Sample records for simulator supported severe

  1. Enhancing Job-Site Training of Supported Workers with Autism: A Reemphasis on Simulation

    ERIC Educational Resources Information Center

    Lattimore, L. Perry; Parsons, Marsha B.; Reid, Dennis H.

    2006-01-01

    Currently recommended practice in supported work emphasizes training job skills to workers with severe disabilities while on the job. Early behavioral research indicated that skills needed in natural environments could also be trained in simulated settings. We compared job-site plus simulation training for teaching job skills to supported workers…

  2. Dshell++: A Component Based, Reusable Space System Simulation Framework

    NASA Technical Reports Server (NTRS)

    Lim, Christopher S.; Jain, Abhinandan

    2009-01-01

    This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.

  3. Suicidality Disclosed Online: Using a Simulated Facebook Task to Identify Predictors of Support Giving to Friends at Risk of Self-harm.

    PubMed

    Corbitt-Hall, Darcy J; Gauthier, Jami M; Troop-Gordon, Wendy

    2018-03-31

    Although peer support in response to online disclosures of suicidality may be imperative for suicide prevention efforts, little is known as to how often support is provided or what predicts giving support. This study addresses this issue by investigating the odds of providing peer support in response to simulated online disclosures of suicidality. While interacting with a simulated Facebook newsfeed, participants (N = 690, M age  = 20.24, 527 female) were given the opportunity to leave comments on two posts disclosing low, moderate, or severe risk for suicide. Participants also completed questionnaires on their symptoms of depression and anxiety, experience with a loved one's suicidality, and Facebook use strategies. Only 33.6% of participants left a positive, supportive comment on at least one of the two suicide posts. Content severity, experience with a loved one's suicide attempts, and use of Facebook to meet people were predictive of providing positive comments. These findings suggest that young adults vary in their propensity to provide support after encountering a suicide disclosure online and that giving support is driven by a combination of contextual and intrapersonal factors. © 2018 The American Association of Suicidology.

  4. Student Recognition of Visual Affordances: Supporting Use of Physics Simulations in Whole Class and Small Group Settings

    ERIC Educational Resources Information Center

    Stephens, A. Lynn

    2012-01-01

    The purpose of this study is to investigate student interactions with simulations, and teacher support of those interactions, within naturalistic high school physics classroom settings. This study focuses on data from two lesson sequences that were conducted in several physics classrooms. The lesson sequences were conducted in a whole class…

  5. Summary of nozzle-exhaust plume flowfield analyses related to space shuttle applications

    NASA Technical Reports Server (NTRS)

    Penny, M. M.

    1975-01-01

    Exhaust plume shape simulation is studied, with the major effort directed toward computer program development and analytical support of various plume related problems associated with the space shuttle. Program development centered on (1) two-phase nozzle-exhaust plume flows, (2) plume impingement, and (3) support of exhaust plume simulation studies. Several studies were also conducted to provide full-scale data for defining exhaust plume simulation criteria. Model nozzles used in launch vehicle test were analyzed and compared to experimental calibration data.

  6. A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.

  7. Mechanical design of NASA Ames Research Center vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  8. Employing Cognitive Tools within Interactive Multimedia Applications.

    ERIC Educational Resources Information Center

    Hedberg, John; And Others

    This paper describes research into the use of cognitive tools in the classroom using "Exploring the Nardoo", an information landscape designed to support student investigation. Simulations and support tools which allow multimedia reporting are embedded in the package and are supported by several metacognitive tools for the writing…

  9. The role of simulation in teaching pediatric resuscitation: current perspectives

    PubMed Central

    Lin, Yiqun; Cheng, Adam

    2015-01-01

    The use of simulation for teaching the knowledge, skills, and behaviors necessary for effective pediatric resuscitation has seen widespread growth and adoption across pediatric institutions. In this paper, we describe the application of simulation in pediatric resuscitation training and review the evidence for the use of simulation in neonatal resuscitation, pediatric advanced life support, procedural skills training, and crisis resource management training. We also highlight studies supporting several key instructional design elements that enhance learning, including the use of high-fidelity simulation, distributed practice, deliberate practice, feedback, and debriefing. Simulation-based training is an effective modality for teaching pediatric resuscitation concepts. Current literature has revealed some research gaps in simulation-based education, which could indicate the direction for the future of pediatric resuscitation research. PMID:25878517

  10. Severe contrast reaction emergencies high-fidelity simulation training for radiology residents and technologists in a children's hospital.

    PubMed

    Tofil, Nancy M; White, Marjorie Lee; Grant, Matthew; Zinkan, J Lynn; Patel, Bhavik; Jenkins, Lynsey; Youngblood, Amber Q; Royal, Stuart A

    2010-07-01

    Severe reactions to radiographic contrast agents can be life threatening, and although they are rare, effective recognition and management are essential to improving outcomes. A high-fidelity radiology simulation course for radiology residents and technologists focusing on severe contrast reactions and immediate treatments was designed to test the hypothesis that knowledge would improve with this educational intervention. A prospective pretest and posttest study design was used. Residents and technologists worked in teams of three to five members. Learning objectives focused on demonstrating when and how to use basic life support skills and epinephrine auto-injectors. Each resident and technologist was administered a pretest prior to the start of the case scenarios and a posttest following the debriefing session. Scores from the pretest and posttest for the residents and technologists were compared using a paired-samples t test. Nineteen radiology residents and 11 radiology technologists participated. The average test scores were higher and improved significantly following the simulation experience for both the radiology residents (57% vs 82%, P < .001) and technologists (47% vs 72%, P = .006). Anonymous evaluations demonstrated that the experience was well received by residents and technologists, with 97% of learners (29 of 30) rating the experience as extremely or very helpful. Important learning themes included the knowledge of epinephrine auto-injector use and basic life support skills. High-fidelity simulation for radiology residents and technologists focusing on epinephrine auto-injector use and basic life support skills during the first 5 minutes of a severe contrast reaction can significantly improve recognition and knowledge in treating patients having severe contrast reactions. 2010 AUR. Published by Elsevier Inc. All rights reserved.

  11. Variability of simulants used in recreating stab events.

    PubMed

    Carr, D J; Wainwright, A

    2011-07-15

    Forensic investigators commonly use simulants/backing materials to mount fabrics and/or garments on when recreating damage due to stab events. Such work may be conducted in support of an investigation to connect a particular knife to a stabbing event by comparing the severance morphology obtained in the laboratory to that observed in the incident. There does not appear to have been a comparison of the effect of simulant type on the morphology of severances in fabrics and simulants, nor on the variability of simulants. This work investigates three simulants (pork, gelatine, expanded polystyrene), two knife blades (carving, bread), and how severances in the simulants and an apparel fabric typically used to manufacture T-shirts (single jersey) were affected by (i) simulant type and (ii) blade type. Severances were formed using a laboratory impact apparatus to ensure a consistent impact velocity and hence impact energy independently of the other variables. The impact velocity was chosen so that the force measured was similar to that measured in human performance trials. Force-time and energy-time curves were analysed and severance morphology (y, z directions) investigated. Simulant type and knife type significantly affected the critical forensic measurements of severance length (y direction) in the fabric and 'skin' (Tuftane). The use of EPS resulted in the lowest variability in data, further the severances recorded in both the fabric and Tuftane more accurately reflected the dimensions of the impacting knives. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Optimized deformation behavior of a dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Foerster, Florentine; Schlaak, Helmut F.

    2014-03-01

    Dielectric elastomer generators (DEGs) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires an optimal deformation of the DEG during the energy harvesting cycle. However, the deformation resulting from an external load has to be applied to the DEG. The deformation behavior of the DEG is dependent on the type of the mechanical interconnection between the elastic DEG and a stiff support area. The maximization of the capacitance of the DEG in the deformed state leads to the maximum absolute energy gain. Therefore several configurations of mechanical interconnections between a single DEG module as well as multiple stacked DEG modules and stiff supports are investigated in order to find the optimal mechanical interconnection. The investigation is done with numerical simulations using the FEM software ANSYS. A DEG module consists of 50 active dielectric layers with a single layer thickness of 50 μm. The elastomer material is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes are included to compare simulation results to experimental investigations in the future. The numerical simulations of the several configurations are carried out as coupled electro-mechanical simulation for the first step in an energy harvesting cycle with constant external load strain. The simulation results are discussed and an optimal mechanical interconnection between DEG modules and stiff supports is derived.

  13. Nexus: A modular workflow management system for quantum simulation codes

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  14. Humanoid Flight Metabolic Simulator Project

    NASA Technical Reports Server (NTRS)

    Ross, Stuart

    2015-01-01

    NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.

  15. ExoCross: Spectra from molecular line lists

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Al-Refaie, Ahmed; Tennyson, Jonathan

    2018-03-01

    ExoCross generates spectra and thermodynamic properties from molecular line lists in ExoMol, HITRAN, or several other formats. The code is parallelized and also shows a high degree of vectorization; it works with line profiles such as Doppler, Lorentzian and Voigt and supports several broadening schemes. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross converts between different formats, such as HITRAN, ExoMol and Phoenix, and simulates non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers.

  16. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

    DOE PAGES

    Abraham, Mark James; Murtola, Teemu; Schulz, Roland; ...

    2015-07-15

    GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. This work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU–GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. Finally, the latest best-in-class compressed trajectory storage format is supported.

  17. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Mark James; Murtola, Teemu; Schulz, Roland

    GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. This work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU–GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. Finally, the latest best-in-class compressed trajectory storage format is supported.

  18. Nexus: a modular workflow management system for quantum simulation codes

    DOE PAGES

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less

  19. Flight simulation software at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Norlin, Ken A.

    1995-01-01

    The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.

  20. Development of an Intelligent Monitoring and Control System for a Heterogeneous Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.; Lewandowski, Henry; Homer, Patrick T.; Schlichting, Richard D.

    1996-01-01

    The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use of computer simulation to facilitate the design of new jet engines. Several key issues raised in this research are being examined in an NPSS-related research project: zooming, monitoring and control, and support for heterogeneity. The design of a simulation executive that addresses each of these issues is described. In this work, the strategy of zooming, which allows codes that model at different levels of fidelity to be integrated within a single simulation, is applied to the fan component of a turbofan propulsion system. A prototype monitoring and control system has been designed for this simulation to support experimentation with expert system techniques for active control of the simulation. An interconnection system provides a transparent means of connecting the heterogeneous systems that comprise the prototype.

  1. Teaching tactical combat casualty care using the TC3 sim game-based simulation: a study to measure training effectiveness.

    PubMed

    Sotomayor, Teresita M

    2010-01-01

    The effectiveness of games as instructional tools has been debated over the past several decades. This is due to the lack of empirical data to support such claims. The US ARMY developed a game-based simulation to support Tactical Combat Casualty Care (TCCC) Training. The TC3 Game based Simulation is a first person game that allows a Soldier to play the role of a combat medic during an infantry squad mission in an urban environment. This research documents results from a training effectiveness evaluation conducted at the Department of Combat Medic Training (Ft Sam Houston) in an effort to explore the capability of the game based simulation as a potential tool to support the TCCC program of instruction. Reaction to training, as well as, acquisition of knowledge and transfer of skills were explored using Kirkpatrick's Model of Training Effectiveness Evaluation. Results from the evaluation are discussed.

  2. Simulation, Design Abstraction, and SystemC

    ERIC Educational Resources Information Center

    Harcourt, Ed

    2007-01-01

    SystemC is a system-level design and simulation language based on C++. We've been using SystemC for computer organization and design projects for the past several years. Because SystemC is embedded in C++ it contains the powerful abstraction mechanisms of C++ not found in traditional hardware description languages, such as support for…

  3. Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations

    ERIC Educational Resources Information Center

    Sung, Christopher Teh Boon

    2011-01-01

    Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…

  4. Xyce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.

  5. An Analysis of Failure Handling in Chameleon, A Framework for Supporting Cost-Effective Fault Tolerant Services

    NASA Technical Reports Server (NTRS)

    Haakensen, Erik Edward

    1998-01-01

    The desire for low-cost reliable computing is increasing. Most current fault tolerant computing solutions are not very flexible, i.e., they cannot adapt to reliability requirements of newly emerging applications in business, commerce, and manufacturing. It is important that users have a flexible, reliable platform to support both critical and noncritical applications. Chameleon, under development at the Center for Reliable and High-Performance Computing at the University of Illinois, is a software framework. for supporting cost-effective adaptable networked fault tolerant service. This thesis details a simulation of fault injection, detection, and recovery in Chameleon. The simulation was written in C++ using the DEPEND simulation library. The results obtained from the simulation included the amount of overhead incurred by the fault detection and recovery mechanisms supported by Chameleon. In addition, information about fault scenarios from which Chameleon cannot recover was gained. The results of the simulation showed that both critical and noncritical applications can be executed in the Chameleon environment with a fairly small amount of overhead. No single point of failure from which Chameleon could not recover was found. Chameleon was also found to be capable of recovering from several multiple failure scenarios.

  6. A Literature Review of Gaming in Education. Research Report

    ERIC Educational Resources Information Center

    McClarty, Katie Larsen; Orr, Aline; Frey, Peter M.; Dolan, Robert P.; Vassileva, Victoria; McVay, Aaron

    2012-01-01

    The use of simulations and digital games in learning and assessment is expected to increase over the next several years. Although there is much theoretical support for the benefits of digital games in learning and education, there is mixed empirical support. This research report provides an overview of the theoretical and empirical evidence behind…

  7. Diagnostics of severe convection and subsynoptic scale ageostrophic circulations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Diagnostics of severe convection and subsynoptic scale ageostrophic circulations are reported. Mesoscale circulations through forcing of ageostrophic motion by adiabatic, diabatic and frictional processes were studied. The development and application of a hybrid isentropic sigma coordinate numerical model was examined. The numerical model simulates mesoscale ageostrophic circulations associated with propagating jet streaks and severe convection. A complete list of publications and these completed through support of the NASA severe storms research project is included.

  8. The Voroshilov Lectures. Materials from the Soviet General Staff Academy, Volume 2: Issues of Soviet Military Strategy

    DTIC Science & Technology

    1990-12-01

    system should provide for and support control of the major strategic groupings of forces, which simul - taneously conduct operations in several TSMAs... simulated . Enploymet o’/ Military Transport A viatlim 87 Throughout all phases of the preparation and conduct of assault landing operations, radio maskirovka...airfields are refueled and, simul - taneously. combat equipment. ammunition, and other cargo requiring one hour’s loading time are loaded in the aircraft

  9. Breathing metabolic simulator.

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1971-01-01

    Description of a device for simulation of the human breathing and metabolic parameters required for the evaluation of respiratory diagnostic, monitoring, support and resuscitation equipment. The remotely controlled device allows wide variations in breathing rate and depth, breath velocity contour, oxygen uptake and carbon dioxide release to simulate conditions from sleep to hard work, with respiration exchange ratios ranging from hypoventilation to hyperventilation. It also reduces the cost of prolonged testing when simulation chambers with human subjects require three shifts of crews and standby physicians. Several block diagrams of the device and subsystems are given.

  10. Validating the Learning Cycle Models of Business Simulation Games via Student Perceived Gains in Skills and Knowledge

    ERIC Educational Resources Information Center

    Tao, Yu-Hui; Yeh, C. Rosa; Hung, Kung Chin

    2015-01-01

    Several theoretical models have been constructed to determine the effects of buisness simulation games (BSGs) on learning performance. Although these models agree on the concept of learning-cycle effect, no empirical evidence supports the claim that the use of learning cycle activities with BSGs produces an effect on incremental gains in knowledge…

  11. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.

  12. Virtual Environment User Interfaces to Support RLV and Space Station Simulations in the ANVIL Virtual Reality Lab

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    1998-01-01

    Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.

  13. Characterizing the uncertainty in holddown post load measurements

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Townsend, J. S.

    1993-01-01

    In order to understand unexpectedly erratic load measurements in the launch-pad supports for the space shuttle, the sensitivities of the load cells in the supports were analyzed using simple probabilistic techniques. NASA engineers use the loads in the shuttle's supports to calculate critical stresses in the shuttle vehicle just before lift-off. The support loads are measured with 'load cells' which are actually structural components of the mobile launch platform which have been instrumented with strain gauges. Although these load cells adequately measure vertical loads, the horizontal load measurements have been erratic. The load measurements were simulated in this study using Monte Carlo simulation procedures. The simulation studies showed that the support loads are sensitive to small deviations in strain and calibration. In their current configuration, the load cells will not measure loads with sufficient accuracy to reliably calculate stresses in the shuttle vehicle. A simplified model of the holddown post (HDP) load measurement system was used to study the effect on load measurement accuracy for several factors, including load point deviations, gauge heights, and HDP geometry.

  14. Proposing "the burns suite" as a novel simulation tool for advancing the delivery of burns education.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2014-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience.

  15. Mars Tumbleweed Simulation Using Singular Perturbation Theory

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Calhoun, Phillip

    2005-01-01

    The Mars Tumbleweed is a new surface rover concept that utilizes Martian winds as the primary source of mobility. Several designs have been proposed for the Mars Tumbleweed, all using aerodynamic drag to generate force for traveling about the surface. The Mars Tumbleweed, in its deployed configuration, must be large and lightweight to provide the ratio of drag force to rolling resistance necessary to initiate motion from the Martian surface. This paper discusses the dynamic simulation details of a candidate Tumbleweed design. The dynamic simulation model must properly evaluate and characterize the motion of the tumbleweed rover to support proper selection of system design parameters. Several factors, such as model flexibility, simulation run times, and model accuracy needed to be considered in modeling assumptions. The simulation was required to address the flexibility of the rover and its interaction with the ground, and properly evaluate its mobility. Proper assumptions needed to be made such that the simulated dynamic motion is accurate and realistic while not overly burdened by long simulation run times. This paper also shows results that provided reasonable correlation between the simulation and a drop/roll test of a tumbleweed prototype.

  16. Development of Airport Surface Required Navigation Performance (RNP)

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Smith, Alex; Hicok, Dan

    1999-01-01

    The U.S. and international aviation communities have adopted the Required Navigation Performance (RNP) process for defining aircraft performance when operating the en-route, approach and landing phases of flight. RNP consists primarily of the following key parameters - accuracy, integrity, continuity, and availability. The processes and analytical techniques employed to define en-route, approach and landing RNP have been applied in the development of RNP for the airport surface. To validate the proposed RNP requirements several methods were used. Operational and flight demonstration data were analyzed for conformance with proposed requirements, as were several aircraft flight simulation studies. The pilot failure risk component was analyzed through several hypothetical scenarios. Additional simulator studies are recommended to better quantify crew reactions to failures as well as additional simulator and field testing to validate achieved accuracy performance, This research was performed in support of the NASA Low Visibility Landing and Surface Operations Programs.

  17. The Forest Vegetation Simulator: A review of its structure, content, and applications

    Treesearch

    Nicholas L. Crookston; Gary E. Dixon

    2005-01-01

    The Forest Vegetation Simulator (FVS) is a distance-independent, individual-tree forest growth model widely used in the United States to support management decisionmaking. Stands are the basic projection unit, but the spatial scope can be many thousands of stands. The temporal scope is several hundred years at a resolution of 5­10 years. Projections start with a...

  18. Simulation of beam-induced plasma in gas-filled rf cavities

    DOE PAGES

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...

    2017-03-07

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less

  19. The threat simulation theory of the evolutionary function of dreaming: Evidence from dreams of traumatized children.

    PubMed

    Valli, Katja; Revonsuo, Antti; Pälkäs, Outi; Ismail, Kamaran Hassan; Ali, Karzan Jalal; Punamäki, Raija-Leena

    2005-03-01

    The threat simulation theory of dreaming (TST) () states that dream consciousness is essentially an ancient biological defence mechanism, evolutionarily selected for its capacity to repeatedly simulate threatening events. Threat simulation during dreaming rehearses the cognitive mechanisms required for efficient threat perception and threat avoidance, leading to increased probability of reproductive success during human evolution. One hypothesis drawn from TST is that real threatening events encountered by the individual during wakefulness should lead to an increased activation of the system, a threat simulation response, and therefore, to an increased frequency and severity of threatening events in dreams. Consequently, children who live in an environment in which their physical and psychological well-being is constantly threatened should have a highly activated dream production and threat simulation system, whereas children living in a safe environment that is relatively free of such threat cues should have a weakly activated system. We tested this hypothesis by analysing the content of dream reports from severely traumatized and less traumatized Kurdish children and ordinary, non-traumatized Finnish children. Our results give support for most of the predictions drawn from TST. The severely traumatized children reported a significantly greater number of dreams and their dreams included a higher number of threatening dream events. The dream threats of traumatized children were also more severe in nature than the threats of less traumatized or non-traumatized children.

  20. [Development of fixed-base full task space flight training simulator].

    PubMed

    Xue, Liang; Chen, Shan-quang; Chang, Tian-chun; Yang, Hong; Chao, Jian-gang; Li, Zhi-peng

    2003-01-01

    Fixed-base full task flight training simulator is a very critical and important integrated training facility. It is mostly used in training of integrated skills and tasks, such as running the flight program of manned space flight, dealing with faults, operating and controlling spacecraft flight, communicating information between spacecraft and ground. This simulator was made up of several subentries including spacecraft simulation, simulating cabin, sight image, acoustics, main controlling computer, instructor and assistant support. It has implemented many simulation functions, such as spacecraft environment, spacecraft movement, communicating information between spacecraft and ground, typical faults, manual control and operating training, training control, training monitor, training database management, training data recording, system detecting and so on.

  1. Virtual Instrument Simulator for CERES

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1997-01-01

    A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive simulation system capable of high fidelity.

  2. The design and implementation of CRT displays in the TCV real-time simulation

    NASA Technical Reports Server (NTRS)

    Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.

    1975-01-01

    The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.

  3. Composing problem solvers for simulation experimentation: a case study on steady state estimation.

    PubMed

    Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M

    2014-01-01

    Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.

  4. Inflated speedups in parallel simulations via malloc()

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    Discrete-event simulation programs make heavy use of dynamic memory allocation in order to support simulation's very dynamic space requirements. When programming in C one is likely to use the malloc() routine. However, a parallel simulation which uses the standard Unix System V malloc() implementation may achieve an overly optimistic speedup, possibly superlinear. An alternate implementation provided on some (but not all systems) can avoid the speedup anomaly, but at the price of significantly reduced available free space. This is especially severe on most parallel architectures, which tend not to support virtual memory. It is shown how a simply implemented user-constructed interface to malloc() can both avoid artificially inflated speedups, and make efficient use of the dynamic memory space. The interface simply catches blocks on the basis of their size. The problem is demonstrated empirically, and the effectiveness of the solution is shown both empirically and analytically.

  5. An intelligent processing environment for real-time simulation

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Wells, Buren Earl, Jr.

    1988-01-01

    The development of a highly efficient and thus truly intelligent processing environment for real-time general purpose simulation of continuous systems is described. Such an environment can be created by mapping the simulation process directly onto the University of Alamba's OPERA architecture. To facilitate this effort, the field of continuous simulation is explored, highlighting areas in which efficiency can be improved. Areas in which parallel processing can be applied are also identified, and several general OPERA type hardware configurations that support improved simulation are investigated. Three direct execution parallel processing environments are introduced, each of which greatly improves efficiency by exploiting distinct areas of the simulation process. These suggested environments are candidate architectures around which a highly intelligent real-time simulation configuration can be developed.

  6. Concept Verification Test - Evaluation of Spacelab/Payload operation concepts

    NASA Technical Reports Server (NTRS)

    Mcbrayer, R. O.; Watters, H. H.

    1977-01-01

    The Concept Verification Test (CVT) procedure is used to study Spacelab operational concepts by conducting mission simulations in a General Purpose Laboratory (GPL) which represents a possible design of Spacelab. In conjunction with the laboratory a Mission Development Simulator, a Data Management System Simulator, a Spacelab Simulator, and Shuttle Interface Simulator have been designed. (The Spacelab Simulator is more functionally and physically representative of the Spacelab than the GPL.) Four simulations of Spacelab mission experimentation were performed, two involving several scientific disciplines, one involving life sciences, and the last involving material sciences. The purpose of the CVT project is to support the pre-design and development of payload carriers and payloads, and to coordinate hardware, software, and operational concepts of different developers and users.

  7. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  8. Battle Lab Simulation Collaboration Environment (BLSCE): Multipurpose Platform for Simulation C2

    DTIC Science & Technology

    2006-06-01

    encryption, low-probability of intercept and detection communications, and specialized intelligent agents will provide the brick an d mortar for our...echelons. It allows multi-celled experimentations among several locations that cover all of the United States. It has become a gateway for Joint...of exercises from remote locations , including live-force play. • Integration of combined arms experimentation in support of Army Transformation

  9. Integration of communications and tracking data processing simulation for space station

    NASA Technical Reports Server (NTRS)

    Lacovara, Robert C.

    1987-01-01

    A simplified model of the communications network for the Communications and Tracking Data Processing System (CTDP) was developed. It was simulated by use of programs running on several on-site computers. These programs communicate with one another by means of both local area networks and direct serial connections. The domain of the model and its simulation is from Orbital Replaceable Unit (ORU) interface to Data Management Systems (DMS). The simulation was designed to allow status queries from remote entities across the DMS networks to be propagated through the model to several simulated ORU's. The ORU response is then propagated back to the remote entity which originated the request. Response times at the various levels were investigated in a multi-tasking, multi-user operating system environment. Results indicate that the effective bandwidth of the system may be too low to support expected data volume requirements under conventional operating systems. Instead, some form of embedded process control program may be required on the node computers.

  10. The integration of quantitative information with an intelligent decision support system for residential energy retrofits

    NASA Astrophysics Data System (ADS)

    Mo, Yunjeong

    The purpose of this research is to support the development of an intelligent Decision Support System (DSS) by integrating quantitative information with expert knowledge in order to facilitate effective retrofit decision-making. To achieve this goal, the Energy Retrofit Decision Process Framework is analyzed. Expert system shell software, a retrofit measure cost database, and energy simulation software are needed for developing the DSS; Exsys Corvid, the NREM database and BEopt were chosen for implementing an integration model. This integration model demonstrates the holistic function of a residential energy retrofit system for existing homes, by providing a prioritized list of retrofit measures with cost information, energy simulation and expert advice. The users, such as homeowners and energy auditors, can acquire all of the necessary retrofit information from this unified system without having to explore several separate systems. The integration model plays the role of a prototype for the finalized intelligent decision support system. It implements all of the necessary functions for the finalized DSS, including integration of the database, energy simulation and expert knowledge.

  11. Software for Brain Network Simulations: A Comparative Study

    PubMed Central

    Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.

    2017-01-01

    Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models. PMID:28775687

  12. Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface.

    PubMed

    Andrews, Steven S

    2017-03-01

    Smoldyn is a spatial and stochastic biochemical simulator. It treats each molecule of interest as an individual particle in continuous space, simulating molecular diffusion, molecule-membrane interactions and chemical reactions, all with good accuracy. This article presents several new features. Smoldyn now supports two types of rule-based modeling. These are a wildcard method, which is very convenient, and the BioNetGen package with extensions for spatial simulation, which is better for complicated models. Smoldyn also includes new algorithms for simulating the diffusion of surface-bound molecules and molecules with excluded volume. Both are exact in the limit of short time steps and reasonably good with longer steps. In addition, Smoldyn supports single-molecule tracking simulations. Finally, the Smoldyn source code can be accessed through a C/C ++ language library interface. Smoldyn software, documentation, code, and examples are at http://www.smoldyn.org . steven.s.andrews@gmail.com. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Development of a ninety string solar array simulator

    NASA Technical Reports Server (NTRS)

    Vasek, Thomas E.; Birchenough, Arthur G.

    1991-01-01

    A power source was developed to support testing for the Space Station Freedom Power Management and Distribution (PMAD) DC Testbed. The intent was to simulate as closely as possible the steady-state and transient responses of a solar array. Several breadboards and one thermal prototype were built and tested. Responses were successfully verified and improved upon during successive breadboards. The completed 90-string simulator consists of four power MOSFETs, four 25 watt source resistors, and four 250 watt drain source bypass resistors per string, in addition to the control circuitry.

  14. Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1965-10-15

    Cable system which supports the test subject on the Reduced Gravity Walking Simulator. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil described the purpose of the simulator as follows: "When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995); A.W. Vigil, "Discussion of Existing and Planned Simulators for Space Research," Paper presented at Conference on the Role of Simulation in Space Technology," Blacksburg, VA, August 17-21, 1964.

  15. A Toolbox to Improve Algorithms for Insulin-Dosing Decision Support

    PubMed Central

    Donsa, K.; Plank, J.; Schaupp, L.; Mader, J. K.; Truskaller, T.; Tschapeller, B.; Höll, B.; Spat, S.; Pieber, T. R.

    2014-01-01

    Summary Background Standardized insulin order sets for subcutaneous basal-bolus insulin therapy are recommended by clinical guidelines for the inpatient management of diabetes. The algorithm based GlucoTab system electronically assists health care personnel by supporting clinical workflow and providing insulin-dose suggestions. Objective To develop a toolbox for improving clinical decision-support algorithms. Methods The toolbox has three main components. 1) Data preparation: Data from several heterogeneous sources is extracted, cleaned and stored in a uniform data format. 2) Simulation: The effects of algorithm modifications are estimated by simulating treatment workflows based on real data from clinical trials. 3) Analysis: Algorithm performance is measured, analyzed and simulated by using data from three clinical trials with a total of 166 patients. Results Use of the toolbox led to algorithm improvements as well as the detection of potential individualized subgroup-specific algorithms. Conclusion These results are a first step towards individualized algorithm modifications for specific patient subgroups. PMID:25024768

  16. Integrated Clinical Training for Space Flight Using a High-Fidelity Patient Simulator in a Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Polk, J. D.; Schmid, Josef; Parazynksi, Scott; Kelly, Scott

    2007-01-01

    This viewgraph presentation reviews the use of telemedicine in a simulated microgravity environment using a patient simulator. For decades, telemedicine techniques have been used in terrestrial environments by many cohorts with varied clinical experience. The success of these techniques has been recently expanded to include microgravity environments aboard the International Space Station (ISS). In order to investigate how an astronaut crew medical officer will execute medical tasks in a microgravity environment, while being remotely guided by a flight surgeon, the Medical Operation Support Team (MOST) used the simulated microgravity environment provided aboard DC-9 aircraft teams of crew medical officers, and remote flight surgeons performed several tasks on a patient simulator.

  17. Case Studies in CAL!

    ERIC Educational Resources Information Center

    Rogers, David F., Ed.; Smith, P. R., Ed.

    1984-01-01

    Ten papers focus on applications in specific curriculum areas, modelling and simulation, and computer managed learning. Projects described include voice support for the visually handicapped, distance education, and industrial training, as well as teaching applied mathematics, several facets of engineering, zoology, and, with videodisc, observation…

  18. Some VTOL head-up display drive-law problems and solutions

    NASA Technical Reports Server (NTRS)

    Merrick, Vernon K.

    1993-01-01

    A piloted simulation test was conducted on the Ames Research Center's vertical motion simulator (VMS) in support of the Phase 2A flight test of NASA's V/STOL systems research aircraft (VSRA). During the simulation several problems were found with the head-up display (HUD) symbol drive laws and the flightpath synthesis. These problems and the solutions devised to solve them are described. Most of the resulting HUD drive-law changes were implemented during the simulation and their effectiveness was verified. Subsequently both the HUD symbol drive-law and flightpath-synthesis changes were implemented in the VSRA and tested successfully in the Phase 2A flight tests.

  19. Extensible Adaptable Simulation Systems: Supporting Multiple Fidelity Simulations in a Common Environment

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    Common practice in the development of simulation systems is meeting all user requirements within a single instantiation. The Joint Polar Satellite System (JPSS) presents a unique challenge to establish a simulation environment that meets the needs of a diverse user community while also spanning a multi-mission environment over decades of operation. In response, the JPSS Flight Vehicle Test Suite (FVTS) is architected with an extensible infrastructure that supports the operation of multiple observatory simulations for a single mission and multiple mission within a common system perimeter. For the JPSS-1 satellite, multiple fidelity flight observatory simulations are necessary to support the distinct user communities consisting of the Common Ground System development team, the Common Ground System Integration & Test team, and the Mission Rehearsal Team/Mission Operations Team. These key requirements present several challenges to FVTS development. First, the FVTS must ensure all critical user requirements are satisfied by at least one fidelity instance of the observatory simulation. Second, the FVTS must allow for tailoring of the system instances to function in diverse operational environments from the High-security operations environment at NOAA Satellite Operations Facility (NSOF) to the ground system factory floor. Finally, the FVTS must provide the ability to execute sustaining engineering activities on a subset of the system without impacting system availability to parallel users. The FVTS approach of allowing for multiple fidelity copies of observatory simulations represents a unique concept in simulator capability development and corresponds to the JPSS Ground System goals of establishing a capability that is flexible, extensible, and adaptable.

  20. Simulant Development for LAWPS Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Schonewill, Philip P.; Burns, Carolyn A.

    2017-05-23

    This report describes simulant development work that was conducted to support the technology maturation of the LAWPS facility. Desired simulant physical properties (density, viscosity, solids concentration, solid particle size), sodium concentrations, and general anion identifications were provided by WRPS. The simulant recipes, particularly a “nominal” 5.6M Na simulant, are intended to be tested at several scales, ranging from bench-scale (500 mL) to full-scale. Each simulant formulation was selected to be chemically representative of the waste streams anticipated to be fed to the LAWPS system, and used the current version of the LAWPS waste specification as a formulation basis. After simulantmore » development iterations, four simulants of varying sodium concentration (5.6M, 6.0M, 4.0M, and 8.0M) were prepared and characterized. The formulation basis, development testing, and final simulant recipes and characterization data for these four simulants are presented in this report.« less

  1. Extraordinary Oscillations of an Ordinary Forced Pendulum

    ERIC Educational Resources Information Center

    Butikov, Eugene I.

    2008-01-01

    Several well-known and newly discovered counterintuitive regular and chaotic modes of the sinusoidally driven rigid planar pendulum are discussed and illustrated by computer simulations. The software supporting the investigation offers many interesting predefined examples that demonstrate various peculiarities of this famous physical model.…

  2. Implementing optimal thinning strategies

    Treesearch

    Kurt H. Riitters; J. Douglas Brodie

    1984-01-01

    Optimal thinning regimes for achieving several management objectives were derived from two stand-growth simulators by dynamic programming. Residual mean tree volumes were then plotted against stand density management diagrams. The results supported the use of density management diagrams for comparing, checking, and implementing the results of optimization analyses....

  3. Design Options for the High-Foot Ignition Capsule Series on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O. A.; Berzak Hopkins, L. F.; Callahan, D. A.; Clark, D.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Ma, T.; Pak, A. E.; Park, H.-S.; Salmonson, J. D.; Weber, C. R.; Zimmerman, G. B.; Olson, R. E.; Kline, J. L.; Leeper, R. J.

    2015-11-01

    Several options exist for improving implosion performance in the High-Foot series of ignition capsules on NIF. One option is to modify the fill tube used to supply DT to the capsule. Simulations indicate that a gold-coated glass tube may reduce implosion hydro effects and allow fielding a larger diameter tube capable of supporting the capsule, eliminating the need for the nominal tent support. A second option adds a fourth shock to the implosion history. According to simulation, this extra shock improves fuel confinement and capsule performance. A third option studies the feasibility of holding the DT fuel in liquid form in a foam layer inside the shell. This ``wetted foam'' concept, advanced by Olson, has existed for several years and may allow some control over the convergence of the capsule during implosion. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  4. Generalized environmental control and life support system computer program (G189A) configuration control. [computer subroutine libraries for shuttle orbiter analyses

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.

    1973-01-01

    A G189A simulation of the shuttle orbiter EC/lSS was prepared and used to study payload support capabilities. Two master program libraries of the G189A computer program were prepared for the NASA/JSC computer system. Several new component subroutines were added to the G189A program library and many existing subroutines were revised to improve their capabilities. A number of special analyses were performed in support of a NASA/JSC shuttle orbiter EC/LSS payload support capability study.

  5. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs.

  6. SimWorx: An ADA Distributed Simulation Application Framework Supporting HLA and DIS

    DTIC Science & Technology

    1996-12-01

    The authors emphasize that most real systems have elements of several architectural styles; these are called heterogeneous architectures. Typically...In order for frameworks to be used, understood, and maintained, Adair emphasizes they must be clearly documented. 37 2.5.2.2 Framework Use Issues...0a) cuE U)) 00 Z64 Support Category Classes I Component-Type, Max Size _ Item-Type, Max-Size Bounded Buffer ProtectedContainer +Get() +Add() +Put

  7. A First Look at the Upcoming SISO Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Crues, Edwin; Dexter, Dan; Madden, Michael; Garro, Alfred; Vankov, Alexander; Skuratovskiy, Anton; Moller, Bjorn

    2016-01-01

    Simulation is increasingly used in the space domain for several purposes. One example is analysis and engineering, from the mission level down to individual systems and subsystems. Another example is training of space crew and flight controllers. Several distributed simulations have been developed for example for docking vehicles with the ISS and for mission training, in many cases with participants from several nations. Space based scenarios are also used in the "Simulation Exploration Experience", SISO's university outreach program. We have thus realized that there is a need for a distributed simulation interoperability standard for data exchange within the space domain. Based on these experiences, SISO is developing a Space Reference FOM. Members of the product development group come from several countries and contribute experiences from projects within NASA, ESA and other organizations. Participants represent government, academia and industry. The first version will focus on handling of time and space. The Space Reference FOM will provide the following: (i) a flexible positioning system using reference frames for arbitrary bodies in space, (ii) a naming conventions for well known reference frames, (iii) definitions of common time scales, (iv) federation agreements for common types of time management with focus on time stepped simulation, and (v) support for physical entities, such as space vehicles and astronauts. The Space Reference FOM is expected to make collaboration politically, contractually and technically easier. It is also expected to make collaboration easier to manage and extend.

  8. Castable thermal insulation for use as heat shields

    NASA Technical Reports Server (NTRS)

    Mountvala, A. J.; Nakamura, H. H.; Rechter, H. L.

    1974-01-01

    Structural members supporting the afterburners of high thrust rocket engines are subjected to extreme heating, along with severe vibration and high acceleration levels during early lift-off. Chemically-bonded, castable, zircon composite foams were developed and successfully tested to meet specific, laboratory simulated lift-off conditions.

  9. How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study.

    PubMed

    Holter, Marianne T S; Johansen, Ayna; Brendryen, Håvar

    2016-06-28

    eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist's support of a working alliance, internalization of motivation, and managing lapses. We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several "counseling sessions" about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. The program supports the user's working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective.

  10. How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study

    PubMed Central

    Johansen, Ayna; Brendryen, Håvar

    2016-01-01

    Background eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. Objective We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist’s support of a working alliance, internalization of motivation, and managing lapses. Methods We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several “counseling sessions” about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. Results The program supports the user’s working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. Conclusions A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective. PMID:27354373

  11. High-pressure/high-temperature polymorphs of energetic materials by first-principles simulations

    NASA Astrophysics Data System (ADS)

    Le, Nam; Schweigert, Igor

    2017-06-01

    Energetic molecular crystals exhibit complex phase diagrams that include solid-solid phase transitions, melting, and decomposition. Sorescu and Rice have recently demonstrated that first-principles molecular dynamics (MD) simulations based on dispersion-corrected density functional theory (DFT) can capture the α to γ phase transition in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on time scales of several picoseconds. Motivated by their work, we are using DFT-based MD to model the relative stability of solid phases in several molecular crystals. In this presentation, we report simulations of pentaerythritol tetranitrate (PETN) and 2,4,6-trinitrotoluene (TNT) under high pressures and temperatures and compare them with experimentally observed polymorphs. This work was supported by the U.S. Naval Research Laboratory via the National Research Council and by the Office of Naval Research through the U.S. Naval Research Laboratory.

  12. Potential evapotranspiration and the likelihood of future drought

    NASA Technical Reports Server (NTRS)

    Rind, D.; Hansen, J.; Goldberg, R.; Rosenzweig, C.; Ruedy, R.

    1990-01-01

    The possibility that the greenhouse warming predicted by the GISS general-circulation model and other GCMs could lead to severe droughts is investigated by means of numerical simulations, with a focus on the role of potential evapotranspiration E(P). The relationships between precipitation (P), E(P), soil moisture, and vegetation changes in GCMs are discussed; the empirically derived Palmer drought-intensity index and a new supply-demand index (SDDI) based on changes in P - E(P) are described; and simulation results for the period 1960-2060 are presented in extensive tables, graphs, and computer-generated color maps. Simulations with both drought indices predict increasing drought frequency for the U.S., with effects already apparent in the 1990s and a 50-percent frequency of severe droughts by the 2050s. Analyses of arid periods during the Mesozoic and Cenozoic are shown to support the use of the SDDI in GCM drought prediction.

  13. System dynamics and simulation of LSS

    NASA Technical Reports Server (NTRS)

    Ryan, R. F.

    1978-01-01

    Large Space Structures have many unique problems arising from mission objectives and the resulting configuration. Inherent in these configurations is a strong coupling among several of the designing disciplines. In particular, the coupling between structural dynamics and control is a key design consideration. The solution to these interactive problems requires efficient and accurate analysis, simulation and test techniques, and properly planned and conducted design trade studies. The discussion presented deals with these subjects and concludes with a brief look at some NASA capabilities which can support these technology studies.

  14. Hierarchical Modelling Of Mobile, Seeing Robots

    NASA Astrophysics Data System (ADS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1990-03-01

    This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.

  15. Hierarchical modelling of mobile, seeing robots

    NASA Technical Reports Server (NTRS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1990-01-01

    This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.

  16. Assessment of the Impacts of ACLS on the ISS Life Support System Using Dynamic Simulations in V-HAB

    NASA Technical Reports Server (NTRS)

    Putz, Daniel; Olthoff, Claas; Ewert, Michael; Anderson, Molly

    2016-01-01

    The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is the Virtual Habitat (V-HAB). Based on MATLAB, V-HAB has been under development at the Institute of Astronautics of the Technical University of Munich (TUM) since 2004 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large, ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside individual modules of the ISS by splitting it into twelve distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS Simulation and several different operating modes for both ACLS and the existing ISS life support systems are studied and the impacts of ACLS on the rest of the system are determined. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to a achieve a very low CO2 concentration in the cabin atmosphere.

  17. Virtual Grower 3: A powerful decision support tool for greenhouse systems

    USDA-ARS?s Scientific Manuscript database

    Several years ago, Virtual Grower software was released to the public. Initially designed to help greenhouse growers determine heating costs and do simple simulations to figure out where heat savings could be achieved, it has slowly added features. Now, Virtual Grower can help not only identify he...

  18. Different Parameters Support Generalization and Discrimination Learning in "Drosophila" at the Flight Simulator

    ERIC Educational Resources Information Center

    Brembs, Bjorn; de Ibarra, Natalie Hempel

    2006-01-01

    We have used a genetically tractable model system, the fruit fly "Drosophila melanogaster" to study the interdependence between sensory processing and associative processing on learning performance. We investigated the influence of variations in the physical and predictive properties of color stimuli in several different operant-conditioning…

  19. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  20. Frame analysis of UNNES electric bus chassis construction using finite element method

    NASA Astrophysics Data System (ADS)

    Nugroho, Untoro; Anis, Samsudin; Kusumawardani, Rini; Khoiron, Ahmad Mustamil; Maulana, Syahdan Sigit; Irvandi, Muhammad; Mashdiq, Zia Putra

    2018-03-01

    Designing the chassis needs to be done element simulation analysis to gain chassis strength on an electric bus. The purpose of this research is to get the results of chassis simulation on an electric bus when having load use FEM (Finite element method). This research was conduct in several stages of process, such as modeling chassis by Autodesk Inventor and finite element simulation software. The frame is going to be simulated with static loading by determine fixed support and then will be given the vertical force. The fixed on the frame is clamped at both the front and rear suspensions. After the simulation based on FEM it can conclude that frame is still under elastic zone, until the frame design is safe to use.

  1. Virtual Environment Computer Simulations to Support Human Factors Engineering and Operations Analysis for the RLV Program

    NASA Technical Reports Server (NTRS)

    Lunsford, Myrtis Leigh

    1998-01-01

    The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.

  2. Asteroid Regolith Simulants: Development, Characteristics, and Testing

    NASA Astrophysics Data System (ADS)

    Britt, D. T.

