Dreele, Robert
2017-08-29
One of the goals in developing GSAS-II was to expand from the capabilities of the original General Structure Analysis System (GSAS) which largely encompassed just structure refinement and post refinement analysis. GSAS-II has been written almost entirely in Python loaded with graphics, GUI and mathematical packages (matplotlib, pyOpenGL, wxpython, numpy and scipy). Thus, GSAS-II has a fully developed modern GUI as well as extensive graphical display of data and results. However, the structure and operation of Python has required new approaches to many of the algorithms used in crystal structure analysis. The extensions beyond GSAS include image calibration/integration as wellmore » as peak fitting and unit cell indexing for powder data which are precursors for structure solution. Structure solution within GSAS-II begins with either Pawley or LeBail extracted structure factors from powder data or those measured in a single crystal experiment. Both charge flipping and Monte Carlo-Simulated Annealing techniques are available; the former can be applied to (3+1) incommensurate structures as well as conventional 3D structures.« less
[Simulation technologies in anesthesiology, resuscitation and intensive care: state of the problem].
Pasechnik, I N; Skobelev, E I; Volkova, N N; Sal'nikov, P S
2014-01-01
The foundation of simulation technologies application in educational process is presented in the article. It is described difficulties during anesthesiologists-resuscitators training and education of physicians of not intensive care specialty in intensive care methods. It was emphasized that new innovative educational stage is formed at present time. It is simulation stage between preclinical and clinical stages. Theoretical foundation and practical evidence of efficiency of simulation training are expressed in detail.
Technical evaluation report on the Flight Mechanics Panel Symposium on Flight Simulation
NASA Technical Reports Server (NTRS)
Cook, Anthony M.
1986-01-01
In recent years, important advances were made in technology both for ground-based and in-flight simulators. There was equally a broadening of the use of flight simulators for research, development, and training purposes. An up-to-date description of the state-of-the-art of technology and engineering was provided for both ground-based and in-flight simulators and their respective roles were placed in context within the aerospace scene.
Battery Performance Modelling ad Simulation: a Neural Network Based Approach
NASA Astrophysics Data System (ADS)
Ottavianelli, Giuseppe; Donati, Alessandro
2002-01-01
This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg-Marquardt one. The ANN used is a three-layer one (2-4-1) with four inputs and one output. Having established all the ANN parameters and calculated all the input/target training data the ANN has been trained and validated. Afterwards, various simulations have been performed with BAPER to validate the performance of the software and test new alternative battery cycling strategies. Taking into account the small number of available training data for the ANN, and that the simulations have been carried out over a fairly extensive time frame (i.e. one year) the results obtained from the prototype tool must be considered more than satisfactory. It is found that the deliverable discharge capacity can be maintained circa 20% higher than the one obtained with the nominal cycling strategy if the batteries are left discharged for a longer period of time and the storage temperature is decreased. This ANN model has its limitations when asked to predict the discharge capacity deterioration that would be obtained with extraordinary cycling conditions (e.g. extremely low storage temperatures and continuous cycling). Hence, these results must be considered only approximate, as it is impossible to exactly state whether the ANN turn out to give extremely accurate realistic values or not, failing to extrapolate a correct pattern. One way to overcome the problem would be to do some parallel experiments in the laboratory, using the same battery and similar environment conditions (temperature, charge and discharge cycles) to the ones to be encounter in the spacecraft.
2001-07-01
hardware - in - loop (HWL) simulation is also developed...Firings / Engine Tests Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model...Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model Model
Simulation as a Teaching Technology: A Brief History of Its Use in Nursing Education
ERIC Educational Resources Information Center
Sanko, Jill S.
2017-01-01
Simulation can be used for teaching or practicing both technical skills (insertion of intravenous catheters, or suturing for example) and non-technical skills (communication and teamwork). A combination of full body, high and low technology simulators (mannequins designed to depict humans), body part or body system-specific task trainers (models…
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Carpenter, Paul K.
