Sample records for simulator study final

  1. Mastoidectomy performance assessment of virtual simulation training using final-product analysis.

    PubMed

    Andersen, Steven A W; Cayé-Thomasen, Per; Sørensen, Mads S

    2015-02-01

    The future development of integrated automatic assessment in temporal bone virtual surgical simulators calls for validation against currently established assessment tools. This study aimed to explore the relationship between mastoidectomy final-product performance assessment in virtual simulation and traditional dissection training. Prospective trial with blinding. A total of 34 novice residents performed a mastoidectomy on the Visible Ear Simulator and on a cadaveric temporal bone. Two blinded senior otologists assessed the final-product performance using a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures. Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator. A modified version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency in simulation has been achieved. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Space Station communications and tracking systems modeling and RF link simulation

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.

    1986-01-01

    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.

  3. A Study of the Relationship between Student Final Exam Performance and Simulation Game Participation.

    ERIC Educational Resources Information Center

    Whiteley, T. R.; Faria, A. J.

    1989-01-01

    Describes study that investigated the relationship between participation in a business simulation game and performance on a final exam in a principles of marketing course. Past research on business games is reviewed; the use of midterm exam performance level as a pretest variable is explained; and question classification is described. (44…

  4. A study with ESI PAM-STAMP® on the influence of tool deformation on final part quality during a forming process

    NASA Astrophysics Data System (ADS)

    Vrolijk, Mark; Ogawa, Takayuki; Camanho, Arthur; Biasutti, Manfredi; Lorenz, David

    2018-05-01

    As a result from the ever increasing demand to produce lighter vehicles, more and more advanced high-strength materials are used in automotive industry. Focusing on sheet metal cold forming processes, these materials require high pressing forces and exhibit large springback after forming. Due to the high pressing forces deformations occur in the tooling geometry, introducing dimensional inaccuracies in the blank and potentially impact the final springback behavior. As a result the tool deformations can have an impact on the final assembly or introduce cosmetic defects. Often several iterations are required in try-out to obtain the required tolerances, with costs going up to as much as 30% of the entire product development cost. To investigate the sheet metal part feasibility and quality, in automotive industry CAE tools are widely used. However, in current practice the influence of the tool deformations on the final part quality is generally neglected and simulations are carried out with rigid tools to avoid drastically increased calculation times. If the tool deformation is analyzed through simulation it is normally done at the end of the drawing prosses, when contact conditions are mapped on the die structure and a static analysis is performed to check the deflections of the tool. But this method does not predict the influence of these deflections on the final quality of the part. In order to take tool deformations into account during drawing simulations, ESI has developed the ability to couple solvers efficiently in a way the tool deformations can be real-time included in the drawing simulation without high increase in simulation time compared to simulations with rigid tools. In this paper a study will be presented which demonstrates the effect of tool deformations on the final part quality.

  5. Glass fiber processing for the Moon/Mars program: Center director's discretionary fund final report

    NASA Technical Reports Server (NTRS)

    Tucker, D. S.; Ethridge, E.; Curreri, P.

    1992-01-01

    Glass fiber has been produced from two lunar soil simulants. These two materials simulate lunar mare soil and lunar highland soil compositions, respectively. Short fibers containing recrystallized areas were produced from the as-received simulants. Doping the highland simulant with 8 weight percent B2-O3 yielded a material which could be spun continuously. The effects of lunar gravity on glass fiber formation were studied utilizing NASA's KC-135 aircraft. Gravity was found to play a major role in final fiber diameter.

  6. Interactive Graphics Simulator: Design, Development, and Effectiveness/Cost Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Pieper, William J.; And Others

    This study was initiated to design, develop, implement, and evaluate a videodisc-based simulator system, the Interactive Graphics Simulator (IGS) for 6883 Converter Flight Control Test Station training at Lowry Air Force Base, Colorado. The simulator provided a means for performing task analysis online, developing simulations from the task…

  7. The Education of Attention as Explanation of Variability of Practice Effects : Learning the Final Approach Phase in a Flight Simulator

    ERIC Educational Resources Information Center

    Huet, Michael; Jacobs, David M.; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles

    2011-01-01

    The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice…

  8. Troubleshooting Instruction in Vocational-Technical Education Via Dynamic Simulation. Final Report.

    ERIC Educational Resources Information Center

    Finch, Curtis R.

    This study was designed to examine the feasibility of using simulation as a means of teaching vocational-technical students to detect and identify malfunctions in selected electrical and mechanical systems. A dynamic simulator was employed which features interchangeable panels and logic that permits the simulation of electrical or mechanical…

  9. Study of Natural Fiber Breakage during Composite Processing

    NASA Astrophysics Data System (ADS)

    Quijano-Solis, Carlos Jafet

    Biofiber-thermoplastic composites have gained considerable importance in the last century. To provide mechanical reinforcement to the polymer, fibers must be larger than a critical aspect ratio (length-to-width ratio). However, biofibers undergo breakage in length or width during processing, affecting their final aspect ratio in the composites. In this study, influence on biofiber breakage by factors related to processing conditions, fiber morphology and the flow type was investigated through: a) experiments using an internal mixer, a twin-screw extruder (TSE) or a capillary rheometer; and b) a Monte Carlo computer simulation. Composites of thermomechanical fibers of aspen or wheat straw mixed with polypropylene were studied. Internal mixer experiments analyzed wheat straw and two batches of aspen fibers, named AL and AS. AL fibers had longer average length. Processing variables included the temperature, rotors speed and fiber concentration. TSE experiments studied AL and AS fiber composites under various screws speeds, temperatures and feeding rates of the polymer and fibers. Capillary rheometers experiments determined AL fiber breakage in shear and elongational flows for composites processed at different concentrations, temperatures, and strain rates. Finally, the internal mixer experimental results where compared to Monte Carlo simulation predictions. The simulation focused on fiber length breakage due to fiber-polymer interactions. Internal mixer results showed that final fiber average length depended almost solely on processing conditions while final fiber average width depended on both processing conditions and initial fiber morphology. In the TSE, processing conditions as well as initial fiber length influenced final average length. TSE results showed that the fiber concentration regime seems to influence the effect of processing variables on fiber breakage. Capillary rheometer experiments demonstrated that biofiber breakage happens in both elongational and shear flows. In some cases, percentage of biofiber breakage in elongational flow is higher. In general, simulation predictions of final average lengths were in good agreement with experiments, indicating the importance of fiber-polymer interactions on fiber breakage. The largest discrepancies were obtained at higher fiber concentration composites; these differences might be resolved, in future simulations, by including the effect of fiber-fiber interactions.

  10. Exploring travelers' behavior in response to dynamic message signs (DMS) using a driving simulator : final report.

    DOT National Transportation Integrated Search

    2013-10-01

    This research studies the effectiveness of a dynamic message sign (DMS) using a driving : simulator. Over 100 subjects from different socio-economic and age groups were recruited to : drive the simulator under different traffic and driving conditions...

  11. To Determine the Effectiveness of Board Game Simulations in the Grade Five Social Studies Program. Final Report 80-7.

    ERIC Educational Resources Information Center

    Green, Vicki A.

    The report describes a study designed to ascertain the effectiveness of 12 board game simulations developed and used in a fifth grade Canadian history program. Questions examined include: 1) Does the use of board game simulations increase group participation and cultural, environmental, and historical awareness? 2) Does use of the games promote…

  12. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics. Final Report.

    ERIC Educational Resources Information Center

    Stenger, Anthony J.; And Others

    This study suggests and identifies computer image generation (CIG) algorithms for visual simulation that improve the training effectiveness of CIG simulators and identifies areas of basic research in visual perception that are significant for improving CIG technology. The first phase of the project entailed observing three existing CIG simulators.…

  13. A DEVELOPMENTAL STUDY OF MEDICAL TRAINING SIMULATORS FOR ANESTHESIOLOGISTS. FINAL REPORT.

    ERIC Educational Resources Information Center

    ABRAHAMSON, STEPHEN; DENSON, JUDSON S.

    IN THIS STUDY, A COMPUTER-CONTROLLED PATIENT SIMULATOR (SIM ONE) WAS DESIGNED, CONSTRUCTED, AND TESTED FOR THE TRAINING OF ANESTHESIOLOGY RESIDENTS AT THE UNIVERSITY OF SOUTHERN CALIFORNIA SCHOOL OF MEDICINE. THE TRAINING INVOLVED THE DEVELOPMENT OF SKILL IN ENDOTRACHEAL INTUBATION. THE EXPERIMENT INVOLVED 10 ANESTHESIOLOGY RESIDENTS. FIVE WERE…

  14. Simulating supersymmetry at the SSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, R.M.; Haber, H.E.

    1984-08-01

    Careful study of supersymmetric signatures at the SSC is required in order to distinguish them from Standard Model physics backgrounds. To this end, we have created an efficient, accurate computer program which simulates supersymmetric particle production and decay (or other new particles). We have incorporated the full matrix elements, keeping track of the polarizations of all intermediate states. (At this time hadronization of final-state partons is ignored). Using Monte Carlo techniques this program can generate any desired final-state distribution or individual events for Lego plots. Examples of the results of our study of supersymmetry at SSC are provided.

  15. Modeling and simulation of flow field in giant magnetostrictive pump

    NASA Astrophysics Data System (ADS)

    Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo

    2017-09-01

    Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.

  16. Operational improvements at traffic circles : final report, December 2008.

    DOT National Transportation Integrated Search

    2008-12-01

    This study deals with the development of a credible and valid simulation model of the Collingwood, : Brooklawn, and Asbury traffic circles in New Jersey. These simulation models are used to evaluate : various geometric and operational improvement alt...

  17. Statistical evaluation of rainfall-simulator and erosion testing procedure : final report.

    DOT National Transportation Integrated Search

    1977-01-01

    The specific aims of this study were (1) to supply documentation of statistical repeatability and precision of the rainfall-simulator and to document the statistical repeatabiity of the soil-loss data when using the previously recommended tentative l...

  18. Pilot study comparing simulation-based and didactic lecture-based critical care teaching for final-year medical students.

    PubMed

    Solymos, Orsolya; O'Kelly, Patrick; Walshe, Criona M

    2015-10-21

    Simulation-based medical education has rapidly evolved over the past two decades, despite this, there are few published reports of its use in critical care teaching. We hypothesised that simulation-based teaching of a critical care topic to final-year medical students is superior to lecture-based teaching. Thirty-nine final-year medical students were randomly assigned to either simulation-based or lecture-based teaching in the chosen critical care topic. The study was conducted over a 6-week period. Efficacy of each teaching method was compared through use of multiple choice questionnaires (MCQ) - baseline, post-teaching and 2 week follow-up. Student satisfaction was evaluated by means of a questionnaire. Feasibility and resource requirements were documented by teachers. Eighteen students were randomised to simulation-based, and 21 to lecture-based teaching. There were no differences in age and gender between groups (p > 0.05). Simulation proved more resource intensive requiring specialised equipment, two instructors, and increased duration of teaching sessions (126.7 min (SD = 4.71) vs 68.3 min (SD = 2.36)). Students ranked simulation-based teaching higher with regard to enjoyment (p = 0.0044), interest (p = 0.0068), relevance to taught subject (p = 0.0313), ease of understanding (p = 0.0476) and accessibility to posing questions (p = 0.001). Both groups demonstrated improvement in post-teaching MCQ from baseline (p = 0.0002), with greater improvement seen among the simulation group (p = 0.0387), however, baseline scores were higher among the lecture group. The results of the 2-week follow-up MCQ and post-teaching MCQ were not statistically significant when each modality were compared. Simulation was perceived as more enjoyable by students. Although there was a greater improvement in post-teaching MCQ among the simulator group, baseline scores were higher among lecture group which limits interpretation of efficacy. Simulation is more resource intensive, as demonstrated by increased duration and personnel required, and this may have affected our results. The current pilot may be of use in informing future studies in this area.

  19. Minimizing the Discrepancy between Simulated and Historical Failures in Turbine Engines: A Simulation-Based Optimization Method (Postprint)

    DTIC Science & Technology

    2015-01-01

    Procedure. The simulated annealing (SA) algorithm is a well-known local search metaheuristic used to address discrete, continuous, and multiobjective...design of experiments (DOE) to tune the parameters of the optimiza- tion algorithm . Section 5 shows the results of the case study. Finally, concluding... metaheuristic . The proposed method is broken down into two phases. Phase I consists of a Monte Carlo simulation to obtain the simulated percentage of failure

  20. Void Growth and Coalescence Simulations

    DTIC Science & Technology

    2013-08-01

    distortion and damage, minimum time step, and appropriate material model parameters. Further, a temporal and spatial convergence study was used to...estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we use a Gurson model with Johnson-Cook...spatial convergence study was used to estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we

  1. LDRD project final report : hybrid AI/cognitive tactical behavior framework for LVC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djordjevich, Donna D.; Xavier, Patrick Gordon; Brannon, Nathan Gregory

    This Lab-Directed Research and Development (LDRD) sought to develop technology that enhances scenario construction speed, entity behavior robustness, and scalability in Live-Virtual-Constructive (LVC) simulation. We investigated issues in both simulation architecture and behavior modeling. We developed path-planning technology that improves the ability to express intent in the planning task while still permitting an efficient search algorithm. An LVC simulation demonstrated how this enables 'one-click' layout of squad tactical paths, as well as dynamic re-planning for simulated squads and for real and simulated mobile robots. We identified human response latencies that can be exploited in parallel/distributed architectures. We did an experimentalmore » study to determine where parallelization would be productive in Umbra-based force-on-force (FOF) simulations. We developed and implemented a data-driven simulation composition approach that solves entity class hierarchy issues and supports assurance of simulation fairness. Finally, we proposed a flexible framework to enable integration of multiple behavior modeling components that model working memory phenomena with different degrees of sophistication.« less

  2. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy

    NASA Astrophysics Data System (ADS)

    Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael

    2017-03-01

    Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.

  3. A Validation Study of the Compressible Rayleigh–Taylor Instability Comparing the Ares and Miranda Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.

    In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less

  4. A Validation Study of the Compressible Rayleigh–Taylor Instability Comparing the Ares and Miranda Codes

    DOE PAGES

    Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.

    2017-04-20

    In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less

  5. Study of final-state radiation in decays of Z bosons produced in $pp$ collisions at 7 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-05-29

    The differential cross sections for the production of photons in Z→μ +μ -γ decays are presented as a function of the transverse energy of the photon and its separation from the nearest muon. The data for these measurements are collected with the CMS detector and correspond to an integrated luminosity of 4.7 fb -1 of pp collisions at √s=7 TeV delivered by the CERN LHC. The cross sections are compared to simulations with powheg and pythia, where pythia is used to simulate parton showers and final-state photons. These simulations match the data to better than 5%.

  6. Crew interface definition study, phase 1

    NASA Technical Reports Server (NTRS)

    Callihan, J. C.; Kraemer, J. W.; Alles, J. A.

    1971-01-01

    The timeline analysis of the Shuttle orbiter missions which was conducted in the Phase I Crew Interface Definition Study and the requirements for the man-in-the-loop simulation study are presented. Mission definitions and objectives are presented as they relate to various Shuttle Orbiter missions. The requirements for crew participation and the information required by the crew are discussed, and finally the rationale behind the display concept and calling procedures is given. The simulation objectives, the simulation mechanization, including a detailed presentation of the display and control concept, the simulator test plan and the results are discussed.

  7. Towards an understanding of the attributes of simulation that enable learning in undergraduate nurse education: A grounded theory study.

    PubMed

    Bland, Andrew J; Tobbell, Jane

    2016-09-01

    Simulation has become an established feature of nurse education yet little is understood about the mechanisms that lead to learning. To explore the attributes of simulation-based education that enable student learning in undergraduate nurse education. Final year students drawn from one UK University (n=46) participated in a grounded theory study. First, nonparticipant observation and video recording of student activity was undertaken. Following initial analysis, recordings and observations were deconstructed during focus group interviews that enabled both the researcher and participants to unpack meaning. Lastly emergent findings were verified with final year students drawn from a second UK University (n=6). A staged approach to learning emerged from engagement in simulation. This began with initial hesitation as students moved through nonlinear stages to making connections and thinking like a nurse. Core findings suggest that simulation enables curiosity and intellect (main concern) through doing (core category) and interaction with others identified as social collaboration (category). This study offers a theoretical basis for understanding simulation-based education and integration of strategies that maximise the potential for learning. Additionally it offers direction for further research, particularly with regards to how the application of theory to practice is accelerated through learning by doing and working collaboratively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Easing student transition to graduate nurse: a SIMulated Professional Learning Environment (SIMPLE) for final year student nurses.

    PubMed

    Liaw, Sok Ying; Koh, Yiwen; Dawood, Rabiah; Kowitlawakul, Yanika; Zhou, Wentao; Lau, Siew Tiang

    2014-03-01

    Preparing nursing students for making the transition to graduate nurse is crucial for entry into practice. Final year student nurses at the National University of Singapore (NUS) are required to undergo a consolidated clinical practice to prepare them for their transition to graduate nurse. To describe the development, implementation and evaluation of a simulation program known as SIMulated Professional Learning Environment (SIMPLE) in preparing the final year student nurses for their clinical practicum in transition to graduate nurse practice. A set of simulation features and best practices were used as conceptual framework to develop and implement the simulation program. 94 final year student nurses participated in the 15-hour SIMPLE program that incorporated multiple simulation scenarios based on actual ward clinical practices. Pre and post-tests were conducted to assess the students' preparedness for their clinical practice in transition to graduate nurse practice. The students also completed a satisfaction questionnaire and open questions to evaluate their simulation experiences. The student nurses demonstrated a significant improvement (t=12.06, p<0.01) on post-test score (mean=117.21, SD=15.17) from pre-test score (mean=97.86, SD=15.08) for their perceived preparedness towards their clinical practicum in transition to graduate nurse practice. They were highly satisfied with their simulation learning. Themes emerged from the comments on the most valuable aspects of the SIMPLE program and ways to improve the program. The study provided evidences on the effectiveness of the SIMPLE program in enhancing the students' preparedness for their transition to graduate nurse practice. A key success of the SIMPLE program was the used of simulation strategy and the involvement of practicing nurses that closely linked the students with the realities of current nursing practice to prepare them for the role of staff nurses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Applications of Simulator Freeze to Carrier Guideslope Tracking Instruction. Cooperative Study Series. Final Report, May 1, 1980-August 31, 1981.

    ERIC Educational Resources Information Center

    Hughes, R. G.; And Others

    Twenty-five experienced F-4 and F-16 Air Force pilots were instructed in carrier landings in the Visual Technology Research Simulator (VTRS). The training was conducted under three instructional conditions, two of which employed the simulator's "freeze" feature. Additionally, two methods of defining errors for carrier glideslope tracking…

  10. Advanced Computer Simulations of Military Incinerators

    DTIC Science & Technology

    2004-12-01

    Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in

  11. Mental Simulation of Visceral States Affects Preferences and Behavior

    PubMed Central

    Steinmetz, Janina; Tausen, Brittany M.; Risen, Jane L.

    2017-01-01

    Preferences and behavior are heavily influenced by one’s current visceral experience, yet people often fail to anticipate such effects. Although research suggests that this gap is difficult to overcome—to act as if in another visceral state—research on mental simulation has demonstrated that simulations can substitute for experiences, albeit to a weaker extent. We examine whether mentally simulating visceral states can impact preferences and behavior. We show that simulating a specific visceral state (e.g., being cold or hungry) shifts people’s preferences for relevant activities (Studies 1a-2) and choices of food portion sizes (Study 3). Like actual visceral experiences, mental simulation only affects people’s current preferences but not their general preferences (Study 4). Finally, people project simulated states onto similar others, as is the case for actual visceral experiences (Study 5). Thus, mental simulation may help people anticipate their own and others’ future preferences, thereby improving their decision making. PMID:29161953

  12. Modeling and simulation of maintenance treatment in first-line non-small cell lung cancer with external validation.

    PubMed

    Han, Kelong; Claret, Laurent; Sandler, Alan; Das, Asha; Jin, Jin; Bruno, Rene

    2016-07-13

    Maintenance treatment (MTx) in responders following first-line treatment has been investigated and practiced for many cancers. Modeling and simulation may support interpretation of interim data and development decisions. We aimed to develop a modeling framework to simulate overall survival (OS) for MTx in NSCLC using tumor growth inhibition (TGI) data. TGI metrics were estimated using longitudinal tumor size data from two Phase III first-line NSCLC studies evaluating bevacizumab and erlotinib as MTx in 1632 patients. Baseline prognostic factors and TGI metric estimates were assessed in multivariate parametric models to predict OS. The OS model was externally validated by simulating a third independent NSCLC study (n = 253) based on interim TGI data (up to progression-free survival database lock). The third study evaluated pemetrexed + bevacizumab vs. bevacizumab alone as MTx. Time-to-tumor-growth (TTG) was the best TGI metric to predict OS. TTG, baseline tumor size, ECOG score, Asian ethnicity, age, and gender were significant covariates in the final OS model. The OS model was qualified by simulating OS distributions and hazard ratios (HR) in the two studies used for model-building. Simulations of the third independent study based on interim TGI data showed that pemetrexed + bevacizumab MTx was unlikely to significantly prolong OS vs. bevacizumab alone given the current sample size (predicted HR: 0.81; 95 % prediction interval: 0.59-1.09). Predicted median OS was 17.3 months and 14.7 months in both arms, respectively. These simulations are consistent with the results of the final OS analysis published 2 years later (observed HR: 0.87; 95 % confidence interval: 0.63-1.21). Final observed median OS was 17.1 months and 13.2 months in both arms, respectively, consistent with our predictions. A robust TGI-OS model was developed for MTx in NSCLC. TTG captures treatment effect. The model successfully predicted the OS outcomes of an independent study based on interim TGI data and thus may facilitate trial simulation and interpretation of interim data. The model was built based on erlotinib data and externally validated using pemetrexed data, suggesting that TGI-OS models may be treatment-independent. The results supported the use of longitudinal tumor size and TTG as endpoints in early clinical oncology studies.

  13. Lewis Research Center studies of multiple large wind turbine generators on a utility network

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.

  14. F-14 modeling study

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Baron, S.

    1984-01-01

    Preliminary results in the application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues are discussed in the context of an air to air target tracking task. The closed loop model is described briefly. Then, problem simplifications that are employed to reduce computational costs are discussed. Finally, model results showing sensitivity of performance to various assumptions concerning the simulator and/or the pilot are presented.

  15. Integrated Multiscale Modeling of Molecular Computing Devices. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Schulze

    2012-11-01

    The general theme of this research has been to expand the capabilities of a simulation technique, Kinetic Monte Carlo (KMC) and apply it to study self-assembled nano-structures on epitaxial thin films. KMC simulates thin film growth and evolution by replacing the detailed dynamics of the system's evolution, which might otherwise be studied using molecular dynamics, with an appropriate stochastic process.

  16. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  17. Brownian motion of massive black hole binaries and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Spera, M.; Mapelli, M.

    2016-09-01

    Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion. Here we study the significance of Brownian motion of BHBs in merger remnants in the context of the final parsec problem. We simulate mergers with various particle numbers (from 8k to 1M) and with several density profiles. Moreover, we compare simulations where the BHB is fixed at the centre of the merger remnant with simulations where the BHB is free to random walk. We find that Brownian motion does not significantly affect the evolution of BHBs in simulations with particle numbers in excess of one million, and that the hardening measured in merger simulations is due to collisionless loss cone refilling.

  18. Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in an automated terminal area metering and spacing ATC environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1980-01-01

    This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.

  19. Issues and opportunities: beam simulations for heavy ion fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A

    1999-07-15

    UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high-more » current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to (2) electromagnetic or magnetoinductive PIC or hybrid PIG/ fluid simulations in the fusion chamber (which would finally pass their particle trajectory information to the radiation- hydrodynamics codes used for target design); in parallel, (3) detailed PIC, delta- f, core/ test- particle, and perhaps continuum Vlasov codes should be used to study individual sections of the driver and chamber very carefully; consistency may be assured by linking data from the PIC sequence, and knowledge gained may feed back into that sequence.« less

  20. The effect of self-directed virtual reality simulation on dissection training performance in mastoidectomy.

    PubMed

    Andersen, Steven Arild Wuyts; Foghsgaard, Søren; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-08-01

    To establish the effect of self-directed virtual reality (VR) simulation training on cadaveric dissection training performance in mastoidectomy and the transferability of skills acquired in VR simulation training to the cadaveric dissection training setting. Prospective study. Two cohorts of 20 novice otorhinolaryngology residents received either self-directed VR simulation training before cadaveric dissection training or vice versa. Cadaveric and VR simulation performances were assessed using final-product analysis with three blinded expert raters. The group receiving VR simulation training before cadaveric dissection had a mean final-product score of 14.9 (95 % confidence interval [CI] [12.9-16.9]) compared with 9.8 (95% CI [8.4-11.1]) in the group not receiving VR simulation training before cadaveric dissection. This 52% increase in performance was statistically significantly (P < 0.0001). A single dissection mastoidectomy did not increase VR simulation performance (P = 0.22). Two hours of self-directed VR simulation training was effective in increasing cadaveric dissection mastoidectomy performance and suggests that mastoidectomy skills are transferable from VR simulation to the traditional dissection setting. Virtual reality simulation training can therefore be employed to optimize training, and can spare the use of donated material and instructional resources for more advanced training after basic competencies have been acquired in the VR simulation environment. NA. Laryngoscope, 126:1883-1888, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  1. 3D Simulation Modeling of the Tooth Wear Process.

    PubMed

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  2. 3D Simulation Modeling of the Tooth Wear Process

    PubMed Central

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942

  3. Optimization and development of a core-in-cup tablet for modulated release of theophylline in simulated gastrointestinal fluids.

    PubMed

    Danckwerts, M P

    2000-07-01

    A triple-layer core-in-cup tablet that can release theophylline in simulated gastrointestinal (GI) fluids at three distinct rates has been developed. The first layer is an immediate-release layer; the second layer is a sustained-release layer; and the last layer is a boost layer, which was designed to coincide with a higher nocturnal dose of theophylline. The study consisted of two stages. The first stage optimized the sustained-release layer of the tablet to release theophylline over a period of 12 hr. Results from this stage indicated that 30% w/w acacia gum was the best polymer and concentration to use when compressed to a hardness of 50 N/m2. The second stage of the study involved the investigation of the final triple-layer core-in-cup tablet to release theophylline at three different rates in simulated GI fluids. The triple-layer modulated core-in-cup tablet successfully released drug in simulated fluids at an initial rate of 40 mg/min, followed by a rate of 0.4085 mg/min, in simulated gastric fluid TS, 0.1860 mg/min in simulated intestinal fluid TS, and finally by a boosted rate of 0.6952 mg/min.

  4. Simulation Data as Data Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, G; Arrighi, W; Critchlow, T

    2003-11-18

    Computational or scientific simulations are increasingly being applied to solve a variety of scientific problems. Domains such as astrophysics, engineering, chemistry, biology, and environmental studies are benefiting from this important capability. Simulations, however, produce enormous amounts of data that need to be analyzed and understood. In this overview paper, we describe scientific simulation data, its characteristics, and the way scientists generate and use the data. We then compare and contrast simulation data to data streams. Finally, we describe our approach to analyzing simulation data, present the AQSim (Ad-hoc Queries for Simulation data) system, and discuss some of the challenges thatmore » result from handling this kind of data.« less

  5. Shoulder arthroscopy simulator training improves shoulder arthroscopy performance in a cadaveric model.

    PubMed

    Henn, R Frank; Shah, Neel; Warner, Jon J P; Gomoll, Andreas H

    2013-06-01

    The purpose of this study was to quantify the benefits of shoulder arthroscopy simulator training with a cadaveric model of shoulder arthroscopy. Seventeen first-year medical students with no prior experience in shoulder arthroscopy were enrolled and completed this study. Each subject completed a baseline proctored arthroscopy on a cadaveric shoulder, which included controlling the camera and completing a standard series of tasks using the probe. The subjects were randomized, and 9 of the subjects received training on a virtual reality simulator for shoulder arthroscopy. All subjects then repeated the same cadaveric arthroscopy. The arthroscopic videos were analyzed in a blinded fashion for time to task completion and subjective assessment of technical performance. The 2 groups were compared by use of Student t tests, and change over time within groups was analyzed with paired t tests. There were no observed differences between the 2 groups on the baseline evaluation. The simulator group improved significantly from baseline with respect to time to completion and subjective performance (P < .05). Time to completion was significantly faster in the simulator group compared with controls at the final evaluation (P < .05). No difference was observed between the groups on the subjective scores at the final evaluation (P = .98). Shoulder arthroscopy simulator training resulted in significant benefits in clinical shoulder arthroscopy time to task completion in this cadaveric model. This study provides important additional evidence of the benefit of simulators in orthopaedic surgical training. There may be a role for simulator training in shoulder arthroscopy education. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. Shoulder Arthroscopy Simulator Training Improves Shoulder Arthroscopy Performance in a Cadaver Model

    PubMed Central

    Henn, R. Frank; Shah, Neel; Warner, Jon J.P.; Gomoll, Andreas H.

    2013-01-01

    Purpose The purpose of this study was to quantify the benefits of shoulder arthroscopy simulator training with a cadaver model of shoulder arthroscopy. Methods Seventeen first year medical students with no prior experience in shoulder arthroscopy were enrolled and completed this study. Each subject completed a baseline proctored arthroscopy on a cadaveric shoulder, which included controlling the camera and completing a standard series of tasks using the probe. The subjects were randomized, and nine of the subjects received training on a virtual reality simulator for shoulder arthroscopy. All subjects then repeated the same cadaveric arthroscopy. The arthroscopic videos were analyzed in a blinded fashion for time to task completion and subjective assessment of technical performance. The two groups were compared with students t-tests, and change over time within groups was analyzed with paired t-tests. Results There were no observed differences between the two groups on the baseline evaluation. The simulator group improved significantly from baseline with respect to time to completion and subjective performance (p<0.05). Time to completion was significantly faster in the simulator group compared to controls at final evaluation (p<0.05). No difference was observed between the groups on the subjective scores at final evaluation (p=0.98). Conclusions Shoulder arthroscopy simulator training resulted in significant benefits in clinical shoulder arthroscopy time to task completion in this cadaver model. This study provides important additional evidence of the benefit of simulators in orthopaedic surgical training. Clinical Relevance There may be a role for simulator training in shoulder arthroscopy education. PMID:23591380

  7. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert; Abplanalp, Jennifer M.

    2015-03-01

    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19more » locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.« less

  8. Proactive and Adaptive Decision Support Study (PDS)

    DTIC Science & Technology

    2014-12-09

    situations diverge from known models. Note that identifying the mission is not an open -ended problem, and is consequently not intractable. The set of...Simulation ( BRIMS ) Conference, Amelia Island, FL, 2012. [9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially...Simulation Conference ( BRIMS ), Sundance, Utah, 2011. PDS Study Final Report 15 Distribution Statement A. Approved for public release; distribution

  9. Gaming via Computer Simulation Techniques for Junior College Economics Education. Final Report.

    ERIC Educational Resources Information Center

    Thompson, Fred A.

    A study designed to answer the need for more attractive and effective economics education involved the teaching of one junior college economics class by the conventional (lecture) method and an experimental class by computer simulation techniques. Econometric models approximating the "real world" were computer programed to enable the experimental…

  10. Revised Planning Methodology For Signalized Intersections And Operational Analysis Of Exclusive Left-Turn Lanes, A Simulation-Based Method, Part - I: Literature Review (Final Report)

    DOT National Transportation Integrated Search

    1996-04-01

    THE STUDY INVESTIGATES THE APPLICATION OF SIMULATION ALONG WITH FIELD OBSERVATIONS FOR ESTIMATION OF EXCLUSIVE LEFT-TURN SATURATION FLOW RATE AND CAPACITY. THE ENTIRE RESEARCH HAS COVERED THE FOLLOWING PRINCIPAL SUBJECTS: (1) A SATURATION FLOW MODEL ...

  11. Constructing and Evaluating a Validity Argument for the Final-Year Ward Simulation Exercise

    ERIC Educational Resources Information Center

    Till, Hettie; Ker, Jean; Myford, Carol; Stirling, Kevin; Mires, Gary

    2015-01-01

    The authors report final-year ward simulation data from the University of Dundee Medical School. Faculty who designed this assessment intend for the final score to represent an individual senior medical student's level of clinical performance. The results are included in each student's portfolio as one source of evidence of the student's…

  12. Laparoscopic skills maintenance: a randomized trial of virtual reality and box trainer simulators.

    PubMed

    Khan, Montaha W; Lin, Diwei; Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy

    2014-01-01

    A number of simulators have been developed to teach surgical trainees the basic skills required to effectively perform laparoscopic surgery; however, consideration needs to be given to how well the skills taught by these simulators are maintained over time. This study compared the maintenance of laparoscopic skills learned using box trainer and virtual reality simulators. Participants were randomly allocated to be trained and assessed using either the Society of American Gastrointestinal Endoscopic Surgeons Fundamentals of Laparoscopic Surgery (FLS) simulator or the Surgical Science virtual reality simulator. Once participants achieved a predetermined level of proficiency, they were assessed 1, 3, and 6 months later. At each assessment, participants were given 2 practice attempts and assessed on their third attempt. The study was conducted through the Simulated Surgical Skills Program that was held at the Royal Australasian College of Surgeons, Adelaide, Australia. Overall, 26 participants (13 per group) completed the training and all follow-up assessments. There were no significant differences between simulation-trained cohorts for age, gender, training level, and the number of surgeries previously performed, observed, or assisted. Scores for the FLS-trained participants did not significantly change over the follow-up period. Scores for LapSim-trained participants significantly deteriorated at the first 2 follow-up points (1 and 3 months) (p < 0.050), but returned to be near initial levels by the final follow-up (6 months). This research showed that basic laparoscopic skills learned using the FLS simulator were maintained more consistently than those learned on the LapSim simulator. However, by the final follow-up, both simulator-trained cohorts had skill levels that were not significantly different to those at proficiency after the initial training period. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  13. Influence of plasticity models upon the outcome of simulated hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Thomas, John N.

    1994-07-01

    This paper describes the results of numerical simulations of aluminum upon aluminum impacts which were performed with the CTH hydrocode to determine the effect plasticity formulations upon the final perforation size in the targets. The targets were 1 mm and 5 mm thick plates and the projectiles were 10 mm by 10 mm right circular cylinders. Both targets and projectiles were represented as 2024 aluminium alloy. The hydrocode simulations were run in a two-dimensional cylindrical geometry. Normal impacts at velocites between 5 and 15 km/s were simulated. Three isotropic yield stress models were explored in the simulations: an elastic-perfectly plastic model and the Johnson-Cook and Steinberg-Guinan-Lund viscoplastic models. The fracture behavior was modeled by a simple tensile pressure criterion. The simulations show that using the three strength models resulted in only minor differences in the final perforation diameter. The simulation results were used to construct an equation to predict the final hole size resulting from impacts on thin targets.

  14. Detached Eddy Simulation of Flap Side-Edge Flow

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Shankar K.; Shariff, Karim R.

    2016-01-01

    Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.

  15. Effect of a Predictor Instrument on Learning to Land a Simulated Jet Trainer. Final Report.

    ERIC Educational Resources Information Center

    Smith, Russell L.; And Others

    The study investigates the potential utility of a predictor instrument in the training of manual control operators in aircraft simulators. Various predictor display design configurations were presented to subjects during training trials on an aircraft approach to landing task. Subsequently, subjects were tested on trials devoid of the predictor…

  16. Cognitive, Social, and Literacy Competencies: The Chelsea Bank Simulation Project. Year One: Final Report. [Volume 2]: Appendices.

    ERIC Educational Resources Information Center

    Duffy, Thomas; And Others

    This supplementary volume presents appendixes A-E associated with a 1-year study which determined what secondary school students were doing as they engaged in the Chelsea Bank computer software simulation activities. Appendixes present the SCANS Analysis Coding Sheet; coding problem analysis of 50 video segments; student and teacher interview…

  17. Final Overview of ACES Simulation for Evaluation SARP Well-Clear Definitions

    NASA Technical Reports Server (NTRS)

    Santiago, Confesor; Johnson, Marcus A.; Isaacson, Doug; Hershey, David

    2014-01-01

    The UAS in the NAS project is studying the minimum operational performance standards for unmanned aerial systems (UAS's) detect-and-avoid (DAA) system in order to operate in the National Airspace System. The DoD's Science and research Panel (SARP) Well-Clear Workshop is investigating the time and spatial boundary at which an UAS violates well-clear. NASA is supporting this effort through use of its Airspace Concept Evaluation System (ACES) simulation platform. This briefing presents the final results to the SARP, which will be used to judge the three candidate well-clear definitions, and for the selection of the most operationally suitable option.

  18. Training driving ability in a traumatic brain-injured individual using a driving simulator: a case report.

    PubMed

    Imhoff, Sarah; Lavallière, Martin; Germain-Robitaille, Mathieu; Teasdale, Normand; Fait, Philippe

    2017-01-01

    Traumatic brain injury (TBI) causes functional deficits that may significantly interfere with numerous activities of daily living such as driving. We report the case of a 20-year-old woman having lost her driver's license after sustaining a moderate TBI. We aimed to evaluate the effectiveness of an in-simulator training program with automated feedback on driving performance in a TBI individual. The participant underwent an initial and a final in-simulator driving assessment and 11 in-simulator training sessions with driving-specific automated feedbacks. Driving performance (simulation duration, speed regulation and lateral positioning) was measured in the driving simulator. Speeding duration decreased during training sessions from 1.50 ± 0.80 min (4.16 ± 2.22%) to 0.45 ± 0.15 min (0.44 ± 0.42%) but returned to initial duration after removal of feedbacks for the final assessment. Proper lateral positioning improved with training and was maintained at the final assessment. Time spent in an incorrect lateral position decreased from 18.85 min (53.61%) in the initial assessment to 1.51 min (4.64%) on the final assessment. Driving simulators represent an interesting therapeutic avenue. Considerable research efforts are needed to confirm the effectiveness of this method for driving rehabilitation of individuals who have sustained a TBI.

  19. Survey of outcomes in a faculty development program on simulation pedagogy.

    PubMed

    Roh, Young Sook; Kim, Mi Kang; Tangkawanich, Thitiarpha

    2016-06-01

    Although many nursing programs use simulation as a teaching-learning modality, there are few systematic approaches to help nursing educators learn this pedagogy. This study evaluates the effects of a simulation pedagogy nursing faculty development program on participants' learning perceptions using a retrospective pre-course and post-course design. Sixteen Thai participants completed a two-day nursing faculty development program on simulation pedagogy. Thirteen questionnaires were used in the final analysis. The participants' self-perceived learning about simulation teaching showed significant post-course improvement. On a five-point Likert scale, the composite mean attitude, subjective norm, and perceived behavioral control scores, as well as intention to use a simulator, showed a significant post-course increase. A faculty development program on simulation pedagogy induced favorable learning and attitudes. Further studies must test how faculty performance affects the cognitive, emotional, and social dimensions of learning in a simulation-based learning domain. © 2015 Wiley Publishing Asia Pty Ltd.

  20. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  1. Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva

    2018-04-01

    Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.

  2. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Psychological predictors of college students' cell phone use while driving.

    PubMed

    Schlehofer, Michèle M; Thompson, Suzanne C; Ting, Sarah; Ostermann, Sharon; Nierman, Angela; Skenderian, Jessica

    2010-07-01

    Despite the known risk, many people talk on a phone while driving. This study explored psychological predictors of cell phone use while driving. College students (final N=69) completed a survey and predicted their driving performance both with and without a simultaneous phone conversation. Their actual performance on a driving simulator was then assessed. Cell phone use reduced performance on the simulation task. Further, perceiving oneself as good at compensating for driving distractions, overestimating one's performance on the driving simulator, and high illusory control predicted more frequent cell phone use while driving in everyday life. Finally, those who talked more frequently on a phone while driving had poorer real-world driving records. These findings suggest illusory control and positive illusions partly explain driver's decisions of whether to use cell phones while driving. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Modeling Clinical Outcomes in Prostate Cancer: Application and Validation of the Discrete Event Simulation Approach.

    PubMed

    Pan, Feng; Reifsnider, Odette; Zheng, Ying; Proskorovsky, Irina; Li, Tracy; He, Jianming; Sorensen, Sonja V

    2018-04-01

    Treatment landscape in prostate cancer has changed dramatically with the emergence of new medicines in the past few years. The traditional survival partition model (SPM) cannot accurately predict long-term clinical outcomes because it is limited by its ability to capture the key consequences associated with this changing treatment paradigm. The objective of this study was to introduce and validate a discrete-event simulation (DES) model for prostate cancer. A DES model was developed to simulate overall survival (OS) and other clinical outcomes based on patient characteristics, treatment received, and disease progression history. We tested and validated this model with clinical trial data from the abiraterone acetate phase III trial (COU-AA-302). The model was constructed with interim data (55% death) and validated with the final data (96% death). Predicted OS values were also compared with those from the SPM. The DES model's predicted time to chemotherapy and OS are highly consistent with the final observed data. The model accurately predicts the OS hazard ratio from the final data cut (predicted: 0.74; 95% confidence interval [CI] 0.64-0.85 and final actual: 0.74; 95% CI 0.6-0.88). The log-rank test to compare the observed and predicted OS curves indicated no statistically significant difference between observed and predicted curves. However, the predictions from the SPM based on interim data deviated significantly from the final data. Our study showed that a DES model with properly developed risk equations presents considerable improvements to the more traditional SPM in flexibility and predictive accuracy of long-term outcomes. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  5. Computer-based simulation training in emergency medicine designed in the light of malpractice cases.