    2015-12-01

    As part of a NASA Small Business Innovation Research (SBIR) award to the University of Central Florida and Deep Space Industries, we are developing a family of asteroid regolith simulants based on meteorite mineralogies but using terrestrial materials, to support NASAs exploration goals for asteroids. We are planning on developing five types of simulant based on the following meteorite types: CI-carbonaceous chondrite, CM-carbonaceous chondrite, Tagish Lake, L-ordinary chondrite, and iron. To the greatest extent reasonable (based on input costs and health/safety) we will duplicate the mineralogy, chemistry, oxidation state, hydration state, and particle size distribution found in regolith meteorites of each type. The major limitations on the fidelity of simulant will be health and safety issues for the users of the simulants. For example, much of the organic component of volatile-rich carbonaceous chondrites are in the form of Polycyclic Aromatic Hydrocarbons (PAHs). These are essentially combustion residues, possibly of complex regolith processing, with more carbon atoms than hydrogen. However, many PAHs are toxic, carcinogenic, and/or mutagenic. Several are banned in the European Union and California. This sort of material would endanger users, be impossible to distribute, and not make a useable regolith simulant. There are several reasonable, no-toxic alternatives to PAHs. We will report on the status of simulant development and the progress of our validation experiments.

  3. Mega-Scale Simulation of Multi-Layer Devices-- Formulation, Kinetics, and Visualization

    DTIC Science & Technology

    1994-07-28

    prototype code STRIDE, also initially developed under ARO support. The focus of the ARO supported research activities has been in the areas of multi ... FORTRAN -77. During its fifteen-year life- span several generations of researchers have modified the code . Due to this continual develop- ment, the...behavior. The replacement of the linear solver had no effect on the remainder of the code . We replaced the existing solver with a distributed multi -frontal

  4. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air.

    PubMed

    Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle

    2012-10-03

    Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated.

  5. A data driven approach using Takagi-Sugeno models for computationally efficient lumped floodplain modelling

    NASA Astrophysics Data System (ADS)

    Wolfs, Vincent; Willems, Patrick

    2013-10-01

    Many applications in support of water management decisions require hydrodynamic models with limited calculation time, including real time control of river flooding, uncertainty and sensitivity analyses by Monte-Carlo simulations, and long term simulations in support of the statistical analysis of the model simulation results (e.g. flood frequency analysis). Several computationally efficient hydrodynamic models exist, but little attention is given to the modelling of floodplains. This paper presents a methodology that can emulate output from a full hydrodynamic model by predicting one or several levels in a floodplain, together with the flow rate between river and floodplain. The overtopping of the embankment is modelled as an overflow at a weir. Adaptive neuro fuzzy inference systems (ANFIS) are exploited to cope with the varying factors affecting the flow. Different input sets and identification methods are considered in model construction. Because of the dual use of simplified physically based equations and data-driven techniques, the ANFIS consist of very few rules with a low number of input variables. A second calculation scheme can be followed for exceptionally large floods. The obtained nominal emulation model was tested for four floodplains along the river Dender in Belgium. Results show that the obtained models are accurate with low computational cost.

  6. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  7. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  8. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; ...

    2016-03-14

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  9. Practical Approaches to Protein Folding and Assembly

    PubMed Central

    Walters, Jad; Milam, Sara L.; Clark, A. Clay

    2009-01-01

    We describe here the use of several spectroscopies, such as fluorescence emission, circular dichroism, and differential quenching by acrylamide, in examining the equilibrium and kinetic folding of proteins. The first section regarding equilibrium techniques provides practical information for determining the conformational stability of a protein. In addition, several equilibrium-folding models are discussed, from two-state monomer to four-state homodimer, providing a comprehensive protocol for interpretation of folding curves. The second section focuses on the experimental design and interpretation of kinetic data, such as burst-phase analysis and exponential fits, used in elucidating kinetic folding pathways. In addition, simulation programs are used routinely to support folding models generated by kinetic experiments, and the fundamentals of simulations are covered. PMID:19289201

  10. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the mid-1980s, Kinetic Systems and Langley Research Center determined that high speed CAMAC (Computer Automated Measurement and Control) data acquisition systems could significantly improve Langley's ARTS (Advanced Real Time Simulation) system. The ARTS system supports flight simulation R&D, and the CAMAC equipment allowed 32 high performance simulators to be controlled by centrally located host computers. This technology broadened Kinetic Systems' capabilities and led to several commercial applications. One of them is General Atomics' fusion research program. Kinetic Systems equipment allows tokamak data to be acquired four to 15 times more rapidly. Ford Motor company uses the same technology to control and monitor transmission testing facilities.

  11. The contribution of visual and proprioceptive information to the perception of leaning in a dynamic motorcycle simulator.

    PubMed

    Lobjois, Régis; Dagonneau, Virginie; Isableu, Brice

    2016-11-01

    Compared with driving or flight simulation, little is known about self-motion perception in riding simulation. The goal of this study was to examine whether or not continuous roll motion supports the sensation of leaning into bends in dynamic motorcycle simulation. To this end, riders were able to freely tune the visual scene and/or motorcycle simulator roll angle to find a pattern that matched their prior knowledge. Our results revealed idiosyncrasy in the combination of visual and proprioceptive information. Some subjects relied more on the visual dimension, but reported increased sickness symptoms with the visual roll angle. Others relied more on proprioceptive information, tuning the direction of the visual scenery to match three possible patterns. Our findings also showed that these two subgroups tuned the motorcycle simulator roll angle in a similar way. This suggests that sustained inertially specified roll motion have contributed to the sensation of leaning in spite of the occurrence of unexpected gravito-inertial stimulation during the tilt. Several hypotheses are discussed. Practitioner Summary: Self-motion perception in motorcycle simulation is a relatively new research area. We examined how participants combined visual and proprioceptive information. Findings revealed individual differences in the visual dimension. However, participants tuned the simulator roll angle similarly, supporting the hypothesis that sustained inertially specified roll motion contributes to a leaning sensation.

  12. Simulating high spatial resolution high severity burned area in Sierra Nevada forests for California Spotted Owl habitat climate change risk assessment and management.

    NASA Astrophysics Data System (ADS)

    Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.

    2017-12-01

    Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.

  13. DeMO: An Ontology for Discrete-event Modeling and Simulation.

    PubMed

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-09-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community.

  14. DeMO: An Ontology for Discrete-event Modeling and Simulation

    PubMed Central

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-01-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114

  15. Reimplementation of the Biome-BGC model to simulate successional change.

    PubMed

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E

    2005-04-01

    Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.

  16. SUPL support for mobile devices

    NASA Astrophysics Data System (ADS)

    Narisetty, Jayanthi; Soghoyan, Arpine; Sundaramurthy, Mohanapriya; Akopian, David

    2012-02-01

    Conventional Global Positioning System (GPS) receivers operate well in open-sky environments. But their performance degrades in urban canyons, indoors and underground due to multipath, foliage, dissipation, etc. To overcome such situations, several enhancements have been suggested such as Assisted GPS (A-GPS). Using this approach, orbital parameters including ephemeris and almanac along with reference time and coarse location information are provided to GPS receivers to assist in acquisition of weak signals. To test A-GPS enabled receivers high-end simulators are used, which are not affordable by many academic institutions. This paper presents an economical A-GPS supplement for inexpensive simulators which operates on application layer. Particularly proposed solution is integrated with National Instruments' (NI) GPS Simulation Toolkit and implemented using NI's Labview environment. This A-GPS support works for J2ME and Android platforms. The communication between the simulator and the receiver is in accordance with the Secure User Plane Location (SUPL) protocol encapsulated with Radio Resource Location Protocol (RRLP) applies to Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) cellular networks.

  17. Simulation for learning and teaching procedural skills: the state of the science.

    PubMed

    Nestel, Debra; Groom, Jeffrey; Eikeland-Husebø, Sissel; O'Donnell, John M

    2011-08-01

    Simulation is increasingly used to support learning of procedural skills. Our panel was tasked with summarizing the "best evidence." We addressed the following question: To what extent does simulation support learning and teaching in procedural skills? We conducted a literature search from 2000 to 2010 using Medline, CINAHL, ERIC, and PSYCHINFO databases. Inclusion criteria were established and then data extracted from abstracts according to several categories. Although secondary sources of literature were sourced from key informants and participants at the "Research Consensus Summit: State of the Science," they were not included in the data extraction process but were used to inform discussion. Eighty-one of 1,575 abstracts met inclusion criteria. The uses of simulation for learning and teaching procedural skills were diverse. The most commonly reported simulator type was manikins (n = 17), followed by simulated patients (n = 14), anatomic simulators (eg, part-task) (n = 12), and others. For research design, most abstracts (n = 52) were at Level IV of the National Health and Medical Research Council classification (ie, case series, posttest, or pretest/posttest, with no control group, narrative reviews, and editorials). The most frequent Best Evidence Medical Education ranking was for conclusions probable (n = 37). Using the modified Kirkpatrick scale for impact of educational intervention, the most frequent classification was for modification of knowledge and/or skills (Level 2b) (n = 52). Abstracts assessed skills (n = 47), knowledge (n = 32), and attitude (n = 15) with the majority demonstrating improvements after simulation-based interventions. Studies focused on immediate gains and skills assessments were usually conducted in simulation. The current state of the science finds that simulation usually leads to improved knowledge and skills. Learners and instructors express high levels of satisfaction with the method. While most studies focus on short-term gains attained in the simulation setting, a small number support the transfer of simulation learning to clinical practice. Further study is needed to optimize the alignment of learner, instructor, simulator, setting, and simulation for learning and teaching procedural skills. Instructional design and educational theory, contextualization, transferability, accessibility, and scalability must all be considered in simulation-based education programs. More consistently, robust research designs are required to strengthen the evidence.

  18. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  19. "Economists Who Think like Ecologists": Reframing Systems Thinking in Games for Learning

    ERIC Educational Resources Information Center

    DeVane, Ben; Durga, Shree; Squire, Kurt

    2010-01-01

    Over the past several years, educators have been exploring the potential of immersive interactive simulations, or video games for education, finding that games can support the development of disciplinary knowledge, systemic thinking, the production of complex multimodal digital artifacts, and participation in affinity spaces or sites of collective…

  20. Characterizing the Preturbulence Environment for Sensor Development, New Hazard Algorithms and NASA Experimental Flight Planning

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lin, Yuh-Lang

    2004-01-01

    During the grant period, several tasks were performed in support of the NASA Turbulence Prediction and Warning Systems (TPAWS) program. The primary focus of the research was on characterizing the preturbulence environment by developing predictive tools and simulating atmospheric conditions that preceded severe turbulence. The goal of the research being to provide both dynamical understanding of conditions that preceded turbulence as well as providing predictive tools in support of operational NASA B-757 turbulence research flights. The advancements in characterizing the preturbulence environment will be applied by NASA to sensor development for predicting turbulence onboard commercial aircraft. Numerical simulations with atmospheric models as well as multi-scale observational analyses provided insights into the environment organizing turbulence in a total of forty-eight specific case studies of severe accident producing turbulence on commercial aircraft. These accidents exclusively affected commercial aircraft. A paradigm was developed which diagnosed specific atmospheric circulation systems from the synoptic scale down to the meso-y scale that preceded turbulence in both clear air and in proximity to convection. The emphasis was primarily on convective turbulence as that is what the TPAWS program is most focused on in terms of developing improved sensors for turbulence warning and avoidance. However, the dynamical paradigm also has applicability to clear air and mountain turbulence. This dynamical sequence of events was then employed to formulate and test new hazard prediction indices that were first tested in research simulation studies and then ultimately were further tested in support of the NASA B-757 turbulence research flights. The new hazard characterization algorithms were utilized in a Real Time Turbulence Model (RTTM) that was operationally employed to support the NASA B-757 turbulence research flights. Improvements in the RTTM were implemented in an effort to increase the accuracy of the operational characterization of the preturbulence environment. Additionally, the initial research necessary to create a statistical evaluation scheme for the characterization indices utilized in the RTTM was undertaken. Results of all components of this research were then published in NASA contractor reports and scientific journal papers.

  1. Fluid-Structure Interaction Modeling of Intracranial Aneurysm Hemodynamics: Effects of Different Assumptions

    NASA Astrophysics Data System (ADS)

    Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui

    2015-11-01

    Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).

  2. Simulation studies of a wide area health care network.

    PubMed Central

    McDaniel, J. G.

    1994-01-01

    There is an increasing number of efforts to install wide area health care networks. Some of these networks are being built to support several applications over a wide user base consisting primarily of medical practices, hospitals, pharmacies, medical laboratories, payors, and suppliers. Although on-line, multi-media telecommunication is desirable for some purposes such as cardiac monitoring, store-and-forward messaging is adequate for many common, high-volume applications. Laboratory test results and payment claims, for example, can be distributed using electronic messaging networks. Several network prototypes have been constructed to determine the technical problems and to assess the effectiveness of electronic messaging in wide area health care networks. Our project, Health Link, developed prototype software that was able to use the public switched telephone network to exchange messages automatically, reliably and securely. The network could be configured to accommodate the many different traffic patterns and cost constraints of its users. Discrete event simulations were performed on several network models. Canonical star and mesh networks, that were composed of nodes operating at steady state under equal loads, were modeled. Both topologies were found to support the throughput of a generic wide area health care network. The mean message delivery time of the mesh network was found to be less than that of the star network. Further simulations were conducted for a realistic large-scale health care network consisting of 1,553 doctors, 26 hospitals, four medical labs, one provincial lab and one insurer. Two network topologies were investigated: one using predominantly peer-to-peer communication, the other using client-server communication.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7949966

  3. [Walking assist robot and its clinical application].

    PubMed

    Kakou, Hiroaki; Shitama, Hideo; Kimura, Yoshiko; Nakamoto, Yoko; Furuta, Nami; Honda, Kanae; Wada, Futoshi; Hachisuka, Kenji

    2009-06-01

    The walking assist robot was developed to improve gait disturbance in patients with severe disabilities. The robot had a trunk supporter, power generator and operating arms which held patient's lower extremities and simulated walking, a control unit, biofeedback system, and a treadmill. We applied the robot-aided gait training to three patients with severe gait disturbance induced by stroke, axonal Guillan-Barré syndrome or spinal cord injury, and the walking assist robot turned out to be effective in improving the gait disturbance.

  4. Software Architecture of the NASA Shuttle Ground Operations Simulator - SGOS

    NASA Technical Reports Server (NTRS)

    Cook, Robert P.; Lostroscio, Charles T.

    2005-01-01

    The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. It is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,000 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

  5. Software Architecture of the NASA Shuttle Ground Operations Simulator--SGOS

    NASA Technical Reports Server (NTRS)

    Cook Robert P.; Lostroscio, Charles T.

    2005-01-01

    The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. it is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,00 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

  6. Acute severe asthma: performance of ventilator at simulated altitude.

    PubMed

    Tourtier, Jean-Pierre; Forsans, Emma; Leclerc, Thomas; Libert, Nicolas; Ramsang, Solange; Tazarourte, Karim; Man, Michel; Borne, Marc

    2011-04-01

    Exacerbation of asthma can be seen during air transport. Severe patients, not responding to conventional therapy, require ventilator support. We evaluated the performance of two transport ventilators, built with turbine technology, the T-birdVSO2 and the LTV-1000, for use during aeromedical evacuation of acute severe asthma. We have assessed the ability of both the ventilators to deliver to an acute severe asthma model a tidal volume (Vt) set at different simulated altitudes, by changing the ambient air pressure. The simulated cabin altitudes were 1500, 2500, and 3000 m (decompression chamber). Vt was set at 700 and 400 ml in an acute severe asthma lung model. Comparisons of the preset with the actual measured values were accomplished using a t-test. Comparisons between the actual delivered Vt and set Vt showed a significant difference starting at 1500 m for both the ventilators. The T-birdVSO2 showed a decrease in the volume delivered, with a negative variation of more than 10% compared with the Vt set. The LTV-1000 showed mostly an increase in the volume delivered. The delivered Vt remained within 10% of the set Vt. The accuracy of Vt delivery was superior with the LTV-1000 than with the T-birdVSO2, but the higher delivered Vt of the LTV-1000 are likely to be more harmful than lower delivered Vt of the T-birdVSO2.

  7. Modelling of the Human Knee Joint Supported by Active Orthosis

    NASA Astrophysics Data System (ADS)

    Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.

    2018-02-01

    The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  8. Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2017-03-01

    The computational framework INF&RNO (INtegrated Fluid & paRticle simulatioN cOde) allows for fast and accurate modeling, in 2D cylindrical geometry, of several aspects of laser-plasma accelerator physics. In this paper, we present some of the new features of the code, including the quasistatic Particle-In-Cell (PIC)/fluid modality, and describe using different computational grids and time steps for the laser envelope and the plasma wake. These and other features allow for a speedup of several orders of magnitude compared to standard full 3D PIC simulations while still retaining physical fidelity. INF&RNO is used to support the experimental activity at the BELLA Center, and we will present an example of the application of the code to the laser-plasma accelerator staging experiment.

  9. Application of statistical distribution theory to launch-on-time for space construction logistic support

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  10. Electron hole tracking PIC simulation

    NASA Astrophysics Data System (ADS)

    Zhou, Chuteng; Hutchinson, Ian

    2016-10-01

    An electron hole is a coherent BGK mode solitary wave. Electron holes are observed to travel at high velocities relative to bulk plasmas. The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code with fully kinetic ions. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. The electron hole signal is detected and the simulation domain moves by a carefully designed feedback control law to follow its propagation. This approach has the advantage that the length of the simulation domain can be significantly reduced to several times the hole width, which makes high resolution simulations tractable. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and energization effects we call ``jetting''. The work was partially supported by the NSF/DOE Basic Plasma Science Partnership under Grant DE-SC0010491. Computer simulations were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki.

  11. Differential maneuvering simulator data reduction and analysis software

    NASA Technical Reports Server (NTRS)

    Beasley, G. P.; Sigman, R. S.

    1972-01-01

    A multielement data reduction and analysis software package has been developed for use with the Langley differential maneuvering simulator (DMS). This package, which has several independent elements, was developed to support all phases of DMS aircraft simulation studies with a variety of both graphical and tabular information. The overall software package is considered unique because of the number, diversity, and sophistication of the element programs available for use in a single study. The purpose of this paper is to discuss the overall DMS data reduction and analysis package by reviewing the development of the various elements of the software, showing typical results that can be obtained, and discussing how each element can be used.

  12. Reversible Parallel Discrete-Event Execution of Large-scale Epidemic Outbreak Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over themore » $$\\mu$$sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene / P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.« less

  13. Influence of Ionization and Beam Quality on Interaction of TW-Peak CO2 Laser with Hydrogen Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman

    3D numerical simulations of the interaction of a powerful CO2 laser with hydrogen jets demonstrating the role of ionization and laser beam quality are presented. Simulations are performed in support of the plasma wakefield accelerator experiments being conducted at the BNL Accelerator Test Facility (ATF). The CO2 laser at BNL ATF has several potential advantages for laser wakefield acceleration compared to widely used solid-state lasers. SPACE, a parallel relativistic Particle-in-Cell code, developed at SBU and BNL, has been used in these studies. A novelty of the code is its set of efficient atomic physics algorithms that compute ionization and recombinationmore » rates on the grid and transfer them to particles. The primary goal of the initial BNL experiments was to characterize the plasma density by measuring the sidebands in the spectrum of the probe laser. Simulations, that resolve hydrogen ionization and laser spectra, help explain several trends that were observed in the experiments.« less

  14. Incorrect support and missing center tolerances of phasing algorithms

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Steinbrener, Jan; ...

    2010-01-01

    In x-ray diffraction microscopy, iterative algorithms retrieve reciprocal space phase information, and a real space image, from an object's coherent diffraction intensities through the use of a priori information such as a finite support constraint. In many experiments, the object's shape or support is not well known, and the diffraction pattern is incompletely measured. We describe here computer simulations to look at the effects of both of these possible errors when using several common reconstruction algorithms. Overly tight object supports prevent successful convergence; however, we show that this can often be recognized through pathological behavior of the phase retrieval transfermore » function. Dynamic range limitations often make it difficult to record the central speckles of the diffraction pattern. We show that this leads to increasing artifacts in the image when the number of missing central speckles exceeds about 10, and that the removal of unconstrained modes from the reconstructed image is helpful only when the number of missing central speckles is less than about 50. In conclusion, this simulation study helps in judging the reconstructability of experimentally recorded coherent diffraction patterns.« less

  15. Online model evaluation of large-eddy simulations covering Germany with a horizontal resolution of 156 m

    NASA Astrophysics Data System (ADS)

    Hansen, Akio; Ament, Felix; Lammert, Andrea

    2017-04-01

    Large-eddy simulations have been performed since several decades, but due to computational limits most studies were restricted to small domains or idealised initial-/boundary conditions. Within the High definition clouds and precipitation for advancing climate prediction (HD(CP)2) project realistic weather forecasting like LES simulations were performed with the newly developed ICON LES model for several days. The domain covers central Europe with a horizontal resolution down to 156 m. The setup consists of more than 3 billion grid cells, by what one 3D dump requires roughly 500 GB. A newly developed online evaluation toolbox was created to check instantaneously for realistic model simulations. The toolbox automatically combines model results with observations and generates several quicklooks for various variables. So far temperature-/humidity profiles, cloud cover, integrated water vapour, precipitation and many more are included. All kind of observations like aircraft observations, soundings or precipitation radar networks are used. For each dataset, a specific module is created, which allows for an easy handling and enhancement of the toolbox. Most of the observations are automatically downloaded from the Standardized Atmospheric Measurement Database (SAMD). The evaluation tool should support scientists at monitoring computational costly model simulations as well as to give a first overview about model's performance. The structure of the toolbox as well as the SAMD database are presented. Furthermore, the toolbox was applied on an ICON LES sensitivity study, where example results are shown.

  16. Evaluation of the Community Multi-scale Air Quality (CMAQ) ...

    EPA Pesticide Factsheets

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Protection Agency develops the CMAQ model and periodically releases new versions of the model that include bug fixes and various other improvements to the modeling system. In the fall of 2015, CMAQ version 5.1 was released. This new version of CMAQ will contain important bug fixes to several issues that were identified in CMAQv5.0.2 and additionally include updates to other portions of the code. Several annual, and numerous episodic, CMAQv5.1 simulations were performed to assess the impact of these improvements on the model results. These results will be presented, along with a base evaluation of the performance of the CMAQv5.1 modeling system against available surface and upper-air measurements available during the time period simulated. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, proces

  17. Structural Dynamics Testing of Advanced Stirling Convertor Components

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  18. Multiple Exposure of Rendezvous Docking Simulator - Gemini Program

    NASA Image and Video Library

    1964-02-07

    Multiple exposure of Rendezvous Docking Simulator. Francis B. Smith, described the simulator as follows: The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. This figure illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft. -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203 Francis B. Smith, Simulators for Manned Space Research, Paper presented at the 1966 IEEE International convention, March 21-25, 1966.

  19. SDLDS--System for Digital Logic Design and Simulation

    ERIC Educational Resources Information Center

    Stanisavljevic, Z.; Pavlovic, V.; Nikolic, B.; Djordjevic, J.

    2013-01-01

    This paper presents the basic features of a software system developed to support the teaching of digital logic, as well as the experience of using it in the Digital Logic course taught at the School of Electrical Engineering, University of Belgrade, Serbia. The system has been used for several years, both by students for self-learning and…

  20. A Generic, Agent-Based Framework for Design and Development of UAV/UCAV Control Systems

    DTIC Science & Technology

    2004-02-27

    37 EID Principles .................................................................................................. 38 Experimental Support for EID...Year 2 Interface design and implementation; creation of the simulation environment; Year 3 Demonstration of the concept and experimental evaluation...UAV/UCAV control in which operators can experience high cognitive workloads. There are several ways in which systems can construct user models by

  1. Plug-and -Play Model Architecture and Development Environment for Powertrain/Propulsion System - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Aymeric

    2013-02-01

    Several tools already exist to develop detailed plant model, including GT-Power, AMESim, CarSim, and SimScape. The objective of Autonomie is not to provide a language to develop detailed models; rather, Autonomie supports the assembly and use of models from design to simulation to analysis with complete plug-and-play capabilities. Autonomie provides a plug-and-play architecture to support this ideal use of modeling and simulation for math-based automotive control system design. Models in the standard format create building blocks, which are assembled at runtime into a simulation model of a vehicle, system, subsystem, or component to simulate. All parts of the graphical usermore » interface (GUI) are designed to be flexible to support architectures, systems, components, and processes not yet envisioned. This allows the software to be molded to individual uses, so it can grow as requirements and technical knowledge expands. This flexibility also allows for implementation of legacy code, including models, controller code, processes, drive cycles, and post-processing equations. A library of useful and tested models and processes is included as part of the software package to support a full range of simulation and analysis tasks, immediately. Autonomie also includes a configuration and database management front end to facilitate the storage, versioning, and maintenance of all required files, such as the models themselves, the model’s supporting files, test data, and reports. During the duration of the CRADA, Argonne has worked closely with GM to implement and demonstrate each one of their requirements. A use case was developed by GM for every requirement and demonstrated by Argonne. Each of the new features were verified by GM experts through a series of Gate. Once all the requirements were validated they were presented to the directors as part of GM Gate process.« less

  2. Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1963-10-24

    Reduced Gravity Walking Simulator located in the hangar at Langley Research Center. The initial version of this simulator was located inside the hanger. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil wrote in his paper Discussion of Existing and Planned Simulators for Space Research, When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject' s weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 377 A.W. Vigil, Discussion of Existing and Planned Simulators for Space Research, Paper presented at Conference on the Role of Simulation in Space Technology, Blacksburg, VA, August 17-21, 1964.

  3. Special "space" suit for the Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1965-05-05

    Special "space" suit for the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil described the purpose of the simulator in his paper "Discussion of Existing and Planned Simulators for Space Research," "When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 377; A.W. Vigil, "Discussion of Existing and Planned Simulators for Space Research," Paper presented at Conference on the Role of Simulation in Space Technology," Blacksburg, VA, August 17-21, 1964.

  4. Astronaut Walt Cunningham on the Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1965-06-24

    Astronaut Walt Cunningham on the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil described the purpose of the simulator in his paper "Discussion of Existing and Planned Simulators for Space Research," "When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 377; A.W. Vigil, "Discussion of Existing and Planned Simulators for Space Research," Paper presented at Conference on the Role of Simulation in Space Technology," Blacksburg, VA, August 17-21, 1964.

  5. Reduced Gravity Walking Simulator

    NASA Image and Video Library

    2012-09-07

    Test subject wearing the pressurized "space" suit for the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil described the purpose of the simulator in his paper "Discussion of Existing and Planned Simulators for Space Research," "When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 377; A.W. Vigil, "Discussion of Existing and Planned Simulators for Space Research," Paper presented at Conference on the Role of Simulation in Space Technology," Blacksburg, VA, August 17-21, 1964.

  6. METC CFD simulations of hot gas filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of themore » vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.« less

  7. Optimization of life support systems and their systems reliability

    NASA Technical Reports Server (NTRS)

    Fan, L. T.; Hwang, C. L.; Erickson, L. E.

    1971-01-01

    The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.

  8. Attribution of soil information associated with modeling background clutter

    NASA Astrophysics Data System (ADS)

    Mason, George; Melloh, Rae

    2006-05-01

    This paper examines the attribution of data fields required to generate high resolution soil profiles for support of Computational Test Bed (CTB) used for countermine research. The countermine computational test bed is designed to realistically simulate the geo-environment to support the evaluation of sensors used to locate unexploded ordnance. The goal of the CTB is to derive expected moisture, chemical compounds, and measure heat migration over time, from which we expect to optimize sensor performance. Several tests areas were considered for the collection of soils data to populate the CTB. Collection of bulk soil properties has inherent spatial resolution limits. Novel techniques are therefore required to populate a high resolution model. This paper presents correlations between spatial variability in texture as related to hydraulic permeability and heat transfer properties of the soil. The extracted physical properties are used to exercise models providing a signature of subsurface media and support the simulation of detection by various sensors of buried and surface ordnance.

  9. Inconsistency as a diagnostic tool in a society of intelligent agents.

    PubMed

    McShane, Marjorie; Beale, Stephen; Nirenburg, Sergei; Jarrell, Bruce; Fantry, George

    2012-07-01

    To use the detection of clinically relevant inconsistencies to support the reasoning capabilities of intelligent agents acting as physicians and tutors in the realm of clinical medicine. We are developing a cognitive architecture, OntoAgent, that supports the creation and deployment of intelligent agents capable of simulating human-like abilities. The agents, which have a simulated mind and, if applicable, a simulated body, are intended to operate as members of multi-agent teams featuring both artificial and human agents. The agent architecture and its underlying knowledge resources and processors are being developed in a sufficiently generic way to support a variety of applications. We show how several types of inconsistency can be detected and leveraged by intelligent agents in the setting of clinical medicine. The types of inconsistencies discussed include: test results not supporting the doctor's hypothesis; the results of a treatment trial not supporting a clinical diagnosis; and information reported by the patient not being consistent with observations. We show the opportunities afforded by detecting each inconsistency, such as rethinking a hypothesis, reevaluating evidence, and motivating or teaching a patient. Inconsistency is not always the absence of the goal of consistency; rather, it can be a valuable trigger for further exploration in the realm of clinical medicine. The OntoAgent cognitive architecture, along with its extensive suite of knowledge resources an processors, is sufficient to support sophisticated agent functioning such as detecting clinically relevant inconsistencies and using them to benefit patient-centered medical training and practice. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air

    PubMed Central

    2012-01-01

    Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated. PMID:23031537

  11. Extracorporeal Membrane Oxygenation for End-Stage Interstitial Lung Disease With Secondary Pulmonary Hypertension at Rest and Exercise: Insights From Simulation Modeling.

    PubMed

    Chicotka, Scott; Burkhoff, Daniel; Dickstein, Marc L; Bacchetta, Matthew

    Interstitial lung disease (ILD) represents a collection of lung disorders with a lethal trajectory with few therapeutic options with the exception of lung transplantation. Various extracorporeal membrane oxygenation (ECMO) configurations have been used for bridge to transplant (BTT), yet no optimal configuration has been clearly demonstrated. Using a cardiopulmonary simulation, we assessed different ECMO configurations for patients with end-stage ILD to assess the physiologic deficits and help guide the development of new long-term pulmonary support devices. A cardiopulmonary ECMO simulation was created, and changes in hemodynamics and blood gases were compared for different inflow and outflow anatomic locations and for different sweep gas and blood pump flow rates. The system simulated the physiologic response of patients with severe ILD at rest and during exercise with central ECMO, peripheral ECMO, and with no ECMO. The output parameters were total cardiac output (CO), mixed venous oxygen (O2) saturation, arterial pH, and O2 delivery (DO2)/O2 utilization (VO2) at different levels of exercise. The model described the physiologic state of progressive ILD and showed the relative effects of using various ECMO configurations to support them. It elucidated the optimal device configurations and required physiologic pump performance and provided insight into the physiologic demands of exercise in ILD patients. The simulation program was able to model the pathophysiologic state of progressive ILD with PH and demonstrate how mechanical support devices can be implemented to improve cardiopulmonary function at rest and during exercise. The information generated from simulation can be used to optimize ECMO configuration selection for BTT patients and provide design guidance for new devices to better meet the physiologic demands of exercise associated with normal activities of daily living.

  12. Modeling languages for biochemical network simulation: reaction vs equation based approaches.

    PubMed

    Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya

    2010-01-01

    Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.

  13. High-resolution, detailed simulations of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, Daniel

    2015-11-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3-D) character of the flow, accurately modeling NIF implosions remains at the edge of current radiation hydrodynamics simulation capabilities. This talk describes the current state of progress of 3-D, high-resolution, capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Most importantly, it is found that a single, standard simulation methodology appears adequate to model both implosion types and gives confidence that such a model can be used to guide future implosion designs toward ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. The effects of hillslope-scale variability in burn severity on post-fire sediment delivery

    NASA Astrophysics Data System (ADS)

    Quinn, Dylan; Brooks, Erin; Dobre, Mariana; Lew, Roger; Robichaud, Peter; Elliot, William

    2017-04-01

    With the increasing frequency of wildfire and the costs associated with managing the burned landscapes, there is an increasing need for decision support tools that can be used to assess the effectiveness of targeted post-fire management strategies. The susceptibility of landscapes to post-fire soil erosion and runoff have been closely linked with the severity of the wildfire. Wildfire severity maps are often spatial complex and largely dependent upon total vegetative biomass, fuel moisture patterns, direction of burn, wind patterns, and other factors. The decision to apply targeted treatment to a specific landscape and the amount of resources dedicated to treating a landscape should ideally be based on the potential for excessive sediment delivery from a particular hillslope. Recent work has suggested that the delivery of sediment to a downstream water body from a hillslope will be highly influenced by the distribution of wildfire severity across a hillslope and that models that do not capture this hillslope scale variability would not provide reliable sediment and runoff predictions. In this project we compare detailed (10 m) grid-based model predictions to lumped and semi-lumped hillslope approaches where hydrologic parameters are fixed based on hillslope scale averaging techniques. We use the watershed scale version of the process-based Watershed Erosion Prediction Projection (WEPP) model and its GIS interface, GeoWEPP, to simulate the fire impacts on runoff and sediment delivery using burn severity maps at a watershed scale. The flowpath option in WEPP allows for the most detail representation of wildfire severity patterns (10 m) but depending upon the size of the watershed, simulations are time consuming and computational demanding. The hillslope version is a simpler approach which assigns wildfire severity based on the severity level that is assigned to the majority of the hillslope area. In the third approach we divided hillslopes in overland flow elements (OFEs) and assigned representative input values on a finer scale within single hillslopes. Each of these approaches were compared for several large wildfires in the mountainous ranges of central Idaho, USA. Simulations indicated that predictions based on lumped hillslope modeling over-predict sediment transport by as much as 4.8x in areas of high to moderate burn severity. Annual sediment yield within the simulated watersheds ranged from 1.7 tonnes/ha to 6.8 tonnes/ha. The disparity between simulated sediment yield with these approaches was attributed to hydrologic connectivity of the burn patterns within the hillslope. High infiltration rates between high severity sites can greatly reduce the delivery of sediment. This research underlines the importance of accurately representing soil burn severity along individual hillslopes in hydrologic models and the need for modeling approaches to capture this variability to reliability simulate soil erosion.

  15. Avoiding the parametric roll

    NASA Astrophysics Data System (ADS)

    Acomi, Nicoleta; Ancuţa, Cristian; Andrei, Cristian; Boştinǎ, Alina; Boştinǎ, Aurel

    2016-12-01

    Ships are mainly built to sail and transport cargo at sea. Environmental conditions and state of the sea are communicated to vessels through periodic weather forecasts. Despite officers being aware of the sea state, their sea time experience is a decisive factor when the vessel encounters severe environmental conditions. Another important factor is the loading condition of the vessel, which triggers different behaviour in similar marine environmental conditions. This paper aims to analyse the behaviour of a port container vessel in severe environmental conditions and to estimate the potential conditions of parametric roll resonance. Octopus software simulation is employed to simulate vessel motions under certain conditions of the sea, with possibility to analyse the behaviour of ships and the impact of high waves on ships due to specific wave encounter situations. The study should be regarded as a supporting tool during the decision making process.

  16. ModFossa: A library for modeling ion channels using Python.

    PubMed

    Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C

    2016-06-01

    The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.

  17. Hydrologic Simulation in Mediterranean flood prone Watersheds using high-resolution quality data

    NASA Astrophysics Data System (ADS)

    Eirini Vozinaki, Anthi; Alexakis, Dimitrios; Pappa, Polixeni; Tsanis, Ioannis

    2015-04-01

    Flooding is a significant threat causing lots of inconveniencies in several societies, worldwide. The fact that the climatic change is already happening, increases the flooding risk, which is no longer a substantial menace to several societies and their economies. The improvement of spatial-resolution and accuracy of the topography and land use data due to remote sensing techniques could provide integrated flood inundation simulations. In this work hydrological analysis of several historic flood events in Mediterranean flood prone watersheds (island of Crete/Greece) takes place. Satellite images of high resolution are elaborated. A very high resolution (VHR) digital elevation model (DEM) is produced from a GeoEye-1 0.5-m-resolution satellite stereo pair and is used for floodplain management and mapping applications such as watershed delineation and river cross-section extraction. Sophisticated classification algorithms are implemented for improving Land Use/ Land Cover maps accuracy. In addition, soil maps are updated with means of Radar satellite images. The above high-resolution data are innovatively used to simulate and validate several historical flood events in Mediterranean watersheds, which have experienced severe flooding in the past. The hydrologic/hydraulic models used for flood inundation simulation in this work are HEC-HMS and HEC-RAS. The Natural Resource Conservation Service (NRCS) curve number (CN) approach is implemented to account for the effect of LULC and soil on the hydrologic response of the catchment. The use of high resolution data provides detailed validation results and results of high precision, accordingly. Furthermore, the meteorological forecasting data, which are also combined to the simulation model results, manage the development of an integrated flood forecasting and early warning system tool, which is capable of confronting or even preventing this imminent risk. The research reported in this paper was fully supported by the "ARISTEIA II" Action ("REINFORCE" program) of the "Operational Education and Life Long Learning programme" and is co-funded by the European Social Fund (ESF) and National Resources.

  18. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    NASA Astrophysics Data System (ADS)

    Boytsov, A. Yu.; Bulychev, A. A.

    2018-04-01

    Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  19. PSI-Center Validation Studies

    NASA Astrophysics Data System (ADS)

    Nelson, B. A.; Akcay, C.; Glasser, A. H.; Hansen, C. J.; Jarboe, T. R.; Marklin, G. J.; Milroy, R. D.; Morgan, K. D.; Norgaard, P. C.; Shumlak, U.; Sutherland, D. A.; Victor, B. S.; Sovinec, C. R.; O'Bryan, J. B.; Held, E. D.; Ji, J.-Y.; Lukin, V. S.

    2014-10-01

    The Plasma Science and Innovation Center (PSI-Center - http://www.psicenter.org) supports collaborating validation platform experiments with 3D extended MHD simulations using the NIMROD, HiFi, and PSI-TET codes. Collaborators include the Bellan Plasma Group (Caltech), CTH (Auburn U), HBT-EP (Columbia), HIT-SI (U Wash-UW), LTX (PPPL), MAST (Culham), Pegasus (U Wisc-Madison), SSX (Swarthmore College), TCSU (UW), and ZaP/ZaP-HD (UW). The PSI-Center is exploring application of validation metrics between experimental data and simulations results. Biorthogonal decomposition (BOD) is used to compare experiments with simulations. BOD separates data sets into spatial and temporal structures, giving greater weight to dominant structures. Several BOD metrics are being formulated with the goal of quantitive validation. Results from these simulation and validation studies, as well as an overview of the PSI-Center status will be presented.

  20. Diffusive molecular dynamics simulations of lithiation of silicon nanopillars

    NASA Astrophysics Data System (ADS)

    Mendez, J. P.; Ponga, M.; Ortiz, M.

    2018-06-01

    We report diffusive molecular dynamics simulations concerned with the lithiation of Si nano-pillars, i.e., nano-sized Si rods held at both ends by rigid supports. The duration of the lithiation process is of the order of milliseconds, well outside the range of molecular dynamics but readily accessible to diffusive molecular dynamics. The simulations predict an alloy Li15Si4 at the fully lithiated phase, exceedingly large and transient volume increments up to 300% due to the weakening of Sisbnd Si iterations, a crystalline-to-amorphous-to-lithiation phase transition governed by interface kinetics, high misfit strains and residual stresses resulting in surface cracks and severe structural degradation in the form of extensive porosity, among other effects.

  1. User modeling techniques for enhanced usability of OPSMODEL operations simulation software

    NASA Technical Reports Server (NTRS)

    Davis, William T.

    1991-01-01

    The PC based OPSMODEL operations software for modeling and simulation of space station crew activities supports engineering and cost analyses and operations planning. Using top-down modeling, the level of detail required in the data base can be limited to being commensurate with the results required of any particular analysis. To perform a simulation, a resource environment consisting of locations, crew definition, equipment, and consumables is first defined. Activities to be simulated are then defined as operations and scheduled as desired. These operations are defined within a 1000 level priority structure. The simulation on OPSMODEL, then, consists of the following: user defined, user scheduled operations executing within an environment of user defined resource and priority constraints. Techniques for prioritizing operations to realistically model a representative daily scenario of on-orbit space station crew activities are discussed. The large number of priority levels allows priorities to be assigned commensurate with the detail necessary for a given simulation. Several techniques for realistic modeling of day-to-day work carryover are also addressed.

  2. HiFi-MBQC High Fidelitiy Measurement-Based Quantum Computing using Superconducting Detectors

    DTIC Science & Technology

    2016-04-04

    superconducting nanowire single photon detectors (SNSPDs) which allowed support of quantum photonics experiments leading to 14 peer-reviewed...sampling, and several other areas. 15. SUBJECT TERMS EOARD, photonics, cryostat, superconducting nanowire , SNSPD 16. SECURITY CLASSIFICATION OF: 17...quantum simulations. The main budget contribution was dedicated to develop superconducting nanowire detectors with efficiencies above 93% at telecom

  3. A Method for Increasing the Training Effectiveness of Marine Corps Tactical Exercises: A Pilot Study.

    ERIC Educational Resources Information Center

    Rocklyn, Eugene H.; And Others

    Methods for better utilizing simulated combat systems for training officers are required by the Marine Corps to ensure efficient acquisition of combat decision-making skills. In support of this requirement, a review and analysis of several combat training systems helped to identify a set of major training problems. These included the small number…

  4. Terrestrial implications of mathematical modeling developed for space biomedical research

    NASA Technical Reports Server (NTRS)

    Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini

    1988-01-01

    This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.

  5. Supervising simulations with the Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Carenton, Nicolas; Denvil, Sebastien

    2015-04-01

    At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of High Performance Computing (HPC) environments spread throughout France. The IPSL's simulation execution runtime is called libIGCM (library for IPSL Global Climate Modeling group). libIGCM has recently been enhanced so as to support realtime operational use cases. Such use cases include simulation monitoring, data publication, environment metrics collection, automated simulation control … etc. At the core of this enhancement is the Prodiguer messaging platform. libIGCM now emits information, in the form of messages, for remote processing at IPSL servers in Paris. The remote message processing takes several forms, for example: 1. Persisting message content to database(s); 2. Notifying an operator of changes in a simulation's execution status; 3. Launching rollback jobs upon simulation failure; 4. Dynamically updating controlled vocabularies; 5. Notifying downstream applications such as the Prodiguer web portal; We will describe how the messaging platform has been implemented from a technical perspective and demonstrate the Prodiguer web portal receiving realtime notifications.

  6. Apollo 1 Astronaut Roger Chaffee

    NASA Image and Video Library

    1965-11-17

    Astronaut Roger Chaffee on the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil, described the simulator as follows: "When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 377; A.W. Vigil, "Discussion of Existing and Planned Simulators for Space Research," Paper presented at Conference on the Role of Simulation in Space Technology," Blacksburg, VA, August 17-21, 1964.

  7. Beam response analysis of moving vehicle with half car modeling

    NASA Astrophysics Data System (ADS)

    Badriyah, A. N.; Arifianto, D.; Susatio, Y.

    2016-11-01

    There were several tragedies concerning damages of bridge which seem to be sooner than the predicted period. One of hypothesis in this situation is an addition of vibration caused by long vehicle such as super long truck which has huge force transferred into the bridge and its long body causes more vibration due to phase difference of front and rear tire. The selected method which is used in this problem is using a simulation for modeling a bridge- vehicle system using half car vehicle model. The simulation is done using ANSYS Workbench 15.0 with some variation such us the thickness of beam and its supports. There are 3 kind of variation used in the thickness variety which are 2 m, 1 m, and 0.5 m. While in supports variation, we have fixed support, knife-edge support, and slider support. The results show that there is addition of vibration caused by long vehicle. It is proved by an oscillation which is showed in every response of beam's total deformation. Highest total deformation is achieved in slider support beam of 0.5 thicknesses, 1.08 mm in 1.12 second. First ripple seen in responses is at 0.84 second. Meanwhile, response of knife-edge and fixed support beam show a similarity. The ripple in this situation is caused by beat modulation from the front and rear tire.

  8. Large Eddy Simulation of a Supercritical Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi

    2017-11-01

    Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.