2006-01-01
As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fastpace schedule, reminiscent of the 1960's Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held 2005 Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The recommendation of the workshop of establishing standard simulant materials to be used in lunar technology development and testing will be discussed here with an emphasis on space resource utilization. The variety of techniques and the complexity of functional interfaces make these simulant choices critical in space resource utilization.
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong
2017-01-01
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849
The Doctor Is In, but Is Academia? Re-Tooling II Education for a New Era in Healthcare
ERIC Educational Resources Information Center
Lee, Andre; Moy, Lawrence; Kruck, S. E.; Rabang, Joshua
2015-01-01
Healthcare information technology is at a crossroads today. As legacy data systems converge with bleeding edge technologies, the technology environments of today's hospitals and clinics are evolving rapidly, producing new care delivery models. As a result, we need to reassess how information technology education is meeting the needs of healthcare…
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
This report, the fourth in a series of six, describes the evaluative studies conducted during Phase II of the California Educational Technology Assessment Program, the California Technology Project (CTP), and the CTP Regional Consortia. The report begins with background information on the CTP, starting with the earlier statewide network of…
What Can Students Learn in an Extended Role-Play Simulation on Technology and Society?
ERIC Educational Resources Information Center
Loui, Michael C.
2009-01-01
In a small course on technology and society, students participated in an extended role-play simulation for two weeks. Each student played a different adult character in a fictional community, which faces technological decisions in three scenarios set in the near future. The three scenarios involved stem cell research, nanotechnology, and privacy.…
ERIC Educational Resources Information Center
Armstead, Stanley K.
2017-01-01
In today's dynamic military environment, information technology plays a crucial role in the support of mission preparedness and operational readiness. This research examined the effectiveness of information technology security simulation and awareness training on U.S. military personnel in Iraq and Afghanistan. Also, the study analyzed whether…
The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0
Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; ...
2015-04-24
We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume V box = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII revealsmore » that baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (M halo 10 13.2 M ⊙ h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.« less
The capability of lithography simulation based on MVM-SEM® system
NASA Astrophysics Data System (ADS)
Yoshikawa, Shingo; Fujii, Nobuaki; Kanno, Koichi; Imai, Hidemichi; Hayano, Katsuya; Miyashita, Hiroyuki; Shida, Soichi; Murakawa, Tsutomu; Kuribara, Masayuki; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hara, Daisuke; Pang, Linyong
2015-10-01
The 1Xnm technology node lithography is using SMO-ILT, NTD or more complex pattern. Therefore in mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask feature. One key Technology of mask manufacture is defect verification to use aerial image simulator or other printability simulation. AIMS™ Technology is excellent correlation for the wafer and standards tool for defect verification however it is difficult for verification over hundred numbers or more. We reported capability of defect verification based on lithography simulation with a SEM system that architecture and software is excellent correlation for simple line and space.[1] In this paper, we use a SEM system for the next generation combined with a lithography simulation tool for SMO-ILT, NTD and other complex pattern lithography. Furthermore we will use three dimension (3D) lithography simulation based on Multi Vision Metrology SEM system. Finally, we will confirm the performance of the 2D and 3D lithography simulation based on SEM system for a photomask verification.
Simulation training in neurosurgery: advances in education and practice
Konakondla, Sanjay; Fong, Reginald; Schirmer, Clemens M
2017-01-01
The current simulation technology used for neurosurgical training leaves much to be desired. Significant efforts are thoroughly exhausted in hopes of developing simulations that translate to give learners the “real-life” feel. Though a respectable goal, this may not be necessary as the application for simulation in neurosurgical training may be most useful in early learners. The ultimate uniformly agreeable endpoint of improved outcome and patient safety drives these investments. We explore the development, availability, educational taskforces, cost burdens and the simulation advancements in neurosurgical training. The technologies can be directed at achieving early resident milestones placed by the Accreditation Council for Graduate Medical Education. We discuss various aspects of neurosurgery disciplines with specific technologic advances of simulation software. An overview of the scholarly landscape of the recent publications in the realm of medical simulation and virtual reality pertaining to neurologic surgery is provided. We analyze concurrent concept overlap between PubMed headings and provide a graphical overview of the associations between these terms. PMID:28765716
Assess II - A simulated mission of Spacelab
NASA Technical Reports Server (NTRS)
Wegmann, H. M.; Hermann, R.; Wingett, C. M.; De Muizon, M.; Rouan, D.; Lena, P.; Wijnbergen, J.; Olthof, H.; Michel, K. W.; Werner, CH.