    PubMed

    Karakuş, Akan; Duran, Latif; Yavuz, Yücel; Altintop, Levent; Calişkan, Fatih

    2014-07-27

    Using computer-based simulation systems in medical education is becoming more and more common. Although the benefits of practicing with these systems in medical education have been demonstrated, advantages of using computer-based simulation in emergency medicine education are less validated. The aim of the present study was to assess the success rates of final year medical students in doing emergency medical treatment and evaluating the effectiveness of computer-based simulation training in improving final year medical students' knowledge. Twenty four Students trained with computer-based simulation and completed at least 4 hours of simulation-based education between the dates Feb 1, 2010 - May 1, 2010. Also a control group (traditionally trained, n =24) was chosen. After the end of training, students completed an examination about 5 randomized medical simulation cases. In 5 cases, an average of 3.9 correct medical approaches carried out by computer-based simulation trained students, an average of 2.8 correct medical approaches carried out by traditionally trained group (t = 3.90, p < 0.005). We found that the success of students trained with simulation training in cases which required complicated medical approach, was statistically higher than the ones who didn't take simulation training (p ≤ 0.05). Computer-based simulation training would be significantly effective in learning of medical treatment algorithms. We thought that these programs can improve the success rate of students especially in doing adequate medical approach to complex emergency cases.

  6. Simulation Model for the Piper PA-30 Light Maneuverable Aircraft in the Final Approach

    DOT National Transportation Integrated Search

    1971-07-01

    The report describes the Piper PA-30 'Twin Comanche' aircraft and a representative autopilot during the final approach configuration for simulation purposes. The aircraft is modeled by linearized six-degree-of-freedom perturbation equations reference...

  7. Managing the deteriorating patient in a simulated environment: nursing students' knowledge, skill and situation awareness.

    PubMed

    Cooper, Simon; Kinsman, Leigh; Buykx, Penny; McConnell-Henry, Tracy; Endacott, Ruth; Scholes, Julie

    2010-08-01

    To examine, in a simulated environment, the ability of final-year nursing students to assess, identify and respond to patients either deteriorating or at risk of deterioration. The early identification and management of patient deterioration has a major impact on patient outcomes. 'Failure to rescue' is of international concern, with significant concerns over nurses' ability to detect deterioration, the reasons for which are unknown. Mixed methods incorporating quantitative measures of performance (knowledge, skill and situation awareness) and, to be reported at a later date, a qualitative reflective review of decision processes. Fifty-one final-year, final-semester student nurses attended a simulation laboratory. Students completed a knowledge questionnaire and two video-recorded simulated scenarios (mannequin based) to assess skill performance. The scenarios simulated deteriorating patients with hypovolaemic and septic shock. Situation awareness was measured by randomly stopping each scenario and asking a series of questions relating to the situation. The mean knowledge score was 74% (range 46-100%) and the mean skill performance score across both scenarios was 60% (range 30-78%). Skill performance improved significantly (p < 0.01) by the second scenario. However, skill performance declined significantly in both scenarios as the patient's condition deteriorated (hypovolaemia scenario: p = 0.012, septic scenario: p = 0.000). The mean situation awareness score across both scenarios was 59% (range 38-82%). Participants tended to identify physiological indicators of deterioration (77%) but had low comprehension scores (44%). Knowledge scores suggest, on average, a satisfactory academic preparation, but this study identified significant deficits in students' ability to manage patient deterioration. This study suggests that student nurses, at the point of qualification, may be inadequately prepared to identify and manage deteriorating patients in the clinical setting.

  8. Framework for Architecture Trade Study Using MBSE and Performance Simulation

    NASA Technical Reports Server (NTRS)

    Ryan, Jessica; Sarkani, Shahram; Mazzuchim, Thomas

    2012-01-01

    Increasing complexity in modern systems as well as cost and schedule constraints require a new paradigm of system engineering to fulfill stakeholder needs. Challenges facing efficient trade studies include poor tool interoperability, lack of simulation coordination (design parameters) and requirements flowdown. A recent trend toward Model Based System Engineering (MBSE) includes flexible architecture definition, program documentation, requirements traceability and system engineering reuse. As a new domain MBSE still lacks governing standards and commonly accepted frameworks. This paper proposes a framework for efficient architecture definition using MBSE in conjunction with Domain Specific simulation to evaluate trade studies. A general framework is provided followed with a specific example including a method for designing a trade study, defining candidate architectures, planning simulations to fulfill requirements and finally a weighted decision analysis to optimize system objectives.

  9. Simulation of Mirror Electron Microscopy Caustic Images in Three-Dimensions

    NASA Astrophysics Data System (ADS)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    A full, three-dimensional (3D) ray tracing approach is developed to simulate the caustics visible in mirror electron microscopy (MEM). The method reproduces MEM image contrast resulting from 3D surface relief. To illustrate the potential of the simulation methods, we study the evolution of crater contrast associated with a movie of GaAs structures generated by the droplet epitaxy technique. Specifically, we simulate the image contrast resulting from both a precursor stage and the final crater morphology which is consistent with an inverted pyramid consisting of (111) facet walls. The method therefore facilities the study of how self-assembled quantum structures evolve with time and, in particular, the development of anisotropic features including faceting.

  10. An Analysis of the Usefulness of Simulation Games in Affecting Attitudinal Changes and Skill-Type Learning. Final Report.

    ERIC Educational Resources Information Center

    Hart, William K.

    This study determines whether a simulation game affects attitudes, and increases motivation and cognitive learning. Seventy-six college students in four sections of a political science course were the subjects. Random selection placed them in two treatment groups and two control groups. Both groups received the game, and one treatment group and…

  11. A Megawatt Power Module for Ship Service - Supplement. Volume 2: MatLab Simulink Simulation User’s Manual

    DTIC Science & Technology

    2009-01-01

    Report documents trade studies and preliminary design of the energy storage flywheel and associated motor /generator, the final system topology, high...27
 Flywheel Motor /Generator Model ...................................................................30
 Controlled Rectifier...0.4 s...........27
 Figure 33. One of the two flywheels in the simulation circuit with its motor /generator

  12. Computer Generated Image: Relative Training Effectiveness of Day Versus Night Visual Scenes. Final Report.

    ERIC Educational Resources Information Center

    Martin, Elizabeth L.; Cataneo, Daniel F.

    A study was conducted by the Air Force to determine the extent to which takeoff/landing skills learned in a simulator equipped with a night visual system would transfer to daytime performance in the aircraft. A transfer-of-training design was used to assess the differential effectiveness of simulator training with a day versus a night…

  13. Modelling and simulation of a pervaporation process using tubular module for production of anhydrous ethanol

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu

    2017-09-01

    Pervaporation is a potential process for the final step of ethanol biofuel production. In this study, a mathematical model was developed based on the resistance-in-series model and a simulation was carried out using the specialized simulation software COMSOL Multiphysics to describe a tubular type pervaporation module with membranes for the dehydration of ethanol solution. The permeance of membranes, operating conditions, and feed conditions in the simulation were referred from experimental data reported previously in literature. Accordingly, the simulated temperature and density profiles of pure water and ethanol-water mixture were validated based on existing published data.

  14. Using a Web-based simulation as a problem-based learning experience: perceived and actual performance of undergraduate public health students.

    PubMed

    Spinello, Elio F; Fischbach, Ronald

    2008-01-01

    This study investigated the use of a Web-based community health simulation as a problem-based learning (PBL) experience for undergraduate students majoring in public health. The study sought to determine whether students who participated in the online simulation achieved differences in academic and attitudinal outcomes compared with students who participated in a traditional PBL exercise. Using a nonexperimental comparative design, 21 undergraduate students enrolled in a health-behavior course were each randomly assigned to one of four workgroups. Each workgroup was randomly assigned the semester-long simulation project or the traditional PBL exercise. Survey instruments were used to measure students' attitudes toward the course, their perceptions of the learning community, and perceptions of their own cognitive learning. Content analysis of final essay exams and group reports was used to identify differences in academic outcomes and students' level of conceptual understanding of health-behavior theory. Findings indicated that students participating in the simulation produced higher mean final exam scores compared with students participating in the traditional PBL (p=0.03). Students in the simulation group also outperformed students in the traditional group with respect to their understanding of health-behavior theory (p=0.04). Students in the simulation group, however, rated their own level of cognitive learning lower than did students in the traditional group (p=0.03). By bridging time and distance constraints of the traditional classroom setting, an online simulation may be an effective PBL approach for public health students. Recommendations include further research using a larger sample to explore students' perceptions of learning when participating in simulated real-world activities. Additional research focusing on possible differences between actual and perceived learning relative to PBL methods and student workgroup dynamics is also recommended.

  15. Training driving ability in a traumatic brain-injured individual using a driving simulator: a case report

    PubMed Central

    Imhoff, Sarah; Lavallière, Martin; Germain-Robitaille, Mathieu; Teasdale, Normand; Fait, Philippe

    2017-01-01

    Background Traumatic brain injury (TBI) causes functional deficits that may significantly interfere with numerous activities of daily living such as driving. We report the case of a 20-year-old woman having lost her driver’s license after sustaining a moderate TBI. Objective We aimed to evaluate the effectiveness of an in-simulator training program with automated feedback on driving performance in a TBI individual. Methods The participant underwent an initial and a final in-simulator driving assessment and 11 in-simulator training sessions with driving-specific automated feedbacks. Driving performance (simulation duration, speed regulation and lateral positioning) was measured in the driving simulator. Results Speeding duration decreased during training sessions from 1.50 ± 0.80 min (4.16 ± 2.22%) to 0.45 ± 0.15 min (0.44 ± 0.42%) but returned to initial duration after removal of feedbacks for the final assessment. Proper lateral positioning improved with training and was maintained at the final assessment. Time spent in an incorrect lateral position decreased from 18.85 min (53.61%) in the initial assessment to 1.51 min (4.64%) on the final assessment. Conclusion Driving simulators represent an interesting therapeutic avenue. Considerable research efforts are needed to confirm the effectiveness of this method for driving rehabilitation of individuals who have sustained a TBI. PMID:28243152

  16. Research on support effectiveness modeling and simulating of aviation materiel autonomic logistics system

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo

    2018-05-01

    Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.

  17. Three-dimensional imaging, an important factor of decision in breast augmentation.

    PubMed

    de Runz, A; Boccara, D; Bertheuil, N; Claudot, F; Brix, M; Simon, E

    2018-04-01

    Since the beginning of the 21st century, three-dimensional imaging systems have been used more often in plastic surgery, especially during preoperative planning for breast surgery and to simulate the postoperative appearance of the implant in the patient's body. The main objective of this study is to assess the patients' attitudes regarding 3D simulation for breast augmentation. A study was conducted, which included women who were operated on for primary breast augmentation. During the consultation, a three-dimensional simulation with Crisalix was done and different sized implants were fitted in the bra. Thirty-eight women were included. The median age was 29.4, and the median prosthesis volume was 310mL. The median rank given regarding the final result was 9 (IQR: 8-9). Ninety percent of patients agreed (66% absolutely agreed, and 24% partially agreed) that the final product after breast augmentations was similar to the Crisalix simulation. Ninety-three percent of the patients believed that the three-dimensional simulation helped them choose their prosthesis (61% a lot and 32% a little). After envisaging a breast enlargement, patients estimated that the Crisalix system was absolutely necessary (21%), very useful (32%), useful (45%), or unnecessary (3%). Regarding prosthesis choice, an equal number of women preferred the 3D simulation (19 patients) as preferred using different sizes of implants in the bra (19 patients). The present study demonstrated that 3D simulation is actually useful for patients in order to envisage a breast augmentation. But it should be used as a complement to the classic method of trying different sized breast implants in the bra. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Large blast and thermal simulator advanced concept driver design by computational fluid dynamics. Final report, 1987-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opalka, K.O.

    1989-08-01

    The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.

  19. Binary black hole merger dynamics and waveforms

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James

    2006-01-01

    We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.

  20. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneller, James P.

    The final report for the award "The Neutrino: A Better Understanding Through Astrophysics" is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; tomore » study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.« less

  1. Identifying the Barriers to Using Games and Simulations in Education: Creating a Valid and Reliable Survey Instrument

    ERIC Educational Resources Information Center

    Justice, Lenora Jean

    2012-01-01

    The purpose of this study was to create a valid and reliable instrument to measure teacher perceived barriers to the adoption of games and simulations in instruction. Previous research, interviews with educators, a focus group, an expert review, and a think aloud protocol were used to design a survey instrument. After finalization, the survey was…

  2. Detecting Driver Mental Fatigue Based on EEG Alpha Power Changes during Simulated Driving.

    PubMed

    Gharagozlou, Faramarz; Nasl Saraji, Gebraeil; Mazloumi, Adel; Nahvi, Ali; Motie Nasrabadi, Ali; Rahimi Foroushani, Abbas; Arab Kheradmand, Ali; Ashouri, Mohammadreza; Samavati, Mehdi

    2015-12-01

    Driver fatigue is one of the major implications in transportation safety and accounted for up to 40% of road accidents. This study aimed to analyze the EEG alpha power changes in partially sleep-deprived drivers while performing a simulated driving task. Twelve healthy male car drivers participated in an overnight study. Continuous EEG and EOG records were taken during driving on a virtual reality simulator on a monotonous road. Simultaneously, video recordings from the driver face and behavior were performed in lateral and front views and rated by two trained observers. Moreover, the subjective self-assessment of fatigue was implemented in every 10-min interval during the driving using Fatigue Visual Analog Scale (F-VAS). Power spectrum density and fast Fourier transform (FFT) were used to determine the absolute and relative alpha powers in the initial and final 10 minutes of driving. The findings showed a significant increase in the absolute alpha power (P = 0.006) as well as F-VAS scores during the final section of driving (P = 0.001). Meanwhile, video ratings were consistent with subjective self-assessment of fatigue. The increase in alpha power in the final section of driving indicates the decrease in the level of alertness and attention and the onset of fatigue, which was consistent with F-VAS and video ratings. The study suggested that variations in alpha power could be a good indicator for driver mental fatigue, but for using as a countermeasure device needed further investigations.

  3. Tropospheric ozone in the western Pacific Rim: Analysis of satellite and surface-based observations along with comprehensive 3-D model simulations

    NASA Technical Reports Server (NTRS)

    Young, Sun-Woo; Carmichael, Gregory R.

    1994-01-01

    Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.

  4. Design of a rapid magnetic microfluidic mixer

    NASA Astrophysics Data System (ADS)

    Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2015-11-01

    Using three-dimensional simulations and experiments, we demonstrate rapid mixing of fluid streams in a microchannel using orbiting magnetic microbeads. We use a lattice Boltzmann model coupled to a Brownian dynamics model to perform numerical simulations that study in depth the effect of system parameters such as channel configuration and fluid and bead velocities. We use our findings to aid the design of an experimental micromixer. Using this experimental device, we demonstrate rapid microfluidic mixing over a compact channel length, and validate our numerical simulation results. Finally, we use numerical simulations to study the physical mechanisms leading to microfluidic mixing in our system. Our findings demonstrate a promising method of rapid microfluidic mixing over a short distance, with applications in lab-on-a-chip sample testing.

  5. [The use of open source software in graphic anatomic reconstructions and in biomechanic simulations].

    PubMed

    Ciobanu, O

    2009-01-01

    The objective of this study was to obtain three-dimensional (3D) images and to perform biomechanical simulations starting from DICOM images obtained by computed tomography (CT). Open source software were used to prepare digitized 2D images of tissue sections and to create 3D reconstruction from the segmented structures. Finally, 3D images were used in open source software in order to perform biomechanic simulations. This study demonstrates the applicability and feasibility of open source software developed in our days for the 3D reconstruction and biomechanic simulation. The use of open source software may improve the efficiency of investments in imaging technologies and in CAD/CAM technologies for implants and prosthesis fabrication which need expensive specialized software.

  6. Yield strength mapping in the cross section of ERW pipes considering kinematic hardening and residual stress

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook; Quagliato, Luca; Lee, Wontaek; Kim, Naksoo

    2017-09-01

    In the ERW (electric resistance welding) pipe manufacturing, material properties, process conditions and settings strongly influences the mechanical performances of the final product, as well as they can make them to be not uniform and to change from point to point in the pipe. The present research work proposes an integrated numerical model for the study of the whole ERW process, considering roll forming, welding and sizing stations, allowing to infer the influence of the process parameters on the final quality of the pipe, in terms of final shape and residual stress. The developed numerical model has been initially validated comparing the dimensions of the pipe derived from the simulation results with those of industrial production, proving the reliability of the approach. Afterwards, by varying the process parameters in the numerical simulation, namely the roll speed, the sizing ratio and the friction factor, the influence on the residual stress in the pipe, at the end of the process and after each station, is studied and discussed along the paper.

  7. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    NASA Astrophysics Data System (ADS)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  8. Construction of Interaction Layer on Socio-Environmental Simulation

    NASA Astrophysics Data System (ADS)

    Torii, Daisuke; Ishida, Toru

    In this study, we propose a method to construct a system based on a legacy socio-environmental simulator which enables to design more realistic interaction models in socio-environmetal simulations. First, to provide a computational model suitable for agent interactions, an interaction layer is constructed and connected from outside of a legacy socio-environmental simulator. Next, to configure the agents interacting ability, connection description for controlling the flow of information in the connection area is provided. As a concrete example, we realized an interaction layer by Q which is a scenario description language and connected it to CORMAS, a socio-envirionmental simulator. Finally, we discuss the capability of our method, using the system, in the Fire-Fighter domain.

  9. Simulation of Behavioral Variations in the Submission of Student Financial Statements: Effects on BEOG Costs. Stage I Draft Final Report for the Study of Program Management Procedures in the Campus-Based and Basic Grant Programs. (Volume IV).

    ERIC Educational Resources Information Center

    Ellis, Richard

    Volume IV of a study of program management procedures in the campus-based and Basic Educational Opportunity Grant (BEOG) programs deals with a set of simulated modifications in the statements made by BEOG applicants about their financial circumstances. Various kinds of misrepresentation of income, assets, and other factors are postulated, and the…

  10. Systematic review of skills transfer after surgical simulation-based training.

    PubMed

    Dawe, S R; Pena, G N; Windsor, J A; Broeders, J A J L; Cregan, P C; Hewett, P J; Maddern, G J

    2014-08-01

    Simulation-based training assumes that skills are directly transferable to the patient-based setting, but few studies have correlated simulated performance with surgical performance. A systematic search strategy was undertaken to find studies published since the last systematic review, published in 2007. Inclusion of articles was determined using a predetermined protocol, independent assessment by two reviewers and a final consensus decision. Studies that reported on the use of surgical simulation-based training and assessed the transferability of the acquired skills to a patient-based setting were included. Twenty-seven randomized clinical trials and seven non-randomized comparative studies were included. Fourteen studies investigated laparoscopic procedures, 13 endoscopic procedures and seven other procedures. These studies provided strong evidence that participants who reached proficiency in simulation-based training performed better in the patient-based setting than their counterparts who did not have simulation-based training. Simulation-based training was equally as effective as patient-based training for colonoscopy, laparoscopic camera navigation and endoscopic sinus surgery in the patient-based setting. These studies strengthen the evidence that simulation-based training, as part of a structured programme and incorporating predetermined proficiency levels, results in skills transfer to the operative setting. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  11. Giant Impacts on Earth-Like Worlds

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to examine the collisional histories of Earth-like planets that form. Their goal is to understand if our solar systems formation and evolution is typical or unique.How Common Are Giant Impacts?Histogram of the total number of giant impacts received by the 164 Earth-like worlds produced in the authors fragmentation-inclusive simulations. [Quintana et al. 2016]The authors find that including fragmentation does not affect the final number of planets that are formed in the simulation (an average of 34 in each system, consistent with our solar systems terrestrial planet count). But when fragmentation is included, fewer collisions end in merger which results in typical accretion timescales roughly doubling. So the effects of fragmentation influence the collisional history of the system and the length of time needed for the final system to form.Examining the 164 Earth-analogs produced in the fragmentation-inclusive simulations, Quintana and collaborators find that impacts large enough to completely strip a planets atmosphere are rare; fewer than 1% of the Earth-like worlds experienced this.But giant impacts that are able to strip ~50% of an Earth-analogs atmosphere roughly the energy of the giant impact thought to have formed our Moon are more common. Almost all of the authors Earth-analogs experienced at least 1 giant impact of this size in the 2-Gyr simulation, and the average Earth-like world experienced ~3 such impacts.These results suggest that our planets impact history with the Moon-forming impact likely being the last giant impact Earth experienced is fairly typical for Earth-like worlds. The outcomes also indicate that smaller impacts that are still potentially life-threatening are much more common than bulk atmospheric removal. Higher-resolution simulations could be used to examine such smaller impacts.CitationElisa V. Quintana et al 2016 ApJ 821 126. doi:10.3847/0004-637X/821/2/126

  12. Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties

    NASA Astrophysics Data System (ADS)

    Healy, James; Lousto, Carlos O.

    2018-04-01

    We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.

  13. Competency-based learning in an ambulatory care setting: Implementation of simulation training in the Ambulatory Care Rotation during the final year of the MaReCuM model curriculum.

    PubMed

    Dusch, Martin; Narciß, Elisabeth; Strohmer, Renate; Schüttpelz-Brauns, Katrin

    2018-01-01

    Aim: As part of the MaReCuM model curriculum at Medical Faculty Mannheim Heidelberg University, a final year rotation in ambulatory care was implemented and augmented to include ambulatory care simulation. In this paper we describe this ambulatory care simulation, the designated competency-based learning objectives, and evaluate the educational effect of the ambulatory care simulation training. Method: Seventy-five final year medical students participated in the survey (response rate: 83%). The control group completed the ambulatory rotation prior to the implementation of the ambulatory care simulation. The experimental group was required to participate in the simulation at the beginning of the final year rotation in ambulatory care. A survey of both groups was conducted at the beginning and at the end of the rotation. The learning objectives were taken from the National Competency-based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM). Results: The ambulatory care simulation had no measurable influence on students' subjectively perceived learning progress, the evaluation of the ambulatory care rotation, or working in an ambulatory care setting. At the end of the rotation participants in both groups reported having gained better insight into treating outpatients. At the beginning of the rotation members of both groups assessed their competencies to be at the same level. The simulated ambulatory scenarios were evaluated by the participating students as being well structured and easy to understand. The scenarios successfully created a sense of time pressure for those confronted with them. The ability to correctly fill out a narcotic prescription form as required was rated significantly higher by those who participated in the simulation. Participation in the ambulatory care simulation had no effect on the other competencies covered by the survey. Discussion: The effect of the four instructional units comprising the ambulatory care simulation was not measurable due to the current form or the measurement point at the end of the 12-week rotation. The reasons for this could be the many and statistically elusive factors relevant to the individual and the wide variety among final year rotation placements, the late point in time of the final survey, and the selection of simulated scenarios. The course is slated to undergo specific further development and should be supplemented with additional learning opportunities to ensure that the main learning objectives are covered. The description of the teaching format is meant to contribute to the ongoing development of medical education with an emphasis on competency in the areas of ambulatory care, communication, prevention and health promotion.

  14. Accounting for dropout in xenografted tumour efficacy studies: integrated endpoint analysis, reduced bias and better use of animals.

    PubMed

    Martin, Emma C; Aarons, Leon; Yates, James W T

    2016-07-01

    Xenograft studies are commonly used to assess the efficacy of new compounds and characterise their dose-response relationship. Analysis often involves comparing the final tumour sizes across dose groups. This can cause bias, as often in xenograft studies a tumour burden limit (TBL) is imposed for ethical reasons, leading to the animals with the largest tumours being excluded from the final analysis. This means the average tumour size, particularly in the control group, is underestimated, leading to an underestimate of the treatment effect. Four methods to account for dropout due to the TBL are proposed, which use all the available data instead of only final observations: modelling, pattern mixture models, treating dropouts as censored using the M3 method and joint modelling of tumour growth and dropout. The methods were applied to both a simulated data set and a real example. All four proposed methods led to an improvement in the estimate of treatment effect in the simulated data. The joint modelling method performed most strongly, with the censoring method also providing a good estimate of the treatment effect, but with higher uncertainty. In the real data example, the dose-response estimated using the censoring and joint modelling methods was higher than the very flat curve estimated from average final measurements. Accounting for dropout using the proposed censoring or joint modelling methods allows the treatment effect to be recovered in studies where it may have been obscured due to dropout caused by the TBL.

  15. FOCUS: a fire management planning system -- final report

    Treesearch

    Frederick W. Bratten; James B. Davis; George T. Flatman; Jerold W. Keith; Stanley R. Rapp; Theodore G. Storey

    1981-01-01

    FOCUS (Fire Operational Characteristics Using Simulation) is a computer simulation model for evaluating alternative fire management plans. This final report provides a broad overview of the FOCUS system, describes two major modules-fire suppression and cost, explains the role in the system of gaming large fires, and outlines the support programs and ways of...

  16. Visualization and Analysis of a Numerical Simulation of GW150914

    NASA Astrophysics Data System (ADS)

    Rosato, Nicole

    We present a visualization and analysis of a supercomputer simulation displaying the apparent horizons' curvature and radiation emitted from a binary black hole system modeling the LIGO observed signal GW150914. The simulation follows the system from seven orbits prior to merger down to the resultant final Kerr black hole. Apparent horizons are calculated during the simulation with mean curvature data displayed on them. Radiation data was visualized via the real part of the Psi4 component of the Weyl scalars, which were determined using a numerical quasi-Kinnersley method. We also present a comparative study of the differences in using the quasi-Kinnersley and PsiKadelia tetrads to construct Psi4 and the benefits, particularly in the strong field region of a binary black hole system, of using a tetrad in a transverse (Psi1 = Psi3 = 0) frame. The second part of our studies focus on the relationship between the mean curvature displayed on the apparent horizons and the trajectories of the black holes. We notice that prior to merger, for each black hole, the directionality of the mean curvature tracks that of the trajectory with either a positive or negative phase shift between the two curves. Finally, we provide a brief analysis suggesting that the phase shift and the frame dragging effects are likely related.

  17. The Resource Usage Aware Backfilling

    NASA Astrophysics Data System (ADS)

    Guim, Francesc; Rodero, Ivan; Corbalan, Julita

    Job scheduling policies for HPC centers have been extensively studied in the last few years, especially backfilling based policies. Almost all of these studies have been done using simulation tools. All the existent simulators use the runtime (either estimated or real) provided in the workload as a basis of their simulations. In our previous work we analyzed the impact on system performance of considering the resource sharing (memory bandwidth) of running jobs including a new resource model in the Alvio simulator. Based on this studies we proposed the LessConsume and LessConsume Threshold resource selection policies. Both are oriented to reduce the saturation of the shared resources thus increasing the performance of the system. The results showed how both resource allocation policies shown how the performance of the system can be improved by considering where the jobs are finally allocated.

  18. A Carbonaceous Chondrite Based Simulant of Phobos

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.; Patel, Manish; Pearson, V.; Wilson, S.; Edmunson, J.

    2016-01-01

    In support of an ESA-funded concept study considering a sample return mission, a simulant of the Martian moon Phobos was needed. There are no samples of the Phobos regolith, therefore none of the four characteristics normally used to design a simulant are explicitly known for Phobos. Because of this, specifications for a Phobos simulant were based on spectroscopy, other remote measurements, and judgment. A composition based on the Tagish Lake meteorite was assumed. The requirement that sterility be achieved, especially given the required organic content, was unusual and problematic. The final design mixed JSC-1A, antigorite, pseudo-agglutinates and gilsonite. Sterility was achieved by radiation in a commercial facility.

  19. Docking simulation analysis of range data requirements for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Micheal, J. D.; Vinz, F. L.

    1985-01-01

    The results of an initial study are reported assess the controllability of the Orbital Maneuvering Vehicle (OMV) for terminal closure and docking are reported. The vehicle characteristics used in this study are those of the Marshall Space Flight Center (MSFC) baseline OMV which were published with the request for proposals for preliminary design of this vehicle. This simulation was conducted at MSFC using the Target Motion Simulator. The study focused on the OMV manual mode capability to accommodate both stabilized and tumbling target engagements with varying complements of range and range rate data displayed to the OMV operator. Four trained test subjects performed over 400 simulated orbital dockings during this study. A firm requirement for radar during the terminal closure and dock phase of the OMV mission was not established by these simulations. Fifteen pound thrusters recommended in the MSFC baseline design were found to be advantageous for initial rate matching maneuvers with unstabilized targets; however, lower thrust levels were desirable for making the final docking maneuvers.

  20. Confirmation of model-based dose selection for a Japanese phase III study of rivaroxaban in non-valvular atrial fibrillation patients.

    PubMed

    Kaneko, Masato; Tanigawa, Takahiko; Hashizume, Kensei; Kajikawa, Mariko; Tajiri, Masahiro; Mueck, Wolfgang

    2013-01-01

    This study was designed to confirm the appropriateness of the dose setting for a Japanese phase III study of rivaroxaban in patients with non-valvular atrial fibrillation (NVAF), which had been based on model simulation employing phase II study data. The previously developed mixed-effects pharmacokinetic/pharmacodynamic (PK-PD) model, which consisted of an oral one-compartment model parameterized in terms of clearance, volume and a first-order absorption rate, was rebuilt and optimized using the data for 597 subjects from the Japanese phase III study, J-ROCKET AF. A mixed-effects modeling technique in NONMEM was used to quantify both unexplained inter-individual variability and inter-occasion variability, which are random effect parameters. The final PK and PK-PD models were evaluated to identify influential covariates. The empirical Bayes estimates of AUC and C(max) from the final PK model were consistent with the simulated results from the Japanese phase II study. There was no clear relationship between individual estimated exposures and safety-related events, and the estimated exposure levels were consistent with the global phase III data. Therefore, it was concluded that the dose selected for the phase III study with Japanese NVAF patients by means of model simulation employing phase II study data had been appropriate from the PK-PD perspective.

  1. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier

    2012-07-01

    SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.

  2. Computer simulations of the interaction of human immunodeficiency virus (HIV) aspartic protease with spherical gold nanoparticles: implications in acquired immunodeficiency syndrome (AIDS).

    PubMed

    Whiteley, Chris G; Lee, Duu-Jong

    2016-09-09

    The interaction of gold nanoparticles (AuNP) with human immune-deficiency virus aspartic protease (HIVPR) is modelled using a regime of molecular dynamics simulations. The simulations of the 'docking', first as a rigid-body complex, and eventually through flexible-fit analysis, creates 36 different complexes from four initial orientations of the nanoparticle strategically positioned around the surface of the enzyme. The structural deviations of the enzymes from the initial x-ray crystal structure during each docking simulation are assessed by comparative analysis of secondary structural elements, root mean square deviations, B-factors, interactive bonding energies, dihedral angles, radius of gyration (R g), circular dichroism (CD), volume occupied by C α , electrostatic potentials, solvation energies and hydrophobicities. Normalisation of the data narrows the selection from the initial 36 to one 'final' probable structure. It is concluded that, after computer simulations on each of the 36 initial complexes incorporating the 12 different biophysical techniques, the top five complexes are the same no matter which technique is explored. The significance of the present work is an expansion of an earlier study on the molecular dynamic simulation for the interaction of HIVPR with silver nanoparticles. This work is supported by experimental evidence since the initial 'orientation' of the AgNP with the enzyme is the same as the 'final' AuNP-HIVPR complex generated in the present study. The findings will provide insight into the forces of the binding of the HIVPR to AuNP. It is anticipated that the protocol developed in this study will act as a standard process for the interaction of any nanoparticle with any biomedical target.

  3. Simulation-Based Training Platforms for Arthroscopy: A Randomized Comparison of Virtual Reality Learning to Benchtop Learning.

    PubMed

    Middleton, Robert M; Alvand, Abtin; Garfjeld Roberts, Patrick; Hargrove, Caroline; Kirby, Georgina; Rees, Jonathan L

    2017-05-01

    To determine whether a virtual reality (VR) arthroscopy simulator or benchtop (BT) arthroscopy simulator showed superiority as a training tool. Arthroscopic novices were randomized to a training program on a BT or a VR knee arthroscopy simulator. The VR simulator provided user performance feedback. Individuals performed a diagnostic arthroscopy on both simulators before and after the training program. Performance was assessed using wireless objective motion analysis and a global rating scale. The groups (8 in the VR group, 9 in the BT group) were well matched at baseline across all parameters (P > .05). Training on each simulator resulted in significant performance improvements across all parameters (P < .05). BT training conferred a significant improvement in all parameters when trainees were reassessed on the VR simulator (P < .05). In contrast, VR training did not confer improvement in performance when trainees were reassessed on the BT simulator (P > .05). BT-trained subjects outperformed VR-trained subjects in all parameters during final assessments on the BT simulator (P < .05). There was no difference in objective performance between VR-trained and BT-trained subjects on final VR simulator wireless objective motion analysis assessment (P > .05). Both simulators delivered improvements in arthroscopic skills. BT training led to skills that readily transferred to the VR simulator. Skills acquired after VR training did not transfer as readily to the BT simulator. Despite trainees receiving automated metric feedback from the VR simulator, the results suggest a greater gain in psychomotor skills for BT training. Further work is required to determine if this finding persists in the operating room. This study suggests that there are differences in skills acquired on different simulators and skills learnt on some simulators may be more transferable. Further work in identifying user feedback metrics that enhance learning is also required. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  4. An extensive coronagraphic simulation applied to LBT

    NASA Astrophysics Data System (ADS)

    Vassallo, D.; Carolo, E.; Farinato, J.; Bergomi, M.; Bonavita, M.; Carlotti, A.; D'Orazi, V.; Greggio, D.; Magrin, D.; Mesa, D.; Pinna, E.; Puglisi, A.; Stangalini, M.; Verinaud, C.; Viotto, V.

    2016-08-01

    In this article we report the results of a comprehensive simulation program aimed at investigating coronagraphic capabilities of SHARK-NIR, a camera selected to proceed to the final design phase at Large Binocular Telescope. For the purpose, we developed a dedicated simulation tool based on physical optics propagation. The code propagates wavefronts through SHARK optical train in an end-to-end fashion and can implement any kind of coronagraph. Detection limits can be finally computed, exploring a wide range of Strehl values and observing conditions.

  5. The 3-D numerical simulation research of vacuum injector for linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Dagang; Xie, Mengjun; Tang, Xinbing; Liao, Shuqing

    2017-01-01

    Simulation method for voltage in-feed and electron injection of vacuum injector is given, and verification of the simulated voltage and current is carried out. The numerical simulation for the magnetic field of solenoid is implemented, and a comparative analysis is conducted between the simulation results and experimental results. A semi-implicit difference algorithm is adopted to suppress the numerical noise, and a parallel acceleration algorithm is used for increasing the computation speed. The RMS emittance calculation method of the beam envelope equations is analyzed. In addition, the simulated results of RMS emittance are compared with the experimental data. Finally, influences of the ferromagnetic rings on the radial and axial magnetic fields of solenoid as well as the emittance of beam are studied.

  6. Operational framework for quantum measurement simulability

    NASA Astrophysics Data System (ADS)

    Guerini, Leonardo; Bavaresco, Jessica; Terra Cunha, Marcelo; Acín, Antonio

    2017-09-01

    We introduce a framework for simulating quantum measurements based on classical processing of a set of accessible measurements. Well-known concepts such as joint measurability and projective simulability naturally emerge as particular cases of our framework, but our study also leads to novel results and questions. First, a generalisation of joint measurability is derived, which yields a hierarchy for the incompatibility of sets of measurements. A similar hierarchy is defined based on the number of outcomes necessary to perform a simulation of a given measurement. This general approach also allows us to identify connections between different kinds of simulability and, in particular, we characterise the qubit measurements that are projective-simulable in terms of joint measurability. Finally, we discuss how our framework can be interpreted in the context of resource theories.

  7. Microsecond Molecular Dynamics Simulations of Lipid Mixing

    PubMed Central

    2015-01-01

    Molecular dynamics (MD) simulations of membranes are often hindered by the slow lateral diffusion of lipids and the limited time scale of MD. In order to study the dynamics of mixing and characterize the lateral distribution of lipids in converged mixtures, we report microsecond-long all-atom MD simulations performed on the special-purpose machine Anton. Two types of mixed bilayers, POPE:POPG (3:1) and POPC:cholesterol (2:1), as well as a pure POPC bilayer, were each simulated for up to 2 μs. These simulations show that POPE:POPG and POPC:cholesterol are each fully miscible at the simulated conditions, with the final states of the mixed bilayers similar to a random mixture. By simulating three POPE:POPG bilayers at different NaCl concentrations (0, 0.15, and 1 M), we also examined the effect of salt concentration on lipid mixing. While an increase in NaCl concentration is shown to affect the area per lipid, tail order, and lipid lateral diffusion, the final states of mixing remain unaltered, which is explained by the largely uniform increase in Na+ ions around POPE and POPG. Direct measurement of water permeation reveals that the POPE:POPG bilayer with 1 M NaCl has reduced water permeability compared with those at zero or low salt concentration. Our calculations provide a benchmark to estimate the convergence time scale of all-atom MD simulations of lipid mixing. Additionally, equilibrated structures of POPE:POPG and POPC:cholesterol, which are frequently used to mimic bacterial and mammalian membranes, respectively, can be used as starting points of simulations involving these membranes. PMID:25237736

  8. Regional Scale Simulations of Nitrate Leaching through Agricultural Soils of California

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, E.; Walkinshaw, M.; O'Geen, A. T.; Harter, T.

    2016-12-01

    Nitrate is recognized as one of California's most widespread groundwater contaminants. As opposed to point sources, which are relative easily identifiable sources of contamination, non-point sources of nitrate are diffuse and linked with widespread use of fertilizers in agricultural soils. California's agricultural regions have an incredible diversity of soils that encompass a huge range of properties. This complicates studies dealing with nitrate risk assessment, since important biological and physicochemical processes appear at the first meters of the vadose zone. The objective of this study is to evaluate all agricultural soils in California according to their potentiality for nitrate leaching based on numerical simulations using the Richards equation. We conducted simulations for 6000 unique soil profiles (over 22000 soil horizons) taking into account the effect of climate, crop type, irrigation and fertilization management scenarios. The final goal of this study is to evaluate simple management methods in terms of reduced nitrate leaching. We estimated drainage rates of water under the root zone and nitrate concentrations in the drain water at the regional scale. We present maps for all agricultural soils in California which can be used for risk assessment studies. Finally, our results indicate that adoption of simple irrigation and fertilization methods may significantly reduce nitrate leaching in vulnerable regions.

  9. Molecular electronics: insight from first-principles transport simulations.

    PubMed

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect the electronic transport. Here we describe key computational ingredients and discuss these in relation to simulations for scanning tunneling microscopy (STM) experiments with C60 molecules where the experimental geometry is well characterized. We then show how molecular dynamics simulations may be combined with transport calculations to study more irregular situations, such as the evolution of a nanoscale contact with the mechanically controllable break-junction technique. Finally we discuss calculations of inelastic electron tunnelling spectroscopy as a characterization technique that reveals information about the atomic arrangement and transport channels.

  10. Toothguide Trainer tests with color vision deficiency simulation monitor.

    PubMed

    Borbély, Judit; Varsányi, Balázs; Fejérdy, Pál; Hermann, Péter; Jakstat, Holger A

    2010-01-01

    The aim of this study was to evaluate whether simulated severe red and green color vision deficiency (CVD) influenced color matching results and to investigate whether training with Toothguide Trainer (TT) computer program enabled better color matching results. A total of 31 color normal dental students participated in the study. Every participant had to pass the Ishihara Test. Participants with a red/green color vision deficiency were excluded. A lecture on tooth color matching was given, and individual training with TT was performed. To measure the individual tooth color matching results in normal and color deficient display modes, the TT final exam was displayed on a calibrated monitor that served as a hardware-based method of simulating protanopy and deuteranopy. Data from the TT final exams were collected in normal and in severe red and green CVD-simulating monitor display modes. Color difference values for each participant in each display mode were computed (∑ΔE(ab)(*)), and the respective means and standard deviations were calculated. The Student's t-test was used in statistical evaluation. Participants made larger ΔE(ab)(*) errors in severe color vision deficient display modes than in the normal monitor mode. TT tests showed significant (p<0.05) difference in the tooth color matching results of severe green color vision deficiency simulation mode compared to normal vision mode. Students' shade matching results were significantly better after training (p=0.009). Computer-simulated severe color vision deficiency mode resulted in significantly worse color matching quality compared to normal color vision mode. Toothguide Trainer computer program improved color matching results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Development of Science Simulations for Mildly Mentally Retarded or Learning Disabled Students. Final Report.

    ERIC Educational Resources Information Center

    Macro Systems, Inc., Silver Spring, MD.

    This final report describes the development of eight computer based science simulations designed for use with middle school mainstreamed students having learning disabilities or mild mental retardation. The total program includes software, a teacher's manual, 3 videos, and a set of 30 activity worksheets. Special features of the software for…

  12. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    PubMed

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  13. Molecular Dynamics Simulations of Carbon Nanotubes in Water

    NASA Technical Reports Server (NTRS)

    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P.

    2000-01-01

    We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular dynamics simulations. The energetics of the carbon-water interface are mainly dispersive but in the present study augmented with a carbon quadrupole term acting on the charge sites of the water. The simulations indicate that this contribution is negligible in terms of modifying the structural properties of water at the interface. Simulations of two carbon nanotubes in water display a wetting and drying of the interface between the nanotubes depending on their initial spacing. Thus, initial tube spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 A remain wet during the course of the simulation. Finally, we present a novel particle-particle-particle-mesh algorithm for long range potentials which allows for general (curvilinear) meshes and "black-box" fast solvers by adopting an influence matrix technique.