  9. Progress Towards Fuselage Drag Reduction via Active Flow Control: A Combined CFD and Experimental Effort

    NASA Technical Reports Server (NTRS)

    Schaeffler, Norman W.; Allan, Brian G.; Lienard, Caroline; LePape, Arnaud

    2010-01-01

    A combined computational and experimental effort has been undertaken to study fuselage drag reduction on a generic, non-proprietary rotorcraft fuselage by the application of active ow control. Fuselage drag reduction is an area of research interest to both the United States and France and this area is being worked collaboratively as a task under the United States/France Memorandum of Agreement on Helicopter Aeromechanics. In the first half of this task, emphasis is placed on the US generic fuselage, the ROBIN-mod7, with the experimental work being conducted on the US side and complementary US and French CFD analysis of the baseline and controlled cases. Fuselage simulations were made using Reynolds-averaged Navier-Stokes ow solvers and with multiple turbulence models. Comparisons were made to experimental data for numerical simulations of the isolated fuselage and for the fuselage as installed in the tunnel, which includes modeling of the tunnel contraction, walls, and support fairing. The numerical simulations show that comparisons to the experimental data are in good agreement when the tunnel and model support are included. The isolated fuselage simulations compare well to each other, however, there is a positive shift in the centerline pressure when compared to the experiment. The computed flow separation locations on the rear ramp region had only slight differences with and without the tunnel walls and model support. For the simulations, the flow control slots were placed at several locations around the flow separation lines as a series of eight slots that formed a nearly continuous U-shape. Results from the numerical simulations resulted in an estimated 35% fuselage drag reduction from a steady blowing flow control configuration and a 26% drag reduction for unsteady zero-net-mass flow control configuration. Simulations with steady blowing show a delayed flow separation at the rear ramp of the fuselage that increases the surface pressure acting on the ramp, thus decreasing the overall fuselage pressure drag.

  10. SBRML: a markup language for associating systems biology data with models.

    PubMed

    Dada, Joseph O; Spasić, Irena; Paton, Norman W; Mendes, Pedro

    2010-04-01

    Research in systems biology is carried out through a combination of experiments and models. Several data standards have been adopted for representing models (Systems Biology Markup Language) and various types of relevant experimental data (such as FuGE and those of the Proteomics Standards Initiative). However, until now, there has been no standard way to associate a model and its entities to the corresponding datasets, or vice versa. Such a standard would provide a means to represent computational simulation results as well as to frame experimental data in the context of a particular model. Target applications include model-driven data analysis, parameter estimation, and sharing and archiving model simulations. We propose the Systems Biology Results Markup Language (SBRML), an XML-based language that associates a model with several datasets. Each dataset is represented as a series of values associated with model variables, and their corresponding parameter values. SBRML provides a flexible way of indexing the results to model parameter values, which supports both spreadsheet-like data and multidimensional data cubes. We present and discuss several examples of SBRML usage in applications such as enzyme kinetics, microarray gene expression and various types of simulation results. The XML Schema file for SBRML is available at http://www.comp-sys-bio.org/SBRML under the Academic Free License (AFL) v3.0.

  11. Parallel network simulations with NEURON.

    PubMed

    Migliore, M; Cannia, C; Lytton, W W; Markram, Henry; Hines, M L

    2006-10-01

    The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2,000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored.

  12. Light scatter on the surface of AcrySof intraocular lenses: part II. Analysis of lenses following hydrolytic stability testing.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David

    2008-01-01

    To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.

  13. Parallel Network Simulations with NEURON

    PubMed Central

    Migliore, M.; Cannia, C.; Lytton, W.W; Markram, Henry; Hines, M. L.

    2009-01-01

    The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored. PMID:16732488

  14. Three-Dimensional Model for Preservation and Restoration of Architectural Heritage

    NASA Technical Reports Server (NTRS)

    Marchis, Elena

    2011-01-01

    Thc aim of the research will be to create a model, three-dimensional mathematical. implementation. consultation and assistance to "large" restoration projects that will assist the structural analysis, allowing easier display of dynamic strain. analysis and lighting noise. It could also be a valuable tool for decision support. therefore. may simulate several possible scenarios for intervention, This model appears therefore an excellent support for recovering. ordering and monitoring information about materials and data (stage of restoration. photographs. sampling points. results of diagnostic tests, etc.) collected dynamically during the "life" of the cultural heritage. allowing to document its complete history

  15. Applications of AN OO Methodology and Case to a Daq System

    NASA Astrophysics Data System (ADS)

    Bee, C. P.; Eshghi, S.; Jones, R.; Kolos, S.; Magherini, C.; Maidantchik, C.; Mapelli, L.; Mornacchi, G.; Niculescu, M.; Patel, A.; Prigent, D.; Spiwoks, R.; Soloviev, I.; Caprini, M.; Duval, P. Y.; Etienne, F.; Ferrato, D.; Le van Suu, A.; Qian, Z.; Gaponenko, I.; Merzliakov, Y.; Ambrosini, G.; Ferrari, R.; Fumagalli, G.; Polesello, G.

    The RD13 project has evaluated the use of the Object Oriented Information Engineering (OOIE) method during the development of several software components connected to the DAQ system. The method is supported by a sophisticated commercial CASE tool (Object Management Workbench) and programming environment (Kappa) which covers the full life-cycle of the software including model simulation, code generation and application deployment. This paper gives an overview of the method, CASE tool, DAQ components which have been developed and we relate our experiences with the method and tool, its integration into our development environment and the spiral lifecycle it supports.

  16. Widespread, Very Heavy Precipitation Events in Contemporary and Scenario Summer Climates from NARCCAP Simulations

    NASA Astrophysics Data System (ADS)

    Kawazoe, S.; Gutowski, W. J., Jr.

    2015-12-01

    We analyze the ability of regional climate models (RCMs) to simulate very heavy daily precipitation and supporting processes for both contemporary and future-scenario simulations during summer (JJA). RCM output comes from North American Regional Climate Change Assessment Program (NARCCAP) simulations, which are all run at a spatial resolution of 50 km. Analysis focuses on the upper Mississippi basin for summer, between 1982-1998 for the contemporary climate, and 2052-2068 during the scenario climate. We also compare simulated precipitation and supporting processes with those obtained from observed precipitation and reanalysis atmospheric states. Precipitation observations are from the University of Washington (UW) and the Climate Prediction Center (CPC) gridded dataset. Utilizing two observational datasets helps determine if any uncertainties arise from differences in precipitation gridding schemes. Reanalysis fields come from the North American Regional Reanalysis. The NARCCAP models generally reproduce well the precipitation-vs.-intensity spectrum seen in observations, while producing overly strong precipitation at high intensity thresholds. In the future-scenario climate, there is a decrease in frequency for light to moderate precipitation intensities, while an increase in frequency is seen for the higher intensity events. Further analysis focuses on precipitation events exceeding the 99.5 percentile that occur simultaneously at several points in the region, yielding so-called "widespread events". For widespread events, we analyze local and large scale environmental parameters, such as 2-m temperature and specific humidity, 500-hPa geopotential heights, Convective Available Potential Energy (CAPE), vertically integrated moisture flux convergence, among others, to compare atmospheric states and processes leading to such events in the models and observations. The results suggest that an analysis of atmospheric states supporting very heavy precipitation events is a more fruitful path for understanding and detecting changes than simply looking at precipitation itself.

  17. An effective approach for road asset management through the FDTD simulation of the GPR signal

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea; Pajewski, Lara; Adabi, Saba; Kusayanagi, Wolfgang; Tosti, Fabio

    2015-04-01

    Ground-penetrating radar is a non-destructive tool widely used in many fields of application including pavement engineering surveys. Over the last decade, the need for further breakthroughs capable to assist end-users and practitioners as decision-support systems in more effective road asset management is increasing. In more details and despite the high potential and the consolidated results obtained over years by this non-destructive tool, pavement distress manuals are still based on visual inspections, so that only the effects and not the causes of faults are generally taken into account. In this framework, the use of simulation can represent an effective solution for supporting engineers and decision-makers in understanding the deep responses of both revealed and unrevealed damages. In this study, the potential of using finite-difference time-domain simulation of the ground-penetrating radar signal is analyzed by simulating several types of flexible pavement at different center frequencies of investigation typically used for road surveys. For these purposes, the numerical simulator GprMax2D, implementing the finite-difference time-domain method, was used, proving to be a highly effective tool for detecting road faults. In more details, comparisons with simplified undisturbed modelled pavement sections were carried out showing promising agreements with theoretical expectations, and good chances for detecting the shape of damages are demonstrated. Therefore, electromagnetic modelling has proved to represent a valuable support system in diagnosing the causes of damages, even for early or unrevealed faults. Further perspectives of this research will be focused on the modelling of more complex scenarios capable to represent more accurately the real boundary conditions of road cross-sections. Acknowledgements - This work has benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  18. Diurnal Cycle of Convection and Interaction with the Large-Scale Circulation

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.

    2002-01-01

    The science in this effort was scheduled in the project's third and fourth years, after a long record of high-resolution Global Cloud Imagery (GCI) had been produced. Unfortunately, political disruptions that interfered with this project led to its funding being terminated after only two years of support. Nevertheless, the availability of intermediate data opened the door to a number of important scientific studies. Beyond considerations of the diurnal cycle addressed in this grant, the GCI makes possible a wide range of studies surrounding convection, cloud, and precipitation. Several are already underway with colleagues in the US and abroad, including global cloud simulations, a global precipitation product, global precipitation simulations, upper tropospheric humidity, asynoptic sampling studies, convective organization studies, equatorial wave simulations, and the tropical tropopause.

  19. Jury panel member perceptions of interpersonal-affective traits of psychopathy predict support for execution in a capital murder trial simulation.

    PubMed

    Cox, Jennifer; Clark, John C; Edens, John F; Smith, Shannon Toney; Magyar, Melissa S

    2013-01-01

    Recent research with college undergraduate mock jurors suggests that how psychopathic they perceive a criminal defendant to be is a powerful predictor of whether they will support a death verdict in simulated capital murder trials. Perceived affective and interpersonal traits of psychopathy are especially predictive of support for capital punishment, with perceived remorselessness explaining a disproportionate amount of variance in these attitudes. The present study attempted to extend these findings with a more representative sample of community members called for jury duty (N = 304). Jurors reviewed a case vignette based on an actual capital murder trial, provided sentencing verdicts, and rated the defendant on several characteristics historically associated with the construct of psychopathy. Consistent with prior findings, remorselessness predicted death verdicts, as did the affective and interpersonal features of psychopathy - though the latter effect was more pronounced among jurors who were Caucasian and/or who described their political beliefs as moderate rather than conservative or liberal. Results are discussed in terms of the potentially stigmatizing effects of psychopathy evidence in capital cases. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Exploration of government policy structure which support and block energy transition process in indonesia using system dynamics model

    NASA Astrophysics Data System (ADS)

    Destyanto, A. R.; Silalahi, T. D.; Hidayatno, A.

    2017-11-01

    System dynamic modeling is widely used to predict and simulate the energy system in several countries. One of the applications of system dynamics is to evaluate national energy policy alternatives, and energy efficiency analysis. Using system dynamic modeling, this research aims to evaluate the energy transition policy that has been implemented in Indonesia on the past conversion program of kerosene to LPG for household cook fuel consumption, which considered as successful energy transition program implemented since 2007. This research is important since Indonesia considered not yet succeeded to execute another energy transition program on conversion program of oil fuel to gas fuel for transportation that has started since 1989. The aim of this research is to explore which policy intervention that has significant contribution to support or even block the conversion program. Findings in this simulation show that policy intervention to withdraw the kerosene supply and government push to increase production capacity of the support equipment industries (gas stove, regulator, and LPG Cylinder) is the main influence on the success of the program conversion program.

  1. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    NASA Astrophysics Data System (ADS)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  2. Comptational Design Of Functional CA-S-H and Oxide Doped Alloy Systems

    NASA Astrophysics Data System (ADS)

    Yang, Shizhong; Chilla, Lokeshwar; Yang, Yan; Li, Kuo; Wicker, Scott; Zhao, Guang-Lin; Khosravi, Ebrahim; Bai, Shuju; Zhang, Boliang; Guo, Shengmin

    Computer aided functional materials design accelerates the discovery of novel materials. This presentation will cover our recent research advance on the Ca-S-H system properties prediction and oxide doped high entropy alloy property simulation and experiment validation. Several recent developed computational materials design methods were utilized to the two systems physical and chemical properties prediction. A comparison of simulation results to the corresponding experiment data will be introduced. This research is partially supported by NSF CIMM project (OIA-15410795 and the Louisiana BoR), NSF HBCU Supplement climate change and ecosystem sustainability subproject 3, and LONI high performance computing time allocation loni mat bio7.

  3. The PLAID graphics analysis impact on the space program

    NASA Technical Reports Server (NTRS)

    Nguyen, Jennifer P.; Wheaton, Aneice L.; Maida, James C.

    1994-01-01

    An ongoing project design often requires visual verification at various stages. These requirements are critically important because the subsequent phases of that project might depend on the complete verification of a particular stage. Currently, there are several software packages at JSC that provide such simulation capabilities. We present the simulation capabilities of the PLAID modeling system used in the Flight Crew Support Division for human factors analyses. We summarize some ongoing studies in kinematics, lighting, EVA activities, and discuss various applications in the mission planning of the current Space Shuttle flights and the assembly sequence of the Space Station Freedom with emphasis on the redesign effort.

  4. Bridging the Gap Between Theory and Experiment to Derive a Detailed Understanding of Hammerhead Ribozyme Catalysis

    PubMed Central

    Lee, Tai-Sung; Wong, Kin-Yiu; Giambasu, George M.; York, Darrin M.

    2016-01-01

    Herein we summarize our progress toward the understanding of hammerhead ribozyme (HHR) catalysis through a multiscale simulation strategy. Simulation results collectively paint a picture of HHR catalysis: HHR first folds to form an electronegative active site pocket to recruit a threshold occupation of cationic charges, either a Mg2+ ion or multiple monovalent cations. Catalytically active conformations that have good in-line fitness are supported by specific metal ion coordination patterns that involve either a bridging Mg2+ ion or multiple Na+ ions, one of which is also in a bridging coordination pattern. In the case of a single Mg2+ ion bound in the active site, the Mg2+ ion undergoes a migration that is coupled with deprotonation of the nucleophile (C17:O2′). As the reaction proceeds, the Mg2+ ion stabilizes the accumulating charge of the leaving group and significantly increases the general acid ability of G8:O2′. Further computational mutagenesis simulations suggest that the disruptions due to mutations may severely impact HHR catalysis at different stages of the reaction. Catalytic mechanisms supported by the simulation results are consistent with available structural and biochemical experiments, and together they advance our understanding of HHR catalysis. PMID:24156941

  5. SRB Environment Evaluation and Analysis. Volume 2: RSRB Joint Filling Test/Analysis Improvements

    NASA Technical Reports Server (NTRS)

    Knox, E. C.; Woods, G. Hamilton

    1991-01-01

    Following the Challenger accident a very comprehensive solid rocket booster (SRB) redesign program was initiated. One objective of the program was to develop expertise at NASA/MSFC in the techniques for analyzing the flow of hot gases in the SRB joints. Several test programs were undertaken to provide a data base of joint performance with manufactured defects in the joints to allow hot gases to fill the joints. This data base was used also to develop the analytical techniques. Some of the test programs were Joint Environment Simulator (JES), Nozzle Joint Environment Simulator (NJES), Transient Pressure Test Article (TPTA), and Seventy-Pound Charge (SPC). In 1988 the TPTA test hardware was moved from the Utah site to MSFC and several RSRM tests were scheduled, to be followed by tests for the ASRM program. REMTECH Inc. supported these activities with pretest estimates of the flow conditions in the test joints, and post-test analysis and evaluation of the measurements. During this support REMTECH identified deficiencies in the gas-measurement instrumentation that existed in the TPTA hardware, made recommendations for its replacement, and identified improvements to the analytical tools used in the test support. Only one test was completed under the TPTA RSRM test program, and those scheduled for the ASRM were rescheduled to a time after the expiration of this contract. The attention of this effort was directed toward improvements in the analytical techniques in preparation for when the ASRM program begins.

  6. Pilot cryo tunnel: Attachments, seals, and insulation

    NASA Technical Reports Server (NTRS)

    Wilson, J. F.; Ware, G. D.; Ramsey, J. W., Jr.

    1974-01-01

    Several different tests are described which simulated the actual configuration of a cryogenic wind tunnel operating at pressures up to 5 atmospheres (507 kPa) and temperatures from -320 F (78K) to 120 F (322K) in order to determine compatible bolting, adequate sealing, and effective insulating materials. The evaluation of flange attachments (continuous threaded studs) considered bolting based on compatible flanges, attachment materials, and prescribed bolt elongations. Various types of seals and seal configurations were studied to determine suitability and reusability under the imposed pressure and temperature loadings. The temperature profile was established for several materials used for structural supports.

  7. A federated design for a neurobiological simulation engine: the CBI federated software architecture.

    PubMed

    Cornelis, Hugo; Coop, Allan D; Bower, James M

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components.

  8. Experimental Simulations to Understand the Lunar and Martian Surficial Processes

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y. S.; Li, X.; Tang, H.; Li, Y.; Zeng, X.; Chang, R.; Li, S.; Zhang, S.; Jin, H.; Mo, B.; Li, R.; Yu, W.; Wang, S.

    2016-12-01

    In support with China's Lunar and Mars exploration programs and beyond, our center is dedicated to understand the surficial processes and environments of planetary bodies. Over the latest several years, we design, build and optimize experimental simulation facilities and utilize them to test hypotheses and evaluate affecting mechanisms under controlled conditions particularly relevant to the Moon and Mars. Among the fundamental questions to address, we emphasize on five major areas: (1) Micrometeorites bombardment simulation to evaluate the formation mechanisms of np-Fe0 which was found in lunar samples and the possible sources of Fe. (2) Solar wind implantation simulation to evaluate the alteration/amorphization/OH or H2O formation on the surface of target minerals or rocks. (3) Dusts mobility characteristics on the Moon and other planetary bodies by excitation different types of dust particles and measuring their movements. (4) Mars basaltic soil simulant development (e.g., Jining Martian Soil Simulant (JMSS-1)) and applications for scientific/engineering experiments. (5) Halogens (Cl and Br) and life essential elements (C, H, O, N, P, and S) distribution and speciation on Mars during surficial processes such as sedimentary- and photochemical- related processes. Depending on the variables of interest, the simulation systems provide flexibility to vary source of energy, temperature, pressure, and ambient gas composition in the reaction chambers. Also, simulation products can be observed or analyzed in-situ by various analyzer components inside the chamber, without interrupting the experimental conditions. In addition, behavior of elements and isotopes during certain surficial processes (e.g., evaporation, dissolution, etc.) can be theoretically predicted by our theoretical geochemistry group with thermodynamics-kinetics calculation and modeling, which supports experiment design and result interpretation.

  9. A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture

    PubMed Central

    Cornelis, Hugo; Coop, Allan D.; Bower, James M.

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components. PMID:22242154

  10. Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems.

    PubMed

    Villa, Tomaso; La Barbera, Luigi; Galbusera, Fabio

    2014-04-01

    Preclinical evaluation of the long-term reliability of devices for lumbar fixation is a mandatory activity before they are put into market. The experimental setups are described in two different standards edited by the International Organization for Standardization (ISO) and the American Society for Testing Materials (ASTM), but the evaluation of the suitability of such tests to simulate the actual loading with in vivo situations has never been performed. To calculate through finite element (FE) simulations the stress in the rods of the fixator when subjected to ASTM and ISO standards. To compare the calculated stresses arising in the same fixator once it has been virtually mounted in a physiological environment and loaded with physiological forces and moments. FE simulations and validation experimental tests. FE models of the ISO and ASTM setups were created to conduct simulations of the tests prescribed by standards and calculate stresses in the rods. Validation of the simulations were performed through experimental tests; the same fixator was virtually mounted in an L2-L4 FE model of the lumbar spine and stresses in the rods were calculated when the spine was subjected to physiological forces and moments. The comparison between FE simulations and experimental tests showed good agreement between results obtained using the two methodologies, thus confirming the suitability of the FE method to evaluate stresses in the device in different loading situations. The usage of a physiological load with ASTM standard is impossible due to the extreme severity of the ASTM configuration; in this circumstance, the presence of an anterior support is suggested. Also, ISO prescriptions, although the choice of the setup correctly simulates the mechanical contribution of the discs, seem to overstress the device as compared with a physiological loading condition. Some daily activities, other than walking, can induce a further state of stress in the device that should be taken into account in setting up new experimental procedures. ISO standard loading prescriptions seems to be more severe than the expected physiological ones. The ASTM standard should be completed by including some anterior supporting device and declaring the value of the load to be imposed. Moreover, a further enhancement of standards would be simulating other movements representative of daily activities different from walking. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns

    PubMed Central

    Dijksterhuis, Chris; de Waard, Dick; Brookhuis, Karel A.; Mulder, Ben L. J. M.; de Jong, Ritske

    2013-01-01

    A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver's workload levels were classified by applying the Common Spatial Pattern (CSP) and Fisher's linear discriminant analysis to frequency filtered electroencephalogram (EEG) data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications. PMID:23970851

  12. Replicable Interprofessional Competency Outcomes from High-Volume, Inter-Institutional, Interprofessional Simulation

    PubMed Central

    Bambini, Deborah; Emery, Matthew; de Voest, Margaret; Meny, Lisa; Shoemaker, Michael J.

    2016-01-01

    There are significant limitations among the few prior studies that have examined the development and implementation of interprofessional education (IPE) experiences to accommodate a high volume of students from several disciplines and from different institutions. The present study addressed these gaps by seeking to determine the extent to which a single, large, inter-institutional, and IPE simulation event improves student perceptions of the importance and relevance of IPE and simulation as a learning modality, whether there is a difference in students’ perceptions among disciplines, and whether the results are reproducible. A total of 290 medical, nursing, pharmacy, and physical therapy students participated in one of two large, inter-institutional, IPE simulation events. Measurements included student perceptions about their simulation experience using the Attitude Towards Teamwork in Training Undergoing Designed Educational Simulation (ATTITUDES) Questionnaire and open-ended questions related to teamwork and communication. Results demonstrated a statistically significant improvement across all ATTITUDES subscales, while time management, role confusion, collaboration, and mutual support emerged as significant themes. Results of the present study indicate that a single IPE simulation event can reproducibly result in significant and educationally meaningful improvements in student perceptions towards teamwork, IPE, and simulation as a learning modality. PMID:28970407

  13. The Soil and Water Assessment Tool (SWAT) Ecohydrological Model Circa 2015: Global Application Trends, Insights and Issues

    NASA Astrophysics Data System (ADS)

    Gassman, P. W.; Arnold, J. G.; Srinivasan, R.

    2015-12-01

    The Soil and Water Assessment Tool (SWAT) is one of the most widely used watershed-scale water quality models in the world. Over 2,000 peer-reviewed SWAT-related journal articles have been published and hundreds of other studies have been published in conference proceedings and other formats. The use of SWAT was initially concentrated in North America and Europe but has also expanded dramatically in other countries and regions during the past decade including Brazil, China, India, Iran, South Korea, Southeast Asia and eastern Africa. The SWAT model has proven to be a very flexible tool for investigating a broad range of hydrologic and water quality problems at different watershed scales and environmental conditions, and has proven very adaptable for applications requiring improved hydrologic and other enhanced simulation needs. We investigate here the various technological, networking, and other factors that have supported the expanded use of SWAT, and also highlight current worldwide simulation trends and possible impediments to future increased usage of the model. Examples of technological advances include easy access to web-based documentation, user-support groups, and SWAT literature, a variety of Geographic Information System (GIS) interface tools, pre- and post-processing calibration software and other software, and an open source code which has served as a model development catalyst for multiple user groups. Extensive networking regarding the use of SWAT has further occurred via internet-based user support groups, model training workshops, regional working groups, regional and international conferences, and targeted development workshops. We further highlight several important model development trends that have emerged during the past decade including improved hydrologic, cropping system, best management practice (BMP) and pollutant transport simulation methods. In addition, several current SWAT weaknesses will be addressed and key development needs will be described including the ability to represent landscapes and practices with more spatial definition, the incorporation of a module specifically designed to simulate rice paddy systems and algorithms that can capture plant competition dynamics such as occur in complex tree/crop systems and interactions between crops and weeds.

  14. Gemini Rendezvous Docking Simulator

    NASA Image and Video Library

    1964-05-11

    Gemini Rendezvous Docking Simulator suspended from the roof of the Langley Research Center s aircraft hangar. Francis B. Smith wrote: The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. This figure illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft. -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203 Francis B. Smith, Simulators for Manned Space Research, Paper presented at the 1966 IEEE International convention, March 21-25, 1966.

  15. An intersubject variable regional anesthesia simulator with a virtual patient architecture.

    PubMed

    Ullrich, Sebastian; Grottke, Oliver; Fried, Eduard; Frommen, Thorsten; Liao, Wei; Rossaint, Rolf; Kuhlen, Torsten; Deserno, Thomas M

    2009-11-01

    The main purpose is to provide an intuitive VR-based training environment for regional anesthesia (RA). The research question is how to process subject-specific datasets, organize them in a meaningful way and how to perform the simulation for peripheral regions. We propose a flexible virtual patient architecture and methods to process datasets. Image acquisition, image processing (especially segmentation), interactive nerve modeling and permutations (nerve instantiation) are described in detail. The simulation of electric impulse stimulation and according responses are essential for the training of peripheral RA and solved by an approach based on the electric distance. We have created an XML-based virtual patient database with several subjects. Prototypes of the simulation are implemented and run on multimodal VR hardware (e.g., stereoscopic display and haptic device). A first user pilot study has confirmed our approach. The virtual patient architecture enables support for arbitrary scenarios on different subjects. This concept can also be used for other simulators. In future work, we plan to extend the simulation and conduct further evaluations in order to provide a tool for routine training for RA.

  16. Proposed Scientific Support to the Land Vehicle Crew Training System (LVCTS) Project Requirements Definition

    DTIC Science & Technology

    2013-01-01

    proposed acquisition of a variety of armoured vehicle simulators for training within the Canadian Forces. The Directorate of Land Requirements (DLR... armoured vehicle operations under the Land Vehicle Crew Training System (LVCTS) project. DLR has published a Letter of Interest (LOI) to solicit input...LVCTS project staff to discuss the intent of the project. Qualification Standards and Training Plans for several military armoured vehicle

  17. pyZELDA: Python code for Zernike wavefront sensors

    NASA Astrophysics Data System (ADS)

    Vigan, A.; N'Diaye, M.

    2018-06-01

    pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.

  18. CALIBRATION OF INSTRUMENTS FOR RADIATION MEASUREMENTS FROM LOFTED VEHICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, W.O.

    1962-05-01

    The designs and developments accomplished by the Air Proving Ground Certer in support of Project TRUMP are considered. Project TRUMP pertains to the design and developmert of methods for measuring radiation from lofted vehicles. Several methods of simulating the space environment, for purposes of ground calibration of instruments to be lofted, are proposed. A mathematical approach, similar to that used by early Smithsonian solar constant seekers, is presented. (auth)

  19. Databases for multilevel biophysiology research available at Physiome.jp.

    PubMed

    Asai, Yoshiyuki; Abe, Takeshi; Li, Li; Oka, Hideki; Nomura, Taishin; Kitano, Hiroaki

    2015-01-01

    Physiome.jp (http://physiome.jp) is a portal site inaugurated in 2007 to support model-based research in physiome and systems biology. At Physiome.jp, several tools and databases are available to support construction of physiological, multi-hierarchical, large-scale models. There are three databases in Physiome.jp, housing mathematical models, morphological data, and time-series data. In late 2013, the site was fully renovated, and in May 2015, new functions were implemented to provide information infrastructure to support collaborative activities for developing models and performing simulations within the database framework. This article describes updates to the databases implemented since 2013, including cooperation among the three databases, interactive model browsing, user management, version management of models, management of parameter sets, and interoperability with applications.

  20. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  1. Instructional support and implementation structure during elementary teachers' science education simulation use

    NASA Astrophysics Data System (ADS)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-07-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results indicated teachers used a one-to-one student-to-computer ratio most often either during class-wide individual computer use or during a rotating station structure. Worksheets, general support, and peer collaboration were the most common forms of instructional support. The least common instructional support forms included lesson pacing, initial play, and a closure discussion. Students' simulation use was supported in the fewest ways during a rotating station structure. Results suggest that simulation professional development with elementary teachers needs to explicitly focus on implementation structures and instructional support to enhance participants' pedagogical knowledge and improve instructional simulation use. In addition, research is needed to provide theoretical explanations for the observed patterns that should subsequently be addressed in supporting teachers' instructional simulation use during professional development or in teacher preparation programs.

  2. Program For Parallel Discrete-Event Simulation

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.

    1991-01-01

    User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.

  3. Exceptional winter storms affecting Western Iberia and extremes: diagnosis, modelling and multi-model ensemble projection

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Pinto, J. G.; Gil, V.; Ramos, A. M.; Trigo, R. M.

    2017-12-01

    Extratropical cyclones dominate autumn and winter weather over Western Europe and particularly over the Iberian Peninsula. Intense, high-impact storms are one of the major weather risks in the region, mostly due to the simultaneous occurrence of high winds and extreme precipitation events. These intense extratropical cyclones may result in windstorm damage, flooding and coastal storm surges, with large societal impacts. In Portugal, due to the extensive human use of coastal areas, the natural and built coastal environments have been amongst the most affected. In this work several historical winter storms that adversely affected the Western Iberian Peninsula are studied in detail in order to contribute to an improved assessment of the characteristics of these events. The diagnosis has been performed based on instrumental daily precipitation and wind records, on satellite images, on reanalysis data and through model simulations. For several examples the synoptic evolution and upper-level dynamics analysis of physical processes controlling the life cycle of extratropical storms associated with the triggering of the considered extreme events has also been accomplished. Furthermore, the space-time variability of the exceptionally severe storms affecting Western Iberia over the last century and under three climate scenarios (the historical simulation, the RCP4.5 and RCP8.5 scenarios) is presented. These studies contribute to improving the knowledge of atmospheric dynamics controlling the life cycle of midlatitude storms associated to severe weather (precipitation and wind) in the Iberian Peninsula. AcknowledgementsThis work is supported by the Portuguese Foundation for Science and Technology (FCT), Portugal, through project UID/GEO/50019/2013 - Instituto Dom Luiz. A. M. Ramos is also supported by a FCT postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012).

  4. Southern California Disasters II

    NASA Technical Reports Server (NTRS)

    Nicholson, Heather; Todoroff, Amber L.; LeBoeuf, Madeline A.

    2015-01-01

    The USDA Forest Service (USFS) has multiple programs in place which primarily utilize Landsat imagery to produce burn severity indices for aiding wildfire damage assessment and mitigation. These indices provide widely-used wildfire damage assessment tools to decision makers. When the Hyperspectral Infrared Imager (HyspIRI) is launched in 2022, the sensor's hyperspectral resolution will support new methods for assessing natural disaster impacts on ecosystems, including wildfire damage to forests. This project used simulated HyspIRI data to study three southern California fires: Aspen, French, and King. Burn severity indices were calculated from the data and the results were quantitatively compared to the comparable USFS products currently in use. The final results from this project illustrate how HyspIRI data may be used in the future to enhance assessment of fire-damaged areas and provide additional monitoring tools for decision support to the USFS and other land management agencies.

  5. Using the sensors of shaft position for simulation of misalignments of shafting supports of turbounits

    NASA Astrophysics Data System (ADS)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Timin, A. V.; Boichenko, S. N.

    2017-09-01

    Examples of using the method developed for the earlier proposed concept of the monitoring system of the technical condition of a turbounit are presented. The solution methods of the inverse problem—the calculation of misalignments of supports based on the measurement results of positions of rotor pins in the borings of bearings during the operation of a turbounit—are demonstrated. The results of determination of static responses of supports at operation misalignments are presented. The examples of simulation and calculation of misalignments of supports are made for the three-bearing "high-pressure rotor-middle-pressure rotor" (HPR-MPR) system of a turbounit with 250 MW capacity and for 14-supporting shafting of a turbounit with 1000 MW capacity. The calculation results of coefficients of the stiffness matrix of shaftings and testing of methods for solving the inverse problem by modeling are presented. The high accuracy of the solution of the inverse problem at the inversion of the stiffness matrix of shafting used for determining the correcting centerings of rotors of multisupporting shafting is revealed. The stiffness matrix can be recommended to analyze the influence of displacements of one or several supports on changing the support responses of shafting of the turbounit during adjustment after assembling or repair. It is proposed to use the considered methods of evaluation of misalignments in the monitoring systems of changing the mutual position of supports and centerings of rotors by half-couplings of turbounits, especially for seismically dangerous regions and regions with increased sagging of foundations due to watering of soils.

  6. Considerations for the Use of Remote Gaze Tracking to Assess Behavior in Flight Simulators

    NASA Technical Reports Server (NTRS)

    Kalar, Donald J.; Liston, Dorion; Mulligan, Jeffrey B.; Beutter, Brent; Feary, Michael

    2016-01-01

    Complex user interfaces (such as those found in an aircraft cockpit) may be designed from first principles, but inevitably must be evaluated with real users. User gaze data can provide valuable information that can help to interpret other actions that change the state of the system. However, care must be taken to ensure that any conclusions drawn from gaze data are well supported. Through a combination of empirical and simulated data, we identify several considerations and potential pitfalls when measuring gaze behavior in high-fidelity simulators. We show that physical layout, behavioral differences, and noise levels can all substantially alter the quality of fit for algorithms that segment gaze measurements into individual fixations. We provide guidelines to help investigators ensure that conclusions drawn from gaze tracking data are not artifactual consequences of data quality or analysis techniques.

  7. Simulation of asteroid impact on ocean surfaces, subsequent wave generation and the effect on US shorelines

    DOE PAGES

    Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; ...

    2015-05-19

    As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less

  8. Manual for a workstation-based generic flight simulation program (LaRCsim), version 1.4

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    LaRCsim is a set of ANSI C routines that implement a full set of equations of motion for a rigid-body aircraft in atmospheric and low-earth orbital flight, suitable for pilot-in-the-loop simulations on a workstation-class computer. All six rigid-body degrees of freedom are modeled. The modules provided include calculations of the typical aircraft rigid-body simulation variables, earth geodesy, gravity and atmospheric models, and support several data recording options. Features/limitations of the current version include English units of measure, a 1962 atmosphere model in cubic spline function lookup form, ranging from sea level to 75,000 feet, rotating oblate spheroidal earth model, with aircraft C.G. coordinates in both geocentric and geodetic axes. Angular integrations are done using quaternion state variables Vehicle X-Z symmetry is assumed.

  9. Development of an otitis media strategy in the Pacific: key informant perspectivesThe Matthew effect in New Zealand rural hospital trauma and emergency care: why rural simulation-based education matters.

    PubMed

    Gutenstein, Marc; Kiuru, Sampsa

    2018-06-08

    We describe a phenomenon of self-reinforcing inequality between New Zealand rural hospitals and urban trauma centres. Rural doctors work in remote geographical locations, with rare exposure to managing critical injuries, and with little direct support when they do. Paradoxically, but for the same reasons, they also have little access to the intensive training resources and specialist oversight of their university hospital colleagues. In keeping with international experience, we propose that using simulation-based education for rural hospital trauma and emergency team training will mitigate this effect. Along with several different organisations in New Zealand, the University of Otago rural postgraduate programme is developing inter-professional simulation content to address this challenge and open new avenues for research.

  10. Simulation of asteroid impact on ocean surfaces, subsequent wave generation and the effect on US shorelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.

    As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less

  11. Research on support effectiveness modeling and simulating of aviation materiel autonomic logistics system

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo

    2018-05-01

    Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.

  12. Analogue Simulation of human and psychosocial factors for MoonMars bases

    NASA Astrophysics Data System (ADS)

    Davidová, Lucie; Foing, Bernard

    2017-04-01

    Several courageous plans regarding future human space exploration have been proposed. Both main future targets, ESA's Moon village, as well as journey to Mars represent huge challenge for humans. Appropriate research on psychological aspects of humans in extreme conditions is needed. Analogue simulations represent valuable source of information that help us to understand how to provide an adequate support to astronauts in specific conditions of isolation and limited resources. The psychosocial investigation was designed to builds on combination of several methods based on subjective as well as objective assessments, namely observation, sociomapping, content analysis of interviews etc. Research on several simulations provided lessons learned and various insights. The attention was paid particularly to the interpersonal interactions among crew members, intragroup as well as intergroup communication, cooperation, and performance. This comprehensive approach enables early detection of hidden structures and potential insufficiencies of an astronaut team. The sociomapping of interpersonal communication as well as analysis of interviews with participants revealed insufficiencies especially in communication between the analogue astronauts and mission control. Another important finding was gain by investigation of the relationship between the astronaut crew and mission control. Astronauts low trust to mission control can have a great negative impact to the performance and well-being of astronauts. The findings of the psychosocial studies are very important for designing astronaut training and planning future mission.

  13. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  14. Automatic system testing of a decision support system for insulin dosing using Google Android.

    PubMed

    Spat, Stephan; Höll, Bernhard; Petritsch, Georg; Schaupp, Lukas; Beck, Peter; Pieber, Thomas R

    2013-01-01

    Hyperglycaemia in hospitalized patients is a common and costly health care problem. The GlucoTab system is a mobile workflow and decision support system, aiming to facilitate efficient and safe glycemic control of non-critically ill patients. Being a medical device, the GlucoTab requires extensive and reproducible testing. A framework for high-volume, reproducible and automated system testing of the GlucoTab system was set up applying several Open Source tools for test automation and system time handling. The REACTION insulin titration protocol was investigated in a paper-based clinical trial (PBCT). In order to validate the GlucoTab system, data from this trial was used for simulation and system tests. In total, 1190 decision support action points were identified and simulated. Four data points (0.3%) resulted in a GlucoTab system error caused by a defective implementation. In 144 data points (12.1%), calculation errors of physicians and nurses in the PBCT were detected. The test framework was able to verify manual calculation of insulin doses and detect relatively many user errors and workflow anomalies in the PBCT data. This shows the high potential of the electronic decision support application to improve safety of implementation of an insulin titration protocol and workflow management system in clinical wards.

  15. ReSTART: A Novel Framework for Resource-Based Triage in Mass-Casualty Events.

    PubMed

    Mills, Alex F; Argon, Nilay T; Ziya, Serhan; Hiestand, Brian; Winslow, James

    2014-01-01

    Current guidelines for mass-casualty triage do not explicitly use information about resource availability. Even though this limitation has been widely recognized, how it should be addressed remains largely unexplored. The authors present a novel framework developed using operations research methods to account for resource limitations when determining priorities for transportation of critically injured patients. To illustrate how this framework can be used, they also develop two specific example methods, named ReSTART and Simple-ReSTART, both of which extend the widely adopted triage protocol Simple Triage and Rapid Treatment (START) by using a simple calculation to determine priorities based on the relative scarcity of transportation resources. The framework is supported by three techniques from operations research: mathematical analysis, optimization, and discrete-event simulation. The authors? algorithms were developed using mathematical analysis and optimization and then extensively tested using 9,000 discrete-event simulations on three distributions of patient severity (representing low, random, and high acuity). For each incident, the expected number of survivors was calculated under START, ReSTART, and Simple-ReSTART. A web-based decision support tool was constructed to help providers make prioritization decisions in the aftermath of mass-casualty incidents based on ReSTART. In simulations, ReSTART resulted in significantly lower mortality than START regardless of which severity distribution was used (paired t test, p<.01). Mean decrease in critical mortality, the percentage of immediate and delayed patients who die, was 8.5% for low-acuity distribution (range ?2.2% to 21.1%), 9.3% for random distribution (range ?0.2% to 21.2%), and 9.1% for high-acuity distribution (range ?0.7% to 21.1%). Although the critical mortality improvement due to ReSTART was different for each of the three severity distributions, the variation was less than 1 percentage point, indicating that the ReSTART policy is relatively robust to different severity distributions. Taking resource limitations into account in mass-casualty situations, triage has the potential to increase the expected number of survivors. Further validation is required before field implementation; however, the framework proposed in here can serve as the foundation for future work in this area. 2014.

  16. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  17. Close to real life. [solving for transonic flow about lifting airfoils using supercomputers

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Bailey, F. Ron

    1988-01-01

    NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.

  18. Parallel simulations of Grover's algorithm for closest match search in neutron monitor data

    NASA Astrophysics Data System (ADS)

    Kussainov, Arman; White, Yelena

    We are studying the parallel implementations of Grover's closest match search algorithm for neutron monitor data analysis. This includes data formatting, and matching quantum parameters to a conventional structure of a chosen programming language and selected experimental data type. We have employed several workload distribution models based on acquired data and search parameters. As a result of these simulations, we have an understanding of potential problems that may arise during configuration of real quantum computational devices and the way they could run tasks in parallel. The work was supported by the Science Committee of the Ministry of Science and Education of the Republic of Kazakhstan Grant #2532/GF3.

  19. Probabilistic structural analysis using a general purpose finite element program

    NASA Astrophysics Data System (ADS)

    Riha, D. S.; Millwater, H. R.; Thacker, B. H.

    1992-07-01

    This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.

  20. Simulations Test Impact Of Education, Employment, And Income Improvements On Minority Patients With Mental Illness

    PubMed Central

    Alegria, Margarita; Drake, Robert E.; Kang, Hyeon-Ah; Metcalfe, Justin; Liu, Jingchen; DiMarzio, Karissa; Ali, Naomi

    2017-01-01

    Social determinants of health, such as poverty and minority background, severely disadvantage many people with mental disorders. A variety of innovative federal, state, and local programs have combined social services with mental health interventions. To explore the potential effects of such supports for addressing poverty and disadvantage on mental health outcomes, we simulated improvements in three social determinants—education, employment, and income. We used two large data sets: one from the National Institute of Mental Health that contained information about people with common mental disorders such as anxiety and depression, and another from the Social Security Administration that contained information about people who were disabled due to severe mental disorders such as schizophrenia and bipolar disorder. Our simulations showed that increasing employment was significantly correlated with improvements in mental health outcomes, while increasing education and income produced weak or nonsignificant correlations. In general, minority groups as well as the majority group of non-Latino whites improved in the desired outcomes. We recommend that health policy leaders, state and federal agencies, and insurers provide evidence-based employment services as a standard treatment for people with mental disorders. PMID:28583960

  1. Simulations Test Impact Of Education, Employment, And Income Improvements On Minority Patients With Mental Illness.

    PubMed

    Alegria, Margarita; Drake, Robert E; Kang, Hyeon-Ah; Metcalfe, Justin; Liu, Jingchen; DiMarzio, Karissa; Ali, Naomi

    2017-06-01

    Social determinants of health, such as poverty and minority background, severely disadvantage many people with mental disorders. A variety of innovative federal, state, and local programs have combined social services with mental health interventions. To explore the potential effects of such supports for addressing poverty and disadvantage on mental health outcomes, we simulated improvements in three social determinants-education, employment, and income. We used two large data sets: one from the National Institute of Mental Health that contained information about people with common mental disorders such as anxiety and depression, and another from the Social Security Administration that contained information about people who were disabled due to severe mental disorders such as schizophrenia and bipolar disorder. Our simulations showed that increasing employment was significantly correlated with improvements in mental health outcomes, while increasing education and income produced weak or nonsignificant correlations. In general, minority groups as well as the majority group of non-Latino whites improved in the desired outcomes. We recommend that health policy leaders, state and federal agencies, and insurers provide evidence-based employment services as a standard treatment for people with mental disorders. Project HOPE—The People-to-People Health Foundation, Inc.

  2. The Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Chung, Victoria I.; Blum, Mike G.; Bowman, James D.

    2007-01-01

    The paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which focuses on the investigation and development of technologies, processes and integrated simulations related to the collaborative distributed simulation of complex space systems in support of NASA's Exploration Initiative. This paper describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. In the network work area, DSES is developing a Distributed Simulation Network that will provide agency wide support for distributed simulation between all NASA centers. In the software work area, DSES is developing a collection of software models, tool and procedures that ease the burden of developing distributed simulations and provides a consistent interoperability infrastructure for agency wide participation in integrated simulation. Finally, for simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper will present current status and plans for each of these work areas with specific examples of simulations that support NASA's exploration initiatives.

  3. Techniques for Single System Integration of Elastic Simulation Features

    NASA Astrophysics Data System (ADS)

    Mitchell, Nathan M.