1978-01-01
For Assess II, the Spacelab mission simulation conducted in mid-1977, four payload specialists aboard a Convair 990 research aircraft performed six American and six European experiments during nine research flights each of six hours duration in order to evaluate the compatibility of training and experimental design. Mission organization and some initial data from the European experiments are reported. The experiments, conducted over the western U.S., involved infrared astronomy, solar brightness temperature, lidar, airglow TV, and a medical experiment for which physiological parameters were monitored. Conclusions concerning general principles of experiment design are discussed.
Signatures of quiet Sun reconnection events in Ca II, Hα and Fe I
NASA Astrophysics Data System (ADS)
Shetye, J.; Shelyag, S.; Reid, A. L.; Scullion, E.; Doyle, J. G.; Arber, T. D.
2018-06-01
We use observations of quiet Sun (QS) regions in the Hα 6563 Å, Ca II 8542 Å and Fe I 6302 Å lines. We observe brightenings in the wings of the Hα and Ca II combined with observations of the interacting magnetic concentrations observed in the Stokes signals of Fe I. These brightenings are similar to Ellerman bombs (EBs), i.e. impulsive bursts in the wings of the Balmer lines which leave the line cores unaffected. Such enhancements suggest that these events have similar formation mechanisms to the classical EBs found in active regions, with the reduced intensity enhancements found in the QS regions due to a weaker feeding magnetic flux. The observations also show that the quiet Sun Ellerman bombs (QSEBs) are formed at a higher height in the upper photosphere than the photospheric continuum level. Using simulations, we investigate the formation mechanism associated with the events and suggest that these events are driven by the interaction of magnetic field-lines in the upper photospheric regions. The results of the simulation are in agreement with observations when comparing the light-curves, and in most cases we found that the peak in the Ca II 8542 Å wing occurred before the peak in Hα wing. Moreover, in some cases, the line profiles observed in Ca II are asymmetrical with a raised core profile. The source of heating in these events is shown by the MURaM simulations and is suggested to occur 430 km above the photosphere.
Technology Refresh Program Launches Phase II | Poster
The Technology Refresh Program (TRP) is an NCI-funded initiative designed to promote efficient spending on computer equipment by providing staff members with access to the latest technology to meet their computing needs, said Kyle Miller, IT coordinator, Computer and Statistical Services (C&SS), NCI at Frederick.
MacKinnon, Ralph; Aitken, Deborah; Humphries, Christopher
2015-12-17
Technology-enhanced simulation is well-established in healthcare teaching curricula, including those regarding wilderness medicine. Compellingly, the evidence base for the value of this educational modality to improve learner competencies and patient outcomes are increasing. The aim was to systematically review the characteristics of technology-enhanced simulation presented in the wilderness medicine literature to date. Then, the secondary aim was to explore how this technology has been used and if the use of this technology has been associated with improved learner or patient outcomes. EMBASE and MEDLINE were systematically searched from 1946 to 2014, for articles on the provision of technology-enhanced simulation to teach wilderness medicine. Working independently, the team evaluated the information on the criteria of learners, setting, instructional design, content, and outcomes. From a pool of 37 articles, 11 publications were eligible for systematic review. The majority of learners in the included publications were medical students, settings included both indoors and outdoors, and the main focus clinical content was initial trauma management with some including leadership skills. The most prevalent instructional design components were clinical variation and cognitive interactivity, with learner satisfaction as the main outcome. The results confirm that the current provision of wilderness medicine utilizing technology-enhanced simulation is aligned with instructional design characteristics that have been used to achieve effective learning. Future research should aim to demonstrate the translation of learning into the clinical field to produce improved learner outcomes and create improved patient outcomes.
Multidisciplinary propulsion simulation using NPSS
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.
1992-01-01
The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.
14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.