  14. A systematic review of surgical skills transfer after simulation-based training: laparoscopic cholecystectomy and endoscopy.

    PubMed

    Dawe, Susan R; Windsor, John A; Broeders, Joris A J L; Cregan, Patrick C; Hewett, Peter J; Maddern, Guy J

    2014-02-01

    A systematic review to determine whether skills acquired through simulation-based training transfer to the operating room for the procedures of laparoscopic cholecystectomy and endoscopy. Simulation-based training assumes that skills are directly transferable to the operation room, but only a few studies have investigated the effect of simulation-based training on surgical performance. A systematic search strategy that was used in 2006 was updated to retrieve relevant studies. Inclusion of articles was determined using a predetermined protocol, independent assessment by 2 reviewers, and a final consensus decision. Seventeen randomized controlled trials and 3 nonrandomized comparative studies were included in this review. In most cases, simulation-based training was in addition to patient-based training programs. Only 2 studies directly compared simulation-based training in isolation with patient-based training. For laparoscopic cholecystectomy (n = 10 studies) and endoscopy (n = 10 studies), participants who reached simulation-based skills proficiency before undergoing patient-based assessment performed with higher global assessment scores and fewer errors in the operating room than their counterparts who did not receive simulation training. Not all parameters measured were improved. Two of the endoscopic studies compared simulation-based training in isolation with patient-based training with different results: for sigmoidoscopy, patient-based training was more effective, whereas for colonoscopy, simulation-based training was equally effective. Skills acquired by simulation-based training seem to be transferable to the operative setting for laparoscopic cholecystectomy and endoscopy. Future research will strengthen these conclusions by evaluating predetermined competency levels on the same simulators and using objective validated global rating scales to measure operative performance.

  15. Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran

    NASA Astrophysics Data System (ADS)

    Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin

    2018-06-01

    Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.

  16. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  17. Impact of Dynamic Specimen Shape Evolution on the Atom Probe Tomography Results of Doped Epitaxial Oxide Multilayers: Comparison of Experiment and Simulation

    DOE PAGES

    Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...

    2015-08-31

    The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.

  18. Quantifying the Effect of Polymer Blending through Molecular Modelling of Cyanurate Polymers

    PubMed Central

    Crawford, Alasdair O.; Hamerton, Ian; Cavalli, Gabriel; Howlin, Brendan J.

    2012-01-01

    Modification of polymer properties by blending is a common practice in the polymer industry. We report here a study of blends of cyanurate polymers by molecular modelling that shows that the final experimentally determined properties can be predicted from first principles modelling to a good degree of accuracy. There is always a compromise between simulation length, accuracy and speed of prediction. A comparison of simulation times shows that 125ps of molecular dynamics simulation at each temperature provides the optimum compromise for models of this size with current technology. This study opens up the possibility of computer aided design of polymer blends with desired physical and mechanical properties. PMID:22970230

  19. Selecting Policy Indicators and Developing Simulation Models for the National School Lunch and Breakfast Programs. Final Report. Special Nutrition Programs Report Series. Special Nutrition Programs Report No. CN-10-PRED

    ERIC Educational Resources Information Center

    Dragoset, Lisa; Gordon, Anne

    2010-01-01

    This report describes work using nationally representative 2005 data from the School Nutrition Dietary Assessment-III (SNDA-III) study to develop a simulation model to predict the potential implications of changes in policies or practices related to school meals and school food environments. The model focuses on three domains of outcomes: (1) the…

  20. Measuring Virtual Simulations Value in Training Exercises - USMC Use Case

    DTIC Science & Technology

    2015-12-04

    and cost avoidance and Capt Jonathan Richardson, PM TRASYS, who was the primary author for the After-Action Documentation and Analysis Report ...REFERENCES Cermak J. & McGurk M. (2010, July). Putting a Value On Training. McKinsey Quarterly. Retrieved June 10, 2015 from http://www.mckinsey.com...www.hqmc.marines.mil/Portals/142/Docs/2015CPG_Color.pdf Gordon, S. & Cooley, T. (2013) Phase One Final Report : Cost Avoidance Study of USMC Simulation

  1. Enhanced teaching and student learning through a simulator-based course in chemical unit operations design

    NASA Astrophysics Data System (ADS)

    Ghasem, Nayef

    2016-07-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes through simulators. A case study presenting the teaching method was evaluated using student surveys and faculty assessments, which were designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively demonstrate that this method is an extremely efficient way of teaching a simulator-based course. In addition to that, this teaching method can easily be generalised and used in other courses. A student's final mark is determined by a combination of in-class assessments conducted based on cooperative and peer learning, progress tests and a final exam. Results revealed that peer learning can improve the overall quality of student learning and enhance student understanding.

  2. Advanced Multiple Processor Configuration Study. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    This summary of a study on multiple processor configurations includes the objectives, background, approach, and results of research undertaken to provide the Air Force with a generalized model of computer processor combinations for use in the evaluation of proposed flight training simulator computational designs. An analysis of a real-time flight…

  3. Analysis of light incident location and detector position in early diagnosis of knee osteoarthritis by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Chen, Yisha; Yan, Huangping; Wang, Xiaoling

    2017-01-01

    Early detection of knee osteoarthritis (KOA) is meaningful to delay or prevent the onset of osteoarthritis. In consideration of structural complexity of knee joint, position of light incidence and detector appears to be extremely important in optical inspection. In this paper, the propagation of 780-nm near infrared photons in three-dimensional knee joint model is simulated by Monte Carlo (MC) method. Six light incident locations are chosen in total to analyze the influence of incident and detecting location on the number of detected signal photons and signal to noise ratio (SNR). Firstly, a three-dimensional photon propagation model of knee joint is reconstructed based on CT images. Then, MC simulation is performed to study the propagation of photons in three-dimensional knee joint model. Photons which finally migrate out of knee joint surface are numerically analyzed. By analyzing the number of signal photons and SNR from the six given incident locations, the optimal incident and detecting location is defined. Finally, a series of phantom experiments are conducted to verify the simulation results. According to the simulation and phantom experiments results, the best incident location is near the right side of meniscus at the rear end of left knee joint and the detector is supposed to be set near patella, correspondingly.

  4. Designing Free Energy Surfaces That Match Experimental Data with Metadynamics

    DOE PAGES

    White, Andrew D.; Dama, James F.; Voth, Gregory A.

    2015-04-30

    Creating models that are consistent with experimental data is essential in molecular modeling. This is often done by iteratively tuning the molecular force field of a simulation to match experimental data. An alternative method is to bias a simulation, leading to a hybrid model composed of the original force field and biasing terms. Previously we introduced such a method called experiment directed simulation (EDS). EDS minimally biases simulations to match average values. We also introduce a new method called experiment directed metadynamics (EDM) that creates minimal biases for matching entire free energy surfaces such as radial distribution functions and phi/psimore » angle free energies. It is also possible with EDM to create a tunable mixture of the experimental data and free energy of the unbiased ensemble with explicit ratios. EDM can be proven to be convergent, and we also present proof, via a maximum entropy argument, that the final bias is minimal and unique. Examples of its use are given in the construction of ensembles that follow a desired free energy. Finally, the example systems studied include a Lennard-Jones fluid made to match a radial distribution function, an atomistic model augmented with bioinformatics data, and a three-component electrolyte solution where ab initio simulation data is used to improve a classical empirical model.« less

  5. Potential human cholesterol esterase inhibitor design: benefits from the molecular dynamics simulations and pharmacophore modeling studies.

    PubMed

    John, Shalini; Thangapandian, Sundarapandian; Lee, Keun Woo

    2012-01-01

    Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.

  6. Expectation Maximization Algorithm for Box-Cox Transformation Cure Rate Model and Assessment of Model Misspecification Under Weibull Lifetimes.

    PubMed

    Pal, Suvra; Balakrishnan, Narayanaswamy

    2018-05-01

    In this paper, we develop likelihood inference based on the expectation maximization algorithm for the Box-Cox transformation cure rate model assuming the lifetimes to follow a Weibull distribution. A simulation study is carried out to demonstrate the performance of the proposed estimation method. Through Monte Carlo simulations, we also study the effect of model misspecification on the estimate of cure rate. Finally, we analyze a well-known data on melanoma with the model and the inferential method developed here.

  7. Energy expenditure during competitive Latin American dancing simulation.

    PubMed

    Massidda, Myosotis; Cugusi, Lucia; Ibba, Maurizio; Tradori, Iosto; Calò, Carla Maria

    2011-12-01

    The aims of this study were to estimate the energy expenditure (EE) and the intensity of physical activity (PA) during a competitive simulation of Latin American dancing and to evaluate the differences in PA and EE values between the sexes, between different dance types, and between the various phases of the competition. Ten Italian dancers (five couples, 5 males and 5 females) competing in Latin American dancing at the international level were examined in this study. The EE (kcal) was measured during the semifinal and final phases of the competition using the SenseWear Pro Armband (SWA). Paired-sample t-tests were used to determine differences in the metabolic equivalent (MET) and EE values between the semifinal and final phases and between each dance. One-way analysis of variance was used to analyze the differences in the MET and EE values between the sexes. The intensity of PA during the dance sequence ranged from moderate (3 to 6 METs) to vigorous (6 to 9 METs). The male dancers had higher EE values than the female dancers during all phases of the simulation. Similar MET values were observed in both sexes. The PA intensity during the finals phase was vigorous for 56% of the time of dance. Of all the dance styles, the rumba had the lowest MET and EE values. Our results demonstrate that competitive Latin American dancing is a heavy exercise and suggest that monitoring variables during normal training can improve training protocols and the dancers' fitness levels.

  8. Integrating meso- and micro-simulation models to evaluate traffic management strategies - year 1 : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    In this project the researchers developed a hierarchical multi-resolution traffic simulation system for metropolitan areas, referred to as MetroSim. Categorically, the focus is on integrating two types of simulation: microscopic simulation in which i...

  9. Biomechanical study of anterior spinal instrumentation configurations

    PubMed Central

    Cloutier, Luc P.; Grimard, Guy

    2007-01-01

    The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices. PMID:17205240

  10. Simulation and Feedback in Health Education: A Mixed Methods Study Comparing Three Simulation Modalities.

    PubMed

    Tait, Lauren; Lee, Kenneth; Rasiah, Rohan; Cooper, Joyce M; Ling, Tristan; Geelan, Benjamin; Bindoff, Ivan

    2018-05-03

    Background . There are numerous approaches to simulating a patient encounter in pharmacy education. However, little direct comparison between these approaches has been undertaken. Our objective was to investigate student experiences, satisfaction, and feedback preferences between three scenario simulation modalities (paper-, actor-, and computer-based). Methods . We conducted a mixed methods study with randomized cross-over of simulation modalities on final-year Australian graduate-entry Master of Pharmacy students. Participants completed case-based scenarios within each of three simulation modalities, with feedback provided at the completion of each scenario in a format corresponding to each simulation modality. A post-simulation questionnaire collected qualitative and quantitative responses pertaining to participant satisfaction, experiences, and feedback preferences. Results . Participants reported similar levels satisfaction across all three modalities. However, each modality resulted in unique positive and negative experiences, such as student disengagement with paper-based scenarios. Conclusion . Importantly, the themes of guidance and opportunity for peer discussion underlie the best forms of feedback for students. The provision of feedback following simulation should be carefully considered and delivered, with all three simulation modalities producing both positive and negative experiences in regard to their feedback format.

  11. Speed Control Law for Precision Terminal Area In-Trail Self Spacing

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    This document describes a speed control law for precision in-trail airborne self-spacing during final approach. This control law was designed to provide an operationally viable means to obtain a desired runway threshold crossing time or minimum distance, one aircraft relative to another. The control law compensates for dissimilar final approach speeds between aircraft pairs and provides guidance for a stable final approach. This algorithm has been extensively tested in Monte Carlo simulation and has been evaluated in piloted simulation, with preliminary results indicating acceptability from operational and workload standpoints.

  12. Visual cueing aids for rotorcraft landings

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Andre, Anthony D.

    1993-01-01

    The present study used a rotorcraft simulator to examine descents-to-hover at landing pads with one of three approach lighting configurations. The impact of simulator platform motion upon descents to hover was also examined. The results showed that the configuration with the most useful optical information led to the slowest final approach speeds, and that pilots found this configuration, together with the presence of simulator platform motion, most desirable. The results also showed that platform motion led to higher rates of approach to the landing pad in some cases. Implications of the results for the design of vertiport approach paths are discussed.

  13. Space Shuttle Avionics: a Redundant IMU On-Board Checkout and Redundancy Management System

    NASA Technical Reports Server (NTRS)

    Mckern, R. A.; Brown, D. G.; Dove, D. W.; Gilmore, J. P.; Landey, M. E.; Musoff, H.; Amand, J. S.; Vincent, K. T., Jr.

    1972-01-01

    A failure detection and isolation philosophy applicable to multiple off-the-shelf gimbaled IMUs are discussed. The equations developed are implemented and evaluated with actual shuttle trajectory simulations. The results of these simulations are presented for both powered and unpowered flight phases and at operational levels of four, three, and two IMUs. A multiple system checkout philosophy is developed and simulation results presented. The final task develops a laboratory test plan and defines the hardware and software requirements to implement an actual multiple system and evaluate the interim study results for space shuttle application.

  14. Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2018-02-01

    Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest-neighbour interactions starting from random initial conditions. In this letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.

  15. Flood Scenario Simulation and Disaster Estimation of Ba-Ma Creek Watershed in Nantou County, Taiwan

    NASA Astrophysics Data System (ADS)

    Peng, S. H.; Hsu, Y. K.

    2018-04-01

    The present study proposed several scenario simulations of flood disaster according to the historical flood event and planning requirement in Ba-Ma Creek Watershed located in Nantou County, Taiwan. The simulations were made using the FLO-2D model, a numerical model which can compute the velocity and depth of flood on a two-dimensional terrain. Meanwhile, the calculated data were utilized to estimate the possible damage incurred by the flood disaster. The results thus obtained can serve as references for disaster prevention. Moreover, the simulated results could be employed for flood disaster estimation using the method suggested by the Water Resources Agency of Taiwan. Finally, the conclusions and perspectives are presented.

  16. Dual-scale phase-field simulation of Mg-Al alloy solidification

    NASA Astrophysics Data System (ADS)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  17. Using Simulation Technology to Promote Social Competence of Handicapped Students. Final Report. Executive Summary.

    ERIC Educational Resources Information Center

    Appell, Louise S.; And Others

    The purpose of this project was to design and develop simulation materials utilizing vocational situations) in mildly/moderately handicapped young adults. The final product, a set of materials titled "Social Skills on the Job," includes a videotape of 15 lessons, a computer software package, and a teacher's guide, and was marketed to a commercial…

  18. A DMPA Langmuir monolayer study: from gas to solid phase. An atomistic description by molecular dynamics Simulation.

    PubMed

    Giner-Casares, J J; Camacho, L; Martín-Romero, M T; Cascales, J J López

    2008-03-04

    In this work, a DMPA Langmuir monolayer at the air/water interface was studied by molecular dynamics simulations. Thus, an atomistic picture of a Langmuir monolayer was drawn from its expanded gas phase to its final solid condensed one. In this sense, some properties of monolayers that were traditionally poorly or even not reproduced in computer simulations, such as lipid domain formation or pressure-area per lipid isotherm, were properly reproduced in this work. Thus, the physical laws that control the lipid domain formation in the gas phase and the structure of lipid monolayers from the gas to solid condensed phase were studied. Thanks to the atomistic information provided by the molecular dynamics simulations, we were able to add valuable information to the experimental description of these processes and to access experimental data related to the lipid monolayers in their expanded phase, which is difficult or inaccessible to study by experimental techniques. In this sense, properties such as lipids head hydration and lipid structure were studied.

  19. The use of psychiatry-focused simulation in undergraduate nursing education: A systematic search and review.

    PubMed

    Vandyk, Amanda D; Lalonde, Michelle; Merali, Sabrina; Wright, Erica; Bajnok, Irmajean; Davies, Barbara

    2018-04-01

    Evidence on the use of simulation to teach psychiatry and mental health (including addiction) content is emerging, yet no summary of the implementation processes or associated outcomes exists. The aim of this study was to systematically search and review empirical literature on the use of psychiatry-focused simulation in undergraduate nursing education. Objectives were to (i) assess the methodological quality of existing evidence on the use of simulation to teach mental health content to undergraduate nursing students, (ii) describe the operationalization of the simulations, and (iii) summarize the associated quantitative and qualitative outcomes. We conducted online database (MEDLINE, Embase, ERIC, CINAHL, PsycINFO from January 2004 to October 2015) and grey literature searches. Thirty-two simulation studies were identified describing and evaluating six types of simulations (standardized patients, audio simulations, high-fidelity simulators, virtual world, multimodal, and tabletop). Overall, 2724 participants were included in the studies. Studies reflected a limited number of intervention designs, and outcomes were evaluated with qualitative and quantitative methods incorporating a variety of tools. Results indicated that simulation was effective in reducing student anxiety and improving their knowledge, empathy, communication, and confidence. The summarized qualitative findings all supported the benefit of simulation; however, more research is needed to assess the comparative effectiveness of the types of simulations. Recommendations from the findings include the development of guidelines for educators to deliver each simulation component (briefing, active simulation, debriefing). Finally, consensus around appropriate training of facilitators is needed, as is consistent and agreed upon simulation terminology. © 2017 Australian College of Mental Health Nurses Inc.

  20. Water quality of flow through cured-in-place pipe (CIPP) : final report.

    DOT National Transportation Integrated Search

    2017-02-01

    Though this study did not include replication, the preponderance of the data from field and simulated-field experiments indicates that Curedin-Place : Pipe (CIPP), with some care in enforcing the Caltrans specification and delaying the reintroduction...

  1. Automated recognition of helium speech. Phase I: Investigation of microprocessor based analysis/synthesis system

    NASA Astrophysics Data System (ADS)

    Jelinek, H. J.

    1986-01-01

    This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.

  2. Technology research for strapdown inertial experiment and digital flight control and guidance

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Cottrell, D. E.

    1985-01-01

    A helicopter flight-test program to evaluate the performance of Honeywell's Tetrad - a strapdown, laser gyro, inertial navitation system is discussed. The results of 34 flights showed a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n.mi., with a standard deviation of 1.48 n.m.; and a modeled mean-position-error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. Tetrad's four-ring laser gyros provided reliable and accurate angular rate sensing during the test program and on sensor failures were detected during the evaluation. Criteria suitable for investigating cockpit systems in rotorcraft were developed. This criteria led to the development of two basic simulators. The first was a standard simulator which could be used to obtain baseline information for studying pilot workload and interactions. The second was an advanced simulator which integrated the RODAAS developed by Honeywell into this simulator. The second area also included surveying the aerospace industry to determine the level of use and impact of microcomputers and related components on avionics systems.

  3. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    NASA Astrophysics Data System (ADS)

    Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2004-06-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.

  4. Multiscale modeling of shock wave localization in porous energetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  5. Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation.

    PubMed

    Liu, Jun; Zhang, Liqun; Cao, Dapeng; Wang, Wenchuan

    2009-12-28

    Polymer nanocomposites (PNCs) often exhibit excellent mechanical, thermal, electrical and optical properties, because they combine the performances of both polymers and inorganic or organic nanoparticles. Recently, computer modeling and simulation are playing an important role in exploring the reinforcement mechanism of the PNCs and even the design of functional PNCs. This report provides an overview of the progress made in past decades in the investigation of the static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Emphases are placed on exploring the mechanisms at the molecular level for the dispersion of nanoparticles in nanocomposites, the effects of nanoparticles on chain conformation and glass transition temperature (T(g)), as well as viscoelastic and mechanical properties. Finally, some future challenges and opportunities in computer modeling and simulation of PNCs are addressed.

  6. Multiscale modeling of shock wave localization in porous energetic material

    DOE PAGES

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...

    2018-01-30

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  7. Incident management under SCAT adaptive control system : FAST-TRAC phase III deliverable. #11, Final report on incident management under SCATS adaptive control system

    DOT National Transportation Integrated Search

    1998-04-01

    The report documents the results of a study designed to test the effectiveness of ATMS and ATIS strategies to reduce delay resulting from an incident. The study had two main sections: a simulation study to test the effectiveness of several control st...

  8. Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models

    NASA Astrophysics Data System (ADS)

    Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2018-06-01

    Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.

  9. Analysis of artery blood flow before and after angioplasty

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Michał; Baranowski, Paweł; Małachowski, Jerzy; Damaziak, Krzysztof; Bukała, Jakub

    2018-01-01

    The study presents a comparison of results obtained from numerical simulations of blood flow in two different arteries. One of them was considered to be narrowed in order to simulate an arteriosclerosis obstructing the blood flow in the vessel, whereas the second simulates the vessel after angioplasty treatment. During the treatment, a biodegradable stent is inserted into the artery, which prevents the vessel walls from collapsing. The treatment was simulated through the use of numerical simulation using the finite element method. The final mesh geometry obtained from the analysis was exported to the dedicated software in order to create geometry in which a flow domain inside the artery with the stent was created. The flow analysis was conducted in ANSYS Fluent software with non-deformable vessel walls.

  10. Simulator evaluation of the final approach spacing tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.

    1990-01-01

    The design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course is described. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arrivals as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a 4-D trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST was implemented on a high performance workstation. It can be operated as a stand-alone in the Terminal Radar Approach Control (TRACON) Facility or as an element of a system integrated with automation tools in the Air Route Traffic Control Center (ARTCC). FAST was evaluated by experienced TRACON controllers in a real-time air traffic control simulation. Simulation results show that FAST significantly reduced controller workload and demonstrated a potential for an increase in landing rate.

  11. Numerical modeling of Stickney crater and its aftermath

    NASA Astrophysics Data System (ADS)

    Schwartz, Stephen R.; Michel, Patrick; Bruck Syal, Megan; Owen, J. Michael; Miller, Paul L.; Richardson, Derek C.; Zhang, Yun

    2016-10-01

    Phobos is characterized by a large crater called Stickney. Its collisional formation and its aftermath have important implications on the final structure, morphology, and surface properties of Phobos that still need further clarification. This is particularly important in the current environment, with space mission concepts to Phobos under active study by several space agencies. SPH hydrocode simulations of the impact that formed Stickney crater [1] have been performed. Using the Soft-Sphere Discrete Element Method (SSDEM) collisional routine of the N-body code pkdgrav [2], we take the outcome of SPH simulations as inputs and model the ensuing phase of the crater formation process and its ejecta evolution under the gravitational influence of Phobos and Mars. In our simulations, about 9 million particles comprise Phobos' shape [3], and the evolution of particles that are expected to form or leave the crater is followed using multiple plausible orbits for Phobos around Mars. We track the immediate fate of low-speed ejecta (~3-8 m/s), allowing us to test an hypothesis [4] that they may scour certain groove marks that have been observed on Phobos' surface and to quantify the amounts and locations of re-impacting ejecta. We also compute the orbital fate of ejecta whose speed is below the system escape speed (about 3 km/s). This allows us to estimate the thickness and distribution of the final ejecta blanket and to check whether crater chains may form. Finally, particles forming the crater walls are followed until achieving stability, allowing us to estimate the final crater depth and diameter. We will show examples of these simulations from a set of SPH initial conditions and over a range of parameters (e.g., material friction coefficients). Work ongoing to cover a larger range of plausible impact conditions, allowing us to explore different scenarios to explain Phobos' observed properties and to infer more, giving useful constraints to space mission studies. [1] Bruck Syal, M. et al. (this meeting); [2] Schwartz, S.R. et al. 2012, Granul. Matter 14, 363; [3] Willner, K. et al. 2010, E. Earth Planet. Sci. Lett. 294, 541; [4] Wilson, L. & Head, J.W. 2015, Planet. Space Sci. 105, 26.

  12. Developing and Testing Simulated Occupational Experiences for Distributive Education Students in Rural Communities: Volume III: Training Plans: Final Report.

    ERIC Educational Resources Information Center

    Virginia Polytechnic Inst. and State Univ., Blacksburg.

    Volume 3 of a three volume final report presents prototype job training plans developed as part of a research project which pilot tested a distributive education program for rural schools utilizing a retail store simulation plan. The plans are for 15 entry-level and 15 career-level jobs in seven categories of distributive business (department…

  13. Developing model asphalt systems using molecular simulation : final model.

    DOT National Transportation Integrated Search

    2009-09-01

    Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...

  14. Nondestructive evaluation of pavement structural condition for rehabilitation design : final report.

    DOT National Transportation Integrated Search

    2016-05-31

    Falling Weight Deflectometer (FWD) is the common non-destructive testing method for in-situ evaluation of pavement condition. : This study aims to develop finite element (FE) models that can simulate FWD loading on pavement system and capture the : c...

  15. Development of a standard accelerated weathering test for aggregates using dimethyl sulfoxide (DMSO) : final report.

    DOT National Transportation Integrated Search

    1986-09-01

    A standard accelerated weathering test using Dimethyl Sulfoxide (DMSO) was developed to simulate the chemical degradation of basaltic rocks. After a thorough study of the parameters affecting the current procedure, such as container geometry, aggrega...

  16. ICASE Semiannual Report

    DTIC Science & Technology

    1991-05-01

    Greenberg and B. Lubachevsky (AT& T, Bell Laboratories). We have developed algorithms suitable for simulating a general class of stack replacement policy al...systems of conservation laws. Finally, we began to study various edge detectors based on the (truncated) Hilbert trans- form, in the context of spectral

  17. Bus lane with intermittent priority (BLIMP) concept simulation analysis final report : November 2009.

    DOT National Transportation Integrated Search

    2009-11-01

    The Lane Transit District, in cooperation with the National Bus Rapid Transit Institute (NBRTI) at the University of South Florida, completed a preliminary implementation study to determine the potential impacts of a new and innovative transit priori...

  18. A trial of e-simulation of sudden patient deterioration (FIRST2ACT WEB) on student learning.

    PubMed

    Bogossian, Fiona E; Cooper, Simon J; Cant, Robyn; Porter, Joanne; Forbes, Helen

    2015-10-01

    High-fidelity simulation pedagogy is of increasing importance in health professional education; however, face-to-face simulation programs are resource intensive and impractical to implement across large numbers of students. To investigate undergraduate nursing students' theoretical and applied learning in response to the e-simulation program-FIRST2ACT WEBTM, and explore predictors of virtual clinical performance. Multi-center trial of FIRST2ACT WEBTM accessible to students in five Australian universities and colleges, across 8 campuses. A population of 489 final-year nursing students in programs of study leading to license to practice. Participants proceeded through three phases: (i) pre-simulation-briefing and assessment of clinical knowledge and experience; (ii) e-simulation-three interactive e-simulation clinical scenarios which included video recordings of patients with deteriorating conditions, interactive clinical tasks, pop up responses to tasks, and timed performance; and (iii) post-simulation feedback and evaluation. Descriptive statistics were followed by bivariate analysis to detect any associations, which were further tested using standard regression analysis. Of 409 students who commenced the program (83% response rate), 367 undergraduate nursing students completed the web-based program in its entirety, yielding a completion rate of 89.7%; 38.1% of students achieved passing clinical performance across three scenarios, and the proportion achieving passing clinical knowledge increased from 78.15% pre-simulation to 91.6% post-simulation. Knowledge was the main independent predictor of clinical performance in responding to a virtual deteriorating patient R(2)=0.090, F(7, 352)=4.962, p<0.001. The use of web-based technology allows simulation activities to be accessible to a large number of participants and completion rates indicate that 'Net Generation' nursing students were highly engaged with this mode of learning. The web-based e-simulation program FIRST2ACTTM effectively enhanced knowledge, virtual clinical performance, and self-assessed knowledge, skills, confidence, and competence in final-year nursing students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Virtual Planning at Work: A Tour of NASA Future Flight Central

    NASA Technical Reports Server (NTRS)

    McClenahen, Jim; Dorighi, Nancy S. (Technical Monitor)

    2000-01-01

    FutureFlight Central will permit integration of tomorrow's technologies in a risk-free simulation of any airport, airfield, and tower cab environment. The facility provides an opportunity for airlines to mitigate passenger delays by fine tuning airport hub operations, gate management and ramp movement procedures. It also allows airport managers an opportunity to study effects of various improvements at their airports. Finally, it enables air traffic controllers to provide feedback and to become familiar with new airport operations and technologies before final installation.

  20. Atmospheric turbulence simulation for Shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1979-01-01

    An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4.

  1. Final Report: Closeout of the Award NO. DE-FG02-98ER62618 (M.S. Fox-Rabinovitz, P.I.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox-Rabinovitz, M. S.

    The final report describes the study aimed at exploring the variable-resolution stretched-grid (SG) approach to decadal regional climate modeling using advanced numerical techniques. The obtained results have shown that variable-resolution SG-GCMs using stretched grids with fine resolution over the area(s) of interest, is a viable established approach to regional climate modeling. The developed SG-GCMs have been extensively used for regional climate experimentation. The SG-GCM simulations are aimed at studying the U.S. regional climate variability with an emphasis on studying anomalous summer climate events, the U.S. droughts and floods.

  2. Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan Allanque; Merritt, Deborah S.

    2011-01-01

    The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.

  3. Motion Factors in Flight Simulation. Final Report.

    ERIC Educational Resources Information Center

    Klier, Sol; Gage, Howard

    The effect of different simulator motion conditions on pilot performance was investigated, and the cuing function of simulator motion was explored. Subjects were required to perform a simulated air-to-air gunnery task under four conditions of motion. While treatment effects did not meet the predetermined level of statistical significance,…

  4. Stress and Simulation in Pilot Training. Final Report, May 1977 Through December 1977.

    ERIC Educational Resources Information Center

    Krahenbuhl, Gary S.; And Others

    Research was conducted on pilot stress during simulated emergency flight conditions. Catecholamine (adrenaline and non-adrenaline) secretion for twenty United States Air Force student pilots and thirteen instructor pilots was determined during daily activities, during simulated flights performed in high realism simulators, and during actual…

  5. A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm for FINAL.1

    NASA Astrophysics Data System (ADS)

    Rabin, Sam S.; Ward, Daniel S.; Malyshev, Sergey L.; Magi, Brian I.; Shevliakova, Elena; Pacala, Stephen W.

    2018-03-01

    This study describes and evaluates the Fire Including Natural & Agricultural Lands model (FINAL) which, for the first time, explicitly simulates cropland and pasture management fires separately from non-agricultural fires. The non-agricultural fire module uses empirical relationships to simulate burned area in a quasi-mechanistic framework, similar to past fire modeling efforts, but with a novel optimization method that improves the fidelity of simulated fire patterns to new observational estimates of non-agricultural burning. The agricultural fire components are forced with estimates of cropland and pasture fire seasonality and frequency derived from observational land cover and satellite fire datasets. FINAL accurately simulates the amount, distribution, and seasonal timing of burned cropland and pasture over 2001-2009 (global totals: 0.434×106 and 2.02×106 km2 yr-1 modeled, 0.454×106 and 2.04×106 km2 yr-1 observed), but carbon emissions for cropland and pasture fire are overestimated (global totals: 0.295 and 0.706 PgC yr-1 modeled, 0.194 and 0.538 PgC yr-1 observed). The non-agricultural fire module underestimates global burned area (1.91×106 km2 yr-1 modeled, 2.44×106 km2 yr-1 observed) and carbon emissions (1.14 PgC yr-1 modeled, 1.84 PgC yr-1 observed). The spatial pattern of total burned area and carbon emissions is generally well reproduced across much of sub-Saharan Africa, Brazil, Central Asia, and Australia, whereas the boreal zone sees underestimates. FINAL represents an important step in the development of global fire models, and offers a strategy for fire models to consider human-driven fire regimes on cultivated lands. At the regional scale, simulations would benefit from refinements in the parameterizations and improved optimization datasets. We include an in-depth discussion of the lessons learned from using the Levenberg-Marquardt algorithm in an interactive optimization for a dynamic global vegetation model.

  6. An analysis of voice communication in a simulated approach control environment : final report.

    DOT National Transportation Integrated Search

    1998-05-01

    This report consists of an analysis of simulated terminal radar approach control (TRACON) air traffic control communications. Twenty-four full performance level air traffic controllers (FPLATC) from 2 TRACON facilities participated in the simulation ...

  7. 21SSD: a new public 21-cm EoR database

    NASA Astrophysics Data System (ADS)

    Eames, Evan; Semelin, Benoît

    2018-05-01

    With current efforts inching closer to detecting the 21-cm signal from the Epoch of Reionization (EoR), proper preparation will require publicly available simulated models of the various forms the signal could take. In this work we present a database of such models, available at 21ssd.obspm.fr. The models are created with a fully-coupled radiative hydrodynamic simulation (LICORICE), and are created at high resolution (10243). We also begin to analyse and explore the possible 21-cm EoR signals (with Power Spectra and Pixel Distribution Functions), and study the effects of thermal noise on our ability to recover the signal out to high redshifts. Finally, we begin to explore the concepts of `distance' between different models, which represents a crucial step towards optimising parameter space sampling, training neural networks, and finally extracting parameter values from observations.

  8. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chao, D. F. K.

    1983-01-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  9. A Peridynamic Approach for Nanoscratch Simulation of the Cement Mortar

    NASA Astrophysics Data System (ADS)

    Zhao, Jingjing; Zhang, Qing; Lu, Guangda; Chen, Depeng

    2018-03-01

    The present study develops a peridynamic approach for simulating the nanoscratch procedure on the cement mortar interface. In this approach, the cement and sand are considered as discrete particles with certain mechanical properties on the nanoscale. Besides, the interaction force functions for different components in the interface are represented by combining the van der Waals force and the peridynamic force. The nanoscratch procedures with the indenter moving along certain direction either parallel or perpendicular to the interface are simulated in this paper. The simulation results show the damage evolution processes and the final damage distributions of the cement mortar under different scratching speed and depth of the indenter, indicating that the interface between cement and sand is a weak area.

  10. Electrolytic hydrogen production: An analysis and review

    NASA Technical Reports Server (NTRS)

    Evangelista, J.; Phillips, B.; Gordon, L.

    1975-01-01

    The thermodynamics of water electrolysis cells is presented, followed by a review of current and future technology of commercial cells. The irreversibilities involved are analyzed and the resulting equations assembled into a computer simulation model of electrolysis cell efficiency. The model is tested by comparing predictions based on the model to actual commercial cell performance, and a parametric investigation of operating conditions is performed. Finally, the simulation model is applied to a study of electrolysis cell dynamics through consideration of an ideal pulsed electrolyzer.

  11. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

    NASA Technical Reports Server (NTRS)

    Fern, Lisa

    2017-01-01

    This presentation summarizes the simulation work conducted by the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project. It focuses on the contribution of that research to the development of RTCA Special Committee 228's (SC-228) Minimum Operational Performance Standards (MOPS) for UAS. The research objectives and primary findings from four different human-in-the-loop simulations are discussed, along with the specific requirements these studies led to in the final MOPS document.

  12. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema

    Andy Nonaka

    2017-12-09

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.

  13. Design, Modeling and Simulations in the RACE Project: Preliminary study for the development of a transport line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, C. O.; Hunt, A. W.; Idaho State University, Department of Physics, PO Box 8106, Pocatello, ID 83209

    2007-02-12

    As part of the Reactor Accelerator Coupling Experiment (RACE) a set of preliminary studies were conducted to design a transport beam line that could bring a 25 MeV electron beam from a Linear Accelerator to a neutron-producing target inside a subcritical system. Because of the relatively low energy beam, the beam size and a relatively long beam line (implicating a possible divergence problem) different parameters and models were studied before a final design could be submitted for assembly. This report shows the first results obtained from different simulations of the transport line optics and dynamics.

  14. Simulation study on the impact of air distribution on formaldehyde pollutant distribution in room

    NASA Astrophysics Data System (ADS)

    Wu, Jingtao; Wang, Jun; Cheng, Zhu

    2017-01-01

    In this paper, physical and mathematical model of a room was established based on the Airpak software. The velocity distribution, air age distribution, formaldehyde concentration distribution and Predicted Mean Vote(PMV), Predicted Percentage Dissatisfied(PPD) distribution in the ward of a hospital were simulated. In addition, the air volume was doubled, the change of indoor pollutant concentration distribution was simulated. And further, the change of air age was simulated. Through the simulation, it can help arrange the position of the air supply port, so it is very necessary to increase the comfort of the staff in the room. Finally, through the simulation of pollutant concentration distribution, it can be seen that when concentration of indoor pollutants was high, the supply air flow rate should be increased appropriately. Indoor pollutant will be discharged as soon as possible, which is very beneficial to human body health.

  15. Simulation of a large size inductively coupled plasma generator and comparison with experimental data

    NASA Astrophysics Data System (ADS)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Yu, Yuanyuan

    2018-01-01

    A two-dimensional axisymmetric inductively coupled plasma (ICP) model with its implementation in the COMSOL (Multi-physics simulation software) platform is described. Specifically, a large size ICP generator filled with argon is simulated in this study. Distributions of the number density and temperature of electrons are obtained for various input power and pressure settings and compared. In addition, the electron trajectory distribution is obtained in simulation. Finally, using experimental data, the results from simulations are compared to assess the veracity of the two-dimensional fluid model. The purpose of this comparison is to validate the veracity of the simulation model. An approximate agreement was found (variation tendency is the same). The main reasons for the numerical magnitude discrepancies are the assumption of a Maxwellian distribution and a Druyvesteyn distribution for the electron energy and the lack of cross sections of collision frequencies and reaction rates for argon plasma.

  16. Final Report DE-FG02-07ER64416

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seymour, Joseph D.

    The document provides the Final Report for DE-FG02-07ER64416 on the use of magnetic resonance (MR) methods to quantify transport in porous media impacted by biological and chemical processes. Products resulting from the research in the form of peer reviewed publications and conference presentations are presented. The research correlated numerical simulations and MR measurements to test simulation methodology. Biofilm and uranium detection by MR was demonstrated.

  17. SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL REPORT, PHASE I - IMMEDIATE ASSESSMENT, ACME SOLVENTS SITE

    EPA Science Inventory

    This is a site assessment and feasibility study of incineration alternatives at the ACME Solvents Site at Rockford, Illinois. The document contains laboratory results that are reported to simulate incineration conditions but no details on test methods were provided. The d...

  18. Finite element simulation of truck impacts on highway bridge piers : final report.

    DOT National Transportation Integrated Search

    2016-04-01

    Recent studies show that the dynamic forces because of truck impacts may be significantly higher than the : 600kips force recommended by the AASHTO. Hence, there is a need to carry out detailed investigations : on vehicular-bridge collision for a rel...

  19. Effects of combined lime and fly ash stabilization on the elastic moduli of montmorillonitic soils : final report.

    DOT National Transportation Integrated Search

    1988-04-01

    A laboratory study using bentonite to simulate the montmorillonite component of soils common to Louisiana was undertaken to evaluate the effects of combined lime and fly ash additions on stabilization reactions. Samples containing bentonite (75 weigh...

  20. Operational improvements at traffic circles : safety analysis, final report, December 2008.

    DOT National Transportation Integrated Search

    2008-12-01

    The purpose of this study was to improve the safety and operation at three traffic circles in New : Jersey. To do this, data were collected at the traffic circles to allow researchers to model the : circles using the PARAMICS software simulation pack...

  1. Demonstration of TRAF-NETSIM for traffic operations management : final report.

    DOT National Transportation Integrated Search

    1991-08-01

    The utility of the simulation package TRAF-NETSIM to the traffic engineer is assessed and demonstrated by means of a case study. The methodology employed in performing the analysis is presented in a way that will aid future users of TRAF-NETSIM. The ...

  2. Uptake and withdrawal of droplets from carbon nanotubes.

    PubMed

    Schebarchov, D; Hendy, S C

    2011-01-01

    We give an account of recent studies of droplet uptake and withdrawal from carbon nanotubes using simple theoretical arguments and molecular dynamics simulations. Firstly, the thermodynamics of droplet uptake and release is considered and tested via simulation. We show that the Laplace pressure acting on a droplet assists capillary uptake, allowing sufficiently small non-wetting droplets to be absorbed. We then demonstrate how the uptake and release of droplets of non-wetting fluids can be exploited for the use of carbon nanotubes as nanopipettes. Finally, we extend the Lucas-Washburn model to deal with the dynamics of droplet capillary uptake, and again test this by comparison with molecular dynamics simulations.

  3. Uptake and withdrawal of droplets from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Schebarchov, D.; Hendy, S. C.

    2011-01-01

    We give an account of recent studies of droplet uptake and withdrawal from carbon nanotubes using simple theoretical arguments and molecular dynamics simulations. Firstly, the thermodynamics of droplet uptake and release is considered and tested via simulation. We show that the Laplace pressure acting on a droplet assists capillary uptake, allowing sufficiently small non-wetting droplets to be absorbed. We then demonstrate how the uptake and release of droplets of non-wetting fluids can be exploited for the use of carbon nanotubes as nanopipettes. Finally, we extend the Lucas-Washburn model to deal with the dynamics of droplet capillary uptake, and again test this by comparison with molecular dynamics simulations.

  4. Global Flowfield About the V-22 Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    1996-01-01

    This final report includes five publications that resulted from the studies of the global flowfield about the V-22 Tiltrotor Aircraft. The first of the five is 'The Chimera Method of Simulation for Unsteady Three-Dimensional Viscous Flow', as presented in 'Computational Fluid Dynamics Review 1995.' The remaining papers, all presented at AIAA conferences, are 'Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover', 'An Efficient Means of Adaptive Refinement Within Systems of Overset Grids', 'On the Spatial and Temporal Accuracy of Overset Grid Methods for MOving Body Problems', and 'Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor Simulations.'