    Techniques for simulating the behavior of elastic objects have matured considerably over the last several decades, tackling diverse problems from non-linear models for incompressibility to accurate self-collisions. Alongside these contributions, advances in parallel hardware design and algorithms have made simulation more efficient and affordable than ever before. However, prior research often has had to commit to design choices that compromise certain simulation features to better optimize others, resulting in a fragmented landscape of solutions. For complex, real-world tasks, such as virtual surgery, a holistic approach is desirable, where complex behavior, performance, and ease of modeling are supported equally. This dissertation caters to this goal in the form of several interconnected threads of investigation, each of which contributes a piece of an unified solution. First, it will be demonstrated how various non-linear materials can be combined with lattice deformers to yield simulations with behavioral richness and a high potential for parallelism. This potential will be exploited to show how a hybrid solver approach based on large macroblocks can accelerate the convergence of these deformers. Further extensions of the lattice concept with non-manifold topology will allow for efficient processing of self-collisions and topology change. Finally, these concepts will be explored in the context of a case study on virtual plastic surgery, demonstrating a real-world problem space where these ideas can be combined to build an expressive authoring tool, allowing surgeons to record procedures digitally for future reference or education.

  4. Assessing the Treatment of Airborne Tactical High Energy Lasers in Combat Simulations

    DTIC Science & Technology

    2003-03-01

    Raymond A . Physics for Scientists and Engineers (4th edition). Philadelphia: Saunders College Publishing, 1996. Sirak, Michael. “Industry Vies...supported, my efforts on a single page, several individuals are noteworthy. I’d like to thank Dr. Hill for getting me into this mess. The promise of a ...research topic with some application in an area of personal interest was a welcome departure from otherwise mundane, academic choices. I’d also

  5. Dense Suspension Splash

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  6. Effect of Afterbody-Ejector Configurations on the Performance at Transonic Speeds of a Pylon-Supported Nacelle Model having a Hot-Jet Exhaust

    NASA Technical Reports Server (NTRS)

    Swihart, John M.; Mercer, Charles E.; Norton, Harry T., Jr.

    1959-01-01

    An investigation of several afterbody-ejector configurations on a pylon-supported nacelle model has been completed in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05. The propulsive performance of two nacelle afterbodies with low boattailing and long ejector spacing was compared with a configuration corresponding to a turbojet-engine installation having a highly boattailed afterbody with a short ejector. The jet exhaust was simulated with a hydrogen peroxide turbojet simulator. The angle of attack was maintained at 0 deg, and the average Reynolds number based on body length was 20 x 10(exp 6). The results of the investigation indicated that the configuration with a conical afterbody with smooth transition to a 15 deg boattail angle had large beneficial jet effects on afterbody pressure-drag coefficient and had the best thrust-minus-drag performance of the afterbody-ejector configurations investigated.

  7. Enhancing Scheduling Performance for a Wafer Fabrication Factory: The Biobjective Slack-Diversifying Nonlinear Fluctuation-Smoothing Rule

    PubMed Central

    Chen, Toly; Wang, Yu Cheng

    2012-01-01

    A biobjective slack-diversifying nonlinear fluctuation-smoothing rule (biSDNFS) is proposed in the present work to improve the scheduling performance of a wafer fabrication factory. This rule was derived from a one-factor bi-objective nonlinear fluctuation-smoothing rule (1f-biNFS) by dynamically maximizing the standard deviation of the slack, which has been shown to benefit scheduling performance by several previous studies. The efficacy of the biSDNFS was validated with a simulated case; evidence was found to support its effectiveness. We also suggested several directions in which it can be exploited in the future. PMID:23509446

  8. A new approach for data acquisition at the JPL space simulators

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.

    1992-01-01

    In 1990, a personal computer based data acquisition system was put into service for the Space Simulators and Environmental Test Laboratory at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The new system replaced an outdated minicomputer system which had been in use since 1980. This new data acquisition system was designed and built by JPL for the specific task of acquiring thermal test data in support of space simulation and thermal vacuum testing at JPL. The data acquisition system was designed using powerful personal computers and local-area-network (LAN) technology. Reliability, expandability, and maintainability were some of the most important criteria in the design of the data system and in the selection of hardware and software components. The data acquisition system is used to record both test chamber operational data and thermal data from the unit under test. Tests are conducted in numerous small thermal vacuum chambers and in the large solar simulator and range in size from individual components using only 2 or 3 thermocouples to entire planetary spacecraft requiring in excess of 1200 channels of test data. The system supports several of these tests running concurrently. The previous data system is described along with reasons for its replacement, the types of data acquired, the new data system, and the benefits obtained from the new system including information on tests performed to date.

  9. IITET and shadow TT: an innovative approach to training at the point of need

    NASA Astrophysics Data System (ADS)

    Gross, Andrew; Lopez, Favio; Dirkse, James; Anderson, Darran; Berglie, Stephen; May, Christopher; Harkrider, Susan

    2014-06-01

    The Image Intensification and Thermal Equipment Training (IITET) project is a joint effort between Night Vision and Electronics Sensors Directorate (NVESD) Modeling and Simulation Division (MSD) and the Army Research Institute (ARI) Fort Benning Research Unit. The IITET effort develops a reusable and extensible training architecture that supports the Army Learning Model and trains Manned-Unmanned Teaming (MUM-T) concepts to Shadow Unmanned Aerial Systems (UAS) payload operators. The training challenge of MUM-T during aviation operations is that UAS payload operators traditionally learn few of the scout-reconnaissance skills and coordination appropriate to MUM-T at the schoolhouse. The IITET effort leveraged the simulation experience and capabilities at NVESD and ARI's research to develop a novel payload operator training approach consistent with the Army Learning Model. Based on the training and system requirements, the team researched and identified candidate capabilities in several distinct technology areas. The training capability will support a variety of training missions as well as a full campaign. Data from these missions will be captured in a fully integrated AAR capability, which will provide objective feedback to the user in near-real-time. IITET will be delivered via a combination of browser and video streaming technologies, eliminating the requirement for a client download and reducing user computer system requirements. The result is a novel UAS Payload Operator training capability, nested within an architecture capable of supporting a wide variety of training needs for air and ground tactical platforms and sensors, and potentially several other areas requiring vignette-based serious games training.

  10. The effects of simulated fog and motion on simulator sickness in a driving simulator and the duration of after-effects.

    PubMed

    Dziuda, Lukasz; Biernacki, Marcin P; Baran, Paulina M; Truszczyński, Olaf E

    2014-05-01

    In the study, we checked: 1) how the simulator test conditions affect the severity of simulator sickness symptoms; 2) how the severity of simulator sickness symptoms changes over time; and 3) whether the conditions of the simulator test affect the severity of these symptoms in different ways, depending on the time that has elapsed since the performance of the task in the simulator. We studied 12 men aged 24-33 years (M = 28.8, SD = 3.26) using a truck simulator. The SSQ questionnaire was used to assess the severity of the symptoms of simulator sickness. Each of the subjects performed three 30-minute tasks running along the same route in a driving simulator. Each of these tasks was carried out in a different simulator configuration: A) fixed base platform with poor visibility; B) fixed base platform with good visibility; and C) motion base platform with good visibility. The measurement of the severity of the simulator sickness symptoms took place in five consecutive intervals. The results of the analysis showed that the simulator test conditions affect in different ways the severity of the simulator sickness symptoms, depending on the time which has elapsed since performing the task on the simulator. The simulator sickness symptoms persisted at the highest level for the test conditions involving the motion base platform. Also, when performing the tasks on the motion base platform, the severity of the simulator sickness symptoms varied depending on the time that had elapsed since performing the task. Specifically, the addition of motion to the simulation increased the oculomotor and disorientation symptoms reported as well as the duration of the after-effects. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Shock ignition targets: gain and robustness vs ignition threshold factor

    NASA Astrophysics Data System (ADS)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  12. NOTE: Monte Carlo simulation of correction factors for IAEA TLD holders

    NASA Astrophysics Data System (ADS)

    Hultqvist, Martha; Fernández-Varea, José M.; Izewska, Joanna

    2010-03-01

    The IAEA standard thermoluminescent dosimeter (TLD) holder has been developed for the IAEA/WHO TLD postal dose program for audits of high-energy photon beams, and it is also employed by the ESTRO-QUALity assurance network (EQUAL) and several national TLD audit networks. Factors correcting for the influence of the holder on the TL signal under reference conditions have been calculated in the present work from Monte Carlo simulations with the PENELOPE code for 60Co γ-rays and 4, 6, 10, 15, 18 and 25 MV photon beams. The simulation results are around 0.2% smaller than measured factors reported in the literature, but well within the combined standard uncertainties. The present study supports the use of the experimentally obtained holder correction factors in the determination of the absorbed dose to water from the TL readings; the factors calculated by means of Monte Carlo simulations may be adopted for the cases where there are no measured data.

  13. Data mining to support simulation modeling of patient flow in hospitals.

    PubMed

    Isken, Mark W; Rajagopalan, Balaji

    2002-04-01

    Spiraling health care costs in the United States are driving institutions to continually address the challenge of optimizing the use of scarce resources. One of the first steps towards optimizing resources is to utilize capacity effectively. For hospital capacity planning problems such as allocation of inpatient beds, computer simulation is often the method of choice. One of the more difficult aspects of using simulation models for such studies is the creation of a manageable set of patient types to include in the model. The objective of this paper is to demonstrate the potential of using data mining techniques, specifically clustering techniques such as K-means, to help guide the development of patient type definitions for purposes of building computer simulation or analytical models of patient flow in hospitals. Using data from a hospital in the Midwest this study brings forth several important issues that researchers need to address when applying clustering techniques in general and specifically to hospital data.

  14. The Eccentric Satellites Problem: Comparing Milky Way Satellite Orbital Properties to Simulation Results

    NASA Astrophysics Data System (ADS)

    Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson

    2018-01-01

    We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.

  15. Electron Thermalization in the Solar Wind and Planetary Plasma Boundaries

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, Dietmar

    1998-01-01

    The work carried out under this contract attempts a better understanding of whistler wave generation and associated scattering of electrons in the solar wind. This task is accomplished through simulations using a particle-in-cell code and a Vlasov code. In addition, the work is supported by the utilization of a linear kinetic dispersion solver. Previously, we have concentrated on gaining a better understanding of the linear mode properties, and have tested the simulation codes within a known parameter regime. We are now in a new phase in which we implement, execute, and analyze production simulations. This phase is projected to last over several reporting periods, with this being the second cycle. In addition, we have started to research to what extent the evolution of the pertinent instabilities is two-dimensional. We are also continuing our work on the visualization aspects of the simulation results, and on a code version that runs on single-user Alpha-processor based workstations.

  16. Assessment of WRF Simulated Precipitation by Meteorological Regimes

    NASA Astrophysics Data System (ADS)

    Hagenhoff, Brooke Anne

    This study evaluated warm-season precipitation events in a multi-year (2007-2014) database of Weather Research and Forecasting (WRF) simulations over the Northern Plains and Southern Great Plains. These WRF simulations were run daily in support of the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) by the National Severe Storms Laboratory (NSSL) for operational forecasts. Evaluating model skill by synoptic pattern allows for an understanding of how model performance varies with particular atmospheric states and will aid forecasters with pattern recognition. To conduct this analysis, a competitive neural network known as the Self-Organizing Map (SOM) was used. SOMs allow the user to represent atmospheric patterns in an array of nodes that represent a continuum of synoptic categorizations. North American Regional Reanalysis (NARR) data during the warm season (April-September) was used to perform the synoptic typing over the study domains. Simulated precipitation was evaluated against observations provided by the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analysis.

  17. Interventional Radiation Oncology (IRO): Transition of a magnetic resonance simulator to a brachytherapy suite.

    PubMed

    Anderson, Roberta; Armour, Elwood; Beeckler, Courtney; Briner, Valerie; Choflet, Amanda; Cox, Andrea; Fader, Amanda N; Hannah, Marie N; Hobbs, Robert; Huang, Ellen; Kiely, Marilyn; Lee, Junghoon; Morcos, Marc; McMillan, Paige E; Miller, Dave; Ng, Sook Kien; Prasad, Rashmi; Souranis, Annette; Thomsen, Robert; DeWeese, Theodore L; Viswanathan, Akila N

    As a core component of a new gynecologic cancer radiation program, we envisioned, structured, and implemented a novel Interventional Radiation Oncology (IRO) unit and magnetic resonance (MR)-brachytherapy environment in an existing MR simulator. We describe the external and internal processes required over a 6-8 month time frame to develop a clinical and research program for gynecologic brachytherapy and to successfully convert an MR simulator into an IRO unit. Support of the institution and department resulted in conversion of an MR simulator to a procedural suite. Development of the MR gynecologic brachytherapy program required novel equipment, staffing, infrastructural development, and cooperative team development with anesthetists, nurses, therapists, physicists, and physicians to ensure a safe and functional environment. Creation of a separate IRO unit permitted a novel billing structure. The creation of an MR-brachytherapy environment in an MR simulator is feasible. Developing infrastructure includes several collaborative elements. Unique to the field of radiation oncology, formalizing the space as an Interventional Radiation Oncology unit permits a sustainable financial structure. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Gstat: a program for geostatistical modelling, prediction and simulation

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer J.; Wesseling, Cees G.

    1998-01-01

    Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.

  19. Compensation for time delay in flight simulator visual-display systems

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1983-01-01

    A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.

  20. Effect of Impact Location on the Response of Shuttle Wing Leading Edge Panel 9

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Spellman, Regina L.; Hardy, Robin C.; Fasanella, Edwin L.; Jackson, Karen E.

    2005-01-01

    The objective of this paper is to compare the results of several simulations performed to determine the worst-case location for a foam impact on the Space Shuttle wing leading edge. The simulations were performed using the commercial non-linear transient dynamic finite element code, LS-DYNA. These simulations represent the first in a series of parametric studies performed to support the selection of the worst-case impact scenario. Panel 9 was selected for this study to enable comparisons with previous simulations performed during the Columbia Accident Investigation. The projectile for this study is a 5.5-in cube of typical external tank foam weighing 0.23 lb. Seven locations spanning the panel surface were impacted with the foam cube. For each of these cases, the foam was traveling at 1000 ft/s directly aft, along the orbiter X-axis. Results compared from the parametric studies included strains, contact forces, and material energies for various simulations. The results show that the worst case impact location was on the top surface, near the apex.

  1. Nuclear Nonproliferation Ontology Assessment Team Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strasburg, Jana D.; Hohimer, Ryan E.

    Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importancemore » of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.« less

  2. Pneumatic Valve Operated by Multiplex Pneumatic Transmission

    NASA Astrophysics Data System (ADS)

    Nishioka, Yasutaka; Suzumori, Koichi; Kanda, Takefumi; Wakimoto, Shuichi

    A pneumatic system has several advantages, which are cheapness, lightweight, and reliability to human and environment. These advantages are adapted to some research areas, such as industrial lines, medical and nursing cares, and rehabilitation tools. However, the pneumatic system needs several devices; compressor, air tube, and control valve. This research aim to downsize pneumatic system. In this paper, a new method of multiplex pneumatic transmission for multi-pneumatic servo system is proposed. The valve for this system consists of two vibrators supported by springs, which was designed with simple and cheap structure. The working principle of the valve is vibrators resonance from multiplex pneumatic transmission and it is possible to work as ON/OFF valves without electric wire. Dynamic simulation was used to confirm the working principle of the resonance driving system. A prototype device confirming the principle was designed and developed based on the simulation. The experiments show that this new control system works very well to control two separated valves through single pneumatic tube.

  3. Solid oxide fuel cell hybrid system: Control strategy for stand-alone configurations

    NASA Astrophysics Data System (ADS)

    Ferrari, Mario L.

    2011-03-01

    The aim of this study is the development and testing of a control system for solid oxide fuel cell hybrid systems through dynamic simulations. Due to the complexity of these cycles, several parameters, such as the turbine rotational speed, the temperatures within the fuel cell, the differential pressure between the anodic and the cathodic side and the Steam-To-Carbon Ratio need to be monitored and kept within safe limits. Furthermore, in stand-alone conditions the system response to load variations is required to meet the global plant power demand at any time, supporting global load variations and avoiding dangerous or unstable conditions. The plant component models and their integration were carried out in previous studies. This paper focuses on the control strategy required for managing the net electrical power from the system, avoiding malfunctions or damage. Once the control system was developed and tuned, its performance was evaluated by simulating the transient behaviour of the whole hybrid cycle: the results for several operating conditions are presented and discussed.

  4. Using Dynamic Interface Modeling and Simulation to Develop a Launch and Recovery Flight Simulation for a UH-60A Blackhawk

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Bunnell, John; Chung, William; Giovannetti, Dean; Mikula, Julie; Nicholson, Bob; Roscoe, Mike

    2001-01-01

    Joint Shipboard Helicopter Integration Process (JSHIP) is a Joint Test and Evaluation (JT&E) program sponsored by the Office of the Secretary of Defense (OSD). Under the JSHDP program is a simulation effort referred to as the Dynamic Interface Modeling and Simulation System (DIMSS). The purpose of DIMSS is to develop and test the processes and mechanisms that facilitate ship-helicopter interface testing via man-in-the-loop ground-based flight simulators. Specifically, the DIMSS charter is to develop an accredited process for using a flight simulator to determine the wind-over-the-deck (WOD) launch and recovery flight envelope for the UH-60A ship/helicopter combination. DIMSS is a collaborative effort between the NASA Ames Research Center and OSD. OSD determines the T&E and warfighter training requirements, provides the programmatics and dynamic interface T&E experience, and conducts ship/aircraft interface tests for validating the simulation. NASA provides the research and development element, simulation facility, and simulation technical experience. This paper will highlight the benefits of the NASA/JSHIP collaboration and detail achievements of the project in terms of modeling and simulation. The Vertical Motion Simulator (VMS) at NASA Ames Research Center offers the capability to simulate a wide range of simulation cueing configurations, which include visual, aural, and body-force cueing devices. The system flexibility enables switching configurations io allow back-to-back evaluation and comparison of different levels of cueing fidelity in determining minimum training requirements. The investigation required development and integration of several major simulation system at the VMS. A new UH-60A BlackHawk interchangeable cab that provides an out-the-window (OTW) field-of-view (FOV) of 220 degrees in azimuth and 70 degrees in elevation was built. Modeling efforts involved integrating Computational Fluid Dynamics (CFD) generated data of an LHA ship airwake and integrating a real-time ship motion model developed based on a batch model from Naval Surface Warfare Center. Engineering development and integration of a three degrees-of-freedom (DOF) dynamic seat to simulate high frequency rotor-dynamics dependent motion cues for use in conjunction with the large motion system was accomplished. The development of an LHA visual model in several different levels of resolution and an aural cueing system in which three separate fidelity levels could be selected were developed. VMS also integrated a PC-based E&S simFUSION system to investigate cost effective IG alternatives. The DIMSS project consists of three phases that follow an approved Validation, Verification and accreditation (VV&A) process. The first phase will support the accreditation of the individual subsystems and models. The second will follow the verification and validation of the integrated subsystems and models, and will address fidelity requirements of the integrated models and subsystems. The third and final phase will allow the verification and validation of the full system integration. This VV&A process will address the utility of the simulated WOD launch and recovery envelope. Simulations supporting the first two stages have been completed and the data is currently being reviewed and analyzed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeure, I.M.

    The research presented here is concerned with representation techniques and tools to support the design, prototyping, simulation, and evaluation of message-based parallel, distributed computations. The author describes ParaDiGM-Parallel, Distributed computation Graph Model-a visual representation technique for parallel, message-based distributed computations. ParaDiGM provides several views of a computation depending on the aspect of concern. It is made of two complementary submodels, the DCPG-Distributed Computing Precedence Graph-model, and the PAM-Process Architecture Model-model. DCPGs are precedence graphs used to express the functionality of a computation in terms of tasks, message-passing, and data. PAM graphs are used to represent the partitioning of a computationmore » into schedulable units or processes, and the pattern of communication among those units. There is a natural mapping between the two models. He illustrates the utility of ParaDiGM as a representation technique by applying it to various computations (e.g., an adaptive global optimization algorithm, the client-server model). ParaDiGM representations are concise. They can be used in documenting the design and the implementation of parallel, distributed computations, in describing such computations to colleagues, and in comparing and contrasting various implementations of the same computation. He then describes VISA-VISual Assistant, a software tool to support the design, prototyping, and simulation of message-based parallel, distributed computations. VISA is based on the ParaDiGM model. In particular, it supports the editing of ParaDiGM graphs to describe the computations of interest, and the animation of these graphs to provide visual feedback during simulations. The graphs are supplemented with various attributes, simulation parameters, and interpretations which are procedures that can be executed by VISA.« less

  6. Concentrations of Simulated Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Child, Hillary

    2017-01-01

    We present the concentration-mass (c-M) relation of dark matter halos in two new high-volume high-resolution cosmological N-body simulations, Q Continuum and Outer Rim. Concentration describes the density of the central regions of halos; it is highest for low-mass halos at low redshift, decreasing at high mass and redshift. The shape of the c-M relation is an important probe of cosmology. We discuss the redshift dependence of the c-M relation, several different methods to determine concentrations of simulated halos, and potential sources of bias in concentration measurements. To connect to lensing observations, we stack halos, which also allows us to assess the suitability of the Navarro-Frenk-White profile and other profiles, such as Einasto, with an additional shape parameter. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144082.

  7. Studies in the use of cloud type statistics in mission simulation

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Willand, J. H.; Chang, D. T.; Cogan, J. L.

    1974-01-01

    A study to further improve NASA's global cloud statistics for mission simulation is reported. Regional homogeneity in cloud types was examined; most of the original region boundaries defined for cloud cover amount in previous studies were supported by the statistics on cloud types and the number of cloud layers. Conditionality in cloud statistics was also examined with special emphasis on temporal and spatial dependencies, and cloud type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different cloud types reflected the dynamic processes which form the clouds. Other phases of the study improved the cloud type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global cloud model.

  8. PRMS-IV, the precipitation-runoff modeling system, version 4

    USGS Publications Warehouse

    Markstrom, Steven L.; Regan, R. Steve; Hay, Lauren E.; Viger, Roland J.; Webb, Richard M.; Payn, Robert A.; LaFontaine, Jacob H.

    2015-01-01

    Computer models that simulate the hydrologic cycle at a watershed scale facilitate assessment of variability in climate, biota, geology, and human activities on water availability and flow. This report describes an updated version of the Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of various combinations of climate and land use on streamflow and general watershed hydrology. Several new model components were developed, and all existing components were updated, to enhance performance and supportability. This report describes the history, application, concepts, organization, and mathematical formulation of the Precipitation-Runoff Modeling System and its model components. This updated version provides improvements in (1) system flexibility for integrated science, (2) verification of conservation of water during simulation, (3) methods for spatial distribution of climate boundary conditions, and (4) methods for simulation of soil-water flow and storage.

  9. Noise of a simulated installed model counterrotation propeller at angle-of-attack and takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1990-01-01

    Acoustic results for two model counterrotation propellers are presented. The propellers were tested over a range of rotational speeds and propeller axis angles of attack in both the baseline configuration and the installed configuration consisting of a simulated upstream nacelle support pylon and fuselage section. Acoustic data were taken with a polar microphone probe attached to the downstream propeller housing, capable of surveying directivities at several azimuthal locations. The forward and aft rotor power coefficients and fundamental rotor-alone tone levels are found to be directly controlled by propeller axis angle of attack. The second-order rotor-alone tones are strongly influenced by the upstream pylon wake at 80 percent speed; however, rotor-alone mechanisms control the tone level at 90 percent speed, while rotor-rotor interaction tones are essentially unaffected by the presence of the simulated installation.

  10. SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franci, Luca; Verdini, Andrea; Landi, Simone

    2015-05-10

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and themore » parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.« less

  11. Seismic Waves, 4th order accurate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-08-16

    SW4 is a program for simulating seismic wave propagation on parallel computers. SW4 colves the seismic wave equations in Cartesian corrdinates. It is therefore appropriate for regional simulations, where the curvature of the earth can be neglected. SW4 implements a free surface boundary condition on a realistic topography, absorbing super-grid conditions on the far-field boundaries, and a kinematic source model consisting of point force and/or point moment tensor source terms. SW4 supports a fully 3-D heterogeneous material model that can be specified in several formats. SW4 can output synthetic seismograms in an ASCII test format, or in the SAC finarymore » format. It can also present simulation information as GMT scripts, whixh can be used to create annotated maps. Furthermore, SW4 can output the solution as well as the material model along 2-D grid planes.« less

  12. Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Verdini, Andrea; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr

    2015-05-01

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.

  13. 3D Multispecies Nonlinear Perturbative Particle Simulation of Intense Nonneutral Particle Beams (Research supported by the Department of Energy and the Short Pulse Spallation Source Project and LANSCE Division of LANL.)

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Lee, W. Wei-Li

    1999-11-01

    The Beam Equilibrium Stability and Transport (BEST) code, a 3D multispecies nonlinear perturbative particle simulation code, has been developed to study collective effects in intense charged particle beams described self-consistently by the Vlasov-Maxwell equations. A Darwin model is adopted for transverse electromagnetic effects. As a 3D multispecies perturbative particle simulation code, it provides several unique capabilities. Since the simulation particles are used to simulate only the perturbed distribution function and self-fields, the simulation noise is reduced significantly. The perturbative approach also enables the code to investigate different physics effects separately, as well as simultaneously. The code can be easily switched between linear and nonlinear operation, and used to study both linear stability properties and nonlinear beam dynamics. These features, combined with 3D and multispecies capabilities, provides an effective tool to investigate the electron-ion two-stream instability, periodically focused solutions in alternating focusing fields, and many other important problems in nonlinear beam dynamics and accelerator physics. Applications to the two-stream instability are presented.

  14. Kinetic Modeling of Ultraintense X-ray Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Royle, Ryan; Sentoku, Yasuhiko; Mancini, Roberto

    2016-10-01

    Hard x-ray free-electron lasers (XFELs) have had a profound impact on the physical, chemical, and biological sciences. They can produce millijoule x-ray laser pulses just tens of femtoseconds in duration with more than 1012 photons each, making them the brightest laboratory x-ray sources ever produced by several orders of magnitude. An XFEL pulse can be intensified to 1020 W/cm2 when focused to submicron spot sizes, making it possible to isochorically heat solid matter well beyond 100 eV. These characteristics enable XFELs to create and probe well-characterized warm and hot dense plasmas of relevance to HED science, planetary science, laboratory astrophysics, relativistic laser plasmas, and fusion research. Several newly developed atomic physics models including photoionization, Auger ionization, and continuum-lowering have been implemented in a particle-in-cell code, PICLS, which self-consistently solves the x-ray transport, to enable the simulation of the non-LTE plasmas created by ultraintense x-ray laser interactions with solid density matter. The code is validated against the results of several recent experiments and is used to simulate the maximum-intensity x-ray heating of solid iron targets. This work was supported by DOE/OFES under Contract No. DE-SC0008827.

  15. Using simulation to study difficult clinical issues: prenatal counseling at the threshold of viability across American and Dutch cultures.

    PubMed

    Geurtzen, Rosa; Hogeveen, Marije; Rajani, Anand K; Chitkara, Ritu; Antonius, Timothy; van Heijst, Arno; Draaisma, Jos; Halamek, Louis P

    2014-06-01

    Prenatal counseling at the threshold of viability is a challenging yet critically important activity, and care guidelines differ across cultures. Studying how this task is performed in the actual clinical environment is extremely difficult. In this pilot study, we used simulation as a methodology with 2 aims as follows: first, to explore the use of simulation incorporating a standardized pregnant patient as an investigative methodology and, second, to determine similarities and differences in content and style of prenatal counseling between American and Dutch neonatologists. We compared counseling practice between 11 American and 11 Dutch neonatologists, using a simulation-based investigative methodology. All subjects performed prenatal counseling with a simulated pregnant patient carrying a fetus at the limits of viability. The following elements of scenario design were standardized across all scenarios: layout of the physical environment, details of the maternal and fetal histories, questions and responses of the standardized pregnant patient, and the time allowed for consultation. American subjects typically presented several treatment options without bias, whereas Dutch subjects were more likely to explicitly advise a specific course of treatment (emphasis on partial life support). American subjects offered comfort care more frequently than the Dutch subjects and also discussed options for maximal life support more often than their Dutch colleagues. Simulation is a useful research methodology for studying activities difficult to assess in the actual clinical environment such as prenatal counseling at the limits of viability. Dutch subjects were more directive in their approach than their American counterparts, offering fewer options for care and advocating for less invasive interventions. American subjects were more likely to offer a wider range of therapeutic options without providing a recommendation for any specific option.

  16. Historical and Future Projected Hydrologic Extremes over the Midwest and Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Byun, K.; Hamlet, A. F.; Chiu, C. M.

    2016-12-01

    There is an increasing body of evidence from observed data that climate variability combined with regional climate change has had a significant impact on hydrologic cycles, including both seasonal patterns of runoff and altered hydrologic extremes (e.g. floods and extreme stormwater events). To better understand changing patterns of extreme high flows in Midwest and Great Lakes region, we analyzed long-term historical observations of peak streamflow at different gaging stations. We also conducted hydrologic model experiments using the Variable Infiltration Capacity (VIC) at 1/16 degree resolution in order to explore sensitivity of annual peak streamflow, both historically and under temperature and precipitation changes for several future periods. For future projections, the Hybrid Delta statistical downscaling approach applied to the Coupled Model Inter-comparison, Phase5 (CMIP5) Global Climate Model (GCM) scenarios was used to produce driving data for the VIC hydrologic model. Preliminary results for several test basins in the Midwest support the hypothesis that there are consistent and statistically significant changes in the mean annual flood starting before and after about 1975. Future projections using hydrologic model simulations support the hypothesis of higher peak flows due to warming and increasing precipitation projected for the 21st century. We will extend this preliminary analysis using observed data and simulations from 40 river basins in the Midwest to further test these hypotheses.

  17. Sub-kilometer Numerical Weather Prediction in complex urban areas

    NASA Astrophysics Data System (ADS)

    Leroyer, S.; Bélair, S.; Husain, S.; Vionnet, V.

    2013-12-01

    A Sub-kilometer atmospheric modeling system with grid-spacings of 2.5 km, 1 km and 250 m and including urban processes is currently being developed at the Meteorological Service of Canada (MSC) in order to provide more accurate weather forecasts at the city scale. Atmospheric lateral boundary conditions are provided with the 15-km Canadian Regional Deterministic Prediction System (RDPS). Surface physical processes are represented with the Town Energy Balance (TEB) model for the built-up covers and with the Interactions between the Surface, Biosphere, and Atmosphere (ISBA) land surface model for the natural covers. In this study, several research experiments over large metropolitan areas and using observational networks at the urban scale are presented, with a special emphasis on the representation of local atmospheric circulations and their impact on extreme weather forecasting. First, numerical simulations are performed over the Vancouver metropolitan area during a summertime Intense Observing Period (IOP of 14-15 August 2008) of the Environmental Prediction in Canadian Cities (EPiCC) observational network. The influence of the horizontal resolution on the fine-scale representation of the sea-breeze development over the city is highlighted (Leroyer et al., 2013). Then severe storms cases occurring in summertime within the Greater Toronto Area (GTA) are simulated. In view of supporting the 2015 PanAmerican and Para-Pan games to be hold in GTA, a dense observational network has been recently deployed over this region to support model evaluations at the urban and meso scales. In particular, simulations are conducted for the case of 8 July 2013 when exceptional rainfalls were recorded. Leroyer, S., S. Bélair, J. Mailhot, S.Z. Husain, 2013: Sub-kilometer Numerical Weather Prediction in an Urban Coastal Area: A case study over the Vancouver Metropolitan Area, submitted to Journal of Applied Meteorology and Climatology.

  18. Lunar Exploration Island, NASA’s Return to the Moon in Second Life

    NASA Astrophysics Data System (ADS)

    Ireton, F. M.; Bleacher, L.; Day, B.; Hsu, B. C.; Mitchell, B. K.

    2009-12-01

    Second Life is a metaverse—a massively multi-user virtual world (MMVR) community. With over 9 million users worldwide, there are 40,000-50,000 users on line at any one time. Second Life hosts over 200 educational and institutional simulation locations termed “islands” or sims that are developed by users providing support for education and business endeavors. On-line tools are provided to construct structures and landforms simulating a real world in a virtual three-dimensional environment. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move in Second Life by walking, flying, or teleporting and interact with other users via text or voice chat. This poster details the design and creation of the Second Life exhibit hall for NASA’s Lunar Precursor Robotics Program and the LRO/LCROSS missions. The hall has been placed on the Lunar Exploration Island (LEI) in Second Life. Avatars enter via teleportation to an orientation room with information about the project, a simulator map, and other information. A central hall of flight houses exhibits pertaining to the LRO/ LCROSS missions and includes full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the missions, both spacecraft instrument suites, and EPO directed to support the missions. The sim includes several sites for meetings, a conference amphitheater with a stage and screen for video links such as live broadcasts of conferences and speakers. A link is provided to NASATV for live viewing LRO/LCROSS launch and impact activities and other NASA events. Recently visitors have viewed the Hubble servicing mission and several shuttle launches as well as the LRO/LCROSS launch. Lunar Exploration Island in Second Life

  19. SimZones: An Organizational Innovation for Simulation Programs and Centers.

    PubMed

    Roussin, Christopher J; Weinstock, Peter

    2017-08-01

    The complexity and volume of simulation-based learning programs have increased dramatically over the last decade, presenting several major challenges for those who lead and manage simulation programs and centers. The authors present five major issues affecting the organization of simulation programs: (1) supporting both single- and double-loop learning experiences; (2) managing the training of simulation teaching faculty; (3) optimizing the participant mix, including individuals, professional groups, teams, and other role-players, to ensure learning; (4) balancing in situ, node-based, and center-based simulation delivery; and (5) organizing simulation research and measuring value. They then introduce the SimZones innovation, a system of organization for simulation-based learning, and explain how it can alleviate the problems associated with these five issues.Simulations are divided into four zones (Zones 0-3). Zone 0 simulations include autofeedback exercises typically practiced by solitary learners, often using virtual simulation technology. Zone 1 simulations include hands-on instruction of foundational clinical skills. Zone 2 simulations include acute situational instruction, such as clinical mock codes. Zone 3 simulations involve authentic, native teams of participants and facilitate team and system development.The authors also discuss the translation of debriefing methods from Zone 3 simulations to real patient care settings (Zone 4), and they illustrate how the SimZones approach can enable the development of longitudinal learning systems in both teaching and nonteaching hospitals. The SimZones approach was initially developed in the context of the Boston Children's Hospital Simulator Program, which the authors use to illustrate this innovation in action.

  20. Enabling co-simulation of tokamak plant models and plasma control systems

    DOE PAGES

    Walker, M. L.

    2017-12-22

    A system for connecting the Plasma Control System and a model of the tokamak Plant in closed loop co-simulation for plasma control development has been in routine use at DIII-D for more than 20 years and at other fusion labs that use variants of the DIII-D PCS for approximately the last decade. Here, co-simulation refers to the simultaneous execution of two independent codes with the exchange of data - Plant actuator commands and tokamak diagnostic data - between them during execution. Interest in this type of PCS-Plant simulation technology has also been growing recently at other fusion facilities. In fact,more » use of such closed loop control simulations is assumed to play an even larger role in the development of both the ITER Plasma Control System (PCS) and the experimental operation of the ITER device, where they will be used to support verification/validation of the PCS and also for ITER pulse schedule development and validation. We describe the key use cases that motivate the co-simulation capability and the features that must be provided by the Plasma Control System to support it. These features could be provided by the PCS itself or by a model of the PCS. If the PCS itself is chosen to provide them, there are requirements imposed on its architecture. If a PCS model is chosen, there are requirements imposed on the initial implementation of this simulation as well as long-term consequences for its continued development and maintenance. We describe these issues for each use case and discuss the relative merits of the two choices. Several examples are given illustrating uses of the co-simulation method to address problems of plasma control during the operation of DIII-D and of other devices that use the DIII-D PCS.« less

  1. Enabling co-simulation of tokamak plant models and plasma control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, M. L.

    A system for connecting the Plasma Control System and a model of the tokamak Plant in closed loop co-simulation for plasma control development has been in routine use at DIII-D for more than 20 years and at other fusion labs that use variants of the DIII-D PCS for approximately the last decade. Here, co-simulation refers to the simultaneous execution of two independent codes with the exchange of data - Plant actuator commands and tokamak diagnostic data - between them during execution. Interest in this type of PCS-Plant simulation technology has also been growing recently at other fusion facilities. In fact,more » use of such closed loop control simulations is assumed to play an even larger role in the development of both the ITER Plasma Control System (PCS) and the experimental operation of the ITER device, where they will be used to support verification/validation of the PCS and also for ITER pulse schedule development and validation. We describe the key use cases that motivate the co-simulation capability and the features that must be provided by the Plasma Control System to support it. These features could be provided by the PCS itself or by a model of the PCS. If the PCS itself is chosen to provide them, there are requirements imposed on its architecture. If a PCS model is chosen, there are requirements imposed on the initial implementation of this simulation as well as long-term consequences for its continued development and maintenance. We describe these issues for each use case and discuss the relative merits of the two choices. Several examples are given illustrating uses of the co-simulation method to address problems of plasma control during the operation of DIII-D and of other devices that use the DIII-D PCS.« less

  2. An Orion/Ares I Launch and Ascent Simulation: One Segment of the Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy; Busto, Juan

    2007-01-01

    This paper describes the architecture and implementation of a distributed launch and ascent simulation of NASA's Orion spacecraft and Ares I launch vehicle. This simulation is one segment of the Distributed Space Exploration Simulation (DSES) Project. The DSES project is a research and development collaboration between NASA centers which investigates technologies and processes for distributed simulation of complex space systems in support of NASA's Exploration Initiative. DSES is developing an integrated end-to-end simulation capability to support NASA development and deployment of new exploration spacecraft and missions. This paper describes the first in a collection of simulation capabilities that DSES will support.

  3. PSAMM: A Portable System for the Analysis of Metabolic Models

    PubMed Central

    Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying

    2016-01-01

    The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. PMID:26828591

  4. A Kalman Approach to Lunar Surface Navigation using Radiometric and Inertial Measurements

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Welch, Bryan W.; Sands, O. Scott; Nguyen, Binh V.

    2009-01-01

    Future lunar missions supporting the NASA Vision for Space Exploration will rely on a surface navigation system to determine astronaut position, guide exploration, and return safely to the lunar habitat. In this report, we investigate one potential architecture for surface navigation, using an extended Kalman filter to integrate radiometric and inertial measurements. We present a possible infrastructure to support this technique, and we examine an approach to simulating navigational accuracy based on several different system configurations. The results show that position error can be reduced to 1 m after 5 min of processing, given two satellites, one surface communication terminal, and knowledge of the starting position to within 100 m.

  5. Scientific Data Purchase Project Overview Presentation

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Fletcher, Rose

    2001-01-01

    The Scientific Data Purchase (SDP) project acquires science data from commercial sources. It is a demonstration project to test a new way of doing business, tap new sources of data, support Earth science research, and support the commercial remote sensing industry. Phase I of the project reviews simulated/prototypical data sets from 10 companies. Phase II of the project is a 3 year purchase/distribution of select data from 5 companies. The status of several SDP projects is reviewed in this viewgraph presentation, as is the SDP process of tasking, verification, validation, and data archiving. The presentation also lists SDP results for turnaround time, metrics, customers, data use, science research, applications research, and user feedback.

  6. Launch Vehicle Systems Analysis

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1999-01-01

    This report summaries the key accomplishments of Georgia Tech's Space Systems Design Laboratory (SSDL) under NASA Grant NAG8-1302 from NASA - Marshall Space Flight Center. The report consists of this summary white paper, copies of technical papers written under this grant, and several viewgraph-style presentations. During the course of this grant four main tasks were completed: (1)Simulated Combined-Cycle Rocket Engine Analysis Module (SCCREAM), a computer analysis tool for predicting the performance of various RBCC engine configurations; (2) Hyperion, a single stage to orbit vehicle capable of delivering 25,000 pound payloads to the International Space Station Orbit; (3) Bantam-X Support - a small payload mission; (4) International Trajectory Support for interplanetary human Mars missions.

  7. Supersonic Combustion Research at NASA

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  8. Application experience with the NASA aircraft interrogation and display system - A ground-support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1983-01-01

    The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.

  9. Materials technology for Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Baggenstoss, William; Mittendorf, Donald

    1992-01-01

    This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.

  10. Recent intensification of the Walker Circulation and the role of natural sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Allen, R.

    2017-12-01

    In a warming world, the tropical atmospheric overturning circulation-including the Walker Circulation-is expected to weaken due to thermodynamic constraints. Tropical precipitation increases at a slower rate than water vapor-which increases according to Clausius Clapeyron scaling, assuming constant relative humidity-so the tropical overturning circulation slows down. This is supported by both observations and model simulations, which show a slowdown of the Walker Circulation over the 20th century. Model projections suggest a further weakening of the Walker Circulation in the 21st century. However, over the last several decades (1979-2014), multiple observations reveal a robust strengthening of the Walker Circulation. Although coupled CMIP5 simulations are unable to reproduce this strengthening, AMIP simulations-which feature the observed evolution of SSTs-are generally able to reproduce it. Assuming the ensemble mean sea surface temperatures (SSTs) from historical CMIP5 simulations accurately represent the externally forced SST response, the observed SSTs can be decomposed into a forced and an unforced component. CAM5 AMIP-type simulations driven by the unforced component of observed SSTs reproduce the observed strengthening of the Walker Circulation. Corresponding simulations driven by the forced component of observed SSTs yield a weaker Walker Circulation. These results are consistent with the zonal tropical SST gradient and the Bjerknes feedback. The unforced component of SSTs yield an increased SST gradient over tropical Pacific (a La Nina like pattern) and strengthening of the tropical trade winds, which constitute the lower branch of the Walker Circulation. The forced component of SSTs yields a zonally uniform tropical Pacific SST warming and a marginal weakening of the Walker Circulation. Our results suggest significant modulation of the tropical Walker Circulation by natural SST variability over the last several decades.

  11. Application of an interactive water simulation model in urban water management: a case study in Amsterdam.

    PubMed

    Leskens, J G; Brugnach, M; Hoekstra, A Y

    2014-01-01

    Water simulation models are available to support decision-makers in urban water management. To use current water simulation models, special expertise is required. Therefore, model information is prepared prior to work sessions, in which decision-makers weigh different solutions. However, this model information quickly becomes outdated when new suggestions for solutions arise and are therefore limited in use. We suggest that new model techniques, i.e. fast and flexible computation algorithms and realistic visualizations, allow this problem to be solved by using simulation models during work sessions. A new Interactive Water Simulation Model was applied for two case study areas in Amsterdam and was used in two workshops. In these workshops, the Interactive Water Simulation Model was positively received. It included non-specialist participants in the process of suggesting and selecting possible solutions and made them part of the accompanying discussions and negotiations. It also provided the opportunity to evaluate and enhance possible solutions more often within the time horizon of a decision-making process. Several preconditions proved to be important for successfully applying the Interactive Water Simulation Model, such as the willingness of the stakeholders to participate and the preparation of different general main solutions that can be used for further iterations during a work session.

  12. Exploring Dust Impacts on Tropical Systems from the NASA HS-3 Field Campaign

    NASA Technical Reports Server (NTRS)

    Nowottnick, Ed; Colarco, Pete; da Silva, Arlindo; Barahona, Donifan; Hlavka, Dennis

    2015-01-01

    One of the overall scientific goals of the NASA Hurricane and Severe Storm Sentinel (HS-3) field campaign is to better understand the role of the Saharan Air Layer (SAL) in tropical storm development. During the 2012 HS-3 deployment, the Cloud Physics Lidar (CPL) observed dust within SAL air in close proximity to a developing Nadine (September 11, 2012). Throughout the mission, the NASA GEOS-5 modeling system supported HS-3 by providing 0.25 degrees resolution 5-day global forecasts of aerosols, which were used to support mission planning. The aerosol module was radiatively interactive within the GEOS-5 model, but aerosols were not directly coupled to cloud and precipitation processes. In this study we revisit the aerosol forecasts with an updated version of the GEOS-5 model. For the duration of Hurricane Nadine, we run multiday climate simulations leading up to each respective Global Hawk flight with and without aerosol direct interaction. For each set of simulations, we compare simulated dust mass fluxes to identify differences in SAL entrainment related to the interaction between dust aerosols and the atmosphere. We find that the direct effects of dust induce a low level anticyclonic circulation that temporarily shields Nadine from the intrusion of dry air, leading to a more intense storm.