Code of Federal Regulations, 2013 CFR
2013-01-01
... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...
14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.
Code of Federal Regulations, 2014 CFR
2014-01-01
... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...
14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.
Code of Federal Regulations, 2012 CFR
2012-01-01
... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...
Project ITCH: Interactive Digital Simulation in Electrical Engineering Education.
ERIC Educational Resources Information Center
Bailey, F. N.; Kain, R. Y.
A two-stage project is investigating the educational potential of a low-cost time-sharing system used as a simulation tool in Electrical Engineering (EE) education. Phase I involves a pilot study and Phase II a full integration. The system employs interactive computer simulation to teach engineering concepts which are not well handled by…
AFSOC Training Systems (Briefing Slides)
2010-05-25
ATARS II contract Aircrew Courseware Loadmaster PTT Integrated Cockpit Maintenance Trainer Weapon Systems Trainer Visual Awareness Recognition System...Training Systems Support CLS Aircrew Training and Rehearsal Support ( ATARS ) II contract, 2007 Prime: Lockheed Martin Simulation, Training & Support...Larry Allen, AFSOC/A5RT, (850) 884-5568 ATARS II: 677 AESG/SYCC, Capt Shane Smoot, (937) 255-3391 AFSOC/A3TS, Scott Murphy, (850) 884-5773 MC/AC-130J
Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less
Karathanasis, Nestoras; Tsamardinos, Ioannis
2016-01-01
Background The advance of omics technologies has made possible to measure several data modalities on a system of interest. In this work, we illustrate how the Non-Parametric Combination methodology, namely NPC, can be used for simultaneously assessing the association of different molecular quantities with an outcome of interest. We argue that NPC methods have several potential applications in integrating heterogeneous omics technologies, as for example identifying genes whose methylation and transcriptional levels are jointly deregulated, or finding proteins whose abundance shows the same trends of the expression of their encoding genes. Results We implemented the NPC methodology within “omicsNPC”, an R function specifically tailored for the characteristics of omics data. We compare omicsNPC against a range of alternative methods on simulated as well as on real data. Comparisons on simulated data point out that omicsNPC produces unbiased / calibrated p-values and performs equally or significantly better than the other methods included in the study; furthermore, the analysis of real data show that omicsNPC (a) exhibits higher statistical power than other methods, (b) it is easily applicable in a number of different scenarios, and (c) its results have improved biological interpretability. Conclusions The omicsNPC function competitively behaves in all comparisons conducted in this study. Taking into account that the method (i) requires minimal assumptions, (ii) it can be used on different studies designs and (iii) it captures the dependences among heterogeneous data modalities, omicsNPC provides a flexible and statistically powerful solution for the integrative analysis of different omics data. PMID:27812137
Magneto-acoustic wave energy in sunspots: observations and numerical simulations
NASA Astrophysics Data System (ADS)
Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.
2011-11-01
We have reproduced some sunspot wave signatures obtained from spectropolarimetric observations through 3D MHD numericalsimulations. The results of the simulations arecompared with the oscillations observed simultaneously at different heights from the SiI lambda10827Å line, HeI lambda10830Å line, the CaII H core and the FeI blends at the wings of the CaII H line. The simulations show a remarkable agreement with the observations, and we have used them to quantify the energy contribution of the magneto-acoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is 5-10 times lower than the amount needed to balance the chromospheric radiative losses.
2015-01-01
technological momentum attempted to reconcile two of the disparate perspectives???social constructivism and technological determinism . The theory of...perspectives—social constructivism and technological determinism . The theory of technological dislocations advanced by this thesis is a refinement of...constructivism to technological determinism is unidirectional.114 His theory therefore tends to focus historical analysis on characterizing the
The Tip of the Red Giant Branch as a Precision Distance Indicator: II. Computer Simulations
NASA Technical Reports Server (NTRS)
Madore, B.; Freedman, W.
1993-01-01
This paper presents an analysis of synthetic I versus color-magnitude diagrams of Population II systems to investigate the use of the observed discontinuity in the I-band luminosity function as a precicion primary distance indicator.