  5. Analysis of the times involved in processing and communication in a lower limb simulation system controlled by SEMG

    NASA Astrophysics Data System (ADS)

    Profumieri, A.; Bonell, C.; Catalfamo, P.; Cherniz, A.

    2016-04-01

    Virtual reality has been proposed for different applications, including the evaluation of new control strategies and training protocols for upper limb prostheses and for the study of new rehabilitation programs. In this study, a lower limb simulation environment commanded by surface electromyography signals is evaluated. The time delays generated by the acquisition and processing stages for the signals that would command the knee joint, were measured and different acquisition windows were analysed. The subjective perception of the quality of simulation was also evaluated when extra delays were added to the process. The results showed that the acquisition window is responsible for the longest delay. Also, the basic implemented processes allowed for the acquisition of three signal channels for commanding the simulation. Finally, the communication between different applications is arguably efficient, although it depends on the amount of data to be sent.

  6. Medicinal plant phytochemicals and their inhibitory activities against pancreatic lipase: molecular docking combined with molecular dynamics simulation approach.

    PubMed

    Ahmed, Bilal; Ali Ashfaq, Usman; Usman Mirza, Muhammad

    2018-05-01

    Obesity is the worst health risk worldwide, which is linked to a number of diseases. Pancreatic lipase is considered as an affective cause of obesity and can be a major target for controlling the obesity. The present study was designed to find out best phytochemicals against pancreatic lipase through molecular docking combined with molecular dynamics (MD) simulation. For this purpose, a total of 3770 phytochemicals were docked against pancreatic lipase and ranked them on the basis of binding affinity. Finally, 10 molecules (Kushenol K, Rosmarinic acid, Reserpic acid, Munjistin, Leachianone G, Cephamycin C, Arctigenin, 3-O-acetylpadmatin, Geniposide and Obtusin) were selected that showed strong bonding with the pancreatic lipase. MD simulations were performed on top five compounds using AMBER16. The simulated complexes revealed stability and ligands remained inside the binding pocket. This study concluded that these finalised molecules can be used as drug candidate to control obesity.

  7. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    NASA Technical Reports Server (NTRS)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  8. Apollo guidance, navigation, and control: Candidate configuration trade study, Stellar-Inertial Measurement System (SIMS) for an Earth Observation Satellite (EOS)

    NASA Technical Reports Server (NTRS)

    Ogletree, G.; Coccoli, J.; Mckern, R.; Smith, M.; White, R.

    1972-01-01

    The ten candidate SIMS configurations were reduced to three in preparation for the final trade comparison. The report emphasizes subsystem design trades, star availability studies, data processing (smoothing) methods, and the analytical and simulation studies at subsystem and system levels from which candidate accuracy estimates will be presented.

  9. Landsat-7 Simulation and Testing Environments

    NASA Technical Reports Server (NTRS)

    Holmes, E.; Ha, K.; Hawkins, K.; Lombardo, J.; Ram, M.; Sabelhaus, P.; Scott, S.; Phillips, R.

    1999-01-01

    A spacecraft Attitude Control and Determination Subsystem (ACDS) is heavily dependent upon simulation throughout its entire development, implementation and ground test cycle. Engineering simulation tools are typically developed to design and analyze control systems to validate the design and software simulation tools are required to qualify the flight software. However, the need for simulation does not end here. Operating the ACDS of a spacecraft on the ground requires the simulation of spacecraft dynamics, disturbance modeling and celestial body motion. Sensor data must also be simulated and substituted for actual sensor data on the ground so that the spacecraft will respond by sending commands to the actuators as they will on orbit. And finally, the simulators is the primary training tool and test-bed for the Flight Operations Team. In this paper various ACDS simulation, developed for or used by the Landsat 7 project will be described. The paper will include a description of each tool, its unique attributes, and its role in the overall development and testing of the ACDS. Finally, a section is included which discusses how the coordinated use of these simulation tools can maximize the probability of uncovering software, hardware and operations errors during the ground test process.

  10. DNA Packaging in Bacteriophage: Is Twist Important?

    PubMed Central

    Spakowitz, Andrew James; Wang, Zhen-Gang

    2005-01-01

    We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces. PMID:15805174

  11. DNA packaging in bacteriophage: is twist important?

    PubMed

    Spakowitz, Andrew James; Wang, Zhen-Gang

    2005-06-01

    We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces.

  12. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  13. Solvent effect on the folding dynamics and structure of E6-associated protein characterized from ab initio protein folding simulations

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Lazim, Raudah; Sun, Tiedong; Mei, Ye; Zhang, Dawei

    2012-04-01

    Solvent effect on protein conformation and folding mechanism of E6-associated protein (E6ap) peptide are investigated using a recently developed charge update scheme termed as adaptive hydrogen bond-specific charge (AHBC). On the basis of the close agreement between the calculated helix contents from AHBC simulations and experimental results, we observed based on the presented simulations that the two ends of the peptide may simultaneously take part in the formation of the helical structure at the early stage of folding and finally merge to form a helix with lowest backbone RMSD of about 0.9 Å in 40% 2,2,2-trifluoroethanol solution. However, in pure water, the folding may start at the center of the peptide sequence instead of at the two opposite ends. The analysis of the free energy landscape indicates that the solvent may determine the folding clusters of E6ap, which subsequently leads to the different final folded structure. The current study demonstrates new insight to the role of solvent in the determination of protein structure and folding dynamics.

  14. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast

    PubMed Central

    Pang, Wei; Coghill, George M.

    2015-01-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. PMID:25864377

  15. A study of ignition and simulation circuits for arcjet thrusters, part 1. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Altenburger, Gene P.

    1991-01-01

    A 1 kW electronic load was programmed to simulate the nonlinear i-v (volt-ampere) characteristics of an arcjet, both ignited and unignited. The simulator was tested and found to closely resemble an arcjet both for large transients and small perturbances up to about 40 kHz. No attempt was made to simulate the ignition process itself. The dynamic behavior of the arcjet (and the simulator) was shown to differ significantly from that of a resistor bank. Previous research led to the design and construction of a 1 kW arcjet power supply. A high voltage ignition circuit was added to this hardware, and tests on a 1 kW arcjet were performed at NASA-Lewis. All tests were successful and no ignition failures were observed. Circuit documentation and test results are included.

  16. Simulation for analysis and control of superplastic forming. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; Aramayo, G.A.; Simunovic, S.

    1996-08-01

    A joint study was conducted by Oak Ridge National Laboratory (ORNL) and the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy-Lightweight Materials (DOE-LWM) Program. the purpose of the study was to assess and benchmark the current modeling capabilities with respect to accuracy of predictions and simulation time. Two modeling capabilities with respect to accuracy of predictions and simulation time. Two simulation platforms were considered in this study, which included the LS-DYNA3D code installed on ORNL`s high- performance computers and the finite element code MARC used at PNL. both ORNL and PNL performed superplastic forming (SPF) analysis on amore » standard butter-tray geometry, which was defined by PNL, to better understand the capabilities of the respective models. The specific geometry was selected and formed at PNL, and the experimental results, such as forming time and thickness at specific locations, were provided for comparisons with numerical predictions. Furthermore, comparisons between the ORNL simulation results, using elasto-plastic analysis, and PNL`s results, using rigid-plastic flow analysis, were performed.« less

  17. Beam-Beam Interaction Simulations with Guinea Pig (LCC-0125)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sramek, C

    2003-11-20

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effectsmore » as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. A study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam cross-sections ({sigma}{sub x}, {sigma}{sub y}, {sigma}{sub z}) and number of particles per bunch (N). Finally, this same study revealed luminosity maxima at large N and small {sigma}{sub y} which may merit further investigation.« less

  18. Effectiveness of patient simulation in nursing education: meta-analysis.

    PubMed

    Shin, Sujin; Park, Jin-Hwa; Kim, Jung-Hee

    2015-01-01

    The use of simulation as an educational tool is becoming increasingly prevalent in nursing education, and a variety of simulators are utilized. Based on the results of these studies, nursing facilitators must find ways to promote effective learning among students in clinical practice and classrooms. To identify the best available evidence about the effects of patient simulation in nursing education through a meta-analysis. This study explores quantitative evidence published in the electronic databases: EBSCO, Medline, ScienceDirect, and ERIC. Using a search strategy, we identified 2503 potentially relevant articles. Twenty studies were included in the final analysis. We found significant post-intervention improvements in various domains for participants who received simulation education compared to the control groups, with a pooled random-effects standardized mean difference of 0.71, which is a medium-to-large effect size. In the subgroup analysis, we found that simulation education in nursing had benefits, in terms of effect sizes, when the effects were evaluated through performance, the evaluation outcome was psychomotor skills, the subject of learning was clinical, learners were clinical nurses and senior undergraduate nursing students, and simulators were high fidelity. These results indicate that simulation education demonstrated medium to large effect sizes and could guide nurse educators with regard to the conditions under which patient simulation is more effective than traditional learning methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A Validation Study of Merging and Spacing Techniques in a NAS-Wide Simulation

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2011-01-01

    In November 2010, Intelligent Automation, Inc. (IAI) delivered an M&S software tool to that allows system level studies of the complex terminal airspace with the ACES simulation. The software was evaluated against current day arrivals in the Atlanta TRACON using Atlanta's Hartsfield-Jackson International Airport (KATL) arrival schedules. Results of this validation effort are presented describing data sets, traffic flow assumptions and techniques, and arrival rate comparisons between reported landings at Atlanta versus simulated arrivals using the same traffic sets in ACES equipped with M&S. Initial results showed the simulated system capacity to be significantly below arrival capacity seen at KATL. Data was gathered for Atlanta using commercial airport and flight tracking websites (like FlightAware.com), and analyzed to insure compatible techniques were used for result reporting and comparison. TFM operators for Atlanta were consulted for tuning final simulation parameters and for guidance in flow management techniques during high volume operations. Using these modified parameters and incorporating TFM guidance for efficiencies in flowing aircraft, arrival capacity for KATL was matched for the simulation. Following this validation effort, a sensitivity study was conducted to measure the impact of variations in system parameters on the Atlanta airport arrival capacity.

  20. Analysis of the Space Shuttle main engine simulation

    NASA Technical Reports Server (NTRS)

    Deabreu-Garcia, J. Alex; Welch, John T.

    1993-01-01

    This is a final report on an analysis of the Space Shuttle Main Engine Program, a digital simulator code written in Fortran. The research was undertaken in ultimate support of future design studies of a shuttle life-extending Intelligent Control System (ICS). These studies are to be conducted by NASA Lewis Space Research Center. The primary purpose of the analysis was to define the means to achieve a faster running simulation, and to determine if additional hardware would be necessary for speeding up simulations for the ICS project. In particular, the analysis was to consider the use of custom integrators based on the Matrix Stability Region Placement (MSRP) method. In addition to speed of execution, other qualities of the software were to be examined. Among these are the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files. Accuracy involves control of truncation error of the methods, and roundoff error induced by floating point operations. It also involves the requirement that the user be fully aware of the model that the simulator is implementing.

  1. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases

    NASA Astrophysics Data System (ADS)

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  2. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases.

    PubMed

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  3. Educational Benefits of Multimedia Skills Training

    ERIC Educational Resources Information Center

    Wang, Tsung juang

    2010-01-01

    The use of multimedia technologies in education has enabled teachers to simulate final outcomes and assist students in applying knowledge learned from textbooks, thereby compensating for the deficiency of traditional teaching methods. It is important to examine how effective these technologies are in practical use. This study developed online…

  4. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    NASA Astrophysics Data System (ADS)

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  5. Simulation studies for surfaces and materials strength

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.

    1986-01-01

    During this reporting period three investigations were carried out. The first area of research concerned the analysis of the structure-energy relationship in small clusters. This study is very closely related to the improvement of the potential energy functions which are suitable and simple enough to be used in atomistic simulation studies. Parameters obtained from ab initio calculations for dimers and trimers of Al were used to estimate energetics and global minimum energy structures of clusters continuing up to 15 Al atoms. The second research topic addressed modeling of the collision process for atoms impinging on surfaces. In this simulation study qualitative aspects of the O atom collision with a graphite surface were analyzed. Four different O/graphite systems were considered and the aftermath of the impact was analyzed. The final area of investigation was related to the simulation of thin amorphous Si films on crystalline Si substrates. Parameters obtained in an earlier study were used to model an exposed amorphous Si surface and an a-Si/c-Si interface. Structural details for various film thicknesses were investigated at an atomistic level.

  6. A simulator study on information requirements for precision hovering

    NASA Technical Reports Server (NTRS)

    Lemons, J. L.; Dukes, T. A.

    1975-01-01

    A fixed base simulator study of an advanced helicopter instrument display utilizing translational acceleration, velocity and position information is reported. The simulation involved piloting a heavy helicopter using the Integrated Trajectory Error Display (ITED) in a precision hover task. The test series explored two basic areas. The effect on hover accuracy of adding acceleration information was of primary concern. Also of interest was the operators' ability to use degraded information derived from less sophisticated sources. The addition of translational acceleration to a display containing velocity and position information did not appear to improve the hover performance significantly. However, displayed acceleration information seemed to increase the damping of the man machine system. Finally, the pilots could use translational information synthesized from attitude and angular acceleration as effectively as perfect acceleration.

  7. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  8. Further Developments in the Communication Link and Error Analysis (CLEAN) Simulator

    NASA Technical Reports Server (NTRS)

    Ebel, William J.; Ingels, Frank M.

    1995-01-01

    During the period 1 July 1993 - 30 June 1994, significant developments to the Communication Link and Error ANalysis (CLEAN) simulator were completed. Many of these were reported in the Semi-Annual report dated December 1993 which has been included in this report in Appendix A. Since December 1993, a number of additional modules have been added involving Unit-Memory Convolutional codes (UMC). These are: (1) Unit-Memory Convolutional Encoder module (UMCEncd); (2) Hard decision Unit-Memory Convolutional Decoder using the Viterbi decoding algorithm (VitUMC); and (3) a number of utility modules designed to investigate the performance of LTMC's such as LTMC column distance function (UMCdc), UMC free distance function (UMCdfree), UMC row distance function (UMCdr), and UMC Transformation (UMCTrans). The study of UMC's was driven, in part, by the desire to investigate high-rate convolutional codes which are better suited as inner codes for a concatenated coding scheme. A number of high-rate LTMC's were found which are good candidates for inner codes. Besides the further developments of the simulation, a study was performed to construct a table of the best known Unit-Memory Convolutional codes. Finally, a preliminary study of the usefulness of the Periodic Convolutional Interleaver (PCI) was completed and documented in a Technical note dated March 17, 1994. This technical note has also been included in this final report.

  9. Electric Field Comparison between Microelectrode Recording and Deep Brain Stimulation Systems—A Simulation Study

    PubMed Central

    Johansson, Johannes; Wårdell, Karin; Hemm, Simone

    2018-01-01

    The success of deep brain stimulation (DBS) relies primarily on the localization of the implanted electrode. Its final position can be chosen based on the results of intraoperative microelectrode recording (MER) and stimulation tests. The optimal position often differs from the final one selected for chronic stimulation with the DBS electrode. The aim of the study was to investigate, using finite element method (FEM) modeling and simulations, whether lead design, electrical setup, and operating modes induce differences in electric field (EF) distribution and in consequence, the clinical outcome. Finite element models of a MER system and a chronic DBS lead were developed. Simulations of the EF were performed for homogenous and patient-specific brain models to evaluate the influence of grounding (guide tube vs. stimulator case), parallel MER leads, and non-active DBS contacts. Results showed that the EF is deformed depending on the distance between the guide tube and stimulating contact. Several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution. The DBS EF volume can cover the intraoperatively produced EF, but can also extend to other anatomical areas. In conclusion, EF deformations between stimulation tests and DBS should be taken into consideration as they can alter the clinical outcome. PMID:29415442

  10. GCR Simulator Development Status at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Slaba, T. C.; Norbury, J. W.; Blattnig, S. R.

    2015-01-01

    There are large uncertainties connected to the biological response for exposure to galactic cosmic rays (GCR) on long duration deep space missions. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed with mono-energetic ions beams. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment at the NASA Space Radiation Laboratory (NSRL) are discussed. First, comparisons are made between direct simulation of the external, free space GCR field, and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, a reference environment for the GCR simulator and suitable for deep space missions is identified and described in terms of fluence and integrated dosimetric quantities. Analysis results are given to justify the use of a single reference field over a range of shielding conditions and solar activities. Third, an approach for simulating the reference field at NSRL is presented. The approach directly considers the hydrogen and helium energy spectra, and the heavier ions are collectively represented by considering the linear energy transfer (LET) spectrum. While many more aspects of the experimental setup need to be considered before final implementation of the GCR simulator, this preliminary study provides useful information that should aid the final design. Possible drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.

  11. A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators.

    PubMed

    Sánchez, Borja Bordel; Alcarria, Ramón; Sánchez-Picot, Álvaro; Sánchez-de-Rivera, Diego

    2017-09-22

    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users' needs and requirements and various additional factors such as the development team's experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal.

  12. A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators

    PubMed Central

    Sánchez-Picot, Álvaro

    2017-01-01

    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal. PMID:28937610

  13. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE

    NASA Astrophysics Data System (ADS)

    Lamare, F.; Turzo, A.; Bizais, Y.; Cheze LeRest, C.; Visvikis, D.

    2006-02-01

    A newly developed simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop a Monte Carlo simulation of a fully three-dimensional (3D) clinical PET scanner. The Philips Allegro/GEMINI PET systems were simulated in order to (a) allow a detailed study of the parameters affecting the system's performance under various imaging conditions, (b) study the optimization and quantitative accuracy of emission acquisition protocols for dynamic and static imaging, and (c) further validate the potential of GATE for the simulation of clinical PET systems. A model of the detection system and its geometry was developed. The accuracy of the developed detection model was tested through the comparison of simulated and measured results obtained with the Allegro/GEMINI systems for a number of NEMA NU2-2001 performance protocols including spatial resolution, sensitivity and scatter fraction. In addition, an approximate model of the system's dead time at the level of detected single events and coincidences was developed in an attempt to simulate the count rate related performance characteristics of the scanner. The developed dead-time model was assessed under different imaging conditions using the count rate loss and noise equivalent count rates performance protocols of standard and modified NEMA NU2-2001 (whole body imaging conditions) and NEMA NU2-1994 (brain imaging conditions) comparing simulated with experimental measurements obtained with the Allegro/GEMINI PET systems. Finally, a reconstructed image quality protocol was used to assess the overall performance of the developed model. An agreement of <3% was obtained in scatter fraction, with a difference between 4% and 10% in the true and random coincidence count rates respectively, throughout a range of activity concentrations and under various imaging conditions, resulting in <8% differences between simulated and measured noise equivalent count rates performance. Finally, the image quality validation study revealed a good agreement in signal-to-noise ratio and contrast recovery coefficients for a number of different volume spheres and two different (clinical level based) tumour-to-background ratios. In conclusion, these results support the accurate modelling of the Philips Allegro/GEMINI PET systems using GATE in combination with a dead-time model for the signal flow description, which leads to an agreement of <10% in coincidence count rates under different imaging conditions and clinically relevant activity concentration levels.

  14. A multinational randomised study comparing didactic lectures with case scenario in a severe sepsis medical simulation course.

    PubMed

    Li, Chih-Huang; Kuan, Win-Sen; Mahadevan, Malcolm; Daniel-Underwood, Lynda; Chiu, Te-Fa; Nguyen, H Bryant

    2012-07-01

    Medical simulation has been used to teach critical illness in a variety of settings. This study examined the effect of didactic lectures compared with simulated case scenario in a medical simulation course on the early management of severe sepsis. A prospective multicentre randomised study was performed enrolling resident physicians in emergency medicine from four hospitals in Asia. Participants were randomly assigned to a course that included didactic lectures followed by a skills workshop and simulated case scenario (lecture-first) or to a course that included a skills workshop and simulated case scenario followed by didactic lectures (simulation-first). A pre-test was given to the participants at the beginning of the course, post-test 1 was given after the didactic lectures or simulated case scenario depending on the study group assignment, then a final post-test 2 was given at the end of the course. Performance on the simulated case scenario was evaluated with a performance task checklist. 98 participants were enrolled in the study. Post-test 2 scores were significantly higher than pre-test scores in all participants (80.8 ± 12.0% vs 65.4 ± 12.2%, p<0.01). There was no difference in pre-test scores between the two study groups. The lecture-first group had significantly higher post-test 1 scores than the simulation-first group (78.8 ± 10.6% vs 71.6 ± 12.6%, p<0.01). There was no difference in post-test 2 scores between the two groups. The simulated case scenario task performance completion was 90.8% (95% CI 86.6% to 95.0%) in the lecture-first group compared with 83.8% (95% CI 79.5% to 88.1%) in the simulation-first group (p=0.02). A medical simulation course can improve resident physician knowledge in the early management of severe sepsis. Such a course should include a comprehensive curriculum that includes didactic lectures followed by simulation experience.

  15. ORION-II: A True Formation Flying Mission in LEO

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.

    2004-01-01

    The final report for the Orion-II project is taken from Chapter 5 of "CDGPS-Based Relative Navigation for Multiple Spacecraft," a thesis by Megan Mitchell submitted to the MIT Department of Aeronautics and Astronautics, June 2004. This chapter begins with a comparison of the simulation architecture for the original and current simulation setups. Next, the changes made to the individual components of the navigation system are described. Finally, tests performed with a Spirent Simulator at NASA Goddard Space Flight Center (GSFC) are discussed. In addition to the development of the testbed components described, a new clean room facility was developed in the Orion Laboratory at MIT.

  16. Advanced Simulation in Undergraduate Pilot Training: Systems Integration. Final Report (February 1972-March 1975).

    ERIC Educational Resources Information Center

    Larson, D. F.; Terry, C.

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…

  17. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  18. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE PAGES

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...

    2018-01-22

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  19. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576

    2014-11-14

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less

  20. The evaluation of a framework for measuring the non-technical ward round skills of final year nursing students: An observational study.

    PubMed

    Murray, Kara; McKenzie, Karen; Kelleher, Michael

    2016-10-01

    The importance of non-technical skills (NTS) to patient outcomes is increasingly being recognised, however, there is limited research into how such skills can be taught and evaluated in student nurses in relation toward rounds. This pilot study describes an evaluation of a NTS framework that could potentially be used to measure ward round skills of student nurses. The study used an observational design. Potential key NTS were identified from existing literature and NTS taxonomies. The proposed framework was then used to evaluate whether the identified NTS were evident in a series of ward round simulations that final year general nursing students undertook as part of their training. Finally, the views of a small group of qualified nurse educators, qualified nurses and general nursing students were sought about whether the identified NTS were important and relevant to practice. The proposed NTS framework included seven categories: Communication, Decision Making, Situational Awareness, Teamwork and Task Management, Student Initiative and Responsiveness to Patient. All were rated as important and relevant to practice. The pilot study suggests that the proposed NTS framework could be used as a means of evaluating student nurse competencies in respect of many non-technical skills required for a successful ward round. Further work is required to establish the validity of the framework in educational settings and to determine the extent to which it is of use in a non-simulated ward round setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Programming and machining of complex parts based on CATIA solid modeling

    NASA Astrophysics Data System (ADS)

    Zhu, Xiurong

    2017-09-01

    The complex parts of the use of CATIA solid modeling programming and simulation processing design, elaborated in the field of CNC machining, programming and the importance of processing technology. In parts of the design process, first make a deep analysis on the principle, and then the size of the design, the size of each chain, connected to each other. After the use of backstepping and a variety of methods to calculate the final size of the parts. In the selection of parts materials, careful study, repeated testing, the final choice of 6061 aluminum alloy. According to the actual situation of the processing site, it is necessary to make a comprehensive consideration of various factors in the machining process. The simulation process should be based on the actual processing, not only pay attention to shape. It can be used as reference for machining.

  2. Mechanics of rolling of nanoribbon on tube and sphere.

    PubMed

    Yin, Qifang; Shi, Xinghua

    2013-06-21

    The configuration of graphene nano-ribbon (GNR) assembly on carbon nanotube (CNT) and sphere is studied through theoretical modeling and molecular simulation. The GNR can spontaneously wind onto the CNT due to van der Waals (vdW) interaction and form two basic configurations: helix and scroll. The final configuration arises from the competition among three energy terms: the bending energy of the GNR, the vdW interaction between GNR and CNT, the vdW between the GNR itself. We derive analytical solutions by accounting for the three energy parts, with which we draw phase diagrams and predict the final configuration (helix or scroll) based on the selected parameters. The molecular simulations are conducted to verify the model with the results agree well with the model predicted. Our work can be used to actively control and transfer the tube-like nanoparticles and viruses as well as to assemble ribbon-like nanomaterials.

  3. A novel epidemic spreading model with decreasing infection rate based on infection times

    NASA Astrophysics Data System (ADS)

    Huang, Yunhan; Ding, Li; Feng, Yun

    2016-02-01

    A new epidemic spreading model where individuals can be infected repeatedly is proposed in this paper. The infection rate decreases according to the times it has been infected before. This phenomenon may be caused by immunity or heightened alertness of individuals. We introduce a new parameter called decay factor to evaluate the decrease of infection rate. Our model bridges the Susceptible-Infected-Susceptible(SIS) model and the Susceptible-Infected-Recovered(SIR) model by this parameter. The proposed model has been studied by Monte-Carlo numerical simulation. It is found that initial infection rate has greater impact on peak value comparing with decay factor. The effect of decay factor on final density and threshold of outbreak is dominant but weakens significantly when considering birth and death rates. Besides, simulation results show that the influence of birth and death rates on final density is non-monotonic in some circumstances.

  4. Growth Mechanism of Microbial Colonies

    NASA Astrophysics Data System (ADS)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  5. Earthquake simulator tests and associated study of an 1/6-scale nine-story RC model

    NASA Astrophysics Data System (ADS)

    Sun, Jingjiang; Wang, Tao; Qi, Hu

    2007-09-01

    Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the test data, a relationship between maximum inter-story drift and damage state is established. Equations of variation of structural characteristics (natural frequency and equivalent stiffness) with overall drifts are derived by data fitting, which can be used to estimate structural damage state if structural characteristics can be measured. A comparison of the analytical and experimental results show that both the commonly used equivalent beam and fiber element models can simulate the nonlinear seismic response of structures very well. Finally, conclusions associated with seismic design and damage evaluation of RC structures are presented.

  6. Investigations in Computer-Aided Instruction and Computer-Aided Controls. Final Report.

    ERIC Educational Resources Information Center

    Rosenberg, R.C.; And Others

    These research projects, designed to delve into certain relationships between humans and computers, are focused on computer-assisted instruction and on man-computer interaction. One study demonstrates that within the limits of formal engineering theory, a computer simulated laboratory (Dynamic Systems Laboratory) can be built in which freshmen…

  7. Automated Instructional Monitors for Complex Operational Tasks. Final Report.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace

    A computer-based instructional system is described which incorporates diagnosis of students difficulties in acquiring complex concepts and skills. A computer automatically generated a simulated display. It then monitored and analyzed a student's work in the performance of assigned training tasks. Two major tasks were studied. The first,…

  8. User benefits of two-way data link ATC communications : aircraft delay and flight efficiency in congested en route airspace : final report

    DOT National Transportation Integrated Search

    1995-02-01

    This report documents the results of the first Federal Aviation Administration : (FAA) manned simulation study designed to demonstrate and quantify some of the : benefits that would accrue to National Airspace System (NAS) users in return for : equip...

  9. Merging a Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    When galaxies merge, the supermassive black holes (SMBHs) at the galaxies centers are thought to coalesce, forming a new, larger black hole. But can this merger process take place on timescales short enough that we could actually observe it? Results from a new simulation suggests that it can!When Galaxies CollideThese stills demonstrate the time evolution of the galaxy merger after the beginning of the authors simulation (starting from z=3.6). The red and blue dots mark the positions of the SMBHs. [Adapted from Khan et al. 2016]At present, its not well understood how the merger of two SMBHs proceeds from the merger of their host galaxies. Whats more, there are concerns about whether the SMBHs can coalesce on reasonable timescales; in many simulations and models, the inspiral of these behemoths stalls out when they are about a parsec apart, in whats known as the final parsec problem.Why are these mergers poorly understood? Modeling them from the initial interactions of the host galaxies all the way down to the final coalescence of their SMBHs in a burst of gravitational waves is notoriously complicated, due to the enormous range of scales and different processes that must be accounted for.But in a recent study, a team of scientists led by Fazeel Khan (Institute of Space Technology in Pakistan) has presented a simulation that successfully manages to track the entire merger making it the first multi-scale simulation to model the complete evolution of an SMBH binary that forms within a cosmological galaxy merger.Stages of aSimulationKhan and collaborators tackled the challenges of this simulation by using a multi-tiered approach.Beginning with the output of a cosmological hydrodynamical simulation, the authors select a merger of two typical massive galaxies at z=3.6 and use this as the starting point for their simulation. They increase the resolution and add in two supermassive black holes, one at the center of each galaxy.They then continue to evolve the galaxies hydrodynamically, simulating the final stages of the galaxy merger.When the separation of the two SMBHs is small enough, the authors extract a spherical region of 5 kpc from around the pair and evolve this as an N-body simulation.Finally, the separation of the SMBHs becomes so small (0.01 pc) that gravitational-wave emission is the dominant loss of energy driving the inspiral. The authors add post-Newtonian terms into the N-body simulation to account for this.Time evolution of the separation between the SMBHs, beginning with the hydrodynamical simulation (blue), then transitioning to the direct N-body calculation (red), and ending with the introduction of post-Newtonian terms (green) to account for gravitational-wave emission. [Adapted from Khan et al. 2016]Successful CoalescenceKhan and collaborators complex approach allows them to simulate the entire process of the merger and SMBH coalescence, resulting in several key determinations.First, they demonstrate that the SMBHs can coalesce on timescales of only tens of Myr, which is roughly two orders of magnitude smaller than what was typically estimated before. They find that gas dissipation before the merger is instrumental in creating the conditions that allow for this rapid orbital decay.The authors also demonstrate that the gravitational potential of the galaxy merger remnant is triaxial throughout the merger. Khan and collaborators simulations confirm that this non-spherical potential solves the final parsec problem by sending stars on plunging orbits around the SMBHs. These more distant stars cause the SMBHs to lose angular momentum through dynamical friction and continue their inspiral, even when the stars immediately surrounding the SMBHs have been depleted.This simulation isan important step toward a better understanding of SMBH mergers. Its outcomes are especially promising for future gravitational-wave campaigns, as the short SMBH coalescence timescales indicate that these mergers could indeed be observable!CitationFazeel Mahmood Khan et al 2016 ApJ 828 73. doi:10.3847/0004-637X/828/2/73

  10. Studies of Fault Interactions and Regional Seismicity Using Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Yikilmaz, Mehmet Burak

    Numerical simulations are routinely used for weather and climate forecasting. It is desirable to simulate regional seismicity for seismic hazard analysis. One such simulation tool is the Virtual California earthquake simulator. We have used Virtual California (VC) to study various aspects of fault interaction and analyzed the statistics of earthquake recurrence times and magnitudes generated synthetically. The first chapter of this dissertation investigates the behavior of seismology simulations using three relatively simple models involving a straight strike-slip fault. We show that a series of historical earthquakes observed along the Nankai Trough in Japan exhibit similar patterns to those obtained in our model II. In the second chapter we utilize Virtual California to study regional seismicity in northern California. We generate synthetic catalogs of seismicity using a composite simulation. We use these catalogs to analyze frequency-magnitude and recurrence interval statistics on both a regional and fault specific level and compare our modeled rates of seismicity and spatial variability with observations. The final chapter explores the jump distance for a propagating rupture over a stepping strike-slip fault. Our study indicates that between 2.5 and 5.5 km of the separation distance, the percentage of events that jump from one fault to the next decreases significantly. We find that these step-over distance values are in good agreement with geologically observed values.

  11. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p  = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p  < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.

  12. Simulation Training for Residents Focused on Mechanical Ventilation: A Randomized Trial Using Mannequin-Based Versus Computer-Based Simulation.

    PubMed

    Spadaro, Savino; Karbing, Dan Stieper; Fogagnolo, Alberto; Ragazzi, Riccardo; Mojoli, Francesco; Astolfi, Luca; Gioia, Antonio; Marangoni, Elisabetta; Rees, Stephen Edward; Volta, Carlo Alberto

    2017-12-01

    Advances in knowledge regarding mechanical ventilation (MV), in particular lung-protective ventilation strategies, have been shown to reduce mortality. However, the translation of these advances in knowledge into better therapeutic performance in real-life clinical settings continues to lag. High-fidelity simulation with a mannequin allows students to interact in lifelike situations; this may be a valuable addition to traditional didactic teaching. The purpose of this study is to compare computer-based and mannequin-based approaches for training residents on MV. This prospective randomized single-blind trial involved 50 residents. All participants attended the same didactic lecture on respiratory pathophysiology and were subsequently randomized into two groups: the mannequin group (n = 25) and the computer screen-based simulator group (n = 25). One week later, each underwent a training assessment using five different scenarios of acute respiratory failure of different etiologies. Later, both groups underwent further testing of patient management, using in situ high-fidelity simulation of a patient with acute respiratory distress syndrome. Baseline knowledge was not significantly different between the two groups (P = 0.72). Regarding the training assessment, no significant differences were detected between the groups. In the final assessment, the scores of only the mannequin group significantly improved between the training and final session in terms of either global rating score [3.0 (2.5-4.0) vs. 2.0 (2.0-3.0), P = 0.005] or percentage of key score (82% vs. 71%, P = 0.001). Mannequin-based simulation has the potential to improve skills in managing MV.

  13. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady Large Eddy simulations (LES) and a steady Reynolds Averaged Navier Stokes (RANS) approaches in CFD modeling are discussed. The more challenging FSI approach is modeled first in simple two-dimensional anatomical geometry and then extended to simplified three dimensional geometry and finally in three dimensionally accurate geometries. The concepts of virtual surgery and the differences to CFD are discussed. Finally, the influence of various drug delivery parameters on particle deposition efficiency in airway anatomy are investigated through particle-flow simulations in a nasal airway model.

  14. Geometrical force constraint method for vessel and x-ray angiogram simulation.

    PubMed

    Song, Shuang; Yang, Jian; Fan, Jingfan; Cong, Weijian; Ai, Danni; Zhao, Yitian; Wang, Yongtian

    2016-01-01

    This study proposes a novel geometrical force constraint method for 3-D vasculature modeling and angiographic image simulation. For this method, space filling force, gravitational force, and topological preserving force are proposed and combined for the optimization of the topology of the vascular structure. The surface covering force and surface adhesion force are constructed to drive the growth of the vasculature on any surface. According to the combination effects of the topological and surface adhering forces, a realistic vasculature can be effectively simulated on any surface. The image projection of the generated 3-D vascular structures is simulated according to the perspective projection and energy attenuation principles of X-rays. Finally, the simulated projection vasculature is fused with a predefined angiographic mask image to generate a realistic angiogram. The proposed method is evaluated on a CT image and three generally utilized surfaces. The results fully demonstrate the effectiveness and robustness of the proposed method.

  15. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies

    DOE PAGES

    Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...

    2018-06-20

    Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less

  16. Simulation and augmented reality in endovascular neurosurgery: lessons from aviation.

    PubMed

    Mitha, Alim P; Almekhlafi, Mohammed A; Janjua, Major Jameel J; Albuquerque, Felipe C; McDougall, Cameron G

    2013-01-01

    Endovascular neurosurgery is a discipline strongly dependent on imaging. Therefore, technology that improves how much useful information we can garner from a single image has the potential to dramatically assist decision making during endovascular procedures. Furthermore, education in an image-enhanced environment, especially with the incorporation of simulation, can improve the safety of the procedures and give interventionalists and trainees the opportunity to study or perform simulated procedures before the intervention, much like what is practiced in the field of aviation. Here, we examine the use of simulators in the training of fighter pilots and discuss how similar benefits can compensate for current deficiencies in endovascular training. We describe the types of simulation used for endovascular procedures, including virtual reality, and discuss the relevant data on its utility in training. Finally, the benefit of augmented reality during endovascular procedures is discussed, along with future computerized image enhancement techniques.

  17. Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

    DOE PAGES

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; ...

    2018-01-01

    This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less

  18. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.

    Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less

  19. Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.

    This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less

  20. A haptic interface for virtual simulation of endoscopic surgery.

    PubMed

    Rosenberg, L B; Stredney, D

    1996-01-01

    Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.

  1. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast.

    PubMed

    Pang, Wei; Coghill, George M

    2015-05-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Systems modeling and simulation applications for critical care medicine

    PubMed Central

    2012-01-01

    Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area. PMID:22703718

  3. SPH/N-Body simulations of small (D = 10km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Brož, M.; Nesvorný, D.; Enke, B.; Durda, D.; Walsh, K.; Richardson, D. C.

    2017-11-01

    We report on our study of asteroidal breakups, i.e. fragmentations of targets, subsequent gravitational reaccumulation and formation of small asteroid families. We focused on parent bodies with diameters Dpb = 10km . Simulations were performed with a smoothed-particle hydrodynamics (SPH) code combined with an efficient N-body integrator. We assumed various projectile sizes, impact velocities and impact angles (125 runs in total). Resulting size-frequency distributions are significantly different from scaled-down simulations with Dpb = 100km targets (Durda et al., 2007). We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions for N-body simulations of small asteroid families. Finally, we discuss a number of uncertainties related to SPH simulations.

  4. Air Combat Training: Good Stick Index Validation. Final Report for Period 3 April 1978-1 April 1979.

    ERIC Educational Resources Information Center

    Moore, Samuel B.; And Others

    A study was conducted to investigate and statistically validate a performance measuring system (the Good Stick Index) in the Tactical Air Command Combat Engagement Simulator I (TAC ACES I) Air Combat Maneuvering (ACM) training program. The study utilized a twelve-week sample of eighty-nine student pilots to statistically validate the Good Stick…

  5. Colorado Academic Libraries Book Processing Center. Final Report, Phase I and Phase II (1 February 1967-30 April 1968).

    ERIC Educational Resources Information Center

    Leonard, Lawrence E.; And Others

    This report summarizes the results of a fourteen-month study to (1) examine the feasibility of establishing a book processing center to serve the nine state-supported college and university libraries in Colorado and (2) conduct a simulation study of the proposed Center. The report covers: background, operational characteri tics of participating…

  6. Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing

    NASA Astrophysics Data System (ADS)

    Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren

    2017-03-01

    The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.

  7. Research on the Diesel Engine with Sliding Mode Variable Structure Theory

    NASA Astrophysics Data System (ADS)

    Ma, Zhexuan; Mao, Xiaobing; Cai, Le

    2018-05-01

    This study constructed the nonlinear mathematical model of the diesel engine high-pressure common rail (HPCR) system through two polynomial fitting which was treated as a kind of affine nonlinear system. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for affine nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrated that sliding-mode variable structure control algorithm shows favourable control performances which are overcoming the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  8. Numerical simulation of small-scale thermal convection in the atmosphere

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1973-01-01

    A Boussinesq system is integrated numerically in three dimensions and time in a study of nonhydrostatic convection in the atmosphere. Simulation of cloud convection is achieved by the inclusion of parametrized effects of latent heat and small-scale turbulence. The results are compared with the cell structure observed in Rayleigh-Benard laboratory conversion experiments in air. At a Rayleigh number of 4000, the numerical model adequately simulates the experimentally observed evolution, including some prominent transients of a flow from a randomly perturbed initial conductive state into the final state of steady large-amplitude two-dimensional rolls. At Rayleigh number 9000, the model reproduces the experimentally observed unsteady equilibrium of vertically coherent oscillatory waves superimposed on rolls.

  9. Study of the effect of static/dynamic Coulomb friction variation at the tape-head interface of a spacecraft tape recorder by non-linear time response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1978-01-01

    A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.

  10. Unpredictable convection in a small box: Molecular-dynamics experiments

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    1992-08-01

    The Rayleigh-Bénard problem has been studied using discrete-particle simulation of a two-dimensional fluid in a square box. The presence of temporal periodicity in the convective roll structure was observed, but, more significantly, different simulation runs under identical conditions but with initial states that differed in ways that are seemingly irrelevant at the macroscopic level exhibited very different forms of pattern evolution. The final state always consisted of a horizontally adjacent pair of rolls, but not all initial states evolved to produce well-established periodic behavior, despite the fact that very long runs were undertaken. Results for both hard- and soft-disk fluids are described; the simulations included systems with over 105 particles.

  11. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources

    PubMed Central

    Wang, Qin; Wang, Xiang-Bin

    2014-01-01

    We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions. PMID:24728000

  12. Use of the Marshall Space Flight Center solar simulator in collector performance evaluation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1978-01-01

    Actual measured values from simulator checkout tests are detailed. Problems encountered during initial startup are discussed and solutions described. Techniques utilized to evaluate collector performance from simulator test data are given. Performance data generated in the simulator are compared to equivalent data generated during natural outdoor testing. Finally, a summary of collector performance parameters generated to date as a result of simulator testing are given.

  13. Final Report for DE-FG02-99ER45795

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, John Warren

    The research supported by this grant focuses on atomistic studies of defects, phase transitions, electronic and magnetic properties, and mechanical behaviors of materials. We have been studying novel properties of various emerging nanoscale materials on multiple levels of length and time scales, and have made accurate predictions on many technologically important properties. A significant part of our research has been devoted to exploring properties of novel nano-scale materials by pushing the limit of quantum mechanical simulations, and development of a rigorous scheme to design accurate classical inter-atomic potentials for larger scale atomistic simulations for many technologically important metals and metalmore » alloys.« less

  14. Study of fuel cell on-site, integrated energy systems in residential/commercial applications

    NASA Technical Reports Server (NTRS)

    Wakefield, R. A.; Karamchetty, S.; Rand, R. H.; Ku, W. S.; Tekumalla, V.