  13. Decentralized real-time simulation of forest machines

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Adam, Frank; Hoffmann, Katharina; Rossmann, Juergen; Kraemer, Michael; Schluse, Michael

    2000-10-01

    To develop realistic forest machine simulators is a demanding task. A useful simulator has to provide a close- to-reality simulation of the forest environment as well as the simulation of the physics of the vehicle. Customers demand a highly realistic three dimensional forestry landscape and the realistic simulation of the complex motion of the vehicle even in rough terrain in order to be able to use the simulator for operator training under close-to- reality conditions. The realistic simulation of the vehicle, especially with the driver's seat mounted on a motion platform, greatly improves the effect of immersion into the virtual reality of a simulated forest and the achievable level of education of the driver. Thus, the connection of the real control devices of forest machines to the simulation system has to be supported, i.e. the real control devices like the joysticks or the board computer system to control the crane, the aggregate etc. Beyond, the fusion of the board computer system and the simulation system is realized by means of sensors, i.e. digital and analog signals. The decentralized system structure allows several virtual reality systems to evaluate and visualize the information of the control devices and the sensors. So, while the driver is practicing, the instructor can immerse into the same virtual forest to monitor the session from his own viewpoint. In this paper, we are describing the realized structure as well as the necessary software and hardware components and application experiences.

  14. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    NASA Technical Reports Server (NTRS)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  15. An Additional Approach to Model Current Followers and Amplifiers with Electronically Controllable Parameters from Commercially Available ICs

    NASA Astrophysics Data System (ADS)

    Sotner, R.; Kartci, A.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K.

    2012-12-01

    Several behavioral models of current active elements for experimental purposes are introduced in this paper. These models are based on commercially available devices. They are suitable for experimental tests of current- and mixed-mode filters, oscillators, and other circuits (employing current-mode active elements) frequently used in analog signal processing without necessity of onchip fabrication of proper active element. Several methods of electronic control of intrinsic resistance in the proposed behavioral models are discussed. All predictions and theoretical assumptions are supported by simulations and experiments. This contribution helps to find a cheaper and more effective way to preliminary laboratory tests without expensive on-chip fabrication of special active elements.

  16. Statistical theory and methodology for remote sensing data analysis with special emphasis on LACIE

    NASA Technical Reports Server (NTRS)

    Odell, P. L.

    1975-01-01

    Crop proportion estimators for determining crop acreage through the use of remote sensing were evaluated. Several studies of these estimators were conducted, including an empirical comparison of the different estimators (using actual data) and an empirical study of the sensitivity (robustness) of the class of mixture estimators. The effect of missing data upon crop classification procedures is discussed in detail including a simulation of the missing data effect. The final problem addressed is that of taking yield data (bushels per acre) gathered at several yield stations and extrapolating these values over some specified large region. Computer programs developed in support of some of these activities are described.

  17. OptFlux: an open-source software platform for in silico metabolic engineering.

    PubMed

    Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel

    2010-04-19

    Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.

  18. The JUMP student project: two weeks of space simulation in a Mars-like environment.

    NASA Astrophysics Data System (ADS)

    de Crombrugghe, Guerric; de Lobkowicz, Ysaline; van Vynckt, Delphine; Reydams, Marc; Denies, Jonathan; Jago, Alban; Le Maire, Victor

    JUMP is a student initiative which aim is to simulate during two weeks the life of astronauts in a Mars-like environment. The simulation will be held in the Mars Desert Research Station (MDRS) a habitat installed by the Mars Society (MS) in the Utah desert. The crew is composed of six students, helped by a remote support of four students, all from different background (engineering, physics, mathematics, biology, and architecture) and degree (bachelor, master, PhD), under the supervision of researchers from several institutes. Several researches will be conducted during the simulation. We shall report on the science and technical results, and implications for Earth-Mars comparative studies. JASE: The Jump Astronaut Safety Experiment (JASE) consists in a deployable Yagi antenna with basic elec-tronics, providing an extremely light and simple way to prevent the solar flares and observe Jupiter bursts. JADE: The Jump Angular Detection Experiment (JADE) is an innovative an-gular particle detector used to determine the irradiation of the surface and monitor the charged particle distribution in Mars' atmosphere. Even if its resolution is low, it is a very light solution compared to pixel detectors. JAPE: The Jump Astronaut Potatoes Experiment (JAPE) will try to grow and eat in a space-like environment high-performance potatoes developed by the Groupe de Recherche en Physiologie Végétale (GRPV) of the UCL in the frame of the Micro-e Ecological Life Support System Alternative (MELiSSA) project of the ESA. JABE: The Jump soil Analysis with a Backpack drill Experiment (JABE) aim to validate a sample procedure, generate vertical profiles of the humidity with a MEMS sensor, and analyze soil samples with a spectrometer. The crew will therefore use a backpack drill, which is portable, fast and easy to use. JARE: The goal of the Jump Astronaut-Rover interaction Experiment (JARE) is to determine how a rover can help an astronaut in his task, and how it is possible to improve this interaction. Remote studies: In addition to those researches, the crew will cooperate on several remote studies: the habitat seen by an architect; the reaction due to sensorial changes in the habitat; the sharing of emotion in a closed environment; a general food study.

  19. OptFlux: an open-source software platform for in silico metabolic engineering

    PubMed Central

    2010-01-01

    Background Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. Conclusions The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models. PMID:20403172

  20. MOOSE IPL Extensions (Control Logic)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permann, Cody

    In FY-2015, the development of MOOSE was driven by the needs of the NEAMS MOOSE-based applications, BISON, MARMOT, and RELAP-7. An emphasis was placed on the continued upkeep and improvement MOOSE in support of the product line integration goals. New unified documentation tools have been developed, several improvements to regression testing have been enforced and overall better software quality practices have been implemented. In addition the Multiapps and Transfers systems have seen significant refactoring and robustness improvements, as has the “Restart and Recover” system in support of Multiapp simulations. Finally, a completely new “Control Logic” system has been engineered tomore » replace the prototype system currently in use in the RELAP-7 code. The development of this system continues and is expected to handle existing needs as well as support future enhancements.« less

  1. Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H I observations

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Bradford, Jeremy; Quataert, Eliot; Geha, Marla; Boylan-Kolchin, Michael; Weisz, Daniel R.; Wetzel, Andrew; Hopkins, Philip F.; Chan, T. K.; Fitts, Alex; Kereš, Dušan; Faucher-Giguère, Claude-André

    2018-06-01

    The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotationally supported gas discs produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σ and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of ˜2000 low-redshift, H I-detected galaxies with Mstar = 107-11 M⊙ and compare to the simulated galaxies. At Mstar ≳ 1010 M⊙, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotationally supported discs. Both the observed and simulated line profiles become more Gaussian like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotational to dispersion support more strongly: at Mstar = 108-10 M⊙, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion supported. Most of the lower-mass-simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotational versus dispersion support.

  2. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hadi; Rajaee, Taher

    2017-01-01

    Simulation of groundwater level (GWL) fluctuations is an important task in management of groundwater resources. In this study, the effect of wavelet analysis on the training of the artificial neural network (ANN), multi linear regression (MLR) and support vector regression (SVR) approaches was investigated, and the ANN, MLR and SVR along with the wavelet-ANN (WNN), wavelet-MLR (WLR) and wavelet-SVR (WSVR) models were compared in simulating one-month-ahead of GWL. The only variable used to develop the models was the monthly GWL data recorded over a period of 11 years from two wells in the Qom plain, Iran. The results showed that decomposing GWL time series into several sub-time series, extremely improved the training of the models. For both wells 1 and 2, the Meyer and Db5 wavelets produced better results compared to the other wavelets; which indicated wavelet types had similar behavior in similar case studies. The optimal number of delays was 6 months, which seems to be due to natural phenomena. The best WNN model, using Meyer mother wavelet with two decomposition levels, simulated one-month-ahead with RMSE values being equal to 0.069 m and 0.154 m for wells 1 and 2, respectively. The RMSE values for the WLR model were 0.058 m and 0.111 m, and for WSVR model were 0.136 m and 0.060 m for wells 1 and 2, respectively.

  3. Synthesis, Decomposition and Characterization of Fe and Ni Sulfides and Fe and CO Nanoparticles for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cowen, Jonathan E.; Hepp, Aloysius F.; Duffy, Norman V.; Jose, Melanie J.; Choi, D. B.; Brothers, Scott M.; Baird, Michael F.; Tomsik, Thomas M.; Duraj, Stan A.; Williams, Jennifer N.; hide

    2009-01-01

    We describe several related studies where simple iron, nickel, and cobalt complexes were prepared, decomposed, and characterized for aeronautics (Fischer-Tropsch catalysts) and space (high-fidelity lunar regolith simulant additives) applications. We describe the synthesis and decomposition of several new nickel dithiocarbamate complexes. Decomposition resulted in a somewhat complicated product mix with NiS predominating. The thermogravimetric analysis of fifteen tris(diorganodithiocarbamato)iron(III) has been investigated. Each undergoes substantial mass loss upon pyrolysis in a nitrogen atmosphere between 195 and 370 C, with major mass losses occurring between 279 and 324 C. Steric repulsion between organic substituents generally decreased the decomposition temperature. The product of the pyrolysis was not well defined, but usually consistent with being either FeS or Fe2S3 or a combination of these. Iron nanoparticles were grown in a silica matrix with a long-term goal of introducing native iron into a commercial lunar dust simulant in order to more closely simulate actual lunar regolith. This was also one goal of the iron and nickel sulfide studies. Finally, cobalt nanoparticle synthesis is being studied in order to develop alternatives to crude processing of cobalt salts with ceramic supports for Fischer-Tropsch synthesis.

  4. Characteristics of the Injury Environment in Far-Side Crashes

    PubMed Central

    Digges, K.; Gabler, H; Mohan, P.; Alonso, B.

    2005-01-01

    The population of occupants in far-side crashes that are documented in the US National database (NASS/CDS) was studied. The annual number of front seat occupants with serious or fatal injuries in far-side planar and rollover crashes was 17,194. The crash environment that produces serious and fatal injuries to belted front seat occupants in planar far-side crashes was investigated in detail. It was found that both the change in velocity and extent of damage were important factors that relate to crash severity. The median severity for crashes with serious or fatal injuries was a lateral delta-V of 28 kph and an extent of damage of CDC 3.6. Vehicle-to-vehicle impacts were simulated by finite element models to determine the intrusion characteristics associated with the median crash condition. These simulations indicated that the side damage caused by the IIHS barrier was representative of the damage in crashes that produce serious injuries in far-side crashes. Occupant simulations of the IIHS barrier crash at 28 kph showed that existing dummies lack biofidelity in upper body motion. The analysis suggested test conditions for studying far-side countermeasures and supported earlier studies that showed the need for an improved dummy to evaluate safety performance in the far-side crash environment. PMID:16179148

  5. Effect of nonlinear electrostatic forces on the dynamic behaviour of a capacitive ring-based Coriolis Vibrating Gyroscope under severe shock

    NASA Astrophysics Data System (ADS)

    Chouvion, B.; McWilliam, S.; Popov, A. A.

    2018-06-01

    This paper investigates the dynamic behaviour of capacitive ring-based Coriolis Vibrating Gyroscopes (CVGs) under severe shock conditions. A general analytical model is developed for a multi-supported ring resonator by describing the in-plane ring response as a finite sum of modes of a perfect ring and the electrostatic force as a Taylor series expansion. It is shown that the supports can induce mode coupling and that mode coupling occurs when the shock is severe and the electrostatic forces are nonlinear. The influence of electrostatic nonlinearity is investigated by numerically simulating the governing equations of motion. For the severe shock cases investigated, when the electrode gap reduces by ∼ 60 % , it is found that three ring modes of vibration (1 θ, 2 θ and 3 θ) and a 9th order force expansion are needed to obtain converged results for the global shock behaviour. Numerical results when the 2 θ mode is driven at resonance indicate that electrostatic nonlinearity introduces mode coupling which has potential to reduce sensor performance under operating conditions. Under some circumstances it is also found that severe shocks can cause the vibrating response to jump to another stable state with much lower vibration amplitude. This behaviour is mainly a function of shock amplitude and rigid-body motion damping.

  6. Biomedical support of man in space

    NASA Astrophysics Data System (ADS)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    In its broadest sense, biomedical support of man in space must not be limited to assisting spacecraft crew during the mission; such support should also ensure that flight personnel be able to perform properly during landing and after leaving the craft. Man has developed mechanisms that allow him to cope with specific stresses in his normal habitat; there is indisputable evidence that, in some cases, the space environment, by relieving these stresses, has also allowed the adaptive mechanisms to lapse, causing serious problems after re-entry. Inflight biomedical support must therefore include means to simulate some of the normal stresses of the Earth environment. In the area of cardiovascular performance, we have come to rely heavily on complex feedback mechanisms to cope with two stresses, often combined: postural changes, which alter the body axis along which gravitational acceleration acts, and physical exercise, which increases the total load on the system. Unless the appropriate responses are reinforced continuously during flight, crew members may be incapacitated upon return. The first step in the support process must be a study of the way in which changes in g, even of short duration, affect these responses. In particular we should learn more about effects of g on the "on" and "off" dynamics, using a variety of approaches: increased acceleration on one hand at recumbency, immersion, lower body positive pressure, and other means of simulating some of the effects of low g, on the other. Once we understand this, we will have to determine the minimal exposure dose required to maintain the response mechanisms. Finally, we shall have to design stresses that simulate Earth environment and can be imposed in the space vehicle. Some of the information is already at hand; we know that several aspects of the response to exercise are affected by posture. Results from a current series of studies on the kinetics of tilt and on the dynamics of readjustment to exercise in different postures will be presented and discussed.

  7. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.

    2015-12-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.

  8. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various circuit parameters including typical manufacturing dimensional tolerances and support rod permittivity. By varying the circuit parameters of an accurate model using MAFIA, these sensitivities can be computed for manufacturing concerns, and design optimization previous to fabrication, thus eliminating the need for costly experimental iterations. Several variations were made to a standard helical circuit using MAFIA to investigate the effect that variations on helical tape and support rod width, metallized loading height and support rod permittivity, have on TWT cold-test characteristics.

  9. Improvement of microwave feeding on a large bore ECRIS with permanent magnets by using coaxial semi-dipole antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurisu, Yosuke; Sakamoto, Naoki; Kiriyama, Ryutaro

    2012-11-06

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). The first stage of this ECRIS has a large-bore with cylindrically comb-shaped permanent magnets. 2.45GHz and 11-13GHz microwaves can be supplied individually and simultaneously to the plasma chamber. For 2.45GHz, a coaxial semi-dipole antenna is used to feed the microwaves. In previous experiments, there were two problems encountered when running the 2.45GHz microwaves. High incident power was necessary to keep ECR discharge at low operating pressure because of high reflected microwave power. The surface of a support insulator between the inner and the outer electrodes of coaxialmore » semi-dipole antenna was easily metalized by sputtering of the metal wall inside the chamber. The purpose of this study was to solve these problems. Performing several simulation experiments supports the hypothesis that the position of the support insulator is significant for microwave power efficiency. The end result was the ability to sustain ECR discharges at extremely low incident microwave power, several tens of watts, by optimized matching of the position and shape of the insulator.« less

  10. SMI Compatible Simulation Scheduler Design for Reuse of Model Complying with Smp Standard

    NASA Astrophysics Data System (ADS)

    Koo, Cheol-Hea; Lee, Hoon-Hee; Cheon, Yee-Jin

    2010-12-01

    Software reusability is one of key factors which impacts cost and schedule on a software development project. It is very crucial also in satellite simulator development since there are many commercial simulator models related to satellite and dynamics. If these models can be used in another simulator platform, great deal of confidence and cost/schedule reduction would be achieved. Simulation model portability (SMP) is maintained by European Space Agency and many models compatible with SMP/simulation model interface (SMI) are available. Korea Aerospace Research Institute (KARI) is developing hardware abstraction layer (HAL) supported satellite simulator to verify on-board software of satellite. From above reasons, KARI wants to port these SMI compatible models to the HAL supported satellite simulator. To port these SMI compatible models to the HAL supported satellite simulator, simulation scheduler is preliminary designed according to the SMI standard.

  11. Learning how to learn using simulation: Unpacking disguised feedback using a qualitative analysis of doctors' telephone talk.

    PubMed

    Eppich, Walter J; Rethans, Jan-Joost; Dornan, Timothy; Teunissen, Pim W

    2018-05-04

    Telephone talk between clinicians represents a substantial workplace activity in postgraduate clinical education, yet junior doctors receive little training in goal-directed, professional telephone communication. To assess educational needs for telephone talk and develop a simulation-based educational intervention. Thematic analysis of 17 semi-structured interviews with doctors-in-training from various training levels and specialties. We identified essential elements to incorporate into simulation-based telephone talk, including common challenging situations for junior doctors as well as explicit and informal aspects that promote learning. These elements have implications for both junior doctors and clinical supervisors, including: (a) explicit teaching and feedback practices and (b) informal conversational interruptions and questions. The latter serve as "disguised" feedback, which aligns with recent conceptualizations of feedback as "performance relevant information". In addition to preparing clinical supervisors to support learning through telephone talk, we propose several potential educational strategies: (a) embedding telephone communication skills throughout simulation activities and (b) developing stand-alone curricular elements to sensitize junior doctors to "disguised" feedback during telephone talk as a mechanism to augment future workplace learning, i.e. 'learning how to learn' through simulation.

  12. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    PubMed

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  13. Report on Project Action Sheet PP05 task 3 between the U.S. Department of Energy and the Republic of Korea Ministry of Education, Science, and Technology (MEST).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snell, Mark Kamerer

    2013-01-01

    This report documents the results of Task 3 of Project Action Sheet PP05 between the United States Department of Energy (DOE) and the Republic of Korea (ROK) Ministry of Education, Science, and Technology (MEST) for Support with Review of an ROK Risk Evaluation Process. This task was to have Sandia National Laboratories collaborate with the Korea Institute of Nuclear Nonproliferation and Control (KINAC) on several activities concerning how to determine the Probability of Neutralization, PN, and the Probability of System Effectiveness, PE, to include: providing descriptions on how combat simulations are used to determine PN and PE; comparisons of themore » strengths and weaknesses of two neutralization models (the Neutralization.xls spreadsheet model versus the Brief Adversary Threat-Loss Estimator (BATLE) software); and demonstrating how computer simulations can be used to determine PN. Note that the computer simulation used for the demonstration was the Scenario Toolkit And Generation Environment (STAGE) simulation, which is a stand-alone synthetic tactical simulation sold by Presagis Canada Incorporated. The demonstration is provided in a separate Audio Video Interleave (.AVI) file.« less

  14. iBIOMES Lite: Summarizing Biomolecular Simulation Data in Limited Settings

    PubMed Central

    2015-01-01

    As the amount of data generated by biomolecular simulations dramatically increases, new tools need to be developed to help manage this data at the individual investigator or small research group level. In this paper, we introduce iBIOMES Lite, a lightweight tool for biomolecular simulation data indexing and summarization. The main goal of iBIOMES Lite is to provide a simple interface to summarize computational experiments in a setting where the user might have limited privileges and limited access to IT resources. A command-line interface allows the user to summarize, publish, and search local simulation data sets. Published data sets are accessible via static hypertext markup language (HTML) pages that summarize the simulation protocols and also display data analysis graphically. The publication process is customized via extensible markup language (XML) descriptors while the HTML summary template is customized through extensible stylesheet language (XSL). iBIOMES Lite was tested on different platforms and at several national computing centers using various data sets generated through classical and quantum molecular dynamics, quantum chemistry, and QM/MM. The associated parsers currently support AMBER, GROMACS, Gaussian, and NWChem data set publication. The code is available at https://github.com/jcvthibault/ibiomes. PMID:24830957

  15. Rapid Prototyping of an Aircraft Model in an Object-Oriented Simulation

    NASA Technical Reports Server (NTRS)

    Kenney, P. Sean

    2003-01-01

    A team was created to participate in the Mars Scout Opportunity. Trade studies determined that an aircraft provided the best opportunity to complete the science objectives of the team. A high fidelity six degree of freedom flight simulation was required to provide credible evidence that the aircraft design fulfilled mission objectives and to support the aircraft design process by providing performance evaluations. The team created the simulation using the Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. A rapid prototyping approach was necessary because the team had only three months to both develop the aircraft simulation model and evaluate aircraft performance as the design and mission parameters matured. The design of LaSRS++ enabled rapid-prototyping in several ways. First, the framework allowed component models to be designed, implemented, unit-tested, and integrated quickly. Next, the framework provides a highly reusable infrastructure that allowed developers to maximize code reuse while concentrating on aircraft and mission specific features. Finally, the framework reduces risk by providing reusable components that allow developers to build a quality product with a compressed testing cycle that relies heavily on unit testing of new components.

  16. Multi-dimensional simulation package for ultrashort pulse laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Suslova, Anastassiya; Hassanein, Ahmed

    2017-10-01

    Advanced simulation models recently became a popular tool of investigation of ultrashort pulse lasers (USPLs) to enhance understanding of the physics and allow minimizing the experimental costs for optimization of laser and target parameters for various applications. Our research interest is focused on developing multi-dimensional simulation package FEMTO-2D to investigate the USPL-matter interactions and laser induced effects. The package is based on solution of two heat conduction equations for electron and lattice sub-systems - enhanced two temperature model (TTM). We have implemented theoretical approach based on the collision theory to define the thermal dependence of target material optical properties and thermodynamic parameters. Our approach allowed elimination of fitted parameters commonly used in TTM based simulations. FEMTO-2D is used to simulated the light absorption and interactions for several metallic targets as a function of wavelength and pulse duration for wide range of laser intensity. The package has capability to consider different angles of incidence and polarization. It has also been used to investigate the damage threshold of the gold coated optical components with the focus on the role of the film thickness and substrate heat sink effect. This work was supported by the NSF, PIRE project.

  17. Simulated real-time lunar volatiles prospecting with a rover-borne neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Elphic, Richard C.; Heldmann, Jennifer L.; Marinova, Margarita M.; Colaprete, Anthony; Fritzler, Erin L.; McMurray, Robert E.; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.; Deans, Matthew C.; Smith, Trey F.

    2015-05-01

    In situ resource utilization (ISRU) may one day enable long duration lunar missions. But the efficacy of such an approach greatly depends on (1) physical and chemical makeup of the resource, and (2) the logistical cost of exploiting the resource. Establishing these key strategic factors requires prospecting: the capability of locating and characterizing potential resources. There is already considerable evidence from orbital and impact missions that the lunar poles harbor plausibly rich reservoirs of volatiles. The next step is to land on the Moon and assess the nature, “ore-grade”, and extractability of water ice and other materials. In support of this next step, a mission simulation was carried out on the island of Hawai'i in July of 2012. A robotic rover, provided by the Canadian Space Agency, carried several NASA ISRU-supporting instruments in a field test to address how such a mission might be carried out. This exercise was meant to test the ability to (a) locate and characterize volatiles, (b) acquire subsurface samples in a volatile-rich location, and (c) analyze the form and composition of the volatiles to determine their utility. This paper describes the successful demonstration of neutron spectroscopy as a prospecting and decision support system to locate and evaluate potential ISRU targets in the field exercise.

  18. Highlights of the Workshop

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1997-01-01

    Economic stresses are forcing many industries to reduce cost and time-to-market, and to insert emerging technologies into their products. Engineers are asked to design faster, ever more complex systems. Hence, there is a need for novel design paradigms and effective design tools to reduce the design and development times. Several computational tools and facilities have been developed to support the design process. Some of these are described in subsequent presentations. The focus of the workshop is on the computational tools and facilities which have high potential for use in future design environment for aerospace systems. The outline for the introductory remarks is given. First, the characteristics and design drivers for future aerospace systems are outlined; second, simulation-based design environment, and some of its key modules are described; third, the vision for the next-generation design environment being planned by NASA, the UVA ACT Center and JPL is presented. The anticipated major benefits of the planned environment are listed; fourth, some of the government-supported programs related to simulation-based design are listed; and fifth, the objectives and format of the workshop are presented.

  19. Photovoltaic Hosting Capacity of Feeders with Reactive Power Control and Tap Changers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Oğuzhan; Paudyal, Sumit; Bhattarai, Bishnu P.

    This paper proposes an algorithm to determine photovoltaic (PV) hosting capacity of power distribution networks as a function of number of PV injection nodes, reactive power support from the PVs, and the sub-station load tap changers (LTCs). In the proposed method, several minute by minute simulations are run based on randomly chosen PV injection nodes, daily PV output profiles, and daily load profiles from a pool of high-resolution realistic data set. The simulation setup is built using OpenDSS and MATLAB. The performance of the proposed method is investigated in the IEEE 123-node distribution feeder for multiple scenarios. The case studiesmore » are performed particularly for one, two, five and ten PV injection nodes, and looking at the maximum voltage deviations. Case studies show that the PV hosting capacity of the 123-node feeder greatly differs with the number of PV injection nodes. We have also observed that the PV hosting capacity increases with reactive power support and higher tap position of sub-station LTC.« less

  20. Molecular Dynamic Simulation and Inhibitor Prediction of Cysteine Synthase Structured Model as a Potential Drug Target for Trichomoniasis

    PubMed Central

    Singh, Satendra; Singh, Atul Kumar; Gautam, Budhayash

    2013-01-01

    In our presented research, we made an attempt to predict the 3D model for cysteine synthase (A2GMG5_TRIVA) using homology-modeling approaches. To investigate deeper into the predicted structure, we further performed a molecular dynamics simulation for 10 ns and calculated several supporting analysis for structural properties such as RMSF, radius of gyration, and the total energy calculation to support the predicted structured model of cysteine synthase. The present findings led us to conclude that the proposed model is stereochemically stable. The overall PROCHECK G factor for the homology-modeled structure was −0.04. On the basis of the virtual screening for cysteine synthase against the NCI subset II molecule, we present the molecule 1-N, 4-N-bis [3-(1H-benzimidazol-2-yl) phenyl] benzene-1,4-dicarboxamide (ZINC01690699) having the minimum energy score (−13.0 Kcal/Mol) and a log P value of 6 as a potential inhibitory molecule used to inhibit the growth of T. vaginalis infection. PMID:24073401

  1. Gyrokinetic Simulations of JET Carbon and ITER-Like Wall Pedestals

    NASA Astrophysics Data System (ADS)

    Hatch, David; Kotschenreuther, Mike; Mahajan, Swadesh; Liu, Xing; Blackmon, Austin; Giroud, Carine; Hillesheim, Jon; Maggi, Costanza; Saarelma, Samuli; JET Contributors Team

    2017-10-01

    Gyrokinetic simulations using the GENE code are presented, which target a fundamental understanding of JET pedestal transport and, in particular, its modification after installation of an ITER like wall (ILW). A representative pre-ILW (carbon wall) discharge is analyzed as a base case. In this discharge, magnetic diagnostics observe washboard modes, which preferentially affect the temperature pedestal and have frequencies (accounting for Doppler shift) consistent with microtearing modes and inconsistent with kinetic ballooning modes. A similar ILW discharge is examined, which recovers a similar value of H98, albeit at reduced pedestal temperature. This discharge is distinguished by a much higher value of eta, which produces strong ITG and ETG driven instabilities in gyrokinetic simulations. Experimental observations provide several targets for comparisons with simulation data, including the toroidal mode number and frequency of magnetic fluctuations, heat fluxes, and inter-ELM profile evolution. Strategies for optimizing pedestal performance will also be discussed. This work was supported by U.S. DOE Contract No. DE-FG02-04ER54742 and by EUROfusion under Grant No. 633053.

  2. Stair evacuation simulation based on cellular automata considering evacuees’ walk preferences

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Hui; Chen, Tao; Peter, B. Luh

    2015-06-01

    As a physical model, the cellular automata (CA) model is widely used in many areas, such as stair evacuation. However, existing CA models do not consider evacuees’ walk preferences nor psychological status, and the structure of the basic model is unapplicable for the stair structure. This paper is to improve the stair evacuation simulation by addressing these issues, and a new cellular automata model is established. Several evacuees’ walk preference and how evacuee’s psychology influences their behaviors are introduced into this model. Evacuees’ speeds will be influenced by these features. To validate this simulation, two fire drills held in two high-rise buildings are video-recorded. It is found that the simulation results are similar to the fire drill results. The structure of this model is simple, and it is easy to further develop and utilize in different buildings with various kinds of occupants. Project supported by the National Basic Research Program of China (Grant No. 2012CB719705) and the National Natural Science Foundation of China (Grant Nos. 91224008, 91024032, and 71373139).

  3. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  4. ShareSync: A Solution for Deterministic Data Sharing over Ethernet

    NASA Technical Reports Server (NTRS)

    Dunn, Daniel J., II; Koons, William A.; Kennedy, Richard D.; Davis, Philip A.

    2007-01-01

    As part of upgrading the Contact Dynamics Simulation Laboratory (CDSL) at the NASA Marshall Space Flight Center (MSFC), a simple, cost effective method was needed to communicate data among the networked simulation machines and I/O controllers used to run the facility. To fill this need and similar applicable situations, a generic protocol was developed, called ShareSync. ShareSync is a lightweight, real-time, publish-subscribe Ethernet protocol for simple and deterministic data sharing across diverse machines and operating systems. ShareSync provides a simple Application Programming Interface (API) for simulation programmers to incorporate into their code. The protocol is compatible with virtually all Ethernet-capable machines, is flexible enough to support a variety of applications, is fast enough to provide soft real-time determinism, and is a low-cost resource for distributed simulation development, deployment, and maintenance. The first design cycle iteration of ShareSync has been completed, and the protocol has undergone several testing procedures including endurance and benchmarking tests and approaches the 2001ts data synchronization design goal for the CDSL.

  5. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    NASA Astrophysics Data System (ADS)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  6. Advanced EUV mask and imaging modeling

    NASA Astrophysics Data System (ADS)

    Evanschitzky, Peter; Erdmann, Andreas

    2017-10-01

    The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.

  7. Fifteenth Space Simulation Conference: Support the Highway to Space Through Testing

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph (Editor)

    1988-01-01

    The Institute of Environmental Sciences Fifteenth Space Simulation Conference, Support the Highway to Space Through Testing, provided participants a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, thermal simulation and protection, contamination, and techniques of test measurements.

  8. Effects of Learning Support in Simulation-Based Physics Learning

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Chen, Yu-Lung; Lin, He-Yan; Sung, Yao-Ting

    2008-01-01

    This paper describes the effects of learning support on simulation-based learning in three learning models: experiment prompting, a hypothesis menu, and step guidance. A simulation learning system was implemented based on these three models, and the differences between simulation-based learning and traditional laboratory learning were explored in…

  9. Interactive Simulations as Implicit Support for Guided-Inquiry

    ERIC Educational Resources Information Center

    Moore, Emily B.; Herzog, Timothy A.; Perkins, Katherine K.

    2013-01-01

    We present the results of a study designed to provide insight into interactive simulation use during guided-inquiry activities in chemistry classes. The PhET Interactive Simulations project at the University of Colorado develops interactive simulations that utilize implicit--rather than explicit--scaffolding to support student learning through…

  10. SNPs selection using support vector regression and genetic algorithms in GWAS

    PubMed Central

    2014-01-01

    Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels. PMID:25573332

  11. A qualitative case study of instructional support for web-based simulated laboratory exercises in online college chemistry laboratory courses

    NASA Astrophysics Data System (ADS)

    Schulman, Kathleen M.

    This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental calculations. Students believed that having this additional instructional support would lead to increased understanding of the laboratory exercises, allowing them to complete them with less difficulty, and giving them increased access to the instructor. Recommendations for the instructors of these two courses include: increased participation in the online course environment, increased emphasis on laboratory safety, and increased emphasis on the differences between simulated and real life chemistry laboratory experiments.

  12. Volumetric flow rate in simulations of microfluidic devices+

    NASA Astrophysics Data System (ADS)

    Kovalčíková, KristÍna; Slavík, Martin; Bachratá, Katarína; Bachratý, Hynek; Bohiniková, Alžbeta

    2018-06-01

    In this work, we examine the volumetric flow rate of microfluidic devices. The volumetric flow rate is a parameter which is necessary to correctly set up a simulation of a real device and to check the conformity of a simulation and a laboratory experiments [1]. Instead of defining the volumetric rate at the beginning as a simulation parameter, a parameter of external force is set. The proposed hypothesis is that for a fixed set of other parameters (topology, viscosity of the liquid, …) the volumetric flow rate is linearly dependent on external force in typical ranges of fluid velocity used in our simulations. To confirm this linearity hypothesis and to find numerical limits of this approach, we test several values of the external force parameter. The tests are designed for three different topologies of simulation box and for various haematocrits. The topologies of the microfluidic devices are inspired by existing laboratory experiments [3 - 6]. The linear relationship between the external force and the volumetric flow rate is verified in orders of magnitudes similar to the values obtained from laboratory experiments. Supported by the Slovak Research and Development Agency under the contract No. APVV-15-0751 and by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract No. VEGA 1/0643/17.

  13. Mathematical Model Development and Simulation Support

    NASA Technical Reports Server (NTRS)

    Francis, Ronald C.; Tobbe, Patrick A.

    2000-01-01

    This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.

  14. Development of a resource modelling tool to support decision makers in pandemic influenza preparedness: The AsiaFluCap Simulator.

    PubMed

    Stein, Mart Lambertus; Rudge, James W; Coker, Richard; van der Weijden, Charlie; Krumkamp, Ralf; Hanvoravongchai, Piya; Chavez, Irwin; Putthasri, Weerasak; Phommasack, Bounlay; Adisasmito, Wiku; Touch, Sok; Sat, Le Minh; Hsu, Yu-Chen; Kretzschmar, Mirjam; Timen, Aura

    2012-10-12

    Health care planning for pandemic influenza is a challenging task which requires predictive models by which the impact of different response strategies can be evaluated. However, current preparedness plans and simulations exercises, as well as freely available simulation models previously made for policy makers, do not explicitly address the availability of health care resources or determine the impact of shortages on public health. Nevertheless, the feasibility of health systems to implement response measures or interventions described in plans and trained in exercises depends on the available resource capacity. As part of the AsiaFluCap project, we developed a comprehensive and flexible resource modelling tool to support public health officials in understanding and preparing for surges in resource demand during future pandemics. The AsiaFluCap Simulator is a combination of a resource model containing 28 health care resources and an epidemiological model. The tool was built in MS Excel© and contains a user-friendly interface which allows users to select mild or severe pandemic scenarios, change resource parameters and run simulations for one or multiple regions. Besides epidemiological estimations, the simulator provides indications on resource gaps or surpluses, and the impact of shortages on public health for each selected region. It allows for a comparative analysis of the effects of resource availability and consequences of different strategies of resource use, which can provide guidance on resource prioritising and/or mobilisation. Simulation results are displayed in various tables and graphs, and can also be easily exported to GIS software to create maps for geographical analysis of the distribution of resources. The AsiaFluCap Simulator is freely available software (http://www.cdprg.org) which can be used by policy makers, policy advisors, donors and other stakeholders involved in preparedness for providing evidence based and illustrative information on health care resource capacities during future pandemics. The tool can inform both preparedness plans and simulation exercises and can help increase the general understanding of dynamics in resource capacities during a pandemic. The combination of a mathematical model with multiple resources and the linkage to GIS for creating maps makes the tool unique compared to other available software.

  15. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  16. The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.

    2005-12-01

    The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy-to-use system for constructing SHA computations, a browser-based workflow assembly web portal has been developed. Users can compose complex SHA calculations, specifying SCEC/CME data sets as inputs to calculations, and calling SCEC/CME computational programs to process the data and the output. Knowledge-based software tools have been implemented that utilize ontological descriptions of SHA software and data can validate workflows created with this pathway assembly tool. Data visualization software developed by the collaboration supports analysis and validation of data sets. Several programs have been developed to visualize SCEC/CME data including GMT-based map making software for PSHA codes, 4D wavefield propagation visualization software based on OpenGL, and 3D Geowall-based visualization of earthquakes, faults, and seismic wave propagation. The SCEC/CME Project also helps to sponsor the SCEC UseIT Intern program. The UseIT Intern Program provides research opportunities in both Geosciences and Information Technology to undergraduate students in a variety of fields. The UseIT group has developed a 3D data visualization tool, called SCEC-VDO, as a part of this undergraduate research program.

  17. Real-Time Digital Simulation of Inertial Response with Hardware-in-the-Loop Implementation on the CART3 Wind Turbine at the National Wind Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenzhong; Wang, Xiao; Muljadi, Eduard

    With increasing penetrations of wind power on electric grids, the stability and reliability of interconnected power systems may be impacted. In some countries that have developed renewable energy sources and systems, grid codes have been revised to require wind power plants (WPPs) to provide ancillary services to support the power system frequency in case of severe grid events. To do this, wind turbine generators (WTGs) should be deloaded to reserve a certain amount of active power for primary frequency response; however, deloading curtails annual energy production, and the market for this type of service needs to be further developed. Inmore » this report, we focus on the temporary frequency support provided by WTGs through inertial response. WTGs have potential to provide inertial response, but appropriate control methods should be implemented. With the implemented inertial control methods, wind turbines are capable of increasing their active power output by releasing some of their stored kinetic energy when a frequency excursion occurs. Active power can be temporarily boosted above the maximum power points, after which the rotor speed decelerates, and subsequently an active power output reduction restores the kinetic energy. In this report, we develop two types of models for wind power systems: the first is common, based on the wind power aerodynamic equation, and the power coefficient can be regressed using nonlinear functions; the second is much more complicated, wherein the wind turbine system is modeled using the Fatigue, Aerodynamics, Structures, and Turbulence Modeling (FAST) tool with several degrees of freedoms. A nine-bus test power system is built in Simulink and the Real-Time Digital Simulator, respectively, which are used to evaluate the frequency support performance of the WPPs. We implement two distinct types of inertial control methods in the modeled wind turbines: frequency-based inertial control (FBIC) and stepwise inertial control (SIC). We compare the performances of the two methods in terms of their frequency nadirs, rates of change of frequency, and recovery times. We conclude the results under various wind speeds and penetration cases, which provide insight into designing the inertial response of WTGs. Further, we discuss the impact of the parameters on the performance of the inertial control methods. We evaluate both the scaling factors for the FBIC method and the slope values for the TLIC methods. The simulation work shows the characteristics of different inertial responses compared to conventional synchronous generators. Based on the simulation results, we modify, improve, and test the inertial control methods under a more realistic wind turbine model based on FAST. We then validate the inertial responses under highly turbulent wind conditions generated by TurbSim, and we examine their influences on the turbine mechanical components. The extensive simulation proves the effectiveness of the proposed inertial control methods as well as the nine-bus test power system. We then reconsider the parameters. We rebuild the same test power system using Real time Simulator Computer Aided Design (RSCAD), and we implement the inertial control methods in the real Controls Advanced Research Turbine (CART3), which is prepared for the hardware-in-the-loop field-test simulation. After the setups for the hardware and software hybrid simulation platform are complete, the inertial response is further tested on a real wind turbine for the first time, in which CART3 release the controlled inertial response against the emulated frequency excursion, provided by the real-time simulated power system test bed in RTDS.« less

  18. Modeling Combustion in Supersonic Flows

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  19. A novel computational method to simulate non-enzymatic self-replication. [Abstract only

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, Rafael; Reggia, James A.; Wu, Jayoung; Chou, Hui-Hsien

    1994-01-01

    Non-enzymatic, template-directed synthesis of oligonucleotides has been extensively studied in the laboratory as a model to understand the kind of chemical processes that might have contributed to the origin of life on Earth. Several oligonucleotides have been shown to catalyze the synthesis of their complements from activated mononucleotides; however, a restricted number of them have been found to self-replicate. Recently we developed an efficient modified cellular automata method that supports the study of self-replicating oligonucleotides. With this method the oligonucleotide molecules are represented as active cells imbedded in a two-dimensional array of inactive cells symbolizing the environment. Random movements and probability-governed chemical reactions occurring in a cellular space can effectively simulate the experimental behavior observed in self-directed replication of oligonucleotides.

  20. Model Comparison for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  1. Software Tools to Support Research on Airport Departure Planning

    NASA Technical Reports Server (NTRS)

    Carr, Francis; Evans, Antony; Feron, Eric; Clarke, John-Paul

    2003-01-01

    A simple, portable and useful collection of software tools has been developed for the analysis of airport surface traffic. The tools are based on a flexible and robust traffic-flow model, and include calibration, validation and simulation functionality for this model. Several different interfaces have been developed to help promote usage of these tools, including a portable Matlab(TM) implementation of the basic algorithms; a web-based interface which provides online access to automated analyses of airport traffic based on a database of real-world operations data which covers over 250 U.S. airports over a 5-year period; and an interactive simulation-based tool currently in use as part of a college-level educational module. More advanced applications for airport departure traffic include taxi-time prediction and evaluation of "windowing" congestion control.

  2. Reducing Behavior Problems Among Students with Autism Spectrum Disorder: Coaching Teachers in a Mixed-Reality Setting.

    PubMed

    Pas, Elise T; Johnson, Stacy R; Larson, Kristine E; Brandenburg, Linda; Church, Robin; Bradshaw, Catherine P

    2016-12-01

    Most approaches aiming to reduce behavior problems among youth with Autism Spectrum Disorder (ASD) focus on individual students; however, school personnel also need professional development to better support students. This study targeted teachers' skill development to promote positive outcomes for students with ASD. The sample included 19 teachers in two non-public special education settings serving students with moderate to severe ASD. Participating teachers received professional development and coaching in classroom management, with guided practice in a mixed-reality simulator. Repeated-measures ANOVAs examining externally-conducted classroom observations revealed statistically significant improvements in teacher management and student behavior over time. Findings suggest that coaching and guided practice in a mixed-reality simulator is perceived as acceptable and may reduce behavior problems among students with ASD.

  3. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  4. Episodic Future Thinking: Mechanisms and Functions.

    PubMed

    Schacter, Daniel L; Benoit, Roland G; Szpunar, Karl K

    2017-10-01

    Episodic future thinking refers to the capacity to imagine or simulate experiences that might occur in one's personal future. Cognitive, neuropsychological, and neuroimaging research concerning episodic future thinking has accelerated during recent years. This article discusses research that has delineated cognitive and neural mechanisms that support episodic future thinking as well as the functions that episodic future thinking serves. Studies focused on mechanisms have identified a core brain network that underlies episodic future thinking and have begun to tease apart the relative contributions of particular regions in this network, and the specific cognitive processes that they support. Studies concerned with functions have identified several domains in which episodic future thinking produces performance benefits, including decision making, emotion regulation, prospective memory, and spatial navigation.

  5. Factors affecting credibility in a simulated sexual harassment hearing.

    PubMed

    Gibbs, M; Sigal, J; Friedman, C R; Orosy-fildes, C

    1995-12-01

    This paper presents two studies investigating judgments in a simulated sexual harassment hearing in which 240 male and female undergraduates participated. The transcript presented a female student's allegations of sexual harassment against a male professor. In the first experiment, 4 versions of a transcript were created, varying the aggressiveness of the attack on the female student complainant and the status of the accused professor. The findings supported the hypothesis that an aggressive attack negatively affects believability of the victim. The findings are also consistent with previous studies, which found out that denial was an effective technique for handling attacks. In the second experiment, the case was modified as to the emotionality of both the victim and the accused and the time of the between the occurrence and the reporting of the alleged harassment incident (1 month vs. 6 months). The results indicated that emotionality was important to decisions about the severity of punishment and guilt; when the victim was emotional, the defendant was punished more severely. Both experiments indicated that process variables (e.g., aggressiveness of attack) might be important in the perception of sexual harassment.

  6. A review of training research and virtual reality simulators for the da Vinci surgical system.

    PubMed

    Liu, May; Curet, Myriam

    2015-01-01

    PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.

  7. Social cognitive theory, metacognition, and simulation learning in nursing education.

    PubMed

    Burke, Helen; Mancuso, Lorraine

    2012-10-01

    Simulation learning encompasses simple, introductory scenarios requiring response to patients' needs during basic hygienic care and during situations demanding complex decision making. Simulation integrates principles of social cognitive theory (SCT) into an interactive approach to learning that encompasses the core principles of intentionality, forethought, self-reactiveness, and self-reflectiveness. Effective simulation requires an environment conducive to learning and introduces activities that foster symbolic coding operations and mastery of new skills; debriefing builds self-efficacy and supports self-regulation of behavior. Tailoring the level of difficulty to students' mastery level supports successful outcomes and motivation to set higher standards. Mindful selection of simulation complexity and structure matches course learning objectives and supports progressive development of metacognition. Theory-based facilitation of simulated learning optimizes efficacy of this learning method to foster maturation of cognitive processes of SCT, metacognition, and self-directedness. Examples of metacognition that are supported through mindful, theory-based implementation of simulation learning are provided. Copyright 2012, SLACK Incorporated.

  8. Support for Learning with Computer Simulations: Giving Hints, Supporting Learning Processes, and Providing Hypotheses.

    ERIC Educational Resources Information Center

    Njoo, Melanie; de Jong, Ton

    This paper contains the results of a study on the importance of discovery learning using computer simulations. The purpose of the study was to identify what constitutes discovery learning and to assess the effects of instructional support measures. College students were observed working with an assignment and a computer simulation in the domain of…

  9. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  10. A Simbol-X Event Simulator

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Fiore, F.; Giommi, P.