0-6803 : new technology task force : phase II.
DOT National Transportation Integrated Search
2013-12-01
Texas 83rd Legislature charged the Texas Department : of Transportation (TxDOT) with examining and : evaluating innovative transportation technologies for : purposes of reducing costs, reducing traffic congestion, : enhancing safety, and increasin...
NASA Technical Reports Server (NTRS)
Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.
2015-01-01
The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.
78 FR 23594 - Importer of Controlled Substances; Notice of Application; Rhodes Technologies
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... requests for hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007... Schedule Opium, Raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import the listed...
Intelligent Information Systems.
ERIC Educational Resources Information Center
Zabezhailo, M. I.; Finn, V. K.
1996-01-01
An Intelligent Information System (IIS) uses data warehouse technology to facilitate the cycle of data and knowledge processing, including input, standardization, storage, representation, retrieval, calculation, and delivery. This article provides an overview of IIS products and artificial intelligence systems, illustrates examples of IIS…
12 CFR 217.122 - Qualification requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... related processes; (ii) Have and document a process (which must capture business environment and internal... current business activities, risk profile, technological processes, and risk management processes; and (ii... assessment systems. (D) Business environment and internal control factors. The Board-regulated institution...
12 CFR 324.122 - Qualification requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... related processes; (ii) Have and document a process (which must capture business environment and internal... current business activities, risk profile, technological processes, and risk management processes; and (ii... assessment systems. (D) Business environment and internal control factors. The FDIC-supervised institution...
Modeling and measurements of XRD spectra of extended solids under high pressure
NASA Astrophysics Data System (ADS)
Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.
2017-06-01
We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.
A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators
Ranzi, Andrea; De Leo, Giulio A.; Lauriola, Paolo
2013-01-01
Incineration is a common technology for waste disposal, and there is public concern for the health impact deriving from incinerators. Poor exposure assessment has been claimed as one of the main causes of inconsistency in the epidemiological literature. We reviewed 41 studies on incinerators published between 1984 and January 2013 and classified them on the basis of exposure assessment approach. Moreover, we performed a simulation study to explore how the different exposure metrics may influence the exposure levels used in epidemiological studies. 19 studies used linear distance as a measure of exposure to incinerators, 11 studies atmospheric dispersion models, and the remaining 11 studies a qualitative variable such as presence/absence of the source. All reviewed studies utilized residence as a proxy for population exposure, although residence location was evaluated with different precision (e.g., municipality, census block, or exact address). Only one study reconstructed temporal variability in exposure. Our simulation study showed a notable degree of exposure misclassification caused by the use of distance compared to dispersion modelling. We suggest that future studies (i) make full use of pollution dispersion models; (ii) localize population on a fine-scale; and (iii) explicitly account for the presence of potential environmental and socioeconomic confounding. PMID:23840228
NASA Technical Reports Server (NTRS)
Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.
2016-01-01
In a communications channel, the space environment between a spacecraft and an Earth ground station can potentially cause the loss of a data link or at least degrade its performance due to atmospheric effects, shadowing, multipath, or other impairments. In adaptive and coded modulation, the signal power level at the receiver can be used in order to choose a modulation-coding technique that maximizes throughput while meeting bit error rate (BER) and other performance requirements. It is the goal of this research to implement a generalized interacting multiple model (IMM) filter based on Kalman filters for improved received power estimation on software-dened radio (SDR) technology for satellite communications applications. The IMM filter has been implemented in Verilog consisting of a customizable bank of Kalman filters for choosing between performance and resource utilization. Each Kalman filter can be implemented using either solely a Schur complement module (for high area efficiency) or with Schur complement, matrix multiplication, and matrix addition modules (for high performance). These modules were simulated and synthesized for the Virtex II platform on the JPL Radio Experimenter Development System (EDS) at NASA Glenn Research Center. The results for simulation, synthesis, and hardware testing are presented.
Solar tower power plant using a particle-heated steam generator: Modeling and parametric study
NASA Astrophysics Data System (ADS)
Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan
2016-05-01
Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.
Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex
Van Eerden, Floris J.; Melo, Manuel N.; Frederix, Pim W. J. M.; Periole, Xavier; Marrink, Siewert J.
2017-01-01
Plastoquinone (PLQ) acts as an electron carrier between photosystem II (PSII) and the cytochrome b6f complex. To understand how PLQ enters and leaves PSII, here we show results of coarse grained molecular dynamics simulations of PSII embedded in the thylakoid membrane, covering a total simulation time of more than 0.5 ms. The long time scale allows the observation of many spontaneous entries of PLQ into PSII, and the unbinding of plastoquinol (PLQol) from the complex. In addition to the two known channels, we observe a third channel for PLQ/PLQol diffusion between the thylakoid membrane and the PLQ binding sites. Our simulations point to a promiscuous diffusion mechanism in which all three channels function as entry and exit channels. The exchange cavity serves as a PLQ reservoir. Our simulations provide a direct view on the exchange of electron carriers, a key step of the photosynthesis machinery. PMID:28489071
Wang, Yingcai; Wang, Can; Shi, Shuai; Fang, Shuai
2018-06-01
The effects of Mn(II) on Fenton system to treat papermaking wastewater and the mechanism of Mn(II) enhanced Fenton reaction were investigated in this study. The chemical oxygen demand (COD) removal efficiency was enhanced in the presence of Mn(II), which increased by 19% compared with that of the Fenton system alone. The pseudo-first order reaction kinetic rate constant of Mn(II)/Fenton system was 2.11 times higher than that of Fenton system. 67%-81% COD were removed with the increasing Mn(II) concentration from 0 to 0.8 g/L. COD removal efficiency was also enhanced in a wider pH range (3-7), which indicated the operation parameters of Fenton technology could be broadened to a milder condition. The study of the mechanism showed that Mn(II) participated in the oxidation and coagulation stages in Fenton system. In the oxidation stage, Mn(II) promotes the production of HO 2 •/ O 2 • - , then HO 2 •/ O 2 • - reacts with Fe(III) to accelerate the formation of Fe(II), and finally accelerates the production of HO•. Meantime MnMnO 3 and Fe(OH) 3 forms in the coagulation stage, facilitating the removal of suspended substances and a large amount of COD, which enhances the overall COD removal of papermaking wastewater. This study provided a detailed mechanism to improve practical applications of Fenton technology.
Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J
2014-06-01
Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.
Quiet High Speed Fan II (QHSF II): Final Report
NASA Technical Reports Server (NTRS)
Kontos, Karen; Weir, Don; Ross, Dave
2012-01-01
This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.
An Independent Scientific Assessment of Well Stimulation in California Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jane C.S. Long; Laura C. Feinstein; Corinne E. Bachmann
This study is issued in three volumes. Volume I, issued in January 2015, describes how well stimulation technologies work, how and where operators deploy these technologies for oil and gas production in California, and where they might enable production in the future. Volume II, the present volume, discusses how well stimulation could affect water, atmosphere, seismic activity, wildlife and vegetation, and human health. Volume II reviews available data, and identifies knowledge gaps and alternative practices that could avoid or mitigate these possible impacts. Volume III, also issued in July 2015, presents case studies that assess environmental issues and qualitative risksmore » for specific geographic regions. A final Summary Report summarizes key findings, conclusions and recommendations of all three volumes.« less
Performance of technology-driven simulators for medical students--a systematic review.