    1980-01-01

    Three building applications were selected for a detailed study: a low rise apartment building; a retail store, and a hospital. Building design data were then specified for each application, based on the design and construction of typical, actual buildings. Finally, a computerized building loads analysis program was used to estimate hourly end use load profiles for each building. Conventional and fuel cell based energy systems were designed and simulated for each building in each location. Based on the results of a computer simulation of each energy system, levelized annual costs and annual energy consumptions were calculated for all systems.

  15. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    PubMed Central

    Liu, Jianyi; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. PMID:28788198

  16. Self-charging of identical grains in the absence of an external field.

    PubMed

    Yoshimatsu, R; Araújo, N A M; Wurm, G; Herrmann, H J; Shinbrot, T

    2017-01-06

    We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study.

  17. Self-charging of identical grains in the absence of an external field

    NASA Astrophysics Data System (ADS)

    Yoshimatsu, R.; Araújo, N. A. M.; Wurm, G.; Herrmann, H. J.; Shinbrot, T.

    2017-01-01

    We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study.

  18. Something from nothing: self-charging of identical grains

    NASA Astrophysics Data System (ADS)

    Shinbrot, Troy; Yoshimatsu, Ryuta; Nuno Araujo, Nuno; Wurm, Gerhard; Herrmann, Hans

    We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study. I acknowledge support from NSF/DMR, award 1404792.

  19. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema

    Applin, Bradford; Almgren, Ann S.; Nonaka, Andy

    2018-05-11

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe. http://www.lbl.gov/cs/Archive/news091509.html

  20. Shock compression response of cold-rolled Ni/Al multilayer composites

    DOE PAGES

    Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.

    2017-01-06

    Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. Finally, these simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.

  1. Experimental validation of thermo-chemical algorithm for a simulation of pultrusion processes

    NASA Astrophysics Data System (ADS)

    Barkanov, E.; Akishin, P.; Miazza, N. L.; Galvez, S.; Pantelelis, N.

    2018-04-01

    To provide better understanding of the pultrusion processes without or with temperature control and to support the pultrusion tooling design, an algorithm based on the mixed time integration scheme and nodal control volumes method has been developed. At present study its experimental validation is carried out by the developed cure sensors measuring the electrical resistivity and temperature on the profile surface. By this verification process the set of initial data used for a simulation of the pultrusion process with rod profile has been successfully corrected and finally defined.

  2. Self-charging of identical grains in the absence of an external field

    PubMed Central

    Yoshimatsu, R.; Araújo, N. A. M.; Wurm, G.; Herrmann, H. J.; Shinbrot, T.

    2017-01-01

    We investigate the electrostatic charging of an agitated bed of identical grains using simulations, mathematical modeling, and experiments. We simulate charging with a discrete-element model including electrical multipoles and find that infinitesimally small initial charges can grow exponentially rapidly. We propose a mathematical Turing model that defines conditions for exponential charging to occur and provides insights into the mechanisms involved. Finally, we confirm the predicted exponential growth in experiments using vibrated grains under microgravity, and we describe novel predicted spatiotemporal states that merit further study. PMID:28059124

  3. Advanced Simulation in Undergraduate Pilot Training: Automatic Instructional System. Final Report for the Period March 1971-January 1975.

    ERIC Educational Resources Information Center

    Faconti, Victor; Epps, Robert

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The Automated Instructional System designed for the ASUPT simulator was described in this report. The development of the Automated Instructional System for ASUPT was based upon…

  4. Hands-on Simulation versus Traditional Video-learning in Teaching Microsurgery Technique

    PubMed Central

    SAKAMOTO, Yusuke; OKAMOTO, Sho; SHIMIZU, Kenzo; ARAKI, Yoshio; HIRAKAWA, Akihiro; WAKABAYASHI, Toshihiko

    2017-01-01

    Bench model hands-on learning may be more effective than traditional didactic practice in some surgical fields. However, this has not been reported for microsurgery. Our study objective was to demonstrate the efficacy of bench model hands-on learning in acquiring microsuturing skills. The secondary objective was to evaluate the aptitude for microsurgery based on personality assessment. Eighty-six medical students comprising 62 men and 24 women were randomly assigned to either 20 min of hands-on learning with a bench model simulator or 20 min of video-learning using an instructional video. They then practiced microsuturing for 40 min. Each student then made three knots, and the time to complete the task was recorded. The final products were scored by two independent graders in a blind fashion. All participants then took a personality test, and their microsuture test scores and the time to complete the task were compared. The time to complete the task was significantly shorter in the simulator group than in the video-learning group. The final product scores tended to be higher with simulator-learning than with video-learning, but the difference was not significant. Students with high “extraversion” scores on the personality inventory took a shorter time to complete the suturing test. Simulator-learning was more effective for microsurgery training than video instruction, especially in understanding the procedure. There was a weak association between personality traits and microsurgery skill. PMID:28381653

  5. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study.

    PubMed

    Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li

    2016-02-21

    To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.

  6. Development and Evaluation of an Airplane Fuel Tank Ullage Composition Model. Volume 2. Experimental Determination of Airplane Fuel Tank Ullage Compositions

    DTIC Science & Technology

    1987-10-01

    Airplane Fuel Tank Ullage Compositions ~C A. J. Roth BOEING MILITARY AIRPLANE COMPANY P. 0. Box 3707 Seattle, Washington 98124-2207 October 1987 FINAL...controlled mission simulations were made using the ModComp computer to control the Simulated Aircraft Fuel Tank Environment ( SAFTEI facility at Wright...of this report. iii PREFACE This is a final report of work conducted under F33615-84-C-2431 and submitted by the Boeing Military Airplane Company

  7. SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzipapas, C; Kagadis, G; Papadimitroulas, P

    Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTROmore » protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric brachytherapy schemes using a population of pediatric phantoms for several pathological cases. This study is part of a project that has received funding from the European Union Horizon2020 research and innovation programme under the MarieSklodowska-Curiegrantagreement.No691203.The results published in this study reflect only the authors view and the Research Executive Agency (REA) and the European Commission is not responsible for any use that may be madeof the information it contains.« less

  8. Development of a Physiologically Based Pharmacokinetic Model for Sinogliatin, a First-in-Class Glucokinase Activator, by Integrating Allometric Scaling, In Vitro to In Vivo Exploration and Steady-State Concentration-Mean Residence Time Methods: Mechanistic Understanding of its Pharmacokinetics.

    PubMed

    Song, Ling; Zhang, Yi; Jiang, Ji; Ren, Shuang; Chen, Li; Liu, Dongyang; Chen, Xijing; Hu, Pei

    2018-04-06

    The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for sinogliatin (HMS-5552, dorzagliatin) by integrating allometric scaling (AS), in vitro to in vivo exploration (IVIVE), and steady-state concentration-mean residence time (C ss -MRT) methods and to provide mechanistic insight into its pharmacokinetic properties in humans. Human major pharmacokinetic parameters were analyzed using AS, IVIVE, and C ss -MRT methods with available preclinical in vitro and in vivo data to understand sinogliatin drug metabolism and pharmacokinetic (DMPK) characteristics and underlying mechanisms. On this basis, an initial mechanistic PBPK model of sinogliatin was developed. The initial PBPK model was verified using observed data from a single ascending dose (SAD) study and further optimized with various strategies. The final model was validated by simulating sinogliatin pharmacokinetics under a fed condition. The validated model was applied to support a clinical drug-drug interaction (DDI) study design and to evaluate the effects of intrinsic (hepatic cirrhosis, genetic) factors on drug exposure. The two-species scaling method using rat and dog data (TS- rat,dog ) was the best AS method in predicting human systemic clearance in the central compartment (CL). The IVIVE method confirmed that sinogliatin was predominantly metabolized by cytochrome P450 (CYP) 3A4. The C ss -MRT method suggested dog pharmacokinetic profiles were more similar to human pharmacokinetic profiles. The estimated CL using the AS and IVIVE approaches was within 1.5-fold of that observed. The C ss -MRT method in dogs also provided acceptable prediction of human pharmacokinetic characteristics. For the PBPK approach, the 90% confidence intervals (CIs) of the simulated maximum concentration (C max ), CL, and area under the plasma concentration-time curve (AUC) of sinogliatin were within those observed and the 90% CI of simulated time to C max (t max ) was closed to that observed for a dose range of 5-50 mg in the SAD study. The final PBPK model was validated by simulating sinogliatin pharmacokinetics with food. The 90% CIs of the simulated C max , CL, and AUC values for sinogliatin were within those observed and the 90% CI of the simulated t max was partially within that observed for the dose range of 25-200 mg in the multiple ascending dose (MAD) study. This PBPK model selected a final clinical DDI study design with itraconazole from four potential designs and also evaluated the effects of intrinsic (hepatic cirrhosis, genetic) factors on drug exposure. Sinogliatin pharmacokinetic properties were mechanistically understood by integrating all four methods and a mechanistic PBPK model was successfully developed and validated using clinical data. This PBPK model was applied to support the development of sinogliatin.

  9. Computational Analysis and Simulation of Empathic Behaviors: a Survey of Empathy Modeling with Behavioral Signal Processing Framework.

    PubMed

    Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis; Atkins, David C; Narayanan, Shrikanth S

    2016-05-01

    Empathy is an important psychological process that facilitates human communication and interaction. Enhancement of empathy has profound significance in a range of applications. In this paper, we review emerging directions of research on computational analysis of empathy expression and perception as well as empathic interactions, including their simulation. We summarize the work on empathic expression analysis by the targeted signal modalities (e.g., text, audio, and facial expressions). We categorize empathy simulation studies into theory-based emotion space modeling or application-driven user and context modeling. We summarize challenges in computational study of empathy including conceptual framing and understanding of empathy, data availability, appropriate use and validation of machine learning techniques, and behavior signal processing. Finally, we propose a unified view of empathy computation and offer a series of open problems for future research.

  10. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  11. Impact of Interprofessional Simulation on Nursing Students' Attitudes Toward Teamwork and Collaboration.

    PubMed

    Krueger, Linda; Ernstmeyer, Kim; Kirking, Ellen

    2017-06-01

    The purpose of this study was to examine the influence of a multipatient, interprofessional simulation session on nursing students' attitudes toward nurse-physician collaboration using the Jefferson Scale of Attitudes Toward Physician-Nurse Collaboration. Final-semester nursing students, along with medical resident and students from other health programs, participated in a simulation exercise that included a period of prebriefing, simulation, and debriefing. Participants completed pre- and postsimulation surveys to assess the impact on collaboration. In total, 268 nursing students completed the survey. Participants had a more positive attitude toward nurse-physician collaboration following the simulation event, compared with prior to it. Significant differences between male and female nursing students were found on mean postsimulation scores and for three of the four subscales of the tool. Interprofessional simulation may be an effective way to enhance collaborative relationships, which ultimately may influence patient safety and quality of care. [J Nurs Educ. 2017;56(6):321-327.]. Copyright 2017, SLACK Incorporated.

  12. Simulation of parametric model towards the fixed covariate of right censored lung cancer data

    NASA Astrophysics Data System (ADS)

    Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila

    2017-09-01

    In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.

  13. Interprofessional simulation of birth in a non-maternity setting for pre-professional students.

    PubMed

    McLelland, Gayle; Perera, Chantal; Morphet, Julia; McKenna, Lisa; Hall, Helen; Williams, Brett; Cant, Robyn; Stow, Jill

    2017-11-01

    Simulation-based learning is an approach recommended for teaching undergraduate health professionals. There is a scarcity of research around interprofessional simulation training for pre-professional students in obstetric emergencies that occur prior to arrival at the maternity ward. The primary aims of the study were to examine whether an interprofessional team-based simulated birth scenario would improve undergraduate paramedic, nursing, and midwifery students' self-efficacy scores and clinical knowledge when managing birth in an unplanned location. The secondary aim was to assess students' satisfaction with the newly developed interprofessional simulation. Quasi-experimental descriptive study with repeated measures. Simulated hospital emergency department. Final year undergraduate paramedic, nursing, and midwifery students. Interprofessional teams of five students managed a simulated unplanned vaginal birth, followed by debriefing. Students completed a satisfaction with simulation survey. Serial surveys of clinical knowledge and self-efficacy were conducted at three time points. Twenty-four students participated in one of five simulation scenarios. Overall, students' self-efficacy and confidence in ability to achieve a successful birth outcome was significantly improved at one month (p<0.001) with a magnitude of increase (effect) of 40% (r=0.71) and remained so after a further three months. Clinical knowledge was significantly increased in only one of three student groups: nursing (p=0.04; r=0.311). Students' satisfaction with the simulation experience was high (M=4.65/5). Results from this study indicate that an interprofessional simulation of a birth in an unplanned setting can improve undergraduate paramedic, nursing and midwifery students' confidence working in an interprofessional team. There was a significant improvement in clinical knowledge of the nursing students (who had least content about managing birth in their program). All students were highly satisfied with the interprofessional simulation experience simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Review of Research on Teachers’ Pedagogical Judgments, Plans, and Decisions,

    DTIC Science & Technology

    1982-11-01

    simulation studies; and (3) training studies. Four laboratory and classroom studies have examined the degree to which reading clinicians and classroom teachers...clinicians who diagnosed the same cases. Finally, training teachers to conduct a systematic diagnosis of a reading problem increased the accuracy of their...evidence that training can overcome these inaccuracies to some degree, additional research on teachers’ judgmental processes is needed. Such research

  15. Black Hole Coalescence and Mergers: Review, Status, and ``Where are We Heading?''

    NASA Astrophysics Data System (ADS)

    Seidel, E.

    I review recent progress in 3D numerical relativity, focusing onsimulations involving black holes evolved with singularity avoiding slicings. After a long series of axisymmetric and perturbative studies of distorted black holes and black hole collisions, similar studies were carried out with full 3D codes. The results show that such black hole simulations can be carried out extremely accurately, although instabilities plague the simulation at uncomfortably early times. However, new formulations of Einstein's equations allow much more stable 3D evolutions than ever before, enabling the first studies of 3D gravitational collapse to a black hole. With these new formulations, for example, it has become possible to perform the first detailed simulations of 3D grazing collisions of black holes with unequal mass and spin, and with orbital angular momentum. I discuss the 3D black hole physics that can now be studied, and prospects for the future. Such studies may be able to provide information about the final plunge of two black holes, which is relevant to gravitational wave astronomy, and will be very useful as a foundation for future studies when advanced techniques like black hole excision mature to the point that they permit full orbital coalescence simulations.

  16. SU-E-I-80: Quantification of Respiratory and Cardiac Motion Effect in SPECT Acquisitions Using Anthropomorphic Models: A Monte Carlo Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadimitroulas, P; Kostou, T; Kagadis, G

    Purpose: The purpose of the present study was to quantify, evaluate the impact of cardiac and respiratory motion on clinical nuclear imaging protocols. Common SPECT and scintigraphic scans are studied using Monte Carlo (MC) simulations, comparing the resulted images with and without motion. Methods: Realistic simulations were executed using the GATE toolkit and the XCAT anthropomorphic phantom as a reference model for human anatomy. Three different radiopharmaceuticals based on 99mTc were studied, namely 99mTc-MDP, 99mTc—N—DBODC and 99mTc—DTPA-aerosol for bone, myocardium and lung scanning respectively. The resolution of the phantom was set to 3.5 mm{sup 3}. The impact of the motionmore » on spatial resolution was quantified using a sphere with 3.5 mm diameter and 10 separate time frames, in the ECAM modeled SPECT scanner. Finally, respiratory motion impact on resolution and imaging of lung lesions was investigated. The MLEM algorithm was used for data reconstruction, while the literature derived biodistributions of the pharmaceuticals were used as activity maps in the simulations. Results: FWHM was extracted for a static and a moving sphere which was ∼23 cm away from the entrance of the SPECT head. The difference in the FWHM was 20% between the two simulations. Profiles in thorax were compared in the case of bone scintigraphy, showing displacement and blurring of the bones when respiratory motion was inserted in the simulation. Large discrepancies were noticed in the case of myocardium imaging when cardiac motion was incorporated during the SPECT acquisition. Finally the borders of the lungs are blurred when respiratory motion is included resulting to a dislocation of ∼2.5 cm. Conclusion: As we move to individualized imaging and therapy procedures, quantitative and qualitative imaging is of high importance in nuclear diagnosis. MC simulations combined with anthropomorphic digital phantoms can provide an accurate tool for applications like motion correction techniques’ optimization. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the ‘Archimedes III: Funding of Research Groups in TEI of Athens’ project of the ‘Education & Lifelong Learning’ Operational Programme.« less

  17. Analysis of laser energy characteristics of laser guided weapons based on the hardware-in-the-loop simulation system

    NASA Astrophysics Data System (ADS)

    Zhu, Yawen; Cui, Xiaohong; Wang, Qianqian; Tong, Qiujie; Cui, Xutai; Li, Chenyu; Zhang, Le; Peng, Zhong

    2016-11-01

    The hardware-in-the-loop simulation system, which provides a precise, controllable and repeatable test conditions, is an important part of the development of the semi-active laser (SAL) guided weapons. In this paper, laser energy chain characteristics were studied, which provides a theoretical foundation for the SAL guidance technology and the hardware-in-the-loop simulation system. Firstly, a simplified equation was proposed to adjust the radar equation according to the principles of the hardware-in-the-loop simulation system. Secondly, a theoretical model and calculation method were given about the energy chain characteristics based on the hardware-in-the-loop simulation system. We then studied the reflection characteristics of target and the distance between the missile and target with major factors such as the weather factors. Finally, the accuracy of modeling was verified by experiment as the values measured experimentally generally follow the theoretical results from the model. And experimental results revealed that ratio of attenuation of the laser energy exhibited a non-linear change vs. pulse number, which were in accord with the actual condition.

  18. Evaluation of Medical Students' Attitudes and Performance of Basic Surgery Skills in a Training Program Using Fresh Human skin, Excised During Body Contouring Surgeries.

    PubMed

    Rothenberger, Jens; Seyed Jafari, Seyed Morteza; Schnabel, Kai P; Tschumi, Christian; Angermeier, Sarina; Shafighi, Maziar

    2015-01-01

    Learning surgical skills in the operating room may be a challenge for medical students. Therefore, more approaches using simulation to enable students to develop their practical skills are required. We hypothesized that (1) there would be a need for additional surgical training for medical students in the pre-final year, and (2) our basic surgery skills training program using fresh human skin would improve medical students' surgical skills. We conducted a preliminary survey of medical students to clarify the need for further training in basic surgery procedures. A new approach using simulation to teach surgical skills on human skin was set up. The procedural skills of 15 randomly selected students were assessed in the operating room before and after participation in the simulation, using Objective Structured Assessment of Technical Skills. Furthermore, subjective assessment was performed based on students' self-evaluation. The data were analyzed using SPSS, version 21 (SPSS, Inc., Chicago, IL). The study took place at the Inselspital, Bern University Hospital. A total of 186 pre-final-year medical students were enrolled into the preliminary survey; 15 randomly selected medical students participated in the basic surgical skills training course on the fresh human skin operating room. The preliminary survey revealed the need for a surgical skills curriculum. The simulation approach we developed showed significant (p < 0.001) improvement for all 12 surgical skills, with mean cumulative precourse and postcourse values of 31.25 ± 5.013 and 45.38 ± 3.557, respectively. The self-evaluation contained positive feedback as well. Simulation of surgery using human tissue samples could help medical students become more proficient in handling surgical instruments before stepping into a real surgical situation. We suggest further studies evaluating our proposed teaching method and the possibility of integrating this simulation approach into the medical school curriculum. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  20. Study of Structure and Deformation Pathways in Ti-7Al Using Atomistic Simulations, Experiments, and Characterization

    NASA Astrophysics Data System (ADS)

    Venkataraman, Ajey; Shade, Paul A.; Adebisi, R.; Sathish, S.; Pilchak, Adam L.; Viswanathan, G. Babu; Brandes, Matt C.; Mills, Michael J.; Sangid, Michael D.

    2017-05-01

    Ti-7Al is a good model material for mimicking the α phase response of near- α and α+ β phases of many widely used titanium-based engineering alloys, including Ti-6Al-4V. In this study, three model structures of Ti-7Al are investigated using atomistic simulations by varying the Ti and Al atom positions within the crystalline lattice. These atomic arrangements are based on transmission electron microscopy observations of short-range order. The elastic constants of the three model structures considered are calculated using molecular dynamics simulations. Resonant ultrasound spectroscopy experiments are conducted to obtain the elastic constants at room temperature and a good agreement is found between the simulation and experimental results, providing confidence that the model structures are reasonable. Additionally, energy barriers for crystalline slip are established for these structures by means of calculating the γ-surfaces for different slip systems. Finally, the positions of Al atoms in regards to solid solution strengthening are studied using density functional theory simulations, which demonstrate a higher energy barrier for slip when the Al solute atom is closer to (or at) the fault plane. These results provide quantitative insights into the deformation mechanisms of this alloy.

  1. Estimation of distributional parameters for censored trace level water quality data: 2. Verification and applications

    USGS Publications Warehouse

    Helsel, Dennis R.; Gilliom, Robert J.

    1986-01-01

    Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are often desired for data sets containing censored observations. Eight methods for estimating these parameters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To verify those findings, the same methods are now applied to actual water quality data. The best method (lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for estimating moment or percentile parameters separately are also identical to the simulations. Reliability of these estimates can be expressed as confidence intervals using rmse and bias values taken from the simulation results. Finally, a new simulation study shows that best methods for estimating uncensored sample statistics from censored data sets are identical to those for estimating population parameters. Thus this study and the companion study by Gilliom and Helsel form the basis for making the best possible estimates of either population parameters or sample statistics from censored water quality data, and for assessments of their reliability.

  2. EXTENSION OF SELF-MODELING CURVE RESOLUTION TO MIXTURES OF MORE THAN THREE COMPONENTS. PART 3. ATMOSPHERIC AEROSOL DATA SIMULATION STUDIES. (R826238)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  4. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  5. Improving the Resilience of Best Management Practices in a Changing Environment: Urban Stormwater Modeling Studies (Final Report)

    EPA Science Inventory

    The purpose of this report is to respond to EPA's identified need for an improved understanding of the potential impacts of changes in long term weather conditions on the occurrence and management of urban stormwater runoff. EPA conducted continuous simulation modeling of the hy...

  6. SUPERFUND TREATABILITY CLEARINGHOUSE: CERCLA BDAT SARM PREPARATION AND RESULTS OF PHYSICAL SOILS WASHING EXPERIMENTS (FINAL REPORT)

    EPA Science Inventory

    This study reports on the results of work preparing 30,000 Ibs of SARM or synthetic analytical reference matrix, a surrogate Superfund soil containing a vide range of contaminants. It also reports the results ©f bench scale treatability experiments designed to simulate the EP...

  7. Assessing the learning curve for the acquisition of laparoscopic skills on a virtual reality simulator.

    PubMed

    Sherman, V; Feldman, L S; Stanbridge, D; Kazmi, R; Fried, G M

    2005-05-01

    The aim of this study was to develop summary metrics and assess the construct validity for a virtual reality laparoscopic simulator (LapSim) by comparing the learning curves of three groups with different levels of laparoscopic expertise. Three groups of subjects ('expert', 'junior', and 'naïve') underwent repeated trials on three LapSim tasks. Formulas were developed to calculate scores for efficiency ('time-error') and economy of 'motion' ('motion') using metrics generated by the software after each drill. Data (mean +/- SD) were evaluated by analysis of variance (ANOVA). Significance was set at p < 0.05. All three groups improved significantly from baseline to final for both 'time-error' and 'motion' scores. There were significant differences between groups in time error performances at baseline and final, due to higher scores in the 'expert' group. A significant difference in 'motion' scores was seen only at baseline. We have developed summary metrics for the LapSim that differentiate among levels of laparoscopic experience. This study also provides evidence of construct validity for the LapSim.

  8. Simulator study of a pictorial display for general aviation instrument flight

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1982-01-01

    A simulation study of a computer drawn pictorial display involved a flight task that included an en route segment, terminal area maneuvering, a final approach, a missed approach, and a hold. The pictorial display consists of the drawing of boxes which either move along the desired path or are fixed at designated way points. Two boxes may be shown at all times, one related to the active way point and the other related to the standby way point. Ground tracks and vertical profiles of the flights, time histories of the final approach, and comments were obtained from time pilots. The results demonstrate the accuracy and consistency with which the segments of the flight are executed. The pilots found that the display is easy to learn and to use; that it provides good situation awareness, and that it could improve the safety of flight. The small size of the display, the lack of numerical information on pitch, roll, and heading angles, and the lack of definition of the boundaries of the conventional glide slope and localizer areas were criticized.

  9. Simplified Aircraft-Based Paired Approach: Concept Definition and Initial Analysis

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Lohr, Gary W.; McKissick, Burnell T.; Abbott, Terence S.; Geurreiro, Nelson M.; Volk, Paul

    2013-01-01

    Simplified Aircraft-based Parallel Approach (SAPA) is an advanced concept proposed by the Federal Aviation Administration (FAA) to support dependent parallel approach operations to runways with lateral spacing closer than 2500 ft. At the request of the FAA, NASA performed an initial assessment of the potential performance and feasibility of the SAPA concept, including developing and assessing an operational implementation of the concept and conducting a Monte Carlo wake simulation study to examine the longitudinal spacing requirements. The SAPA concept was shown to have significant operational advantages in supporting the pairing of aircraft with dissimilar final approach speeds. The wake simulation study showed that support for dissimilar final approach speeds could be significantly enhanced through the use of a two-phased altitudebased longitudinal positioning requirement, with larger longitudinal positioning allowed for higher altitudes out of ground effect and tighter longitudinal positioning defined for altitudes near and in ground effect. While this assessment is preliminary and there are a number of operational issues still to be examined, it has shown the basic SAPA concept to be technically and operationally feasible.

  10. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.

  11. Modeling Negotiation by a Paticipatory Approach

    NASA Astrophysics Data System (ADS)

    Torii, Daisuke; Ishida, Toru; Bousquet, François

    In a participatory approach by social scientists, role playing games (RPG) are effectively used to understand real thinking and behavior of stakeholders, but RPG is not sufficient to handle a dynamic process like negotiation. In this study, a participatory simulation where user-controlled avatars and autonomous agents coexist is introduced to the participatory approach for modeling negotiation. To establish a modeling methodology of negotiation, we have tackled the following two issues. First, for enabling domain experts to concentrate interaction design for participatory simulation, we have adopted the architecture in which an interaction layer controls agents and have defined three types of interaction descriptions (interaction protocol, interaction scenario and avatar control scenario) to be described. Second, for enabling domain experts and stakeholders to capitalize on participatory simulation, we have established a four-step process for acquiring negotiation model: 1) surveys and interviews to stakeholders, 2) RPG, 3) interaction design, and 4) participatory simulation. Finally, we discussed our methodology through a case study of agricultural economics in the northeast Thailand.

  12. Kinetics of transient electroluminescence in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.

    2008-08-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.

  13. spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains

    NASA Astrophysics Data System (ADS)

    Sartore, Luca; Fabbri, Paolo; Gaetan, Carlo

    2016-09-01

    The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package.

  14. Determination of Process Parameters in Multi-Stage Hydro-Mechanical Deep Drawing by FE Simulation

    NASA Astrophysics Data System (ADS)

    Kumar, D. Ravi; Manohar, M.

    2017-09-01

    In this work, analysis has been carried to simulate manufacturing of a near hemispherical bottom part with large depth by hydro-mechanical deep drawing with an aim to reduce the number of forming steps and to reduce the extent of thinning in the dome region. Inconel 718 has been considered as the material due to its importance in aerospace industry. It is a Ni-based super alloy and it is one of the most widely used of all super alloys primarily due to large-scale applications in aircraft engines. Using Finite Element Method (FEM), numerical simulations have been carried out for multi-stage hydro-mechanical deep drawing by using the same draw ratios and design parameters as in the case of conventional deep drawing in four stages. The results showed that the minimum thickness in the final part can be increased significantly when compared to conventional deep drawing. It has been found that the part could be deep drawn to the desired height (after trimming at the final stage) without any severe wrinkling. Blank holding force (BHF) and peak counter pressure have been found to have a strong influence on thinning in the component. Decreasing the coefficient of friction has marginally increased the minimum thickness in the final component. By increasing the draw ratio and optimizing BHF, counter pressure and die corner radius in the simulations, it has been found that it is possible to draw the final part in three stages. It has been found that thinning can be further reduced by decreasing the initial blank size without any reduction in the final height. This reduced the draw ratio at every stage and optimum combination of BHF and counter pressure have been found for the 3-stage process also.

  15. Development of a Korean Lunar Simulant(KLS-1) and its Possible Further Recommendations

    NASA Astrophysics Data System (ADS)

    Chang, I.; Ryn, B. H.; Cho, G. C.

    2014-12-01

    The rapid development on space exploration finally found that water exists on the moon according to NASA's recent studies. This becomes a turning point in lunar science and surface development because the existence of water raises the possibility of human survival on the moon. In this case, advanced space construction technology against the distinctive lunar environment (i.e., atmosphereless, subgravity, different geology) becomes a key issue for consistent and reliable settlement of human beings. Thus, understandings on the lunar surface and its composition must be secured as an important role in lunar development. During project Apollo (1961~1972), only 320 kg of real lunar soils were collected and sent to the Earth. Due to the lack of samples, many space agencies are attempting to simulate the lunar soil using Earth materials to be used in large and massive practical studies and simulations. In the same vein, we developed a Korean lunar simulant from a specific basalt type Cenozoic Erathem in Korea. The simulated regolith sample shows a high similarity to the Apollo average samples in mineral composition, density, and particle shape aspects. Therefore, the developed regolith simulant is expected to be used in various lunar exploration purposes.

  16. Spatial awareness comparisons between large-screen, integrated pictorial displays and conventional EFIS displays during simulated landing approaches

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.

    1994-01-01

    An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats.

  17. Accurate Mapping of Multilevel Rydberg Atoms on Interacting Spin-1 /2 Particles for the Quantum Simulation of Ising Models

    NASA Astrophysics Data System (ADS)

    de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine

    2018-03-01

    We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.

  18. Flight test results of the strapdown ring laser gyro tetrad inertial navigation system

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.

    1983-01-01

    A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.

  19. [Surface roughness and gloss of novel flowable composites after polishing and simulated brushing wear].

    PubMed

    Wang, R L; Yuan, C Y; Pan, Y X; Tian, F C; Wang, Z H; Wang, X Y

    2017-04-09

    Objective: To investigate surface properties of novel flowable composites after polishing and simulated brushing wear, compared to their pasty counterpart. Methods: Composites employed in this study were: three flowable composites (A1: Clearfil Majesty ES Flow; B1: Beautifil Flow Plus F00; C1: Filtek Bulk Fill) and three paste composites (A2: Clearfil Majesty; B2: Beautifil; C2: Filtek Z350. Eleven disk-shaped specimens were made for each material. The specimens were cured, then subjected to sandpaper finishing for 20 s, one-step polishing for 30 s, finally subjected to simulated brushing for 10 000 cycles. Surface roughness and glossiness were measured before finishing, after finishing, after polishing, after 5 000 brushing cycles and after 10 000 brushing cycles, respectively. Data obtained were analyzed using two-way ANOVA method. Scanning electron microscope was employed to examine the microscopic appearance of each material. Results: Surface roughness (0.11~0.22 μm) and glossiness (74.25~86.48 GU) of each material were similar after one-step polishing. After brushing simulation, roughness increased significantly and glossiness decreased significantly for each material ( P< 0.05). Group A1 presented the best gloss ([50.68±1.58] GU) after final wear ( P< 0.05). Flowable composites of group A1 and B1 tested in the present setup showed better surface properties compared to their pasty counterpart (group A2 and B2). Conclusions: Within the limit of this study, flowable composites tested in the present research can obtain similar surface polish or even better than the paste composite counterpart.

  20. Molecular dynamics study of silicon carbide properties under external dynamic loading

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Fomin, V. M.

    2017-10-01

    In this study, molecular dynamic simulations of high-velocity impact of a spherical 3C-SiC cluster, with a wide range of velocities (from 100 to 2600 m/s) and with a rigid wall, were performed. The analysis of the final structure shows that no structural phase transformation occurred in the material, despite the high pressure during the collision process.

  1. Watershed Simulation of Nutrient Processes

    EPA Science Inventory

    In this presentation, nitrogen processes simulated in watershed models were reviewed and compared. Furthermore, current researches on nitrogen losses from agricultural fields were also reviewed. Finally, applications with those models were reviewed and selected successful and u...

  2. United States Air Force Training Line Simulator. Final Report.

    ERIC Educational Resources Information Center

    Nauta, Franz; Pierce, Michael B.

    This report describes the technical aspects and potential applications of a computer-based model simulating the flow of airmen through basic training and entry-level technical training. The objective of the simulation is to assess the impacts of alternative recruit classification and training policies under a wide variety of assumptions regarding…

  3. A Systemic-Constructivist Approach to the Facilitation and Debriefing of Simulations and Games

    ERIC Educational Resources Information Center

    Kriz, Willy Christian

    2010-01-01

    This article introduces some basic concepts of a systemic-constructivist perspective. These show that gaming simulation corresponds closely to a systemic-constructivist approach to learning and instruction. Some quality aspects of facilitating and debriefing simulation games are described from a systemic-constructivist point of view. Finally, a…

  4. Generalized Maintenance Trainer Simulator: Development of Hardware and Software. Final Report.

    ERIC Educational Resources Information Center

    Towne, Douglas M.; Munro, Allen

    A general purpose maintenance trainer, which has the potential to simulate a wide variety of electronic equipments without hardware changes or new computer programs, has been developed and field tested by the Navy. Based on a previous laboratory model, the Generalized Maintenance Trainer Simulator (GMTS) is a relatively low cost trainer that…

  5. Performance Evaluation Gravity Probe B Design

    NASA Technical Reports Server (NTRS)

    Francis, Ronnie; Wells, Eugene M.

    1996-01-01

    This final report documents the work done to develop a 6 degree-of-freedom simulation of the Lockheed Martin Gravity Probe B (GPB) Spacecraft. This simulation includes the effects of vehicle flexibility and propellant slosh. The simulation was used to investigate the control performance of the spacecraft when subjected to realistic on orbit disturbances.

  6. Simulating urban land cover changes at sub-pixel level in a coastal city

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang

    2014-10-01

    The simulation of urban expansion or land cover changes is a major theme in both geographic information science and landscape ecology. Yet till now, almost all of previous studies were based on grid computations at pixel level. With the prevalence of spectral mixture analysis in urban land cover research, the simulation of urban land cover at sub-pixel level is being put into agenda. This study provided a new approach of land cover simulation at sub-pixel level. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover data through supervised classification. Then the two classified land cover data were utilized to extract the transformation rule between 2002 and 2007 using logistic regression. The transformation possibility of each land cover type in a certain pixel was taken as its percent in the same pixel after normalization. And cellular automata (CA) based grid computation was carried out to acquire simulated land cover on 2007. The simulated 2007 sub-pixel land cover was testified with a validated sub-pixel land cover achieved by spectral mixture analysis in our previous studies on the same date. And finally the sub-pixel land cover of 2017 was simulated for urban planning and management. The results showed that our method is useful in land cover simulation at sub-pixel level. Although the simulation accuracy is not quite satisfactory for all the land cover types, it provides an important idea and a good start in the CA-based urban land cover simulation.

  7. Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Sharpe, Robert J.; Karr, Laurel J.; Paley, Mark S.

    2010-01-01

    For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued study

  8. Estimating soft tissue thickness from light-tissue interactions––a simulation study

    PubMed Central

    Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2013-01-01

    Immobilization and marker-based motion tracking in radiation therapy often cause decreased patient comfort. However, the more comfortable alternative of optical surface tracking is highly inaccurate due to missing point-to-point correspondences between subsequent point clouds as well as elastic deformation of soft tissue. In this study, we present a proof of concept for measuring subcutaneous features with a laser scanner setup focusing on the skin thickness as additional input for high accuracy optical surface tracking. Using Monte-Carlo simulations for multi-layered tissue, we show that informative features can be extracted from the simulated tissue reflection by integrating intensities within concentric ROIs around the laser spot center. Training a regression model with a simulated data set identifies patterns that allow for predicting skin thickness with a root mean square error of down to 18 µm. Different approaches to compensate for varying observation angles were shown to yield errors still below 90 µm. Finally, this initial study provides a very promising proof of concept and encourages research towards a practical prototype. PMID:23847741

  9. Multi-Subband Ensemble Monte Carlo simulations of scaled GAA MOSFETs

    NASA Astrophysics Data System (ADS)

    Donetti, L.; Sampedro, C.; Ruiz, F. G.; Godoy, A.; Gamiz, F.

    2018-05-01

    We developed a Multi-Subband Ensemble Monte Carlo simulator for non-planar devices, taking into account two-dimensional quantum confinement. It couples self-consistently the solution of the 3D Poisson equation, the 2D Schrödinger equation, and the 1D Boltzmann transport equation with the Ensemble Monte Carlo method. This simulator was employed to study MOS devices based on ultra-scaled Gate-All-Around Si nanowires with diameters in the range from 4 nm to 8 nm with gate length from 8 nm to 14 nm. We studied the output and transfer characteristics, interpreting the behavior in the sub-threshold region and in the ON state in terms of the spatial charge distribution and the mobility computed with the same simulator. We analyzed the results, highlighting the contribution of different valleys and subbands and the effect of the gate bias on the energy and velocity profiles. Finally the scaling behavior was studied, showing that only the devices with D = 4nm maintain a good control of the short channel effects down to the gate length of 8nm .

  10. Study of hypervelocity projectile impact on thick metal plates

    DOE PAGES

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; ...

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments:more » Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.« less

  11. Coarse-Grained Molecular Models of Water: A Review

    PubMed Central

    Hadley, Kevin R.; McCabe, Clare

    2012-01-01

    Coarse-grained (CG) models have proven to be very effective tools in the study of phenomena or systems that involve large time- and length-scales. By decreasing the degrees of freedom in the system and using softer interactions than seen in atomistic models, larger timesteps can be used and much longer simulation times can be studied. CG simulations are widely used to study systems of biological importance that are beyond the reach of atomistic simulation, necessitating a computationally efficient and accurate CG model for water. In this review, we discuss the methods used for developing CG water models and the relative advantages and disadvantages of the resulting models. In general, CG water models differ with regards to how many waters each CG group or bead represents, whether analytical or tabular potentials have been used to describe the interactions, and how the model incorporates electrostatic interactions. Finally, how the models are parameterized depends on their application, so, while some are fitted to experimental properties such as surface tension and density, others are fitted to radial distribution functions extracted from atomistic simulations. PMID:22904601

  12. Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations

    NASA Astrophysics Data System (ADS)

    Bubolz, K.; Schenk, H.; Hirsch, T.

    2016-05-01

    Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.

  13. Ocean power technology design optimization

    DOE PAGES

    van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen; ...

    2017-07-18

    For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less

  14. Ocean power technology design optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen

    For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less

  15. On the scaling of small-scale jet noise to large scale

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or perceived noise level (PNL) noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10(exp 6) based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using a small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  16. On the scaling of small-scale jet noise to large scale

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or PNL noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10 exp 6 based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  17. Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2015-06-01

    Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  18. Managing simulation-based training: A framework for optimizing learning, cost, and time

    NASA Astrophysics Data System (ADS)

    Richmond, Noah Joseph

    This study provides a management framework for optimizing training programs for learning, cost, and time when using simulation based training (SBT) and reality based training (RBT) as resources. Simulation is shown to be an effective means for implementing activity substitution as a way to reduce risk. The risk profile of 22 US Air Force vehicles are calculated, and the potential risk reduction is calculated under the assumption of perfect substitutability of RBT and SBT. Methods are subsequently developed to relax the assumption of perfect substitutability. The transfer effectiveness ratio (TER) concept is defined and modeled as a function of the quality of the simulator used, and the requirements of the activity trained. The Navy F/A-18 is then analyzed in a case study illustrating how learning can be maximized subject to constraints in cost and time, and also subject to the decision maker's preferences for the proportional and absolute use of simulation. Solution methods for optimizing multiple activities across shared resources are next provided. Finally, a simulation strategy including an operations planning program (OPP), an implementation program (IP), an acquisition program (AP), and a pedagogical research program (PRP) is detailed. The study provides the theoretical tools to understand how to leverage SBT, a case study demonstrating these tools' efficacy, and a set of policy recommendations to enable the US military to better utilize SBT in the future.

  19. Episodic future thinking and episodic counterfactual thinking: intersections between memory and decisions.

    PubMed

    Schacter, Daniel L; Benoit, Roland G; De Brigard, Felipe; Szpunar, Karl K

    2015-01-01

    This article considers two recent lines of research concerned with the construction of imagined or simulated events that can provide insight into the relationship between memory and decision making. One line of research concerns episodic future thinking, which involves simulating episodes that might occur in one's personal future, and the other concerns episodic counterfactual thinking, which involves simulating episodes that could have happened in one's personal past. We first review neuroimaging studies that have examined the neural underpinnings of episodic future thinking and episodic counterfactual thinking. We argue that these studies have revealed that the two forms of episodic simulation engage a common core network including medial parietal, prefrontal, and temporal regions that also supports episodic memory. We also note that neuroimaging studies have documented neural differences between episodic future thinking and episodic counterfactual thinking, including differences in hippocampal responses. We next consider behavioral studies that have delineated both similarities and differences between the two kinds of episodic simulation. The evidence indicates that episodic future and counterfactual thinking are characterized by similarly reduced levels of specific detail compared with episodic memory, but that the effects of repeatedly imagining a possible experience have sharply contrasting effects on the perceived plausibility of those events during episodic future thinking versus episodic counterfactual thinking. Finally, we conclude by discussing the functional consequences of future and counterfactual simulations for decisions. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Episodic future thinking and episodic counterfactual thinking: Intersections between memory and decisions

    PubMed Central

    Schacter, Daniel L.; Benoit, Roland G.; De Brigard, Felipe; Szpunar, Karl K.