    2009-05-01

    The ASI Science Data Center (ASDC) has developed an X-ray event simulator to support users (and team members) in simulation of data taken with the two cameras on board the Simbol-X X-Ray Telescope. The Simbol-X simulator is very fast and flexible, compared to ray-tracing simulator. These properties make our simulator advantageous to support the user in planning proposals and comparing real data with the theoretical expectations and for a quick detection of unexpected features. We present here the simulator outline and a few examples of simulated data.

  11. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  12. Design of a radiator shade for testing in a simulated lunar environment

    NASA Technical Reports Server (NTRS)

    Huff, Jaimi; Remington, Randy; Tang, Toan

    1992-01-01

    The National Aeronautics and Space Administration (NASA) and The Universities Space Research Association (USRA) have chosen the parabolic/catenary concept from their sponsored Fall 1991 lunar radiation shade project for further testing and development. NASA asked the design team to build a shading device and support structure for testing in a vacuum chamber. Besides the support structure for the catenary shading device, the design team was asked to develop a system for varying the shade shape so that the device can be tested at different focal lengths. The design team developed concept variants and combined the concept variants to form overall designs. Using a decision matrix, an overall design was selected by the team from several overall design alternatives. Concept variants were developed for three primary functions. The three functions were structural support, shape adjustments, and end shielding. The shade adjustment function was divided into two sub-functions, arc length adjustment, and width adjustment.

  13. Modeling and Simulation of Phased Array Antennas to Support Next-Generation Satellite Design

    NASA Technical Reports Server (NTRS)

    Tchorowski, Nicole; Murawski, Robert; Manning, Robert; Fuentes, Michael

    2016-01-01

    Developing enhanced simulation capabilities has become a significant priority for the Space Communications and Navigation (SCaN) project at NASA as new space communications technologies are proposed to replace aging NASA communications assets, such as the Tracking and Data Relay Satellite System (TDRSS). When developing the architecture for these new space communications assets, it is important to develop updated modeling and simulation methodologies, such that competing architectures can be weighed against one another and the optimal path forward can be determined. There have been many simulation tools developed here at NASA for the simulation of single RF link budgets, or for the modeling and simulation of an entire network of spacecraft and their supporting SCaN network elements. However, the modeling capabilities are never fully complete and as new technologies are proposed, gaps are identified. One such gap is the ability to rapidly develop high fidelity simulation models of electronically steerable phased array systems. As future relay satellite architectures are proposed that include optical communications links, electronically steerable antennas will become more desirable due to the reduction in platform vibration introduced by mechanically steerable devices. In this research, we investigate how modeling of these antennas can be introduced into out overall simulation and modeling structure. The ultimate goal of this research is two-fold. First, to enable NASA engineers to model various proposed simulation architectures and determine which proposed architecture meets the given architectural requirements. Second, given a set of communications link requirements for a proposed satellite architecture, determine the optimal configuration for a phased array antenna. There is a variety of tools available that can be used to model phased array antennas. To meet our stated goals, the first objective of this research is to compare the subset of tools available to us, trading-off modeling fidelity of the tool with simulation performance. When comparing several proposed architectures, higher- fidelity modeling may be desirable, however, when iterating a proposed set of communication link requirements across ranges of phased array configuration parameters, the practicality of performance becomes a significant requirement. In either case, a minimum simulation - fidelity must be met, regardless of performance considerations, which will be discussed in this research. Given a suitable set of phased array modeling tools, this research then focuses on integration with current SCaN modeling and simulation tools. While properly modeling the antenna elements of a system are vital, this is only a small part of the end-to-end communication path between a satellite and the supporting ground station and/or relay satellite assets. To properly model a proposed simulation architecture, this toolset must be integrated with other commercial and government development tools, such that the overall architecture can be examined in terms of communications, reliability, and cost. In this research, integration with previously developed communication tools is investigated.

  14. Role of Additives in Composite PEI/Oxide CO 2 Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO 2 Capture from Simulated Ambient Air

    DOE PAGES

    Sakwa-Novak, Miles A.; Tan, Shuai; Jones, Christopher W.

    2015-10-20

    Supported amines are promising candidate adsorbents for the removal of CO 2 from flue gases and directly from ambient air. The incorporation of additives into polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides is an effective strategy to improve the performance of the materials. Here, several practical aspects of this strategy are addressed with regards to direct air capture. The influence of three additives (CTAB, PEG200, PEG1000) was systematically explored under dry simulated air capture conditions (400 ppm of CO 2, 30 °C). With SBA-15 as a model support for poly(ethylenimine) (PEI), the nature of the additive inducedmore » heterogeneities in the deposition of organic on the interior and exterior of the particles, an important consideration for future scale up to practical systems. The PEG200 additive increased the observed thermodynamic performance (~60% increase in amine efficiency) of the adsorbents regardless of the PEI content, while the other molecules had less positive effects. A threshold PEG200/PEI value was identified at which the diffusional limitations of CO 2 within the materials were nearly eliminated. The threshold PEG/PEI ratio may have physical origin in the interactions between PEI and PEG, as the optimal ratio corresponded to nearly equimolar OH/reactive (1°, 2°) amine ratios. As a result, the strategy is shown to be robust to the characteristics of the host support, as PEG200 improved the amine efficiency of PEI when supported on two varieties of mesoporous γ-alumina with PEI.« less

  15. Role of Additives in Composite PEI/Oxide CO 2 Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO 2 Capture from Simulated Ambient Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakwa-Novak, Miles A.; Tan, Shuai; Jones, Christopher W.

    Supported amines are promising candidate adsorbents for the removal of CO 2 from flue gases and directly from ambient air. The incorporation of additives into polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides is an effective strategy to improve the performance of the materials. Here, several practical aspects of this strategy are addressed with regards to direct air capture. The influence of three additives (CTAB, PEG200, PEG1000) was systematically explored under dry simulated air capture conditions (400 ppm of CO 2, 30 °C). With SBA-15 as a model support for poly(ethylenimine) (PEI), the nature of the additive inducedmore » heterogeneities in the deposition of organic on the interior and exterior of the particles, an important consideration for future scale up to practical systems. The PEG200 additive increased the observed thermodynamic performance (~60% increase in amine efficiency) of the adsorbents regardless of the PEI content, while the other molecules had less positive effects. A threshold PEG200/PEI value was identified at which the diffusional limitations of CO 2 within the materials were nearly eliminated. The threshold PEG/PEI ratio may have physical origin in the interactions between PEI and PEG, as the optimal ratio corresponded to nearly equimolar OH/reactive (1°, 2°) amine ratios. As a result, the strategy is shown to be robust to the characteristics of the host support, as PEG200 improved the amine efficiency of PEI when supported on two varieties of mesoporous γ-alumina with PEI.« less

  16. Analysis of the design and performance characteristics of pumpable roof supports

    PubMed Central

    Timothy, Batchler

    2017-01-01

    Pumpable roof supports are currently being used to provide a safe working environment for longwall mining. Because different pumpable supports are visually similar and installed fundamentally in the same manner as other supports, there is a tendency to believe they all perform the same way. However, there are several design parameters that can affect their performance, including the cementitious material properties and the bag construction practices that influence the degree of confinement provided. A full understanding of the impact of these design parameters is necessary to optimize the support application and to provide a foundation for making further improvements in the support performance. This paper evaluates the impact of various support design parameters by examining full-scale performance tests conducted using the National Institute for Occupational Safety and Health (NIOSH) Mine Roof Simulator (MRS) as part of manufacturers’ developmental and quality control testing. These tests were analyzed to identify correlations between the support design parameters and the resulting performance. Based on more than 160 tests over 7 years, quantifiable patterns were examined to assess the correlation between the support dimensions, cementitious material type, wire pitch, and single-wall vs. dual-walled bag designs to the support capacity, stiffness, load shedding events, and yield characteristics. PMID:28775910

  17. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations

    PubMed Central

    Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510

  18. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations.

    PubMed

    Ahlstrom, Logan S; Vorontsov, Ivan I; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations.

  19. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  20. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecraft into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  1. Numerical investigation of interactions between marine atmospheric boundary layer and offshore wind farm

    NASA Astrophysics Data System (ADS)

    Lyu, Pin; Chen, Wenli; Li, Hui; Shen, Lian

    2017-11-01

    In recent studies, Yang, Meneveau & Shen (Physics of Fluids, 2014; Renewable Energy, 2014) developed a hybrid numerical framework for simulation of offshore wind farm. The framework consists of simulation of nonlinear surface waves using a high-order spectral method, large-eddy simulation of wind turbulence on a wave-surface-fitted curvilinear grid, and an actuator disk model for wind turbines. In the present study, several more precise wind turbine models, including the actuator line model, actuator disk model with rotation, and nacelle model, are introduced into the computation. Besides offshore wind turbines on fixed piles, the new computational framework has the capability to investigate the interaction among wind, waves, and floating wind turbines. In this study, onshore, offshore fixed pile, and offshore floating wind farms are compared in terms of flow field statistics and wind turbine power extraction rate. The authors gratefully acknowledge financial support from China Scholarship Council (No. 201606120186) and the Institute on the Environment of University of Minnesota.

  2. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton

    2015-11-01

    Atomic simulations were undertaken to analyse the effect of polymer chain scission on amorphous poly(lactide) during degradation. Many experimental studies have analysed mechanical properties degradation but relatively few computation studies have been conducted. Such studies are valuable for supporting the design of bioresorbable medical devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young's modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness polymer may exist around chain scissions. In the Effective Cavity Theory, each chain scission is considered to instantiate an effective cavity. Finite Element Analysis simulations were conducted to model the effect of the cavities on Young's modulus. Since polymer crystallinity affects mechanical properties, the effect of increases in crystallinity during degradation on Young's modulus is also considered. To demonstrate the ability of the Effective Cavity Theory, it was fitted to several sets of experimental data for Young's modulus in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Coarse-grained simulation of polymer-filler blends

    NASA Astrophysics Data System (ADS)

    Legters, Gregg; Kuppa, Vikram; Beaucage, Gregory; Univ of Dayton Collaboration; Univ of Cincinnati Collaboration

    The practical use of polymers often relies on additives that improve the property of the mixture. Examples of such complex blends include tires, pigments, blowing agents and other reactive additives in thermoplastics, and recycled polymers. Such systems usually exhibit a complex partitioning of the components. Most prior work has either focused on fine-grained details such as molecular modeling of chains at interfaces, or on coarse, heuristic, trial-and-error approaches to compounding (eg: tire industry). Thus, there is a significant gap in our understanding of how complex hierarchical structure (across several decades in length) develops in these multicomponent systems. This research employs dissipative particle thermodynamics in conjunction with a pseudo-thermodynamic parameter derived from scattering experiments to represent polymer-filler interactions. DPD simulations will probe how filler dispersion and hierarchical morphology develops in these complex blends, and are validated against experimental (scattering) data. The outcome of our approach is a practical solution to compounding issues, based on a mutually validating experimental and simulation methodology. Support from the NSF (CMMI-1636036/1635865) is gratefully acknowledged.

  4. Launch vehicle design and GNC sizing with ASTOS

    NASA Astrophysics Data System (ADS)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2018-03-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  5. Assessment on the pedestrian risk during floods based on numerical simulation - A case study in Jinan City

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Xu, Z.; Hong, S.

    2017-12-01

    Flood disasters frequently attack the urban area in Jinan City during past years, and the city is faced with severe road flooding which greatly threaten pedestrians' safety. Therefore, it is of great significance to investigate the pedestrian risk during floods under specific topographic condition. In this study, a model coupled hydrological and hydrodynamic processes is developed in the study area to simulate the flood routing process on the road for the "7.18" rainstorm and validated with post-disaster damage survey information. The risk of pedestrian is estimated with a flood risk assessment model. The result shows that the coupled model performs well in the rainstorm flood process. On the basis of the simulation result, the areas with extreme risk, medium risk, and mild risk are identified, respectively. Regions with high risk are generally located near the mountain front area with steep slopes. This study will provide scientific support for the flood control and disaster reduction in Jinan City.

  6. Rotation in young massive star clusters

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela

    2017-05-01

    Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.

  7. Microgravity effects on water flow and distribution in unsaturated porous media: Analyses of flight experiments

    NASA Astrophysics Data System (ADS)

    Jones, Scott B.; Or, Dani

    1999-04-01

    Plants grown in porous media are part of a bioregenerative life support system designed for long-duration space missions. Reduced gravity conditions of orbiting spacecraft (microgravity) alter several aspects of liquid flow and distribution within partially saturated porous media. The objectives of this study were to evaluate the suitability of conventional capillary flow theory in simulating water distribution in porous media measured in a microgravity environment. Data from experiments aboard the Russian space station Mir and a U.S. space shuttle were simulated by elimination of the gravitational term from the Richards equation. Qualitative comparisons with media hydraulic parameters measured on Earth suggest narrower pore size distributions and inactive or nonparticipating large pores in microgravity. Evidence of accentuated hysteresis, altered soil-water characteristic, and reduced unsaturated hydraulic conductivity from microgravity simulations may be attributable to a number of proposed secondary mechanisms. These are likely spawned by enhanced and modified paths of interfacial flows and an altered force ratio of capillary to body forces in microgravity.

  8. A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics

    NASA Astrophysics Data System (ADS)

    Halpern, Federico

    2017-10-01

    The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.

  9. Development of Pediatric Neurologic Emergency Life Support Course: A Preliminary Report.

    PubMed

    Haque, Anwarul; Arif, Fehmina; Abass, Qalab; Ahmed, Khalid

    2017-11-01

    Acute neurological emergencies (ANEs) in children are common life-threatening illnesses and are associated with high mortality and severe neurological disability in survivors, if not recognized early and treated appropriately. We describe our experience of teaching a short, novel course "Pediatric Neurologic Emergency Life Support" to pediatricians and trainees in a resource-limited country. This course was conducted at 5 academic hospitals from November 2013 to December 2014. It is a hybrid of pediatric advance life support and emergency neurologic life support. This course is designed to increase knowledge and impart practical training on early recognition and timely appropriate treatment in the first hour of children with ANEs. Neuroresuscitation and neuroprotective strategies are key components of this course to prevent and treat secondary injuries. Four cases of ANEs (status epilepticus, nontraumatic coma, raised intracranial pressure, and severe traumatic brain injury) were taught as a case simulation in a stepped-care, protocolized approach based on best clinical practices with emphasis on key points of managements in the first hour. Eleven courses were conducted during the study period. One hundred ninety-six physicians including 19 consultants and 171 residents participated in these courses. The mean (SD) score was 65.15 (13.87%). Seventy percent (132) of participants were passed (passing score > 60%). The overall satisfaction rate was 85%. Pediatric Neurologic Emergency Life Support was the first-time delivered educational tool to improve outcome of children with ANEs with good achievement and high satisfaction rate of participants. Large number courses are required for future validation.

  10. Stages and levels of automation in support of space teleoperations.

    PubMed

    Li, Huiyang; Wickens, Christopher D; Sarter, Nadine; Sebok, Angelia

    2014-09-01

    This study examined the impact of stage of automation on the performance and perceived workload during simulated robotic arm control tasks in routine and off-nominal scenarios. Automation varies with respect to the stage of information processing it supports and its assigned level of automation. Making appropriate choices in terms of stages and levels of automation is critical to ensure robust joint system performance. To date, this issue has been empirically studied in domains such as aviation and medicine but not extensively in the context of space operations. A total of 36 participants played the role of a payload specialist and controlled a simulated robotic arm. Participants performed fly-to tasks with two types of automation (camera recommendation and trajectory control automation) of varying stage. Tasks were performed during routine scenarios and in scenarios in which either the trajectory control automation or a hazard avoidance automation failed. Increasing the stage of automation progressively improved performance and lowered workload when the automation was reliable, but incurred severe performance costs when the system failed. The results from this study support concerns about automation-induced complacency and automation bias when later stages of automation are introduced. The benefits of such automation are offset by the risk of catastrophic outcomes when system failures go unnoticed or become difficult to recover from. A medium stage of automation seems preferable as it provides sufficient support during routine operations and helps avoid potentially catastrophic outcomes in circumstances when the automation fails.

  11. Base Camp Design Simulation Training

    DTIC Science & Technology

    2011-07-01

    States Military Academy undertook a project to bring base camp design and development simulation support into the classrooms of the US Army Engineer...endeavor was to bring simulation support to Army classrooms . Initial discussions between the ORCEN and the Manuever Support Center of Excellence... classrooms . MSCoE acts as TRADOC’s proponent for base camps, subsequently delegated to the Engineer School (one of three branch schools overseen by

  12. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  13. Simulated patients in audiology education: student reports.

    PubMed

    Naeve-Velguth, Susan; Christensen, Sara A; Woods, Suzanne

    2013-09-01

    Despite increased attention in recent years to audiology counseling education, students remain concerned about their abilities to interact with patients in challenging situations, such as when breaking difficult news. Simulated patients, or actors trained to portray patients in clinical scenarios, have been used for many years in medical schools to teach and assess students' interpersonal skills, and are just beginning to be used in audiology programs. Although research suggests that medical students value simulated patient experiences, little is known about whether the same is true for audiology students. The purpose of this study was to survey audiology students who had completed a simulated patient counseling experience as part of their graduate coursework at Central Michigan University, to learn about their experiences and views of this instructional format. This study used descriptive and comparative statistics to report student observations and to determine if student responses to evaluative questions differed from chance. Study participants included 29 audiology students who had completed a "breaking difficult news" simulated patient experience as part of their required graduate coursework in patient counseling. Participants completed an online survey that included seven evaluative five-point Likert-scale questions about their simulated patient counseling experience. Participants also completed one multiple-choice question on suggestions for future simulated-patient sessions. For each of the seven evaluative questions, a majority of participants (76-100%) responded positively, agreeing or strongly agreeing that the experience was helpful to their learning. For each of these evaluative questions, a χ² analysis revealed that the distribution of positive (i.e., strongly agree and agree) to nonpositive (i.e., neutral, disagree, and strongly disagree) responses differed significantly from chance (p < .0001, df = 1). The results also indicated that when asked which of several suggested clinical scenarios would be helpful for future sessions, simulations of challenging patient types (i.e., hostile, rambling, and noncommunicative patients) were supported by most (62-90%) respondents. The results of the present study are consistent with findings of medical students' positive perceptions of simulated patient experiences as well as those previously reported for audiology students. Together, these data support the continued use of simulated patients as a method of instruction for audiology counseling education for breaking difficult news, and suggest a potential value of using simulated patient interactions for training counseling skills in other clinical situations and scenarios. American Academy of Audiology.

  14. Particle kinetic simulation of high altitude hypervelocity flight

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.

    1993-01-01

    In this grant period, the focus has been on enhancement and application of the direct simulation Monte Carlo (DSMC) particle method for computing hypersonic flows of re-entry vehicles. Enhancement efforts dealt with modeling gas-gas interactions for thermal non-equilibrium relaxation processes and gas-surface interactions for prediction of vehicle surface temperatures. Both are important for application to problems of engineering interest. The code was employed in a parametric study to improve future applications, and in simulations of aeropass maneuvers in support of the Magellan mission. Detailed comparisons between continuum models for internal energy relaxation and DSMC models reveals that several discrepancies exist. These include definitions of relaxation parameters and the methodologies for implementing them in DSMC codes. These issues were clarified and all differences were rectified in a paper (Appendix A) submitted to Physics of Fluids A, featuring several key figures in the DSMC community as co-authors and B. Haas as first author. This material will be presented at the Fluid Dynamics meeting of the American Physical Society on November 21, 1993. The aerodynamics of space vehicles in highly rarefied flows are very sensitive to the vehicle surface temperatures. Rather than require prescribed temperature estimates for spacecraft as is typically done in DSMC methods, a new technique was developed which couples the dynamic surface heat transfer characteristics into the DSMC flow simulation code to compute surface temperatures directly. This model, when applied to thin planar bodies such as solar panels, was described in AIAA Paper No. 93-2765 (Appendix B) and was presented at the Thermophysics Conference in July 1993. The paper has been submitted to the Journal of Thermophysics and Heat Transfer. Application of the DSMC method to problems of practical interest requires a trade off between solution accuracy and computational expense and limitations. A parametric study was performed and reported in AIAA Paper No. 93-2806 (Appendix C) which assessed the accuracy penalties associated with simulations of varying grid resolution and flow domain size. The paper was also presented at the Thermophysics Conference and will be submitted to the journal shortly. Finally, the DSMC code was employed to assess the pitch, yaw, and roll aerodynamics of the Magellan spacecraft during entry into the Venus atmosphere at off-design attitudes. This work was in support of the Magellan aerobraking maneuver of May 25-Aug. 3, 1993. Furthermore, analysis of the roll characteristics of the configuration with canted solar panels was performed in support of the proposed 'Windmill' experiment. Results were reported in AIAA Paper No. 93-3676 (Appendix D) presented at the Atmospheric Flight Mechanics Conference in August 1993, and were submitted to Journal of Spacecraft and Rockets.

  15. Simulation as a learning strategy: supporting undergraduate nursing students with disabilities.

    PubMed

    Azzopardi, Toni; Johnson, Amanda; Phillips, Kirrilee; Dickson, Cathy; Hengstberger-Sims, Cecily; Goldsmith, Mary; Allan, Trevor

    2014-02-01

    To promote simulation as a learning strategy to support undergraduate nursing students with disabilities. Supporting undergraduate nursing students with disabilities has gained further momentum because of amendments to the Disability Discrimination Act in 2009. Providers of higher education must now ensure proactive steps to prevent discrimination against students with a disability are implemented to assist in course progression. Simulation allows for the impact of a student's disability to be assessed and informs the determination of reasonable adjustments to be implemented. Further suitable adjustments can then be determined in a safe environment and evaluated prior to scheduled placement. Auditing in this manner, offers a risk management strategy for all while maintaining the academic integrity of the program. Discursive. Low, medium and high fidelity simulation activities critically analysed and their application to support undergraduate nursing students with disabilities assessed. With advancing technology and new pedagogical approaches simulation as a learning strategy can play a significant role. In this role, simulation supports undergraduate nursing students with disabilities to meet course requirements, while offering higher education providers an important risk management strategy. The discussion recommends simulation is used to inform the determination of reasonable adjustments for undergraduate nursing students with disabilities as an effective, contemporary curriculum practice. Adoption of simulation, in this way, will meet three imperatives: comply with current legislative requirements, embrace advances in learning technologies and embed one of the six principles of inclusive curriculum. Achieving these imperatives is likely to increase accessibility for all students and offer students with a disability a supportive learning experience. Provides capacity to systematically assess, monitor, evaluate and support students with a disability. The students' reasonable adjustments can be determined prior to attending clinical practice to minimise risks and ensure the safety of all. © 2013 Blackwell Publishing Ltd.

  16. Development of simulated and ovine models of extracorporeal life support to improve understanding of circuit-host interactions.

    PubMed

    Shekar, Kiran; Fung, Yoke L; Diab, Sara; Mullany, Daniel V; McDonald, Charles I; Dunster, Kimble R; Fisquet, Stephanie; Platts, David G; Stewart, David; Wallis, Steven C; Smith, Maree T; Roberts, Jason A; Fraser, John F

    2012-06-01

    Extracorporeal life support (ECLS) is a lifesaving technology that is being increasingly used in patients with severe cardiorespiratory failure. However, ECLS is not without risks. The biosynthetic interface between the patient and the circuit can significantly alter inflammation, coagulation, pharmacokinetics and disposition of trace elements. The relative contributions of the pump, disease and patient in propagating these alterations are difficult to quantify in critically ill patients with multiple organ failure. To design a model where the relevance of individual components could be assessed, in isolation and in combination. Four ECLS models were developed and tested - an in-vitro simulated ECLS circuit; and ECLS in healthy sheep, sheep with acute lung injury (ALI), and sheep with ALI together with transfusion of old or new blood. Successful design of in-vitro and in-vivo models. We successfully conducted multiple experiments in the simulated circuits and ECLS runs in healthy and ALI sheep. We obtained preliminary data on inflammation, coagulation, histology, pharmacokinetics and trace element disposition during ECLS. The establishment of in-vitro and in-vivo models provides a powerful means for enhancing knowledge of the pathophysiology associated with ECLS and identification of key factors likely to influence patient outcomes. A clearer description of the contribution of disease and therapeutic interventions may allow improved design of equipment, membranes, medicines and physiological goals for improved patient care.

  17. Python-based geometry preparation and simulation visualization toolkits for STEPS

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2014-01-01

    STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial extension of Gillespie's Stochastic Simulation Algorithm (SSA) in complex tetrahedral geometries. An extensive Python-based interface is provided to STEPS so that it can interact with the large number of scientific packages in Python. However, a gap existed between the interfaces of these packages and the STEPS user interface, where supporting toolkits could reduce the amount of scripting required for research projects. This paper introduces two new supporting toolkits that support geometry preparation and visualization for STEPS simulations. PMID:24782754

  18. Evaluation of Cryofreezer Technology through Simulation and Testing (DRAFT)

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Curley, Su

    2005-01-01

    A cryofreezer system is being evaluated as a new method of compressing and storing carbon dioxide (CO2) in an Advanced Life Support (ALS) Environmental Control and Life Support System (ECLSS). A cryocooler is used to provide cold temperatures and heat removal while CO2 freezes and accumulates around a coldtip. The CO2 can then be stored as a liquid or high-pressure gas after it has been accumulated. This system was originally conceived as an In-Situ Resource Utilization (ISRU) application for collecting CO2 from the Mars atmosphere to be converted to methane fuel with a Sabatier reaction. In the ALS application, this system could collect CO2 from the International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) for delivery to the Sabatier reactor. The Sabatier reaction is an important part of proposed Air Revitalization System (ARS) for ALS, and technology sharing is often possible between ISRU and ARS applications in CO2 processing systems. A prototype system developed and initially tested by Lockheed Martin Astronautics is now being evaluated in the Air Revitalization Technology Evaluation Facility (ARTEF) at NASA Johnson Space Center (JSC). This paper will discuss testing conducted through December 2004 to examine the performance and capacity of the system under a variety of input conditions. A simulation of the system was developed simultaneously using the Aspen Custom Modeler (ACM) software package. Several approaches using varying levels of detail could be used when modeling the system, and this paper will discuss the assumptions and choices made in this simulation, as well as the validity of the simulation for predicting performance of the prototype unit.

  19. A Hardware-in-the-Loop Testbed for Spacecraft Formation Flying Applications

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) is being developed as a modular, hybrid dynamic simulation facility employed for end-to-end guidance, navigation, and control (GN&C) analysis and design for formation flying clusters and constellations of satellites. The FFTB will support critical hardware and software technology development to enable current and future missions for NASA, other government agencies, and external customers for a wide range of missions, particularly those involving distributed spacecraft operations. The initial capabilities of the FFTB are based upon an integration of high fidelity hardware and software simulation, emulation, and test platforms developed at GSFC in recent years; including a high-fidelity GPS simulator which has been a fundamental component of the Guidance, Navigation, and Control Center's GPS Test Facility. The FFTB will be continuously evolving over the next several years from a too[ with initial capabilities in GPS navigation hardware/software- in-the- loop analysis and closed loop GPS-based orbit control algorithm assessment to one with cross-link communications and relative navigation analysis and simulation capability. Eventually the FFT13 will provide full capability to support all aspects of multi-sensor, absolute and relative position determination and control, in all (attitude and orbit) degrees of freedom, as well as information management for satellite clusters and constellations. In this paper we focus on the architecture for the FFT13 as a general GN&C analysis environment for the spacecraft formation flying community inside and outside of NASA GSFC and we briefly reference some current and future activities which will drive the requirements and development.

  20. A First Look at the Upcoming SISO Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Mueller, Bjorn; Crues, Edwin Z.; Dexter, Dan; Garro, Alfredo; Skuratovskiy, Anton; Vankov, Alexander

    2016-01-01

    Spaceflight is difficult, dangerous and expensive; human spaceflight even more so. In order to mitigate some of the danger and expense, professionals in the space domain have relied, and continue to rely, on computer simulation. Simulation is used at every level including concept, design, analysis, construction, testing, training and ultimately flight. As space systems have grown more complex, new simulation technologies have been developed, adopted and applied. Distributed simulation is one those technologies. Distributed simulation provides a base technology for segmenting these complex space systems into smaller, and usually simpler, component systems or subsystems. This segmentation also supports the separation of responsibilities between participating organizations. This segmentation is particularly useful for complex space systems like the International Space Station (ISS), which is composed of many elements from many nations along with visiting vehicles from many nations. This is likely to be the case for future human space exploration activities. Over the years, a number of distributed simulations have been built within the space domain. While many use the High Level Architecture (HLA) to provide the infrastructure for interoperability, HLA without a Federation Object Model (FOM) is insufficient by itself to insure interoperability. As a result, the Simulation Interoperability Standards Organization (SISO) is developing a Space Reference FOM. The Space Reference FOM Product Development Group is composed of members from several countries. They contribute experiences from projects within NASA, ESA and other organizations and represent government, academia and industry. The initial version of the Space Reference FOM is focusing on time and space and will provide the following: (i) a flexible positioning system using reference frames for arbitrary bodies in space, (ii) a naming conventions for well-known reference frames, (iii) definitions of common time scales, (iv) federation agreements for common types of time management with focus on time stepped simulation, and (v) support for physical entities, such as space vehicles and astronauts. The Space Reference FOM is expected to make collaboration politically, contractually and technically easier. It is also expected to make collaboration easier to manage and extend.

  1. Managing NIF safety equipment in a high neutron and gamma radiation environment.

    PubMed

    Datte, Philip; Eckart, Mark; Jackson, Mark; Khater, Hesham; Manuel, Stacie; Newton, Mark

    2013-06-01

    The National Ignition Facility (NIF) is a 192 laser beam facility that supports the Inertial Confinement Fusion program. During the ignition experimental campaign, the NIF is expected to perform shots with varying fusion yield producing 14 MeV neutrons up to 20 MJ or 7.1 × 10(18) neutrons per shot and a maximum annual yield of 1,200 MJ. Several infrastructure support systems will be exposed to varying high yield shots over the facility's 30-y life span. In response to this potential exposure, analysis and testing of several facility safety systems have been conducted. A detailed MCNP (Monte Carlo N-Particle Transport Code) model has been developed for the NIF facility, and it includes most of the major structures inside the Target Bay. The model has been used in the simulation of expected neutron and gamma fluences throughout the Target Bay. Radiation susceptible components were identified and tested to fluences greater than 10(13) (n cm(-2)) for 14 MeV neutrons and γ-ray equivalent. The testing includes component irradiation using a 60Co gamma source and accelerator-based irradiation using 4- and 14- MeV neutron sources. The subsystem implementation in the facility is based on the fluence estimates after shielding and survivability guidelines derived from the dose maps and component tests results. This paper reports on the evaluation and implementation of mitigations for several infrastructure safety support systems, including video, oxygen monitoring, pressure monitors, water sensing systems, and access control interfaces found at the NIF.

  2. Program of research in severe storms

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Two modeling areas, the development of a mesoscale chemistry-meteorology interaction model, and the development of a combined urban chemical kinetics-transport model are examined. The problems associated with developing a three dimensional combined meteorological-chemical kinetics computer program package are defined. A similar three dimensional hydrostatic real time model which solves the fundamental Navier-Stokes equations for nonviscous flow is described. An urban air quality simulation model, developed to predict the temporal and spatial distribution of reactive and nonreactive gases in and around an urban area and to support a remote sensor evaluation program is reported.

  3. Conference Proceedings. Defense Modeling and Simulation Office Information/Data Base (I/DB) Task Group Meetings Held February 14-18, 1994, and Notes from the Previous Two I/DB Meetings

    DTIC Science & Technology

    1994-01-01

    DB Task Group co-chairs would like to thank Mrs. Janice Hirst of IDA for her help in coordinating and supporting the I/DBTG meetings and Ms. Linda ...Data (co-chairs Len Seligman (Mitre) and Pete Valentine (Army/JDBE)): will start with several recent categorization attempts including those offered in...fbrmed to address categorization of complex data co-chaired by Len Seligman (Mitre) and Pete Valentine (Army/JDBE)); (2) a subgroup to deal with

  4. Equations of motion of a space station with emphasis on the effects of the gravity gradient

    NASA Technical Reports Server (NTRS)

    Tuell, L. P.

    1987-01-01

    The derivation of the equations of motion is based upon the principle of virtual work. As developed, these equations apply only to a space vehicle whose physical model consists of a rigid central carrier supporting several flexible appendages (not interconnected), smaller rigid bodies, and point masses. Clearly evident in the equations is the respect paid to the influence of the Earth's gravity field, considerably more than has been the custom in simulating vehicle motion. The effect of unpredictable crew motion is ignored.

  5. Management of health care expenditure by soft computing methodology

    NASA Astrophysics Data System (ADS)

    Maksimović, Goran; Jović, Srđan; Jovanović, Radomir; Aničić, Obrad

    2017-01-01

    In this study was managed the health care expenditure by soft computing methodology. The main goal was to predict the gross domestic product (GDP) according to several factors of health care expenditure. Soft computing methodologies were applied since GDP prediction is very complex task. The performances of the proposed predictors were confirmed with the simulation results. According to the results, support vector regression (SVR) has better prediction accuracy compared to other soft computing methodologies. The soft computing methods benefit from the soft computing capabilities of global optimization in order to avoid local minimum issues.

  6. Facility for generating crew waste water product for ECLSS testing

    NASA Technical Reports Server (NTRS)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  7. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Best, D. R.

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  8. Reflections on Descriptive Psychology: NASA, Media and Technology, Observation

    NASA Technical Reports Server (NTRS)

    Aucoin, Paschal J., Jr.

    1999-01-01

    At NASA, we have used methods of Descriptive Psychology (DP) to solve problems in several areas: Simulation of proposed Lunar/Mars missions at high level to assess feasibility and needs in the robotics and automation areas. How we would go about making a "person-like" robot. Design and implementation of Systems Engineering practices on behalf of future projects with emphasis on interoperability. Design of a Question and Answer dialog system to handle student questions about Advanced Life Support (ALS) systems - students learn biology by applying it to ALS projects.

  9. An On-the-Fly Surface-Hopping Program JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems: Implementation and Applications.

    PubMed

    Du, Likai; Lan, Zhenggang

    2015-04-14

    Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).

  10. Causal Effects of Language on the Exchange of Social Support in an Online Community.

    PubMed

    Biehl, Sarah A; Kahn, Jeffrey H

    2016-07-01

    The provision of social support is a common function of many online communities, but a full understanding of the causal effect of emotion language on the provision of support requires experimental study. The frequency of positive- and negative-emotion words in simulated posts requesting emotional support was manipulated and presented to a sample of college students (N = 442) who were randomly assigned to read one of four simulated posts. Participants completed measures of the original poster's (OP's) distress, and they provided a response to the simulated post. These responses were subjected to a computerized text analysis, and their overall effectiveness was rated by two independent judges. Fewer positive-emotion and more negative-emotion words in the simulated post led to perceptions that the OP was distressed and unable to cope. Participant-generated responses to the post were highest in positive-emotion words when the simulated post was high in positive-emotion words, but low in negative-emotion words. Finally, simulated posts that were low in positive-emotion words received responses that were judged to be more effective than did simulated posts that were high in positive-emotion words. These findings have implications for understanding the role of emotion language on the exchange of online social support.

  11. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  12. Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2004-01-01

    A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting fixture that rotates to accommodate a laserbased alignment system. This can measure the misalignment of the bearing centers in each of 2 translational degrees of freedom and 2 rotational degrees of freedom. In the initial configuration, with roughly a 30.5-cm- (12-in.-) long shaft, two simulated aerocomponent disks, and two 50.8-cm (2-in.) foil journal bearings, the rig can operate at 65,000 rpm at room temperature. The test facility can measure shaft displacements in both the vertical and horizontal directions at each bearing location. Horizontal and vertical structural vibrations are monitored using accelerometers mounted on the bearing support structures. This information is used to determine system rotordynamic response, including critical speeds, mode shapes, orbit size and shape, and potentially the onset of instabilities. Bearing torque can be monitored as well to predict the power loss in the foil bearings. All of this information is fed back and forth between NASA and the foil bearing designers in an iterative fashion to converge on a final bearing and shaft design for a given engine application. In addition to its application development capabilities, the test rig offers several unique capabilities for basic bearing research. Using the laser alignment system mentioned earlier, the facility will be used to map foil air journal bearing performance. A known misalignment of increasing severity will be induced to determine the sensitivity of foil bearings to misalignment. Other future plans include oil-free integral starter generator testing and development, and dynamic load testing of foil journal bearings.

  13. Achieving Remission in Gulf War Illness: A Simulation-Based Approach to Treatment Design.

    PubMed

    Craddock, Travis J A; Del Rosario, Ryan R; Rice, Mark; Zysman, Joel P; Fletcher, Mary Ann; Klimas, Nancy G; Broderick, Gordon

    2015-01-01

    Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting up to one-third of the 700,000 returning veterans of the 1991 Persian Gulf War and for which there is no known cure. GWI symptoms span several of the body's principal regulatory systems and include debilitating fatigue, severe musculoskeletal pain, cognitive and neurological problems. Using computational models, our group reported previously that GWI might be perpetuated at least in part by natural homeostatic regulation of the neuroendocrine-immune network. In this work, we attempt to harness these regulatory dynamics to identify treatment courses that might produce lasting remission. Towards this we apply a combinatorial optimization scheme to the Monte Carlo simulation of a discrete ternary logic model that represents combined hypothalamic-pituitary-adrenal (HPA), gonadal (HPG), and immune system regulation in males. In this work we found that no single intervention target allowed a robust return to normal homeostatic control. All combined interventions leading to a predicted remission involved an initial inhibition of Th1 inflammatory cytokines (Th1Cyt) followed by a subsequent inhibition of glucocorticoid receptor function (GR). These first two intervention events alone ended in stable and lasting return to the normal regulatory control in 40% of the simulated cases. Applying a second cycle of this combined treatment improved this predicted remission rate to 2 out of 3 simulated subjects (63%). These results suggest that in a complex illness such as GWI, a multi-tiered intervention strategy that formally accounts for regulatory dynamics may be required to reset neuroendocrine-immune homeostasis and support extended remission.

  14. Kinesthetic control simulator. [for pilot training

    NASA Technical Reports Server (NTRS)

    Hill, P. R.; Thomas, D. F., Jr. (Inventor)

    1975-01-01

    A kinesthetic control simulator is reported that has a flat base upon which rests a support structure having a lower spherical surface for rotation on the base plate with columns which support a platform above the support structure at a desired location with respect to the center of curvature of the spherical surface. A handrail is at approximately the elevation of the hips of the operator above the platform with a ring attached to the support structure which may be used to limit the angle of tilt. Five degree freedom-of-motion can be obtained by utilizing an air pad structure for support of the control simulator.

  15. Mission Simulation Facility: Simulation Support for Autonomy Development

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael

    2003-01-01

    The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.

  16. Simulation of Aircraft Deployment Support

    DTIC Science & Technology

    2003-03-01

    Dassault Aviation Military Customer Support Division 78, Quai Marcel Dassault Cedex 300 92552 St Cloud Cedex France Tel.: 33 147 1163 23 Fax.: 33 147...Deployment Support" (SADS) was developed by the Military Customer Support Division of Dassault Aviation to perform simulations for logistics deployment and...and support Chain Management for the management of the logistics resources (replenishment of consumables and repair of parts, inventory management

  17. Using Modeling and Simulation to Predict Operator Performance and Automation-Induced Complacency With Robotic Automation: A Case Study and Empirical Validation.

    PubMed

    Wickens, Christopher D; Sebok, Angelia; Li, Huiyang; Sarter, Nadine; Gacy, Andrew M

    2015-09-01

    The aim of this study was to develop and validate a computational model of the automation complacency effect, as operators work on a robotic arm task, supported by three different degrees of automation. Some computational models of complacency in human-automation interaction exist, but those are formed and validated within the context of fairly simplified monitoring failures. This research extends model validation to a much more complex task, so that system designers can establish, without need for human-in-the-loop (HITL) experimentation, merits and shortcomings of different automation degrees. We developed a realistic simulation of a space-based robotic arm task that could be carried out with three different levels of trajectory visualization and execution automation support. Using this simulation, we performed HITL testing. Complacency was induced via several trials of correctly performing automation and then was assessed on trials when automation failed. Following a cognitive task analysis of the robotic arm operation, we developed a multicomponent model of the robotic operator and his or her reliance on automation, based in part on visual scanning. The comparison of model predictions with empirical results revealed that the model accurately predicted routine performance and predicted the responses to these failures after complacency developed. However, the scanning models do not account for the entire attention allocation effects of complacency. Complacency modeling can provide a useful tool for predicting the effects of different types of imperfect automation. The results from this research suggest that focus should be given to supporting situation awareness in automation development. © 2015, Human Factors and Ergonomics Society.

  18. Economic communication model set

    NASA Astrophysics Data System (ADS)

    Zvereva, Olga M.; Berg, Dmitry B.

    2017-06-01

    This paper details findings from the research work targeted at economic communications investigation with agent-based models usage. The agent-based model set was engineered to simulate economic communications. Money in the form of internal and external currencies was introduced into the models to support exchanges in communications. Every model, being based on the general concept, has its own peculiarities in algorithm and input data set since it was engineered to solve the specific problem. Several and different origin data sets were used in experiments: theoretic sets were estimated on the basis of static Leontief's equilibrium equation and the real set was constructed on the basis of statistical data. While simulation experiments, communication process was observed in dynamics, and system macroparameters were estimated. This research approved that combination of an agent-based and mathematical model can cause a synergetic effect.

  19. The Effect of Altitude Conditions on the Particle Emissions of a J85-GE-5L Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Rickey, June Elizabeth

    1995-01-01

    Particles from a J85-GE-5L turbojet engine were measured over a range of engine speeds at simulated altitude conditions ranging from near sea level to 45,000 ft and at flight Mach numbers of 0.5 and 0.8. Samples were collected from the engine by using a specially designed probe positioned several inches behind the exhaust nozzle. A differential mobility particle sizing system was used to determine particle size. Particle data measured at near sea-level conditions were compared with Navy Aircraft Environmental Support Office (AESO) particle data taken from a GE-J85-4A engine at a sea-level static condition. Particle data from the J85 engine were also compared with particle data from a J85 combustor at three different simulated altitudes.

  20. POLLUX: a program for simulated cloning, mutagenesis and database searching of DNA constructs.

    PubMed

    Dayringer, H E; Sammons, S A

    1991-04-01

    Computer support for research in biotechnology has developed rapidly and has provided several tools to aid the researcher. This report describes the capabilities of new computer software developed in this laboratory to aid in the documentation and planning of experiments in molecular biology. The program, POLLUX, provides a graphical medium for the entry, edit and manipulation of DNA constructs and a textual format for display and edit of construct descriptive data. Program operation and procedures are designed to mimic the actual laboratory experiments with respect to capability and the order in which they are performed. Flexible control over the content of the computer-generated displays and program facilities is provided by a mouse-driven menu interface. Programmed facilities for mutagenesis, simulated cloning and searching of the database from networked workstations are described.

  1. How Effective Is Instructional Support for Learning with Computer Simulations?

    ERIC Educational Resources Information Center

    Eckhardt, Marc; Urhahne, Detlef; Conrad, Olaf; Harms, Ute

    2013-01-01

    The study examined the effects of two different instructional interventions as support for scientific discovery learning using computer simulations. In two well-known categories of difficulty, data interpretation and self-regulation, instructional interventions for learning with computer simulations on the topic "ecosystem water" were developed…

  2. A Validation Argument for a Simulation-Based Training Course Centered on Assessment, Recognition, and Early Management of Pediatric Sepsis.