Michael, Michael; Abboudi, Hamid; Ker, Jean; Shamim Khan, Mohammed; Dasgupta, Prokar; Ahmed, Kamran
2014-12-01
Simulation-based education has evolved as a key training tool in high-risk industries such as aviation and the military. In parallel with these industries, the benefits of incorporating specialty-oriented simulation training within medical schools are vast. Adoption of simulators into medical school education programs has shown great promise and has the potential to revolutionize modern undergraduate education. An English literature search was carried out using MEDLINE, EMBASE, and psychINFO databases to identify all randomized controlled studies pertaining to "technology-driven" simulators used in undergraduate medical education. A validity framework incorporating the "framework for technology enhanced learning" report by the Department of Health, United Kingdom, was used to evaluate the capabilities of each technology-driven simulator. Information was collected regarding the simulator type, characteristics, and brand name. Where possible, we extracted information from the studies on the simulators' performance with respect to validity status, reliability, feasibility, education impact, acceptability, and cost effectiveness. We identified 19 studies, analyzing simulators for medical students across a variety of procedure-based specialities including; cardiovascular (n = 2), endoscopy (n = 3), laparoscopic surgery (n = 8), vascular access (n = 2), ophthalmology (n = 1), obstetrics and gynecology (n = 1), anesthesia (n = 1), and pediatrics (n = 1). Incorporation of simulators has so far been on an institutional level; no national or international trends have yet emerged. Simulators are capable of providing a highly educational and realistic experience for the medical students within a variety of speciality-oriented teaching sessions. Further research is needed to establish how best to incorporate simulators into a more primary stage of medical education; preclinical and clinical undergraduate medicine. Copyright © 2014 Elsevier Inc. All rights reserved.
Feasibility of new simulation technology to train novice drivers
DOT National Transportation Integrated Search
1996-12-01
This project examined the feasibility of using existing simulation and other electronic device technology with the potential for the safety training of novice drivers. Project activities included: a literature review; site visits and telephone inquir...
Conceptual modeling for Prospective Health Technology Assessment.
Gantner-Bär, Marion; Djanatliev, Anatoli; Prokosch, Hans-Ulrich; Sedlmayr, Martin
2012-01-01
Prospective Health Technology Assessment (ProHTA) is a new and innovative approach to analyze and assess new technologies, methods and procedures in health care. Simulation processes are used to model innovations before the cost-intensive design and development phase. Thus effects on patient care, the health care system as well as health economics aspects can be estimated. To generate simulation models a valid information base is necessary and therefore conceptual modeling is most suitable. Project-specifically improved methods and characteristics of simulation modeling are combined in the ProHTA Conceptual Modeling Process and initially implemented for acute ischemic stroke treatment in Germany. Additionally the project aims at simulation of other diseases and health care systems as well. ProHTA is an interdisciplinary research project within the Cluster of Excellence for Medical Technology - Medical Valley European Metropolitan Region Nuremberg (EMN), which is funded by the German Federal Ministry of Education and Research (BMBF), project grant No. 01EX1013B.
Falcione, Bonnie A; Meyer, Susan M
2014-10-15
To design an elective for pharmacy students that facilitates antimicrobial stewardship awareness, knowledge, and skill development by solving clinical cases, using human patient simulation technology. The elective was designed for PharmD students to describe principles and functions of stewardship programs, select, evaluate, refine, or redesign patient-specific plans for infectious diseases in the context of antimicrobial stewardship, and propose criteria and stewardship management strategies for an antimicrobial class at a health care institution. Teaching methods included active learning and lectures. Cases of bacterial endocarditis and cryptococcal meningitis were developed that incorporated human patient simulation technology. Forty-five pharmacy students completed an antimicrobial stewardship elective between 2010 and 2013. Outcomes were assessed using student perceptions of and performance on rubric-graded assignments. A PharmD elective using active learning, including novel cases conducted with human patient simulation technology, enabled outcomes consistent with those desired of pharmacists assisting in antimicrobial stewardship programs.