    2014-01-01

    This article considers two recent lines of research concerned with the construction of imagined or simulated events that can provide insight into the relationship between memory and decision making. One line of research concerns episodic future thinking, which involves simulating episodes that might occur in one’s personal future, and the other concerns episodic counterfactual thinking, which involves simulating episodes that could have happened in one’s personal past. We first review neuroimaging studies that have examined the neural underpinnings of episodic future thinking and episodic counterfactual thinking. We argue that these studies have revealed that the two forms of episodic simulation engage a common core network including medial parietal, prefrontal, and temporal regions that also supports episodic memory. We also note that neuroimaging studies have documented neural differences between episodic future thinking and episodic counterfactual thinking, including differences in hippocampal responses. We next consider behavioral studies that have delineated both similarities and differences between the two kinds of episodic simulation. The evidence indicates that episodic future and counterfactual thinking are characterized by similarly reduced levels of specific detail compared with episodic memory, but that the effects of repeatedly imagining a possible experience have sharply contrasting effects on the perceived plausibility of those events during episodic future thinking versus episodic counterfactual thinking. Finally, we conclude by discussing the functional consequences of future and counterfactual simulations for decisions. PMID:24373942

  1. Virtual skeletal complex model- and landmark-guided orthognathic surgery system.

    PubMed

    Lee, Sang-Jeong; Woo, Sang-Yoon; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Han, Jeong Joon; Yang, Hoon Joo; Hwang, Soon Jung; Yi, Won-Jin

    2016-05-01

    In this study, correction of the maxillofacial deformities was performed by repositioning bone segments to an appropriate location according to the preoperative planning in orthognathic surgery. The surgery was planned using the patient's virtual skeletal models fused with optically scanned three-dimensional dentition. The virtual maxillomandibular complex (MMC) model of the patient's final occlusal relationship was generated by fusion of the maxillary and mandibular models with scanned occlusion. The final position of the MMC was simulated preoperatively by planning and was used as a goal model for guidance. During surgery, the intraoperative registration was finished immediately using only software processing. For accurate repositioning, the intraoperative MMC model was visualized on the monitor with respect to the simulated MMC model, and the intraoperative positions of multiple landmarks were also visualized on the MMC surface model. The deviation errors between the intraoperative and the final positions of each landmark were visualized quantitatively. As a result, the surgeon could easily recognize the three-dimensional deviation of the intraoperative MMC state from the final goal model without manually applying a pointing tool, and could also quickly determine the amount and direction of further MMC movements needed to reach the goal position. The surgeon could also perform various osteotomies and remove bone interference conveniently, as the maxillary tracking tool could be separated from the MMC. The root mean square (RMS) difference between the preoperative planning and the intraoperative guidance was 1.16 ± 0.34 mm immediately after repositioning. After surgery, the RMS differences between the planning and the postoperative computed tomographic model were 1.31 ± 0.28 mm and 1.74 ± 0.73 mm for the maxillary and mandibular landmarks, respectively. Our method provides accurate and flexible guidance for bimaxillary orthognathic surgery based on intraoperative visualization and quantification of deviations for simulated postoperative MMC and landmarks. The guidance using simulated skeletal models and landmarks can complement and improve conventional navigational surgery for bone repositioning in the craniomaxillofacial area. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Virtual reality-based simulators for spine surgery: a systematic review.

    PubMed

    Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias

    2017-09-01

    Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with patient-related outcome measures are needed. To establish further adaptation of VR-based simulators in spinal surgery, future evaluations need to improve the study quality, apply long-term study designs, and examine non-technical skills, as well as multidisciplinary team training. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Psycho-Motor and Error Enabled Simulations: Modeling Vulnerable Skills in the Pre-Mastery Phase Medical Practice Initiative Procedural Skill Decay and Maintenance (MPI-PSD)

    DTIC Science & Technology

    2014-04-01

    laparoscopic ventral hernia repair. Additional simulation stations were added to the standards and purchases (including a motion tracking system) were...framework for laparoscopic ventral hernia; Incorporation of error-based simulators into an exit assessment of chief surgical residents; Development of...simulating a laparoscopic ventral hernia (LVH) repair. Based on collected data, the lab worked to finalize the incorporation of error-based simulators

  4. Elective course in acute care using online learning and patient simulation.

    PubMed

    Seybert, Amy L; Kane-Gill, Sandra L

    2011-04-11

    To enhance students' knowledge of and critical-thinking skills in the management of acutely ill patients using online independent learning partnered with high-fidelity patient simulation sessions. Students enrolled in the Acute Care Simulation watched 10 weekly Web-based video presentations on various critical care and advanced cardiovascular pharmacotherapy topics. After completing each online module, all students participated in groups in patient-care simulation exercises in which they prepared a pharmacotherapeutic plan for the patient, recommended this plan to the patient's physician, and completed a debriefing session with the facilitator. Students completed a pretest and posttest before and after each simulation exercise, as well as midterm and final evaluations and a satisfaction survey. Pharmacy students significantly improved their scores on 9 of the 10 tests (p ≤ 0.05). Students' performance on the final evaluation improved compared with performance on the midterm evaluation. Overall, students were satisfied with the unique dual approach to learning and enjoyed the realistic patient-care environment that the simulation laboratory provided. Participation in an elective course that combined self-directed Web-based learning and hands-on patient simulation exercises increased pharmacy students' knowledge and critical-thinking skills in acute care.

  5. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  6. Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Wei; Sevilla, Thomas Alonso; Zuo, Wangda

    Historically, multizone models are widely used in building airflow and energy performance simulations due to their fast computing speed. However, multizone models assume that the air in a room is well mixed, consequently limiting their application. In specific rooms where this assumption fails, the use of computational fluid dynamics (CFD) models may be an alternative option. Previous research has mainly focused on coupling CFD models and multizone models to study airflow in large spaces. While significant, most of these analyses did not consider the coupled simulation of the building airflow with the building's Heating, Ventilation, and Air-Conditioning (HVAC) systems. Thismore » paper tries to fill the gap by integrating the models for HVAC systems with coupled multizone and CFD simulations for airflows, using the Modelica simul ation platform. To improve the computational efficiency, we incorporated a simplified CFD model named fast fluid dynamics (FFD). We first introduce the data synchronization strategy and implementation in Modelica. Then, we verify the implementation using two case studies involving an isothermal and a non-isothermal flow by comparing model simulations to experiment data. Afterward, we study another three cases that are deemed more realistic. This is done by attaching a variable air volume (VAV) terminal box and a VAV system to previous flows to assess the capability of the models in studying the dynamic control of HVAC systems. Finally, we discuss further research needs on the coupled simulation using the models.« less

  7. Design for dependability: A simulation-based approach. Ph.D. Thesis, 1993

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.

    1994-01-01

    This research addresses issues in simulation-based system level dependability analysis of fault-tolerant computer systems. The issues and difficulties of providing a general simulation-based approach for system level analysis are discussed and a methodology that address and tackle these issues is presented. The proposed methodology is designed to permit the study of a wide variety of architectures under various fault conditions. It permits detailed functional modeling of architectural features such as sparing policies, repair schemes, routing algorithms as well as other fault-tolerant mechanisms, and it allows the execution of actual application software. One key benefit of this approach is that the behavior of a system under faults does not have to be pre-defined as it is normally done. Instead, a system can be simulated in detail and injected with faults to determine its failure modes. The thesis describes how object-oriented design is used to incorporate this methodology into a general purpose design and fault injection package called DEPEND. A software model is presented that uses abstractions of application programs to study the behavior and effect of software on hardware faults in the early design stage when actual code is not available. Finally, an acceleration technique that combines hierarchical simulation, time acceleration algorithms and hybrid simulation to reduce simulation time is introduced.

  8. Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer

    NASA Technical Reports Server (NTRS)

    Lowery, P. S.; Reynolds, W. C.; Mansour, N. N.

    1987-01-01

    Numerical simulations are performed for the forced, spatially-developing plane mixing layer in two and three dimensions. Transport of a passive scalar field is included in the computation. This, together with the allowance for spatial development in the simulations, affords the opportunity for study of the asymmetric entrainment of irrotational fluid into the layer. The inclusion of a passive scalar field provides a means for simulating the effect of this entrainment asymmetry on the generation of 'products' from a 'fast' chemical reaction. Further, the three-dimensional simulations provide useful insight into the effect of streamwise structures on these entrainment and 'fast' reaction processes. Results from a two-dimensional simulation indicate 1.22 parts high-speed fluid are entrained for every one part low-speed fluid. Inclusion of streamwise vortices at the inlet plane of a three-dimensional simulation indicate a further increase in asymmetric entrainment - 1.44:1. Results from a final three-dimensional simulation are presented. In this case, a random velocity perturbation is imposed at the inlet plane. The results indicate the 'natural' development of the large spanwise structures characteristic of the mixing layer.

  9. [Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study].

    PubMed

    Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A

    The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Finite element simulations and experimental investigations on ductile fracture in cold forging of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Amiri, Amir; Nikpour, Amin; Saraeian, Payam

    2018-05-01

    Forging is one of the manufacturing processes of aluminium parts which has two major categories: called hot and cold forging. In the cold forging, the dimensional and geometrical accuracy of final part is high. However, fracture may occur in some aluminium alloys during the process because of less workability. Fracture in cold forging can be in the form of ductile, brittle or combination of both depending on the alloy type. There are several criteria for predicting fracture in cold forging. In this study, cold forging process of 6063 aluminium alloy for three different parts is simulated in order to predict fracture. The results of numerical simulations of Freudenthal criterion is in conformity with experimental tests.

  11. Impact of baryonic physics on intrinsic alignments

    DOE PAGES

    Tenneti, Ananth; Gnedin, Nickolay Y.; Feng, Yu

    2017-01-11

    We explore the effects of specific assumptions in the subgrid models of star formation and stellar and AGN feedback on intrinsic alignments of galaxies in cosmological simulations of "MassiveBlack-II" family. Using smaller volume simulations, we explored the parameter space of the subgrid star formation and feedback model and found remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientationmore » of the stellar distribution. Finally, our results are also consistent with a similar study by the EAGLE simulation team.« less

  12. Numerical Relativity Simulations for Black Hole Merger Astrophysics

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2010-01-01

    Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.

  13. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  14. Partial Return Yoke for MICE Step IV and Final Step

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, Holger; Plate, Stephen; Berg, J.Scott

    2015-06-01

    This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.

  15. Partial return yoke for MICE step IV and final step

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, H.; Plate, S.; Berg, J. S.

    2015-05-03

    This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.

  16. Formal Assurance Certifiable Tooling Formal Assurance Certifiable Tooling Strategy Final Report

    NASA Technical Reports Server (NTRS)

    Bush, Eric; Oglesby, David; Bhatt, Devesh; Murugesan, Anitha; Engstrom, Eric; Mueller, Joe; Pelican, Michael

    2017-01-01

    This is the Final Report of a research project to investigate issues and provide guidance for the qualification of formal methods tools under the DO-330 qualification process. It consisted of three major subtasks spread over two years: 1) an assessment of theoretical soundness issues that may affect qualification for three categories of formal methods tools, 2) a case study simulating the DO-330 qualification of two actual tool sets, and 3) an investigation of risk mitigation strategies that might be applied to chains of such formal methods tools in order to increase confidence in their certification of airborne software.

  17. Monte-Carlo Event Generators for Jet Modification in d(p)-A and A-A Collisions

    NASA Astrophysics Data System (ADS)

    Kordell, Michael C., III

    This work outlines methods to use jet simulations to study both initial and final state nuclear effects in heavy-ion collisions. To study the initial state of heavy-ion collisions, the production of jets and high momentum hadrons from jets, produced in deuteron (d)-Au collisions at the relativistic heavy-ion collider (RHIC) and proton (p)- Pb collisions at the large hadron collider (LHC) are studied as a function of centrality, a measure of the impact parameter of the collision. A modified version of the event generator PYTHIA, widely used to simulate p-p collisions, is used in conjunction with a nuclear Monte-Carlo event generator which simulates the locations of the nucleons within a large nucleus. It is demonstrated how events with a hard jet may be simulated, in such a way that the parton distribution function of the projectile is frozen during its interaction with the extended nucleus. Using this approach, it is demonstrated that the puzzling enhancement seen in peripheral events at RHIC and the LHC, as well as the suppression seen in central events at the LHC are mainly due to mis-binning of central and semi-central events, containing a jet, as peripheral events. This occurs due to the suppression of soft particle production away from the jet, caused by the depletion of energy available in a nucleon of the deuteron (in d-Au at RHIC) or in the proton (in p-Pb at LHC), after the production of a hard jet. In conclusion, partonic correlations built out of simple energy conservation are responsible for such an effect, though these are sampled at the hard scale of jet production and, as such, represent smaller states. To study final state nuclear effects, the modification of hard jets in the Quark Gluon Plasma (QGP) is simulated using the MATTER event generator. Based on the higher twist formalism of energy loss, the MATTER event generator simulates the evolution of highly virtual partons through a medium. These partons sampled from an underlying PYTHIA kernel undergo splitting through a combination of vacuum and medium induced emission. The momentum exchange with the medium is simulated via the jet transport coefficient q̂, which is assumed to scale with the entropy density at a given location in the medium. The entropy density is obtained from a relativistic viscous fluid dynamics simulation (VISH2+1D) in 2+1 space time dimensions. Results for jet and hadron observables are presented using an independent fragmentation model.

  18. Thermo-mechanical simulation of liquid-supported stretch blow molding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmer, J.; Stommel, M.

    2015-05-22

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way,more » a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.« less

  19. In situ Orbit Extraction from Live, High Precision Collisionless Simulations of Systems Formed by Cold Collapse

    NASA Astrophysics Data System (ADS)

    Noriega-Mendoza, H.; Aguilar, L. A.

    2018-04-01

    We performed high precision, N-body simulations of the cold collapse of initially spherical, collisionless systems using the GYRFALCON code of Dehnen (2000). The collapses produce very prolate spheroidal configurations. After the collapse, the systems are simulated for 85 and 170 half-mass radius dynamical timescales, during which energy conservation is better than 0.005%. We use this period to extract individual particle orbits directly from the simulations. We then use the TAXON code of Carpintero and Aguilar (1998) to classify 1 to 1.5% of the extracted orbits from our final, relaxed configurations: less than 15% are chaotic orbits, 30% are box orbits and 60% are tube orbits (long and short axis). Our goal has been to prove that direct orbit extraction is feasible, and that there is no need to "freeze" the final N-body system configuration to extract a time-independent potential.

  20. Manual flying of curved precision approaches to landing with electromechanical instrumentation. A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1993-01-01

    A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.

  1. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less

  2. Numerical study of core formation of asymmetrically driven cone-guided targets

    DOE PAGES

    Sawada, Hiroshi; Sakagami, Hitoshi

    2017-09-22

    Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less

  3. Numerical study of core formation of asymmetrically driven cone-guided targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Hiroshi; Sakagami, Hitoshi

    Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less

  4. Copy of Using Emulation and Simulation to Understand the Large-Scale Behavior of the Internet.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adalsteinsson, Helgi; Armstrong, Robert C.; Chiang, Ken

    2008-10-01

    We report on the work done in the late-start LDRDUsing Emulation and Simulation toUnderstand the Large-Scale Behavior of the Internet. We describe the creation of a researchplatform that emulates many thousands of machines to be used for the study of large-scale inter-net behavior. We describe a proof-of-concept simple attack we performed in this environment.We describe the successful capture of a Storm bot and, from the study of the bot and furtherliterature search, establish large-scale aspects we seek to understand via emulation of Storm onour research platform in possible follow-on work. Finally, we discuss possible future work.3

  5. Simulation methods to estimate design power: an overview for applied research.

    PubMed

    Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E

    2011-06-20

    Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.

  6. Simulation methods to estimate design power: an overview for applied research

    PubMed Central

    2011-01-01

    Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447

  7. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study

    PubMed Central

    Hedman, Leif; Felländer-Tsai, Li

    2016-01-01

    Objectives To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Methods Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience.  Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. Results A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). Conclusions This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.  PMID:26897701

  8. Multiple Access Schemes for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie; Hamkins, Jon; Stocklin, Frank J.

    2010-01-01

    Two years ago, the NASA Coding, Modulation, and Link Protocol (CMLP) study was completed. The study, led by the authors of this paper, recommended codes, modulation schemes, and desired attributes of link protocols for all space communication links in NASA's future space architecture. Portions of the NASA CMLP team were reassembled to resolve one open issue: the use of multiple access (MA) communication from the lunar surface. The CMLP-MA team analyzed and simulated two candidate multiple access schemes that were identified in the original CMLP study: Code Division MA (CDMA) and Frequency Division MA (FDMA) based on a bandwidth-efficient Continuous Phase Modulation (CPM) with a superimposed Pseudo-Noise (PN) ranging signal (CPM/PN). This paper summarizes the results of the analysis and simulation of the CMLP-MA study and describes the final recommendations.

  9. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  10. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  11. Observations of Space Charge effects in the Spallation Neutron Source Accumulator Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potts III, Robert E; Cousineau, Sarah M; Holmes, Jeffrey A

    2012-01-01

    The Spallation Neutron Source accumulator ring was designed to allow independent control of the transverse beam distribution in each plane. However, at high beam intensities, nonlinear space charge forces can strongly influence the final beam distribution and compromise our ability to independently control the transverse distributions. In this study we investigate the evolution of the beam at intensities of up to ~8x10^13 ppp through both simulation and experiment. Specifically, we analyze the evolution of the beam distribution for beams with different transverse aspect ratios and tune splits. We present preliminary results of simulations of our experiments.

  12. Analog simulation of flux-summing servo-model, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Hriber, E. J.

    1984-01-01

    The analog simulation was developed for a closed-loop system having an electrohydraulic flux-summing servo valve and actuator with associated inertial load. One-fourth of the system's total forward gain is carried by each of four channels. The present study successfully applied failure mode management techniques to the problem of channel failure. Digital logic circuitry was developed to maintain the overall forward gain of the system at a constant value, in the presence of channel failure. Finally, the stability of the system was verified, and performance characteristics were determined through the use of frequency response methods.

  13. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms.

    PubMed

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-04-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Response of wnt/ ß-Catenin Signaling Pathway in Osteocytes Under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Sun, Lian-Wen; Liang, Meng; Wang, Xiao-Nan; Fan, Yu-Bo

    2015-11-01

    Osteocytes were considered as potential sensors of mechanical loading and orchestrate the bone remodeling adapted to mechanical loading. On the other hand, osteocytes are also considered as the unloading sensors in vivo. Previous studies showed that the mechanosensation and mechanotransduction of osteocytes may play an essential role in mediating bone response to microgravity, and one of the most important molecular signaling pathway involved in the mechanotransduction is the Wnt/ ß-catenin signaling pathway. In order to investigate the effect of simulated microgravity on the Wnt/ ß-catenin signaling pathway in osteocytes, MLO-Y4 cells (an osteocyte-like cell line) were cultured under controlled rotation to simulate microgravity for 5 days. The cytoskeleton and ß-catenin nuclear translocation of MLO-Y4 cells were detected by laser scanning confocal microscope and the fluorescence intensity was quantified; the mRNA expressions of upstream and downstream key components in Wnt canonical signaling were detected with RT-PCR. Two regulators of the Wnt/ ß-catenin pathway, NMP4/CIZ and Smads, were also investigated by RT-PCR; finally the expression of Wnt target genes and Sost protein level were detected with the absence or presence of the Sclerostin antibody (Scl-AbI) under simulated microgravity. The results showed that under simulated microgravity, (1) F-actin filaments were disassembled and some short dendritic processes appeared at the cell periphery; (2) the gene expression of Wnt3a, Wnt5a, DKK1, CyclinD1, LEF-1 and CX43 in the simulated microgravity group were significantly lower whereas Wnt1 and Sost in the simulated microgravity group were significantly higher than the control group; (3) the gene and protein level of ß-catenin were reduced, and no ß-catenin nuclear translocation observed; (4) the gene expression of Smad1, Smad4 and Smad7 were significantly lower whereas NMP4/CIZ and Smad3 in the simulated microgravity were significantly higher than the control group; (5) Scl-AbI partially inhibited the down-regulation of simulated microgravity to Wnt target gene expression and Sclerostin protein expression. The results suggested that firstly the cytoskeleton was disturbed in MLO-Y4 by simulated microgravity; secondly the activity of Wnt/ ß-catenin signaling pathway was depressed, with the nuclear translocation of ß-catenin suppressed by simulated microgravity; thirdly the Wnt/ ß-catenin signaling pathway positive regulators (Smads) were decreased, while the negative regulator (NMP4/CIZ) was increased under simulated microgravity; finally Scl-AbI could partially restore the adverse effect of simulated microgravity to Wnt signaling. This study may help us to understand the mechanotransduction alteration of Wnt/ ß-catenin signaling pathway in osteocytes under simulated microgravity, and further may partly clarify the mechanism of microgravity-induced osteoporosis.

  15. Research study on stabilization and control: Modern sampled-data control theory. Continuous and discrete describing function analysis of the LST system. [with emphasis on the control moment gyroscope control loop

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Singh, G.

    1974-01-01

    The dynamics of the Large Space Telescope (LST) control system were studied in order to arrive at a simplified model for computer simulation without loss of accuracy. The frictional nonlinearity of the Control Moment Gyroscope (CMG) Control Loop was analyzed in a model to obtain data for the following: (1) a continuous describing function for the gimbal friction nonlinearity; (2) a describing function of the CMG nonlinearity using an analytical torque equation; and (3) the discrete describing function and function plots for CMG functional linearity. Preliminary computer simulations are shown for the simplified LST system, first without, and then with analytical torque expressions. Transfer functions of the sampled-data LST system are also described. A final computer simulation is presented which uses elements of the simplified sampled-data LST system with analytical CMG frictional torque expressions.

  16. Modelling for anchovy recruitment studies in the Gulf of Lions (Western Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Nicolle, Amandine; Garreau, Pierre; Liorzou, Bernard

    2009-12-01

    Anchovy ( Engraulis encrasicolus) is an important commercial species and one of the most abundant pelagic fish in the Gulf of Lions and the Catalan Sea. The factors influencing its recruitment are crucial to fisheries and ecological research. Among those factors transport of larvae by hydrodynamics (currents) is important because it determines whether the organisms can reach areas favourable to recruitment or are dispersed. Therefore, the first step in anchovy recruitment modelling is to simulate North-western Mediterranean Sea circulation. Several years (2001-2008) of hydrodynamics were simulated with the MARS-3D code. The resulting simulated currents and salinity are used by Lagrangian tool, Ichthyop, to transport anchovy eggs and larvae to the Western Mediterranean Sea. The aim of this study is to understand the main hydrodynamic processes that control anchovy transport and the effects of diel vertical migration on the transport and final distribution of anchovy.

  17. Computational Analysis and Simulation of Empathic Behaviors: A Survey of Empathy Modeling with Behavioral Signal Processing Framework

    PubMed Central

    Xiao, Bo; Imel, Zac E.; Georgiou, Panayiotis; Atkins, David C.; Narayanan, Shrikanth S.

    2017-01-01

    Empathy is an important psychological process that facilitates human communication and interaction. Enhancement of empathy has profound significance in a range of applications. In this paper, we review emerging directions of research on computational analysis of empathy expression and perception as well as empathic interactions, including their simulation. We summarize the work on empathic expression analysis by the targeted signal modalities (e.g., text, audio, facial expressions). We categorize empathy simulation studies into theory-based emotion space modeling or application-driven user and context modeling. We summarize challenges in computational study of empathy including conceptual framing and understanding of empathy, data availability, appropriate use and validation of machine learning techniques, and behavior signal processing. Finally, we propose a unified view of empathy computation, and offer a series of open problems for future research. PMID:27017830

  18. Finite element simulation of adaptive aerospace structures with SMA actuators

    NASA Astrophysics Data System (ADS)

    Frautschi, Jason; Seelecke, Stefan

    2003-07-01

    The particular demands of aerospace engineering have spawned many of the developments in the field of adaptive structures. Shape memory alloys are particularly attractive as actuators in these types of structures due to their large strains, high specific work output and potential for structural integration. However, the requisite extensive physical testing has slowed development of potential applications and highlighted the need for a simulation tool for feasibility studies. In this paper we present an implementation of an extended version of the M'ller-Achenbach SMA model into a commercial finite element code suitable for such studies. Interaction between the SMA model and the solution algorithm for the global FE equations is thoroughly investigated with respect to the effect of tolerances and time step size on convergence, computational cost and accuracy. Finally, a simulation of a SMA-actuated flexible trailing edge of an aircraft wing modeled with beam elements is presented.

  19. Vision Research for Flight Simulation. Final Report.

    ERIC Educational Resources Information Center

    Richards, Whitman, Ed.; Dismukes, Key, Ed.

    Based on a workshop on vision research issues in flight-training simulators held in June 1980, this report focuses on approaches for the conduct of research on what visual information is needed for simulation and how it can best be presented. An introduction gives an overview of the workshop and describes the contents of the report. Section 1…

  20. Computer simulation techniques for artificial modification of the ionosphere. Final report 31 jan 79-30 apr 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vance, B.; Mendillo, M.

    1981-04-30

    A three-dimensional model of the ionosphere was developed including chemical reactions and neutral and plasma transport. The model uses Finite Element Simulation to simulate ionospheric modification rather than solving a set of differential equations. The initial conditions of the Los Alamos Scientific Laboratory experiments, Lagopedo Uno and Dos, were input to the model, and these events were simulated. Simulation results were compared to ground and rocketborne electron-content measurements. A simulation of the transport of released SF6 was also made.

  1. Weapon Simulator Test Methodology Investigation: Comparison of Live Fire and Weapon Simulator Test Methodologies and the Effects of Clothing and Individual Equipment on Marksmanship

    DTIC Science & Technology

    2016-09-15

    METHODOLOGY INVESTIGATION: COMPARISON OF LIVE FIRE AND WEAPON SIMULATOR TEST METHODOLOGIES AND THE EFFECTS OF CLOTHING AND INDIVIDUAL EQUIPMENT ON...2. REPORT TYPE Final 3. DATES COVERED (From - To) October 2014 – August 2015 4. TITLE AND SUBTITLE WEAPON SIMULATOR TEST METHODOLOGY INVESTIGATION...COMPARISON OF LIVE FIRE AND WEAPON SIMULATOR TEST METHODOLOGIES AND THE EFFECTS OF CLOTHING AND INDIVIDUAL EQUIPMENT ON MARKSMANSHIP 5a. CONTRACT

  2. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    NASA Technical Reports Server (NTRS)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  3. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau

    DOE PAGES

    Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin; ...

    2017-01-10

    On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less

  4. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin

    On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less

  5. Optimal Spatial Design of Capacity and Quantity of Rainwater Catchment Systems for Urban Flood Mitigation

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hsu, N.

    2013-12-01

    This study imports Low-Impact Development (LID) technology of rainwater catchment systems into a Storm-Water runoff Management Model (SWMM) to design the spatial capacity and quantity of rain barrel for urban flood mitigation. This study proposes a simulation-optimization model for effectively searching the optimal design. In simulation method, we design a series of regular spatial distributions of capacity and quantity of rainwater catchment facilities, and thus the reduced flooding circumstances using a variety of design forms could be simulated by SWMM. Moreover, we further calculate the net benefit that is equal to subtract facility cost from decreasing inundation loss and the best solution of simulation method would be the initial searching solution of the optimization model. In optimizing method, first we apply the outcome of simulation method and Back-Propagation Neural Network (BPNN) for developing a water level simulation model of urban drainage system in order to replace SWMM which the operating is based on a graphical user interface and is hard to combine with optimization model and method. After that we embed the BPNN-based simulation model into the developed optimization model which the objective function is minimizing the negative net benefit. Finally, we establish a tabu search-based algorithm to optimize the planning solution. This study applies the developed method in Zhonghe Dist., Taiwan. Results showed that application of tabu search and BPNN-based simulation model into the optimization model not only can find better solutions than simulation method in 12.75%, but also can resolve the limitations of previous studies. Furthermore, the optimized spatial rain barrel design can reduce 72% of inundation loss according to historical flood events.

  6. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume II. Appendices. Final Report.

    ERIC Educational Resources Information Center

    Connelly, E. M.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is described. Ultimately, this approach will allow automatic measurement of pilot performance in a flight simulator or from recorded in-flight data. An efficient method of representing performance data within a computer is…

  7. Embedding Research in a Field-Based Module through Peer Review and Assessment for Learning

    ERIC Educational Resources Information Center

    Nicholson, Dawn T.

    2011-01-01

    A case study is presented of embedding research in a final year undergraduate, field-based, physical geography module. The approach is holistic, whereby research-based learning activities simulate the full life cycle of research from inception through to peer review and publication. The learning, teaching and assessment strategy emphasizes the…

  8. Final Technical Report: Collaborative Research Center for Nonlinear Simulation of Energetic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berk, Herbert L.

    2018-02-15

    The study of this project focused on developing a reduced nonlinear model to describe chirping processes in a fusion plasma. A successful method was developed with results clear enough to allow an analytic theory to be developed that replicates the long term response of a nonlinear phase space structure immersed in the MHD continnuum.

  9. Intermediate Maneuver Induced Rollover Simulation (IMIRS) and Sensitivity Analysis. Final Report

    DOT National Transportation Integrated Search

    1991-02-01

    This report describes the development of the Intermediate Maneuver Induced Rollover Simulation (IMIRS) which can be used to investigate the phenomenon of maneuver induced rollover of light vehicles. The IMIRS represents an enhancement of the existing...

  10. A hip joint simulator study using new and physiologically scratched femoral heads with ultra-high molecular weight polyethylene acetabular cups.

    PubMed

    Barbour, P S; Stone, M H; Fisher, J

    2000-01-01

    This study validates a hip joint simulator configuration as compared with other machines and clinical wear rates using smooth metal and ceramic femoral heads and ultra-high molecular weight polyethylene (UHMWPE) acetabular cups. Secondly the wear rate of UHMWPE cups is measured in the simulator with deliberately scratched cobalt-chrome heads to represent the type of mild and severe scratch damage found on retrieved heads. Finally, the scratching processes are described and the resulting scratches compared with those found in retrieved cobalt-chrome heads. For smooth cobalt-chrome and zirconia heads the wear rates were found to be statistically similar to other simulator machines and within the normal range found from clinical studies. An increased wear rate was found with cobalt-chrome heads scratched using either the diamond stylus or the bead cobalt-chrome but the greatest increase was with the diamond scratched heads which generated scratches of similar dimensions to those on retrieved heads. A greater than twofold increase in wear rate is reported for these heads when compared with smooth heads. This increased wear rate is, however, still within the limits of data from clinical wear studies.

  11. Soliton interactions and the formation of solitonic patterns

    NASA Astrophysics Data System (ADS)

    Sears, Suzanne M.

    From the stripes of a zebra, to the spirals of cream in a hot cup of coffee, we are surrounded by patterns in the natural world. But why are there patterns? Why drives their formation? In this thesis we study some of the diverse ways patterns can arise due to the interactions between solitary waves in nonlinear systems, sometimes starting from nothing more than random noise. What follows is a set of three studies. In the first, we show how a nonlinear system that supports solitons can be driven to generate exact (regular) Cantor set fractals. As an example, we use numerical simulations to demonstrate the formation of Cantor set fractals by temporal optical solitons. This fractal formation occurs in a cascade of nonlinear optical fibers through the dynamical evolution of a single input soliton. In the second study, we investigate pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns such as grids and stripes. For the final study, we demonstrate the spontaneous clustering of solitons in partially coherent wavefronts during the final stages of pattern formation initiated by modulation instability and noise. Experimental observations are in agreement with theoretical predictions and are confirmed using numerical simulations.

  12. Undergraduate nursing students' performance in recognising and responding to sudden patient deterioration in high psychological fidelity simulated environments: an Australian multi-centre study.

    PubMed

    Bogossian, Fiona; Cooper, Simon; Cant, Robyn; Beauchamp, Alison; Porter, Joanne; Kain, Victoria; Bucknall, Tracey; Phillips, Nicole M

    2014-05-01

    Early recognition and situation awareness of sudden patient deterioration, a timely appropriate clinical response, and teamwork are critical to patient outcomes. High fidelity simulated environments provide the opportunity for undergraduate nursing students to develop and refine recognition and response skills. This paper reports the quantitative findings of the first phase of a larger program of ongoing research: Feedback Incorporating Review and Simulation Techniques to Act on Clinical Trends (FIRST2ACTTM). It specifically aims to identify the characteristics that may predict primary outcome measures of clinical performance, teamwork and situation awareness in the management of deteriorating patients. Mixed-method multi-centre study. High fidelity simulated acute clinical environment in three Australian universities. A convenience sample of 97 final year nursing students enrolled in an undergraduate Bachelor of Nursing or combined Bachelor of Nursing degree were included in the study. In groups of three, participants proceeded through three phases: (i) pre-briefing and completion of a multi-choice question test, (ii) three video-recorded simulated clinical scenarios where actors substituted real patients with deteriorating conditions, and (iii) post-scenario debriefing. Clinical performance, teamwork and situation awareness were evaluated, using a validated standard checklist (OSCE), Team Emergency Assessment Measure (TEAM) score sheet and Situation Awareness Global Assessment Technique (SAGAT). A Modified Angoff technique was used to establish cut points for clinical performance. Student teams engaged in 97 simulation experiences across the three scenarios and achieved a level of clinical performance consistent with the experts' identified pass level point in only 9 (1%) of the simulation experiences. Knowledge was significantly associated with overall teamwork (p=.034), overall situation awareness (p=.05) and clinical performance in two of the three scenarios (p=.032 cardiac and p=.006 shock). Situation awareness scores of scenario team leaders were low overall, with an average total score of 41%. Final year undergraduate nursing students may have difficulty recognising and responding appropriately to patient deterioration. Improving pre-requisite knowledge, rehearsal of first response and team management strategies need to be a key component of undergraduate nursing students' education and ought to specifically address clinical performance, teamwork and situation awareness. © 2013 Elsevier Ltd. All rights reserved.

  13. Experimental and modeling approaches for food waste composting: a review.

    PubMed

    Li, Zhentong; Lu, Hongwei; Ren, Lixia; He, Li

    2013-10-01

    Composting has been used as a method to dispose food waste (FW) and recycle organic matter to improve soil structure and fertility. Considering the significance of composting in FW treatment, many researchers have paid their attention on how to improve FW composting efficiency, reduce operating cost, and mitigate the associated environmental damage. This review focuses on the overall studies of FW composting, not only various parameters significantly affecting the processes and final results, but also a number of simulation approaches that are greatly instrumental in well understanding the process mechanism and/or results prediction. Implications of many key ingredients on FW composting performance are also discussed. Perspects of effective laboratory experiments and computer-based simulation are finally investigated, demonstrating many demanding areas for enhanced research efforts, which include the screening of multi-functional additives, volatile organiccompound emission control, necessity of modeling and post-modeling analysis, and usefulness of developing more conjunctive AI-based process control techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Integrating Multiple Approaches to Solving Solar Wind Turbulence Problems (Invited)

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Roytershteyn, V.

    2013-12-01

    The ultimate understanding of the solar wind turbulence must explain the physical process and their connection at all scales ranging from the largest down to electron kinetic scales. This is a daunting task and as a result a more piecemeal approach to the problem has been followed. For example, the role of each wave has been explored in isolation and in simulations with scales limited to those of the underlying waves. In this talk, we present several issues with this approach and offer an alternative with an eye towards more realistic simulations of solar wind turbulence. The main simulation techniques used have been MHD, Hall MHD, hybrid, fully kinetic, and gyrokinetic. We examine the limitations of each approach and their viability for studies of solar wind turbulence. Finally, the effect of initial conditions on the resulting turbulence and their comparison with solar wind are demonstrated through several kinetic simulations.

  15. Numerical simulation of turbulent jet noise, part 2

    NASA Technical Reports Server (NTRS)

    Metcalfe, R. W.; Orszag, S. A.

    1976-01-01

    Results on the numerical simulation of jet flow fields were used to study the radiated sound field, and in addition, to extend and test the capabilities of the turbulent jet simulation codes. The principal result of the investigation was the computation of the radiated sound field from a turbulent jet. In addition, the computer codes were extended to account for the effects of compressibility and eddy viscosity, and the treatment of the nonlinear terms of the Navier-Stokes equations was modified so that they can be computed in a semi-implicit way. A summary of the flow model and a description of the numerical methods used for its solution are presented. Calculations of the radiated sound field are reported. In addition, the extensions that were made to the fundamental dynamical codes are described. Finally, the current state-of-the-art for computer simulation of turbulent jet noise is summarized.

  16. Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation.

    PubMed

    Andrés-Iglesias, Cristina; García-Serna, Juan; Montero, Olimpio; Blanco, Carlos A

    2015-10-01

    The coupled operation of vacuum distillation process to produce alcohol free beer at laboratory scale and Aspen HYSYS simulation software was studied to define the chemical changes during the dealcoholization process in the aroma profiles of 2 different lager beers. At the lab-scale process, 2 different parameters were chosen to dealcoholize beer samples, 102mbar at 50°C and 200mbar at 67°C. Samples taken at different steps of the process were analyzed by HS-SPME-GC-MS focusing on the concentration of 7 flavor compounds, 5 alcohols and 2 esters. For simulation process, the EoS parameters of the Wilson-2 property package were adjusted to the experimental data and one more pressure was tested (60mbar). Simulation methods represent a viable alternative to predict results of the volatile compound composition of a final dealcoholized beer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comparison of HORACE and PHOTOS Algorithms for Multi-Photon Emission in the Context of the W Boson Mass Measurement

    DOE PAGES

    Kotwal, Ashutosh V.; Jayatilaka, Bodhitha

    2016-01-01

    W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fitsmore » are performed using a simulation of the CDF II detector.« less

  18. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  19. Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.

    2017-09-01

    Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.

  20. Simulation verification techniques study: Simulation self test hardware design and techniques report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.

  1. Preliminary analysis of one year long space climate simulation

    NASA Astrophysics Data System (ADS)

    Facsko, G.; Honkonen, I. J.; Juusola, L.; Viljanen, A.; Vanhamäki, H.; Janhunen, P.; Palmroth, M.; Milan, S. E.

    2013-12-01

    One full year (155 Cluster orbits, from January 29, 2002 to February 2, 2003) is simulated using the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS) in the European Cluster Assimilation Technology project (ECLAT). This enables us to study the performance of a global magnetospheric model in an unprecedented scale both in terms of the amount of available observations and the length of the timeseries that can be compared. The solar wind for the simulated period, obtained from OMNIWeb, is used as input to GUMICS. We present an overview of various comparisons of GUMICS results to observations for the simulated year. Results along the Cluster reference spacecraft orbit to are compared to Cluster measurements. The Cross Polar Cap Potential (CPCP) results are compared to SuperDARN measurements. The IMAGE electrojet indicators (IU, IL) calculated from the ionospheric currents of GUMICS are compared to observations. Finally, Geomagnetically Induced Currents (GIC) calculated from GUMICS results along the Finnish mineral gas pipeline at Mätsälä are also compared to measurements.

  2. Scalable File Systems for High Performance Computing Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, S A

    2007-10-03

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-statemore » testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.« less

  3. Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2018-06-01

    We present the Cholla Galactic OutfLow Simulations (CGOLS) suite, a set of extremely high resolution global simulations of isolated disk galaxies designed to clarify the nature of multiphase structure in galactic winds. Using the GPU-based code Cholla, we achieve unprecedented resolution in these simulations, modeling galaxies over a 20 kpc region at a constant resolution of 5 pc. The simulations include a feedback model designed to test the effects of different mass- and energy-loading factors on galactic outflows over kiloparsec scales. In addition to describing the simulation methodology in detail, we also present the results from an adiabatic simulation that tests the frequently adopted analytic galactic wind model of Chevalier & Clegg. Our results indicate that the Chevalier & Clegg model is a good fit to nuclear starburst winds in the nonradiative region of parameter space. Finally, we investigate the role of resolution and convergence in large-scale simulations of multiphase galactic winds. While our largest-scale simulations show convergence of observable features like soft X-ray emission, our tests demonstrate that simulations of this kind with resolutions greater than 10 pc are not yet converged, confirming the need for extreme resolution in order to study the structure of winds and their effects on the circumgalactic medium.