    PubMed

    Geis, Gary L; Wheeler, Derek S; Bunger, Amy; Militello, Laura G; Taylor, Regina G; Bauer, Jerome P; Byczkowski, Terri L; Kerrey, Benjamin T; Patterson, Mary D

    2018-02-01

    Early recognition of sepsis remains one of the greatest challenges in medicine. Novice clinicians are often responsible for the recognition of sepsis and the initiation of urgent management. The aim of this study was to create a validity argument for the use of a simulation-based training course centered on assessment, recognition, and early management of sepsis in a laboratory-based setting. Five unique simulation scenarios were developed integrating critical sepsis cues identified through qualitative interviewing. Scenarios were piloted with groups of novice, intermediate, and expert pediatric physicians. The primary outcome was physician recognition of sepsis, measured with an adapted situation awareness global assessment tool. Secondary outcomes were physician compliance with pediatric advanced life support (PALS) guidelines and early sepsis management (ESM) recommendations, measured by two internally derived tools. Analysis compared recognition of sepsis by levels of expertise and measured association of sepsis recognition with the secondary outcomes. Eighteen physicians were recruited, six per study group. Each physician completed three sepsis simulations. Sepsis was recognized in 19 (35%) of 54 simulations. The odds that experts recognized sepsis was 2.6 [95% confidence interval (CI) = 0.5-13.8] times greater than novices. Adjusted for severity, for every point increase in the PALS global performance score, the odds that sepsis was recognized increased by 11.3 (95% CI = 3.1-41.4). Similarly, the odds ratio for the PALS checklist score was 1.5 (95% CI = 0.8-2.6). Adjusted for severity and level of expertise, the odds of recognizing sepsis was associated with an increase in the ESM checklist score of 1.8 (95% CI = 0.9-3.6) and an increase in ESM global performance score of 4.1 (95% CI = 1.7-10.0). Although incomplete, evidence from initial testing suggests that the simulations of pediatric sepsis were sufficiently valid to justify their use in training novice pediatric physicians in the assessment, recognition, and management of pediatric sepsis.

  3. A kinetic model of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.

    2015-01-01

    A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature-anisotropy, commonly observed in space plasmas.

  4. Simulating Sustainment for an Unmanned Logistics System Concept of Operation in Support of Distributed Operations

    DTIC Science & Technology

    2017-06-01

    designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily in...systems, simulation, discrete event simulation, design of experiments, data analysis, simplekit, nearly orthogonal and balanced designs 15. NUMBER OF... designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily

  5. Evaluation of wheelchair back support crashworthiness: combination wheelchair back support surfaces and attachment hardware.

    PubMed

    Ha, D; Bertocci, G; Deemer, E; van Roosmalen, L; Karg, P

    2000-01-01

    Automotive seats are tested for compliance with federal motor vehicle safety standards (FMVSS) to assure safety during impact. Many wheelchair users rely upon their wheelchairs to serve as vehicle seats. However, the crashworthiness of these wheelchairs during impact is often unknown. This study evaluated the crashworthiness of five combinations of wheelchair back support surfaces and attachment hardware using a static test procedure simulating crash loading conditions. The crashworthiness was tested by applying a simulated rearward load to each seat-back system. The magnitude of the applied load was established through computer simulation and biodynamic calculations. None of the five tested wheelchair back supports withstood the simulated crash loads. All failures were associated with attachment hardware.

  6. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  7. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  8. Definition of ground test for verification of large space structure control

    NASA Technical Reports Server (NTRS)

    Glaese, John R.

    1994-01-01

    Under this contract, the Large Space Structure Ground Test Verification (LSSGTV) Facility at the George C. Marshall Space Flight Center (MSFC) was developed. Planning in coordination with NASA was finalized and implemented. The contract was modified and extended with several increments of funding to procure additional hardware and to continue support for the LSSGTV facility. Additional tasks were defined for the performance of studies in the dynamics, control and simulation of tethered satellites. When the LSSGTV facility development task was completed, support and enhancement activities were funded through a new competitive contract won by LCD. All work related to LSSGTV performed under NAS8-35835 has been completed and documented. No further discussion of these activities will appear in this report. This report summarizes the tether dynamics and control studies performed.

  9. Environmental control and life support system analysis tools for the Space Station era

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.; Rowell, L. F.

    1984-01-01

    This paper describes the concept of a developing emulation, simulation, sizing, and technology assessment program (ESSTAP) which can be used effectively for the various functional disciplines (structures, power, ECLSS, etc.) beginning with the initial system selection and conceptual design processes and continuing on through the mission operation and growth phases of the Space Station for the purpose of minimizing overall program costs. It will discuss the basic requirements for these tools, as currently envisioned for the Environmental Control and Life Support System (ECLSS), identifying their intended and potential uses and applications, and present examples and status of several representative tools. The development and applications of a Space Station Atmospheric Revitalization Subsystem (ARS) demonstration model to be used for concent verification will also be discussed.

  10. RELATIVISTIC MHD SIMULATIONS OF COLLISION-INDUCED MAGNETIC DISSIPATION IN POYNTING-FLUX-DOMINATED JETS/OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei; Zhang, Bing; Li, Hui

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.« less

  11. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    NASA Astrophysics Data System (ADS)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  12. Database-driven web interface automating gyrokinetic simulations for validation

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2010-11-01

    We are developing a web interface to connect plasma microturbulence simulation codes with experimental data. The website automates the preparation of gyrokinetic simulations utilizing plasma profile and magnetic equilibrium data from TRANSP analysis of experiments, read from MDSPLUS over the internet. This database-driven tool saves user sessions, allowing searches of previous simulations, which can be restored to repeat the same analysis for a new discharge. The website includes a multi-tab, multi-frame, publication quality java plotter Webgraph, developed as part of this project. Input files can be uploaded as templates and edited with context-sensitive help. The website creates inputs for GS2 and GYRO using a well-tested and verified back-end, in use for several years for the GS2 code [D. R. Ernst et al., Phys. Plasmas 11(5) 2637 (2004)]. A centralized web site has the advantage that users receive bug fixes instantaneously, while avoiding the duplicated effort of local compilations. Possible extensions to the database to manage run outputs, toward prototyping for the Fusion Simulation Project, are envisioned. Much of the web development utilized support from the DoE National Undergraduate Fellowship program [e.g., A. Suarez and D. R. Ernst, http://meetings.aps.org/link/BAPS.2005.DPP.GP1.57.

  13. Glucose oxidase from Penicillium amagasakiense: characterization of the transition state of its denaturation from molecular dynamics simulations.

    PubMed

    Todde, Guido; Hovmöller, Sven; Laaksonen, Aatto; Mocci, Francesca

    2014-10-01

    Glucose oxidase (GOx) is a flavoenzyme having applications in food and medical industries. However, GOx, as many other enzymes when extracted from the cells, has relatively short operational lifetimes. Several recent studies (both experimental and theoretical), carried out on small proteins (or small fractions of large proteins), show that a detailed knowledge of how the breakdown process starts and proceeds on molecular level could be of significant help to artificially improve the stability of fragile proteins. We have performed extended molecular dynamics (MD) simulations to study the denaturation of GOx (a protein dimer containing nearly 1200 amino acids) to identify weak points in its structure and in this way gather information to later make it more stable, for example, by mutations. A denaturation of a protein can be simulated by increasing the temperature far above physiological temperature. We have performed a series of MD simulations at different temperatures (300, 400, 500, and 600 K). The exit from the protein's native state has been successfully identified with the clustering method and supported by other methods used to analyze the simulation data. A common set of amino acids is regularly found to initiate the denaturation, suggesting a moiety where the enzyme could be strengthened by a suitable amino acid based modification. © 2014 Wiley Periodicals, Inc.

  14. MOLSIM: A modular molecular simulation software

    PubMed Central

    Jurij, Reščič

    2015-01-01

    The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597

  15. Mechanisms test bed math model modification and simulation support

    NASA Technical Reports Server (NTRS)

    Gilchrist, Andrea C.; Tobbe, Patrick A.

    1995-01-01

    This report summarizes the work performed under contract NAS8-38771 in support of the Marshall Space Flight Center Six Degree of Freedom Motion Facility and Flight Robotics Laboratory. The contract activities included the development of the two flexible body and Remote Manipulator System simulations, Dynamic Overhead Target Simulator control system and operating software, Global Positioning System simulation, and Manipulator Coupled Spacecraft Controls Testbed. Technical support was also provided for the Lightning Imaging Sensor and Solar X-Ray Imaging programs. The cover sheets and introductory sections for the documentation written under this contract are provided as an appendix.

  16. Self-Organizing Distributed Architecture Supporting Dynamic Space Expanding and Reducing in Indoor LBS Environment

    PubMed Central

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2015-01-01

    Indoor location-based services (iLBS) are extremely dynamic and changeable, and include numerous resources and mobile devices. In particular, the network infrastructure requires support for high scalability in the indoor environment, and various resource lookups are requested concurrently and frequently from several locations based on the dynamic network environment. A traditional map-based centralized approach for iLBSs has several disadvantages: it requires global knowledge to maintain a complete geographic indoor map; the central server is a single point of failure; it can also cause low scalability and traffic congestion; and it is hard to adapt to a change of service area in real time. This paper proposes a self-organizing and fully distributed platform for iLBSs. The proposed self-organizing distributed platform provides a dynamic reconfiguration of locality accuracy and service coverage by expanding and contracting dynamically. In order to verify the suggested platform, scalability performance according to the number of inserted or deleted nodes composing the dynamic infrastructure was evaluated through a simulation similar to the real environment. PMID:26016908

  17. Enhancing the performance of exchange-only qubits in triple-quantum-dots

    NASA Astrophysics Data System (ADS)

    Fei, Jianjia; Hung, Jo-Tzu; Koh, Teck Seng; Shim, Yun-Pil; Coppersmith, Susan; Hu, Xuedong; Friesen, Mark

    2014-03-01

    The exchange-only qubit has several potential advantages for quantum computation: all-electrical control, fast gate operations, and robustness against global magnetic noise. Such a device has recently been implemented in a GaAs triple-quantum-dot. In this talk, we discuss theoretical simulations of the fidelity of pulsed gate operations of the exchange-only qubit, based on a master equation approach. Our model accounts for several different dephasing mechanisms, including hyperfine interactions and charge noise arising from double-occupation errors and fluctuations of the detuning parameter. Our investigations indicate the optimal working regimes and maximum gate fidelities for these devices, in terms of experimentally tunable parameters. This work was supported by the Army Research Office, the National Science Foundation, and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported by the Army Research Office, the National Science Foundation, and the United States Department of Defense.

  18. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  19. The Role of Planetary Dust and Regolith Mechanics in Technology Developments at NASA

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2011-01-01

    One of NASA's long term goals continues to be the exploration of other planets and orbital bodies in our solar system. Our sustained presence through the installation of stations or bases on these planetary surfaces will depend on developing properly designed habitation modules, mobility systems and supporting infrastructure. NASA Glenn Research Center is involved in several technology developments in support of this overarching goal. Two key developments are in the area of advanced filtration and excavation systems. The first addresses the issues posed by the accumulation of particulate matter over long duration missions and the intrusion of planetary dust into spacecraft and habitat pressurized cabins. The latter supports the operation and infrastructure of insitu resource utilization (ISRU) processes to derive consumables and construction materials from the planetary regolith. These two developments require a basic understanding of the lunar regolith at the micro (particle) to macro (bulk) level. Investigation of the relevant properties of the lunar regolith and characterization of the standard simulant materials used in. testing were important first steps in these developments. The fundamentals and operational concepts of these technologies as well as descriptions of new NASA facilities, including the Particulate Filtration Testing and the NASA Excavation and Traction Testing facilities, and their capabilities for testing and advancing these technologies will be presented. The test data also serves to validate and anchor computational simulation models.

  20. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  1. PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks.

    PubMed

    Kaleem, Zeeshan; Khaliq, Muhammad Zubair; Khan, Ajmal; Ahmad, Ishtiaq; Duong, Trung Q

    2018-05-08

    The fifth-generation (5G) communications systems are expecting to support users with diverse quality-of-service (QoS) requirements. Beside these requirements, the task with utmost importance is to support the emergency communication services during natural or man-made disasters. Most of the conventional base stations are not properly functional during a disaster situation, so deployment of emergency base stations such as mobile personal cell (mPC) is crucial. An mPC having moving capability can move in the disaster area to provide emergency communication services. However, mPC deployment causes severe co-channel interference to the users in its vicinity. The problem in the existing resource allocation schemes is its support for static environment, that does not fit well for mPC. So, a resource allocation scheme for mPC users is desired that can dynamically allocate resources based on users’ location and its connection establishment priority. In this paper, we propose a public safety users priority-based context-aware resource allocation (PS-CARA) scheme for users sum-rate maximization in disaster environment. Simulations results demonstrate that the proposed PS-CARA scheme can increase the user average and edge rate around 10.3% and 32.8% , respectively because of context information availability and by prioritizing the public safety users. The simulation results ensure that call blocking probability is also reduced considerably under the PS-CARA scheme.

  2. PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks

    PubMed Central

    Khaliq, Muhammad Zubair; Khan, Ajmal; Ahmad, Ishtiaq

    2018-01-01

    The fifth-generation (5G) communications systems are expecting to support users with diverse quality-of-service (QoS) requirements. Beside these requirements, the task with utmost importance is to support the emergency communication services during natural or man-made disasters. Most of the conventional base stations are not properly functional during a disaster situation, so deployment of emergency base stations such as mobile personal cell (mPC) is crucial. An mPC having moving capability can move in the disaster area to provide emergency communication services. However, mPC deployment causes severe co-channel interference to the users in its vicinity. The problem in the existing resource allocation schemes is its support for static environment, that does not fit well for mPC. So, a resource allocation scheme for mPC users is desired that can dynamically allocate resources based on users’ location and its connection establishment priority. In this paper, we propose a public safety users priority-based context-aware resource allocation (PS-CARA) scheme for users sum-rate maximization in disaster environment. Simulations results demonstrate that the proposed PS-CARA scheme can increase the user average and edge rate around 10.3% and 32.8% , respectively because of context information availability and by prioritizing the public safety users. The simulation results ensure that call blocking probability is also reduced considerably under the PS-CARA scheme. PMID:29738499

  3. Developing a Simulation to Study Conflict in Intensive Care Units

    PubMed Central

    Chiarchiaro, Jared; Schuster, Rachel A.; Ernecoff, Natalie C.; Barnato, Amber E.; Arnold, Robert M.

    2015-01-01

    Rationale: Although medical simulation is increasingly being used in healthcare education, there are few examples of how to rigorously design a simulation to evaluate and study important communication skills of intensive care unit (ICU) clinicians. Objectives: To use existing best practice recommendations to develop a medical simulation to study conflict management in ICUs, then assess the feasibility, acceptability, and realism of the simulation among ICU clinicians. Methods: The setting was a medical ICU of a tertiary care, university hospital. Participants were 36 physicians who treat critically ill patients: intensivists, palliative medicine specialists, and trainees. Using best-practice guidelines and an iterative, multidisciplinary approach, we developed and refined a simulation involving a critically ill patient, in which the patient had a clear advance directive specifying no use of life support, and a surrogate who was unwilling to follow the patient’s preferences. ICU clinicians participated in the simulation and completed surveys and semistructured interviews to assess the feasibility, acceptability, and realism of the simulation. Measurements and Main Results: All participants successfully completed the simulation, and all perceived conflict with the surrogate (mean conflict score, 4.2 on a 0–10 scale [SD, 2.5; range, 1–10]). Participants reported high realism of the simulation across a range of criteria, with mean ratings of greater than 8 on a 0 to 10 scale for all domains assessed. During semistructured interviews, participants confirmed a high degree of realism and offered several suggestions for improvements. Conclusions: We used existing best practice recommendations to develop a simulation model to study physician–family conflict in ICUs that is feasible, acceptable, and realistic. PMID:25643166

  4. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    NASA Technical Reports Server (NTRS)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  5. Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.

  6. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations.

    PubMed

    Islam, Barira; Stadlbauer, Petr; Gil-Ley, Alejandro; Pérez-Hernández, Guillermo; Haider, Shozeb; Neidle, Stephen; Bussi, Giovanni; Banas, Pavel; Otyepka, Michal; Sponer, Jiri

    2017-06-13

    We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory.

  7. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations

    PubMed Central

    2017-01-01

    We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory. PMID:28475322

  8. Instructional Support and Implementation Structure during Elementary Teachers' Science Education Simulation Use

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-01-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…

  9. A simple simulation model as a tool to assess alternative health care provider payment reform options in Vietnam.

    PubMed

    Cashin, Cheryl; Phuong, Nguyen Khanh; Shain, Ryan; Oanh, Tran Thi Mai; Thuy, Nguyen Thi

    2015-01-01

    Vietnam is currently considering a revision of its 2008 Health Insurance Law, including the regulation of provider payment methods. This study uses a simple spreadsheet-based, micro-simulation model to analyse the potential impacts of different provider payment reform scenarios on resource allocation across health care providers in three provinces in Vietnam, as well as on the total expenditure of the provincial branches of the public health insurance agency (Provincial Social Security [PSS]). The results show that currently more than 50% of PSS spending is concentrated at the provincial level with less than half at the district level. There is also a high degree of financial risk on district hospitals with the current fund-holding arrangement. Results of the simulation model show that several alternative scenarios for provider payment reform could improve the current payment system by reducing the high financial risk currently borne by district hospitals without dramatically shifting the current level and distribution of PSS expenditure. The results of the simulation analysis provided an empirical basis for health policy-makers in Vietnam to assess different provider payment reform options and make decisions about new models to support health system objectives.

  10. The effects of time delay in man-machine control systems: Implications for design of flight simulator Visual-Display-Delay compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1984-01-01

    When human operators are performing precision tracking tasks, their dynamic response can often be modeled by quasilinear describing functions. That fact permits analysis of the effects of delay in certain man machine control systems using linear control system analysis techniques. The analysis indicates that a reduction in system stability is the immediate effect of additional control system delay, and that system characteristics moderate or exaggerate the importance of the delay. A selection of data (simulator and flight test) consistent with the analysis is reviewed. Flight simulator visual-display delay compensation, designed to restore pilot aircraft system stability, was evaluated in several studies which are reviewed here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish the statistical significance of the results) to a brief evaluation of compensation of a computer generated imagery (CGI) visual display system in a full six degree of freedom simulation. The compensation was effective, improvements in pilot performance and workload or aircraft handling qualities rating (HQR) were observed. Results from recent aircraft handling qualities research literature, which support the compensation design approach, are also reviewed.

  11. Direct numerical simulation of human phonation

    NASA Astrophysics Data System (ADS)

    Saurabh, Shakti; Bodony, Daniel

    2016-11-01

    A direct numerical simulation study of the generation and propagation of the human voice in a full-body domain is conducted. A fully compressible fluid flow model, anatomically representative vocal tract geometry, finite deformation model for vocal fold (VF) motion and a fully coupled fluid-structure interaction model are employed. The dynamics of the multi-layered VF tissue with varying stiffness are solved using a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A new inflow boundary condition, based upon a quasi-1D formulation with constant sub-glottal volume velocity, linked to the VF movement, has been adopted. Simulations for both child and adult phonation were performed. Acoustic characteristics obtained from these simulation are consistent with expected values. A sensitivity analysis based on VF stiffness variation is undertaken and sound pressure level/fundamental frequency trends are established. An evaluation of the data against the commonly-used quasi-1D equations suggest that the latter are not sufficient to model phonation. Phonation threshold pressures are measured for several VF stiffness variations and comparisons to clinical data are carried out. Supported by the National Science Foundation (CAREER Award Number 1150439).

  12. Simulation-based cutaneous surgical-skill training on a chicken-skin bench model in a medical undergraduate program.

    PubMed

    Denadai, Rafael; Saad-Hossne, Rogério; Martinhão Souto, Luís Ricardo

    2013-05-01

    Because of ethical and medico-legal aspects involved in the training of cutaneous surgical skills on living patients, human cadavers and living animals, it is necessary the search for alternative and effective forms of training simulation. To propose and describe an alternative methodology for teaching and learning the principles of cutaneous surgery in a medical undergraduate program by using a chicken-skin bench model. One instructor for every four students, teaching materials on cutaneous surgical skills, chicken trunks, wings, or thighs, a rigid platform support, needled threads, needle holders, surgical blades with scalpel handles, rat-tooth tweezers, scissors, and marking pens were necessary for training simulation. A proposal for simulation-based training on incision, suture, biopsy, and on reconstruction techniques using a chicken-skin bench model distributed in several sessions and with increasing levels of difficultywas structured. Both feedback and objective evaluations always directed to individual students were also outlined. The teaching of a methodology for the principles of cutaneous surgery using a chicken-skin bench model versatile, portable, easy to assemble, and inexpensive is an alternative and complementary option to the armamentarium of methods based on other bench models described.

  13. Simulation and training of ultrasound supported anaesthesia: a low-cost approach

    NASA Astrophysics Data System (ADS)

    Schaaf, T.; Lamontain, M.; Hilpert, J.; Schilling, F.; Tolxdorff, T.

    2010-03-01

    The use of ultrasound imaging technology during techniques of peripheral nerve blockade offers several clinical benefits. Here we report on a new method to educate residents in ultrasound-guided regional anesthesia. The daily challenge for the anesthesiologists is the 3D angle-depending handling of the stimulation needle and the ultrasound probe while watching the 2D ultrasound image on the monitor. Purpose: Our approach describes how a computer-aided simulation and training set for ultrasound-guided regional anesthesia could be built based on wireless low-cost devices and an interactive simulation of a 2D ultrasound image. For training purposes the injection needle and the ultrasound probe are replaced by wireless Bluetooth-connected 3D tracking devices, which are embedded in WII-mote controllers (Nintendo-Brand). In correlation to the tracked 3D positions of the needle and transducer models the visibility and position of the needle should be simulated in the 2D generated ultrasound image. Conclusion: In future, this tracking and visualization software module could be integrated in a more complex training set, where complex injection paths could be trained based on a 3D segmented model and the training results could be part of a curricular e-learning module.

  14. Flight Dynamic Model Exchange using XML

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  15. Teaching practice and effect of the curriculum design and simulation courses under the support of professional optical software

    NASA Astrophysics Data System (ADS)

    Lin, YuanFang; Zheng, XiaoDong; Huang, YuJia

    2017-08-01

    Curriculum design and simulation courses are bridges to connect specialty theories, engineering practice and experimental skills. In order to help students to have the computer aided optical system design ability adapting to developments of the times, a professional optical software-Advanced System of Analysis Program (ASAP) was used in the research teaching of curriculum design and simulation courses. The ASAP tutorials conducting, exercises both complementing and supplementing the lectures, hands-on practice in class, autonomous learning and independent design after class were bridged organically, to guide students "learning while doing, learning by doing", paying more attention to the process instead of the results. Several years of teaching practice of curriculum design and simulation courses shows that, project-based learning meets society needs of training personnel with knowledge, ability and quality. Students have obtained not only skills of using professional software, but also skills of finding and proposing questions in engineering practice, the scientific method of analyzing and solving questions with specialty knowledge, in addition, autonomous learning ability, teamwork spirit and innovation consciousness, still scientific attitude of facing failure and scientific spirit of admitting deficiency in the process of independent design and exploration.

  16. Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.

    PubMed

    Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali

    2017-02-01

    In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.

  17. Simulation-optimization of large agro-hydrosystems using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grundmann, Jens

    2014-05-01

    In this contribution a stochastic simulation-optimization framework for decision support for optimal planning and operation of water supply of large agro-hydrosystems is presented. It is based on a decomposition solution strategy which allows for (i) the usage of numerical process models together with efficient Monte Carlo simulations for a reliable estimation of higher quantiles of the minimum agricultural water demand for full and deficit irrigation strategies at small scale (farm level), and (ii) the utilization of the optimization results at small scale for solving water resources management problems at regional scale. As a secondary result of several simulation-optimization runs at the smaller scale stochastic crop-water production functions (SCWPF) for different crops are derived which can be used as a basic tool for assessing the impact of climate variability on risk for potential yield. In addition, microeconomic impacts of climate change and the vulnerability of the agro-ecological systems are evaluated. The developed methodology is demonstrated through its application on a real-world case study for the South Al-Batinah region in the Sultanate of Oman where a coastal aquifer is affected by saltwater intrusion due to excessive groundwater withdrawal for irrigated agriculture.

  18. Discrete Event Modeling and Massively Parallel Execution of Epidemic Outbreak Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S; Seal, Sudip K

    2011-01-01

    In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks make it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate in dramatically increasing the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallelmore » execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes exceeding several hundreds of millions of individuals in the largest cases are successfully exercised to verify model scalability.« less

  19. Optimisation and evaluation of pre-design models for offshore wind turbines with jacket support structures and their influence on integrated load simulations

    NASA Astrophysics Data System (ADS)

    Schafhirt, S.; Kaufer, D.; Cheng, P. W.

    2014-12-01

    In recent years many advanced load simulation tools, allowing an aero-servo-hydroelastic analyses of an entire offshore wind turbine, have been developed and verified. Nowadays, even an offshore wind turbine with a complex support structure such as a jacket can be analysed. However, the computational effort rises significantly with an increasing level of details. This counts especially for offshore wind turbines with lattice support structures, since those models do naturally have a higher number of nodes and elements than simpler monopile structures. During the design process multiple load simulations are demanded to obtain an optimal solution. In the view of pre-design tasks it is crucial to apply load simulations which keep the simulation quality and the computational effort in balance. The paper will introduce a reference wind turbine model consisting of the REpower5M wind turbine and a jacket support structure with a high level of detail. In total twelve variations of this reference model are derived and presented. Main focus is to simplify the models of the support structure and the foundation. The reference model and the simplified models are simulated with the coupled simulation tool Flex5-Poseidon and analysed regarding frequencies, fatigue loads, and ultimate loads. A model has been found which reaches an adequate increase of simulation speed while holding the results in an acceptable range compared to the reference results.

  20. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  1. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  2. Human factors issues in the development of helmet-mounted displays for tactical fixed-wing aircraft

    NASA Astrophysics Data System (ADS)

    Barnaba, James M.

    1997-06-01

    There are many human factors issues that should be considered when designing a helmet mounted display for use in high speed aircraft with ejection seats. The Joint Helmet Mounted Cueing System Program Office, with support from the Armstrong Laboratory and the Naval Air Warfare Center, has been studying many of these issues and is able to report several findings in the areas of anthropometry, limitations in head movement, helmet stability under high gravity forces and mass properties. This paper serves to summarize the findings of the program office in these areas. The paper will include highlights of several studies that have involved anthropometric data manipulation, 3D head scans, and testing of manikin and human subjects in static and dynamic cockpit environment simulations.

  3. Acquisition of a Multi-Domain Advanced Real-Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB

    DTIC Science & Technology

    2017-10-17

    Report: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB The views, opinions and...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...University - Bakersfield Title: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB Report

  4. High-speed duplex optical wireless communication system for indoor personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2010-11-22

    In this paper a new hybrid wireless access system incorporating high bandwidth line-of-sight free space optical wireless and radio frequency localization is proposed and demonstrated. This system is capable of supporting several gigabits/second up-stream and down-stream data transmission and ideally suited for high bandwidth indoor applications such as personal area networks. A radio frequency signal is used to achieve localization of subscribers, offering limited mobility to subscribers within a practical office scenario. Even with the modest transmitted power of 5 dBm, we demonstrate satisfactory performance of bit error rates better than 10(-9) over the entire room in the presence of strong background light. Using simulations, the effectiveness of the proposed system architecture is investigated and the key performance trade-offs identified. Proof-of-concept experiments have also been carried out to validate simulation model, and initial experimental results successfully demonstrate the feasibility of the system capable of supporting 2.5 Gbps over a 1-2 m optical wireless link (limited by the length of the sliding rail used in the experiment) with a 45 degrees diffused beam in an indoor environment for the first time.

  5. Applications of Modeling and Simulation for Flight Hardware Processing at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Marshall, Jennifer L.

    2010-01-01

    The Boeing Design Visualization Group (DVG) is responsible for the creation of highly-detailed representations of both on-site facilities and flight hardware using computer-aided design (CAD) software, with a focus on the ground support equipment (GSE) used to process and prepare the hardware for space. Throughout my ten weeks at this center, I have had the opportunity to work on several projects: the modification of the Multi-Payload Processing Facility (MPPF) High Bay, weekly mapping of the Space Station Processing Facility (SSPF) floor layout, kinematics applications for the Orion Command Module (CM) hatches, and the design modification of the Ares I Upper Stage hatch for maintenance purposes. The main goal of each of these projects was to generate an authentic simulation or representation using DELMIA V5 software. This allowed for evaluation of facility layouts, support equipment placement, and greater process understanding once it was used to demonstrate future processes to customers and other partners. As such, I have had the opportunity to contribute to a skilled team working on diverse projects with a central goal of providing essential planning resources for future center operations.

  6. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    PubMed Central

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  7. Downscaling remotely sensed imagery using area-to-point cokriging and multiple-point geostatistical simulation

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong

    2015-03-01

    A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.

  8. Maximization of the Supportable Number of Sensors in QoS-Aware Cluster-Based Underwater Acoustic Sensor Networks

    PubMed Central

    Nguyen, Thi-Tham; Van Le, Duc; Yoon, Seokhoon

    2014-01-01

    This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class. PMID:24608009

  9. Maximization of the supportable number of sensors in QoS-aware cluster-based underwater acoustic sensor networks.

    PubMed

    Nguyen, Thi-Tham; Le, Duc Van; Yoon, Seokhoon

    2014-03-07

    This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class.

  10. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  11. Structural equation model analysis for the evaluation of overall driving performance: A driving simulator study focusing on driver distraction.

    PubMed

    Papantoniou, Panagiotis

    2018-04-03

    The present research relies on 2 main objectives. The first is to investigate whether latent model analysis through a structural equation model can be implemented on driving simulator data in order to define an unobserved driving performance variable. Subsequently, the second objective is to investigate and quantify the effect of several risk factors including distraction sources, driver characteristics, and road and traffic environment on the overall driving performance and not in independent driving performance measures. For the scope of the present research, 95 participants from all age groups were asked to drive under different types of distraction (conversation with passenger, cell phone use) in urban and rural road environments with low and high traffic volume in a driving simulator experiment. Then, in the framework of the statistical analysis, a correlation table is presented investigating any of a broad class of statistical relationships between driving simulator measures and a structural equation model is developed in which overall driving performance is estimated as a latent variable based on several individual driving simulator measures. Results confirm the suitability of the structural equation model and indicate that the selection of the specific performance measures that define overall performance should be guided by a rule of representativeness between the selected variables. Moreover, results indicate that conversation with the passenger was not found to have a statistically significant effect, indicating that drivers do not change their performance while conversing with a passenger compared to undistracted driving. On the other hand, results support the hypothesis that cell phone use has a negative effect on driving performance. Furthermore, regarding driver characteristics, age, gender, and experience all have a significant effect on driving performance, indicating that driver-related characteristics play the most crucial role in overall driving performance. The findings of this study allow a new approach to the investigation of driving behavior in driving simulator experiments and in general. By the successful implementation of the structural equation model, driving behavior can be assessed in terms of overall performance and not through individual performance measures, which allows an important scientific step forward from piecemeal analyses to a sound combined analysis of the interrelationship between several risk factors and overall driving performance.

  12. Probabilistic risk assessment for CO2 storage in geological formations: robust design and support for decision making under uncertainty

    NASA Astrophysics Data System (ADS)

    Oladyshkin, Sergey; Class, Holger; Helmig, Rainer; Nowak, Wolfgang

    2010-05-01

    CO2 storage in geological formations is currently being discussed intensively as a technology for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis and for stochastic approaches based on brute-force repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a orthogonal basis of higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs of the non-linear system that minimize failure probability and provide valuable support for risk-informed management decisions. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al. Computational Geosciences 13, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speedup by a factor of 100 compared to Monte Carlo simulation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of predicted leakage rates towards higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios. This implies that, neglecting uncertainty can be a strong simplification for modeling CO2 injection, and the consequences can be stronger than when neglecting several physical phenomena (e.g. phase transition, convective mixing, capillary forces etc.). The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart. Keywords: polynomial chaos; CO2 storage; multiphase flow; porous media; risk assessment; uncertainty; integrative response surfaces

  13. Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs - calibration Report for Phoenix Testbed : Final Report. [supporting datasets - Phoenix Testbed

    DOT National Transportation Integrated Search

    2017-07-26

    The datasets in this zip file are in support of FHWA-JPO-16-379, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...

  14. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs — summary report for the Chicago testbed. [supporting datasets - Chicago Testbed

    DOT National Transportation Integrated Search

    2017-04-01

    The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...

  15. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs : Dallas testbed analysis plan. [supporting datasets - Dallas Testbed

    DOT National Transportation Integrated Search

    2017-07-26

    The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...

  16. Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs - San Mateo Testbed Analysis Plan [supporting datasets - San Mateo Testbed

    DOT National Transportation Integrated Search

    2017-06-26

    This zip file contains files of data to support FHWA-JPO-16-370, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...

  17. Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.; hide

    2009-01-01

    Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.

  18. Automated simulation as part of a design workstation

    NASA Technical Reports Server (NTRS)

    Cantwell, E.; Shenk, T.; Robinson, P.; Upadhye, R.

    1990-01-01

    A development project for a design workstation for advanced life-support systems incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulations, such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The paper reports on the Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components.

  19. Experiential Learning Methods, Simulation Complexity and Their Effects on Different Target Groups

    ERIC Educational Resources Information Center

    Kluge, Annette

    2007-01-01

    This article empirically supports the thesis that there is no clear and unequivocal argument in favor of simulations and experiential learning. Instead the effectiveness of simulation-based learning methods depends strongly on the target group's characteristics. Two methods of supporting experiential learning are compared in two different complex…

  20. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less

  1. Development of a resource modelling tool to support decision makers in pandemic influenza preparedness: The AsiaFluCap Simulator

    PubMed Central

    2012-01-01

    Background Health care planning for pandemic influenza is a challenging task which requires predictive models by which the impact of different response strategies can be evaluated. However, current preparedness plans and simulations exercises, as well as freely available simulation models previously made for policy makers, do not explicitly address the availability of health care resources or determine the impact of shortages on public health. Nevertheless, the feasibility of health systems to implement response measures or interventions described in plans and trained in exercises depends on the available resource capacity. As part of the AsiaFluCap project, we developed a comprehensive and flexible resource modelling tool to support public health officials in understanding and preparing for surges in resource demand during future pandemics. Results The AsiaFluCap Simulator is a combination of a resource model containing 28 health care resources and an epidemiological model. The tool was built in MS Excel© and contains a user-friendly interface which allows users to select mild or severe pandemic scenarios, change resource parameters and run simulations for one or multiple regions. Besides epidemiological estimations, the simulator provides indications on resource gaps or surpluses, and the impact of shortages on public health for each selected region. It allows for a comparative analysis of the effects of resource availability and consequences of different strategies of resource use, which can provide guidance on resource prioritising and/or mobilisation. Simulation results are displayed in various tables and graphs, and can also be easily exported to GIS software to create maps for geographical analysis of the distribution of resources. Conclusions The AsiaFluCap Simulator is freely available software (http://www.cdprg.org) which can be used by policy makers, policy advisors, donors and other stakeholders involved in preparedness for providing evidence based and illustrative information on health care resource capacities during future pandemics. The tool can inform both preparedness plans and simulation exercises and can help increase the general understanding of dynamics in resource capacities during a pandemic. The combination of a mathematical model with multiple resources and the linkage to GIS for creating maps makes the tool unique compared to other available software. PMID:23061807

  2. Scaling and pedotransfer in numerical simulations of flow and transport in soils

    USDA-ARS?s Scientific Manuscript database

    Flow and transport parameters of soils in numerical simulations need to be defined at the support scale of computational grid cells. Such support scale can substantially differ from the support scale in laboratory or field measurements of flow and transport parameters. The scale-dependence of flow a...

  3. Relative effectiveness of several simulated jet engine noise spectral treatments in reducing annoyance in a TV-viewing situation

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.; Shigehisa, T.; Shepherd, W. T.

    1976-01-01

    An experiment was conducted in order to determine the relative effectiveness of several hypothetical jet engine noise treatments and to test hypothesis that speech interference, at least in part, mediates annoyance in a TV-viewing situation. Twenty-four subjects watched television in a simulated living room. Recorded jet flyover noises were presented in such a way as to create the illusion that aircraft were actually flying overhead. There were 27 stimuli (nine spectra at three overall levels) presented at an average rate of approximately one flight every 2 minutes. Subjects judged the annoyance value of individual stimuli using either a category rating method or magnitude estimation method in each of two 1-hour sessions. The spectral treatments most effective in reducing annoyance were at 1.6 Khz and 800 Hz, in that order. The degree of annoyance reduction resulting from all treatments was affected by the overall sound level of the stimuli, with the greatest reduction at the intermediate overall sound level, about 88 to 89 db(A), peak value. The results are interpreted as supporting the hypothesis that speech interference, at least in part, mediates annoyance with aircraft noise in a TV-viewing situation.

  4. The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.

  5. Contingency Support Simulation for the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Dykes, Andy; Dunham, Joan; Ward, Douglas T.; Robertson, Mika; Nesbit, Gary

    2007-01-01

    In March 2006, the Tracking and Data Relay Satellite (TDRS)-3 experienced an unexpected thrusting event, which caused significant changes to its orbit. Recovery from this anomaly was protracted, raising concerns during the Independent Review Team (IRT) investigation of the anomaly regarding the contingency response readiness. The simulations and readiness exercises discussed in this paper were part of the response to the IRT concerns. This paper explains the various levels of simulation needed to enhance the proficiency of the Flight Dynamics Facility (FDF) and supporting elements in recovery from a TDRS contingency situation. The main emergency to address is when a TDRS has experienced uncommanded, unreported, or misreported thrusting, causing a ground station to lose the ability to acquire the spacecraft, as happened in 2006. The following levels of simulation are proposed: 1) Tests that would be performed by the individual support sites to verify that internal procedures and tools are in place and up to date; 2) Tabletop simulations that would involve all of the key support sites talking through their respective operating procedures to ensure that proper notifications are made and communications links are established; and 3) Comprehensive simulations that would be infrequent, but realistic, involving data exchanges between ground sites and voice and electronic communications among the supporting elements.

  6. Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Harding, Keith J.; Snyder, Peter K.; Liess, Stefan

    2013-11-01

    supporting exceptionally productive agricultural lands, the Central U.S. is susceptible to severe droughts and floods. Such precipitation extremes are expected to worsen with climate change. However, future projections are highly uncertain as global climate models (GCMs) generally fail to resolve precipitation extremes. In this study, we assess how well models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate summer means, variability, extremes, and the diurnal cycle of Central U.S. summer rainfall. Output from a subset of historical CMIP5 simulations are used to drive the Weather Research and Forecasting model to determine whether dynamical downscaling improves the representation of Central U.S. rainfall. We investigate which boundary conditions influence dynamically downscaled precipitation estimates and identify GCMs that can reasonably simulate precipitation when downscaled. The CMIP5 models simulate the seasonal mean and variability of summer rainfall reasonably well but fail to resolve extremes, the diurnal cycle, and the dynamic forcing of precipitation. Downscaling to 30 km improves these characteristics of precipitation, with the greatest improvement in the representation of extremes. Additionally, sizeable diurnal cycle improvements occur with higher (10 km) resolution and convective parameterization disabled, as the daily rainfall peak shifts 4 h closer to observations than 30 km resolution simulations. This lends greater confidence that the mechanisms responsible for producing rainfall are better simulated. Because dynamical downscaling can more accurately simulate these aspects of Central U.S. summer rainfall, policymakers can have added confidence in dynamically downscaled rainfall projections, allowing for more targeted adaptation and mitigation.

  7. Burn severity mapping using simulation modeling and satellite imagery

    Treesearch

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  8. Using the GeoFEST Faulted Region Simulation System

    NASA Technical Reports Server (NTRS)

    Parker, Jay W.; Lyzenga, Gregory A.; Donnellan, Andrea; Judd, Michele A.; Norton, Charles D.; Baker, Teresa; Tisdale, Edwin R.; Li, Peggy

    2004-01-01

    GeoFEST (the Geophysical Finite Element Simulation Tool) simulates stress evolution, fault slip and plastic/elastic processes in realistic materials, and so is suitable for earthquake cycle studies in regions such as Southern California. Many new capabilities and means of access for GeoFEST are now supported. New abilities include MPI-based cluster parallel computing using automatic PYRAMID/Parmetis-based mesh partitioning, automatic mesh generation for layered media with rectangular faults, and results visualization that is integrated with remote sensing data. The parallel GeoFEST application has been successfully run on over a half-dozen computers, including Intel Xeon clusters, Itanium II and Altix machines, and the Apple G5 cluster. It is not separately optimized for different machines, but relies on good domain partitioning for load-balance and low communication, and careful writing of the parallel diagonally preconditioned conjugate gradient solver to keep communication overhead low. Demonstrated thousand-step solutions for over a million finite elements on 64 processors require under three hours, and scaling tests show high efficiency when using more than (order of) 4000 elements per processor. The source code and documentation for GeoFEST is available at no cost from Open Channel Foundation. In addition GeoFEST may be used through a browser-based portal environment available to approved users. That environment includes semi-automated geometry creation and mesh generation tools, GeoFEST, and RIVA-based visualization tools that include the ability to generate a flyover animation showing deformations and topography. Work is in progress to support simulation of a region with several faults using 16 million elements, using a strain energy metric to adapt the mesh to faithfully represent the solution in a region of widely varying strain.

  9. A prototype knowledge-based simulation support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, T.R.; Roberts, S.D.

    1987-04-01

    As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less

  10. Future directions in flight simulation: A user perspective

    NASA Technical Reports Server (NTRS)

    Jackson, Bruce

    1993-01-01

    Langley Research Center was an early leader in simulation technology, including a special emphasis in space vehicle simulations such as the rendezvous and docking simulator for the Gemini program and the lunar landing simulator used before Apollo. In more recent times, Langley operated the first synergistic six degree of freedom motion platform (the Visual Motion Simulator, or VMS) and developed the first dual-dome air combat simulator, the Differential Maneuvering Simulator (DMS). Each Langley simulator was developed more or less independently from one another with different programming support. At present time, the various simulation cockpits, while supported by the same host computer system, run dissimilar software. The majority of recent investments in Langley's simulation facilities have been hardware procurements: host processors, visual systems, and most recently, an improved motion system. Investments in software improvements, however, have not been of the same order.

  11. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs — evaluation report for ATDM program. [supporting datasets - Pasadena Testbed

    DOT National Transportation Integrated Search

    2017-07-26

    This zip file contains POSTDATA.ATT (.ATT); Print to File (.PRN); Portable Document Format (.PDF); and document (.DOCX) files of data to support FHWA-JPO-16-385, Analysis, modeling, and simulation (AMS) testbed development and evaluation to support d...

  12. Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs : Evaluation Report for the San Diego Testbed : Draft Report. [supporting datasets - San Diego

    DOT National Transportation Integrated Search

    2016-06-26

    The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...

  13. Simulation of advective flow under steady-state and transient recharge conditions, Camp Edwards, Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2003-01-01

    The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths do not coincide, and the assumption of steady-state conditions is not valid. The simulation results indicate that several modeling tools are needed to adequately simulate ground-water flow at the site and that the utility of a model varies according to hydrologic conditions in the specific areas of interest.

  14. Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion

    PubMed Central

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D.; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P.; Small, J. Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion. PMID:24453943

  15. Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion.

    PubMed

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P; Small, J Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.

  16. EO/IR scene generation open source initiative for real-time hardware-in-the-loop and all-digital simulation

    NASA Astrophysics Data System (ADS)

    Morris, Joseph W.; Lowry, Mac; Boren, Brett; Towers, James B.; Trimble, Darian E.; Bunfield, Dennis H.

    2011-06-01

    The US Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) and the Redstone Test Center (RTC) has formed the Scene Generation Development Center (SGDC) to support the Department of Defense (DoD) open source EO/IR Scene Generation initiative for real-time hardware-in-the-loop and all-digital simulation. Various branches of the DoD have invested significant resources in the development of advanced scene and target signature generation codes. The SGDC goal is to maintain unlimited government rights and controlled access to government open source scene generation and signature codes. In addition, the SGDC provides development support to a multi-service community of test and evaluation (T&E) users, developers, and integrators in a collaborative environment. The SGDC has leveraged the DoD Defense Information Systems Agency (DISA) ProjectForge (https://Project.Forge.mil) which provides a collaborative development and distribution environment for the DoD community. The SGDC will develop and maintain several codes for tactical and strategic simulation, such as the Joint Signature Image Generator (JSIG), the Multi-spectral Advanced Volumetric Real-time Imaging Compositor (MAVRIC), and Office of the Secretary of Defense (OSD) Test and Evaluation Science and Technology (T&E/S&T) thermal modeling and atmospherics packages, such as EOView, CHARM, and STAR. Other utility packages included are the ContinuumCore for real-time messaging and data management and IGStudio for run-time visualization and scenario generation.