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Fomin, Vladimir; Diansky, Nikolay; Korshenko, Evgeniya
2017-04-01
In this paper, we present the improved version of the ocean general circulation sigma-model developed in the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The previous version referred to as INMOM (Institute of Numerical Mathematics Ocean Model) is used as the oceanic component of the IPCC climate system model INMCM (Institute of Numerical Mathematics Climate Model (Volodin et al 2010,2013). Besides, INMOM as the only sigma-model was used for simulations according to CORE-II scenario (Danabasoglu et al. 2014,2016; Downes et al. 2015; Farneti et al. 2015). In general, INMOM results are comparable to ones of other OGCMs and were used for investigation of climatic variations in the North Atlantic (Gusev and Diansky 2014). However, detailed analysis of some CORE-II INMOM results revealed some disadvantages of the INMOM leading to considerable errors in reproducing some ocean characteristics. So, the mass transport in the Antarctic Circumpolar Current (ACC) was overestimated. As well, there were noticeable errors in reproducing thermohaline structure of the ocean. After analysing the previous results, the new version of the OGCM was developed. It was decided to entitle is INMSOM (Institute of Numerical Mathematics Sigma Ocean Model). The new title allows one to distingwish the new model, first, from its older version, and second, from another z-model developed in the INM RAS and referred to as INMIO (Institute of Numerical Mathematics and Institute of Oceanology ocean model) (Ushakov et al. 2016). There were numerous modifications in the model, some of them are as follows. 1) Formulation of the ocean circulation problem in terms of full free surface with taking into account water amount variation. 2) Using tensor form of lateral viscosity operator invariant to rotation. 3) Using isopycnal diffusion including Gent-McWilliams mixing. 4) Using atmospheric forcing computation according to NCAR methodology (Large and Yeager 2009). 5) Improvement river runoff algorithm accounting the total amount of discharged water. 6) Using explicit leapfrog time scheme for all lateral operators and implicit Euler scheme for vertical diffusion and viscosity. The INMSOM is tested by reproducing World Ocean circulation and thermohaline characteristics using the well-proved CORE dataset. The presentation is devoted to the analysis of new INMSOM simulation results, estimation of their quality and comparison to the ones previously obtained with the INMOM. The main aim of the INMSOM development is using it as the oceanic component of the next version of INMCM. The work was supported by the Russian Foundation for Basic Research (grants № 16-05-00534 and № 15-05-07539) References 1. Danabasoglu, G., Yeager S.G., Bailey D., et al., 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 73, 76-107. 2. Danabasoglu, G., Yeager S.G., Kim W.M. et al., 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 97, 65-90. 3. Downes S.M., Farneti R., Uotila P. et al. An assessment of Southern Ocean water masses and sea ice during 1988-2007 in a suite of interannual CORE-II simulations. Ocean Modelling (2015), 94, 67-94. 4. Farneti R., Downes S.M., Griffies S.M. et al. An assessment of Antarctic Circumpolar Current and Southern Ocean Meridional Overturning Circulation during 1958-2007 in a suite of interannual CORE-II simulations, Ocean Modelling (2015), 93, 84-120. 5. Gusev A.V. and Diansky N.A. Numerical simulation of the World ocean circulation and its climatic variability for 1948-2007 using the INMOM. Izvestiya, Atmospheric and Oceanic Physics, 2014, V. 50, N. 1, P. 1-12 6. Large, W., Yeager, S., 2009. The global climatology of an interannually varying air-sea flux data set. Clim Dyn, V. 33, P. 341-364. 7. Ushakov K.V., Grankina T.B., Ibraev R.A. Modeling the water circulation in the North Atlantic in the scope of the CORE-II experiment. Izvestiya, Atmospheric and Oceanic Physics. 2016. V. 52, № 4, P. 365-375
InAs/GaSb type-II superlattice infrared detectors: three decades of development
NASA Astrophysics Data System (ADS)
Rogalski, A.; Kopytko, M.; Martyniuk, P.
2017-02-01
Recently, there has been considerable progress towards III-V antimonide-based low dimensional solids development and device design innovations. From a physics point of view, the type-II InAs/GaSb superlattice is an extremely attractive proposition. Their development results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe FPAs at reasonable cost and theoretical predictions of lower Auger recombination for type-II superlattice (T2SL) detectors compared to HgCdTe. Lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall lifetime are equal. Based on these promising results it is obvious now that the InAs/GaSb superlattice technology is competing with HgCdTe third generation detector technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing. Comments to the statement whether the superlattice IR photodetectors can outperform the "bulk" narrow gap HgCdTe detectors is one of the most important questions for the future of IR photodetectors presented by Rogalski at the April 2006 SPIE meeting in Orlando, Florida, are more credible today and are presented in this paper. It concerns the trade-offs between two most competing IR material technologies: InAs/GaSb type-II superlattices and HgCdTe ternary alloy system.