  4. Multiscale Modeling and Simulation of Material Processing

    DTIC Science & Technology

    2006-07-01

    As a re- GIMP simulations . Fig. 2 illustrates the contact algo- suit, MPM using a single mesh tends to induce early con- rithm for the contact pair ...21-07-2006 Final Performance Report 05-01-2003 - 04-30-2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multiscale Modeling and Simulation of Material...development of scaling laws for multiscale simulations from atomistic to continuum using material testing techniques, such as tension and indentation

  5. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R

    The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based uponmore » the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble salt simulant described in this report represents the initial attempt to represent the material which may be encountered during final waste removal and tank cleaning. The final selected simulant was produced by heating and evaporation of a salt slurry sample to remove excess water and promote formation and precipitation of solids with solubility characteristics which are consistent with actual tank insoluble salt samples. The exact anion composition of the final product solids is not explicitly known since the chemical components in the final product are distributed between the solid and liquid phases. By combining the liquid phase analyses and total solids analysis with mass balance requirements a calculated composition of assumed simple compounds was obtained and is shown in Table 0-1. Additional improvements to and further characterization of the insoluble salt simulant are possible. During the development of these simulants it was recognized that: (1) Additional waste characterization on the residues from salt dissolution tests with actual waste samples to determine the amount of species such as carbonate, oxalate and aluminosilicate would allow fewer assumptions to be made in constructing an insoluble salt simulant. (2) The tank history will impact the amount and type of insoluble solids that exist in the salt dissolution solids. Varying the method of simulant production (elevated temperature processing time, degree of evaporation, amount of mixing (shear) during preparation, etc.) should be tested.« less

  6. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  7. "Party Line" Information Use Studies and Implications for ATC Datalink Communications

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Pritchett, Amy; Midkiff, Alan

    1995-01-01

    The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The importance, availability, and accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Norman A.; /SLAC

    Maximizing the physics performance of detectors being designed for the International Linear Collider, while remaining sensitive to cost constraints, requires a powerful, efficient, and flexible simulation, reconstruction and analysis environment to study the capabilities of a large number of different detector designs. The preparation of Letters Of Intent for the International Linear Collider involved the detailed study of dozens of detector options, layouts and readout technologies; the final physics benchmarking studies required the reconstruction and analysis of hundreds of millions of events. We describe the Java-based software toolkit (org.lcsim) which was used for full event reconstruction and analysis. The componentsmore » are fully modular and are available for tasks from digitization of tracking detector signals through to cluster finding, pattern recognition, track-fitting, calorimeter clustering, individual particle reconstruction, jet-finding, and analysis. The detector is defined by the same xml input files used for the detector response simulation, ensuring the simulation and reconstruction geometries are always commensurate by construction. We discuss the architecture as well as the performance.« less

  9. Validation of computer simulation training for esophagogastroduodenoscopy: Pilot study.

    PubMed

    Sedlack, Robert E

    2007-08-01

    Little is known regarding the value of esophagogastroduodenoscopy (EGD) simulators in education. The purpose of the present paper was to validate the use of computer simulation in novice EGD training. In phase 1, expert endoscopists evaluated various aspects of simulation fidelity as compared to live endoscopy. Additionally, computer-recorded performance metrics were assessed by comparing the recorded scores from users of three different experience levels. In phase 2, the transfer of simulation-acquired skills to the clinical setting was assessed in a two-group, randomized pilot study. The setting was a large gastroenterology (GI) Fellowship training program; in phase 1, 21 subjects (seven expert, intermediate and novice endoscopist), made up the three experience groups. In phase 2, eight novice GI fellows were involved in the two-group, randomized portion of the study examining the transfer of simulation skills to the clinical setting. During the initial validation phase, each of the 21 subjects completed two standardized EDG scenarios on a computer simulator and their performance scores were recorded for seven parameters. Following this, staff participants completed a questionnaire evaluating various aspects of the simulator's fidelity. Finally, four novice GI fellows were randomly assigned to receive 6 h of simulator-augmented training (SAT group) in EGD prior to beginning 1 month of patient-based EGD training. The remaining fellows experienced 1 month of patient-based training alone (PBT group). Results of the seven measured performance parameters were compared between three groups of varying experience using a Wilcoxon ranked sum test. The staffs' simulator fidelity survey used a 7-point Likert scale (1, very unrealistic; 4, neutral; 7, very realistic) for each of the parameters examined. During the second phase of this study, supervising staff rated both SAT and PBT fellows' patient-based performance daily. Scoring in each skill was completed using a 7-point Likert scale (1, strongly disagree; 4, neutral; 7, strongly agree). Median scores were compared between groups using the Wilcoxon ranked sum test. Staff evaluations of fidelity found that only two of the parameters examined (anatomy and scope maneuverability) had a significant degree of realism. The remaining areas were felt to be limited in their fidelity. Of the computer-recorded performance scores, only the novice group could be reliably identified from the other two experience groups. In the clinical application phase, the median Patient Discomfort ratings were superior in the PBT group (6; interquartile range [IQR], 5-6) as compared to the SAT group (5; IQR, 4-6; P = 0.015). PBT fellows' ratings were also superior in Sedation, Patient Discomfort, Independence and Competence during various phases of the evaluation. At no point were SAT fellows rated higher than the PBT group in any of the parameters examined. This EGD simulator has limitations to the degree of fidelity and can differentiate only novice endoscopists from other levels of experience. Finally, skills learned during EGD simulation training do not appear to translate well into patient-based endoscopy skills. These findings suggest against a key element of validity for the use of this computer simulator in novice EGD training.

  10. Simulation and visualization of energy-related occupant behavior in office buildings

    DOE PAGES

    Chen, Yixing; Liang, Xin; Hong, Tianzhen; ...

    2017-03-15

    In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less

  11. Simulation and visualization of energy-related occupant behavior in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Liang, Xin; Hong, Tianzhen

    In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less

  12. Revised Planning Methodology For Signalized Intersections And Operational Analysis Of Exclusive Left-Turn Lanes, Part-II: Models And Procedures (Final Report)

    DOT National Transportation Integrated Search

    1996-04-01

    THIS REPORT ALSO DESCRIBES THE PROCEDURES FOR DIRECT ESTIMATION OF INTERSECTION CAPACITY WITH SIMULATION, INCLUDING A SET OF RIGOROUS STATISTICAL TESTS FOR SIMULATION PARAMETER CALIBRATION FROM FIELD DATA.

  13. LDRD Final Review: Radiation Transport Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goorley, John Timothy; Morgan, George Lake; Lestone, John Paul

    2017-06-22

    Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.

  14. Landing-Time-Controlled Management Of Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Tobias, Leonard

    1988-01-01

    Conceptual system controls aircraft with old and new guidance equipment. Report begins with overview of concept, then reviews controller-interactive simulations. Describes fuel-conservative-trajectory algorithm, based on equations of motion for controlling landing time. Finally, presents results of piloted simulations.

  15. Simulation analysis of route diversion strategies for freeway incident management : final report.

    DOT National Transportation Integrated Search

    1995-02-01

    The purpose of this project was to investigate whether simulation models could : be used as decision aids for defining traffic diversion strategies for effective : incident management. A methodology was developed for using such a model to : determine...

  16. System-Level Reuse of Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Hazen, Michael R.; Williams, Joseph C.

    2004-01-01

    One of the best ways to enhance space systems simulation fidelity is to leverage off of (reuse) existing high-fidelity simulations. But what happens when the model you would like to reuse is in a different coding language or other barriers arise that make one want to just start over with a clean sheet of paper? Three diverse system-level simulation reuse case studies are described based on experience to date in the development of NASA's Space Station Training Facility (SSTF) at the Johnson Space Center in Houston, Texas. Case studies include (a) the Boeing/Rocketdyne-provided Electrical Power Simulation (EPSIM), (b) the NASA Automation and Robotics Division-provided TRICK robotics systems model, and (c) the Russian Space Agency- provided Russian Segment Trainer. In each case, there was an initial tendency to dismiss simulation reuse candidates based on an apparent lack of suitability. A more careful examination based on a more structured assessment of architectural and requirements-oriented representations of the reuse candidates revealed significant reuse potential. Specific steps used to conduct the detailed assessments are discussed. The steps include the following: 1) Identifying reuse candidates; 2) Requirements compatibility assessment; 3) Maturity assessment; 4) Life-cycle cost determination; and 5) Risk assessment. Observations and conclusions are presented related to the real cost of system-level simulation component reuse. Finally, lessons learned that relate to maximizing the benefits of space systems simulation reuse are shared. These concepts should be directly applicable for use in the development of space systems simulations in the future.

  17. Modeling of light-induced degradation due to Cu precipitation in p-type silicon. II. Comparison of simulations and experiments

    NASA Astrophysics Data System (ADS)

    Vahlman, H.; Haarahiltunen, A.; Kwapil, W.; Schön, J.; Inglese, A.; Savin, H.

    2017-05-01

    The presence of copper impurities is known to deteriorate the bulk minority carrier lifetime of silicon. In p-type silicon, the degradation occurs only under carrier injection (e.g., illumination), but the reason for this phenomenon called copper-related light-induced degradation (Cu-LID) has long remained uncertain. To clarify the physics of this problem, a mathematical model of Cu-LID was introduced in Paper I of this article. Within the model, kinetic precipitation simulations are interlinked with a Schottky junction model for electric behavior of metallic precipitates. As this approach enables simulating precipitation directly at the minority carrier lifetime level, the model is verified in this second part with a direct comparison to the corresponding degradation experiments and literature data. Convincing agreement is found with different doping and Cu concentrations as well as at increased temperature, and in the dark, both simulated degradation and measured degradation are very slow. In addition, modeled final lifetimes after illumination are very close to experimental final lifetimes, and a correlation with the final precipitate size is found. However, the model underestimates experimentally observed differences in the degradation rate at different illumination intensities. Nevertheless, the results of this work support the theory of Cu-LID as a precipitate formation process. Part of the results also imply that heterogeneous nucleation sites play a role during precipitate nucleation. The model reveals fundamental aspects of the physics of Cu-LID including how doping and heterogeneous nucleation site concentrations can considerably influence the final recombination activity.

  18. AGREEMENT AND COVERAGE OF INDICATORS OF RESPONSE TO INTERVENTION: A MULTI-METHOD COMPARISON AND SIMULATION

    PubMed Central

    Fletcher, Jack M.; Stuebing, Karla K.; Barth, Amy E.; Miciak, Jeremy; Francis, David J.; Denton, Carolyn A.

    2013-01-01

    Purpose Agreement across methods for identifying students as inadequate responders or as learning disabled is often poor. We report (1) an empirical examination of final status (post-intervention benchmarks) and dual-discrepancy growth methods based on growth during the intervention and final status for assessing response to intervention; and (2) a statistical simulation of psychometric issues that may explain low agreement. Methods After a Tier 2 intervention, final status benchmark criteria were used to identify 104 inadequate and 85 adequate responders to intervention, with comparisons of agreement and coverage for these methods and a dual-discrepancy method. Factors affecting agreement were investigated using computer simulation to manipulate reliability, the intercorrelation between measures, cut points, normative samples, and sample size. Results Identification of inadequate responders based on individual measures showed that single measures tended not to identify many members of the pool of 104 inadequate responders. Poor to fair levels of agreement for identifying inadequate responders were apparent between pairs of measures In the simulation, comparisons across two simulated measures generated indices of agreement (kappa) that were generally low because of multiple psychometric issues inherent in any test. Conclusions Expecting excellent agreement between two correlated tests with even small amounts of unreliability may not be realistic. Assessing outcomes based on multiple measures, such as level of CBM performance and short norm-referenced assessments of fluency may improve the reliability of diagnostic decisions. PMID:25364090

  19. Effective interactions between soft-repulsive colloids: experiments, theory, and simulations.

    PubMed

    Mohanty, Priti S; Paloli, Divya; Crassous, Jérôme J; Zaccarelli, Emanuela; Schurtenberger, Peter

    2014-03-07

    We describe a combined experimental, theoretical, and simulation study of the structural correlations between cross-linked highly monodisperse and swollen Poly(N-isopropylacrylamide) microgel dispersions in the fluid phase in order to obtain the effective pair-interaction potential between the microgels. The density-dependent experimental pair distribution functions g(r)'s are deduced from real space studies using fluorescent confocal microscopy and compared with integral equation theory and molecular dynamics computer simulations. We use a model of Hertzian spheres that is capable to well reproduce the experimental pair distribution functions throughout the fluid phase, having fixed the particle size and the repulsive strength. Theoretically, a monodisperse system is considered whose properties are calculated within the Rogers-Young closure relation, while in the simulations the role of polydispersity is taken into account. We also discuss the various effects arising from the finite resolution of the microscope and from the noise coming from the fast Brownian motion of the particles at low densities, and compare the information content from data taken in 2D and 3D through a comparison with the corresponding simulations. Finally different potential shapes, recently adopted in studies of microgels, are also taken into account to assess which ones could also be used to describe the structure of the microgel fluid.

  20. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    NASA Astrophysics Data System (ADS)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2017-11-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  1. Motion Systems Role in Flight Simulators for Flying Training. Final Report for Period June 1977-June 1978.

    ERIC Educational Resources Information Center

    Cyrus, Michael L.

    This report reviews the literature as it relates to the use of platform motion systems in flight simulators for flying training. Motion is discussed in terms of its effect on compensatory, pursuit, and precognitive tasks, within both the simulator and transfer contexts. Although both skilled and unskilled behaviors are addressed, the former are…

  2. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  3. Mathematical Modeling of Early Cellular Innate and Adaptive Immune Responses to Ischemia/Reperfusion Injury and Solid Organ Allotransplantation

    PubMed Central

    Day, Judy D.; Metes, Diana M.; Vodovotz, Yoram

    2015-01-01

    A mathematical model of the early inflammatory response in transplantation is formulated with ordinary differential equations. We first consider the inflammatory events associated only with the initial surgical procedure and the subsequent ischemia/reperfusion (I/R) events that cause tissue damage to the host as well as the donor graft. These events release damage-associated molecular pattern molecules (DAMPs), thereby initiating an acute inflammatory response. In simulations of this model, resolution of inflammation depends on the severity of the tissue damage caused by these events and the patient’s (co)-morbidities. We augment a portion of a previously published mathematical model of acute inflammation with the inflammatory effects of T cells in the absence of antigenic allograft mismatch (but with DAMP release proportional to the degree of graft damage prior to transplant). Finally, we include the antigenic mismatch of the graft, which leads to the stimulation of potent memory T cell responses, leading to further DAMP release from the graft and concomitant increase in allograft damage. Regulatory mechanisms are also included at the final stage. Our simulations suggest that surgical injury and I/R-induced graft damage can be well-tolerated by the recipient when each is present alone, but that their combination (along with antigenic mismatch) may lead to acute rejection, as seen clinically in a subset of patients. An emergent phenomenon from our simulations is that low-level DAMP release can tolerize the recipient to a mismatched allograft, whereas different restimulation regimens resulted in an exaggerated rejection response, in agreement with published studies. We suggest that mechanistic mathematical models might serve as an adjunct for patient- or sub-group-specific predictions, simulated clinical studies, and rational design of immunosuppression. PMID:26441988

  4. Final Report: Computer Simulation of Osmosis and Reverse Osmosis in Structured Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohail Murad

    2012-01-03

    Molecular simulation methods were developed as part of this project to increase our fundamental understanding of membrane based separation systems. Our simulations clarified for example that steric (size) effects had a significant impact on the desalination membranes. Previously it was thought the separation was entirely driven by coulombic force (attractive/repulsive forces at the membrane surfaces). Steric effects played an important role, because salt ions in brackish water are never present alone, but are strongly hydrated which effectively increases their size, and makes it impossible to enter a membrane, while the smaller water molecules can enter more readily. Membrane surface effectsmore » did play a role in increasing the flux of water, but not in the separation itself. In addition we also developed simulation methods to study ion exchange, gas separations, and pervaporation. The methods developed were used to once again increase our fundamental understanding of these separation processes. For example our studies showed that when the separation factor of gases in membranes can be significantly affected by the presence of another gas, it is generally because the separation mechanism has changed. For example in the case of nitrogen and carbon dioxide, in their pure state the separation factor is determined by diffusion, while in mixtures it is influenced more by adsorption in the membrane (zeolite in our case) Finally we developed a new technique using the NMR chemical shift to determine intermolecular interactions for mixtures. For polar-nonpolar systems such as Xe dissolved in water we were able to significantly improve the accuracy of gas solubilities, which are very sensitive to the cross interaction between water and Xe.« less

  5. Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy

    PubMed Central

    Snow, Christopher D.; Qiu, Linlin; Du, Deguo; Gai, Feng; Hagen, Stephen J.; Pande, Vijay S.

    2004-01-01

    We studied the microsecond folding dynamics of three β hairpins (Trp zippers 1–3, TZ1–TZ3) by using temperature-jump fluorescence and atomistic molecular dynamics in implicit solvent. In addition, we studied TZ2 by using time-resolved IR spectroscopy. By using distributed computing, we obtained an aggregate simulation time of 22 ms. The simulations included 150, 212, and 48 folding events at room temperature for TZ1, TZ2, and TZ3, respectively. The all-atom optimized potentials for liquid simulations (OPLSaa) potential set predicted TZ1 and TZ2 properties well; the estimated folding rates agreed with the experimentally determined folding rates and native conformations were the global potential-energy minimum. The simulations also predicted reasonable unfolding activation enthalpies. This work, directly comparing large simulated folding ensembles with multiple spectroscopic probes, revealed both the surprising predictive ability of current models as well as their shortcomings. Specifically, for TZ1–TZ3, OPLS for united atom models had a nonnative free-energy minimum, and the folding rate for OPLSaa TZ3 was sensitive to the initial conformation. Finally, we characterized the transition state; all TZs fold by means of similar, native-like transition-state conformations. PMID:15020773

  6. Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy

    NASA Astrophysics Data System (ADS)

    Snow, Christopher D.; Qiu, Linlin; Du, Deguo; Gai, Feng; Hagen, Stephen J.; Pande, Vijay S.

    2004-03-01

    We studied the microsecond folding dynamics of three hairpins (Trp zippers 1-3, TZ1-TZ3) by using temperature-jump fluorescence and atomistic molecular dynamics in implicit solvent. In addition, we studied TZ2 by using time-resolved IR spectroscopy. By using distributed computing, we obtained an aggregate simulation time of 22 ms. The simulations included 150, 212, and 48 folding events at room temperature for TZ1, TZ2, and TZ3, respectively. The all-atom optimized potentials for liquid simulations (OPLSaa) potential set predicted TZ1 and TZ2 properties well; the estimated folding rates agreed with the experimentally determined folding rates and native conformations were the global potential-energy minimum. The simulations also predicted reasonable unfolding activation enthalpies. This work, directly comparing large simulated folding ensembles with multiple spectroscopic probes, revealed both the surprising predictive ability of current models as well as their shortcomings. Specifically, for TZ1-TZ3, OPLS for united atom models had a nonnative free-energy minimum, and the folding rate for OPLSaa TZ3 was sensitive to the initial conformation. Finally, we characterized the transition state; all TZs fold by means of similar, native-like transition-state conformations.

  7. Three Dimensional Forming Simulation of the Shielded Slot Plate for the MCFC Using a Ductile Fracture Criterion

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Yang, D. Y.; Lee, S. R.; Chang, I. G.; Lee, T. W.

    2011-08-01

    The shielded slot plate, which has a sheared corrugated trapezoidal pattern, is a component of the metallic bipolar plate for the molten carbonate fuel cell (MCFC). In order to increase the efficiency of the fuel cell, the unit cell of the shielded slot plate should have a relatively large upper area. Additionally, defects from the forming process should be minimized. In order to simulate the slitting process, whereby sheared corrugated patterns are formed, ductile fracture criteria based on the histories of stress and strain are employed. The user material subroutine VUMAT is employed for implementation of the material and ductile fracture criteria in the commercial FEM software ABAQUS. The variables of the ductile fracture criteria were determined by comparing the simulation results and the experimental results of the tension test and the shearing test. Parametric studies were conducted to determine the critical value of the ductile fracture criterion. Employing these ductile fracture criteria, the three dimensional forming process of the shielded slot plate was numerically simulated. The effects of the slitting process in the forming process of the shielded slot plate were analyzed through a FEM simulation and experimental studies. Finally, experiments involving microscopic and macroscopic observations were conducted to verify the numerical simulations of the 3-step forming process.

  8. The impact of simulation sequencing on perceived clinical decision making.

    PubMed

    Woda, Aimee; Hansen, Jamie; Paquette, Mary; Topp, Robert

    2017-09-01

    An emerging nursing education trend is to utilize simulated learning experiences as a means to optimize competency and decision making skills. The purpose of this study was to examine differences in students' perception of clinical decision making and clinical decision making-related self-confidence and anxiety based on the sequence (order) in which they participated in a block of simulated versus hospital-based learning experiences. A quasi-experimental crossover design was used. Between and within group differences were found relative to self-confidence with the decision making process. When comparing groups, at baseline the simulation followed by hospital group had significantly higher self-confidence scores, however, at 14-weeks both groups were not significantly different. Significant within group differences were found in the simulation followed by hospital group only, demonstrating a significant decrease in clinical decision making related anxiety across the semester. Finally, there were no significant difference in; perceived clinical decision making within or between the groups at the two measurement points. Preliminary findings suggest that simulated learning experiences can be offered with alternating sequences without impacting the process, anxiety or confidence with clinical decision making. This study provides beginning evidence to guide curriculum development and allow flexibility based on student needs and available resources. Copyright © 2017. Published by Elsevier Ltd.

  9. Safety and reliability analysis in a polyvinyl chloride batch process using dynamic simulator-case study: Loss of containment incident.

    PubMed

    Rizal, Datu; Tani, Shinichi; Nishiyama, Kimitoshi; Suzuki, Kazuhiko

    2006-10-11

    In this paper, a novel methodology in batch plant safety and reliability analysis is proposed using a dynamic simulator. A batch process involving several safety objects (e.g. sensors, controller, valves, etc.) is activated during the operational stage. The performance of the safety objects is evaluated by the dynamic simulation and a fault propagation model is generated. By using the fault propagation model, an improved fault tree analysis (FTA) method using switching signal mode (SSM) is developed for estimating the probability of failures. The timely dependent failures can be considered as unavailability of safety objects that can cause the accidents in a plant. Finally, the rank of safety object is formulated as performance index (PI) and can be estimated using the importance measures. PI shows the prioritization of safety objects that should be investigated for safety improvement program in the plants. The output of this method can be used for optimal policy in safety object improvement and maintenance. The dynamic simulator was constructed using Visual Modeler (VM, the plant simulator, developed by Omega Simulation Corp., Japan). A case study is focused on the loss of containment (LOC) incident at polyvinyl chloride (PVC) batch process which is consumed the hazardous material, vinyl chloride monomer (VCM).

  10. VR-simulation cataract surgery in non-experienced trainees: evolution of surgical skill

    NASA Astrophysics Data System (ADS)

    Söderberg, Per; Erngrund, Markus; Skarman, Eva; Nordh, Leif; Laurell, Carl-Gustaf

    2011-03-01

    Conclusion: The current data imply that the performance index as defined herein is a valid measure of the performance of a trainee using the virtual reality phacoemulsification simulator. Further, the performance index increase linearly with measurement cycles for less than five measurement cycles. To fully use the learning potential of the simulator more than four measurement cycles are required. Materials and methods: Altogether, 10 trainees were introduced to the simulator by an instructor and then performed a training program including four measurement cycles with three iterated measurements of the simulation at the end of each cycle. The simulation characteristics was standardized and defined in 14 parameters. The simulation was measured separately for the sculpting phase in 21 variables, and for the evacuation phase in 22 variables. A performance index based on all measured variables was estimated for the sculpting phase and the evacuation phase, respectively, for each measurement and the three measurements for each cycle were averaged. Finally, the performance as a function of measurement cycle was estimated for each trainee with regression, assuming a straight line. The estimated intercept and inclination coefficients, respectively, were finally averaged for all trainees. Results: The performance increased linearly with the number of measurement cycles both for the sculpting and for the evacuation phase.

  11. Design and evaluation of an air traffic control Final Approach Spacing Tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.; Nedell, William

    1991-01-01

    This paper describes the design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arriving aircraft as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a four-dimensional trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST has been implemented on a high-performance workstation. It can be operated as a stand-alone in the terminal radar approach control facility or as an element of a system integrated with automation tools in the air route traffic control center. FAST was evaluated by experienced air traffic controllers in a real-time air traffic control simulation. simulation results summarized in the paper show that the automation tools significantly reduced controller work load and demonstrated a potential for an increase in landing rate.

  12. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  13. Computer aided design of Langasite resonant cantilevers: analytical models and simulations

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.; Leblois, T. G.; Durand, S.

    2010-05-01

    Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.

  14. Simulations of Cold Electroweak Baryogenesis: quench from portal coupling to new singlet field

    NASA Astrophysics Data System (ADS)

    Mou, Zong-Gang; Saffin, Paul M.; Tranberg, Anders

    2018-01-01

    We compute the baryon asymmetry generated from Cold Electroweak Baryogenesis, when a dynamical Beyond-the-Standard-Model scalar singlet field triggers the spinodal transition. Using a simple potential for this additional field, we match the speed of the quench to earlier simulations with a "by-hand" mass flip. We find that for the parameter subspace most similar to a by-hand transition, the final baryon asymmetry shows a similar dependence on quench time and is of the same magnitude. For more general parameter choices the Higgs-singlet dynamics can be very complicated, resulting in an enhancement of the final baryon asymmetry. Our results validate and generalise results of simulations in the literature and open up the Cold Electroweak Baryogenesis scenario to further model building.

  15. Numerical simulation and experimentation of adjusting the curvatures of micro-cantilevers using the water-confined laser-generated plasma

    NASA Astrophysics Data System (ADS)

    Gu, Chunxing; Shen, Zongbao; Liu, Huixia; Li, Pin; Lu, Mengmeng; Zhao, Yinxin; Wang, Xiao

    2013-04-01

    This paper describes a precise and non-contact adjustment technique using the water-confined laser-generated plasma to adjust the curvature of micro-components (micro-mechanical cantilevers). A series of laser shock micro-adjustment experiments were conducted on 0.4 mm-thick Al samples using pulsed Nd:YAG lasers operating at 1064 nm wavelengths to verify the technical feasibility. Systematic study was carried out in the term of effects of various factors on the adjusting results, including laser energies, laser focus positions, laser shock times and confined regime configuration. The research results have shown that the different bending angles and bending directions can be obtained by changing the laser processing parameters. And, for the adjustment process, the absence of confined regime configuration could also generate suitable bending deformation. But, in the case of larger energy, the final surfaces would have the sign of ablation, hence resulting in poor surface quality. An analysis procedure including dynamic analysis performed by ANSYS/LS-DYNA and static analysis performed by ANSYS is presented in detail to attain the simulation of laser shock micro-adjustment to predict the final bending deformation. The predicted bending profiles is well correlated with the available experimental data, showing the finite element analysis can predict the final curvatures of the micro-cantilevers properly.

  16. Helical vortices generated by flapping wings of bumblebees

    NASA Astrophysics Data System (ADS)

    Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Farge, Marie; Lehmann, Fritz-Olaf; Sesterhenn, Jörn

    2018-02-01

    High resolution direct numerical simulations of rotating and flapping bumblebee wings are presented and their aerodynamics is studied focusing on the role of leading edge vortices and the associated helicity production. We first study the flow generated by only one rotating bumblebee wing in circular motion with 45◦ angle of attack. We then consider a model bumblebee flying in a numerical wind tunnel, which is tethered and has rigid wings flapping with a prescribed generic motion. The inflow condition of the wind varies from laminar to strongly turbulent regimes. Massively parallel simulations show that inflow turbulence does not significantly alter the wings’ leading edge vortex, which enhances lift production. Finally, we focus on studying the helicity of the generated vortices and analyze their contribution at different scales using orthogonal wavelets.

  17. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression.

    PubMed

    Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella

    2008-05-14

    We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, R.D.

    This report discusses the progress achieved during the first year of a two year project entitled ''Well Test Performance and Analysis of Gas Wells Completed in Non-Continuous Lenticular Formations.'' The development of a general three dimensional dry gas reservoir simulator for non-continuous lenticular formations is presented. The simulator was used to perform well performance studies of real and hypothetical low permeability, lenticular, gas bearing formations indigeneous to the Rocky Mountain province of the United States. In addition a mathematical model is presented for simulating transient multiphase flow in a wellbore with phase re-distributions. Finally, an experimental research plan is outlinedmore » for measuring the non-Darcy flow coefficient in porous media and artifically fractured porous media. Conclusion are drawn and recommendations made concerning the continued pursuit of these research endeavors. 28 refs., 16 figs.« less

  19. Flight management research utilizing an oculometer. [pilot scanning behavior during simulated approach and landing

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.; Kurbjun, M. C.

    1978-01-01

    This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.

  20. Investigation on the Nonlinear Control System of High-Pressure Common Rail (HPCR) System in a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Cai, Le; Mao, Xiaobing; Ma, Zhexuan

    2018-02-01

    This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  1. Perceptual effects in auralization of virtual rooms

    NASA Astrophysics Data System (ADS)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  2. Grid-to-rod flow-induced impact study for PWR fuel in reactor

    DOE PAGES

    Jiang, Hao; Qu, Jun; Lu, Roger Y.; ...

    2016-06-10

    The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less

  3. Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.

    1998-01-01

    The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.

  4. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  5. Forecasting European cold waves based on subsampling strategies of CMIP5 and Euro-CORDEX ensembles

    NASA Astrophysics Data System (ADS)

    Cordero-Llana, Laura; Braconnot, Pascale; Vautard, Robert; Vrac, Mathieu; Jezequel, Aglae

    2016-04-01

    Forecasting future extreme events under the present changing climate represents a difficult task. Currently there are a large number of ensembles of simulations for climate projections that take in account different models and scenarios. However, there is a need for reducing the size of the ensemble to make the interpretation of these simulations more manageable for impact studies or climate risk assessment. This can be achieved by developing subsampling strategies to identify a limited number of simulations that best represent the ensemble. In this study, cold waves are chosen to test different approaches for subsampling available simulations. The definition of cold waves depends on the criteria used, but they are generally defined using a minimum temperature threshold, the duration of the cold spell as well as their geographical extend. These climate indicators are not universal, highlighting the difficulty of directly comparing different studies. As part of the of the CLIPC European project, we use daily surface temperature data obtained from CMIP5 outputs as well as Euro-CORDEX simulations to predict future cold waves events in Europe. From these simulations a clustering method is applied to minimise the number of ensembles required. Furthermore, we analyse the different uncertainties that arise from the different model characteristics and definitions of climate indicators. Finally, we will test if the same subsampling strategy can be used for different climate indicators. This will facilitate the use of the subsampling results for a wide number of impact assessment studies.

  6. The formation of disc galaxies in high-resolution moving-mesh cosmological simulations

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker

    2014-01-01

    We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar mass to halo mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.

  7. Exploring a New Simulation Approach to Improve Clinical Reasoning Teaching and Assessment: Randomized Trial Protocol

    PubMed Central

    Moussa, Ahmed; Loye, Nathalie; Charlin, Bernard; Audétat, Marie-Claude

    2016-01-01

    Background Helping trainees develop appropriate clinical reasoning abilities is a challenging goal in an environment where clinical situations are marked by high levels of complexity and unpredictability. The benefit of simulation-based education to assess clinical reasoning skills has rarely been reported. More specifically, it is unclear if clinical reasoning is better acquired if the instructor's input occurs entirely after or is integrated during the scenario. Based on educational principles of the dual-process theory of clinical reasoning, a new simulation approach called simulation with iterative discussions (SID) is introduced. The instructor interrupts the flow of the scenario at three key moments of the reasoning process (data gathering, integration, and confirmation). After each stop, the scenario is continued where it was interrupted. Finally, a brief general debriefing ends the session. System-1 process of clinical reasoning is assessed by verbalization during management of the case, and System-2 during the iterative discussions without providing feedback. Objective The aim of this study is to evaluate the effectiveness of Simulation with Iterative Discussions versus the classical approach of simulation in developing reasoning skills of General Pediatrics and Neonatal-Perinatal Medicine residents. Methods This will be a prospective exploratory, randomized study conducted at Sainte-Justine hospital in Montreal, Qc, between January and March 2016. All post-graduate year (PGY) 1 to 6 residents will be invited to complete one SID or classical simulation 30 minutes audio video-recorded complex high-fidelity simulations covering a similar neonatology topic. Pre- and post-simulation questionnaires will be completed and a semistructured interview will be conducted after each simulation. Data analyses will use SPSS and NVivo softwares. Results This study is in its preliminary stages and the results are expected to be made available by April, 2016. Conclusions This will be the first study to explore a new simulation approach designed to enhance clinical reasoning. By assessing more closely reasoning processes throughout a simulation session, we believe that Simulation with Iterative Discussions will be an interesting and more effective approach for students. The findings of the study will benefit medical educators, education programs, and medical students. PMID:26888076

  8. Exploring a New Simulation Approach to Improve Clinical Reasoning Teaching and Assessment: Randomized Trial Protocol.

    PubMed

    Pennaforte, Thomas; Moussa, Ahmed; Loye, Nathalie; Charlin, Bernard; Audétat, Marie-Claude

    2016-02-17

    Helping trainees develop appropriate clinical reasoning abilities is a challenging goal in an environment where clinical situations are marked by high levels of complexity and unpredictability. The benefit of simulation-based education to assess clinical reasoning skills has rarely been reported. More specifically, it is unclear if clinical reasoning is better acquired if the instructor's input occurs entirely after or is integrated during the scenario. Based on educational principles of the dual-process theory of clinical reasoning, a new simulation approach called simulation with iterative discussions (SID) is introduced. The instructor interrupts the flow of the scenario at three key moments of the reasoning process (data gathering, integration, and confirmation). After each stop, the scenario is continued where it was interrupted. Finally, a brief general debriefing ends the session. System-1 process of clinical reasoning is assessed by verbalization during management of the case, and System-2 during the iterative discussions without providing feedback. The aim of this study is to evaluate the effectiveness of Simulation with Iterative Discussions versus the classical approach of simulation in developing reasoning skills of General Pediatrics and Neonatal-Perinatal Medicine residents. This will be a prospective exploratory, randomized study conducted at Sainte-Justine hospital in Montreal, Qc, between January and March 2016. All post-graduate year (PGY) 1 to 6 residents will be invited to complete one SID or classical simulation 30 minutes audio video-recorded complex high-fidelity simulations covering a similar neonatology topic. Pre- and post-simulation questionnaires will be completed and a semistructured interview will be conducted after each simulation. Data analyses will use SPSS and NVivo softwares. This study is in its preliminary stages and the results are expected to be made available by April, 2016. This will be the first study to explore a new simulation approach designed to enhance clinical reasoning. By assessing more closely reasoning processes throughout a simulation session, we believe that Simulation with Iterative Discussions will be an interesting and more effective approach for students. The findings of the study will benefit medical educators, education programs, and medical students.

  9. Traffic accident simulation : final report.

    DOT National Transportation Integrated Search

    1992-06-01

    The purpose of this research was to determine if HVOSM (Highway Vehicle Object Simulation Model) could be used to model a vehicle with a modern front (or rear) suspension system such as a McPherson strut and have the results of the dynamic model be v...

  10. Team Cohesion, Player Attitude, and Performance Expectations in Simulation.

    ERIC Educational Resources Information Center

    Wellington, William J.; Faria, A. J.

    1996-01-01

    Examines the relationship of team cohesion, participant attitude, and performance expectations to actual performance results in a simulation competition. Findings indicate a strong relationship between beginning team cohesion and performance expectations and final game performance, but little relationship between beginning participant attitudes…

  11. Numerical simulation of metallic wire arc additive manufacturing (WAAM)

    NASA Astrophysics Data System (ADS)

    Graf, M.; Pradjadhiana, K. P.; Hälsig, A.; Manurung, Y. H. P.; Awiszus, B.

    2018-05-01

    Additive-manufacturing technologies have been gaining tremendously in popularity for some years in the production of single-part series with complex, close-to-final-contour geometries and the processing of special or hybrid materials. In principle, the processes can be subdivided into wire-based and powder-based processes in accordance with the Association of German Engineers (VDI) Guideline 3405. A further subdivision is made with respect to the smelting technology. In all of the processes, the base material is applied in layers at the points where it is needed in accordance with the final contour. The process that was investigated was wire-based, multi-pass welding by means of gas-metal arc welding. This was accomplished in the present study by determining the material parameters (thermo-mechanical and thermo-physical characteristics) of the welding filler G3Si1 (material number: 1.5125) that were necessary for the numerical simulation and implementing them in a commercial FE program (MSC Marc Mentat). The focus of this paper was on simulation and validation with respect to geometry and microstructural development in the welding passes. The resulting minimal deviation between reality and simulation was a result of the measurement inertia of the thermocouples. In general, however, the FE model can be used to make a very good predetermination of the cooling behaviour, which affects the microstructural development and thus the mechanical properties of the joining zone, as well as the geometric design of the component (distortion, etc.).

  12. Hierarchical Simulation to Assess Hardware and Software Dependability

    NASA Technical Reports Server (NTRS)

    Ries, Gregory Lawrence

    1997-01-01

    This thesis presents a method for conducting hierarchical simulations to assess system hardware and software dependability. The method is intended to model embedded microprocessor systems. A key contribution of the thesis is the idea of using fault dictionaries to propagate fault effects upward from the level of abstraction where a fault model is assumed to the system level where the ultimate impact of the fault is observed. A second important contribution is the analysis of the software behavior under faults as well as the hardware behavior. The simulation method is demonstrated and validated in four case studies analyzing Myrinet, a commercial, high-speed networking system. One key result from the case studies shows that the simulation method predicts the same fault impact 87.5% of the time as is obtained by similar fault injections into a real Myrinet system. Reasons for the remaining discrepancy are examined in the thesis. A second key result shows the reduction in the number of simulations needed due to the fault dictionary method. In one case study, 500 faults were injected at the chip level, but only 255 propagated to the system level. Of these 255 faults, 110 shared identical fault dictionary entries at the system level and so did not need to be resimulated. The necessary number of system-level simulations was therefore reduced from 500 to 145. Finally, the case studies show how the simulation method can be used to improve the dependability of the target system. The simulation analysis was used to add recovery to the target software for the most common fault propagation mechanisms that would cause the software to hang. After the modification, the number of hangs was reduced by 60% for fault injections into the real system.

  13. Abstractive dissociation of oxygen over Al(111): a nonadiabatic quantum model.

    PubMed

    Katz, Gil; Kosloff, Ronnie; Zeiri, Yehuda

    2004-02-22

    The dissociation of oxygen on a clean aluminum surface is studied theoretically. A nonadiabatic quantum dynamical model is used, based on four electronically distinct potential energy surfaces characterized by the extent of charge transfer from the metal to the adsorbate. A flat surface approximation is used to reduce the computation complexity. The conservation of the helicopter angular momentum allows Boltzmann averaging of the outcome of the propagation of a three degrees of freedom wave function. The dissociation event is simulated by solving the time-dependent Schrödinger equation for a period of 30 femtoseconds. As a function of incident kinetic energy, the dissociation yield follows the experimental trend. An attempt at simulation employing only the lowest adiabatic surface failed, qualitatively disagreeing with both experiment and nonadiabatic calculations. The final products, adsorptive dissociation and abstractive dissociation, are obtained by carrying out a semiclassical molecular dynamics simulation with surface hopping which describes the back charge transfer from an oxygen atom negative ion to the surface. The final adsorbed oxygen pair distribution compares well with experiment. By running the dynamical events backward in time, a correlation is established between the products and the initial conditions which lead to their production. Qualitative agreement is thus obtained with recent experiments that show suppression of abstraction by rotational excitation. (c) 2004 American Institute of Physics.

  14. Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun

    2016-07-01

    The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.

  15. Biomedical Simulation: Evolution, Concepts, Challenges and Future Trends.

    PubMed

    Sá-Couto, Carla; Patrão, Luís; Maio-Matos, Francisco; Pêgo, José Miguel

    2016-12-30

    Biomedical simulation is an effective educational complement for healthcare training, both at undergraduate and postgraduate level. It enables knowledge, skills and attitudes to be acquired in a safe, educationally orientated and efficient manner. In this context, simulation provides skills and experience that facilitate the transfer of cognitive, psychomotor and proper communication competences, thus changing behavior and attitudes, and ultimately improving patient safety. Beyond the impact on individual and team performance, simulation provides an opportunity to study organizational failures and improve system performance. Over the last decades, simulation in healthcare had a slow but steady growth, with a visible maturation in the last ten years. The simulation community must continue to provide the core leadership in developing standards. There is a need for strategies and policy development to ensure its coordinated and cost-effective implementation, applied to patient safety. This paper reviews the evolutionary movements of biomedical simulation, including a review of the Portuguese initiatives and nationwide programs. For leveling knowledge and standardize terminology, basic but essential concepts in clinical simulation, together with some considerations on assessment, validation and reliability are presented. The final sections discuss the current challenges and future initiatives and strategies, crucial for the integration of simulation programs in the greater movement toward patient safety.

  16. Neurolinguistically constrained simulation of sentence comprehension: integrating artificial intelligence and brain theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gigley, H.M.

    1982-01-01

    An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less

  17. AMR Studies of Star Formation: Simulations and Simulated Observations

    NASA Astrophysics Data System (ADS)

    Offner, Stella; McKee, C. F.; Klein, R. I.

    2009-01-01

    Molecular clouds are typically observed to be approximately virialized with gravitational and turbulent energy in balance, yielding a star formation rate of a few percent. The origin and characteristics of the observed supersonic turbulence are poorly understood, and without continued energy injection the turbulence is predicted to decay within a cloud dynamical time. Recent observations and analytic work have suggested a strong connection between the initial stellar mass function, the core mass function, and turbulence characteristics. The role of magnetic fields in determining core lifetimes, shapes, and kinematic properties remains hotly debated. Simulations are a formidable tool for studying the complex process of star formation and addressing these puzzles. I present my results modeling low-mass star formation using the ORION adaptive mesh refinement (AMR) code. I investigate the properties of forming cores and protostars in simulations in which the turbulence is driven to maintain virial balance and where it is allowed to decay. I will discuss simulated observations of cores in dust emission and in molecular tracers and compare to observations of local star-forming clouds. I will also present results from ORION cluster simulations including flux-limited diffusion radiative transfer and show that radiative feedback, even from low-mass stars, has a significant effect on core fragmentation, disk properties, and the IMF. Finally, I will discuss the new simulation frontier of AMR multigroup radiative transfer.