  17. The effectiveness of simulated robots for supporting the learning of introductory programming: a multi-case case study

    NASA Astrophysics Data System (ADS)

    Major, Louis; Kyriacou, Theocharis; Brereton, Pearl

    2014-07-01

    This work investigates the effectiveness of simulated robots as tools to support the learning of programming. After the completion of a systematic review and exploratory research, a multi-case case study was undertaken. A simulator, named Kebot, was developed and used to run four 10-hour programming workshops. Twenty-three student participants (aged 16-18) in addition to 23 pre-service, and 3 in-service, teachers took part. The effectiveness of this intervention was determined by considering opinions, attitudes, and motivation as well as by analysing students' programming performance. Pre- and post-questionnaires, in- and post-workshop exercises, and interviews were used. Participants enjoyed learning using the simulator and believed the approach to be valuable and engaging. The performance of students indicates that the simulator aids learning as most completed tasks to a satisfactory standard. Evidence suggests robot simulators can offer an effective means of introducing programming. Recommendations to support the development of other simulators are provided.

  18. Operationalizing Healthcare Simulation Psychological Safety: A Descriptive Analysis of an Intervention.

    PubMed

    Henricksen, Jared W; Altenburg, Catherine; Reeder, Ron W

    2017-10-01

    Despite efforts to prepare a psychologically safe environment, simulation participants are occasionally psychologically distressed. Instructing simulation educators about participant psychological risks and having a participant psychological distress action plan available to simulation educators may assist them as they seek to keep all participants psychologically safe. A Simulation Participant Psychological Safety Algorithm was designed to aid simulation educators as they debrief simulation participants perceived to have psychological distress and categorize these events as mild (level 1), moderate (level 2), or severe (level 3). A prebrief dedicated to creating a psychologically safe learning environment was held constant. The algorithm was used for 18 months in an active pediatric simulation program. Data collected included level of participant psychological distress as perceived and categorized by the simulation team using the algorithm, type of simulation that participants went through, who debriefed, and timing of when psychological distress was perceived to occur during the simulation session. The Kruskal-Wallis test was used to evaluate the relationship between events and simulation type, events and simulation educator team who debriefed, and timing of event during the simulation session. A total of 3900 participants went through 399 simulation sessions between August 1, 2014, and January 26, 2016. Thirty-four (<1%) simulation participants from 27 sessions (7%) were perceived to have an event. One participant was perceived to have a severe (level 3) psychological distress event. Events occurred more commonly in high-intensity simulations, with novice learners and with specific educator teams. Simulation type and simulation educator team were associated with occurrence of events (P < 0.001). There was no association between event timing and event level. Severe psychological distress as categorized by simulation personnel using the Simulation Participant Psychological Safety Algorithm is rare, with mild and moderate events being more common. The algorithm was used to teach simulation educators how to assist a participant who may be psychologically distressed and document perceived event severity.

  19. Simulation-based estimates of effectiveness and cost-effectiveness of smoking cessation in patients with chronic obstructive pulmonary disease.

    PubMed

    Atsou, Kokuvi; Chouaid, Christos; Hejblum, Gilles

    2011-01-01

    The medico-economic impact of smoking cessation considering a smoking patient with chronic obstructive pulmonary disease (COPD) is poorly documented. Here, considering a COPD smoking patient, the specific burden of continuous smoking was estimated, as well as the effectiveness and the cost-effectiveness of smoking cessation. A multi-state Markov model adopting society's perspective was developed. Simulated cohorts of English COPD patients who are active smokers (all severity stages combined or patients with the same initial severity stage) were compared to identical cohorts of patients who quit smoking at cohort initialization. Life expectancy, quality adjusted life-years (QALY), disease-related costs, and incremental cost-effectiveness ratio (ICER: £/QALY) were estimated, considering smoking cessation programs with various possible scenarios of success rates and costs. Sensitivity analyses included the variation of model key parameters. At the horizon of a smoking COPD patient's remaining lifetime, smoking cessation at cohort intitialization, relapses being allowed as observed in practice, would result in gains (mean) of 1.27 life-years and 0.68 QALY, and induce savings of -1824 £/patient in the disease-related costs. The corresponding ICER was -2686 £/QALY. Smoking cessation resulted in 0.72, 0.69, 0.64 and 0.42 QALY respectively gained per mild, moderate, severe, and very severe COPD patient, but was nevertheless cost-effective for mild to severe COPD patients in most scenarios, even when hypothesizing expensive smoking cessation intervention programmes associated with low success rates. Considering a ten-year time horizon, the burden of continuous smoking in English COPD patients was estimated to cost a total of 1657 M£ while 452516 QALY would be simultaneously lost. The study results are a useful support for the setting of smoking cessation programmes specifically targeted to COPD patients.

  20. Simulation methods supporting homologation of Electronic Stability Control in vehicle variants

    NASA Astrophysics Data System (ADS)

    Lutz, Albert; Schick, Bernhard; Holzmann, Henning; Kochem, Michael; Meyer-Tuve, Harald; Lange, Olav; Mao, Yiqin; Tosolin, Guido

    2017-10-01

    Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.

  1. Support for Simulation-Based Learning; The Effects of Model Progression and Assignments on Learning about Oscillatory Motion.

    ERIC Educational Resources Information Center

    Swaak, Janine; And Others

    In this study, learners worked with a simulation of harmonic oscillation. Two supportive measures were introduced: model progression and assignments. In model progression, the model underlying the simulation is not offered in its full complexity from the start, but variables are gradually introduced. Assignments are small exercises that help the…

  2. Computer Support of Operator Training: Constructing and Testing a Prototype of a CAL (Computer Aided Learning) Supported Simulation Environment.

    ERIC Educational Resources Information Center

    Zillesen, P. G. van Schaick; And Others

    Instructional feedback given to the learners during computer simulation sessions may be greatly improved by integrating educational computer simulation programs with hypermedia-based computer-assisted learning (CAL) materials. A prototype of a learning environment of this type called BRINE PURIFICATION was developed for use in corporate training…

  3. Computer Simulations to Support Science Instruction and Learning: A Critical Review of the Literature

    ERIC Educational Resources Information Center

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-01-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is…

  4. Review of V/STOL lift/cruise fan technology

    NASA Technical Reports Server (NTRS)

    Rolls, L. S.; Quigley, H. C.; Perkins, R. G., Jr.

    1976-01-01

    This paper presents an overview of supporting technology programs conducted to reduce the risk in the joint NASA/Navy Lift/Cruise Fan Research and Technology Aircraft Program. The aeronautical community has endeavored to combine the low-speed and lifting capabilities of the helicopter with the high-speed capabilities of the jet aircraft; recent developments have indicated a lift/cruise fan propulsion system may provide these desired characteristics. NASA and the Navy have formulated a program that will provide a research and technology aircraft to furnish viability of the lift/cruise fan aircraft through flight experiences and obtain data on designs for future naval and civil V/STOL aircraft. The supporting technology programs discussed include: (1) design studies for operational aircraft, a research and technology aircraft, and associated propulsion systems; (2) wind-tunnel tests of several configurations; (3) propulsion-system thrust vectoring tests; and (4) simulation. These supporting technology programs have indicated that a satisfactory research and technology aircraft program can be accomplished within the current level of technology.

  5. An Enhanced Reservation-Based MAC Protocol for IEEE 802.15.4 Networks

    PubMed Central

    Afonso, José A.; Silva, Helder D.; Macedo, Pedro; Rocha, Luis A.

    2011-01-01

    The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling standard for wireless sensor networks. In order to support applications requiring dedicated bandwidth or bounded delay, it provides a reservation-based scheme named Guaranteed Time Slot (GTS). However, the GTS scheme presents some drawbacks, such as inefficient bandwidth utilization and support to a maximum of only seven devices. This paper presents eLPRT (enhanced Low Power Real Time), a new reservation-based MAC protocol that introduces several performance enhancing features in comparison to the GTS scheme. This MAC protocol builds on top of LPRT (Low Power Real Time) and includes various mechanisms designed to increase data transmission reliability against channel errors, improve bandwidth utilization and increase the number of supported devices. A motion capture system based on inertial and magnetic sensors has been used to validate the protocol. The effectiveness of the performance enhancements introduced by each of the new features is demonstrated through the provision of both simulation and experimental results. PMID:22163826

  6. Injection method of barrier bucket supported by off-aligned electron cooling for CRing of HIAF

    NASA Astrophysics Data System (ADS)

    Shen, Guo-Dong; Yang, Jian-Cheng; Xia, Jia-Wen; Mao, Li-Jun; Yin, Da-Yu; Chai, Wei-Ping; Shi, Jian; Sheng, Li-Na; Smirnov, A.; Wu, Bo; Zhao, He

    2016-08-01

    A new accelerator complex, HIAF (the High Intensity Heavy Ion Accelerator Facility), has been approved in China. It is designed to provide intense primary and radioactive ion beams for research in high energy density physics, nuclear physics, atomic physics as well as other applications. In order to achieve a high intensity of up to 5×1011 ppp 238U34+, the Compression Ring (CRing) needs to stack more than 5 bunches transferred from the Booster Ring (BRing). However, the normal bucket to bucket injection scheme can only achieve an intensity gain of 2, so an injection method, fixed barrier bucket (BB) supported by electron cooling, is proposed. To suppress the severe space charge effect during the stacking process, off-alignment is adopted in the cooler to control the transverse emittance. In this paper, simulation and optimization with the BETACOOL program are presented. Supported by New Interdisciplinary and Advanced Pilot Fund of Chinese Academy of Sciences

  7. Environmental control and life support system: Analysis of STS-1

    NASA Technical Reports Server (NTRS)

    Steines, G.

    1980-01-01

    The capability of the orbiter environmental control and life support system (ECLSS) to support vehicle cooling requirements in the event of cabin pressure reduction to 9 psia was evaluated, using the Orbiter versions of the shuttle environmental consumbles usage requirement evaluation (SECURE) program, and using heat load input data developed by the spacecraft electrical power simulator (SEPS) program. The SECURE model used in the analysis, the timeline and ECLSS configuration used in formulating the analysis, and the results of the analysis are presented. The conclusion which may be drawn drom these results. is summarized. There are no significant thermal problems with the proposed mission. There are, however, several procedures which could be optimized for better performance: setting the cabin HX air bypass and the interchanger water bypass to the zero flow position is of questionable efficacy; the cabin air pressure monitoring procedure should be re-evaluated; and the degree of equipment power down specified for this analysis and no problems were noted.

  8. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  9. MHD Modeling of the Sympathetic Eruptions Observed on August 1, 2010

    NASA Astrophysics Data System (ADS)

    Mikic, Z.; Torok, T.; Titov, V. S.; Downs, C.; Linker, J.; Lionello, R.; Riley, P.

    2013-12-01

    The multiple solar eruptions observed by SDO on August 1, 2010 present a special challenge to theoretical models of CME initiation. SDO captured in detail a remarkable chain of sympathetic eruptions that involved the entire visible hemisphere of the Sun (Schrijver et al. 2011). It consisted of several flares and six filament eruptions/CMEs, and triggered a geomagnetic storm on August 3 (de Toma et al. 2010). This series of eruptions was also observed by the two STEREO spacecraft. This collection of observations presents a unique opportunity to understand sympathetic eruptions theoretically. We have previously simulated the three principal filament eruptions (and their associated CMEs) that characterized this event. We have had some success in reproducing their observed synchronicity. We will present further simulations that attempt to get a better match with observations. Such simulations will help us to understand the possible mechanisms by which the various filament eruptions/CMEs may be linked. The modeling of such events is very useful for incorporation into future space weather prediction models. Research supported by NASA's Heliophysics Theory and Living With a Star Programs, and NSF/FESD.

  10. Progress on H5Part: A Portable High Performance Parallel DataInterface for Electromagnetics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelmann, Andreas; Gsell, Achim; Oswald, Benedikt

    Significant problems facing all experimental andcomputationalsciences arise from growing data size and complexity. Commonto allthese problems is the need to perform efficient data I/O ondiversecomputer architectures. In our scientific application, thelargestparallel particle simulations generate vast quantitiesofsix-dimensional data. Such a simulation run produces data foranaggregate data size up to several TB per run. Motived by the needtoaddress data I/O and access challenges, we have implemented H5Part,anopen source data I/O API that simplifies the use of the HierarchicalDataFormat v5 library (HDF5). HDF5 is an industry standard forhighperformance, cross-platform data storage and retrieval that runsonall contemporary architectures from large parallel supercomputerstolaptops. H5Part, whichmore » is oriented to the needs of the particlephysicsand cosmology communities, provides support for parallelstorage andretrieval of particles, structured and in the future unstructuredmeshes.In this paper, we describe recent work focusing on I/O supportforparticles and structured meshes and provide data showing performance onmodernsupercomputer architectures like the IBM POWER 5.« less

  11. User's guide to the Reliability Estimation System Testbed (REST)

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam

    1992-01-01

    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.

  12. Three-Dimensional Hybrid-Kinetic Simulations of Alfvénic Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Arzamasskiy, Lev; Kunz, Matthew; Chandran, Ben; Quataert, Eliot

    2016-10-01

    It is well established that the solar wind is turbulent, exhibiting a power spectrum extending over several decades in scale and with most of the energy at large scales is in form of Alfvénic fluctuations. The solar wind is also weakly collisional, with a wide variety of non-Maxwellian features observed in the particle distribution functions. In this talk, we present the first hybrid-kinetic three-dimensional simulations of driven Alfvénic turbulence in the solar wind. We confirm power-law indices obtained in previous analytical and numerical (e.g., gyrokinetic) studies, and carefully explore the location of and physics occurring at the ion Larmor scale. In the low-beta regime, we find evidence of stochastic heating, which arises when ions interact with strong fluctuations at wavelengths comparable to the ion Larmor scale. Finally, we discuss the interpretation of spacecraft measurements of the turbulence by testing the Taylor hypothesis with synthetic spacecraft measurements of our simulation data. This work was supported by Grant NNX16AK09G from NASA's Heliophysics Theory Program.

  13. Exploring information transmission in gene networks using stochastic simulation and machine learning

    NASA Astrophysics Data System (ADS)

    Park, Kyemyung; Prüstel, Thorsten; Lu, Yong; Narayanan, Manikandan; Martins, Andrew; Tsang, John

    How gene regulatory networks operate robustly despite environmental fluctuations and biochemical noise is a fundamental question in biology. Mathematically the stochastic dynamics of a gene regulatory network can be modeled using chemical master equation (CME), but nonlinearity and other challenges render analytical solutions of CMEs difficult to attain. While approaches of approximation and stochastic simulation have been devised for simple models, obtaining a more global picture of a system's behaviors in high-dimensional parameter space without simplifying the system substantially remains a major challenge. Here we present a new framework for understanding and predicting the behaviors of gene regulatory networks in the context of information transmission among genes. Our approach uses stochastic simulation of the network followed by machine learning of the mapping between model parameters and network phenotypes such as information transmission behavior. We also devised ways to visualize high-dimensional phase spaces in intuitive and informative manners. We applied our approach to several gene regulatory circuit motifs, including both feedback and feedforward loops, to reveal underexplored aspects of their operational behaviors. This work is supported by the Intramural Program of NIAID/NIH.

  14. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    NASA Astrophysics Data System (ADS)

    Moonen, P.; Gromke, C.; Dorer, V.

    2013-08-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are considered. The model performance is assessed in several steps, ranging from a qualitative comparison to measured concentrations, over statistical data analysis by means of scatter plots and box plots, up to the calculation of objective validation metrics. The extensive validation effort highlights and quantifies notable features and shortcomings of the model, which would otherwise remain unnoticed. The model performance is found to be spatially non-uniform. Closer agreement with measurement data is achieved near the canyon ends than for the central part of the canyon, and typical model acceptance criteria are satisfied more easily for the leeward than for the windward canyon wall. This demonstrates the need for rigorous model evaluation. Only quality-assured models can be used with confidence to support assessment, planning and implementation of pollutant mitigation strategies.

  15. The mechanism by which P250L mutation impairs flavivirus-NS1 dimerization: an investigation based on molecular dynamics simulations.

    PubMed

    Oliveira, Edson R A; de Alencastro, Ricardo B; Horta, Bruno A C

    2016-09-01

    The flavivirus non-structural protein 1 (NS1) is a conserved glycoprotein with as yet undefined biological function. This protein dimerizes when inside infected cells or associated to cell membranes but also forms lipid-associated hexamers when secreted to the extracellular space. A single amino acid substitution (P250L) is capable of preventing the dimerization of NS1 resulting in lower virulence and slower virus replication. In this work, based on molecular dynamics simulations of the dengue-2 virus NS1 [Formula: see text]-ladder monomer as a core model, we found that this mutation can induce several conformational changes that importantly affect critical monomer-monomer interactions. Based on additional simulations, we suggest a mechanism by which a highly orchestrated sequence of events propagate the local perturbations around the mutation site towards the dimer interface. The elucidation of such a mechanism could potentially support new strategies for rational production of live-attenuated vaccines and highlights a step forward in the development of novel anti-flavivirus measures.

  16. Ion Dynamics Model for Collisionless Radio Frequency Sheaths

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindan, T.R.; Meyyappan, M.

    2000-01-01

    Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.

  17. Comparison of different models for non-invasive FFR estimation

    NASA Astrophysics Data System (ADS)

    Mirramezani, Mehran; Shadden, Shawn

    2017-11-01

    Coronary artery disease is a leading cause of death worldwide. Fractional flow reserve (FFR), derived from invasively measuring the pressure drop across a stenosis, is considered the gold standard to diagnose disease severity and need for treatment. Non-invasive estimation of FFR has gained recent attention for its potential to reduce patient risk and procedural cost versus invasive FFR measurement. Non-invasive FFR can be obtained by using image-based computational fluid dynamics to simulate blood flow and pressure in a patient-specific coronary model. However, 3D simulations require extensive effort for model construction and numerical computation, which limits their routine use. In this study we compare (ordered by increasing computational cost/complexity): reduced-order algebraic models of pressure drop across a stenosis; 1D, 2D (multiring) and 3D CFD models; as well as 3D FSI for the computation of FFR in idealized and patient-specific stenosis geometries. We demonstrate the ability of an appropriate reduced order algebraic model to closely predict FFR when compared to FFR from a full 3D simulation. This work was supported by the NIH, Grant No. R01-HL103419.

  18. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  19. Investigation of Electric and Self-Generated Magnetic Fields in Implosion Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N.; Li, C. K.; Zylstra, A. B.; Petrasso, R. D.

    2013-10-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA laser were investigated using proton radiography. The experiments use plastic-shell targets with various surface defects (glue spot, wire, and stalk mount) to seed perturbations and generate localized electromagnetic fields at the ablation surface and in the plasma corona surrounding the targets. Proton radiographs show features from these perturbations and quasi-spherical multiple shell structures around the capsules at earlier times of implosions (up to ~700 ps for a 1-ns laser pulse) indicating the development of the fields. Two-dimensional magnetohydrodynamic simulations of these experiments predict the growth of magnetic fields up to several MG. The simulated distributions of electromagnetic fields were used to produce proton images, which show good agreement with experimental radiographs. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. The effects of video games on laparoscopic simulator skills.

    PubMed

    Jalink, Maarten B; Goris, Jetse; Heineman, Erik; Pierie, Jean-Pierre E N; ten Cate Hoedemaker, Henk O

    2014-07-01

    Recently, there has been a growth in studies supporting the hypothesis that video games have positive effects on basic laparoscopic skills. This review discusses all studies directly related to these effects. A search in the PubMed and EMBASE databases was performed using synonymous terms for video games and laparoscopy. All available articles concerning video games and their effects on skills on any laparoscopic simulator (box trainer, virtual reality, and animal models) were selected. Video game experience has been related to higher baseline laparoscopic skills in different studies. There is currently, however, no standardized method to assess video game experience, making it difficult to compare these studies. Several controlled experiments have, nevertheless, shown that video games cannot only be used to improve laparoscopic basic skills in surgical novices, but are also used as a temporary warming-up before laparoscopic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Gaffney, Richard L., Jr.; Parker, Peter A.; Tedder, Sarah A.; Chelliah, Harsha K.; Cutler, Andrew D.; Bivolaru, Daniel; Givi, Peyman; Hassan, Hassan A.

    2009-01-01

    This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.

  2. Protein Dynamics from NMR and Computer Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn

    2002-03-01

    Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).

  3. Collecting data from a sensor network in a single-board computer

    NASA Astrophysics Data System (ADS)

    Casciati, F.; Casciati, S.; Chen, Z.-C.; Faravelli, L.; Vece, M.

    2015-07-01

    The EU-FP7 project SPARTACUS, currently in progress, sees the international cooperation of several partners toward the design and implementation of a satellite based asset tracking for supporting emergency management in crisis operations. Due to the emergency environment, one has to rely on a low power consumption wireless communication. Therefore, the communication hardware and software must be designed to match requirements which can only be foreseen at the level of more or less likely scenarios. The latter aspect suggests a deep use of a simulator (instead of a real network of sensors) to cover extreme situations. The former power consumption remark suggests the use of a minimal computer (Raspberry Pi) as data collector. In this paper, the results of a broad simulation campaign are reported in order to investigate the accuracy of the received data and the global power consumption for each of the considered scenarios.

  4. OpenKIM - Building a Knowledgebase of Interatomic Models

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Tadmor, Ellad; Elliott, Ryan; Wennblom, Trevor; Alemi, Alexander; Chen, Yan-Jiun; Karls, Daniel; Ludvik, Adam; Sethna, James

    2014-03-01

    The Knowledgebase of Interatomic Models (KIM) is an effort by the computational materials community to provide a standard interface for the development, characterization, and use of interatomic potentials. The KIM project has developed an API between simulation codes and interatomic models written in several different languages including C, Fortran, and Python. This interface is already supported in popular simulation environments such as LAMMPS and ASE, giving quick access to over a hundred compatible potentials that have been contributed so far. To compare and characterize models, we have developed a computational processing pipeline which automatically runs a series of tests for each model in the system, such as phonon dispersion relations and elastic constant calculations. To view the data from these tests, we created a rich set of interactive visualization tools located online. Finally, we created a Web repository to store and share these potentials, tests, and visualizations which can be found at https://openkim.org along with futher information.

  5. Shield evaluation and performance testing at the USMB`s Strategic Structures Testing Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barczak, T.M.; Gearhart, D.F.

    1996-12-31

    Historically, shield performance testing is conducted by the support manufacturers at European facilities. The U.S. Bureau of Mines (USBM) has conducted extensive research in shield Mechanics and is now opening its Strategic Structures Testing (SST) Laboratory to the mining industry for shield performance testing. The SST Laboratory provides unique shield testing capabilities using the Mine Roof Simulator (MRS) load frame. The MRS provides realistic and cost-effective shield evaluation by combining both vertical and horizontal loading into a single load cycle; whereas, several load cycles would be required to obtain this loading in a static frame. In addition to these advantages,more » the USBM acts as an independent research organization to provide an unbiased assessment of shield performance. This paper describes the USBM`s shield testing program that is designed specifically to simulate in-service mining conditions using the unique the capabilities of the SST Laboratory.« less

  6. Multipacting simulation and test results of BNL 704 MHz SRF gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu W.; Belomestnykh, S.; Ben-Zvi, I.

    The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab,more » and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.« less

  7. Predicting the Effects of Test Media in Ground-Based Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Parker, Peter A.; Chelliah, Harsha K.; Cutler, Andrew D.; Givi, Peyman; Hassan, Hassan, A.

    2006-01-01

    This paper discusses the progress of work which began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program has several components including the development of advance algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that will provide data for the modeling efforts will also be described, along with with the associated nonintrusive diagnostics used to collect the data.

  8. Modeling and dynamic environment analysis technology for spacecraft

    NASA Astrophysics Data System (ADS)

    Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei

    Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.

  9. Simulation to Flight Test for a UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  10. Using OPC technology to support the study of advanced process control.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2015-03-01

    OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Future WGCEP Models and the Need for Earthquake Simulators

    NASA Astrophysics Data System (ADS)

    Field, E. H.

    2008-12-01

    The 2008 Working Group on California Earthquake Probabilities (WGCEP) recently released the Uniform California Earthquake Rupture Forecast version 2 (UCERF 2), developed jointly by the USGS, CGS, and SCEC with significant support from the California Earthquake Authority. Although this model embodies several significant improvements over previous WGCEPs, the following are some of the significant shortcomings that we hope to resolve in a future UCERF3: 1) assumptions of fault segmentation and the lack of fault-to-fault ruptures; 2) the lack of an internally consistent methodology for computing time-dependent, elastic-rebound-motivated renewal probabilities; 3) the lack of earthquake clustering/triggering effects; and 4) unwarranted model complexity. It is believed by some that physics-based earthquake simulators will be key to resolving these issues, either as exploratory tools to help guide the present statistical approaches, or as a means to forecast earthquakes directly (although significant challenges remain with respect to the latter).

  12. HEXT, a software supporting tree-based screens for hybrid taxa in multilocus data sets, and an evaluation of the homoplasy excess test.

    PubMed

    Schneider, Kevin; Koblmüller, Stephan; Sefc, Kristina M

    2015-11-11

    The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis .With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.

  13. Triple Scheme of Learning Support Design for Scientific Discovery Learning Based on Computer Simulation: Experimental Research

    ERIC Educational Resources Information Center

    Zhang, Jianwei; Chen, Qi; Sun, Yanquing; Reid, David J.

    2004-01-01

    Learning support studies involving simulation-based scientific discovery learning have tended to adopt an ad hoc strategies-oriented approach in which the support strategies are typically pre-specified according to learners' difficulties in particular activities. This article proposes a more integrated approach, a triple scheme for learning…

  14. Automated simulation as part of a design workstation

    NASA Technical Reports Server (NTRS)

    Cantwell, Elizabeth; Shenk, T.; Robinson, P.; Upadhye, R.

    1990-01-01

    A development project for a design workstation for advanced life-support systems (called the DAWN Project, for Design Assistant Workstation), incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulation such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components are discussed.

  15. Ultra high energy resolution focusing monochromator for inelastic X-ray scattering spectrometer

    DOE PAGES

    Suvorov, Alexey; Cunsolo, Alessandro; Chubar, Oleg; ...

    2015-11-25

    Further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the “Synchrotron Radiation Workshop” software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. We show that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

  16. A Perspective on Computational Aerothermodynamics at NASA

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2007-01-01

    The evolving role of computational aerothermodynamics (CA) within NASA over the past 20 years is reviewed. The presentation highlights contributions to understanding the Space Shuttle pitching moment anomaly observed in the first shuttle flight, prediction of a static instability for Mars Pathfinder, and the use of CA for damage assessment in post-Columbia mission support. In the view forward, several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified.

  17. Nanoscale structure of the oil-water interface

    DOE PAGES

    Fukuto, M.; Ocko, B. M.; Bonthuis, D. J.; ...

    2016-12-15

    X-ray reflectivity (XR) and atomistic molecular dynamics (MD) simulations, carried out to determine the structure of the oil-water interface, provide new insight into the simplest liquid-liquid interface. For several oils (hexane, dodecane, and hexadecane) the XR shows very good agreement with a monotonic interface-normal electron density profile (EDP) broadened only by capillary waves. Similar agreement is also found for an EDP including a sub-Å thick electron depletion layer separating the oil and the water. As a result, the XR and MD derived depletions are much smaller than reported for the interface between solid-supported hydrophobic monolayers and water.

  18. Microelectrode for energy and current control of nanotip field electron emitters

    NASA Astrophysics Data System (ADS)

    Lüneburg, S.; Müller, M.; Paarmann, A.; Ernstorfer, R.

    2013-11-01

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10-30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  19. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  20. Computational Study on Full-length Human Ku70 with Double Stranded DNA: Dynamics, Interactions and Functional Implications

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2009-01-01

    The Ku70/80 heterodimer is the first repair protein in the initial binding of double-strand break (DSB) ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. In this study we constructed a full-length human Ku70 structure based on its crystal structure, and performed 20 ns conventional molecular dynamic (CMD) simulations on this protein and several other complexes with short DNA duplexes of different sequences. The trajectories of these simulations indicated that, without the topological support of Ku80, the residues in the bridge and C-terminal arm of Ku70 are more flexible than other experimentally identified domains. We studied the two missing loops in the crystal structure and predicted that they are also very flexible. Simulations revealed that they make an important contribution to the Ku70 interaction with DNA. Dislocation of the previously studied SAP domain was observed in several systems, implying its role in DNA binding. Targeted molecular dynamic (TMD) simulation was also performed for one system with a far-away 14bp DNA duplex. The TMD trajectory and energetic analysis disclosed detailed interactions of the DNA-binding residues during the DNA dislocation, and revealed a possible conformational transition for a DSB end when encountering Ku70 in solution. Compared to experimentally based analysis, this study identified more detailed interactions between DNA and Ku70. Free energy analysis indicated Ku70 alone is able to bind DNA with relatively high affinity, with consistent contributions from various domains of Ku70 in different systems. The functional implications of these domains in the processes of Ku heterodimerization and DNA damage recognition and repair can be characterized in detail based upon this analysis.

  1. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.

  2. High velocity impact on composite link of aircraft wing flap mechanism

    NASA Astrophysics Data System (ADS)

    Heimbs, Sebastian; Lang, Holger; Havar, Tamas

    2012-12-01

    This paper describes the numerical investigation of the mechanical behaviour of a structural component of an aircraft wing flap support impacted by a wheel rim fragment. The support link made of composite materials was modelled in the commercial finite element code Abaqus/Explicit, incorporating intralaminar and interlaminar failure modes by adequate material models and cohesive interfaces. Validation studies were performed step by step using quasi-static tensile test data and low velocity impact test data. Finally, high velocity impact simulations with a metallic rim fragment were performed for several load cases involving different impact angles, impactor rotation and pre-stress. The numerical rim release analysis turned out to be an efficient approach in the development process of such composite structures and for the identification of structural damage and worst case impact loading scenarios.

  3. Imminent: Irradiation Testing of (Th,Pu)O{sub 2} Fuel - 13560

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Julian F.; Franceschini, Fausto

    2013-07-01

    Commercial-prototype thorium-plutonium oxide (Th-MOX) fuel pellets have been loaded into the material test reactor in Halden, Norway. The fuel is being operated at full power - with instrumentation - in simulated LWR / PHWR conditions and its behaviour is measured 'on-line' as it operates to high burn-up. This is a vital test on the commercialization pathway for this robust new thoria-based fuel. The performance data that is collected will support a fuel modeling effort to support its safety qualification. Several different samples of Th-MOX fuel will be tested, thereby collecting information on ceramic behaviours and their microstructure dependency. The fuel-cyclemore » reasoning underpinning the test campaign is that commercial Th- MOX fuels are an achievable intermediate / near-term SNF management strategy that integrates well with a fast reactor future. (authors)« less

  4. Building the evidence on simulation validity: comparison of anesthesiologists' communication patterns in real and simulated cases.

    PubMed

    Weller, Jennifer; Henderson, Robert; Webster, Craig S; Shulruf, Boaz; Torrie, Jane; Davies, Elaine; Henderson, Kaylene; Frampton, Chris; Merry, Alan F

    2014-01-01

    Effective teamwork is important for patient safety, and verbal communication underpins many dimensions of teamwork. The validity of the simulated environment would be supported if it elicited similar verbal communications to the real setting. The authors hypothesized that anesthesiologists would exhibit similar verbal communication patterns in routine operating room (OR) cases and routine simulated cases. The authors further hypothesized that anesthesiologists would exhibit different communication patterns in routine cases (real or simulated) and simulated cases involving a crisis. Key communications relevant to teamwork were coded from video recordings of anesthesiologists in the OR, routine simulation and crisis simulation and percentages were compared. The authors recorded comparable videos of 20 anesthesiologists in the two simulations, and 17 of these anesthesiologists in the OR, generating 400 coded events in the OR, 683 in the routine simulation, and 1,419 in the crisis simulation. The authors found no significant differences in communication patterns in the OR and the routine simulations. The authors did find significant differences in communication patterns between the crisis simulation and both the OR and the routine simulations. Participants rated team communication as realistic and considered their communications occurred with a similar frequency in the simulations as in comparable cases in the OR. The similarity of teamwork-related communications elicited from anesthesiologists in simulated cases and the real setting lends support for the ecological validity of the simulation environment and its value in teamwork training. Different communication patterns and frequencies under the challenge of a crisis support the use of simulation to assess crisis management skills.

  5. Simulation of the Interactions Between Gamma-Rays and Detectors Using BSIMUL

    NASA Technical Reports Server (NTRS)

    Haywood, S. E.; Rester, A. C., Jr.

    1996-01-01

    Progress made during 1995 on the Monte-Carlo gamma-ray spectrum simulation program BSIMUL is discussed. Several features have been added, including the ability to model shield that are tapered cylinders. Several simulations were made on the Near Earth Asteroid Rendezvous detector.

  6. Regime-based evaluation of cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2017-01-01

    The concept of cloud regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating in each grid cell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product [long-term average total cloud amount (TCA)], cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our results support previous findings that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is still not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer cloud observations evaluated against ISCCP like another model output. Lastly, contrasting cloud simulation performance against each model's equilibrium climate sensitivity in order to gain insight on whether good cloud simulation pairs with particular values of this parameter, yields no clear conclusions.

  7. Generation of nanoclusters by ultrafast laser ablation of Al: Molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miloshevsky, Alexander; Phillips, Mark C.; Harilal, Sivanandan S.

    The laser ablation of materials induced by an ultrashort femtosecond pulse is a complex phenomenon, which depends on both the material properties and the properties of the laser pulse. The unique capability of a combination of molecular dynamics (MD) and Momentum Scaling Model (MSM) methods is developed and applied to a large atomic system for studying the process of ultrafast laser-material interactions, behavior of matter in a highly non-equilibrium state, material disintegration, and formation of nanoparticles (NPs). Laser pulses with several fluences in the range from 500 J/m2 to 5000 J/m2 interacting with a large system of aluminum atoms aremore » simulated. The response of Al material to the laser energy deposition is investigated within the finite-size laser spot. It is found that the shape of the plasma plume is dynamically changing during an expansion process. At several tens of picoseconds it can be characterized as a long hollow ellipsoid surrounded by atomized and nano-clustered particles. The time evolution of NP clusters in the plume is investigated. The collisions between the single Al atoms and generated NPs and fragmentation of large NPs determine the fractions of different-size NP clusters in the plume. The MD-MSM simulations show that laser fluence greatly affects the size distribution of NPs, their polar angles, magnitude and direction vectors of NP velocities. These results and predictions are supported by the experimental data and previous MD simulations.« less

  8. Impacts of Using Distributed Energy Resources to Reduce Peak Loads in Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark F.; Lunacek, Monte S.; Jones, Birk

    To help the United States develop a modern electricity grid that provides reliable power from multiple resources as well as resiliency under extreme conditions, the U.S. Department of Energy (DOE) is leading the Grid Modernization Initiative (GMI) to help shape the future of the nation's grid. Under the GMI, DOE funded the Vermont Regional Initiative project to provide the technical support and analysis to utilities that need to mitigate possible impacts of increasing renewable generation required by statewide goals. Advanced control of distributed energy resources (DER) can both support higher penetrations of renewable energy by balancing controllable loads to windmore » and photovoltaic (PV) solar generation and reduce peak demand by shedding noncritical loads. This work focuses on the latter. This document reports on an experiment that evaluated and quantified the potential benefits and impacts of reducing the peak load through demand response (DR) using centrally controllable electric water heaters (EWHs) and batteries on two Green Mountain Power (GMP) feeders. The experiment simulated various hypothetical scenarios that varied the number of controllable EWHs, the amount of distributed PV systems, and the number of distributed residential batteries. The control schemes were designed with several objectives. For the first objective, the primary simulations focused on reducing the load during the independent system operator (ISO) peak when capacity charges were the primary concern. The second objective was to mitigate DR rebound to avoid new peak loads and high ramp rates. The final objective was to minimize customers' discomfort, which is defined by the lack of hot water when it is needed. We performed the simulations using the National Renewable Energy Laboratory's (NREL's) Integrated Energy System Model (IESM) because it can simulate both electric power distribution feeder and appliance end use performance and it includes the ability to simulate multiple control strategies.« less

  9. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and operational concepts verification, as well as demonstration of vehicular interfaces, consumables sizing and recharge, and water quality control.

  10. Simulating clinical trial visits yields patient insights into study design and recruitment.

    PubMed

    Lim, S Sam; Kivitz, Alan J; McKinnell, Doug; Pierson, M Edward; O'Brien, Faye S

    2017-01-01

    We elicited patient experiences from clinical trial simulations to aid in future trial development and to improve patient recruitment and retention. Two simulations of draft Phase II and Phase III anifrolumab studies for systemic lupus erythematosus (SLE)/lupus nephritis (LN) were performed involving African-American patients from Grady Hospital, an indigent care hospital in Atlanta, GA, USA, and white patients from Altoona Arthritis and Osteoporosis Center in Altoona, PA, USA. The clinical trial simulation included an informed consent procedure, a mock screening visit, a mock dosing visit, and a debriefing period for patients and staff. Patients and staff were interviewed to obtain sentiments and perceptions related to the simulated visits. The Atlanta study involved 6 African-American patients (5 female) aged 27-60 years with moderate to severe SLE/LN. The Altoona study involved 12 white females aged 32-75 years with mild to moderate SLE/LN. Patient experiences had an impact on four patient-centric care domains: 1) information, communication, and education; 2) responsiveness to needs; 3) access to care; and 4) coordination of care; and continuity and transition. Patients in both studies desired background material, knowledgeable staff, family and friend support, personal results, comfortable settings, shorter wait times, and greater scheduling flexibility. Compared with the Altoona study patients, Atlanta study patients reported greater preferences for information from the Internet, need for strong community and online support, difficulties in discussing SLE, emphasis on transportation and child care help during the visits, and concerns related to financial matters; and they placed greater importance on time commitment, understanding of potential personal benefit, trust, and confidentiality of patient data as factors for participation. Using these results, we present recommendations to improve study procedures to increase retention, recruitment, and compliance for clinical trials. Insights from these two studies can be applied to the development and implementation of future clinical trials to improve patient recruitment, retention, compliance, and advocacy.

  11. Fortran interface layer of the framework for developing particle simulator FDPS

    NASA Astrophysics Data System (ADS)

    Namekata, Daisuke; Iwasawa, Masaki; Nitadori, Keigo; Tanikawa, Ataru; Muranushi, Takayuki; Wang, Long; Hosono, Natsuki; Nomura, Kentaro; Makino, Junichiro

    2018-06-01

    Numerical simulations based on particle methods have been widely used in various fields including astrophysics. To date, various versions of simulation software have been developed by individual researchers or research groups in each field, through a huge amount of time and effort, even though the numerical algorithms used are very similar. To improve the situation, we have developed a framework, called FDPS (Framework for Developing Particle Simulators), which enables researchers to develop massively parallel particle simulation codes for arbitrary particle methods easily. Until version 3.0, FDPS provided an API (application programming interface) for the C++ programming language only. This limitation comes from the fact that FDPS is developed using the template feature in C++, which is essential to support arbitrary data types of particle. However, there are many researchers who use Fortran to develop their codes. Thus, the previous versions of FDPS require such people to invest much time to learn C++. This is inefficient. To cope with this problem, we developed a Fortran interface layer in FDPS, which provides API for Fortran. In order to support arbitrary data types of particle in Fortran, we design the Fortran interface layer as follows. Based on a given derived data type in Fortran representing particle, a PYTHON script provided by us automatically generates a library that manipulates the C++ core part of FDPS. This library is seen as a Fortran module providing an API of FDPS from the Fortran side and uses C programs internally to interoperate Fortran with C++. In this way, we have overcome several technical issues when emulating a `template' in Fortran. Using the Fortran interface, users can develop all parts of their codes in Fortran. We show that the overhead of the Fortran interface part is sufficiently small and a code written in Fortran shows a performance practically identical to the one written in C++.

  12. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eungsoo; Manuel, Lance; Curcic, Milan

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of themore » changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces, and soil-structure interaction effects. A detailed framework is presented that explains how coupled inputs can be included in turbine loads studies during a hurricane. This framework can aid in future efforts aimed at developing offshore wind turbine design criteria and load cases related to hurricanes.« less

  13. Modelling the spread of innovation in wild birds.

    PubMed

    Shultz, Thomas R; Montrey, Marcel; Aplin, Lucy M

    2017-06-01

    We apply three plausible algorithms in agent-based computer simulations to recent experiments on social learning in wild birds. Although some of the phenomena are simulated by all three learning algorithms, several manifestations of social conformity bias are simulated by only the approximate majority (AM) algorithm, which has roots in chemistry, molecular biology and theoretical computer science. The simulations generate testable predictions and provide several explanatory insights into the diffusion of innovation through a population. The AM algorithm's success raises the possibility of its usefulness in studying group dynamics more generally, in several different scientific domains. Our differential-equation model matches simulation results and provides mathematical insights into the dynamics of these algorithms. © 2017 The Author(s).

  14. Technology and medicine: the evolution of virtual reality simulation in laparoscopic training.

    PubMed

    Bashir, Gareth

    2010-01-01

    Virtual reality (VR) simulation for laparoscopic surgical training is now a reality. There is increasing evidence that the use of VR simulation is a powerful adjunct to traditional surgical apprenticeship in the current climate of reduced time spent in training. This article reviews the early evidence supporting the case for VR simulation training in laparoscopic surgery. A standard literature search was conducted using the following phrases--'virtual reality in surgical training', 'surgical training', 'laparoscopic training' and 'simulation in surgical training'. This article outlines the early evidence which supports the use of VR simulation in laparoscopic training and the need for further research into this new training technique.

  15. Status of simulation in health care education: an international survey.

    PubMed

    Qayumi, Karim; Pachev, George; Zheng, Bin; Ziv, Amitai; Koval, Valentyna; Badiei, Sadia; Cheng, Adam

    2014-01-01

    Simulation is rapidly penetrating the terrain of health care education and has gained growing acceptance as an educational method and patient safety tool. Despite this, the state of simulation in health care education has not yet been evaluated on a global scale. In this project, we studied the global status of simulation in health care education by determining the degree of financial support, infrastructure, manpower, information technology capabilities, engagement of groups of learners, and research and scholarly activities, as well as the barriers, strengths, opportunities for growth, and other aspects of simulation in health care education. We utilized a two-stage process, including an online survey and a site visit that included interviews and debriefings. Forty-two simulation centers worldwide participated in this study, the results of which show that despite enormous interest and enthusiasm in the health care community, use of simulation in health care education is limited to specific areas and is not a budgeted item in many institutions. Absence of a sustainable business model, as well as sufficient financial support in terms of budget, infrastructure, manpower, research, and scholarly activities, slows down the movement of simulation. Specific recommendations are made based on current findings to support simulation in the next developmental stages.

  16. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  17. Institutional Computing Executive Group Review of Multi-programmatic & Institutional Computing, Fiscal Year 2005 and 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, S; Rotman, D; Schwegler, E

    The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources.more » Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO petabyte-class storage facility on the green network for use in data intensive external collaborations; and (6) continued support for visualization and other methods for analyzing large simulations. We also recommend that M and IC begin planning in FY07 for the next upgrade of its parallel clusters. LLNL investments in M and IC have resulted in a world-class simulation capability leading to innovative science. We thank the LLNL management for its continued support and thank the M and IC staff for its vision and dedicated efforts to make it all happen.« less

  18. The Effectiveness of Simulated Robots for Supporting the Learning of Introductory Programming: A Multi-Case Case Study

    ERIC Educational Resources Information Center

    Major, Louis; Kyriacou, Theocharis; Brereton, Pearl

    2014-01-01

    This work investigates the effectiveness of simulated robots as tools to support the learning of programming. After the completion of a systematic review and exploratory research, a multi-case case study was undertaken. A simulator, named Kebot, was developed and used to run four 10-hour programming workshops. Twenty-three student participants…

  19. A Naval Marksmanship Training Transfer Study: The Use of Indoor Simulated Marksmanship Trainers to Train for Live Fire

    DTIC Science & Technology

    2012-03-01

    on the standard Navy Handgun Qualification Course. Results partially supported the hypotheses. The simulation group showed greater improvement in MPI...standard Navy Handgun Qualification Course. Results partially supported the hypotheses. The simulation group showed greater improvement in MPI than the...14 3. Navy Handgun Qualification Course Firing Sequence ..................15 F. PROCEDURES

  20. Design and Evaluation of a Prompting Instrument to Support Learning within the Diffusion Simulation Game

    ERIC Educational Resources Information Center

    Kwon, Seolim; Lara, Miguel; Enfield, Jake; Frick, Theodore

    2013-01-01

    Conducting an iterative usability testing, a set of prompts used as a form of instructional support was developed in order to facilitate the comprehension of the diffusion of innovations theory (Rogers, 2003) in a simulation game called the Diffusion Simulation Game (DSG) (Molenda & Rice, 1979). The six subjects who participated in the study…

Top