  18. The optical design and simulation of the collimated solar simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Tao

    2018-01-01

    The solar simulator is a lighting device that can simulate the solar radiation. It has been widely used in the testing of solar cells, satellite space environment simulation and ground experiment, test and calibration precision of solar sensor. The solar simulator mainly consisted of short—arc xenon lamp, ellipsoidal reflectors, a group of optical integrator, field stop, aspheric folding mirror and collimating reflector. In this paper, the solar simulator's optical system basic size are given by calculation. Then the system is optically modeled with the Lighttools software, and the simulation analysis on solar simulator using the Monte Carlo ray -tracing technique is conducted. Finally, the simulation results are given quantitatively by diagrammatic form. The rationality of the design is verified on the basis of theory.

  19. Study of the Transition Flow Regime using Monte Carlo Methods

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1999-01-01

    This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.

  20. Personnel launch system autoland development study

    NASA Technical Reports Server (NTRS)

    Bossi, J. A.; Langehough, M. A.; Tollefson, J. C.

    1991-01-01

    The Personnel Launch System (PLS) Autoland Development Study focused on development of the guidance and control system for the approach and landing (A/L) phase and the terminal area energy management (TAEM) phase. In the A/L phase, a straight-in trajectory profile was developed with an initial high glide slope, a pull-up and flare to lower glide slope, and the final flare touchdown. The TAEM system consisted of using a heading alignment cone spiral profile. The PLS autopilot was developed using integral LQG design techniques. The guidance and control design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrated accurate steering during the TAEM phase and adequate autoland performance in the presence of wind turbulence and wind shear.

  1. A high-accuracy measurement method of glucose concentration in interstitial fluid based on microdialysis

    NASA Astrophysics Data System (ADS)

    Li, Dachao; Xu, Qingmei; Liu, Yu; Wang, Ridong; Xu, Kexin; Yu, Haixia

    2017-11-01

    A high-accuracy microdialysis method that can provide the reference values of glucose concentration in interstitial fluid for the accurate evaluation of non-invasive and minimally invasive continuous glucose monitoring is reported in this study. The parameters of the microdialysis process were firstly optimized by testing and analyzing three main factors that impact microdialysis recovery, including the perfusion rate, temperature, and glucose concentration in the area surrounding the microdialysis probe. The precision of the optimized microdialysis method was then determined in a simulation system that was designed and established in this study to simulate variations in continuous glucose concentration in the human body. Finally, the microdialysis method was tested for in vivo interstitial glucose concentration measurement.

  2. Effect of two imidazolium derivatives of ionic liquids on the structure and activity of adenosine deaminase.

    PubMed

    Ajloo, Davood; Sangian, Masoomeh; Ghadamgahi, Maryam; Evini, Mina; Saboury, Ali Akbar

    2013-04-01

    The effect of two ionic liquids, 1-allyl 3-methyl-imidazolium (IL1) and 1-octhyl 3-methyl-imidozolium chlorides (IL2), on the structure and activity of adenosine deaminase (ADA) were described by UV-vis and fluorescence spectrophotometry in phosphate buffer and results were compared with docking and molecular dynamics (MD) simulation studies. All results showed that inhibition of activity and reduction of enzyme tertiary structure are more for octhyl than allyl derivative due to the more hydrophobic property of it. Finally structure parameters obtained from MD simulation showed that ionic liquid reduces intermolecular hydrogen bond and unfold enzyme structure. Calculation results are in good agreement with spectrophotometric studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. DHM and serious games: a case-study oil and gas laboratories.

    PubMed

    Santos, V; Zamberlan, M; Streit, P; Oliveira, J; Guimarães, C; Pastura, F; Cid, G

    2012-01-01

    The aim in this paper is to present a research on the application of serious games for the design of laboratories in the oil and gas industries. The focus is in human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. The laboratory studies were simulated in Unity3D platform, which allows the users to control the DHM1 on the dynamic virtual scenario, in order to simulate work activities. This methodology can change the design process by improving the level of interaction between final users, managers and human factor teams. That helps to better visualize future work settings and improve the level of participation between all stakeholders.

  4. Carotid artery phantom designment and simulation using field II

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yang, Xin; Ding, Mingyue

    2013-10-01

    Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of mortality and disability. Morphology and structure features of carotid plaques are the keys to identify plaques and monitoring the disease. Manually segmentation on the ultrasonic images to get the best-fitted actual size of the carotid plaques based on physicians personal experience, namely "gold standard", is a important step in the study of plaque size. However, it is difficult to qualitatively measure the segmentation error caused by the operator's subjective factors. In order to reduce the subjective factors, and the uncertainty factors of quantification, the experiments in this paper were carried out. In this study, we firstly designed a carotid artery phantom, and then use three different beam-forming algorithms of medical ultrasound to simulate the phantom. Finally obtained plaques areas were analyzed through manual segmentation on simulation images. We could (1) directly evaluate the different beam-forming algorithms for the ultrasound imaging simulation on the effect of carotid artery; (2) also analyze the sensitivity of detection on different size of plaques; (3) indirectly reflect the accuracy of the manual segmentation base on segmentation results the evaluation.

  5. The Virtual Habitat - A tool for dynamic life support system simulations

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Zhukov, A.; Schnaitmann, J.; Olthoff, C.; Deiml, M.; Plötner, P.; Walter, U.

    2015-06-01

    In this paper we present the Virtual Habitat (V-HAB) model, which simulates on a system level the dynamics of entire mission scenarios for any given life support system (LSS) including a dynamic representation of the crew. We first present the V-HAB architecture. Thereafter we validate in selected case studies the V-HAB submodules. Finally, we demonstrate the overall abilities of V-HAB by first simulating the LSS of the International Space Station (ISS) and showing how close this comes to real data. In a second case study we simulate the LSS dynamics of a Mars mission scenario. We thus show that V-HAB is able to support LSS design processes, giving LSS designers a set of dynamic decision parameters (e.g. stability, robustness, effective crew time) at hand that supplement or even substitute the common Equivalent System Mass (ESM) quantities as a proxy for LSS hardware costs. The work presented here builds on a LSS heritage by the exploration group at the Technical University at Munich (TUM) dating from even before 2006.

  6. Motion-base simulator study of control of an externally blown flap STOL transport aircraft after failure of an outboard engine during landing approach

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Hurt, G. J., Jr.; Bergeron, H. P.; Patton, J. M., Jr.; Deal, P. L.; Champine, R. A.

    1975-01-01

    A moving-base simulator investigation of the problems of recovery and landing of a STOL aircraft after failure of an outboard engine during final approach was made. The approaches were made at 75 knots along a 6 deg glide slope. The engine was failed at low altitude and the option to go around was not allowed. The aircraft was simulated with each of three control systems, and it had four high-bypass-ratio fan-jet engines exhausting against large triple-slotted wing flaps to produce additional lift. A virtual-image out-the-window television display of a simulated STOL airport was operating during part of the investigation. Also, a simple heads-up flight director display superimposed on the airport landing scene was used by the pilots to make some of the recoveries following an engine failure. The results of the study indicated that the variation in visual cues and/or motion cues had little effect on the outcome of a recovery, but they did have some effect on the pilot's response and control patterns.

  7. Static and dynamic behavior of a Si/Si0.8Ge0.2/Si heterojunction bipolar transistor using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Galdin, Sylvie; Dollfus, Philippe; Hesto, Patrice

    1994-03-01

    A theoretical study of a Si/Si1-xGex/Si heterojunction bipolar transistor using Monte Carlo simulations is reported. The geometry and composition of the emitter-base junction are optimized using one-dimensional simulations with a view to improving electron transport in the base. It is proposed to introduce a thin Si-P spacer layer, between the Si-N emitter and the SiGe-P base, which allows launching hot electrons into the base despite the lack of natural conduction-band discontinuity between Si and strain SiGe. The high-frequency behavior of the complete transistor is then studied using 2D modeling. A method of microwave analysis using small signal Monte Carlo simulations that consists of expanding the terminal currents in Fourier series is presented. A cutoff frequency fT of 68 GHz has been extracted. Finally, the occurrence of a parasitic electron barrier at the collector-base junction is responsible for the fT fall-off at high collector current density. This parasitic barrier is lowered through the influence of the collector potential.

  8. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations.

    PubMed

    Lopes, Daniela; Jakobtorweihen, Sven; Nunes, Cláudia; Sarmento, Bruno; Reis, Salette

    2017-01-01

    Lipid membranes work as barriers, which leads to inevitable drug-membrane interactions in vivo. These interactions affect the pharmacokinetic properties of drugs, such as their diffusion, transport, distribution, and accumulation inside the membrane. Furthermore, these interactions also affect their pharmacodynamic properties with respect to both therapeutic and toxic effects. Experimental membrane models have been used to perform in vitro assessment of the effects of drugs on the biophysical properties of membranes by employing different experimental techniques. In in silico studies, molecular dynamics simulations have been used to provide new insights at an atomistic level, which enables the study of properties that are difficult or even impossible to measure experimentally. Each model and technique has its advantages and disadvantages. Hence, combining different models and techniques is necessary for a more reliable study. In this review, the theoretical backgrounds of these (in vitro and in silico) approaches are presented, followed by a discussion of the pharmacokinetic and pharmacodynamic properties of drugs that are related to their interactions with membranes. All approaches are discussed in parallel to present for a better connection between experimental and simulation studies. Finally, an overview of the molecular dynamics simulation studies used for drug-membrane interactions is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An Evaluation of the Ability of Amputees to Operate Highway Transport Equipment. Final Report.

    ERIC Educational Resources Information Center

    McFarland, Ross A.; And Others

    To document the driving experience of amputees and to test whether amputees differ from non-amputees in the operation of a simulated motor vehicle, related literature was reviewed, a comprehensive study of private motor vehicle operation by amputees was carried out, and 100 persons (20 non-impaired, non-commercial drivers, 20 non-impaired,…

  10. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    NASA Astrophysics Data System (ADS)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  11. Determining procedures for simulation-based training in radiology: a nationwide needs assessment.

    PubMed

    Nayahangan, Leizl Joy; Nielsen, Kristina Rue; Albrecht-Beste, Elisabeth; Bachmann Nielsen, Michael; Paltved, Charlotte; Lindorff-Larsen, Karen Gilboe; Nielsen, Bjørn Ulrik; Konge, Lars

    2018-06-01

    New training modalities such as simulation are widely accepted in radiology; however, development of effective simulation-based training programs is challenging. They are often unstructured and based on convenience or coincidence. The study objective was to perform a nationwide needs assessment to identify and prioritize technical procedures that should be included in a simulation-based curriculum. A needs assessment using the Delphi method was completed among 91 key leaders in radiology. Round 1 identified technical procedures that radiologists should learn. Round 2 explored frequency of procedure, number of radiologists performing the procedure, risk and/or discomfort for patients, and feasibility for simulation. Round 3 was elimination and prioritization of procedures. Response rates were 67 %, 70 % and 66 %, respectively. In Round 1, 22 technical procedures were included. Round 2 resulted in pre-prioritization of procedures. In round 3, 13 procedures were included in the final prioritized list. The three highly prioritized procedures were ultrasound-guided (US) histological biopsy and fine-needle aspiration, US-guided needle puncture and catheter drainage, and basic abdominal ultrasound. A needs assessment identified and prioritized 13 technical procedures to include in a simulation-based curriculum. The list may be used as guide for development of training programs. • Simulation-based training can supplement training on patients in radiology. • Development of simulation-based training should follow a structured approach. • The CAMES Needs Assessment Formula explores needs for simulation training. • A national Delphi study identified and prioritized procedures suitable for simulation training. • The prioritized list serves as guide for development of courses in radiology.

  12. Theoretical Studies of Liquid He-4 Near the Superfluid Transition

    NASA Technical Reports Server (NTRS)

    Manousakis, Efstratios

    2002-01-01

    We performed theoretical studies of liquid helium by applying state of the art simulation and finite-size scaling techniques. We calculated universal scaling functions for the specific heat and superfluid density for various confining geometries relevant for experiments such as the confined helium experiment and other ground based studies. We also studied microscopically how the substrate imposes a boundary condition on the superfluid order parameter as the superfluid film grows layer by layer. Using path-integral Monte Carlo, a quantum Monte Carlo simulation method, we investigated the rich phase diagram of helium monolayer, bilayer and multilayer on a substrate such as graphite. We find excellent agreement with the experimental results using no free parameters. Finally, we carried out preliminary calculations of transport coefficients such as the thermal conductivity for bulk or confined helium systems and of their scaling properties. All our studies provide theoretical support for various experimental studies in microgravity.

  13. Numerical wind-tunnel simulation for Spar platform

    NASA Astrophysics Data System (ADS)

    Shen, Wenjun

    2017-05-01

    ANSYS Fluent software is used in the simulation analysis of numerical wind tunnel model for the upper Spar platform module. Design Modeler (DM), Meshing, FLUENT and CFD-POST are chosen in the numerical calculation. And DM is used to deal with and repair the geometric model, and Meshing is used to mesh the model, Fluent is used to set up and solve the calculation condition, finally CFD-POST is used for post-processing of the results. The wind loads are obtained under different direction and incidence angles. Finally, comparison is made between numerical results and empirical formula.

  14. Modeling, system identification, and control of ASTREX

    NASA Technical Reports Server (NTRS)

    Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.

    1993-01-01

    The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.

  15. Conceptual Design of Simulation Models in an Early Development Phase of Lunar Spacecraft Simulator Using SMP2 Standard

    NASA Astrophysics Data System (ADS)

    Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.

  16. Tailored instructor feedback leads to more effective virtual-reality laparoscopic training.

    PubMed

    Paschold, M; Huber, T; Zeißig, S R; Lang, H; Kneist, Werner

    2014-03-01

    Laparoscopic novices begin at different performance levels, and studies on tailored training concepts are warranted. The effect of verbal instructor feedback has been investigated with varying results, and its effectiveness in virtual-reality laparoscopic (VRL) simulations still is unclear. This study aimed to determine whether laparoscopic novices with lower initial performance statuses may profit from training with intensive instructor feedback. A prospective, single-blinded study was performed within a week-long curricular course. In this study, 20 medical students performed a complex bimanual maneuver on a VRL simulator. There was a division in performance levels, with a high-performer group (HPG) that received a better median score and a low-performer group (LPG). During the training phase, only the initial LPG received standardized instructor feedback in a one-to-one setting. The final assessment of skills for both groups involved performing the task without feedback at the end of the course. The HPG and LPG showed significantly different initial performance levels according global and categorized (time, economics, error) scores (p < 0.005). This difference disappeared quickly throughout the instructor feedback phase. The final assessment demonstrated that both groups were at the same level of performance. This is the first study to use a tailored training concept with instructor feedback limited to the LPG. The tailored training was effective and economic for the laparoscopic novices and their teachers.

  17. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less

  18. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    DOE PAGES

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; ...

    2017-11-27

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less

  19. An agent-based stochastic Occupancy Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Luo, Xuan

    Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less

  20. An agent-based stochastic Occupancy Simulator

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Luo, Xuan

    2017-06-01

    Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less

  1. Design and simulation of novel laparoscopic renal denervation system: a feasibility study.

    PubMed

    Ye, Eunbi; Baik, Jinhwan; Lee, Seunghyun; Ryu, Seon Young; Yang, Sunchoel; Choi, Eue-Keun; Song, Won Hoon; Yuk, Hyeong Dong; Jeong, Chang Wook; Park, Sung-Min

    2018-05-18

    In this study, we propose a novel laparoscopy-based renal denervation (RDN) system for treating patients with resistant hypertension. In this feasibility study, we investigated whether our proposed surgical instrument can ablate renal nerves from outside of the renal artery safely and effectively and can overcome the depth-related limitations of the previous catheter-based system with less damage to the arterial walls. We designed a looped bipolar electrosurgical instrument to be used with laparoscopy-based RDN system. The tip of instrument wraps around the renal artery and delivers the radio-frequency (RF) energy. We evaluated the thermal distribution via simulation study on a numerical model designed using histological data and validated the results by the in vitro study. Finally, to show the effectiveness of this system, we compared the performance of our system with that of catheter-based RDN system through simulations. Simulation results were within the 95% confidence intervals of the in vitro experimental results. The validated results demonstrated that the proposed laparoscopy-based RDN system produces an effective thermal distribution for the removal of renal sympathetic nerves without damaging the arterial wall and addresses the depth limitation of catheter-based RDN system. We developed a novel laparoscope-based electrosurgical RDN method for hypertension treatment. The feasibility of our system was confirmed through a simulation study as well as in vitro experiments. Our proposed method could be an effective treatment for resistant hypertension as well as central nervous system diseases.

  2. TEMPS (Transportable EMP Simulator) Final Report. Volume 2. Appendixes

    DTIC Science & Technology

    1973-08-01

    Electromagnetic pulse Pulser system Pulse generator 20. ASSTRPACT (Confirma an reverse ese It neessary and IdmntSIy by Weeck pmbff) This report...Research Institute I>, PIFR-372 A.1 INTRODUCTION The Transportable Electromagnetic Pulse Simulator (TEMPS) was built for the Harry Diamond Laboratories

  3. Fusion Simulation Program Definition. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, John R.

    2012-09-05

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.

  4. CO2 Push-Pull Dual (Conjugate) Faults Injection Simulations

    DOE Data Explorer

    Oldenburg, Curtis (ORCID:0000000201326016); Lee, Kyung Jae; Doughty, Christine; Jung, Yoojin; Borgia, Andrea; Pan, Lehua; Zhang, Rui; Daley, Thomas M.; Altundas, Bilgin; Chugunov, Nikita

    2017-07-20

    This submission contains datasets and a final manuscript associated with a project simulating carbon dioxide push-pull into a conjugate fault system modeled after Dixie Valley- sensitivity analysis of significant parameters and uncertainty prediction by data-worth analysis. Datasets include: (1) Forward simulation runs of standard cases (push & pull phases), (2) Local sensitivity analyses (push & pull phases), and (3) Data-worth analysis (push & pull phases).

  5. FE-simulation of hot forging with an integrated heat treatment with the objective of residual stress prediction

    NASA Astrophysics Data System (ADS)

    Behrens, Bernd-Arno; Chugreeva, Anna; Chugreev, Alexander

    2018-05-01

    Hot forming as a coupled thermo-mechanical process comprises numerous material phenomena with a corresponding impact on the material behavior during and after the forming process as well as on the final component performance. In this context, a realistic FE-simulation requires reliable mathematical models as well as detailed thermo-mechanical material data. This paper presents experimental and numerical results focused on the FE-based simulation of a hot forging process with a subsequent heat treatment step aiming at the prediction of the final mechanical properties and residual stress state in the forged component made of low alloy CrMo-steel DIN 42CrMo4. For this purpose, hot forging experiments of connecting rod geometry with a corresponding metallographic analysis and x-ray residual stress measurements have been carried out. For the coupled thermo-mechanical-metallurgical FE-simulations, a special user-defined material model based on the additive strain decomposition method and implemented in Simufact Forming via MSC.Marc solver features has been used.

  6. Numerical Simulations Of Flagellated Micro-Swimmers

    NASA Astrophysics Data System (ADS)

    Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey

    2017-11-01

    We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.

  7. Cognitive performance deficits in a simulated climb of Mount Everest - Operation Everest II

    NASA Technical Reports Server (NTRS)

    Kennedy, R. S.; Dunlap, W. P.; Banderet, L. E.; Smith, M. G.; Houston, C. S.

    1989-01-01

    Cognitive function at simulated altitude was investigated in a repeated-measures within-subject study of performance by seven volunteers in a hypobaric chamber, in which atmospheric pressure was systematically lowered over a period of 40 d to finally reach a pressure equivalent to 8845 m, the approximate height of Mount Everest. The automated performance test system employed compact computer design; automated test administrations, data storage, and retrieval; psychometric properties of stability and reliability; and factorial richness. Significant impairments of cognitive function were seen for three of the five tests in the battery; on two tests, grammatical reasoning and pattern comparison, every subject showed a substantial decrement.

  8. An analytic model for footprint dispersions and its application to mission design

    NASA Technical Reports Server (NTRS)

    Rao, J. R. Jagannatha; Chen, Yi-Chao

    1992-01-01

    This is the final report on our recent research activities that are complementary to those conducted by our colleagues, Professor Farrokh Mistree and students, in the context of the Taguchi method. We have studied the mathematical model that forms the basis of the Simulation and Optimization of Rocket Trajectories (SORT) program and developed an analytic method for determining mission reliability with a reduced number of flight simulations. This method can be incorporated in a design algorithm to mathematically optimize different performance measures of a mission, thus leading to a robust and easy-to-use methodology for mission planning and design.

  9. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    DOE PAGES

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×10 9 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  10. Macroscopic analysis of gas-jet wiping: Numerical simulation and experimental approach

    NASA Astrophysics Data System (ADS)

    Lacanette, Delphine; Gosset, Anne; Vincent, Stéphane; Buchlin, Jean-Marie; Arquis, Éric

    2006-04-01

    Coating techniques are frequently used in industrial processes such as paper manufacturing, wire sleeving, and in the iron and steel industry. Depending on the application considered, the thickness of the resulting substrate is controlled by mechanical (scraper), electromagnetic (if the entrained fluid is appropriated), or hydrodynamic (gas-jet wiping) operations. This paper deals with the latter process, referred to as gas-jet wiping, in which a turbulent slot jet is used to wipe the coating film dragged by a moving substrate. This mechanism relies on the gas-jet-liquid film interaction taking place on the moving surface. The aim of this study is to compare the results obtained by a lubrication one-dimensional model, numerical volume of fluid-large eddy simulation (VOF-LES) modeling and an experimental approach. The investigation emphasizes the effect of the controlling wiping parameters, i.e., the pressure gradient and shear stress distributions induced by the jet, on the shape of the liquid film. Those profiles obtained experimentally and numerically for a jet impinging on a dry fixed surface are compared. The effect of the substrate motion and the presence of the dragged liquid film on these actuators are analyzed through numerical simulations. Good agreement is found between the film thickness profile in the wiping zone obtained from the VOF-LES simulations and with the analytical model, provided that a good model for the wiping actuators is used. The effect of the gas-jet nozzle to substrate standoff distance on the final coating thickness is analyzed; the experimental and predicted values are compared for a wide set of conditions. Finally, the occurrence of the splashing phenomenon, which is characterized by the ejection of droplets from the runback film flow at jet impingement, thus limiting the wiping process, is investigated through experiments and numerical simulations.

  11. Design simulations for a small emittance 2.7-cell photo-cathode rf-gun in jector

    NASA Astrophysics Data System (ADS)

    Yongzhang, Huang

    1997-05-01

    In order to produce the electron bunch with small emittance which is the key issue in the so-called SASE studies, the design studies on a two-and-half cell photocathode rf-gun has been conducted. The rf gun injector is optimized by using the code of Par mela. As a main result, the optimum is found to be a 2.7-cell cavity. The geometry and the coupling scheme of the requested cavity is studied in more detail with the codes of Mafia and Superfish. The beam iris of each cells is enlarged in order to wide n the mode separations. For the purpose of cancelling the influence of the coupling iris upon the field symmetry, the so-called symmetrical double-side input coupler is studied. The coupler will be assembled to the second cell and the critical matchin g has been achieved in the Mafia-T3 simulation. With this cavity, the final normalized rms emittance reaches the value of 0.81πmm-mrad at a charge of 1nC in the Parmela simulation.

  12. CFD Simulation On The Pressure Distribution For An Isolated Single-Story House With Extension: Grid Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yahya, W. N. W.; Zaini, S. S.; Ismail, M. A.; Majid, T. A.; Deraman, S. N. C.; Abdullah, J.

    2018-04-01

    Damage due to wind-related disasters is increasing due to global climate change. Many studies have been conducted to study the wind effect surrounding low-rise building using wind tunnel tests or numerical simulations. The use of numerical simulation is relatively cheap but requires very good command in handling the software, acquiring the correct input parameters and obtaining the optimum grid or mesh. However, before a study can be conducted, a grid sensitivity test must be conducted to get a suitable cell number for the final to ensure an accurate result with lesser computing time. This study demonstrates the numerical procedures for conducting a grid sensitivity analysis using five models with different grid schemes. The pressure coefficients (CP) were observed along the wall and roof profile and compared between the models. The results showed that medium grid scheme can be used and able to produce high accuracy results compared to finer grid scheme as the difference in terms of the CP values was found to be insignificant.

  13. A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures

    DOE PAGES

    Sun, Kaiyu; Hong, Tianzhen

    2017-04-27

    To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings. Thismore » paper presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings differ by up to 20%). Finally, the study framework provides a novel, holistic approach to assessing the uncertainty of ECM energy savings related to occupant behavior, enabling stakeholders to understand and assess the risk of adopting energy efficiency technologies for new and existing buildings.« less

  14. A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaiyu; Hong, Tianzhen

    To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings. Thismore » paper presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings differ by up to 20%). Finally, the study framework provides a novel, holistic approach to assessing the uncertainty of ECM energy savings related to occupant behavior, enabling stakeholders to understand and assess the risk of adopting energy efficiency technologies for new and existing buildings.« less

  15. Detached-Eddy Simulation Based on the v2-f Model

    NASA Technical Reports Server (NTRS)

    Jee, Sol Keun; Shariff, Karim

    2012-01-01

    Detached eddy simulation (DES) based on the v2-f RANS model is proposed. This RANS model incorporates the anisotropy of near-wall turbulence which is absent in other RANS models commonly used in the DES community. In LES mode, the proposed DES formulation reduces to a transport equation for the subgrid-scale kinetic energy. The constant, CDES, required by this model was calibrated by simulating isotropic turbulence. In the final paper, DES simulations of canonical separated flows will be presented.

  16. Flow Field Investigations of a Simulated Weapons Cavity at Mach 3.

    DTIC Science & Technology

    1981-12-01

    AD-Alll 843 ARMO" ENGINEERING. DEVELOPMENT CENTER ARNOLD AFS TN F/9 14/2 FLOW FIELD INVESTIGATIONS OF A SIMULATED WEAPONS CAVITY AT MACN--ETC(U) DEC...TEST CHART .. AEDC-TSR-81-V37 FLOW FIELD INVESTIGATIONS OF A _____SIMULATED WEAPONS CAVITY AT MACH 3 _~W. A. Crosby Calspan Field Services, Inc...TYPE OF REPORT & PERIOD COVERED Final Report FLOW FIELD INVESTIGATIONS OF A SIMULATED WEAPONS 27 October 1981 CAVITY AT MACH 3 6. PERFORMING O1G

  17. Software for Brain Network Simulations: A Comparative Study

    PubMed Central

    Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.

    2017-01-01

    Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models. PMID:28775687

  18. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  19. The relation between cognitive and metacognitive strategic processing during a science simulation.

    PubMed

    Dinsmore, Daniel L; Zoellner, Brian P

    2018-03-01

    This investigation was designed to uncover the relations between students' cognitive and metacognitive strategies used during a complex climate simulation. While cognitive strategy use during science inquiry has been studied, the factors related to this strategy use, such as concurrent metacognition, prior knowledge, and prior interest, have not been investigated in a multidimensional fashion. This study addressed current issues in strategy research by examining not only how metacognitive, surface-level, and deep-level strategies influence performance, but also how these strategies related to each other during a contextually relevant science simulation. The sample for this study consisted of 70 undergraduates from a mid-sized Southeastern university in the United States. These participants were recruited from both physical and life science (e.g., biology) and education majors to obtain a sample with variance in terms of their prior knowledge, interest, and strategy use. Participants completed measures of prior knowledge and interest about global climate change. Then, they were asked to engage in an online climate simulator for up to 30 min while thinking aloud. Finally, participants were asked to answer three outcome questions about global climate change. Results indicated a poor fit for the statistical model of the frequency and level of processing predicting performance. However, a statistical model that independently examined the influence of metacognitive monitoring and control of cognitive strategies showed a very strong relation between the metacognitive and cognitive strategies. Finally, smallest space analysis results provided evidence that strategy use may be better captured in a multidimensional fashion, particularly with attention paid towards the combination of strategies employed. Conclusions drawn from the evidence point to the need for more dynamic, multidimensional models of strategic processing that account for the patterns of optimal and non-optimal strategy use. Additionally, analyses that can capture these complex patterns need to be further explored. © 2017 The British Psychological Society.

  20. Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations.

    PubMed

    Raval, Alpan; Piana, Stefano; Eastwood, Michael P; Shaw, David E

    2016-01-01

    Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  1. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  2. A microcomputer model for simulating pressurized flow in a storm sewer system : final report.

    DOT National Transportation Integrated Search

    1989-01-01

    A review was made of several computer programs capable of simulating sewer flows under surcharge or pressurized flow conditions. A modified version of the EXTRAN module of the SYMM model, called PFSM, was developed and attached to the FHYA Pooled Fun...

  3. EXPLORATION OF SIMULATION AS A RETIREMENT EDUCATION TECHNIQUE. FINAL REPORT.

    ERIC Educational Resources Information Center

    BOOCOCK, SARANE SPENCE; SPRAGUE, NORMAN

    A PILOT PROJECT EXPLORED THE ADAPTATION OF SIMULATION TECHNIQUES TO FOUR RETIREMENT PROBLEMS--FINANCIAL POSITION, PHYSICAL ENVIRONMENT (HOUSING CHOICES), HEALTH, AND SOCIAL ENVIRONMENT (PLANNING AND GAINING SKILLS BEFORE RETIREMENT). A PRELIMINARY MODEL OF A GAME IN RETIREMENT FINANCE PRESENTS PLAYERS WITH THREE INVESTMENT SITUATIONS--SAVINGS…

  4. Simulation of urban land surface temperature based on sub-pixel land cover in a coastal city

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang

    2014-11-01

    The sub-pixel urban land cover has been proved to have obvious correlations with land surface temperature (LST). Yet these relationships have seldom been used to simulate LST. In this study we provided a new approach of urban LST simulation based on sub-pixel land cover modeling. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover and then extract the transformation rule using logistic regression. The transformation possibility was taken as its percent in the same pixel after normalization. And cellular automata were used to acquire simulated sub-pixel land cover on 2007 and 2017. On the other hand, the correlations between retrieved LST and sub-pixel land cover achieved by spectral mixture analysis in 2002 were examined and a regression model was built. Then the regression model was used on simulated 2007 land cover to model the LST of 2007. Finally the LST of 2017 was simulated for urban planning and management. The results showed that our method is useful in LST simulation. Although the simulation accuracy is not quite satisfactory, it provides an important idea and a good start in the modeling of urban LST.

  5. A virtual reality dental simulator predicts performance in an operative dentistry manikin course.

    PubMed

    Imber, S; Shapira, G; Gordon, M; Judes, H; Metzger, Z

    2003-11-01

    This study was designed to test the ability of a virtual reality dental simulator to predict the performance of students in a traditional operative dentistry manikin course. Twenty-six dental students were pre-tested on the simulator, prior to the course. They were briefly instructed and asked to prepare 12 class I cavities which were automatically graded by the simulator. The instructors in the manikin course that followed were unaware of the students' performances in the simulator pre-test. The scores achieved by each student in the last six simulator cavities were compared to their final comprehensive grades in the manikin course. Class standing of the students in the simulator pre-test positively correlated with their achievements in the manikin course with a correlation coefficient of 0.49 (P = 0.012). Eighty-nine percent of the students in the lower third of the class in the pre-test remained in the low performing half of the class in the manikin course. These results indicate that testing students in a dental simulator, prior to a manikin course, may be an efficient way to allow early identification of those who are likely to perform poorly. This in turn could enable early allocation of personal tutors to these students in order to improve their chances of success.

  6. Modeling the Transfer Function for the Dark Energy Survey

    DOE PAGES

    Chang, C.

    2015-03-04

    We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg 2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared withmore » the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less

  7. A Commercial Device Involving the Breathalyzer Test Reaction.

    ERIC Educational Resources Information Center

    Dombrink, Kathleen J.

    1996-01-01

    Describes the working of Final Call, a commercially available breath analyzing device, which uses the chemical reaction involving the reduction of chromium (VI) in the orange dichromate ion to the green chromium (III) ion to detect ethyl alcohol. Presents a demonstration that simulates the use of a Final Call device. (JRH)

  8. Slice sampling technique in Bayesian extreme of gold price modelling

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Adam, Mohd Bakri; Ibrahim, Noor Akma; Yahya, Mohamed Hisham

    2013-09-01

    In this paper, a simulation study of Bayesian extreme values by using Markov Chain Monte Carlo via slice sampling algorithm is implemented. We compared the accuracy of slice sampling with other methods for a Gumbel model. This study revealed that slice sampling algorithm offers more accurate and closer estimates with less RMSE than other methods . Finally we successfully employed this procedure to estimate the parameters of Malaysia extreme gold price from 2000 to 2011.

  9. Engineering criteria for fracture flowback procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barree, R.D.; Mukherjee, H.

    1995-12-31

    Post treatment fracture flowback procedures during closure are often critical to the retention of fracture conductivity near the wellbore. Postfrac production performance largely depends on this conductivity. The importance of proper flowback procedure has been documented in the fracture industry, but definitive guidelines for flowback design have never been established. As a result, many misconceptions exist regarding the physics of proppant flowback and its effects on the final proppant distribution in the fracture. This paper presents a rigorous study of fracture flowback and proppant migration during closure using a fully three-dimensional fracture geometry simulator (GOHFER). The effects of rate ofmore » flowback, location of the perforation interval, final proppant concentration, and the fracture geometry prior to flowback on the retained post closure proppant concentration are discussed. Consideration is given to the fluid velocity field in the created fracture resulting from the flowback, and its effects on proppant movement and localized fracture closure. These studies illustrate the difference between ``forced closure`` and ``reverse screenout`` concepts in flowback design. Other effects such as crossflow between multiple perforated layers are also studied. Simulation studies indicate that selection of a desirable flowback rate is very sensitive to crossflow effects resulting from induced fractures in multiple stress layers. This crossflow can result in significant overflushing of proppant in the lower stress zones, if not countered by properly applied flowback procedures.« less

  10. Optical simulation of flying targets using physically based renderer

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Zheng, Quan; Peng, Junkai; Lv, Pin; Zheng, Changwen

    2018-02-01

    The simulation of aerial flying targets is widely needed in many fields. This paper proposes a physically based method for optical simulation of flying targets. In the first step, three-dimensional target models are built and the motion speed and direction are defined. Next, the material of the outward appearance of a target is also simulated. Then the illumination conditions are defined. After all definitions are given, all settings are encoded in a description file. Finally, simulated results are generated by Monte Carlo ray tracing in a physically based renderer. Experiments show that this method is able to simulate materials, lighting and motion blur for flying targets, and it can generate convincing and highquality simulation results.

  11. Simulating the energy performance of holographic glazings

    NASA Astrophysics Data System (ADS)

    Papamichael, K.; Beltran, L.; Furler, Reto; Lee, E. S.; Selkowitz, Steven E.; Rubin, Michael

    1994-09-01

    The light diffraction properties of holographic diffractive structures present an opportunity to improve the daylight performance in side-lit office spaces by redirecting and reflecting sunlight off the ceiling, providing adequate daylight illumination up to 30 ft (9.14 m) from the window wall. Prior studies of prototypical holographic glazings, installed above conventional `view' windows, have shown increased daylight levels over a deeper perimeter area than clear glass, for selected sun positions. In this study, we report on the simulation of the energy performance of prototypical holographic glazings assuming a commercial office building in the inland Los Angeles climate. The simulation of the energy performance involved determination of both luminous and thermal performance. Since the optical complexity of holographic glazings prevented the use of conventional algorithms for the simulation of their luminous performance, we used a newly developed method that combines experimentally determined directional workplane illuminance coefficients with computer-based analytical routines to determine a comprehensive set of daylight factors for many sun positions. These daylight factors were then used within the DOE-2.1D energy simulation program to determine hourly daylight and energy performance over the course of an entire year for four window orientations. Since the prototypical holographic diffractive structures considered in this study were applied on single pane clear glass, we also simulated the performance of hypothetical glazings, assuming the daylight performance of the prototype holographic glazings and the thermal performance of double-pane and low-e glazings. Finally, we addressed various design and implementation issues towards potential performance improvement.

  12. Analysis and design of lean direct injection fuel nozzles by eddy resolved turbulence simulation

    NASA Astrophysics Data System (ADS)

    Ryon, Jason Allen

    Combustion systems in gas turbine engines are subjected to particular scrutiny in regards to the emissions which they produce. Of special interest are the emissions of Oxides of Nitrogen (NOx), which have a direct impact on air quality as well as health aspects. There is a need in the industry for elegant designs for these combustion systems which reduce the formation of NOx. The present study includes an in depth analysis of a state-of-the art prefilming airblast injector which is designed for achieving low NOx. The design has been studied through the use of turbulence resolving simulation to differentiate what is important for the design of this system. The OpenFOAM CFD software, with a Delayed Detached Eddy Simulation (DDES) model recently developed at Iowa State University, is shown to provide a suitable design tool which has been used to accurately predict a variety of parameters important to this combustion system. Of particular interest are the mixing characteristics of the atomizer, which have been studied through a series of CFD simulations including single-phase, multi-species, and multi-phase simulations. Turbulence simulations are validated by comparison to United Technologies Aerospace Systems (UTAS) data with air only. It is shown how DDES is able to capture the downstream mixing of air streams. Finally, a novel atomizer has been designed with these methods which is intended to promote thorough mixing. The CFD mixing characteristics are described and compared to the existing injector.

  13. Device and circuit analysis of a sub 20 nm double gate MOSFET with gate stack using a look-up-table-based approach

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Dasgupta, A.; Das, R.; Kar, M.; Kundu, A.; Sarkar, C. K.

    2017-12-01

    In this paper, we explore the possibility of mapping devices designed in TCAD environment to its modeled version developed in cadence virtuoso environment using a look-up table (LUT) approach. Circuit simulation of newly designed devices in TCAD environment is a very slow and tedious process involving complex scripting. Hence, the LUT based modeling approach has been proposed as a faster and easier alternative in cadence environment. The LUTs are prepared by extracting data from the device characteristics obtained from device simulation in TCAD. A comparative study is shown between the TCAD simulation and the LUT-based alternative to showcase the accuracy of modeled devices. Finally the look-up table approach is used to evaluate the performance of circuits implemented using 14 nm nMOSFET.

  14. Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation

    PubMed Central

    Yang, Zhiwei; Gou, Lu; Chen, Shuyu; Li, Na; Zhang, Shengli; Zhang, Lei

    2017-01-01

    Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing) and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM) and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM), cryo-EM (cryo-EM), and molecular simulations. PMID:28638320

  15. Predicting drug hydrolysis based on moisture uptake in various packaging designs.

    PubMed

    Naversnik, Klemen; Bohanec, Simona

    2008-12-18

    An attempt was made to predict the stability of a moisture sensitive drug product based on the knowledge of the dependence of the degradation rate on tablet moisture. The moisture increase inside a HDPE bottle with the drug formulation was simulated with the sorption-desorption moisture transfer model, which, in turn, allowed an accurate prediction of the drug degradation kinetics. The stability prediction, obtained by computer simulation, was made in a considerably shorter time frame and required little resources compared to a conventional stability study. The prediction was finally upgraded to a stochastic Monte Carlo simulation, which allowed quantitative incorporation of uncertainty, stemming from various sources. The resulting distribution of the outcome of interest (amount of degradation product at expiry) is a comprehensive way of communicating the result along with its uncertainty, superior to single-value results or confidence intervals.

  16. Modeling studies on the formation of Hurricane Helene: the impact of GPS dropwindsondes from the NAMMA 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Folmer, Michael J.; Pasken, Robert W.; Chiao, Sen; Dunion, Jason; Halverson, Jeffrey

    2016-12-01

    Numerical simulations, using the weather research and forecasting (WRF) model in concert with GPS dropwindsondes released during the NASA African Monsoon Multidisciplinary Analyses 2006 Field Campaign, were conducted to provide additional insight on SAL-TC interaction. Using NCEP Final analysis datasets to initialize the WRF, a sensitivity test was performed on the assimilated (i.e., observation nudging) GPS dropwindsondes to understand the effects of individual variables (i.e., moisture, temperature, and winds) on the simulation and determine the extent of improvement when compared to available observations. The results suggested that GPS dropwindsonde temperature data provided the most significant difference in the simulated storm organization, storm strength, and synoptic environment, but all of the variables assimilated at the same time give a more representative mesoscale and synoptic picture.

  17. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    NASA Astrophysics Data System (ADS)

    Cen, Zhaohui

    2017-09-01

    Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT) is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.

  18. DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Diosady, Laslo Tibor; Murman, Scott; Madavan, Nateri

    2015-01-01

    A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.

  19. Multi-Level Cultural Models

    DTIC Science & Technology

    2014-11-05

    usable simulations. This procedure was to be tested using real-world data collected from open-source venues. The final system would support rapid...assess social change. Construct is an agent-based dynamic-network simulation system design to allow the user to assess the spread of information and...protest or violence. Technical Challenges Addressed  Re‐use:    Most agent-based simulation ( ABM ) in use today are one-off. In contrast, we

  20. Interacting with Multi-Robot Systems Using BML

    DTIC Science & Technology

    2013-06-01

    Pullen, U. Schade, J. Simonsen & R. Gomez-Veiga, NATO MSG-048 C-BML Final Report Summary. 2010 Fall Simulation Interoperability Workshop (10F- SIW -039...NATO MSG-085. 2012 Spring Simulation Interoperability Workshop (12S- SIW -045), Orlando, FL, March 2012. [3] T. Remmersmann, U. Schade, L. Khimeche...B. Grautreau & R. El Abdouni Khayari, Lessons Recognized: How to Combine BML and MSDL. 2012 Spring Simulation Interoperability Workshop (12S- SIW -012

Top